Sample records for local image content

  1. Toward privacy-preserving JPEG image retrieval

    NASA Astrophysics Data System (ADS)

    Cheng, Hang; Wang, Jingyue; Wang, Meiqing; Zhong, Shangping

    2017-07-01

    This paper proposes a privacy-preserving retrieval scheme for JPEG images based on local variance. Three parties are involved in the scheme: the content owner, the server, and the authorized user. The content owner encrypts JPEG images for privacy protection by jointly using permutation cipher and stream cipher, and then, the encrypted versions are uploaded to the server. With an encrypted query image provided by an authorized user, the server may extract blockwise local variances in different directions without knowing the plaintext content. After that, it can calculate the similarity between the encrypted query image and each encrypted database image by a local variance-based feature comparison mechanism. The authorized user with the encryption key can decrypt the returned encrypted images with plaintext content similar to the query image. The experimental results show that the proposed scheme not only provides effective privacy-preserving retrieval service but also ensures both format compliance and file size preservation for encrypted JPEG images.

  2. Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization.

    PubMed

    Brand, John; Johnson, Aaron P

    2014-01-01

    In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks.

  3. Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization

    PubMed Central

    Brand, John; Johnson, Aaron P.

    2014-01-01

    In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks. PMID:25520675

  4. Automatic image enhancement based on multi-scale image decomposition

    NASA Astrophysics Data System (ADS)

    Feng, Lu; Wu, Zhuangzhi; Pei, Luo; Long, Xiong

    2014-01-01

    In image processing and computational photography, automatic image enhancement is one of the long-range objectives. Recently the automatic image enhancement methods not only take account of the globe semantics, like correct color hue and brightness imbalances, but also the local content of the image, such as human face and sky of landscape. In this paper we describe a new scheme for automatic image enhancement that considers both global semantics and local content of image. Our automatic image enhancement method employs the multi-scale edge-aware image decomposition approach to detect the underexposure regions and enhance the detail of the salient content. The experiment results demonstrate the effectiveness of our approach compared to existing automatic enhancement methods.

  5. Content based image retrieval using local binary pattern operator and data mining techniques.

    PubMed

    Vatamanu, Oana Astrid; Frandeş, Mirela; Lungeanu, Diana; Mihalaş, Gheorghe-Ioan

    2015-01-01

    Content based image retrieval (CBIR) concerns the retrieval of similar images from image databases, using feature vectors extracted from images. These feature vectors globally define the visual content present in an image, defined by e.g., texture, colour, shape, and spatial relations between vectors. Herein, we propose the definition of feature vectors using the Local Binary Pattern (LBP) operator. A study was performed in order to determine the optimum LBP variant for the general definition of image feature vectors. The chosen LBP variant is then subsequently used to build an ultrasound image database, and a database with images obtained from Wireless Capsule Endoscopy. The image indexing process is optimized using data clustering techniques for images belonging to the same class. Finally, the proposed indexing method is compared to the classical indexing technique, which is nowadays widely used.

  6. Holographic imaging based on time-domain data of natural-fiber-containing materials

    DOEpatents

    Bunch, Kyle J.; McMakin, Douglas L.

    2012-09-04

    Methods and apparatuses for imaging material properties in natural-fiber-containing materials can utilize time-domain data. In particular, images can be constructed that provide quantified measures of localized moisture content. For example, one or more antennas and at least one transceiver can be configured to collect time-domain data from radiation interacting with the natural-fiber-containing materials. The antennas and the transceivers are configured to transmit and receive electromagnetic radiation at one or more frequencies, which are between 50 MHz and 1 THz, according to a time-domain impulse function. A computing device is configured to transform the time-domain data to frequency-domain data, to apply a synthetic imaging algorithm for constructing a three-dimensional image of the natural-fiber-containing materials, and to provide a quantified measure of localized moisture content based on a pre-determined correlation of moisture content to frequency-domain data.

  7. Method for localizing and isolating an errant process step

    DOEpatents

    Tobin, Jr., Kenneth W.; Karnowski, Thomas P.; Ferrell, Regina K.

    2003-01-01

    A method for localizing and isolating an errant process includes the steps of retrieving from a defect image database a selection of images each image having image content similar to image content extracted from a query image depicting a defect, each image in the selection having corresponding defect characterization data. A conditional probability distribution of the defect having occurred in a particular process step is derived from the defect characterization data. A process step as a highest probable source of the defect according to the derived conditional probability distribution is then identified. A method for process step defect identification includes the steps of characterizing anomalies in a product, the anomalies detected by an imaging system. A query image of a product defect is then acquired. A particular characterized anomaly is then correlated with the query image. An errant process step is then associated with the correlated image.

  8. Security of fragile authentication watermarks with localization

    NASA Astrophysics Data System (ADS)

    Fridrich, Jessica

    2002-04-01

    In this paper, we study the security of fragile image authentication watermarks that can localize tampered areas. We start by comparing the goals, capabilities, and advantages of image authentication based on watermarking and cryptography. Then we point out some common security problems of current fragile authentication watermarks with localization and classify attacks on authentication watermarks into five categories. By investigating the attacks and vulnerabilities of current schemes, we propose a variation of the Wong scheme18 that is fast, simple, cryptographically secure, and resistant to all known attacks, including the Holliman-Memon attack9. In the new scheme, a special symmetry structure in the logo is used to authenticate the block content, while the logo itself carries information about the block origin (block index, the image index or time stamp, author ID, etc.). Because the authentication of the content and its origin are separated, it is possible to easily identify swapped blocks between images and accurately detect cropped areas, while being able to accurately localize tampered pixels.

  9. Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire

    2017-12-01

    Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Termites: a Retinex implementation based on a colony of agents

    NASA Astrophysics Data System (ADS)

    Simone, Gabriele; Audino, Giuseppe; Farup, Ivar; Rizzi, Alessandro

    2012-01-01

    This paper describes a novel implementation of the Retinex algorithm with the exploration of the image done by an ant swarm. In this case the purpose of the ant colony is not the optimization of some constraints but is an alternative way to explore the image content as diffused as possible, with the possibility of tuning the exploration parameters to the image content trying to better approach the Human Visual System behavior. For this reason, we used "termites", instead of ants, to underline the idea of the eager exploration of the image. The paper presents the spatial characteristics of locality and discusses differences in path exploration with other Retinex implementations. Furthermore a psychophysical experiment has been carried out on eight images with 20 observers and results indicate that a termite swarm should investigate a particular region of an image to find the local reference white.

  11. Holographic imaging of natural-fiber-containing materials

    DOEpatents

    Bunch, Kyle J [Richland, WA; Tucker, Brian J [Pasco, WA; Severtsen, Ronald H [Richland, WA; Hall, Thomas E [Kennewick, WA; McMakin, Douglas L [Richland, WA; Lechelt, Wayne M [West Richland, WA; Griffin, Jeffrey W [Kennewick, WA; Sheen, David M [Richland, WA

    2010-12-21

    The present invention includes methods and apparatuses for imaging material properties in natural-fiber-containing materials. In particular, the images can provide quantified measures of localized moisture content. Embodiments of the invention utilize an array of antennas and at least one transceiver to collect amplitude and phase data from radiation interacting with the natural-fiber-containing materials. The antennas and the transceivers are configured to transmit and receive electromagnetic radiation at one or more frequencies, which are between 50 MHz and 1 THz. A conveyance system passes the natural-fiber-containing materials through a field of view of the array of antennas. A computing device is configured to apply a synthetic imaging algorithm to construct a three-dimensional image of the natural-fiber-containing materials that provides a quantified measure of localized moisture content. The image and the quantified measure are both based on the amplitude data, the phase data, or both.

  12. Combination of image descriptors for the exploration of cultural photographic collections

    NASA Astrophysics Data System (ADS)

    Bhowmik, Neelanjan; Gouet-Brunet, Valérie; Bloch, Gabriel; Besson, Sylvain

    2017-01-01

    The rapid growth of image digitization and collections in recent years makes it challenging and burdensome to organize, categorize, and retrieve similar images from voluminous collections. Content-based image retrieval (CBIR) is immensely convenient in this context. A considerable number of local feature detectors and descriptors are present in the literature of CBIR. We propose a model to anticipate the best feature combinations for image retrieval-related applications. Several spatial complementarity criteria of local feature detectors are analyzed and then engaged in a regression framework to find the optimal combination of detectors for a given dataset and are better adapted for each given image; the proposed model is also useful to optimally fix some other parameters, such as the k in k-nearest neighbor retrieval. Three public datasets of various contents and sizes are employed to evaluate the proposal, which is legitimized by improving the quality of retrieval notably facing classical approaches. Finally, the proposed image search engine is applied to the cultural photographic collections of a French museum, where it demonstrates its added value for the exploration and promotion of these contents at different levels from their archiving up to their exhibition in or ex situ.

  13. Adaptive removal of background and white space from document images using seam categorization

    NASA Astrophysics Data System (ADS)

    Fillion, Claude; Fan, Zhigang; Monga, Vishal

    2011-03-01

    Document images are obtained regularly by rasterization of document content and as scans of printed documents. Resizing via background and white space removal is often desired for better consumption of these images, whether on displays or in print. While white space and background are easy to identify in images, existing methods such as naïve removal and content aware resizing (seam carving) each have limitations that can lead to undesirable artifacts, such as uneven spacing between lines of text or poor arrangement of content. An adaptive method based on image content is hence needed. In this paper we propose an adaptive method to intelligently remove white space and background content from document images. Document images are different from pictorial images in structure. They typically contain objects (text letters, pictures and graphics) separated by uniform background, which include both white paper space and other uniform color background. Pixels in uniform background regions are excellent candidates for deletion if resizing is required, as they introduce less change in document content and style, compared with deletion of object pixels. We propose a background deletion method that exploits both local and global context. The method aims to retain the document structural information and image quality.

  14. Content based Image Retrieval based on Different Global and Local Color Histogram Methods: A Survey

    NASA Astrophysics Data System (ADS)

    Suhasini, Pallikonda Sarah; Sri Rama Krishna, K.; Murali Krishna, I. V.

    2017-02-01

    Different global and local color histogram methods for content based image retrieval (CBIR) are investigated in this paper. Color histogram is a widely used descriptor for CBIR. Conventional method of extracting color histogram is global, which misses the spatial content, is less invariant to deformation and viewpoint changes, and results in a very large three dimensional histogram corresponding to the color space used. To address the above deficiencies, different global and local histogram methods are proposed in recent research. Different ways of extracting local histograms to have spatial correspondence, invariant colour histogram to add deformation and viewpoint invariance and fuzzy linking method to reduce the size of the histogram are found in recent papers. The color space and the distance metric used are vital in obtaining color histogram. In this paper the performance of CBIR based on different global and local color histograms in three different color spaces, namely, RGB, HSV, L*a*b* and also with three distance measures Euclidean, Quadratic and Histogram intersection are surveyed, to choose appropriate method for future research.

  15. Localization-based super-resolution imaging meets high-content screening.

    PubMed

    Beghin, Anne; Kechkar, Adel; Butler, Corey; Levet, Florian; Cabillic, Marine; Rossier, Olivier; Giannone, Gregory; Galland, Rémi; Choquet, Daniel; Sibarita, Jean-Baptiste

    2017-12-01

    Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.

  16. WE-AB-BRA-01: 3D-2D Image Registration for Target Localization in Spine Surgery: Comparison of Similarity Metrics Against Robustness to Content Mismatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Silva, T; Ketcha, M; Siewerdsen, J H

    Purpose: In image-guided spine surgery, mapping 3D preoperative images to 2D intraoperative images via 3D-2D registration can provide valuable assistance in target localization. However, the presence of surgical instrumentation, hardware implants, and soft-tissue resection/displacement causes mismatches in image content, confounding existing registration methods. Manual/semi-automatic methods to mask such extraneous content is time consuming, user-dependent, error prone, and disruptive to clinical workflow. We developed and evaluated 2 novel similarity metrics within a robust registration framework to overcome such challenges in target localization. Methods: An IRB-approved retrospective study in 19 spine surgery patients included 19 preoperative 3D CT images and 50 intraoperativemore » mobile radiographs in cervical, thoracic, and lumbar spine regions. A neuroradiologist provided truth definition of vertebral positions in CT and radiography. 3D-2D registration was performed using the CMA-ES optimizer with 4 gradient-based image similarity metrics: (1) gradient information (GI); (2) gradient correlation (GC); (3) a novel variant referred to as gradient orientation (GO); and (4) a second variant referred to as truncated gradient correlation (TGC). Registration accuracy was evaluated in terms of the projection distance error (PDE) of the vertebral levels. Results: Conventional similarity metrics were susceptible to gross registration error and failure modes associated with the presence of surgical instrumentation: for GI, the median PDE and interquartile range was 33.0±43.6 mm; similarly for GC, PDE = 23.0±92.6 mm respectively. The robust metrics GO and TGC, on the other hand, demonstrated major improvement in PDE (7.6 ±9.4 mm and 8.1± 18.1 mm, respectively) and elimination of gross failure modes. Conclusion: The proposed GO and TGC similarity measures improve registration accuracy and robustness to gross failure in the presence of strong image content mismatch. Such registration capability could offer valuable assistance in target localization without disruption of clinical workflow. G. Kleinszig and S. Vogt are employees of Siemens Healthcare.« less

  17. Comparative analysis of semantic localization accuracies between adult and pediatric DICOM CT images

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan; Pathak, Sayan D.; Criminisi, Antonio; White, Steve; Haynor, David; Chen, Oliver; Siddiqui, Khan

    2012-02-01

    Existing literature describes a variety of techniques for semantic annotation of DICOM CT images, i.e. the automatic detection and localization of anatomical structures. Semantic annotation facilitates enhanced image navigation, linkage of DICOM image content and non-image clinical data, content-based image retrieval, and image registration. A key challenge for semantic annotation algorithms is inter-patient variability. However, while the algorithms described in published literature have been shown to cope adequately with the variability in test sets comprising adult CT scans, the problem presented by the even greater variability in pediatric anatomy has received very little attention. Most existing semantic annotation algorithms can only be extended to work on scans of both adult and pediatric patients by adapting parameters heuristically in light of patient size. In contrast, our approach, which uses random regression forests ('RRF'), learns an implicit model of scale variation automatically using training data. In consequence, anatomical structures can be localized accurately in both adult and pediatric CT studies without the need for parameter adaptation or additional information about patient scale. We show how the RRF algorithm is able to learn scale invariance from a combined training set containing a mixture of pediatric and adult scans. Resulting localization accuracy for both adult and pediatric data remains comparable with that obtained using RRFs trained and tested using only adult data.

  18. Mobile visual object identification: from SIFT-BoF-RANSAC to Sketchprint

    NASA Astrophysics Data System (ADS)

    Voloshynovskiy, Sviatoslav; Diephuis, Maurits; Holotyak, Taras

    2015-03-01

    Mobile object identification based on its visual features find many applications in the interaction with physical objects and security. Discriminative and robust content representation plays a central role in object and content identification. Complex post-processing methods are used to compress descriptors and their geometrical information, aggregate them into more compact and discriminative representations and finally re-rank the results based on the similarity geometries of descriptors. Unfortunately, most of the existing descriptors are not very robust and discriminative once applied to the various contend such as real images, text or noise-like microstructures next to requiring at least 500-1'000 descriptors per image for reliable identification. At the same time, the geometric re-ranking procedures are still too complex to be applied to the numerous candidates obtained from the feature similarity based search only. This restricts that list of candidates to be less than 1'000 which obviously causes a higher probability of miss. In addition, the security and privacy of content representation has become a hot research topic in multimedia and security communities. In this paper, we introduce a new framework for non- local content representation based on SketchPrint descriptors. It extends the properties of local descriptors to a more informative and discriminative, yet geometrically invariant content representation. In particular it allows images to be compactly represented by 100 SketchPrint descriptors without being fully dependent on re-ranking methods. We consider several use cases, applying SketchPrint descriptors to natural images, text documents, packages and micro-structures and compare them with the traditional local descriptors.

  19. Effectiveness of image features and similarity measures in cluster-based approaches for content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Du, Hongbo; Al-Jubouri, Hanan; Sellahewa, Harin

    2014-05-01

    Content-based image retrieval is an automatic process of retrieving images according to image visual contents instead of textual annotations. It has many areas of application from automatic image annotation and archive, image classification and categorization to homeland security and law enforcement. The key issues affecting the performance of such retrieval systems include sensible image features that can effectively capture the right amount of visual contents and suitable similarity measures to find similar and relevant images ranked in a meaningful order. Many different approaches, methods and techniques have been developed as a result of very intensive research in the past two decades. Among many existing approaches, is a cluster-based approach where clustering methods are used to group local feature descriptors into homogeneous regions, and search is conducted by comparing the regions of the query image against those of the stored images. This paper serves as a review of works in this area. The paper will first summarize the existing work reported in the literature and then present the authors' own investigations in this field. The paper intends to highlight not only achievements made by recent research but also challenges and difficulties still remaining in this area.

  20. Developing a comprehensive system for content-based retrieval of image and text data from a national survey

    NASA Astrophysics Data System (ADS)

    Antani, Sameer K.; Natarajan, Mukil; Long, Jonathan L.; Long, L. Rodney; Thoma, George R.

    2005-04-01

    The article describes the status of our ongoing R&D at the U.S. National Library of Medicine (NLM) towards the development of an advanced multimedia database biomedical information system that supports content-based image retrieval (CBIR). NLM maintains a collection of 17,000 digitized spinal X-rays along with text survey data from the Second National Health and Nutritional Examination Survey (NHANES II). These data serve as a rich data source for epidemiologists and researchers of osteoarthritis and musculoskeletal diseases. It is currently possible to access these through text keyword queries using our Web-based Medical Information Retrieval System (WebMIRS). CBIR methods developed specifically for biomedical images could offer direct visual searching of these images by means of example image or user sketch. We are building a system which supports hybrid queries that have text and image-content components. R&D goals include developing algorithms for robust image segmentation for localizing and identifying relevant anatomy, labeling the segmented anatomy based on its pathology, developing suitable indexing and similarity matching methods for images and image features, and associating the survey text information for query and retrieval along with the image data. Some highlights of the system developed in MATLAB and Java are: use of a networked or local centralized database for text and image data; flexibility to incorporate new research work; provides a means to control access to system components under development; and use of XML for structured reporting. The article details the design, features, and algorithms in this third revision of this prototype system, CBIR3.

  1. Exploring access to scientific literature using content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Deserno, Thomas M.; Antani, Sameer; Long, Rodney

    2007-03-01

    The number of articles published in the scientific medical literature is continuously increasing, and Web access to the journals is becoming common. Databases such as SPIE Digital Library, IEEE Xplore, indices such as PubMed, and search engines such as Google provide the user with sophisticated full-text search capabilities. However, information in images and graphs within these articles is entirely disregarded. In this paper, we quantify the potential impact of using content-based image retrieval (CBIR) to access this non-text data. Based on the Journal Citations Report (JCR), the journal Radiology was selected for this study. In 2005, 734 articles were published electronically in this journal. This included 2,587 figures, which yields a rate of 3.52 figures per article. Furthermore, 56.4% of these figures are composed of several individual panels, i.e. the figure combines different images and/or graphs. According to the Image Cross-Language Evaluation Forum (ImageCLEF), the error rate of automatic identification of medical images is about 15%. Therefore, it is expected that, by applying ImageCLEF-like techniques, already 95.5% of articles could be retrieved by means of CBIR. The challenge for CBIR in scientific literature, however, is the use of local texture properties to analyze individual image panels in composite illustrations. Using local features for content-based image representation, 8.81 images per article are available, and the predicted correctness rate may increase to 98.3%. From this study, we conclude that CBIR may have a high impact in medical literature research and suggest that additional research in this area is warranted.

  2. Breast Histopathological Image Retrieval Based on Latent Dirichlet Allocation.

    PubMed

    Ma, Yibing; Jiang, Zhiguo; Zhang, Haopeng; Xie, Fengying; Zheng, Yushan; Shi, Huaqiang; Zhao, Yu

    2017-07-01

    In the field of pathology, whole slide image (WSI) has become the major carrier of visual and diagnostic information. Content-based image retrieval among WSIs can aid the diagnosis of an unknown pathological image by finding its similar regions in WSIs with diagnostic information. However, the huge size and complex content of WSI pose several challenges for retrieval. In this paper, we propose an unsupervised, accurate, and fast retrieval method for a breast histopathological image. Specifically, the method presents a local statistical feature of nuclei for morphology and distribution of nuclei, and employs the Gabor feature to describe the texture information. The latent Dirichlet allocation model is utilized for high-level semantic mining. Locality-sensitive hashing is used to speed up the search. Experiments on a WSI database with more than 8000 images from 15 types of breast histopathology demonstrate that our method achieves about 0.9 retrieval precision as well as promising efficiency. Based on the proposed framework, we are developing a search engine for an online digital slide browsing and retrieval platform, which can be applied in computer-aided diagnosis, pathology education, and WSI archiving and management.

  3. Mobile object retrieval in server-based image databases

    NASA Astrophysics Data System (ADS)

    Manger, D.; Pagel, F.; Widak, H.

    2013-05-01

    The increasing number of mobile phones equipped with powerful cameras leads to huge collections of user-generated images. To utilize the information of the images on site, image retrieval systems are becoming more and more popular to search for similar objects in an own image database. As the computational performance and the memory capacity of mobile devices are constantly increasing, this search can often be performed on the device itself. This is feasible, for example, if the images are represented with global image features or if the search is done using EXIF or textual metadata. However, for larger image databases, if multiple users are meant to contribute to a growing image database or if powerful content-based image retrieval methods with local features are required, a server-based image retrieval backend is needed. In this work, we present a content-based image retrieval system with a client server architecture working with local features. On the server side, the scalability to large image databases is addressed with the popular bag-of-word model with state-of-the-art extensions. The client end of the system focuses on a lightweight user interface presenting the most similar images of the database highlighting the visual information which is common with the query image. Additionally, new images can be added to the database making it a powerful and interactive tool for mobile contentbased image retrieval.

  4. Kingfisher: a system for remote sensing image database management

    NASA Astrophysics Data System (ADS)

    Bruzzo, Michele; Giordano, Ferdinando; Dellepiane, Silvana G.

    2003-04-01

    At present retrieval methods in remote sensing image database are mainly based on spatial-temporal information. The increasing amount of images to be collected by the ground station of earth observing systems emphasizes the need for database management with intelligent data retrieval capabilities. The purpose of the proposed method is to realize a new content based retrieval system for remote sensing images database with an innovative search tool based on image similarity. This methodology is quite innovative for this application, at present many systems exist for photographic images, as for example QBIC and IKONA, but they are not able to extract and describe properly remote image content. The target database is set by an archive of images originated from an X-SAR sensor (spaceborne mission, 1994). The best content descriptors, mainly texture parameters, guarantees high retrieval performances and can be extracted without losses independently of image resolution. The latter property allows DBMS (Database Management System) to process low amount of information, as in the case of quick-look images, improving time performance and memory access without reducing retrieval accuracy. The matching technique has been designed to enable image management (database population and retrieval) independently of dimensions (width and height). Local and global content descriptors are compared, during retrieval phase, with the query image and results seem to be very encouraging.

  5. High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles.

    PubMed

    Li, Fuhai; Zhou, Xiaobo; Zhu, Jinmin; Ma, Jinwen; Huang, Xudong; Wong, Stephen T C

    2007-10-09

    High content screening (HCS)-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be an essential tool in our study. The cellular images of H4 neuroglioma cells exposed to different concentrations of CuO nanoparticles were sampled using IN Cell Analyzer 1000. A fully automated cellular image analysis system has been developed to perform the image analysis for cell viability. A multiple adaptive thresholding method was used to classify the pixels of the nuclei image into three classes: bright nuclei, dark nuclei, and background. During the development of our image analysis methodology, we have achieved the followings: (1) The Gaussian filtering with proper scale has been applied to the cellular images for generation of a local intensity maximum inside each nucleus; (2) a novel local intensity maxima detection method based on the gradient vector field has been established; and (3) a statistical model based splitting method was proposed to overcome the under segmentation problem. Computational results indicate that 95.9% nuclei can be detected and segmented correctly by the proposed image analysis system. The proposed automated image analysis system can effectively segment the images of human H4 neuroglioma cells exposed to CuO nanoparticles. The computational results confirmed our biological finding that human H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.

  6. Image-Based Grouping during Binocular Rivalry Is Dictated by Eye-Of-Origin

    PubMed Central

    Stuit, Sjoerd M.; Paffen, Chris L. E.; van der Smagt, Maarten J.; Verstraten, Frans A. J.

    2014-01-01

    Prolonged viewing of dichoptically presented images with different content results in perceptual alternations known as binocular rivalry. This phenomenon is thought to be the result of competition at a local level, where local rivalry zones interact to give rise to a single, global dominant percept. Certain perceived combinations that result from this local competition are known to last longer than others, which is referred to as grouping during binocular rivalry. In recent years, the phenomenon has been suggested to be the result of competition at both eye- and image-based processing levels, although the exact contribution from each level remains elusive. Here we use a paradigm designed specifically to quantify the contribution of eye- and image-based processing to grouping during rivalry. In this paradigm we used sine-wave gratings as well as upright and inverted faces, with and without binocular disparity-based occlusion. These stimuli and conditions were used because they are known to result in processing at different stages throughout the visual processing hierarchy. Specifically, more complex images were included in order to maximize the potential contribution of image-based grouping. In spite of this, our results show that increasing image complexity did not lead to an increase in the contribution of image-based processing to grouping during rivalry. In fact, the results show that grouping was primarily affected by the eye-of-origin of the image parts, irrespective of stimulus type. We suggest that image content affects grouping during binocular rivalry at low-level processing stages, where it is intertwined with eye-of-origin information. PMID:24987847

  7. Discriminative and robust zero-watermarking scheme based on completed local binary pattern for authentication and copyright identification of medical images

    NASA Astrophysics Data System (ADS)

    Liu, Xiyao; Lou, Jieting; Wang, Yifan; Du, Jingyu; Zou, Beiji; Chen, Yan

    2018-03-01

    Authentication and copyright identification are two critical security issues for medical images. Although zerowatermarking schemes can provide durable, reliable and distortion-free protection for medical images, the existing zerowatermarking schemes for medical images still face two problems. On one hand, they rarely considered the distinguishability for medical images, which is critical because different medical images are sometimes similar to each other. On the other hand, their robustness against geometric attacks, such as cropping, rotation and flipping, is insufficient. In this study, a novel discriminative and robust zero-watermarking (DRZW) is proposed to address these two problems. In DRZW, content-based features of medical images are first extracted based on completed local binary pattern (CLBP) operator to ensure the distinguishability and robustness, especially against geometric attacks. Then, master shares and ownership shares are generated from the content-based features and watermark according to (2,2) visual cryptography. Finally, the ownership shares are stored for authentication and copyright identification. For queried medical images, their content-based features are extracted and master shares are generated. Their watermarks for authentication and copyright identification are recovered by stacking the generated master shares and stored ownership shares. 200 different medical images of 5 types are collected as the testing data and our experimental results demonstrate that DRZW ensures both the accuracy and reliability of authentication and copyright identification. When fixing the false positive rate to 1.00%, the average value of false negative rates by using DRZW is only 1.75% under 20 common attacks with different parameters.

  8. Intelligent Vision On The SM9O Mini-Computer Basis And Applications

    NASA Astrophysics Data System (ADS)

    Hawryszkiw, J.

    1985-02-01

    Distinction has to be made between image processing and vision Image processing finds its roots in the strong tradition of linear signal processing and promotes geometrical transform techniques, such as fi I tering , compression, and restoration. Its purpose is to transform an image for a human observer to easily extract from that image information significant for him. For example edges after a gradient operator, or a specific direction after a directional filtering operation. Image processing consists in fact in a set of local or global space-time transforms. The interpretation of the final image is done by the human observer. The purpose of vision is to extract the semantic content of the image. The machine can then understand that content, and run a process of decision, which turns into an action. Thus, intel I i gent vision depends on - Image processing - Pattern recognition - Artificial intel I igence

  9. Content-based image retrieval by matching hierarchical attributed region adjacency graphs

    NASA Astrophysics Data System (ADS)

    Fischer, Benedikt; Thies, Christian J.; Guld, Mark O.; Lehmann, Thomas M.

    2004-05-01

    Content-based image retrieval requires a formal description of visual information. In medical applications, all relevant biological objects have to be represented by this description. Although color as the primary feature has proven successful in publicly available retrieval systems of general purpose, this description is not applicable to most medical images. Additionally, it has been shown that global features characterizing the whole image do not lead to acceptable results in the medical context or that they are only suitable for specific applications. For a general purpose content-based comparison of medical images, local, i.e. regional features that are collected on multiple scales must be used. A hierarchical attributed region adjacency graph (HARAG) provides such a representation and transfers image comparison to graph matching. However, building a HARAG from an image requires a restriction in size to be computationally feasible while at the same time all visually plausible information must be preserved. For this purpose, mechanisms for the reduction of the graph size are presented. Even with a reduced graph, the problem of graph matching remains NP-complete. In this paper, the Similarity Flooding approach and Hopfield-style neural networks are adapted from the graph matching community to the needs of HARAG comparison. Based on synthetic image material build from simple geometric objects, all visually similar regions were matched accordingly showing the framework's general applicability to content-based image retrieval of medical images.

  10. Automated analysis of high-content microscopy data with deep learning.

    PubMed

    Kraus, Oren Z; Grys, Ben T; Ba, Jimmy; Chong, Yolanda; Frey, Brendan J; Boone, Charles; Andrews, Brenda J

    2017-04-18

    Existing computational pipelines for quantitative analysis of high-content microscopy data rely on traditional machine learning approaches that fail to accurately classify more than a single dataset without substantial tuning and training, requiring extensive analysis. Here, we demonstrate that the application of deep learning to biological image data can overcome the pitfalls associated with conventional machine learning classifiers. Using a deep convolutional neural network (DeepLoc) to analyze yeast cell images, we show improved performance over traditional approaches in the automated classification of protein subcellular localization. We also demonstrate the ability of DeepLoc to classify highly divergent image sets, including images of pheromone-arrested cells with abnormal cellular morphology, as well as images generated in different genetic backgrounds and in different laboratories. We offer an open-source implementation that enables updating DeepLoc on new microscopy datasets. This study highlights deep learning as an important tool for the expedited analysis of high-content microscopy data. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Birefringence and vascular imaging of in vivo human skin by Jones-matrix optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Yasuno, Yoshiaki

    2017-02-01

    A customized 1310-nm Jones-matrix optical coherence tomography (JM-OCT) for dermatological investigation was constructed and used for in vivo normal human skin tissue imaging. This system can simultaneously measure the threedimensional depth-resolved local birefringence, complex-correlation based OCT angiography (OCT-A), degree-ofpolarization- uniformity (DOPU) and scattering OCT intensity. By obtaining these optical properties of tissue, the morphology, vasculature, and collagen content of skin can be deduced and visualized. Structures in the deep layers of the epithelium were observed with depth-resolved local birefringence and polarization uniformity images. These results suggest high diagnostic and investigative potential of JM-OCT for dermatology.

  12. A maximally stable extremal region based scene text localization method

    NASA Astrophysics Data System (ADS)

    Xiao, Chengqiu; Ji, Lixin; Gao, Chao; Li, Shaomei

    2015-07-01

    Text localization in natural scene images is an important prerequisite for many content-based image analysis tasks. This paper proposes a novel text localization algorithm. Firstly, a fast pruning algorithm is designed to extract Maximally Stable Extremal Regions (MSER) as basic character candidates. Secondly, these candidates are filtered by using the properties of fitting ellipse and the distribution properties of characters to exclude most non-characters. Finally, a new extremal regions projection merging algorithm is designed to group character candidates into words. Experimental results show that the proposed method has an advantage in speed and achieve relatively high precision and recall rates than the latest published algorithms.

  13. A comparative analysis of image features between weave embroidered Thangka and piles embroidered Thangka

    NASA Astrophysics Data System (ADS)

    Li, Zhenjiang; Wang, Weilan

    2018-04-01

    Thangka is a treasure of Tibetan culture. In its digital protection, most of the current research focuses on the content of Thangka images, not the fabrication process. For silk embroidered Thangka of "Guo Tang", there are two craft methods, namely, weave embroidered and piles embroidered. The local texture of weave embroidered Thangka is rough, and that of piles embroidered Thangka is more smooth. In order to distinguish these two kinds of fabrication processes from images, a effectively segmentation algorithm of color blocks is designed firstly, and the obtained color blocks contain the local texture patterns of Thangka image; Secondly, the local texture features of the color block are extracted and screened; Finally, the selected features are analyzed experimentally. The experimental analysis shows that the proposed features can well reflect the difference between methods of weave embroidered and piles embroidered.

  14. A content-based image retrieval method for optical colonoscopy images based on image recognition techniques

    NASA Astrophysics Data System (ADS)

    Nosato, Hirokazu; Sakanashi, Hidenori; Takahashi, Eiichi; Murakawa, Masahiro

    2015-03-01

    This paper proposes a content-based image retrieval method for optical colonoscopy images that can find images similar to ones being diagnosed. Optical colonoscopy is a method of direct observation for colons and rectums to diagnose bowel diseases. It is the most common procedure for screening, surveillance and treatment. However, diagnostic accuracy for intractable inflammatory bowel diseases, such as ulcerative colitis (UC), is highly dependent on the experience and knowledge of the medical doctor, because there is considerable variety in the appearances of colonic mucosa within inflammations with UC. In order to solve this issue, this paper proposes a content-based image retrieval method based on image recognition techniques. The proposed retrieval method can find similar images from a database of images diagnosed as UC, and can potentially furnish the medical records associated with the retrieved images to assist the UC diagnosis. Within the proposed method, color histogram features and higher order local auto-correlation (HLAC) features are adopted to represent the color information and geometrical information of optical colonoscopy images, respectively. Moreover, considering various characteristics of UC colonoscopy images, such as vascular patterns and the roughness of the colonic mucosa, we also propose an image enhancement method to highlight the appearances of colonic mucosa in UC. In an experiment using 161 UC images from 32 patients, we demonstrate that our method improves the accuracy of retrieving similar UC images.

  15. Efficient content-based low-altitude images correlated network and strips reconstruction

    NASA Astrophysics Data System (ADS)

    He, Haiqing; You, Qi; Chen, Xiaoyong

    2017-01-01

    The manual intervention method is widely used to reconstruct strips for further aerial triangulation in low-altitude photogrammetry. Clearly the method for fully automatic photogrammetric data processing is not an expected way. In this paper, we explore a content-based approach without manual intervention or external information for strips reconstruction. Feature descriptors in the local spatial patterns are extracted by SIFT to construct vocabulary tree, in which these features are encoded in terms of TF-IDF numerical statistical algorithm to generate new representation for each low-altitude image. Then images correlated network is reconstructed by similarity measure, image matching and geometric graph theory. Finally, strips are reconstructed automatically by tracing straight lines and growing adjacent images gradually. Experimental results show that the proposed approach is highly effective in automatically rearranging strips of lowaltitude images and can provide rough relative orientation for further aerial triangulation.

  16. Determination of foveal location using scanning laser polarimetry.

    PubMed

    VanNasdale, Dean A; Elsner, Ann E; Weber, Anke; Miura, Masahiro; Haggerty, Bryan P

    2009-03-25

    The fovea is the retinal location responsible for our most acute vision. There are several methods used to localize the fovea, but the fovea is not always easily identifiable. Landmarks used to determine the foveal location are variable in normal subjects and localization becomes even more difficult in instances of retinal disease. In normal subjects, the photoreceptor axons that make up the Henle fiber layer are cylindrical and the radial orientation of these fibers is centered on the fovea. The Henle fiber layer exhibits form birefringence, which predictably changes polarized light in scanning laser polarimetry imaging. In this study 3 graders were able to repeatably identify the fovea in 35 normal subjects using near infrared image types with differing polarization content. There was little intra-grader, inter-grader, and inter-image variability in the graded foveal position for 5 of the 6 image types examined, with accuracy sufficient for clinical purposes. This study demonstrates that scanning laser polarimetry imaging can localize the fovea by using structural properties inherent in the central macula.

  17. Multiview Locally Linear Embedding for Effective Medical Image Retrieval

    PubMed Central

    Shen, Hualei; Tao, Dacheng; Ma, Dianfu

    2013-01-01

    Content-based medical image retrieval continues to gain attention for its potential to assist radiological image interpretation and decision making. Many approaches have been proposed to improve the performance of medical image retrieval system, among which visual features such as SIFT, LBP, and intensity histogram play a critical role. Typically, these features are concatenated into a long vector to represent medical images, and thus traditional dimension reduction techniques such as locally linear embedding (LLE), principal component analysis (PCA), or laplacian eigenmaps (LE) can be employed to reduce the “curse of dimensionality”. Though these approaches show promising performance for medical image retrieval, the feature-concatenating method ignores the fact that different features have distinct physical meanings. In this paper, we propose a new method called multiview locally linear embedding (MLLE) for medical image retrieval. Following the patch alignment framework, MLLE preserves the geometric structure of the local patch in each feature space according to the LLE criterion. To explore complementary properties among a range of features, MLLE assigns different weights to local patches from different feature spaces. Finally, MLLE employs global coordinate alignment and alternating optimization techniques to learn a smooth low-dimensional embedding from different features. To justify the effectiveness of MLLE for medical image retrieval, we compare it with conventional spectral embedding methods. We conduct experiments on a subset of the IRMA medical image data set. Evaluation results show that MLLE outperforms state-of-the-art dimension reduction methods. PMID:24349277

  18. Subcellular Localized Chemical Imaging of Benthic Algal Nutritional Content via HgCdTe Array FT-IR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzel, D.; Murdock, J; Dodds, W

    2008-01-01

    Algae respond rapidly and uniquely to changes in nutrient availability by adjusting pigment, storage product, and organelle content and quality. Cellular and subcellular variability of the relative abundance of macromolecular pools (e.g. protein, lipid, carbohydrate, and phosphodiesters) within the benthic (bottom dwelling) alga Cladophora glomerata (a common nuisance species in fresh and saline waters) was revealed by FT-IR microspectroscopic imaging. Nutrient heterogeneity was compared at the filament, cellular, and subcellular level, and localized nutrient uptake kinetics were studied by detecting the gradual incorporation of isotopically labeled nitrogen (N) (as K15NO3) from surrounding water into cellular proteins. Nutritional content differed substantiallymore » among filament cells, with differences driven by protein and lipid abundance. Whole cell imaging showed high subcellular macromolecular variability in all cells, including adjacent cells on a filament that developed clonally. N uptake was also very heterogeneous, both within and among cells, and did not appear to coincide with subcellular protein distribution. Despite high intercellular variability, some patterns emerged. Cells acquired more 15N the further they were away from the filament attachment point, and 15N incorporation was more closely correlated with phosphodiester content than protein, lipid, or carbohydrate content. Benthic algae are subject to substantial environmental heterogeneity induced by microscale hydrodynamic factors and spatial variability in nutrient availability. Species specific responses to nutrient heterogeneity are central to understanding this key component of aquatic ecosystems. FT-IR microspectroscopy, modified for benthic algae, allows determination of algal physiological responses at scales not available using current techniques.« less

  19. Nanoscale strain mapping in battery nanostructures

    NASA Astrophysics Data System (ADS)

    Ulvestad, A.; Cho, H. M.; Harder, R.; Kim, J. W.; Dietze, S. H.; Fohtung, E.; Meng, Y. S.; Shpyrko, O. G.

    2014-02-01

    Coherent x-ray diffraction imaging is used to map the local three dimensional strain inhomogeneity and electron density distribution of two individual LiNi0.5Mn1.5O4-δ cathode nanoparticles in both ex-situ and in-situ environments. Our reconstructed images revealed a maximum strain of 0.4%. We observed different variations in strain inhomogeneity due to multiple competing effects. The compressive/tensile component of the strain is connected to the local lithium content and, on the surface, interpreted in terms of a local Jahn-Teller distortion of Mn3+. Finally, the measured strain distributions are discussed in terms of their impact on competing theoretical models of the lithiation process.

  20. An automated method for mapping human tissue permittivities by MRI in hyperthermia treatment planning.

    PubMed

    Farace, P; Pontalti, R; Cristoforetti, L; Antolini, R; Scarpa, M

    1997-11-01

    This paper presents an automatic method to obtain tissue complex permittivity values to be used as input data in the computer modelling for hyperthermia treatment planning. Magnetic resonance (MR) images were acquired and the tissue water content was calculated from the signal intensity of the image pixels. The tissue water content was converted into complex permittivity values by monotonic functions based on mixture theory. To obtain a water content map by MR imaging a gradient-echo pulse sequence was used and an experimental procedure was set up to correct for relaxation and radiofrequency field inhomogeneity effects on signal intensity. Two approaches were followed to assign the permittivity values to fat-rich tissues: (i) fat-rich tissue localization by a segmentation procedure followed by assignment of tabulated permittivity values; (ii) water content evaluation by chemical shift imaging followed by permittivity calculation. Tests were performed on phantoms of known water content to establish the reliability of the proposed method. MRI data were acquired and processed pixel-by-pixel according to the outlined procedure. The signal intensity in the phantom images correlated well with water content. Experiments were performed on volunteers' healthy tissue. In particular two anatomical structures were chosen to calculate permittivity maps: the head and the thigh. The water content and electric permittivity values were obtained from the MRI data and compared to others in the literature. A good agreement was found for muscle, cerebrospinal fluid (CSF) and white and grey matter. The advantages of the reported method are discussed in the light of possible application in hyperthermia treatment planning.

  1. A similarity measure method combining location feature for mammogram retrieval.

    PubMed

    Wang, Zhiqiong; Xin, Junchang; Huang, Yukun; Li, Chen; Xu, Ling; Li, Yang; Zhang, Hao; Gu, Huizi; Qian, Wei

    2018-05-28

    Breast cancer, the most common malignancy among women, has a high mortality rate in clinical practice. Early detection, diagnosis and treatment can reduce the mortalities of breast cancer greatly. The method of mammogram retrieval can help doctors to find the early breast lesions effectively and determine a reasonable feature set for image similarity measure. This will improve the accuracy effectively for mammogram retrieval. This paper proposes a similarity measure method combining location feature for mammogram retrieval. Firstly, the images are pre-processed, the regions of interest are detected and the lesions are segmented in order to get the center point and radius of the lesions. Then, the method, namely Coherent Point Drift, is used for image registration with the pre-defined standard image. The center point and radius of the lesions after registration are obtained and the standard location feature of the image is constructed. This standard location feature can help figure out the location similarity between the image pair from the query image to each dataset image in the database. Next, the content feature of the image is extracted, including the Histogram of Oriented Gradients, the Edge Direction Histogram, the Local Binary Pattern and the Gray Level Histogram, and the image pair content similarity can be calculated using the Earth Mover's Distance. Finally, the location similarity and content similarity are fused to form the image fusion similarity, and the specified number of the most similar images can be returned according to it. In the experiment, 440 mammograms, which are from Chinese women in Northeast China, are used as the database. When fusing 40% lesion location feature similarity and 60% content feature similarity, the results have obvious advantages. At this time, precision is 0.83, recall is 0.76, comprehensive indicator is 0.79, satisfaction is 96.0%, mean is 4.2 and variance is 17.7. The results show that the precision and recall of this method have obvious advantage, compared with the content-based image retrieval.

  2. Distributed file management for remote clinical image-viewing stations

    NASA Astrophysics Data System (ADS)

    Ligier, Yves; Ratib, Osman M.; Girard, Christian; Logean, Marianne; Trayser, Gerhard

    1996-05-01

    The Geneva PACS is based on a distributed architecture, with different archive servers used to store all the image files produced by digital imaging modalities. Images can then be visualized on different display stations with the Osiris software. Image visualization require to have the image file physically present on the local station. Thus, images must be transferred from archive servers to local display stations in an acceptable way, which means fast and user friendly where the notion of file must be hidden to users. The transfer of image files is done according to different schemes including prefetching and direct image selection. Prefetching allows the retrieval of previous studies of a patient in advance. A direct image selection is also provided in order to retrieve images on request. When images are transferred locally on the display station, they are stored in Papyrus files, each file containing a set of images. File names are used by the Osiris viewing software to open image sequences. But file names alone are not explicit enough to properly describe the content of the file. A specific utility has been developed to present a list of patients, and for each patient a list of exams which can be selected and automatically displayed. The system has been successfully tested in different clinical environments. It will be soon extended on a hospital wide basis.

  3. Mass Spectrometry Based Profiling and Imaging of Various Ginsenosides from Panax ginseng Roots at Different Ages

    PubMed Central

    Lee, Jae Won; Ji, Seung-Heon; Lee, Young-Seob; Choi, Doo Jin; Choi, Bo-Ram; Kim, Geum-Soog; Baek, Nam-In; Lee, Dae Young

    2017-01-01

    (1) Background: Panax ginseng root is one of the most important herbal products, and the profiling of ginsenosides is critical for the quality control of ginseng roots at different ages in the herbal markets. Furthermore, interest in assessing the contents as well as the localization of biological compounds has been growing. The objective of this study is to carry out the mass spectrometry (MS)-based profiling and imaging of ginsenosides to assess ginseng roots at different ages; (2) Methods: Optimal ultra performance liquid chromatography coupled to quadrupole time of flight/MS (UPLC-QTOF/MS) was used to profile various ginsenosides from P. ginseng roots. Matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF)/MS-based imaging was also optimized to visualize ginsenosides in ginseng roots; (3) Results: UPLC-QTOF/MS was used to profile 30 ginsenosides with high mass accuracy, with an in-house library constructed for the fast and exact identification of ginsenosides. Using this method, the levels of 14 ginsenosides were assessed in P. ginseng roots cultivated for 4, 5, and 6 years. The optimal MALDI-imaging MS (IMS) was also applied to visualize the 14 ginsenosides in ginseng roots. As a result, the MSI cross sections showed the localization of 4 ginsenoside ions ([M + K]+) in P. ginseng roots at different ages; (4) Conclusions: The contents and localization of various ginsenosides differ depending on the cultivation years of P. ginseng roots. Furthermore, this study demonstrated the utility of MS-based profiling and imaging of ginsenosides for the quality control of ginseng roots. PMID:28538661

  4. Mass Spectrometry Based Profiling and Imaging of Various Ginsenosides from Panax ginseng Roots at Different Ages.

    PubMed

    Lee, Jae Won; Ji, Seung-Heon; Lee, Young-Seob; Choi, Doo Jin; Choi, Bo-Ram; Kim, Geum-Soog; Baek, Nam-In; Lee, Dae Young

    2017-05-24

    (1) Background: Panax ginseng root is one of the most important herbal products, and the profiling of ginsenosides is critical for the quality control of ginseng roots at different ages in the herbal markets. Furthermore, interest in assessing the contents as well as the localization of biological compounds has been growing. The objective of this study is to carry out the mass spectrometry (MS)-based profiling and imaging of ginsenosides to assess ginseng roots at different ages; (2) Methods: Optimal ultra performance liquid chromatography coupled to quadrupole time of flight/MS (UPLC-QTOF/MS) was used to profile various ginsenosides from P. ginseng roots. Matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF)/MS-based imaging was also optimized to visualize ginsenosides in ginseng roots; (3) Results: UPLC-QTOF/MS was used to profile 30 ginsenosides with high mass accuracy, with an in-house library constructed for the fast and exact identification of ginsenosides. Using this method, the levels of 14 ginsenosides were assessed in P. ginseng roots cultivated for 4, 5, and 6 years. The optimal MALDI-imaging MS (IMS) was also applied to visualize the 14 ginsenosides in ginseng roots. As a result, the MSI cross sections showed the localization of 4 ginsenoside ions ([M + K]⁺) in P. ginseng roots at different ages; (4) Conclusions: The contents and localization of various ginsenosides differ depending on the cultivation years of P. ginseng roots. Furthermore, this study demonstrated the utility of MS-based profiling and imaging of ginsenosides for the quality control of ginseng roots.

  5. Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging

    PubMed Central

    Quinto-Su, Pedro A.; Lai, Hsuan-Hong; Yoon, Helen H.; Sims, Christopher E.; Allbritton, Nancy L.; Venugopalan, Vasan

    2008-01-01

    We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at λ = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications. PMID:18305858

  6. Local gray level S-curve transformation - A generalized contrast enhancement technique for medical images.

    PubMed

    Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep

    2017-04-01

    Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Using pixel intensity as a self-regulating threshold for deterministic image sampling in Milano Retinex: the T-Rex algorithm

    NASA Astrophysics Data System (ADS)

    Lecca, Michela; Modena, Carla Maria; Rizzi, Alessandro

    2018-01-01

    Milano Retinexes are spatial color algorithms, part of the Retinex family, usually employed for image enhancement. They modify the color of each pixel taking into account the surrounding colors and their position, catching in this way the local spatial color distribution relevant to image enhancement. We present T-Rex (from the words threshold and Retinex), an implementation of Milano Retinex, whose main novelty is the use of the pixel intensity as a self-regulating threshold to deterministically sample local color information. The experiments, carried out on real-world pictures, show that T-Rex image enhancement performance are in line with those of the Milano Retinex family: T-Rex increases the brightness, the contrast, and the flatness of the channel distributions of the input image, making more intelligible the content of pictures acquired under difficult light conditions.

  8. Crypto-Watermarking of Transmitted Medical Images.

    PubMed

    Al-Haj, Ali; Mohammad, Ahmad; Amer, Alaa'

    2017-02-01

    Telemedicine is a booming healthcare practice that has facilitated the exchange of medical data and expertise between healthcare entities. However, the widespread use of telemedicine applications requires a secured scheme to guarantee confidentiality and verify authenticity and integrity of exchanged medical data. In this paper, we describe a region-based, crypto-watermarking algorithm capable of providing confidentiality, authenticity, and integrity for medical images of different modalities. The proposed algorithm provides authenticity by embedding robust watermarks in images' region of non-interest using SVD in the DWT domain. Integrity is provided in two levels: strict integrity implemented by a cryptographic hash watermark, and content-based integrity implemented by a symmetric encryption-based tamper localization scheme. Confidentiality is achieved as a byproduct of hiding patient's data in the image. Performance of the algorithm was evaluated with respect to imperceptibility, robustness, capacity, and tamper localization, using different medical images. The results showed the effectiveness of the algorithm in providing security for telemedicine applications.

  9. Comparison of intracellular water content measurements by dark-field imaging and EELS in medium voltage TEM

    NASA Astrophysics Data System (ADS)

    Terryn, C.; Michel, J.; Kilian, L.; Bonhomme, P.; Balossier, G.

    2000-09-01

    Knowledge of the water content at the subcellular level is important to evaluate the intracellular concentration of either diffusible or non-diffusible elements in the physiological state measured by the electron microprobe methods. Water content variations in subcellular compartments are directly related to secretion phenomena and to transmembrane exchange processes, which could be attributed to pathophysiological states. In this paper we will describe in details and compare two local water measurement methods using analytical electron microscopy. The first one is based on darkfield imaging. It is applied on freeze-dried biological cryosections; it allows indirect measurement of the water content at the subcellular level from recorded maps of darkfield intensity. The second method uses electron energy loss spectroscopy. It is applied to hydrated biological cryosections. It is based on the differences that appear in the electron energy loss spectra of macromolecular assemblies and vitrified ice in the 0-30 eV range. By a multiple least squares (MLS) fit between an experimental energy loss spectrum and reference spectra of both frozen-hydrated ice and macromolecular assemblies we can deduce directly the local water concentration in biological cryosections at the subcellular level. These two methods are applied to two test specimens: human erythrocytes in plasma, and baker's yeast (Saccharomyses Cerevisiae) cryosections. We compare the water content measurements obtained by these two methods and discuss their advantages and drawbacks.

  10. Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion

    NASA Astrophysics Data System (ADS)

    Preibisch, Stephan; Rohlfing, Torsten; Hasak, Michael P.; Tomancak, Pavel

    2008-03-01

    Single Plane Illumination Microscopy (SPIM; Huisken et al., Nature 305(5686):1007-1009, 2004) is an emerging microscopic technique that enables live imaging of large biological specimens in their entirety. By imaging the living biological sample from multiple angles SPIM has the potential to achieve isotropic resolution throughout even relatively large biological specimens. For every angle, however, only a relatively shallow section of the specimen is imaged with high resolution, whereas deeper regions appear increasingly blurred. In order to produce a single, uniformly high resolution image, we propose here an image mosaicing algorithm that combines state of the art groupwise image registration for alignment with content-based image fusion to prevent degrading of the fused image due to regional blurring of the input images. For the registration stage, we introduce an application-specific groupwise transformation model that incorporates per-image as well as groupwise transformation parameters. We also propose a new fusion algorithm based on Gaussian filters, which is substantially faster than fusion based on local image entropy. We demonstrate the performance of our mosaicing method on data acquired from living embryos of the fruit fly, Drosophila, using four and eight angle acquisitions.

  11. Feasibility of A-mode ultrasound attenuation as a monitoring method of local hyperthermia treatment.

    PubMed

    Manaf, Noraida Abd; Aziz, Maizatul Nadwa Che; Ridzuan, Dzulfadhli Saffuan; Mohamad Salim, Maheza Irna; Wahab, Asnida Abd; Lai, Khin Wee; Hum, Yan Chai

    2016-06-01

    Recently, there is an increasing interest in the use of local hyperthermia treatment for a variety of clinical applications. The desired therapeutic outcome in local hyperthermia treatment is achieved by raising the local temperature to surpass the tissue coagulation threshold, resulting in tissue necrosis. In oncology, local hyperthermia is used as an effective way to destroy cancerous tissues and is said to have the potential to replace conventional treatment regime like surgery, chemotherapy or radiotherapy. However, the inability to closely monitor temperature elevations from hyperthermia treatment in real time with high accuracy continues to limit its clinical applicability. Local hyperthermia treatment requires real-time monitoring system to observe the progression of the destroyed tissue during and after the treatment. Ultrasound is one of the modalities that have great potential for local hyperthermia monitoring, as it is non-ionizing, convenient and has relatively simple signal processing requirement compared to magnetic resonance imaging and computed tomography. In a two-dimensional ultrasound imaging system, changes in tissue microstructure during local hyperthermia treatment are observed in terms of pixel value analysis extracted from the ultrasound image itself. Although 2D ultrasound has shown to be the most widely used system for monitoring hyperthermia in ultrasound imaging family, 1D ultrasound on the other hand could offer a real-time monitoring and the method enables quantitative measurement to be conducted faster and with simpler measurement instrument. Therefore, this paper proposes a new local hyperthermia monitoring method that is based on one-dimensional ultrasound. Specifically, the study investigates the effect of ultrasound attenuation in normal and pathological breast tissue when the temperature in tissue is varied between 37 and 65 °C during local hyperthermia treatment. Besides that, the total protein content measurement was also conducted to investigate the relationship between attenuation and tissue denaturation level at different temperature ranges. The tissues were grouped according to their histology results, namely normal tissue with large predominance of cells (NPC), cancer tissue with large predominance of cells (CPC) and cancer with high collagen fiber content (CHF). The result shows that the attenuation coefficient of ultrasound measured following the local hyperthermia treatment increases with the increment of collagen fiber content in tissue as the CHF attenuated ultrasound at the highest rate, followed by NPC and CPC. Additionally, the attenuation increment is more pronounced at the temperature over 55 °C. This describes that the ultrasound wave experienced more energy loss when it propagates through a heated tissue as the tissue structure changes due to protein coagulation effect. Additionally, a significant increase in the sensitivity of attenuation to protein denaturation is also observed with the highest sensitivity obtained in monitoring NPC. Overall, it is concluded that one-dimensional ultrasound can be used as a monitoring method of local hyperthermia since its attenuation is very sensitive to the changes in tissue microstructure during hyperthermia.

  12. The occipital place area represents the local elements of scenes

    PubMed Central

    Kamps, Frederik S.; Julian, Joshua B.; Kubilius, Jonas; Kanwisher, Nancy; Dilks, Daniel D.

    2016-01-01

    Neuroimaging studies have identified three scene-selective regions in human cortex: parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA). However, precisely what scene information each region represents in not clear, especially for the least studied, more posterior OPA. Here we hypothesized that OPA represents local elements of scenes within two independent, yet complementary scene descriptors: spatial boundary (i.e., the layout of external surfaces) and scene content (e.g., internal objects). If OPA processes the local elements of spatial boundary information, then it should respond to these local elements (e.g., walls) themselves, regardless of their spatial arrangement. Indeed, we found OPA, but not PPA or RSC, responded similarly to images of intact rooms and these same rooms in which the surfaces were fractured and rearranged, disrupting the spatial boundary. Next, if OPA represents the local elements of scene content information, then it should respond more when more such local elements (e.g., furniture) are present. Indeed, we found that OPA, but not PPA or RSC, responded more to multiple than single pieces of furniture. Taken together, these findings reveal that OPA analyzes local scene elements – both in spatial boundary and scene content representation – while PPA and RSC represent global scene properties. PMID:26931815

  13. The occipital place area represents the local elements of scenes.

    PubMed

    Kamps, Frederik S; Julian, Joshua B; Kubilius, Jonas; Kanwisher, Nancy; Dilks, Daniel D

    2016-05-15

    Neuroimaging studies have identified three scene-selective regions in human cortex: parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA). However, precisely what scene information each region represents is not clear, especially for the least studied, more posterior OPA. Here we hypothesized that OPA represents local elements of scenes within two independent, yet complementary scene descriptors: spatial boundary (i.e., the layout of external surfaces) and scene content (e.g., internal objects). If OPA processes the local elements of spatial boundary information, then it should respond to these local elements (e.g., walls) themselves, regardless of their spatial arrangement. Indeed, we found that OPA, but not PPA or RSC, responded similarly to images of intact rooms and these same rooms in which the surfaces were fractured and rearranged, disrupting the spatial boundary. Next, if OPA represents the local elements of scene content information, then it should respond more when more such local elements (e.g., furniture) are present. Indeed, we found that OPA, but not PPA or RSC, responded more to multiple than single pieces of furniture. Taken together, these findings reveal that OPA analyzes local scene elements - both in spatial boundary and scene content representation - while PPA and RSC represent global scene properties. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. PIRIA: a general tool for indexing, search, and retrieval of multimedia content

    NASA Astrophysics Data System (ADS)

    Joint, Magali; Moellic, Pierre-Alain; Hede, P.; Adam, P.

    2004-05-01

    The Internet is a continuously expanding source of multimedia content and information. There are many products in development to search, retrieve, and understand multimedia content. But most of the current image search/retrieval engines, rely on a image database manually pre-indexed with keywords. Computers are still powerless to understand the semantic meaning of still or animated image content. Piria (Program for the Indexing and Research of Images by Affinity), the search engine we have developed brings this possibility closer to reality. Piria is a novel search engine that uses the query by example method. A user query is submitted to the system, which then returns a list of images ranked by similarity, obtained by a metric distance that operates on every indexed image signature. These indexed images are compared according to several different classifiers, not only Keywords, but also Form, Color and Texture, taking into account geometric transformations and variance like rotation, symmetry, mirroring, etc. Form - Edges extracted by an efficient segmentation algorithm. Color - Histogram, semantic color segmentation and spatial color relationship. Texture - Texture wavelets and local edge patterns. If required, Piria is also able to fuse results from multiple classifiers with a new classification of index categories: Single Indexer Single Call (SISC), Single Indexer Multiple Call (SIMC), Multiple Indexers Single Call (MISC) or Multiple Indexers Multiple Call (MIMC). Commercial and industrial applications will be explored and discussed as well as current and future development.

  15. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy.

    PubMed

    Momeni, Saba; Pourghassem, Hossein

    2014-08-01

    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  16. Reducing flicker due to ambient illumination in camera captured images

    NASA Astrophysics Data System (ADS)

    Kim, Minwoong; Bengtson, Kurt; Li, Lisa; Allebach, Jan P.

    2013-02-01

    The flicker artifact dealt with in this paper is the scanning distortion arising when an image is captured by a digital camera using a CMOS imaging sensor with an electronic rolling shutter under strong ambient light sources powered by AC. This type of camera scans a target line-by-line in a frame. Therefore, time differences exist between the lines. This mechanism causes a captured image to be corrupted by the change of illumination. This phenomenon is called the flicker artifact. The non-content area of the captured image is used to estimate a flicker signal that is a key to being able to compensate the flicker artifact. The average signal of the non-content area taken along the scan direction has local extrema where the peaks of flicker exist. The locations of the extrema are very useful information to estimate the desired distribution of pixel intensities assuming that the flicker artifact does not exist. The flicker-reduced images compensated by our approach clearly demonstrate the reduced flicker artifact, based on visual observation.

  17. Universal and adapted vocabularies for generic visual categorization.

    PubMed

    Perronnin, Florent

    2008-07-01

    Generic Visual Categorization (GVC) is the pattern classification problem which consists in assigning labels to an image based on its semantic content. This is a challenging task as one has to deal with inherent object/scene variations as well as changes in viewpoint, lighting and occlusion. Several state-of-the-art GVC systems use a vocabulary of visual terms to characterize images with a histogram of visual word counts. We propose a novel practical approach to GVC based on a universal vocabulary, which describes the content of all the considered classes of images, and class vocabularies obtained through the adaptation of the universal vocabulary using class-specific data. The main novelty is that an image is characterized by a set of histograms - one per class - where each histogram describes whether the image content is best modeled by the universal vocabulary or the corresponding class vocabulary. This framework is applied to two types of local image features: low-level descriptors such as the popular SIFT and high-level histograms of word co-occurrences in a spatial neighborhood. It is shown experimentally on two challenging datasets (an in-house database of 19 categories and the PASCAL VOC 2006 dataset) that the proposed approach exhibits state-of-the-art performance at a modest computational cost.

  18. The analysis of image feature robustness using cometcloud

    PubMed Central

    Qi, Xin; Kim, Hyunjoo; Xing, Fuyong; Parashar, Manish; Foran, David J.; Yang, Lin

    2012-01-01

    The robustness of image features is a very important consideration in quantitative image analysis. The objective of this paper is to investigate the robustness of a range of image texture features using hematoxylin stained breast tissue microarray slides which are assessed while simulating different imaging challenges including out of focus, changes in magnification and variations in illumination, noise, compression, distortion, and rotation. We employed five texture analysis methods and tested them while introducing all of the challenges listed above. The texture features that were evaluated include co-occurrence matrix, center-symmetric auto-correlation, texture feature coding method, local binary pattern, and texton. Due to the independence of each transformation and texture descriptor, a network structured combination was proposed and deployed on the Rutgers private cloud. The experiments utilized 20 randomly selected tissue microarray cores. All the combinations of the image transformations and deformations are calculated, and the whole feature extraction procedure was completed in 70 minutes using a cloud equipped with 20 nodes. Center-symmetric auto-correlation outperforms all the other four texture descriptors but also requires the longest computational time. It is roughly 10 times slower than local binary pattern and texton. From a speed perspective, both the local binary pattern and texton features provided excellent performance for classification and content-based image retrieval. PMID:23248759

  19. Speckle tracking and speckle content based composite strain imaging for solid and fluid filled lesions.

    PubMed

    Rabbi, Md Shifat-E; Hasan, Md Kamrul

    2017-02-01

    Strain imaging though for solid lesions provides an effective way for determining their pathologic condition by displaying the tissue stiffness contrast, for fluid filled lesions such an imaging is yet an open problem. In this paper, we propose a novel speckle content based strain imaging technique for visualization and classification of fluid filled lesions in elastography after automatic identification of the presence of fluid filled lesions. Speckle content based strain, defined as a function of speckle density based on the relationship between strain and speckle density, gives an indirect strain value for fluid filled lesions. To measure the speckle density of the fluid filled lesions, two new criteria based on oscillation count of the windowed radio frequency signal and local variance of the normalized B-mode image are used. An improved speckle tracking technique is also proposed for strain imaging of the solid lesions and background. A wavelet-based integration technique is then proposed for combining the strain images from these two techniques for visualizing both the solid and fluid filled lesions from a common framework. The final output of our algorithm is a high quality composite strain image which can effectively visualize both solid and fluid filled breast lesions in addition to the speckle content of the fluid filled lesions for their discrimination. The performance of our algorithm is evaluated using the in vivo patient data and compared with recently reported techniques. The results show that both the solid and fluid filled lesions can be better visualized using our technique and the fluid filled lesions can be classified with good accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date.

    PubMed

    Yu, Calvin; Fan, Shuting; Sun, Yiwen; Pickwell-Macpherson, Emma

    2012-03-01

    The terahertz region lies between the microwave and infrared regions of the electromagnetic spectrum such that it is strongly attenuated by water and very sensitive to water content. Terahertz radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. Because of these characteristic properties, there has been an increasing interest in terahertz imaging and spectroscopy for biological applications within the last few years and more and more terahertz spectra are being reported, including spectroscopic studies of cancer. The presence of cancer often causes increased blood supply to affected tissues and a local increase in tissue water content may be observed: this acts as a natural contrast mechanism for terahertz imaging of cancer. Furthermore the structural changes that occur in affected tissues have also been shown to contribute to terahertz image contrast. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques. In particular investigations relating to the potential of terahertz imaging and spectroscopy for cancer diagnosis will be highlighted.

  1. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date

    PubMed Central

    Yu, Calvin; Fan, Shuting; Sun, Yiwen; Pickwell-MacPherson, Emma

    2012-01-01

    The terahertz region lies between the microwave and infrared regions of the electromagnetic spectrum such that it is strongly attenuated by water and very sensitive to water content. Terahertz radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. Because of these characteristic properties, there has been an increasing interest in terahertz imaging and spectroscopy for biological applications within the last few years and more and more terahertz spectra are being reported, including spectroscopic studies of cancer. The presence of cancer often causes increased blood supply to affected tissues and a local increase in tissue water content may be observed: this acts as a natural contrast mechanism for terahertz imaging of cancer. Furthermore the structural changes that occur in affected tissues have also been shown to contribute to terahertz image contrast. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques. In particular investigations relating to the potential of terahertz imaging and spectroscopy for cancer diagnosis will be highlighted. PMID:23256057

  2. Imaging mass spectrometry data reduction: automated feature identification and extraction.

    PubMed

    McDonnell, Liam A; van Remoortere, Alexandra; de Velde, Nico; van Zeijl, René J M; Deelder, André M

    2010-12-01

    Imaging MS now enables the parallel analysis of hundreds of biomolecules, spanning multiple molecular classes, which allows tissues to be described by their molecular content and distribution. When combined with advanced data analysis routines, tissues can be analyzed and classified based solely on their molecular content. Such molecular histology techniques have been used to distinguish regions with differential molecular signatures that could not be distinguished using established histologic tools. However, its potential to provide an independent, complementary analysis of clinical tissues has been limited by the very large file sizes and large number of discrete variables associated with imaging MS experiments. Here we demonstrate data reduction tools, based on automated feature identification and extraction, for peptide, protein, and lipid imaging MS, using multiple imaging MS technologies, that reduce data loads and the number of variables by >100×, and that highlight highly-localized features that can be missed using standard data analysis strategies. It is then demonstrated how these capabilities enable multivariate analysis on large imaging MS datasets spanning multiple tissues. Copyright © 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  3. Generalized interpretation scheme for arbitrary HR InSAR image pairs

    NASA Astrophysics Data System (ADS)

    Boldt, Markus; Thiele, Antje; Schulz, Karsten

    2013-10-01

    Land cover classification of remote sensing imagery is an important topic of research. For example, different applications require precise and fast information about the land cover of the imaged scenery (e.g., disaster management and change detection). Focusing on high resolution (HR) spaceborne remote sensing imagery, the user has the choice between passive and active sensor systems. Passive systems, such as multispectral sensors, have the disadvantage of being dependent from weather influences (fog, dust, clouds, etc.) and time of day, since they work in the visible part of the electromagnetic spectrum. Here, active systems like Synthetic Aperture Radar (SAR) provide improved capabilities. As an interactive method analyzing HR InSAR image pairs, the CovAmCohTM method was introduced in former studies. CovAmCoh represents the joint analysis of locality (coefficient of variation - Cov), backscatter (amplitude - Am) and temporal stability (coherence - Coh). It delivers information on physical backscatter characteristics of imaged scene objects or structures and provides the opportunity to detect different classes of land cover (e.g., urban, rural, infrastructure and activity areas). As example, railway tracks are easily distinguishable from other infrastructure due to their characteristic bluish coloring caused by the gravel between the sleepers. In consequence, imaged objects or structures have a characteristic appearance in CovAmCoh images which allows the development of classification rules. In this paper, a generalized interpretation scheme for arbitrary InSAR image pairs using the CovAmCoh method is proposed. This scheme bases on analyzing the information content of typical CovAmCoh imagery using the semisupervised k-means clustering. It is shown that eight classes model the main local information content of CovAmCoh images sufficiently and can be used as basis for a classification scheme.

  4. Feature Extraction in Sequential Multimedia Images: with Applications in Satellite Images and On-line Videos

    NASA Astrophysics Data System (ADS)

    Liang, Yu-Li

    Multimedia data is increasingly important in scientific discovery and people's daily lives. Content of massive multimedia is often diverse and noisy, and motion between frames is sometimes crucial in analyzing those data. Among all, still images and videos are commonly used formats. Images are compact in size but do not contain motion information. Videos record motion but are sometimes too big to be analyzed. Sequential images, which are a set of continuous images with low frame rate, stand out because they are smaller than videos and still maintain motion information. This thesis investigates features in different types of noisy sequential images, and the proposed solutions that intelligently combined multiple features to successfully retrieve visual information from on-line videos and cloudy satellite images. The first task is detecting supraglacial lakes above ice sheet in sequential satellite images. The dynamics of supraglacial lakes on the Greenland ice sheet deeply affect glacier movement, which is directly related to sea level rise and global environment change. Detecting lakes above ice is suffering from diverse image qualities and unexpected clouds. A new method is proposed to efficiently extract prominent lake candidates with irregular shapes, heterogeneous backgrounds, and in cloudy images. The proposed system fully automatize the procedure that track lakes with high accuracy. We further cooperated with geoscientists to examine the tracked lakes and found new scientific findings. The second one is detecting obscene content in on-line video chat services, such as Chatroulette, that randomly match pairs of users in video chat sessions. A big problem encountered in such systems is the presence of flashers and obscene content. Because of various obscene content and unstable qualities of videos capture by home web-camera, detecting misbehaving users is a highly challenging task. We propose SafeVchat, which is the first solution that achieves satisfactory detection rate by using facial features and skin color model. To harness all the features in the scene, we further developed another system using multiple types of local descriptors along with Bag-of-Visual Word framework. In addition, an investigation of new contour feature in detecting obscene content is presented.

  5. Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy

    PubMed Central

    Pottier, Julien; Malenovský, Zbyněk; Psomas, Achilleas; Homolová, Lucie; Schaepman, Michael E.; Choler, Philippe; Thuiller, Wilfried; Guisan, Antoine; Zimmermann, Niklaus E.

    2014-01-01

    Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data. PMID:25079495

  6. A novel method of the image processing on irregular triangular meshes

    NASA Astrophysics Data System (ADS)

    Vishnyakov, Sergey; Pekhterev, Vitaliy; Sokolova, Elizaveta

    2018-04-01

    The paper describes a novel method of the image processing based on irregular triangular meshes implementation. The triangular mesh is adaptive to the image content, least mean square linear approximation is proposed for the basic interpolation within the triangle. It is proposed to use triangular numbers to simplify using of the local (barycentric) coordinates for the further analysis - triangular element of the initial irregular mesh is to be represented through the set of the four equilateral triangles. This allows to use fast and simple pixels indexing in local coordinates, e.g. "for" or "while" loops for access to the pixels. Moreover, representation proposed allows to use discrete cosine transform of the simple "rectangular" symmetric form without additional pixels reordering (as it is used for shape-adaptive DCT forms). Furthermore, this approach leads to the simple form of the wavelet transform on triangular mesh. The results of the method application are presented. It is shown that advantage of the method proposed is a combination of the flexibility of the image-adaptive irregular meshes with the simple form of the pixel indexing in local triangular coordinates and the using of the common forms of the discrete transforms for triangular meshes. Method described is proposed for the image compression, pattern recognition, image quality improvement, image search and indexing. It also may be used as a part of video coding (intra-frame or inter-frame coding, motion detection).

  7. Multisite Thrombus Imaging and Fibrin Content Estimation With a Single Whole-Body PET Scan in Rats.

    PubMed

    Blasi, Francesco; Oliveira, Bruno L; Rietz, Tyson A; Rotile, Nicholas J; Naha, Pratap C; Cormode, David P; Izquierdo-Garcia, David; Catana, Ciprian; Caravan, Peter

    2015-10-01

    Thrombosis is a leading cause of morbidity and mortality worldwide. Current diagnostic strategies rely on imaging modalities that are specific for distinct vascular territories, but a thrombus-specific whole-body imaging approach is still missing. Moreover, imaging techniques to assess thrombus composition are underdeveloped, although therapeutic strategies may benefit from such technology. Therefore, our goal was to test whether positron emission tomography (PET) with the fibrin-binding probe (64)Cu-FBP8 allows multisite thrombus detection and fibrin content estimation. Thrombosis was induced in Sprague-Dawley rats (n=32) by ferric chloride application on both carotid artery and femoral vein. (64)Cu-FBP8-PET/CT imaging was performed 1, 3, or 7 days after thrombosis to detect thrombus location and to evaluate age-dependent changes in target uptake. Ex vivo biodistribution, autoradiography, and histopathology were performed to validate imaging results. Arterial and venous thrombi were localized on fused PET/CT images with high accuracy (97.6%; 95% confidence interval, 92-100). A single whole-body PET/MR imaging session was sufficient to reveal the location of both arterial and venous thrombi after (64)Cu-FBP8 administration. PET imaging showed that probe uptake was greater in younger clots than in older ones for both arterial and venous thrombosis (P<0.0001). Quantitative histopathology revealed an age-dependent reduction of thrombus fibrin content (P<0.001), consistent with PET results. Biodistribution and autoradiography further confirmed the imaging findings. We demonstrated that (64)Cu-FBP8-PET is a feasible approach for whole-body thrombus detection and that molecular imaging of fibrin can provide, noninvasively, insight into clot composition. © 2015 American Heart Association, Inc.

  8. Out-of-Sample Extrapolation utilizing Semi-Supervised Manifold Learning (OSE-SSL): Content Based Image Retrieval for Histopathology Images

    PubMed Central

    Sparks, Rachel; Madabhushi, Anant

    2016-01-01

    Content-based image retrieval (CBIR) retrieves database images most similar to the query image by (1) extracting quantitative image descriptors and (2) calculating similarity between database and query image descriptors. Recently, manifold learning (ML) has been used to perform CBIR in a low dimensional representation of the high dimensional image descriptor space to avoid the curse of dimensionality. ML schemes are computationally expensive, requiring an eigenvalue decomposition (EVD) for every new query image to learn its low dimensional representation. We present out-of-sample extrapolation utilizing semi-supervised ML (OSE-SSL) to learn the low dimensional representation without recomputing the EVD for each query image. OSE-SSL incorporates semantic information, partial class label, into a ML scheme such that the low dimensional representation co-localizes semantically similar images. In the context of prostate histopathology, gland morphology is an integral component of the Gleason score which enables discrimination between prostate cancer aggressiveness. Images are represented by shape features extracted from the prostate gland. CBIR with OSE-SSL for prostate histology obtained from 58 patient studies, yielded an area under the precision recall curve (AUPRC) of 0.53 ± 0.03 comparatively a CBIR with Principal Component Analysis (PCA) to learn a low dimensional space yielded an AUPRC of 0.44 ± 0.01. PMID:27264985

  9. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing

    PubMed Central

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-01-01

    Remote sensing technologies have been widely applied in urban environments’ monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive. PMID:28604641

  10. Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.

    PubMed

    Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing

    2017-06-12

    Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.

  11. Dynamic tensile deformation and damage of B 4C-reinforced Al composites: Time-resolved imaging with synchrotron x-rays

    DOE PAGES

    Bie, B. X.; Huang, J. Y.; Su, B.; ...

    2016-03-30

    Dynamic tensile experiments are conducted on 15% and 30% in weight percentage B 4C/Al composites with a split Hopkinson tension bar, along with high-speed synchrotron x-ray digital image correlation (XDIC) to map strain fields at μ m and μ s scales. As manifested by bulk-scale stress – strain curves, a higher particle content leads to a higher yield strength but lower ductility. Strain field mapping by XDIC demonstrates that tension deformation and tensile fracture, as opposed to shear and shear failure, dominate deformation and failure of the composites. The fractographs of recovered samples show consistent features. The particle-matrix interfaces aremore » nucleation sites for strain localizations, and their propagation and coalescence are diffused by the Al matrix. The reduced spacing between strain localization sites with increasing particle content, facilitates their coalescence and leads to decreased ductility. Furthermore, designing a particle-reinforced, metallic-matrix composite with balanced strength and ductility should consider optimizing the inter-particle distance as a key par« less

  12. A Multistage Approach for Image Registration.

    PubMed

    Bowen, Francis; Hu, Jianghai; Du, Eliza Yingzi

    2016-09-01

    Successful image registration is an important step for object recognition, target detection, remote sensing, multimodal content fusion, scene blending, and disaster assessment and management. The geometric and photometric variations between images adversely affect the ability for an algorithm to estimate the transformation parameters that relate the two images. Local deformations, lighting conditions, object obstructions, and perspective differences all contribute to the challenges faced by traditional registration techniques. In this paper, a novel multistage registration approach is proposed that is resilient to view point differences, image content variations, and lighting conditions. Robust registration is realized through the utilization of a novel region descriptor which couples with the spatial and texture characteristics of invariant feature points. The proposed region descriptor is exploited in a multistage approach. A multistage process allows the utilization of the graph-based descriptor in many scenarios thus allowing the algorithm to be applied to a broader set of images. Each successive stage of the registration technique is evaluated through an effective similarity metric which determines subsequent action. The registration of aerial and street view images from pre- and post-disaster provide strong evidence that the proposed method estimates more accurate global transformation parameters than traditional feature-based methods. Experimental results show the robustness and accuracy of the proposed multistage image registration methodology.

  13. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p < .01) ranging between 0.0209 - 0.038% (reflectivity: %hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  14. Foreign exam management in practice: seamless access to foreign images and results in a regional environment.

    PubMed

    Nagels, Jason; MacDonald, David; Parker, David

    2015-04-01

    A challenge for many clinical users is that a patient may receive a diagnostic imaging (DI) service at a number of hospitals or private imaging clinics. The DI services that patients receive at other locations could be clinically relevant to current treatments, but typically, there is no seamless method for a clinical user to access longitudinal DI results for their patient. Radiologists, and other specialists that are intensive users of image data, require seamless ingestion of foreign exams into the picture archiving and communication system (PACS) to achieve full clinical value. Most commonly, a clinical user will depend on the patient to bring in a CD that contains imaging from another location. However, a number of issues can arise when using this type of solution. Firstly, a CD will not provide the clinical user with the full longitudinal record of the patient. Secondly, a CD often will not contain the report associated with the images. Finally, a CD is not seamless, due to the need to manually import the contents of the CD into the local PACS. In order to overcome these limitations, and provide clinical users with a greater benefit related to a patient's longitudinal DI history, the implementation of foreign exam management (FEM) at the local site level is required. This paper presents the experiences of FEM in practice. By leveraging industry standards and edge devices to support FEM, multiple sites with disparate PACS and radiology information system (RIS) vendors are able to seamlessly ingest foreign exams within their local PACS as if they are local exams.

  15. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies" in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Gargiulo, Adriana; Campusano, Luis

    2012-02-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~200 galaxies in two nearby (32, 35 Mpc) galaxy groups NGC 4261 and NGC 5353 from the CLoGS local group survey. In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occuring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear star-bursts triggered by low-velocity encounters which should be most frequent in groups.

  16. KPNO 0.9m H(alpha) Imaging Survey of ``Transforming Galaxies'' in Local Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Haines, Christopher; O'Sullivan, Ewan; Raychaudhury, Somak; Egami, Eiichi; Campusano, Luis

    2012-08-01

    We propose to use the KPNO 0.9-m telescope to obtain panoramic H(alpha) imaging of ~135 galaxies in ten nearby galaxy groups (60- 80 Mpc) from the Complete Local-Volume Groups Sample (CLoGS). In rich clusters ram-pressure stripping has been shown to be very effective at removing the gas contents and quenching star formation in infalling spiral galaxies. It is much less clear how galaxies are affected by the much lower ram pressures found in galaxy groups, or if other environmental processes begin to dominate. Given that >50% of galaxies in the local volume reside in groups, it is vital that we gain new insights into which mechanisms drive the SFR-density relation in groups. The proposed H(alpha) imaging will allow us to resolve where star-formation is occurring in each galaxy. This can effectively discriminate between ram-pressure stripping characterized by truncated H(alpha) disks, the much gentler starvation mechanism which produces anemic spirals, and nuclear starbursts triggered by low-velocity encounters and mergers which should be most frequent in groups.

  17. Backward Registration Based Aspect Ratio Similarity (ARS) for Image Retargeting Quality Assessment.

    PubMed

    Zhang, Yabin; Fang, Yuming; Lin, Weisi; Zhang, Xinfeng; Li, Leida

    2016-06-28

    During the past few years, there have been various kinds of content-aware image retargeting operators proposed for image resizing. However, the lack of effective objective retargeting quality assessment metrics limits the further development of image retargeting techniques. Different from traditional Image Quality Assessment (IQA) metrics, the quality degradation during image retargeting is caused by artificial retargeting modifications, and the difficulty for Image Retargeting Quality Assessment (IRQA) lies in the alternation of the image resolution and content, which makes it impossible to directly evaluate the quality degradation like traditional IQA. In this paper, we interpret the image retargeting in a unified framework of resampling grid generation and forward resampling. We show that the geometric change estimation is an efficient way to clarify the relationship between the images. We formulate the geometric change estimation as a Backward Registration problem with Markov Random Field (MRF) and provide an effective solution. The geometric change aims to provide the evidence about how the original image is resized into the target image. Under the guidance of the geometric change, we develop a novel Aspect Ratio Similarity metric (ARS) to evaluate the visual quality of retargeted images by exploiting the local block changes with a visual importance pooling strategy. Experimental results on the publicly available MIT RetargetMe and CUHK datasets demonstrate that the proposed ARS can predict more accurate visual quality of retargeted images compared with state-of-the-art IRQA metrics.

  18. Non-invasive terahertz imaging of tissue water content for flap viability assessment

    PubMed Central

    Bajwa, Neha; Au, Joshua; Jarrahy, Reza; Sung, Shijun; Fishbein, Michael C.; Riopelle, David; Ennis, Daniel B.; Aghaloo, Tara; St. John, Maie A.; Grundfest, Warren S.; Taylor, Zachary D.

    2016-01-01

    Accurate and early prediction of tissue viability is the most significant determinant of tissue flap survival in reconstructive surgery. Perturbation in tissue water content (TWC) is a generic component of the tissue response to such surgeries, and, therefore, may be an important diagnostic target for assessing the extent of flap viability in vivo. We have previously shown that reflective terahertz (THz) imaging, a non-ionizing technique, can generate spatially resolved maps of TWC in superficial soft tissues, such as cornea and wounds, on the order of minutes. Herein, we report the first in vivo pilot study to investigate the utility of reflective THz TWC imaging for early assessment of skin flap viability. We obtained longitudinal visible and reflective THz imagery comparing 3 bipedicled flaps (i.e. survival model) and 3 fully excised flaps (i.e. failure model) in the dorsal skin of rats over a postoperative period of 7 days. While visual differences between both models manifested 48 hr after surgery, statistically significant (p < 0.05, independent t-test) local differences in TWC contrast were evident in THz flap image sets as early as 24 hr. Excised flaps, histologically confirmed as necrotic, demonstrated a significant, yet localized, reduction in TWC in the flap region compared to non-traumatized skin. In contrast, bipedicled flaps, histologically verified as viable, displayed mostly uniform, unperturbed TWC across the flap tissue. These results indicate the practical potential of THz TWC sensing to accurately predict flap failure 24 hours earlier than clinical examination. PMID:28101431

  19. Grouping of optic flow stimuli during binocular rivalry is driven by monocular information.

    PubMed

    Holten, Vivian; Stuit, Sjoerd M; Verstraten, Frans A J; van der Smagt, Maarten J

    2016-10-01

    During binocular rivalry, perception alternates between two dissimilar images, presented dichoptically. Although binocular rivalry is thought to result from competition at a local level, neighboring image parts with similar features tend to be perceived together for longer durations than image parts with dissimilar features. This simultaneous dominance of two image parts is called grouping during rivalry. Previous studies have shown that this grouping depends on a shared eye-of-origin to a much larger extent than on image content, irrespective of the complexity of a static image. In the current study, we examine whether grouping of dynamic optic flow patterns is also primarily driven by monocular (eye-of-origin) information. In addition, we examine whether image parameters, such as optic flow direction, and partial versus full visibility of the optic flow pattern, affect grouping durations during rivalry. The results show that grouping of optic flow is, as is known for static images, primarily affected by its eye-of-origin. Furthermore, global motion can affect grouping durations, but only under specific conditions. Namely, only when the two full optic flow patterns were presented locally. These results suggest that grouping during rivalry is primarily driven by monocular information even for motion stimuli thought to rely on higher-level motion areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Local adaptive tone mapping for video enhancement

    NASA Astrophysics Data System (ADS)

    Lachine, Vladimir; Dai, Min (.

    2015-03-01

    As new technologies like High Dynamic Range cameras, AMOLED and high resolution displays emerge on consumer electronics market, it becomes very important to deliver the best picture quality for mobile devices. Tone Mapping (TM) is a popular technique to enhance visual quality. However, the traditional implementation of Tone Mapping procedure is limited by pixel's value to value mapping, and the performance is restricted in terms of local sharpness and colorfulness. To overcome the drawbacks of traditional TM, we propose a spatial-frequency based framework in this paper. In the proposed solution, intensity component of an input video/image signal is split on low pass filtered (LPF) and high pass filtered (HPF) bands. Tone Mapping (TM) function is applied to LPF band to improve the global contrast/brightness, and HPF band is added back afterwards to keep the local contrast. The HPF band may be adjusted by a coring function to avoid noise boosting and signal overshooting. Colorfulness of an original image may be preserved or enhanced by chroma components correction by means of saturation function. Localized content adaptation is further improved by dividing an image to a set of non-overlapped regions and modifying each region individually. The suggested framework allows users to implement a wide range of tone mapping applications with perceptional local sharpness and colorfulness preserved or enhanced. Corresponding hardware circuit may be integrated in camera, video or display pipeline with minimal hardware budget

  1. Three-dimensional multifunctional optical coherence tomography for skin imaging

    NASA Astrophysics Data System (ADS)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  2. Mechanism of Disease in early Osteoarthritis: Application of modern MR imaging techniques – A technical report

    PubMed Central

    Jobke, B.; Bolbos, R.; Saadat, E.; Cheng, J.; Li, X.; Majumdar, S.

    2012-01-01

    The application of biomolecular magnetic resonance imaging becomes increasingly important in the context of early cartilage changes in degenerative and inflammatory joint disease before gross morphological changes become apparent. In this limited technical report, we investigate the correlation of MRI T1, T2 and T1 relaxation times with quantitative biochemical measurements of proteoglycan and collagen contents of cartilage in close synopsis with histologic morphology. A recently developed MR imaging sequence, T1, was able to detect early intracartilaginous degeneration quantitatively and also qualitatively by color mapping demonstrating a higher sensitivity than standard T2-w sequences. The results correlated highly with reduced proteoglycan content and disrupted collagen architecture as measured by biochemistry and histology. The findings lend support to a clinical implementation that allows rapid visual capturing of pathology on a local, millimeter level. Further information about articular cartilage quality otherwise not detectable in-vivo, via normal inspection, is needed for orthopedic treatment decisions in the present and future. PMID:22902064

  3. People detection in crowded scenes using active contour models

    NASA Astrophysics Data System (ADS)

    Sidla, Oliver

    2009-01-01

    The detection of pedestrians in real-world scenes is a daunting task, especially in crowded situations. Our experience over the last years has shown that active shape models (ASM) can contribute significantly to a robust pedestrian detection system. The paper starts with an overview of shape model approaches, it then explains our approach which builds on top of Eigenshape models which have been trained using real-world data. These models are placed over candidate regions and matched to image gradients using a scoring function which integrates i) point distribution, ii) local gradient orientations iii) local image gradient strengths. A matching and shape model update process is iteratively applied in order to fit the flexible models to the local image content. The weights of the scoring function have a significant impact on the ASM performance. We analyze different settings of scoring weights for gradient magnitude, relative orientation differences, distance between model and gradient in an experiment which uses real-world data. Although for only one pedestrian model in an image computation time is low, the number of necessary processing cycles which is needed to track many people in crowded scenes can become the bottleneck in a real-time application. We describe the measures which have been taken in order to improve the speed of the ASM implementation and make it real-time capable.

  4. Endocytotic potential governs magnetic particle loading in dividing neural cells: studying modes of particle inheritance

    PubMed Central

    Tickle, Jacqueline A; Jenkins, Stuart I; Polyak, Boris; Pickard, Mark R; Chari, Divya M

    2016-01-01

    Aim: To achieve high and sustained magnetic particle loading in a proliferative and endocytotically active neural transplant population (astrocytes) through tailored magnetite content in polymeric iron oxide particles. Materials & methods: MPs of varying magnetite content were applied to primary-derived rat cortical astrocytes ± static/oscillating magnetic fields to assess labeling efficiency and safety. Results: Higher magnetite content particles display high but safe accumulation in astrocytes, with longer-term label retention versus lower/no magnetite content particles. Magnetic fields enhanced loading extent. Dynamic live cell imaging of dividing labeled astrocytes demonstrated that particle distribution into daughter cells is predominantly ‘asymmetric’. Conclusion: These findings could inform protocols to achieve efficient MP loading into neural transplant cells, with significant implications for post-transplantation tracking/localization. PMID:26785794

  5. Automatic Masking for Robust 3D-2D Image Registration in Image-Guided Spine Surgery.

    PubMed

    Ketcha, M D; De Silva, T; Uneri, A; Kleinszig, G; Vogt, S; Wolinsky, J-P; Siewerdsen, J H

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  6. Automatic masking for robust 3D-2D image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-03-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  7. A novel 3D shape descriptor for automatic retrieval of anatomical structures from medical images

    NASA Astrophysics Data System (ADS)

    Nunes, Fátima L. S.; Bergamasco, Leila C. C.; Delmondes, Pedro H.; Valverde, Miguel A. G.; Jackowski, Marcel P.

    2017-03-01

    Content-based image retrieval (CBIR) aims at retrieving from a database objects that are similar to an object provided by a query, by taking into consideration a set of extracted features. While CBIR has been widely applied in the two-dimensional image domain, the retrieval of3D objects from medical image datasets using CBIR remains to be explored. In this context, the development of descriptors that can capture information specific to organs or structures is desirable. In this work, we focus on the retrieval of two anatomical structures commonly imaged by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques, the left ventricle of the heart and blood vessels. Towards this aim, we developed the Area-Distance Local Descriptor (ADLD), a novel 3D local shape descriptor that employs mesh geometry information, namely facet area and distance from centroid to surface, to identify shape changes. Because ADLD only considers surface meshes extracted from volumetric medical images, it substantially diminishes the amount of data to be analyzed. A 90% precision rate was obtained when retrieving both convex (left ventricle) and non-convex structures (blood vessels), allowing for detection of abnormalities associated with changes in shape. Thus, ADLD has the potential to aid in the diagnosis of a wide range of vascular and cardiac diseases.

  8. Acquiring skill at medical image inspection: learning localized in early visual processes

    NASA Astrophysics Data System (ADS)

    Sowden, Paul T.; Davies, Ian R. L.; Roling, Penny; Watt, Simon J.

    1997-04-01

    Acquisition of the skill of medical image inspection could be due to changes in visual search processes, 'low-level' sensory learning, and higher level 'conceptual learning.' Here, we report two studies that investigate the extent to which learning in medical image inspection involves low- level learning. Early in the visual processing pathway cells are selective for direction of luminance contrast. We exploit this in the present studies by using transfer across direction of contrast as a 'marker' to indicate the level of processing at which learning occurs. In both studies twelve observers trained for four days at detecting features in x- ray images (experiment one equals discs in the Nijmegen phantom, experiment two equals micro-calcification clusters in digitized mammograms). Half the observers examined negative luminance contrast versions of the images and the remainder examined positive contrast versions. On the fifth day, observers swapped to inspect their respective opposite contrast images. In both experiments leaning occurred across sessions. In experiment one, learning did not transfer across direction of luminance contrast, while in experiment two there was only partial transfer. These findings are consistent with the contention that some of the leaning was localized early in the visual processing pathway. The implications of these results for current medical image inspection training schedules are discussed.

  9. Topics in the two-dimensional sampling and reconstruction of images. [in remote sensing

    NASA Technical Reports Server (NTRS)

    Schowengerdt, R.; Gray, S.; Park, S. K.

    1984-01-01

    Mathematical analysis of image sampling and interpolative reconstruction is summarized and extended to two dimensions for application to data acquired from satellite sensors such as the Thematic mapper and SPOT. It is shown that sample-scene phase influences the reconstruction of sampled images, adds a considerable blur to the average system point spread function, and decreases the average system modulation transfer function. It is also determined that the parametric bicubic interpolator with alpha = -0.5 is more radiometrically accurate than the conventional bicubic interpolator with alpha = -1, and this at no additional cost. Finally, the parametric bicubic interpolator is found to be suitable for adaptive implementation by relating the alpha parameter to the local frequency content of an image.

  10. SDL: Saliency-Based Dictionary Learning Framework for Image Similarity.

    PubMed

    Sarkar, Rituparna; Acton, Scott T

    2018-02-01

    In image classification, obtaining adequate data to learn a robust classifier has often proven to be difficult in several scenarios. Classification of histological tissue images for health care analysis is a notable application in this context due to the necessity of surgery, biopsy or autopsy. To adequately exploit limited training data in classification, we propose a saliency guided dictionary learning method and subsequently an image similarity technique for histo-pathological image classification. Salient object detection from images aids in the identification of discriminative image features. We leverage the saliency values for the local image regions to learn a dictionary and respective sparse codes for an image, such that the more salient features are reconstructed with smaller error. The dictionary learned from an image gives a compact representation of the image itself and is capable of representing images with similar content, with comparable sparse codes. We employ this idea to design a similarity measure between a pair of images, where local image features of one image, are encoded with the dictionary learned from the other and vice versa. To effectively utilize the learned dictionary, we take into account the contribution of each dictionary atom in the sparse codes to generate a global image representation for image comparison. The efficacy of the proposed method was evaluated using three tissue data sets that consist of mammalian kidney, lung and spleen tissue, breast cancer, and colon cancer tissue images. From the experiments, we observe that our methods outperform the state of the art with an increase of 14.2% in the average classification accuracy over all data sets.

  11. Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation Times Is Related to Local Loading during Walking.

    PubMed

    Van Rossom, Sam; Wesseling, Mariska; Van Assche, Dieter; Jonkers, Ilse

    2018-01-01

    Objective Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. Design MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. Results Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. Conclusions The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.

  12. A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF

    PubMed Central

    Ali, Nouman; Bajwa, Khalid Bashir; Sablatnig, Robert; Chatzichristofis, Savvas A.; Iqbal, Zeshan; Rashid, Muhammad; Habib, Hafiz Adnan

    2016-01-01

    With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration. PMID:27315101

  13. 2001 Mars Odyssey THEMIS: Thermophysics at a New Local Time

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Christensen, P. R.

    2017-12-01

    During its sixth extended mission, the 2001 Mars Odyssey transitioned to a new, rarely-seen, post-sunset (morning daylight) local time designed to reduce stress on the spacecraft. Since then, Thermal Emission Imaging System (THEMIS) observations have provided an unprecedented opportunity to investigate dynamic phenomena in the atmosphere and on the surface. In this new local time ( 6:45 am/pm) orbit, Odyssey's camera is acquiring expanded diurnal thermal imaging coverage, providing insight into surface texture, layering, and ice content, as well as dynamic, temperature-dependent surface, atmospheric, and polar processes. New THEMIS observations at dawn and dusk local times are filling major gaps in current knowledge about the diurnal variation of clouds, hazes and surface frost. In this presentation, we will highlight some of these data and discuss the unique scientific results that can be obtained from Mars Odyssey THEMIS observations, including: insights into potential past and present habitability of Mars, the processes and history of climate, the nature and evolution of geologic processes, and aspects of the environment relevant to future human exploration.

  14. In vitro culture increases mechanical stability of human tissue engineered cartilage constructs by prevention of microscale scaffold buckling.

    PubMed

    Middendorf, Jill M; Shortkroff, Sonya; Dugopolski, Caroline; Kennedy, Stephen; Siemiatkoski, Joseph; Bartell, Lena R; Cohen, Itai; Bonassar, Lawrence J

    2017-11-07

    Many studies have measured the global compressive properties of tissue engineered (TE) cartilage grown on porous scaffolds. Such scaffolds are known to exhibit strain softening due to local buckling under loading. As matrix is deposited onto these scaffolds, the global compressive properties increase. However the relationship between the amount and distribution of matrix in the scaffold and local buckling is unknown. To address this knowledge gap, we studied how local strain and construct buckling in human TE constructs changes over culture times and GAG content. Confocal elastography techniques and digital image correlation (DIC) were used to measure and record buckling modes and local strains. Receiver operating characteristic (ROC) curves were used to quantify construct buckling. The results from the ROC analysis were placed into Kaplan-Meier survival function curves to establish the probability that any point in a construct buckled. These analysis techniques revealed the presence of buckling at early time points, but bending at later time points. An inverse correlation was observed between the probability of buckling and the total GAG content of each construct. This data suggests that increased GAG content prevents the onset of construct buckling and improves the microscale compressive tissue properties. This increase in GAG deposition leads to enhanced global compressive properties by prevention of microscale buckling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Discrimination of isotrigon textures using the Rényi entropy of Allan variances.

    PubMed

    Gabarda, Salvador; Cristóbal, Gabriel

    2008-09-01

    We present a computational algorithm for isotrigon texture discrimination. The aim of this method consists in discriminating isotrigon textures against a binary random background. The extension of the method to the problem of multitexture discrimination is considered as well. The method relies on the fact that the information content of time or space-frequency representations of signals, including images, can be readily analyzed by means of generalized entropy measures. In such a scenario, the Rényi entropy appears as an effective tool, given that Rényi measures can be used to provide information about a local neighborhood within an image. Localization is essential for comparing images on a pixel-by-pixel basis. Discrimination is performed through a local Rényi entropy measurement applied on a spatially oriented 1-D pseudo-Wigner distribution (PWD) of the test image. The PWD is normalized so that it may be interpreted as a probability distribution. Prior to the calculation of the texture's PWD, a preprocessing filtering step replaces the original texture with its localized spatially oriented Allan variances. The anisotropic structure of the textures, as revealed by the Allan variances, turns out to be crucial later to attain a high discrimination by the extraction of Rényi entropy measures. The method has been empirically evaluated with a family of isotrigon textures embedded in a binary random background. The extension to the case of multiple isotrigon mosaics has also been considered. Discrimination results are compared with other existing methods.

  16. Assessing Autophagic Flux by Measuring LC3, p62, and LAMP1 Co-localization Using Multispectral Imaging Flow Cytometry.

    PubMed

    Pugsley, Haley R

    2017-07-21

    Autophagy is a catabolic pathway in which normal or dysfunctional cellular components that accumulate during growth and differentiation are degraded via the lysosome and are recycled. During autophagy, cytoplasmic LC3 protein is lipidated and recruited to the autophagosomal membranes. The autophagosome then fuses with the lysosome to form the autolysosome, where the breakdown of the autophagosome vesicle and its contents occurs. The ubiquitin-associated protein p62, which binds to LC3, is also used to monitor autophagic flux. Cells undergoing autophagy should demonstrate the co-localization of p62, LC3, and lysosomal markers. Immunofluorescence microscopy has been used to visually identify LC3 puncta, p62, and/or lysosomes on a per-cell basis. However, an objective and statistically rigorous assessment can be difficult to obtain. To overcome these problems, multispectral imaging flow cytometry was used along with an analytical feature that compares the bright detail images from three autophagy markers (LC3, p62 and lysosomal LAMP1) and quantifies their co-localization, in combination with LC3 spot counting to measure autophagy in an objective, quantitative, and statistically robust manner.

  17. Assessing Autophagic Flux by Measuring LC3, p62, and LAMP1 Co-localization Using Multispectral Imaging Flow Cytometry

    PubMed Central

    Pugsley, Haley R.

    2017-01-01

    Autophagy is a catabolic pathway in which normal or dysfunctional cellular components that accumulate during growth and differentiation are degraded via the lysosome and are recycled. During autophagy, cytoplasmic LC3 protein is lipidated and recruited to the autophagosomal membranes. The autophagosome then fuses with the lysosome to form the autolysosome, where the breakdown of the autophagosome vesicle and its contents occurs. The ubiquitin-associated protein p62, which binds to LC3, is also used to monitor autophagic flux. Cells undergoing autophagy should demonstrate the co-localization of p62, LC3, and lysosomal markers. Immunofluorescence microscopy has been used to visually identify LC3 puncta, p62, and/or lysosomes on a per-cell basis. However, an objective and statistically rigorous assessment can be difficult to obtain. To overcome these problems, multispectral imaging flow cytometry was used along with an analytical feature that compares the bright detail images from three autophagy markers (LC3, p62 and lysosomal LAMP1) and quantifies their co-localization, in combination with LC3 spot counting to measure autophagy in an objective, quantitative, and statistically robust manner. PMID:28784946

  18. Automatic Sea Bird Detection from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Mader, S.; Grenzdörffer, G. J.

    2016-06-01

    Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for subsequent elimination of false candidates and for classification tasks.

  19. Study of ionospheric anomalies due to impact of typhoon using Principal Component Analysis and image processing

    NASA Astrophysics Data System (ADS)

    LIN, JYH-WOEI

    2012-08-01

    Principal Component Analysis (PCA) and image processing are used to determine Total Electron Content (TEC) anomalies in the F-layer of the ionosphere relating to Typhoon Nakri for 29 May, 2008 (UTC). PCA and image processing are applied to the global ionospheric map (GIM) with transforms conducted for the time period 12:00-14:00 UT on 29 May, 2008 when the wind was most intense. Results show that at a height of approximately 150-200 km the TEC anomaly is highly localized; however, it becomes more intense and widespread with height. Potential causes of these results are discussed with emphasis given to acoustic gravity waves caused by wind force.

  20. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Lucey, Paul G.; Williams, Timothy; Horton, Keith A.

    2002-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote-sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly.

  1. Describing the spatio-temporal variability of vines and soil by satellite-based spectral indices: A case study in Apulia (South Italy)

    NASA Astrophysics Data System (ADS)

    Borgogno-Mondino, E.; Novello, V.; Lessio, A.; de Palma, L.

    2018-06-01

    A time series of Landsat 8 OLI (L8 OLI) multispectral images acquired between May 2013 and February 2016 were used to investigate vigour, vine and soil water content in a vineyard of Moscato Reale (syn. Moscato Bianco) sited in the Castel del Monte DOCG area. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated and compared with vine midday stem water potential (ΨMDstem) and soil volume water content (VWC), to calibrate estimation models. Estimation models were calibrated using already existing ground observation datasets from previous ordinary vineyard management operations: ΨMDstem was measured at two different locations in vineyard at 6 different dates in summer 2014; VWC was continuously measured from June to October 2014 and from January to September 2015. Results showed that: a) vine stem water potential can be locally estimated with an accuracy ranging from ±0.046 (high vigour vines) to ±0.127 (low vigour vines) MPa; b) soil volume water content can be locally estimated with an accuracy of about ±1.7%. Medium resolution satellite imagery proved, therefore, to be effective, at vineyard level, to describe vigour, vine and soil water status and their seasonality. This is an important issue to focus on since, as Landsat 8 images are free, the entire process is economic enough to be consistent with cost and incoming of the farming system.

  2. A spatio-temporal model of the human observer for use in display design

    NASA Astrophysics Data System (ADS)

    Bosman, Dick

    1989-08-01

    A "quick look" visual model, a kind of standard observer in software, is being developed to estimate the appearance of new display designs before prototypes are built. It operates on images also stored in software. It is assumed that the majority of display design flaws and technology artefacts can be identified in representations of early visual processing, and insight obtained into very local to global (supra-threshold) brightness distributions. Cognitive aspects are not considered because it seems that poor acceptance of technology and design is only weakly coupled to image content.

  3. Topology guided demons registration with local rigidity preservation.

    PubMed

    Chaojie Zheng; Xiuying Wang; Dagan Feng

    2016-08-01

    Demons has been well recognized for its deformable registration capability. However, it might lead to misregistration due to the large spatial distance between the expected corresponding contents or erroneous diffusion tendency. In this paper, we propose a new energy function with topology energy, distance function and demons energy for deformable registration. The new energy function incorporates topological relationships to guide the correct diffusion and deformation, and contributes to local rigidity preservation. The distance function contributes to pulling the corresponding regions into accurate alignment despite of a possible large distance gap. The method was validated on synthetic, phantom and real medical image data.

  4. Pink Ribbons and Red Dresses: A Mixed Methods Content Analysis of Media Coverage of Breast Cancer and Heart Disease.

    PubMed

    Champion, Claudine; Berry, Tanya R; Kingsley, Bethan; Spence, John C

    2016-10-01

    This research examined media coverage of breast cancer (n = 145) and heart disease and stroke (n = 39) news articles, videos, advertisements, and images in a local Canadian context through quantitative and thematic content analyses. Quantitative analysis revealed significant differences between coverage of the diseases in placement, survivors as a source of information, health agency, human interest stories, citation of a research study, the inclusion of risk statistics, discussion of preventative behaviors, and tone used. The thematic analysis revealed themes that characterized a "typical" breast cancer survivor and indicated that "good" citizens and businesses should help the cause of breast cancer. Themes for heart disease and stroke articulated individual responsibility and the ways fundraising reinforced femininity and privilege. Findings provide insight on how these diseases are framed in local Canadian media, which might impact an individual's understanding of the disease.

  5. Beyond the electronic textbook model: software techniques to make on-line educational content dynamic.

    PubMed

    Frank, M S; Dreyer, K

    2001-06-01

    We describe a working software technology that enables educators to incorporate their expertise and teaching style into highly interactive and Socratic educational material for distribution on the world wide web. A graphically oriented interactive authoring system was developed to enable the computer novice to create and store within a database his or her domain expertise in the form of electronic knowledge. The authoring system supports and facilitates the input and integration of several types of content, including free-form, stylized text, miniature and full-sized images, audio, and interactive questions with immediate feedback. The system enables the choreography and sequencing of these entities for display within a web page as well as the sequencing of entire web pages within a case-based or thematic presentation. Images or segments of text can be hyperlinked with point-and-click to other entities such as adjunctive web pages, audio, or other images, cases, or electronic chapters. Miniature (thumbnail) images are automatically linked to their full-sized counterparts. The authoring system contains a graphically oriented word processor, an image editor, and capabilities to automatically invoke and use external image-editing software such as Photoshop. The system works in both local area network (LAN) and internet-centric environments. An internal metalanguage (invisible to the author but stored with the content) was invented to represent the choreographic directives that specify the interactive delivery of the content on the world wide web. A database schema was developed to objectify and store both this electronic knowledge and its associated choreographic metalanguage. A database engine was combined with page-rendering algorithms in order to retrieve content from the database and deliver it on the web in a Socratic style, assess the recipient's current fund of knowledge, and provide immediate feedback, thus stimulating in-person interaction with a human expert. This technology enables the educator to choreograph a stylized, interactive delivery of his or her message using multimedia components assembled in virtually any order, spanning any number of web pages for a given case or theme. An educator can thus exercise precise influence on specific learning objectives, embody his or her personal teaching style within the content, and ultimately enhance its educational impact. The described technology amplifies the efforts of the educator and provides a more dynamic and enriching learning environment for web-based education.

  6. Improved detection of soma location and morphology in fluorescence microscopy images of neurons.

    PubMed

    Kayasandik, Cihan Bilge; Labate, Demetrio

    2016-12-01

    Automated detection and segmentation of somas in fluorescent images of neurons is a major goal in quantitative studies of neuronal networks, including applications of high-content-screenings where it is required to quantify multiple morphological properties of neurons. Despite recent advances in image processing targeted to neurobiological applications, existing algorithms of soma detection are often unreliable, especially when processing fluorescence image stacks of neuronal cultures. In this paper, we introduce an innovative algorithm for the detection and extraction of somas in fluorescent images of networks of cultured neurons where somas and other structures exist in the same fluorescent channel. Our method relies on a new geometrical descriptor called Directional Ratio and a collection of multiscale orientable filters to quantify the level of local isotropy in an image. To optimize the application of this approach, we introduce a new construction of multiscale anisotropic filters that is implemented by separable convolution. Extensive numerical experiments using 2D and 3D confocal images show that our automated algorithm reliably detects somas, accurately segments them, and separates contiguous ones. We include a detailed comparison with state-of-the-art existing methods to demonstrate that our algorithm is extremely competitive in terms of accuracy, reliability and computational efficiency. Our algorithm will facilitate the development of automated platforms for high content neuron image processing. A Matlab code is released open-source and freely available to the scientific community. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Histological correlation of 7 T multi-parametric MRI performed in ex-vivo Achilles tendon.

    PubMed

    Juras, Vladimir; Apprich, Sebastian; Pressl, Christina; Zbyn, Stefan; Szomolanyi, Pavol; Domayer, Stephan; Hofstaetter, Jochen G; Trattnig, Siegfried

    2013-05-01

    The goal of this in vitro validation study was to investigate the feasibility of biochemical MRI techniques, such as sodium imaging, T₂ mapping, fast imaging with steady state precession (FISP), and reversed FISP (PSIF), as potential markers for collagen, glycosaminoglycan and water content in the Achilles tendon. Five fresh cadaver ankles acquired from a local anatomy department were used in the study. To acquire a sodium signal from the Achilles tendon, a 3D-gradient-echo sequence, optimized for sodium imaging, was used with TE=7.71 ms and TR=17 ms. The T₂ relaxation times were obtained using a multi-echo, spin-echo technique with a repetition time (TR) of 1200 ms and six echo times. A 3D, partially balanced, steady-state gradient echo pulse sequence was used to acquire FISP and PSIF images, with TR/TE=6.96/2.46 ms. MRI parameters were correlated with each other, as well as with histologically assessed glycosaminoglycan and water content in cadaver Achilles tendons. The highest relevant Pearson correlation coefficient was found between sodium SNR and glycosaminoglycan content (r=0.71, p=0.007). Relatively high correlation was found between the PSIF signal and T2 values (r=0.51, p=0.036), and between the FISP signal and T₂ values (r=0.56, p=0.047). Other correlations were found to be below the moderate level. This study demonstrated the feasibility of progressive biochemical MRI methods for the imaging of the AT. A GAG-specific, contrast-free method (sodium imaging), as well as collagen- and water-sensitive methods (T₂ mapping, FISP, PSIF), may be used in fast-relaxing tissues, such as tendons, in reasonable scan times. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Modeling semantic aspects for cross-media image indexing.

    PubMed

    Monay, Florent; Gatica-Perez, Daniel

    2007-10-01

    To go beyond the query-by-example paradigm in image retrieval, there is a need for semantic indexing of large image collections for intuitive text-based image search. Different models have been proposed to learn the dependencies between the visual content of an image set and the associated text captions, then allowing for the automatic creation of semantic indices for unannotated images. The task, however, remains unsolved. In this paper, we present three alternatives to learn a Probabilistic Latent Semantic Analysis model (PLSA) for annotated images, and evaluate their respective performance for automatic image indexing. Under the PLSA assumptions, an image is modeled as a mixture of latent aspects that generates both image features and text captions, and we investigate three ways to learn the mixture of aspects. We also propose a more discriminative image representation than the traditional Blob histogram, concatenating quantized local color information and quantized local texture descriptors. The first learning procedure of a PLSA model for annotated images is a standard EM algorithm, which implicitly assumes that the visual and the textual modalities can be treated equivalently. The other two models are based on an asymmetric PLSA learning, allowing to constrain the definition of the latent space on the visual or on the textual modality. We demonstrate that the textual modality is more appropriate to learn a semantically meaningful latent space, which translates into improved annotation performance. A comparison of our learning algorithms with respect to recent methods on a standard dataset is presented, and a detailed evaluation of the performance shows the validity of our framework.

  9. Gross feature recognition of Anatomical Images based on Atlas grid (GAIA): Incorporating the local discrepancy between an atlas and a target image to capture the features of anatomic brain MRI.

    PubMed

    Qin, Yuan-Yuan; Hsu, Johnny T; Yoshida, Shoko; Faria, Andreia V; Oishi, Kumiko; Unschuld, Paul G; Redgrave, Graham W; Ying, Sarah H; Ross, Christopher A; van Zijl, Peter C M; Hillis, Argye E; Albert, Marilyn S; Lyketsos, Constantine G; Miller, Michael I; Mori, Susumu; Oishi, Kenichi

    2013-01-01

    We aimed to develop a new method to convert T1-weighted brain MRIs to feature vectors, which could be used for content-based image retrieval (CBIR). To overcome the wide range of anatomical variability in clinical cases and the inconsistency of imaging protocols, we introduced the Gross feature recognition of Anatomical Images based on Atlas grid (GAIA), in which the local intensity alteration, caused by pathological (e.g., ischemia) or physiological (development and aging) intensity changes, as well as by atlas-image misregistration, is used to capture the anatomical features of target images. As a proof-of-concept, the GAIA was applied for pattern recognition of the neuroanatomical features of multiple stages of Alzheimer's disease, Huntington's disease, spinocerebellar ataxia type 6, and four subtypes of primary progressive aphasia. For each of these diseases, feature vectors based on a training dataset were applied to a test dataset to evaluate the accuracy of pattern recognition. The feature vectors extracted from the training dataset agreed well with the known pathological hallmarks of the selected neurodegenerative diseases. Overall, discriminant scores of the test images accurately categorized these test images to the correct disease categories. Images without typical disease-related anatomical features were misclassified. The proposed method is a promising method for image feature extraction based on disease-related anatomical features, which should enable users to submit a patient image and search past clinical cases with similar anatomical phenotypes.

  10. Just Noticeable Distortion Model and Its Application in Color Image Watermarking

    NASA Astrophysics Data System (ADS)

    Liu, Kuo-Cheng

    In this paper, a perceptually adaptive watermarking scheme for color images is proposed in order to achieve robustness and transparency. A new just noticeable distortion (JND) estimator for color images is first designed in the wavelet domain. The key issue of the JND model is to effectively integrate visual masking effects. The estimator is an extension to the perceptual model that is used in image coding for grayscale images. Except for the visual masking effects given coefficient by coefficient by taking into account the luminance content and the texture of grayscale images, the crossed masking effect given by the interaction between luminance and chrominance components and the effect given by the variance within the local region of the target coefficient are investigated such that the visibility threshold for the human visual system (HVS) can be evaluated. In a locally adaptive fashion based on the wavelet decomposition, the estimator applies to all subbands of luminance and chrominance components of color images and is used to measure the visibility of wavelet quantization errors. The subband JND profiles are then incorporated into the proposed color image watermarking scheme. Performance in terms of robustness and transparency of the watermarking scheme is obtained by means of the proposed approach to embed the maximum strength watermark while maintaining the perceptually lossless quality of the watermarked color image. Simulation results show that the proposed scheme with inserting watermarks into luminance and chrominance components is more robust than the existing scheme while retaining the watermark transparency.

  11. Corporate sponsorship of physical activity promotion programmes: part of the solution or part of the problem?

    PubMed

    Jane, B; Gibson, K

    2017-06-07

    Parklives is a programme intended to raise levels of physical activity across the UK, funded by Coca-Cola GB and delivered in association with Local Authorities and other organizations. Such public-private partnerships have been advocated by many however critics suggest that the conflict between stakeholder motives is too great. This study conducted a content analysis of twitter content related to the ParkLives physical activity programme. Images and text were analysed from two separate weeks, one from the school vacation period and one during school term time. Three hundred and eighteen tweets were analysed. Content analysis revealed 79% of images contained children and 45% of these images contained prominent Coca-Cola branding, a level of exposure that suggests ParkLives simultaneously provides opportunities for children's physical activity and for targeted marketing. Content analysis also demonstrated that the programme allowed increased access to policy-makers. The sponsorship of a physical activity promotion campaign can allow a corporation to target its marketing at children and gain access to health-related policy development networks. This study reinforces the need for independent evaluation of all potential impacts of such a partnership and calls on those responsible for community health to fully consider the ethical implications of such relationships. © The Author 2017. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  12. High-Frequency Subband Compressed Sensing MRI Using Quadruplet Sampling

    PubMed Central

    Sung, Kyunghyun; Hargreaves, Brian A

    2013-01-01

    Purpose To presents and validates a new method that formalizes a direct link between k-space and wavelet domains to apply separate undersampling and reconstruction for high- and low-spatial-frequency k-space data. Theory and Methods High- and low-spatial-frequency regions are defined in k-space based on the separation of wavelet subbands, and the conventional compressed sensing (CS) problem is transformed into one of localized k-space estimation. To better exploit wavelet-domain sparsity, CS can be used for high-spatial-frequency regions while parallel imaging can be used for low-spatial-frequency regions. Fourier undersampling is also customized to better accommodate each reconstruction method: random undersampling for CS and regular undersampling for parallel imaging. Results Examples using the proposed method demonstrate successful reconstruction of both low-spatial-frequency content and fine structures in high-resolution 3D breast imaging with a net acceleration of 11 to 12. Conclusion The proposed method improves the reconstruction accuracy of high-spatial-frequency signal content and avoids incoherent artifacts in low-spatial-frequency regions. This new formulation also reduces the reconstruction time due to the smaller problem size. PMID:23280540

  13. Automated Content Detection for Cassini Images

    NASA Astrophysics Data System (ADS)

    Stanboli, A.; Bue, B.; Wagstaff, K.; Altinok, A.

    2017-06-01

    NASA missions generate numerous images ever organized in increasingly large archives. Image archives are currently not searchable by image content. We present an automated content detection prototype that can enable content search.

  14. Spectroscopic Imaging of Deep Tissue through Photoacoustic Detection of Molecular Vibration

    PubMed Central

    Wang, Pu; Rajian, Justin R.; Cheng, Ji-Xin

    2013-01-01

    The quantized vibration of chemical bonds provides a way of imaging target molecules in a complex tissue environment. Photoacoustic detection of harmonic vibrational transitions provides an approach to visualize tissue content beyond the ballistic photon regime. This method involves pulsed laser excitation of overtone transitions in target molecules inside a tissue. Fast relaxation of the vibrational energy into heat results in a local temperature rise on the order of mK and a subsequent generation of acoustic waves detectable with an ultrasonic transducer. In this perspective, we review recent advances that demonstrate the advantages of vibration-based photoacoustic imaging and illustrate its potential in diagnosing cardiovascular plaques. An outlook into future development of vibrational photoacoustic endoscopy and tomography is provided. PMID:24073304

  15. Experimental test of theory for the stability of partially saturated vertical cut slopes

    USGS Publications Warehouse

    Morse, Michael M.; Lu, N.; Wayllace, Alexandra; Godt, Jonathan W.; Take, W.A.

    2014-01-01

    This paper extends Culmann's vertical-cut analysis to unsaturated soils. To test the extended theory, unsaturated sand was compacted to a uniform porosity and moisture content in a laboratory apparatus. A sliding door that extended the height of the free face of the slope was lowered until the vertical cut failed. Digital images of the slope cross section and upper surface were acquired concurrently. A recently developed particle image velocimetry (PIV) tool was used to quantify soil displacement. The PIV analysis showed strain localization at varying distances from the sliding door prior to failure. The areas of localized strain were coincident with the location of the slope crest after failure. Shear-strength and soil-water-characteristic parameters of the sand were independently tested for use in extended analyses of the vertical-cut stability and of the failure plane angle. Experimental failure heights were within 22.3% of the heights predicted using the extended theory.

  16. Detecting activity-evoked pH changes in human brain

    PubMed Central

    Magnotta, Vincent A.; Heo, Hye-Young; Dlouhy, Brian J.; Dahdaleh, Nader S.; Follmer, Robin L.; Thedens, Daniel R.; Welsh, Michael J.; Wemmie, John A.

    2012-01-01

    Localized pH changes have been suggested to occur in the brain during normal function. However, the existence of such pH changes has also been questioned. Lack of methods for noninvasively measuring pH with high spatial and temporal resolution has limited insight into this issue. Here we report that a magnetic resonance imaging (MRI) strategy, T1 relaxation in the rotating frame (T1ρ), is sufficiently sensitive to detect widespread pH changes in the mouse and human brain evoked by systemically manipulating carbon dioxide or bicarbonate. Moreover, T1ρ detected a localized acidosis in the human visual cortex induced by a flashing checkerboard. Lactate measurements and pH-sensitive 31P spectroscopy at the same site also identified a localized acidosis. Consistent with the established role for pH in blood flow recruitment, T1ρ correlated with blood oxygenation level-dependent contrast commonly used in functional MRI. However, T1ρ was not directly sensitive to blood oxygen content. These observations indicate that localized pH fluctuations occur in the human brain during normal function. Furthermore, they suggest a unique functional imaging strategy based on pH that is independent of traditional functional MRI contrast mechanisms. PMID:22566645

  17. Acid diffusion, standing waves, and information theory: a molecular-scale model of chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Trefonas, Peter, III; Allen, Mary T.

    1992-06-01

    Shannon's information theory is adapted to analyze the photolithographic process, defining the mask pattern as the prior state. Definitions and constraints to the general theory are developed so that the information content at various stages of the lithographic process can be described. Its application is illustrated by exploring the information content within projected aerial images and resultant latent images. Next, a 3-dimensional molecular scale model of exposure, acid diffusion, and catalytic crosslinking in acid-hardened resists (AHR) is presented. In this model, initial positions of photogenerated acids are determined by probability functions generated from the aerial images and the local light intensity in the film. In order to simulate post-exposure baking processes, acids are diffused in a random walk manner, for which the catalytic chain length and the average distance between crosslinks can be set. Crosslink locations are defined in terms of the topologically minimized number required to link different chains. The size and location of polymer chains involved in a larger scale crosslinked network is established and related to polymer solubility. In this manner, the nature of the crosslinked latent image can be established. Good correlation with experimental data is found for the calculated percent insolubilization as a function of dose when the rms acid diffusion length is about 500 angstroms. Information analysis is applied in detail to the specific example of AHR chemistry. The information contained within the 3-D crosslinked latent image is explored as a function of exposure dose, catalytic chain length, average distance between crosslinks. Eopt (the exposure dose which optimizes the information contained within the latent image) was found to vary with catalytic chain length in a manner similar to that observed experimentally in a plot of E90 versus post-exposure bake time. Surprisingly, the information content of the crosslinked latent image remains high even when rms diffusion lengths are as long as 1500 angstroms. The information content of a standing wave is shown to decrease with increasing diffusion length, with essentially all standing wave information being lost at diffusion lengths greater than 450 angstroms. A unique mechanism for self-contrast enhancement and high resolution in AHR resist is proposed.

  18. World Wide Web Based Image Search Engine Using Text and Image Content Features

    NASA Astrophysics Data System (ADS)

    Luo, Bo; Wang, Xiaogang; Tang, Xiaoou

    2003-01-01

    Using both text and image content features, a hybrid image retrieval system for Word Wide Web is developed in this paper. We first use a text-based image meta-search engine to retrieve images from the Web based on the text information on the image host pages to provide an initial image set. Because of the high-speed and low cost nature of the text-based approach, we can easily retrieve a broad coverage of images with a high recall rate and a relatively low precision. An image content based ordering is then performed on the initial image set. All the images are clustered into different folders based on the image content features. In addition, the images can be re-ranked by the content features according to the user feedback. Such a design makes it truly practical to use both text and image content for image retrieval over the Internet. Experimental results confirm the efficiency of the system.

  19. Non-linear imaging techniques visualize the lipid profile of C. elegans

    NASA Astrophysics Data System (ADS)

    Mari, Meropi; Petanidou, Barbara; Palikaras, Konstantinos; Fotakis, Costas; Tavernarakis, Nektarios; Filippidis, George

    2015-07-01

    The non-linear techniques Second and Third Harmonic Generation (SHG, THG) have been employed simultaneously to record three dimensional (3D) imaging and localize the lipid content of the muscular areas (ectopic fat) of Caenorhabditis elegans (C. elegans). Simultaneously, Two-Photon Fluorescence (TPEF) was used initially to localize the stained lipids with Nile Red, but also to confirm the THG potential to image lipids successfully. In addition, GFP labelling of the somatic muscles, proves the initial suggestion of the existence of ectopic fat on the muscles and provides complementary information to the SHG imaging of the pharynx. The ectopic fat may be related to a complex of pathological conditions including type-2 diabetes, hypertension and cardiovascular diseases. The elucidation of the molecular path leading to the development of metabolic syndrome is a vital issue with high biological significance and necessitates accurate methods competent of monitoring lipid storage distribution and dynamics in vivo. THG microscopy was employed as a quantitative tool to monitor the lipid accumulation in non-adipose tissues in the pharyngeal muscles of 12 unstained specimens while the SHG imaging revealed the anatomical structure of the muscles. The ectopic fat accumulation on the pharyngeal muscles increases in wild type (N2) C. elegans between 1 and 9 days of adulthood. This suggests a correlation of the ectopic fat accumulation with the aging. Our results can provide new evidence relating the deposition of ectopic fat with aging, but also validate SHG and THG microscopy modalities as new, non-invasive tools capable of localizing and quantifying selectively lipid accumulation and distribution.

  20. Predicting Visual Semantic Descriptive Terms from Radiological Image Data: Preliminary Results with Liver Lesions in CT

    PubMed Central

    Depeursinge, Adrien; Kurtz, Camille; Beaulieu, Christopher F.; Napel, Sandy; Rubin, Daniel L.

    2014-01-01

    We describe a framework to model visual semantics of liver lesions in CT images in order to predict the visual semantic terms (VST) reported by radiologists in describing these lesions. Computational models of VST are learned from image data using high–order steerable Riesz wavelets and support vector machines (SVM). The organization of scales and directions that are specific to every VST are modeled as linear combinations of directional Riesz wavelets. The models obtained are steerable, which means that any orientation of the model can be synthesized from linear combinations of the basis filters. The latter property is leveraged to model VST independently from their local orientation. In a first step, these models are used to predict the presence of each semantic term that describes liver lesions. In a second step, the distances between all VST models are calculated to establish a non–hierarchical computationally–derived ontology of VST containing inter–term synonymy and complementarity. A preliminary evaluation of the proposed framework was carried out using 74 liver lesions annotated with a set of 18 VSTs from the RadLex ontology. A leave–one–patient–out cross–validation resulted in an average area under the ROC curve of 0.853 for predicting the presence of each VST when using SVMs in a feature space combining the magnitudes of the steered models with CT intensities. Likelihood maps are created for each VST, which enables high transparency of the information modeled. The computationally–derived ontology obtained from the VST models was found to be consistent with the underlying semantics of the visual terms. It was found to be complementary to the RadLex ontology, and constitutes a potential method to link the image content to visual semantics. The proposed framework is expected to foster human–computer synergies for the interpretation of radiological images while using rotation–covariant computational models of VSTs to (1) quantify their local likelihood and (2) explicitly link them with pixel–based image content in the context of a given imaging domain. PMID:24808406

  1. Exploration on practice teaching reform of Photoelectric Image Processing course under applied transformation

    NASA Astrophysics Data System (ADS)

    Cao, Binfang; Li, Xiaoqin; Liu, Changqing; Li, Jianqi

    2017-08-01

    With the further applied transformation of local colleges, teachers are urgently needed to make corresponding changes in the teaching content and methods from different courses. The article discusses practice teaching reform of the Photoelectric Image Processing course in the Optoelectronic Information Science and Engineering major. The Digital Signal Processing (DSP) platform is introduced to the experimental teaching. It will mobilize and inspire students and also enhance their learning motivation and innovation through specific examples. The course via teaching practice process has become the most popular course among students, which will further drive students' enthusiasm and confidence to participate in all kinds of electronic competitions.

  2. A fast discrete S-transform for biomedical signal processing.

    PubMed

    Brown, Robert A; Frayne, Richard

    2008-01-01

    Determining the frequency content of a signal is a basic operation in signal and image processing. The S-transform provides both the true frequency and globally referenced phase measurements characteristic of the Fourier transform and also generates local spectra, as does the wavelet transform. Due to this combination, the S-transform has been successfully demonstrated in a variety of biomedical signal and image processing tasks. However, the computational demands of the S-transform have limited its application in medicine to this point in time. This abstract introduces the fast S-transform, a more efficient discrete implementation of the classic S-transform with dramatically reduced computational requirements.

  3. Composite PET and MRI for accurate localization and metabolic modeling: a very useful tool for research and clinic

    NASA Astrophysics Data System (ADS)

    Bidaut, Luc M.

    1991-06-01

    In order to help in analyzing PET data and really take advantage of their metabolic content, a system was designed and implemented to align and process data from various medical imaging modalities, particularly (but not only) for brain studies. Although this system is for now mostly used for anatomical localization, multi-modality ROIs and pharmaco-kinetic modeling, more multi-modality protocols will be implemented in the future, not only to help in PET reconstruction data correction and semi-automated ROI definition, but also for helping in improving diagnostic accuracy along with surgery and therapy planning.

  4. Tumor and Plasma Met Levels in Non-Metastatic Prostate Cancer.

    PubMed

    Kaye, Deborah R; Pinto, Peter A; Cecchi, Fabiola; Reilly, Joseph; Semerjian, Alice; Rabe, Daniel C; Gupta, Gopal; Choyke, Peter L; Bottaro, Donald P

    2016-01-01

    To measure Met protein content in prostate biopsies guided by fused magnetic resonance and ultrasound imaging, and to measure soluble Met (sMet) protein concentration in plasma samples from patients presenting evidence of prostate cancer. 345 patients had plasma samples drawn prior to image-guided biopsy of the prostate. Of these, 32% had benign biopsies. Of the 236 that were positive for prostate adenocarcinoma (PCa), 132 treated by total prostatectomy had Gleason scores of 6 (17%), 7, (55%), 8 (16%), or 9-10 (12%). 23% had evidence of local invasion. Plasma samples were also obtained from 80 healthy volunteers. Tissue Met and plasma sMet were measured by two-site immunoassay; values were compared among clinically defined groups using non-parametric statistical tests to determine significant differences or correlations. PCa tumor Met correlated significantly with plasma sMet, but median values were similar among benign and malignant groups. Median plasma sMet values were also similar among those groups, although both medians were significantly above normal. Median Met content in primary PCa tumors and sMet concentrations were independent of Gleason score, final pathologic stage and age. Plasma sMet is not predictive of PCa or its severity in patients with organ-confined or locally invasive disease. Quantitative analysis of Met protein content and activation state in PCa tumor biopsy samples was highly feasible and may have value in follow-up to genomic and/or transcriptomic-based screens that show evidence of oncogenically relevant MET gene features that occur at relatively low frequency in non-metastatic PCa.

  5. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development.

    PubMed

    Iwai, Toru; Takahashi, Michiko; Oda, Koshiro; Terada, Yasuko; Yoshida, Kaoru T

    2012-12-01

    Phytic acid (inositol hexakisphosphate [InsP(6)]) is the storage compound of phosphorus in seeds. As phytic acid binds strongly to metallic cations, it also acts as a storage compound of metals. To understand the mechanisms underlying metal accumulation and localization in relation to phytic acid storage, we applied synchrotron-based x-ray microfluorescence imaging analysis to characterize the simultaneous subcellular distribution of some mineral elements (phosphorus, calcium, potassium, iron, zinc, and copper) in immature and mature rice (Oryza sativa) seeds. This fine-imaging method can reveal whether these elements colocalize. We also determined their accumulation patterns and the changes in phosphate and InsP(6) contents during seed development. While the InsP(6) content in the outer parts of seeds rapidly increased during seed development, the phosphate contents of both the outer and inner parts of seeds remained low. Phosphorus, calcium, potassium, and iron were most abundant in the aleurone layer, and they colocalized throughout seed development. Zinc was broadly distributed from the aleurone layer to the inner endosperm. Copper localized outside the aleurone layer and did not colocalize with phosphorus. From these results, we suggest that phosphorus translocated from source organs was immediately converted to InsP(6) and accumulated in aleurone layer cells and that calcium, potassium, and iron accumulated as phytic acid salt (phytate) in the aleurone layer, whereas zinc bound loosely to InsP(6) and accumulated not only in phytate but also in another storage form. Copper accumulated in the endosperm and may exhibit a storage form other than phytate.

  6. A Method to Prevent Protein Delocalization in Imaging Mass Spectrometry of Non-Adherent Tissues: Application to Small Vertebrate Lens Imaging

    PubMed Central

    Anderson, David M. G.; Floyd, Kyle A.; Barnes, Stephen; Clark, Judy M.; Clark, John I.; Mchaourab, Hassane; Schey, Kevin L.

    2015-01-01

    MALDI imaging requires careful sample preparation to obtain reliable, high quality images of small molecules, peptides, lipids, and proteins across tissue sections. Poor crystal formation, delocalization of analytes, and inadequate tissue adherence can affect the quality, reliability, and spatial resolution of MALDI images. We report a comparison of tissue mounting and washing methods that resulted in an optimized method using conductive carbon substrates that avoids thaw mounting or washing steps, minimizes protein delocalization, and prevents tissue detachment from the target surface. Application of this method to image ocular lens proteins of small vertebrate eyes demonstrates the improved methodology for imaging abundant crystallin protein products. This method was demonstrated for tissue sections from rat, mouse, and zebrafish lenses resulting in good quality MALDI images with little to no delocalization. The images indicate, for the first time in mouse and zebrafish, discrete localization of crystallin protein degradation products resulting in concentric rings of distinct protein contents that may be responsible for the refractive index gradient of vertebrate lenses. PMID:25665708

  7. Multimedia systems for art and culture: a case study of Brihadisvara Temple

    NASA Astrophysics Data System (ADS)

    Jain, Anil K.; Goel, Sanjay; Agarwal, Sachin; Mittal, Vipin; Sharma, Hariom; Mahindru, Ranjeev

    1997-01-01

    In India a temple is not only a structure of religious significance and celebration, but it also plays an important role in the social, administrative and cultural life of the locality. Temples have served as centers for learning Indian scriptures. Music and dance were fostered and performed in the precincts of the temples. Built at the end of the 10th century, the Brihadisvara temple signified new design methodologies. We have access to a large number of images, audio and video recordings, architectural drawings and scholarly publications of this temple. A multimedia system for this temple is being designed which is intended to be used for the following purposes: (1) to inform and enrich the general public, and (2) to assist the scholars in their research. Such a system will also preserve and archive old historical documents and images. The large database consists primarily of images which can be retrieved using keywords, but the emphasis here is largely on techniques which will allow access using image content. Besides classifying images as either long shots or close-ups, deformable template matching is used for shape-based query by image content, and digital video retrieval. Further, to exploit the non-linear accessibility of video sequences, key frames are determined to aid the domain experts in getting a quick preview of the video. Our database also has images of several old, and rare manuscripts many of which are noisy and difficult to read. We have enhanced them to make them more legible. We are also investigating the optimal trade-off between image quality and compression ratios.

  8. A multi-imaging approach to study the root–soil interface

    PubMed Central

    Rudolph-Mohr, Nicole; Vontobel, Peter; Oswald, Sascha E.

    2014-01-01

    Background and Aims Dynamic processes occurring at the soil–root interface crucially influence soil physical, chemical and biological properties at a local scale around the roots, and are technically challenging to capture in situ. This study presents a novel multi-imaging approach combining fluorescence and neutron radiography that is able to simultaneously monitor root growth, water content distribution, root respiration and root exudation. Methods Germinated seeds of white lupins (Lupinus albus) were planted in boron-free glass rhizotrons. After 11 d, the rhizotrons were wetted from the bottom and time series of fluorescence and neutron images were taken during the subsequent day and night cycles for 13 d. The following day (i.e. 25 d after planting) the rhizotrons were again wetted from the bottom and the measurements were repeated. Fluorescence sensor foils were attached to the inner sides of the glass and measurements of oxygen and pH were made on the basis of fluorescence intensity. The experimental set-up allowed for simultaneous fluorescence imaging and neutron radiography. Key Results The interrelated patterns of root growth and distribution in the soil, root respiration, exudation and water uptake could all be studied non-destructively and at high temporal and spatial resolution. The older parts of the root system with greater root-length density were associated with fast decreases of water content and rapid changes in oxygen concentration. pH values around the roots located in areas with low soil water content were significantly lower than the rest of the root system. Conclusions The results suggest that the combined imaging set-up developed here, incorporating fluorescence intensity measurements, is able to map important biogeochemical parameters in the soil around living plants with a spatial resolution that is sufficiently high enough to relate the patterns observed to the root system. PMID:25344936

  9. University of Saskatchewan Radiology Courseware (USRC): an assessment of its utility for teaching diagnostic imaging in the medical school curriculum.

    PubMed

    Burbridge, Brent; Kalra, Neil; Malin, Greg; Trinder, Krista; Pinelle, David

    2015-01-01

    We have found it very challenging to integrate images from our radiology digital imaging repository into the curriculum of our local medical school. Thus, it has been difficult to convey important knowledge related to viewing and interpreting diagnostic radiology images. We sought to determine if we could create a solution for this problem and evaluate whether students exposed to this solution were able to learn imaging concepts pertinent to medical practice. We developed University of Saskatchewan Radiology Courseware (USRC), a novel interactive web application that enables preclinical medical students to acquire image interpretation skills fundamental to clinical practice. This web application reformats content stored in Medical Imaging Resource Center teaching cases for BlackBoard Learn™, a popular learning management system. We have deployed this solution for 2 successive years in a 1st-year basic sciences medical school course at the College of Medicine, University of Saskatchewan. The "courseware" content covers both normal anatomy and common clinical pathologies in five distinct modules. We created two cohorts of learners consisting of an intervention cohort of students who had used USRC for their 1st academic year, whereas the nonintervention cohort was students who had not been exposed to this learning opportunity. To assess the learning experience of the users we designed an online questionnaire and image review quiz delivered to both of the student groups. Comparisons between the groups revealed statistically significant differences in both confidence with image interpretation and the ability to answer knowledge-based questions. Students were satisfied with the overall usability, functions, and capabilities of USRC. USRC is an innovative technology that provides integration between Medical Imaging Resource Center, a teaching solution used in radiology, and a Learning Management System.

  10. Bone age assessment by content-based image retrieval and case-based reasoning

    NASA Astrophysics Data System (ADS)

    Fischer, Benedikt; Welter, Petra; Grouls, Christoph; Günther, Rolf W.; Deserno, Thomas M.

    2011-03-01

    Skeletal maturity is assessed visually by comparing hand radiographs to a standardized reference image atlas. Most common are the methods by Greulich & Pyle and Tanner & Whitehouse. For computer-aided diagnosis (CAD), local image regions of interest (ROI) such as the epiphysis or the carpal areas are extracted and evaluated. Heuristic approaches trying to automatically extract, measure and classify bones and distances between bones suffer from the high variability of biological material and the differences in bone development resulting from age, gender and ethnic origin. Content-based image retrieval (CBIR) provides a robust solution without delineating and measuring bones. In this work, epiphyseal ROIs (eROIS) of a hand radiograph are compared to previous cases with known age, mimicking a human observer. Leaving-one-out experiments are conducted on 1,102 left hand radiographs and 15,428 metacarpal and phalangeal eROIs from the publicly available USC hand atlas. The similarity of the eROIs is assessed by a combination of cross-correlation, image distortion model, and Tamura texture features, yielding a mean error rate of 0.97 years and a variance of below 0.63 years. Furthermore, we introduce a publicly available online-demonstration system, where queries on the USC dataset as well as on uploaded radiographs are performed for instant CAD. In future, we plan to evaluate physician with CBIR-CAD against physician without CBIR-CAD rather than physician vs. CBIR-CAD.

  11. WE-FG-207B-04: Noise Suppression for Energy-Resolved CT Via Variance Weighted Non-Local Filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harms, J; Zhu, L

    Purpose: The photon starvation problem is exacerbated in energy-resolved CT, since the detected photons are shared by multiple energy channels. Using pixel similarity-based non-local filtration, we aim to produce accurate and high-resolution energy-resolved CT images with significantly reduced noise. Methods: Averaging CT images reconstructed from different energy channels reduces noise at the price of losing spectral information, while conventional denoising techniques inevitably degrade image resolution. Inspired by the fact that CT images of the same object at different energies share the same structures, we aim to reduce noise of energy-resolved CT by averaging only pixels of similar materials - amore » non-local filtration technique. For each CT image, an empirical exponential model is used to calculate the material similarity between two pixels based on their CT values and the similarity values are organized in a matrix form. A final similarity matrix is generated by averaging these similarity matrices, with weights inversely proportional to the estimated total noise variance in the sinogram of different energy channels. Noise suppression is achieved for each energy channel via multiplying the image vector by the similarity matrix. Results: Multiple scans on a tabletop CT system are used to simulate 6-channel energy-resolved CT, with energies ranging from 75 to 125 kVp. On a low-dose acquisition at 15 mA of the Catphan©600 phantom, our method achieves the same image spatial resolution as a high-dose scan at 80 mA with a noise standard deviation (STD) lower by a factor of >2. Compared with another non-local noise suppression algorithm (ndiNLM), the proposed algorithms obtains images with substantially improved resolution at the same level of noise reduction. Conclusion: We propose a noise-suppression method for energy-resolved CT. Our method takes full advantage of the additional structural information provided by energy-resolved CT and preserves image values at each energy level. Research reported in this publication was supported by the National Institute Of Biomedical Imaging And Bioengineering of the National Institutes of Health under Award Number R21EB019597. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.« less

  12. Image recovery by removing stochastic artefacts identified as local asymmetries

    NASA Astrophysics Data System (ADS)

    Osterloh, K.; Bücherl, T.; Zscherpel, U.; Ewert, U.

    2012-04-01

    Stochastic artefacts are frequently encountered in digital radiography and tomography with neutrons. Most obviously, they are caused by ubiquitous scattered radiation hitting the CCD-sensor. They appear as scattered dots and, at higher frequency of occurrence, they may obscure the image. Some of these dotted interferences vary with time, however, a large portion of them remains persistent so the problem cannot be resolved by collecting stacks of images and to merge them to a median image. The situation becomes even worse in computed tomography (CT) where each artefact causes a circular pattern in the reconstructed plane. Therefore, these stochastic artefacts have to be removed completely and automatically while leaving the original image content untouched. A simplified image acquisition and artefact removal tool was developed at BAM and is available to interested users. Furthermore, an algorithm complying with all the requirements mentioned above was developed that reliably removes artefacts that could even exceed the size of a single pixel without affecting other parts of the image. It consists of an iterative two-step algorithm adjusting pixel values within a 3 × 3 matrix inside of a 5 × 5 kernel and the centre pixel only within a 3 × 3 kernel, resp. It has been applied to thousands of images obtained from the NECTAR facility at the FRM II in Garching, Germany, without any need of a visual control. In essence, the procedure consists of identifying and tackling asymmetric intensity distributions locally with recording each treatment of a pixel. Searching for the local asymmetry with subsequent correction rather than replacing individually identified pixels constitutes the basic idea of the algorithm. The efficiency of the proposed algorithm is demonstrated with a severely spoiled example of neutron radiography and tomography as compared with median filtering, the most convenient alternative approach by visual check, histogram and power spectra analysis.

  13. Retinal slit lamp video mosaicking.

    PubMed

    De Zanet, Sandro; Rudolph, Tobias; Richa, Rogerio; Tappeiner, Christoph; Sznitman, Raphael

    2016-06-01

    To this day, the slit lamp remains the first tool used by an ophthalmologist to examine patient eyes. Imaging of the retina poses, however, a variety of problems, namely a shallow depth of focus, reflections from the optical system, a small field of view and non-uniform illumination. For ophthalmologists, the use of slit lamp images for documentation and analysis purposes, however, remains extremely challenging due to large image artifacts. For this reason, we propose an automatic retinal slit lamp video mosaicking, which enlarges the field of view and reduces amount of noise and reflections, thus enhancing image quality. Our method is composed of three parts: (i) viable content segmentation, (ii) global registration and (iii) image blending. Frame content is segmented using gradient boosting with custom pixel-wise features. Speeded-up robust features are used for finding pair-wise translations between frames with robust random sample consensus estimation and graph-based simultaneous localization and mapping for global bundle adjustment. Foreground-aware blending based on feathering merges video frames into comprehensive mosaics. Foreground is segmented successfully with an area under the curve of the receiver operating characteristic curve of 0.9557. Mosaicking results and state-of-the-art methods were compared and rated by ophthalmologists showing a strong preference for a large field of view provided by our method. The proposed method for global registration of retinal slit lamp images of the retina into comprehensive mosaics improves over state-of-the-art methods and is preferred qualitatively.

  14. Landmark Image Retrieval by Jointing Feature Refinement and Multimodal Classifier Learning.

    PubMed

    Zhang, Xiaoming; Wang, Senzhang; Li, Zhoujun; Ma, Shuai; Xiaoming Zhang; Senzhang Wang; Zhoujun Li; Shuai Ma; Ma, Shuai; Zhang, Xiaoming; Wang, Senzhang; Li, Zhoujun

    2018-06-01

    Landmark retrieval is to return a set of images with their landmarks similar to those of the query images. Existing studies on landmark retrieval focus on exploiting the geometries of landmarks for visual similarity matches. However, the visual content of social images is of large diversity in many landmarks, and also some images share common patterns over different landmarks. On the other side, it has been observed that social images usually contain multimodal contents, i.e., visual content and text tags, and each landmark has the unique characteristic of both visual content and text content. Therefore, the approaches based on similarity matching may not be effective in this environment. In this paper, we investigate whether the geographical correlation among the visual content and the text content could be exploited for landmark retrieval. In particular, we propose an effective multimodal landmark classification paradigm to leverage the multimodal contents of social image for landmark retrieval, which integrates feature refinement and landmark classifier with multimodal contents by a joint model. The geo-tagged images are automatically labeled for classifier learning. Visual features are refined based on low rank matrix recovery, and multimodal classification combined with group sparse is learned from the automatically labeled images. Finally, candidate images are ranked by combining classification result and semantic consistence measuring between the visual content and text content. Experiments on real-world datasets demonstrate the superiority of the proposed approach as compared to existing methods.

  15. Quantifying phosphoric acid in high-temperature polymer electrolyte fuel cell components by X-ray tomographic microscopy.

    PubMed

    Eberhardt, S H; Marone, F; Stampanoni, M; Büchi, F N; Schmidt, T J

    2014-11-01

    Synchrotron-based X-ray tomographic microscopy is investigated for imaging the local distribution and concentration of phosphoric acid in high-temperature polymer electrolyte fuel cells. Phosphoric acid fills the pores of the macro- and microporous fuel cell components. Its concentration in the fuel cell varies over a wide range (40-100 wt% H3PO4). This renders the quantification and concentration determination challenging. The problem is solved by using propagation-based phase contrast imaging and a referencing method. Fuel cell components with known acid concentrations were used to correlate greyscale values and acid concentrations. Thus calibration curves were established for the gas diffusion layer, catalyst layer and membrane in a non-operating fuel cell. The non-destructive imaging methodology was verified by comparing image-based values for acid content and concentration in the gas diffusion layer with those from chemical analysis.

  16. Registering parameters and granules of wave observations: IMAGE RPI success story

    NASA Astrophysics Data System (ADS)

    Galkin, I. A.; Charisi, A.; Fung, S. F.; Benson, R. F.; Reinisch, B. W.

    2015-12-01

    Modern metadata systems strive to help scientists locate data relevant to their research and then retrieve them quickly. Success of this mission depends on the organization and completeness of metadata. Each relevant data resource has to be registered; each content has to be described; each data file has to be accessible. Ultimately, data discoverability is about the practical ability to describe data content and location. Correspondingly, data registration has a "Parameter" level, at which content is specified by listing available observed properties (parameters), and a "Granule" level, at which download links are given to data records (granules). Until recently, both parameter- and granule-level data registrations were accomplished at NASA Virtual System Observatory easily by listing provided parameters and building Granule documents with URLs to the datafile locations, usually those at NASA CDAWeb data warehouse. With the introduction of the Virtual Wave Observatory (VWO), however, the parameter/granule concept faced a scalability challenge. The wave phenomenon content is rich with descriptors of the wave generation, propagation, interaction with propagation media, and observation processes. Additionally, the wave phenomenon content varies from record to record, reflecting changes in the constituent processes, making it necessary to generate granule documents at sub-minute resolution. We will present the first success story of registering 234,178 records of IMAGE Radio Plasma Imager (RPI) plasmagram data and Level 2 derived data products in ESPAS (near-Earth Space Data Infrastructure for e-Science), using the VWO-inspired wave ontology. The granules are arranged in overlapping display and numerical data collections. Display data include (a) auto-prospected plasmagrams of potential interest, (b) interesting plasmagrams annotated by human analysts or software, and (c) spectacular plasmagrams annotated by analysts as publication-quality examples of the RPI science. Numerical data products include plasmagram-derived records containing signatures of local and remote signal propagation, as well as field-aligned profiles of electron density in the plasmasphere. Registered granules of RPI observations are available in ESPAS for their content-targeted search and retrieval.

  17. Textural content in 3T MR: an image-based marker for Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Bharath Kumar, S. V.; Mullick, Rakesh; Patil, Uday

    2005-04-01

    In this paper, we propose a study, which investigates the first-order and second-order distributions of T2 images from a magnetic resonance (MR) scan for an age-matched data set of 24 Alzheimer's disease and 17 normal patients. The study is motivated by the desire to analyze the brain iron uptake in the hippocampus of Alzheimer's patients, which is captured by low T2 values. Since, excess iron deposition occurs locally in certain regions of the brain, we are motivated to investigate the spatial distribution of T2, which is captured by higher-order statistics. Based on the first-order and second-order distributions (involving gray level co-occurrence matrix) of T2, we show that the second-order statistics provide features with sensitivity >90% (at 80% specificity), which in turn capture the textural content in T2 data. Hence, we argue that different texture characteristics of T2 in the hippocampus for Alzheimer's and normal patients could be used as an early indicator of Alzheimer's disease.

  18. SU-D-BRA-03: Analysis of Systematic Errors with 2D/3D Image Registration for Target Localization and Treatment Delivery in Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H; Chetty, I; Wen, N

    Purpose: Determine systematic deviations between 2D/3D and 3D/3D image registrations with six degrees of freedom (6DOF) for various imaging modalities and registration algorithms on the Varian Edge Linac. Methods: The 6DOF systematic errors were assessed by comparing automated 2D/3D (kV/MV vs. CT) with 3D/3D (CBCT vs. CT) image registrations from different imaging pairs, CT slice thicknesses, couch angles, similarity measures, etc., using a Rando head and a pelvic phantom. The 2D/3D image registration accuracy was evaluated at different treatment sites (intra-cranial and extra-cranial) by statistically analyzing 2D/3D pre-treatment verification against 3D/3D localization of 192 Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy treatmentmore » fractions for 88 patients. Results: The systematic errors of 2D/3D image registration using kV-kV, MV-kV and MV-MV image pairs using 0.8 mm slice thickness CT images were within 0.3 mm and 0.3° for translations and rotations with a 95% confidence interval (CI). No significant difference between 2D/3D and 3D/3D image registrations (P>0.05) was observed for target localization at various CT slice thicknesses ranging from 0.8 to 3 mm. Couch angles (30, 45, 60 degree) did not impact the accuracy of 2D/3D image registration. Using pattern intensity with content image filtering was recommended for 2D/3D image registration to achieve the best accuracy. For the patient study, translational error was within 2 mm and rotational error was within 0.6 degrees in terms of 95% CI for 2D/3D image registration. For intra-cranial sites, means and std. deviations of translational errors were −0.2±0.7, 0.04±0.5, 0.1±0.4 mm for LNG, LAT, VRT directions, respectively. For extra-cranial sites, means and std. deviations of translational errors were - 0.04±1, 0.2±1, 0.1±1 mm for LNG, LAT, VRT directions, respectively. 2D/3D image registration uncertainties for intra-cranial and extra-cranial sites were comparable. Conclusion: The Varian Edge radiosurgery 6DOF-based system, can perform 2D/3D image registration with high accuracy for target localization in image-guided stereotactic radiosurgery. The work was supported by a Research Scholar Grant, RSG-15-137-01-CCE from the American Cancer Society.« less

  19. A multimedia retrieval framework based on semi-supervised ranking and relevance feedback.

    PubMed

    Yang, Yi; Nie, Feiping; Xu, Dong; Luo, Jiebo; Zhuang, Yueting; Pan, Yunhe

    2012-04-01

    We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for each data point, a local linear regression model is used to predict the ranking scores of its neighboring points. A unified objective function is then proposed to globally align the local models from all the data points so that an optimal ranking score can be assigned to each data point. Second, we propose a semi-supervised long-term Relevance Feedback (RF) algorithm to refine the multimedia data representation. The proposed long-term RF algorithm utilizes both the multimedia data distribution in multimedia feature space and the history RF information provided by users. A trace ratio optimization problem is then formulated and solved by an efficient algorithm. The algorithms have been applied to several content-based multimedia retrieval applications, including cross-media retrieval, image retrieval, and 3D motion/pose data retrieval. Comprehensive experiments on four data sets have demonstrated its advantages in precision, robustness, scalability, and computational efficiency.

  20. Functional brain imaging predicts public health campaign success.

    PubMed

    Falk, Emily B; O'Donnell, Matthew Brook; Tompson, Steven; Gonzalez, Richard; Dal Cin, Sonya; Strecher, Victor; Cummings, Kenneth Michael; An, Lawrence

    2016-02-01

    Mass media can powerfully affect health decision-making. Pre-testing through focus groups or surveys is a standard, though inconsistent, predictor of effectiveness. Converging evidence demonstrates that activity within brain systems associated with self-related processing can predict individual behavior in response to health messages. Preliminary evidence also suggests that neural activity in small groups can forecast population-level campaign outcomes. Less is known about the psychological processes that link neural activity and population-level outcomes, or how these predictions are affected by message content. We exposed 50 smokers to antismoking messages and used their aggregated neural activity within a 'self-localizer' defined region of medial prefrontal cortex to predict the success of the same campaign messages at the population level (n = 400,000 emails). Results demonstrate that: (i) independently localized neural activity during health message exposure complements existing self-report data in predicting population-level campaign responses (model combined R(2) up to 0.65) and (ii) this relationship depends on message content-self-related neural processing predicts outcomes in response to strong negative arguments against smoking and not in response to compositionally similar neutral images. These data advance understanding of the psychological link between brain and large-scale behavior and may aid the construction of more effective media health campaigns. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. Watermarking of ultrasound medical images in teleradiology using compressed watermark

    PubMed Central

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohamad; Ali, Mushtaq

    2016-01-01

    Abstract. The open accessibility of Internet-based medical images in teleradialogy face security threats due to the nonsecured communication media. This paper discusses the spatial domain watermarking of ultrasound medical images for content authentication, tamper detection, and lossless recovery. For this purpose, the image is divided into two main parts, the region of interest (ROI) and region of noninterest (RONI). The defined ROI and its hash value are combined as watermark, lossless compressed, and embedded into the RONI part of images at pixel’s least significant bits (LSBs). The watermark lossless compression and embedding at pixel’s LSBs preserve image diagnostic and perceptual qualities. Different lossless compression techniques including Lempel-Ziv-Welch (LZW) were tested for watermark compression. The performances of these techniques were compared based on more bit reduction and compression ratio. LZW was found better than others and used in tamper detection and recovery watermarking of medical images (TDARWMI) scheme development to be used for ROI authentication, tamper detection, localization, and lossless recovery. TDARWMI performance was compared and found to be better than other watermarking schemes. PMID:26839914

  2. Development of a protocol to quantify local bone adaptation over space and time: Quantification of reproducibility.

    PubMed

    Lu, Yongtao; Boudiffa, Maya; Dall'Ara, Enrico; Bellantuono, Ilaria; Viceconti, Marco

    2016-07-05

    In vivo micro-computed tomography (µCT) scanning of small rodents is a powerful method for longitudinal monitoring of bone adaptation. However, the life-time bone growth in small rodents makes it a challenge to quantify local bone adaptation. Therefore, the aim of this study was to develop a protocol, which can take into account large bone growth, to quantify local bone adaptations over space and time. The entire right tibiae of eight 14-week-old C57BL/6J female mice were consecutively scanned four times in an in vivo µCT scanner using a nominal isotropic image voxel size of 10.4µm. The repeated scan image datasets were aligned to the corresponding baseline (first) scan image dataset using rigid registration. 80% of tibia length (starting from the endpoint of the proximal growth plate) was selected as the volume of interest and partitioned into 40 regions along the tibial long axis (10 divisions) and in the cross-section (4 sectors). The bone mineral content (BMC) was used to quantify bone adaptation and was calculated in each region. All local BMCs have precision errors (PE%CV) of less than 3.5% (24 out of 40 regions have PE%CV of less than 2%), least significant changes (LSCs) of less than 3.8%, and 38 out of 40 regions have intraclass correlation coefficients (ICCs) of over 0.8. The proposed protocol allows to quantify local bone adaptations over an entire tibia in longitudinal studies, with a high reproducibility, an essential requirement to reduce the number of animals to achieve the necessary statistical power. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. A network-based training environment: a medical image processing paradigm.

    PubMed

    Costaridou, L; Panayiotakis, G; Sakellaropoulos, P; Cavouras, D; Dimopoulos, J

    1998-01-01

    The capability of interactive multimedia and Internet technologies is investigated with respect to the implementation of a distance learning environment. The system is built according to a client-server architecture, based on the Internet infrastructure, composed of server nodes conceptually modelled as WWW sites. Sites are implemented by customization of available components. The environment integrates network-delivered interactive multimedia courses, network-based tutoring, SIG support, information databases of professional interest, as well as course and tutoring management. This capability has been demonstrated by means of an implemented system, validated with digital image processing content, specifically image enhancement. Image enhancement methods are theoretically described and applied to mammograms. Emphasis is given to the interactive presentation of the effects of algorithm parameters on images. The system end-user access depends on available bandwidth, so high-speed access can be achieved via LAN or local ISDN connections. Network based training offers new means of improved access and sharing of learning resources and expertise, as promising supplements in training.

  4. Large-scale image-based profiling of single-cell phenotypes in arrayed CRISPR-Cas9 gene perturbation screens.

    PubMed

    de Groot, Reinoud; Lüthi, Joel; Lindsay, Helen; Holtackers, René; Pelkmans, Lucas

    2018-01-23

    High-content imaging using automated microscopy and computer vision allows multivariate profiling of single-cell phenotypes. Here, we present methods for the application of the CISPR-Cas9 system in large-scale, image-based, gene perturbation experiments. We show that CRISPR-Cas9-mediated gene perturbation can be achieved in human tissue culture cells in a timeframe that is compatible with image-based phenotyping. We developed a pipeline to construct a large-scale arrayed library of 2,281 sequence-verified CRISPR-Cas9 targeting plasmids and profiled this library for genes affecting cellular morphology and the subcellular localization of components of the nuclear pore complex (NPC). We conceived a machine-learning method that harnesses genetic heterogeneity to score gene perturbations and identify phenotypically perturbed cells for in-depth characterization of gene perturbation effects. This approach enables genome-scale image-based multivariate gene perturbation profiling using CRISPR-Cas9. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  5. A novel class sensitive hashing technique for large-scale content-based remote sensing image retrieval

    NASA Astrophysics Data System (ADS)

    Reato, Thomas; Demir, Begüm; Bruzzone, Lorenzo

    2017-10-01

    This paper presents a novel class sensitive hashing technique in the framework of large-scale content-based remote sensing (RS) image retrieval. The proposed technique aims at representing each image with multi-hash codes, each of which corresponds to a primitive (i.e., land cover class) present in the image. To this end, the proposed method consists of a three-steps algorithm. The first step is devoted to characterize each image by primitive class descriptors. These descriptors are obtained through a supervised approach, which initially extracts the image regions and their descriptors that are then associated with primitives present in the images. This step requires a set of annotated training regions to define primitive classes. A correspondence between the regions of an image and the primitive classes is built based on the probability of each primitive class to be present at each region. All the regions belonging to the specific primitive class with a probability higher than a given threshold are highly representative of that class. Thus, the average value of the descriptors of these regions is used to characterize that primitive. In the second step, the descriptors of primitive classes are transformed into multi-hash codes to represent each image. This is achieved by adapting the kernel-based supervised locality sensitive hashing method to multi-code hashing problems. The first two steps of the proposed technique, unlike the standard hashing methods, allow one to represent each image by a set of primitive class sensitive descriptors and their hash codes. Then, in the last step, the images in the archive that are very similar to a query image are retrieved based on a multi-hash-code-matching scheme. Experimental results obtained on an archive of aerial images confirm the effectiveness of the proposed technique in terms of retrieval accuracy when compared to the standard hashing methods.

  6. View-Independent Working Memory Representations of Artificial Shapes in Prefrontal and Posterior Regions of the Human Brain.

    PubMed

    Christophel, Thomas B; Allefeld, Carsten; Endisch, Christian; Haynes, John-Dylan

    2018-06-01

    Traditional views of visual working memory postulate that memorized contents are stored in dorsolateral prefrontal cortex using an adaptive and flexible code. In contrast, recent studies proposed that contents are maintained by posterior brain areas using codes akin to perceptual representations. An important question is whether this reflects a difference in the level of abstraction between posterior and prefrontal representations. Here, we investigated whether neural representations of visual working memory contents are view-independent, as indicated by rotation-invariance. Using functional magnetic resonance imaging and multivariate pattern analyses, we show that when subjects memorize complex shapes, both posterior and frontal brain regions maintain the memorized contents using a rotation-invariant code. Importantly, we found the representations in frontal cortex to be localized to the frontal eye fields rather than dorsolateral prefrontal cortices. Thus, our results give evidence for the view-independent storage of complex shapes in distributed representations across posterior and frontal brain regions.

  7. Method of determining a content of a nuclear waste container

    DOEpatents

    Bernardi, Richard T.; Entwistle, David

    2003-04-22

    A method and apparatus are provided for identifying contents of a nuclear waste container. The method includes the steps of forming an image of the contents of the container using digital radiography, visually comparing contents of the image with expected contents of the container and performing computer tomography on the container when the visual inspection reveals an inconsistency between the contents of the image and the expected contents of the container.

  8. Imaging of glutathione localization in brain with technetium-99M meso-hexamethyl propyleneamine oxime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, T.; Toyama, H.; Oda, K.

    1995-05-01

    Previous studies have shown decreasing [Tc-99m] meso-HM-PAO uptake in accordance with glutathione (GSH) content in diethyl, maleate (DEM) treated mice brain. In order to elucidate the retention mechanism of [Tc-99m] HM-PAO in brain and to visualize the regional localization of GSH in the brain with [Tc-99m] meso-HM-PAO, the relationship between the tissue GSH content and uptake of [Tc-99m] meso-HM-PAO was studied in rats and rabbits. Increasing pre-load of DEM (550 mg/kg body weight), an agent to reduce GSH content by glutathione transferase, led to a decrease in GSH (control 1.972{plus_minus}0.017 vs DEM 1.138{plus_minus}0.106 mM) and uptake of [Tc-99m] meso-HM-PAO tomore » half of the control in the rat brain (control 0.281{plus_minus}0.024 vs DEM 0.153 {plus_minus} 0.009 % dose/g). On the other hand, the DEM did not decrease GSH or the uptake of [Tc-99m] meso-HM-PAO in the rabbit brain, in which glutathione transferase activity is very low. These results were also demonstrated by images with pin-hole collimated gamma camera. The uptake of [Tc-99m] meso showed variations in the regional distribution, but the d,l-isomer was uniform. [Tc-99m] meso-HM-PAO uptake was well correlated with GSH content in mice brain regions (r=0.800, p<0.02), whereas [Tc-99m]d,l-HM-PAO was not (r=0.017, p>0.5). Both [Tc-99m] mesa HM-PAO uptake and GSH content were especially high at cerebellum (Uptake: 2.598{plus_minus}0.256 % dose/g. GSH: 2.372{plus_minus}0.107 mM) as compared to other areas (Uptake;cerebral cortex 1.797{plus_minus}0.100 brain stem 1.607 {plus_minus}0.112 % dose/g. GSH: cerebral cortex 1.635{plus_minus}0.142 brain stem 1.478{plus_minus}0.141 mM).« less

  9. Localization of ginsenosides in Panax ginseng with different age by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry imaging.

    PubMed

    Bai, Hangrui; Wang, Shujuan; Liu, Jianjun; Gao, Dan; Jiang, Yuyang; Liu, Hongxia; Cai, Zongwei

    2016-07-15

    The root of Panax ginseng C.A. Mey. (P. ginseng) is one of the most popular traditional Chinese medicines, with ginsenosides as its main bioactive components. Because different ginsenosides have varied pharmacological effects, extraction and separation of ginsenosides are usually required for the investigation of pharmacological effects of different ginsenosides. However, the contents of ginsenosides vary with the ages and tissues of P. ginseng root. In this research, an efficient method to explore the distribution of ginsenosides and differentiate P. ginseng roots with different ages was developed based on matrix assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-TOF-MSI). After a simple sample preparation, there were 18 peaks corresponding to 31 ginsenosides with distinct localization in the mass range of m/z 700-1400 identified by MALDI-TOF-MSI and MALDI-TOF-MS/MS. All the three types of ginsenosides were successfully detected and visualized in images, which could be correlated with anatomical features. The P. ginseng at the ages of 2, 4 and 6 could be differentiated finely through the principal component analysis of data collected from the cork based on the ion images but not data from the whole tissue. The experimental result implies that the established method for the direct analysis of metabolites in plant tissues has high potential for the rapid identification of metabolites and analysis of their localizations in medicinal herbs. Furthermore, this technique also provides valuable information for the component-specific extraction and pharmacological research of herbs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A Sensitive Measurement for Estimating Impressions of Image-Contents

    NASA Astrophysics Data System (ADS)

    Sato, Mie; Matouge, Shingo; Mori, Toshifumi; Suzuki, Noboru; Kasuga, Masao

    We have investigated Kansei Content that appeals maker's intention to viewer's kansei. An SD method is a very good way to evaluate subjective impression of image-contents. However, because the SD method is performed after subjects view the image-contents, it is difficult to examine impression of detailed scenes of the image-contents in real time. To measure viewer's impression of the image-contents in real time, we have developed a Taikan sensor. With the Taikan sensor, we investigate relations among the image-contents, the grip strength and the body temperature. We also explore the interface of the Taikan sensor to use it easily. In our experiment, a horror movie is used that largely affects emotion of the subjects. Our results show that there is a possibility that the grip strength increases when the subjects view a strained scene and that it is easy to use the Taikan sensor without its circle base that is originally installed.

  11. Lenticular nucleus hyperechogenicity in Wilson's disease reflects local copper, but not iron accumulation.

    PubMed

    Walter, Uwe; Skowrońska, Marta; Litwin, Tomasz; Szpak, Grażyna Maria; Jabłonka-Salach, Katarzyna; Skoloudík, David; Bulska, Ewa; Członkowska, Anna

    2014-10-01

    In patients with Wilson's disease (WD) transcranial brain sonography typically reveals areas of increased echogenicity (hyperechogenicity) of the lenticular nucleus (LN). Correlation with T2-hypointensity on magnetic resonance images suggested that LN hyperechogenicity in WD is caused by trace metal accumulation. Accumulation of both, copper and iron, in the brain of WD patients has been reported. The present study was designed to elucidate whether LN hyperechogenicity in WD reflects accumulation of copper or iron. Post-mortem brains of 15 WD patients and one non-WD subject were studied with ultrasonography in an investigator-blinded fashion. LN hyperechogenicity was measured planimetrically by manual tracing as well as using digitized image analysis. The putaminal copper content was determined in samples of 11 WD brains and the non-WD brains using inductively coupled plasma mass spectrometry, and iron content was assessed using flame atomic absorption spectroscopy. LN was normal on ultrasonography only in the non-WD brain, but abnormal (hyperechogenic) in all WD brains. Digitized image analysis measures of LN hyperechogenicity and, by trend, manual measures correlated with putaminal copper content (Pearson test; digitized: r = 0.77, p = 0.04; manual: r = 0.57, p = 0.051) but not with iron content (each, p > 0.18). LN hyperechogenicity measures were unrelated to age at death of patients, age at onset of WD, WD duration, age of brain specimen, serum copper or serum ceruloplasmin (each, p > 0.1). We conclude that LN hyperechogenicity in WD reflects copper, but not iron accumulation. Further studies are warranted to elucidate the use of transcranial brain sonography for monitoring therapeutic effects of chelating agents in WD patients.

  12. Search systems and computer-implemented search methods

    DOEpatents

    Payne, Deborah A.; Burtner, Edwin R.; Hampton, Shawn D.; Gillen, David S.; Henry, Michael J.

    2017-03-07

    Search systems and computer-implemented search methods are described. In one aspect, a search system includes a communications interface configured to access a plurality of data items of a collection, wherein the data items include a plurality of image objects individually comprising image data utilized to generate an image of the respective data item. The search system may include processing circuitry coupled with the communications interface and configured to process the image data of the data items of the collection to identify a plurality of image content facets which are indicative of image content contained within the images and to associate the image objects with the image content facets and a display coupled with the processing circuitry and configured to depict the image objects associated with the image content facets.

  13. Search systems and computer-implemented search methods

    DOEpatents

    Payne, Deborah A.; Burtner, Edwin R.; Bohn, Shawn J.; Hampton, Shawn D.; Gillen, David S.; Henry, Michael J.

    2015-12-22

    Search systems and computer-implemented search methods are described. In one aspect, a search system includes a communications interface configured to access a plurality of data items of a collection, wherein the data items include a plurality of image objects individually comprising image data utilized to generate an image of the respective data item. The search system may include processing circuitry coupled with the communications interface and configured to process the image data of the data items of the collection to identify a plurality of image content facets which are indicative of image content contained within the images and to associate the image objects with the image content facets and a display coupled with the processing circuitry and configured to depict the image objects associated with the image content facets.

  14. Content-based image retrieval on mobile devices

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Abdullah, Shafaq; Kiranyaz, Serkan; Gabbouj, Moncef

    2005-03-01

    Content-based image retrieval area possesses a tremendous potential for exploration and utilization equally for researchers and people in industry due to its promising results. Expeditious retrieval of desired images requires indexing of the content in large-scale databases along with extraction of low-level features based on the content of these images. With the recent advances in wireless communication technology and availability of multimedia capable phones it has become vital to enable query operation in image databases and retrieve results based on the image content. In this paper we present a content-based image retrieval system for mobile platforms, providing the capability of content-based query to any mobile device that supports Java platform. The system consists of light-weight client application running on a Java enabled device and a server containing a servlet running inside a Java enabled web server. The server responds to image query using efficient native code from selected image database. The client application, running on a mobile phone, is able to initiate a query request, which is handled by a servlet in the server for finding closest match to the queried image. The retrieved results are transmitted over mobile network and images are displayed on the mobile phone. We conclude that such system serves as a basis of content-based information retrieval on wireless devices and needs to cope up with factors such as constraints on hand-held devices and reduced network bandwidth available in mobile environments.

  15. Hyperspectral Imaging Analysis for the Classification of Soil Types and the Determination of Soil Total Nitrogen

    PubMed Central

    Jia, Shengyao; Li, Hongyang; Wang, Yanjie; Tong, Renyuan; Li, Qing

    2017-01-01

    Soil is an important environment for crop growth. Quick and accurately access to soil nutrient content information is a prerequisite for scientific fertilization. In this work, hyperspectral imaging (HSI) technology was applied for the classification of soil types and the measurement of soil total nitrogen (TN) content. A total of 183 soil samples collected from Shangyu City (People’s Republic of China), were scanned by a near-infrared hyperspectral imaging system with a wavelength range of 874–1734 nm. The soil samples belonged to three major soil types typical of this area, including paddy soil, red soil and seashore saline soil. The successive projections algorithm (SPA) method was utilized to select effective wavelengths from the full spectrum. Pattern texture features (energy, contrast, homogeneity and entropy) were extracted from the gray-scale images at the effective wavelengths. The support vector machines (SVM) and partial least squares regression (PLSR) methods were used to establish classification and prediction models, respectively. The results showed that by using the combined data sets of effective wavelengths and texture features for modelling an optimal correct classification rate of 91.8%. could be achieved. The soil samples were first classified, then the local models were established for soil TN according to soil types, which achieved better prediction results than the general models. The overall results indicated that hyperspectral imaging technology could be used for soil type classification and soil TN determination, and data fusion combining spectral and image texture information showed advantages for the classification of soil types. PMID:28974005

  16. A Method for Characterizing Phenotypic Changes in Highly Variable Cell Populations and its Application to High Content Screening of Arabidopsis thaliana Protoplastsa

    PubMed Central

    Johnson, Gregory R.; Kangas, Joshua D.; Dovzhenko, Alexander; Trojok, Rüdiger; Voigt, Karsten; Majarian, Timothy D.; Palme, Klaus; Murphy, Robert F.

    2017-01-01

    Quantitative image analysis procedures are necessary for the automated discovery of effects of drug treatment in large collections of fluorescent micrographs. When compared to their mammalian counterparts, the effects of drug conditions on protein localization in plant species are poorly understood and underexplored. To investigate this relationship, we generated a large collection of images of single plant cells after various drug treatments. For this, protoplasts were isolated from six transgenic lines of A. thaliana expressing fluorescently tagged proteins. Nine drugs at three concentrations were applied to protoplast cultures followed by automated image acquisition. For image analysis, we developed a cell segmentation protocol for detecting drug effects using a Hough-transform based region of interest detector and a novel cross-channel texture feature descriptor. In order to determine treatment effects, we summarized differences between treated and untreated experiments with an L1 Cramér-von Mises statistic. The distribution of these statistics across all pairs of treated and untreated replicates was compared to the variation within control replicates to determine the statistical significance of observed effects. Using this pipeline, we report the dose dependent drug effects in the first high-content Arabidopsis thaliana drug screen of its kind. These results can function as a baseline for comparison to other protein organization modeling approaches in plant cells. PMID:28245335

  17. THz and mm-Wave Sensing of Corneal Tissue Water Content: In Vivo Sensing and Imaging Results

    PubMed Central

    Taylor, Zachary D.; Garritano, James; Sung, Shijun; Bajwa, Neha; Bennett, David B.; Nowroozi, Bryan; Tewari, Priyamvada; Sayre, James W.; Hubschman, Jean-Pierre; Deng, Sophie X.; Brown, Elliott R.; Grundfest, Warren S.

    2015-01-01

    A pulsed terahertz (THz) imaging system and millimeter-wave reflectometer were used to acquire images and point measurements, respectively, of five rabbit cornea in vivo. These imaging results are the first ever produced of in vivo cornea. A modified version of a standard protocol using a gentle stream of air and a Mylar window was employed to slightly dehydrate healthy cornea. The sensor data and companion central corneal thickness (CCT) measurements were acquired every 10–15 min over the course of two hours using ultrasound pachymmetry.. Statistically significant positive correlations were established between CCT measurements and millimeter wave reflectivity. Local shifts in reflectivity contrast were observed in the THz imagery; however, the THz reflectivity did not display a significant correlation with thickness in the region probed by the 100 GHz and CCT measurements. This is explained in part by a thickness sensitivity at least 10× higher in the mm-wave than the THz systems. Stratified media and effective media modeling suggest that the protocol perturbed the thickness and not the corneal tissue water content (CTWC). To further explore possible etalon effects, an additional rabbit was euthanized and millimeter wave measurements were obtained during death induced edema. These observations represent the first time that the uncoupled sensing of CTWC and CCT have been achieved in vivo. PMID:26161292

  18. Goal-oriented rectification of camera-based document images.

    PubMed

    Stamatopoulos, Nikolaos; Gatos, Basilis; Pratikakis, Ioannis; Perantonis, Stavros J

    2011-04-01

    Document digitization with either flatbed scanners or camera-based systems results in document images which often suffer from warping and perspective distortions that deteriorate the performance of current OCR approaches. In this paper, we present a goal-oriented rectification methodology to compensate for undesirable document image distortions aiming to improve the OCR result. Our approach relies upon a coarse-to-fine strategy. First, a coarse rectification is accomplished with the aid of a computationally low cost transformation which addresses the projection of a curved surface to a 2-D rectangular area. The projection of the curved surface on the plane is guided only by the textual content's appearance in the document image while incorporating a transformation which does not depend on specific model primitives or camera setup parameters. Second, pose normalization is applied on the word level aiming to restore all the local distortions of the document image. Experimental results on various document images with a variety of distortions demonstrate the robustness and effectiveness of the proposed rectification methodology using a consistent evaluation methodology that encounters OCR accuracy and a newly introduced measure using a semi-automatic procedure.

  19. Study on Hybrid Image Search Technology Based on Texts and Contents

    NASA Astrophysics Data System (ADS)

    Wang, H. T.; Ma, F. L.; Yan, C.; Pan, H.

    2018-05-01

    Image search was studied first here based on texts and contents, respectively. The text-based image feature extraction was put forward by integrating the statistical and topic features in view of the limitation of extraction of keywords only by means of statistical features of words. On the other hand, a search-by-image method was put forward based on multi-feature fusion in view of the imprecision of the content-based image search by means of a single feature. The layered-searching method depended on primarily the text-based image search method and additionally the content-based image search was then put forward in view of differences between the text-based and content-based methods and their difficult direct fusion. The feasibility and effectiveness of the hybrid search algorithm were experimentally verified.

  20. Compressibility-aware media retargeting with structure preserving.

    PubMed

    Wang, Shu-Fan; Lai, Shang-Hong

    2011-03-01

    A number of algorithms have been proposed for intelligent image/video retargeting with image content retained as much as possible. However, they usually suffer from some artifacts in the results, such as ridge or structure twist. In this paper, we present a structure-preserving media retargeting technique that preserves the content and image structure as best as possible. Different from the previous pixel or grid based methods, we estimate the image content saliency from the structure of the content. A block structure energy is introduced with a top-down strategy to constrain the image structure inside to deform uniformly in either x or y direction. However, the flexibilities for retargeting are quite different for different images. To cope with this problem, we propose a compressibility assessment scheme for media retargeting by combining the entropies of image gradient magnitude and orientation distributions. Thus, the resized media is produced to preserve the image content and structure as best as possible. Our experiments demonstrate that the proposed method provides resized images/videos with better preservation of content and structure than those by the previous methods.

  1. Localization and Toxic Effects of Cadmium, Copper, and Uranium in Azolla1

    PubMed Central

    Sela, Mordechai; Tel-Or, Elisha; Fritz, Eberhardt; Huttermann, Aloys

    1988-01-01

    The storage and distribution of copper, cadmium, and uranium and their effects on ionic contents in roots and shoots of Azolla filiculoides has been studied by x-ray microanalysis. The relative content of copper was eightfold higher in the root than in the shoot, suggesting low mobility of this metal in Azolla plant. Cadmium relative content in the shoot was similar to its content in the root, hence its mobility was relatively high. The absence of significant uranium quantities in the shoot and its relative high content in the root suggest the immobility of this metal from Azolla root. Cadmium formed precipitates with phosphate and calcium in xylem cells of the shoot bundle and caused a two- to threefold increase in the content of phosphate in the root. Uranium in roots and cadmium in shoots were associated with calcium. All three treatments caused losses of potassium, chloride, and magnesium from Azolla roots. Accumulation of heavy metals in Azolla and their mobility from the root to the shoot can be correlated with damage caused by the loss of essential nutrients. Images Fig. 1 Fig. 2 Fig. 5 Fig. 7 PMID:16666274

  2. A picture tells a thousand words: A content analysis of concussion-related images online.

    PubMed

    Ahmed, Osman H; Lee, Hopin; Struik, Laura L

    2016-09-01

    Recently image-sharing social media platforms have become a popular medium for sharing health-related images and associated information. However within the field of sports medicine, and more specifically sports related concussion, the content of images and meta-data shared through these popular platforms have not been investigated. The aim of this study was to analyse the content of concussion-related images and its accompanying meta-data on image-sharing social media platforms. We retrieved 300 images from Pinterest, Instagram and Flickr by using a standardised search strategy. All images were screened and duplicate images were removed. We excluded images if they were: non-static images; illustrations; animations; or screenshots. The content and characteristics of each image was evaluated using a customised coding scheme to determine major content themes, and images were referenced to the current international concussion management guidelines. From 300 potentially relevant images, 176 images were included for analysis; 70 from Pinterest, 63 from Flickr, and 43 from Instagram. Most images were of another person or a scene (64%), with the primary content depicting injured individuals (39%). The primary purposes of the images were to share a concussion-related incident (33%) and to dispense education (19%). For those images where it could be evaluated, the majority (91%) were found to reflect the Sports Concussion Assessment Tool 3 (SCAT3) guidelines. The ability to rapidly disseminate rich information though photos, images, and infographics to a wide-reaching audience suggests that image-sharing social media platforms could be used as an effective communication tool for sports concussion. Public health strategies could direct educative content to targeted populations via the use of image-sharing platforms. Further research is required to understand how image-sharing platforms can be used to effectively relay evidence-based information to patients and sports medicine clinicians. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Imaging Polarimetry in Central Serous Chorioretinopathy

    PubMed Central

    MIURA, MASAHIRO; ELSNER, ANN E.; WEBER, ANKE; CHENEY, MICHAEL C.; OSAKO, MASAHIRO; USUI, MASAHIKO; IWASAKI, TAKUYA

    2006-01-01

    PURPOSE To evaluate a noninvasive technique to detect the leakage point of central serous chorioretinopathy (CSR), using a polarimetry method. DESIGN Prospective cohort study. METHODS SETTING Institutional practice. PATIENTS We examined 30 eyes of 30 patients with CSR. MAIN OUTCOME MEASURES Polarimetry images were recorded using the GDx-N (Laser Diagnostic Technologies). We computed four images that differed in their polarization content: a depolarized light image, an average reflectance image, a parallel polarized light image, and a birefringence image. Each polarimetry image was compared with abnormalities seen on fluorescein angiography. RESULTS In all eyes, leakage area could be clearly visualized as a bright area in the depolarized light images. Michelson contrasts for the leakage areas were 0.58 ± 0.28 in the depolarized light images, 0.17 ± 0.11 in the average reflectance images, 0.09 ± 0.09 in the parallel polarized light images, and 0.11 ± 0.21 in the birefringence images from the same raw data. Michelson contrasts in depolarized light images were significantly higher than for the other three images (P < .0001, for all tests, paired t test). The fluid accumulated in the retina was well-visualized in the average and parallel polarized light images. CONCLUSIONS Polarization-sensitive imaging could readily localize the leakage point and area of fluid in CSR. This may assist with the rapid, noninvasive assessment of CSR. PMID:16376644

  4. Structural scene analysis and content-based image retrieval applied to bone age assessment

    NASA Astrophysics Data System (ADS)

    Fischer, Benedikt; Brosig, André; Deserno, Thomas M.; Ott, Bastian; Günther, Rolf W.

    2009-02-01

    Radiological bone age assessment is based on global or local image regions of interest (ROI), such as epiphyseal regions or the area of carpal bones. Usually, these regions are compared to a standardized reference and a score determining the skeletal maturity is calculated. For computer-assisted diagnosis, automatic ROI extraction is done so far by heuristic approaches. In this work, we apply a high-level approach of scene analysis for knowledge-based ROI segmentation. Based on a set of 100 reference images from the IRMA database, a so called structural prototype (SP) is trained. In this graph-based structure, the 14 phalanges and 5 metacarpal bones are represented by nodes, with associated location, shape, as well as texture parameters modeled by Gaussians. Accordingly, the Gaussians describing the relative positions, relative orientation, and other relative parameters between two nodes are associated to the edges. Thereafter, segmentation of a hand radiograph is done in several steps: (i) a multi-scale region merging scheme is applied to extract visually prominent regions; (ii) a graph/sub-graph matching to the SP robustly identifies a subset of the 19 bones; (iii) the SP is registered to the current image for complete scene-reconstruction (iv) the epiphyseal regions are extracted from the reconstructed scene. The evaluation is based on 137 images of Caucasian males from the USC hand atlas. Overall, an error rate of 32% is achieved, for the 6 middle distal and medial/distal epiphyses, 23% of all extractions need adjustments. On average 9.58 of the 14 epiphyseal regions were extracted successfully per image. This is promising for further use in content-based image retrieval (CBIR) and CBIR-based automatic bone age assessment.

  5. Prototype for Meta-Algorithmic, Content-Aware Image Analysis

    DTIC Science & Technology

    2015-03-01

    PROTOTYPE FOR META-ALGORITHMIC, CONTENT-AWARE IMAGE ANALYSIS UNIVERSITY OF VIRGINIA MARCH 2015 FINAL TECHNICAL REPORT...ALGORITHMIC, CONTENT-AWARE IMAGE ANALYSIS 5a. CONTRACT NUMBER FA8750-12-C-0181 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62305E 6. AUTHOR(S) S...approaches were studied in detail and their results on a sample dataset are presented. 15. SUBJECT TERMS Image Analysis , Computer Vision, Content

  6. Geographical Topics Learning of Geo-Tagged Social Images.

    PubMed

    Zhang, Xiaoming; Ji, Shufan; Wang, Senzhang; Li, Zhoujun; Lv, Xueqiang

    2016-03-01

    With the availability of cheap location sensors, geotagging of images in online social media is very popular. With a large amount of geo-tagged social images, it is interesting to study how these images are shared across geographical regions and how the geographical language characteristics and vision patterns are distributed across different regions. Unlike textual document, geo-tagged social image contains multiple types of content, i.e., textual description, visual content, and geographical information. Existing approaches usually mine geographical characteristics using a subset of multiple types of image contents or combining those contents linearly, which ignore correlations between different types of contents, and their geographical distributions. Therefore, in this paper, we propose a novel method to discover geographical characteristics of geo-tagged social images using a geographical topic model called geographical topic model of social images (GTMSIs). GTMSI integrates multiple types of social image contents as well as the geographical distributions, in which image topics are modeled based on both vocabulary and visual features. In GTMSI, each region of the image would have its own topic distribution, and hence have its own language model and vision pattern. Experimental results show that our GTMSI could identify interesting topics and vision patterns, as well as provide location prediction and image tagging.

  7. Root Water Uptake and Tracer Transport in a Lupin Root System: Integration of Magnetic Resonance Images and the Numerical Model RSWMS

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Vanderborght, Jan; Haber-Pohlmeier, Sabina; Wienke, Sandra; Vereecken, Harry; Javaux, Mathieu

    2010-05-01

    Combination of experimental studies with detailed deterministic models help understand root water uptake processes. Recently, Javaux et al. developed the RSWMS model by integration of Doussańs root model into the well established SWMS code[1], which simulates water and solute transport in unsaturated soil [2, 3]. In order to confront RSWMS modeling results to experimental data, we used Magnetic Resonance Imaging (MRI) technique to monitor root water uptake in situ. Non-invasive 3-D imaging of root system architecture, water content distributions and tracer transport by MR were performed and compared with numerical model calculations. Two MRI experiments were performed and modeled: i) water uptake during drought stress and ii) transport of a locally injected tracer (Gd-DTPA) to the soil-root system driven by root water uptake. Firstly, the high resolution MRI image (0.23x0.23x0.5mm) of the root system was transferred into a continuous root system skeleton by a combination of thresholding, region-growing filtering and final manual 3D redrawing of the root strands. Secondly, the two experimental scenarios were simulated by RSWMS with a resolution of about 3mm. For scenario i) the numerical simulations could reproduce the general trend that is the strong water depletion from the top layer of the soil. However, the creation of depletion zones in the vicinity of the roots could not be simulated, due to a poor initial evaluation of the soil hydraulic properties, which equilibrates instantaneously larger differences in water content. The determination of unsaturated conductivities at low water content was needed to improve the model calculations. For scenario ii) simulations confirmed the solute transport towards the roots by advection. 1. Simunek, J., T. Vogel, and M.T. van Genuchten, The SWMS_2D Code for Simulating Water Flow and Solute Transport in Two-Dimensional Variably Saturated Media. Version 1.21. 1994, U.S. Salinity Laboratory, USDA, ARS: Riverside, California. 2. Javaux, M., et al., Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake. Vadose Zone J., 2008. 7(3): p. 1079-1088. 3. Schröder, T., et al., Effect of Local Soil Hydraulic Conductivity Drop Using a Three Dimensional Root Water Uptake Model. Vadose Zone J., 2008. 7(3): p. 1089-1098.

  8. Integrating concept ontology and multitask learning to achieve more effective classifier training for multilevel image annotation.

    PubMed

    Fan, Jianping; Gao, Yuli; Luo, Hangzai

    2008-03-01

    In this paper, we have developed a new scheme for achieving multilevel annotations of large-scale images automatically. To achieve more sufficient representation of various visual properties of the images, both the global visual features and the local visual features are extracted for image content representation. To tackle the problem of huge intraconcept visual diversity, multiple types of kernels are integrated to characterize the diverse visual similarity relationships between the images more precisely, and a multiple kernel learning algorithm is developed for SVM image classifier training. To address the problem of huge interconcept visual similarity, a novel multitask learning algorithm is developed to learn the correlated classifiers for the sibling image concepts under the same parent concept and enhance their discrimination and adaptation power significantly. To tackle the problem of huge intraconcept visual diversity for the image concepts at the higher levels of the concept ontology, a novel hierarchical boosting algorithm is developed to learn their ensemble classifiers hierarchically. In order to assist users on selecting more effective hypotheses for image classifier training, we have developed a novel hyperbolic framework for large-scale image visualization and interactive hypotheses assessment. Our experiments on large-scale image collections have also obtained very positive results.

  9. A novel automatic quantification method for high-content screening analysis of DNA double strand-break response.

    PubMed

    Feng, Jingwen; Lin, Jie; Zhang, Pengquan; Yang, Songnan; Sa, Yu; Feng, Yuanming

    2017-08-29

    High-content screening is commonly used in studies of the DNA damage response. The double-strand break (DSB) is one of the most harmful types of DNA damage lesions. The conventional method used to quantify DSBs is γH2AX foci counting, which requires manual adjustment and preset parameters and is usually regarded as imprecise, time-consuming, poorly reproducible, and inaccurate. Therefore, a robust automatic alternative method is highly desired. In this manuscript, we present a new method for quantifying DSBs which involves automatic image cropping, automatic foci-segmentation and fluorescent intensity measurement. Furthermore, an additional function was added for standardizing the measurement of DSB response inhibition based on co-localization analysis. We tested the method with a well-known inhibitor of DSB response. The new method requires only one preset parameter, which effectively minimizes operator-dependent variations. Compared with conventional methods, the new method detected a higher percentage difference of foci formation between different cells, which can improve measurement accuracy. The effects of the inhibitor on DSB response were successfully quantified with the new method (p = 0.000). The advantages of this method in terms of reliability, automation and simplicity show its potential in quantitative fluorescence imaging studies and high-content screening for compounds and factors involved in DSB response.

  10. Ultrahigh polarimetric image contrast enhancement for skin cancer diagnosis using InN plasmonic nanoparticles in the terahertz range

    NASA Astrophysics Data System (ADS)

    Ney, Michael; Abdulhalim, Ibrahim

    2015-12-01

    Mueller matrix imaging sensitivity, to delicate water content changes in tissue associated with early stages of skin cancer, is demonstrated by numerical modeling to be enhanced by localized surface plasmon resonance (LSPR) effects at the terahertz (THz) range when InN nanoparticles (NPs) coated with Parylene-C are introduced into the skin. A skin tissue model tailored for THz wavelengths is established for a Monte Carlo simulation of polarized light propagation and scattering, and a comparative study based on simulated Mueller matrices is presented considering different NPs' parameters and insertion into the skin methods. The insertion of NPs presenting LSPR in the THz is demonstrated to enable the application of polarization-based sample characterization techniques adopted from the scattering dominated visible wavelengths domain for the, otherwise, relatively low scattering THz domain, where such approach is irrelevant without the NPs. Through these Mueller polarimetry techniques, the detection of water content variations in the tissue is made possible and with high sensitivity. This study yields a limit of detection down to 0.0018% for relative changes in the water content based on linear degree of polarization-an improvement of an order of magnitude relative to the limit of detection without NPs calculated in a previous ellipsometric study.

  11. Ultrahigh polarimetric image contrast enhancement for skin cancer diagnosis using InN plasmonic nanoparticles in the terahertz range.

    PubMed

    Ney, Michael; Abdulhalim, Ibrahim

    2015-01-01

    Mueller matrix imaging sensitivity, to delicate water content changes in tissue associated with early stages of skin cancer, is demonstrated by numerical modeling to be enhanced by localized surface plasmon resonance (LSPR) effects at the terahertz (THz) range when InN nanoparticles (NPs) coated with Parylene-C are introduced into the skin. A skin tissue model tailored for THz wavelengths is established for a Monte Carlo simulation of polarized light propagation and scattering, and a comparative study based on simulated Mueller matrices is presented considering different NPs’ parameters and insertion into the skin methods. The insertion of NPs presenting LSPR in the THz is demonstrated to enable the application of polarization-based sample characterization techniques adopted from the scattering dominated visible wavelengths domain for the, otherwise, relatively low scattering THz domain, where such approach is irrelevant without the NPs. Through these Mueller polarimetry techniques, the detection of water content variations in the tissue is made possible and with high sensitivity. This study yields a limit of detection down to 0.0018% for relative changes in the water content based on linear degree of polarization--an improvement of an order of magnitude relative to the limit of detection without NPs calculated in a previous ellipsometric study.

  12. An interactive local flattening operator to support digital investigations on artwork surfaces.

    PubMed

    Pietroni, Nico; Massimiliano, Corsini; Cignoni, Paolo; Scopigno, Roberto

    2011-12-01

    Analyzing either high-frequency shape detail or any other 2D fields (scalar or vector) embedded over a 3D geometry is a complex task, since detaching the detail from the overall shape can be tricky. An alternative approach is to move to the 2D space, resolving shape reasoning to easier image processing techniques. In this paper we propose a novel framework for the analysis of 2D information distributed over 3D geometry, based on a locally smooth parametrization technique that allows us to treat local 3D data in terms of image content. The proposed approach has been implemented as a sketch-based system that allows to design with a few gestures a set of (possibly overlapping) parameterizations of rectangular portions of the surface. We demonstrate that, due to the locality of the parametrization, the distortion is under an acceptable threshold, while discontinuities can be avoided since the parametrized geometry is always homeomorphic to a disk. We show the effectiveness of the proposed technique to solve specific Cultural Heritage (CH) tasks: the analysis of chisel marks over the surface of a unfinished sculpture and the local comparison of multiple photographs mapped over the surface of an artwork. For this very difficult task, we believe that our framework and the corresponding tool are the first steps toward a computer-based shape reasoning system, able to support CH scholars with a medium they are more used to. © 2011 IEEE

  13. The MVACS Surface Stereo Imager on Mars Polar Lander

    NASA Astrophysics Data System (ADS)

    Smith, P. H.; Reynolds, R.; Weinberg, J.; Friedman, T.; Lemmon, M. T.; Tanner, R.; Reid, R. J.; Marcialis, R. L.; Bos, B. J.; Oquest, C.; Keller, H. U.; Markiewicz, W. J.; Kramm, R.; Gliem, F.; Rueffer, P.

    2001-08-01

    The Surface Stereo Imager (SSI), a stereoscopic, multispectral camera on the Mars Polar Lander, is described in terms of its capabilities for studying the Martian polar environment. The camera's two eyes, separated by 15.0 cm, provide the camera with range-finding ability. Each eye illuminates half of a single CCD detector with a field of view of 13.8° high by 14.3° wide and has 12 selectable filters between 440 and 1000 nm. The f18 optics have a large depth of field, and no focusing mechanism is required; a mechanical shutter is avoided by using the frame transfer capability of the 528 × 512 CCD. The resolving power of the camera, 0.975 mrad/pixel, is the same as the Imager for Mars Pathfinder camera, of which it is nearly an exact copy. Specially designed targets are positioned on the Lander; they provide information on the magnetic properties of wind-blown dust, and radiometric standards for calibration. Several experiments beyond the requisite color panorama are described in detail: contour mapping of the local terrain, multispectral imaging of interesting features (possibly with ice or frost in shaded spots) to study local mineralogy, and atmospheric imaging to constrain the properties of the haze and clouds. Eight low-transmission filters are included for imaging the Sun directly at multiple wavelengths to give SSI the ability to measure dust opacity and potentially the water vapor content. This paper is intended to document the functionality and calibration of the SSI as flown on the failed lander.

  14. Ultra-wideband three-dimensional optoacoustic tomography.

    PubMed

    Gateau, Jérôme; Chekkoury, Andrei; Ntziachristos, Vasilis

    2013-11-15

    Broadband optoacoustic waves generated by biological tissues excited with nanosecond laser pulses carry information corresponding to a wide range of geometrical scales. Typically, the frequency content present in the signals generated during optoacoustic imaging is much larger compared to the frequency band captured by common ultrasonic detectors, the latter typically acting as bandpass filters. To image optical absorption within structures ranging from entire organs to microvasculature in three dimensions, we implemented optoacoustic tomography with two ultrasound linear arrays featuring a center frequency of 6 and 24 MHz, respectively. In the present work, we show that complementary information on anatomical features could be retrieved and provide a better understanding on the localization of structures in the general anatomy by analyzing multi-bandwidth datasets acquired on a freshly excised kidney.

  15. Content Based Image Matching for Planetary Science

    NASA Astrophysics Data System (ADS)

    Deans, M. C.; Meyer, C.

    2006-12-01

    Planetary missions generate large volumes of data. With the MER rovers still functioning on Mars, PDS contains over 7200 released images from the Microscopic Imagers alone. These data products are only searchable by keys such as the Sol, spacecraft clock, or rover motion counter index, with little connection to the semantic content of the images. We have developed a method for matching images based on the visual textures in images. For every image in a database, a series of filters compute the image response to localized frequencies and orientations. Filter responses are turned into a low dimensional descriptor vector, generating a 37 dimensional fingerprint. For images such as the MER MI, this represents a compression ratio of 99.9965% (the fingerprint is approximately 0.0035% the size of the original image). At query time, fingerprints are quickly matched to find images with similar appearance. Image databases containing several thousand images are preprocessed offline in a matter of hours. Image matches from the database are found in a matter of seconds. We have demonstrated this image matching technique using three sources of data. The first database consists of 7200 images from the MER Microscopic Imager. The second database consists of 3500 images from the Narrow Angle Mars Orbital Camera (MOC-NA), which were cropped into 1024×1024 sub-images for consistency. The third database consists of 7500 scanned archival photos from the Apollo Metric Camera. Example query results from all three data sources are shown. We have also carried out user tests to evaluate matching performance by hand labeling results. User tests verify approximately 20% false positive rate for the top 14 results for MOC NA and MER MI data. This means typically 10 to 12 results out of 14 match the query image sufficiently. This represents a powerful search tool for databases of thousands of images where the a priori match probability for an image might be less than 1%. Qualitatively, correct matches can also be confirmed by verifying MI images taken in the same z-stack, or MOC image tiles taken from the same image strip. False negatives are difficult to quantify as it would mean finding matches in the database of thousands of images that the algorithm did not detect.

  16. Visible Light Image-Based Method for Sugar Content Classification of Citrus

    PubMed Central

    Wang, Xuefeng; Wu, Chunyan; Hirafuji, Masayuki

    2016-01-01

    Visible light imaging of citrus fruit from Mie Prefecture of Japan was performed to determine whether an algorithm could be developed to predict the sugar content. This nondestructive classification showed that the accurate segmentation of different images can be realized by a correlation analysis based on the threshold value of the coefficient of determination. There is an obvious correlation between the sugar content of citrus fruit and certain parameters of the color images. The selected image parameters were connected by addition algorithm. The sugar content of citrus fruit can be predicted by the dummy variable method. The results showed that the small but orange citrus fruits often have a high sugar content. The study shows that it is possible to predict the sugar content of citrus fruit and to perform a classification of the sugar content using light in the visible spectrum and without the need for an additional light source. PMID:26811935

  17. A content analysis of thinspiration images and text posts on Tumblr.

    PubMed

    Wick, Madeline R; Harriger, Jennifer A

    2018-03-01

    Thinspiration is content advocating extreme weight loss by means of images and/or text posts. While past content analyses have examined thinspiration content on social media and other websites, no research to date has examined thinspiration content on Tumblr. Over the course of a week, 222 images and text posts were collected after entering the keyword 'thinspiration' into the Tumblr search bar. These images were then rated on a variety of characteristics. The majority of thinspiration images included a thin woman adhering to culturally based beauty, often posing in a manner that accentuated her thinness or sexuality. The most common themes for thinspiration text posts included dieting/restraint, weight loss, food guilt, and body guilt. The thinspiration content on Tumblr appears to be consistent with that on other mediums. Future research should utilize experimental methods to examine the potential effects of consuming thinspiration content on Tumblr. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Separating strain from composition in unit cell parameter maps obtained from aberration corrected high resolution transmission electron microscopy imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, T.; Remmele, T.; Korytov, M.

    2014-01-21

    Based on the evaluation of lattice parameter maps in aberration corrected high resolution transmission electron microscopy images, we propose a simple method that allows quantifying the composition and disorder of a semiconductor alloy at the unit cell scale with high accuracy. This is realized by considering, next to the out-of-plane, also the in-plane lattice parameter component allowing to separate the chemical composition from the strain field. Considering only the out-of-plane lattice parameter component not only yields large deviations from the true local alloy content but also carries the risk of identifying false ordering phenomena like formations of chains or platelets.more » Our method is demonstrated on image simulations of relaxed supercells, as well as on experimental images of an In{sub 0.20}Ga{sub 0.80}N quantum well. Principally, our approach is applicable to all epitaxially strained compounds in the form of quantum wells, free standing islands, quantum dots, or wires.« less

  19. Computer-aided, multi-modal, and compression diffuse optical studies of breast tissue

    NASA Astrophysics Data System (ADS)

    Busch, David Richard, Jr.

    Diffuse Optical Tomography and Spectroscopy permit measurement of important physiological parameters non-invasively through ˜10 cm of tissue. I have applied these techniques in measurements of human breast and breast cancer. My thesis integrates three loosely connected themes in this context: multi-modal breast cancer imaging, automated data analysis of breast cancer images, and microvascular hemodynamics of breast under compression. As per the first theme, I describe construction, testing, and the initial clinical usage of two generations of imaging systems for simultaneous diffuse optical and magnetic resonance imaging. The second project develops a statistical analysis of optical breast data from many spatial locations in a population of cancers to derive a novel optical signature of malignancy; I then apply this data-derived signature for localization of cancer in additional subjects. Finally, I construct and deploy diffuse optical instrumentation to measure blood content and blood flow during breast compression; besides optics, this research has implications for any method employing breast compression, e.g., mammography.

  20. Forensic hash for multimedia information

    NASA Astrophysics Data System (ADS)

    Lu, Wenjun; Varna, Avinash L.; Wu, Min

    2010-01-01

    Digital multimedia such as images and videos are prevalent on today's internet and cause significant social impact, which can be evidenced by the proliferation of social networking sites with user generated contents. Due to the ease of generating and modifying images and videos, it is critical to establish trustworthiness for online multimedia information. In this paper, we propose novel approaches to perform multimedia forensics using compact side information to reconstruct the processing history of a document. We refer to this as FASHION, standing for Forensic hASH for informatION assurance. Based on the Radon transform and scale space theory, the proposed forensic hash is compact and can effectively estimate the parameters of geometric transforms and detect local tampering that an image may have undergone. Forensic hash is designed to answer a broader range of questions regarding the processing history of multimedia data than the simple binary decision from traditional robust image hashing, and also offers more efficient and accurate forensic analysis than multimedia forensic techniques that do not use any side information.

  1. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues.

    PubMed

    Ku, Taeyun; Swaney, Justin; Park, Jeong-Yoon; Albanese, Alexandre; Murray, Evan; Cho, Jae Hun; Park, Young-Gyun; Mangena, Vamsi; Chen, Jiapei; Chung, Kwanghun

    2016-09-01

    The biology of multicellular organisms is coordinated across multiple size scales, from the subnanoscale of molecules to the macroscale, tissue-wide interconnectivity of cell populations. Here we introduce a method for super-resolution imaging of the multiscale organization of intact tissues. The method, called magnified analysis of the proteome (MAP), linearly expands entire organs fourfold while preserving their overall architecture and three-dimensional proteome organization. MAP is based on the observation that preventing crosslinking within and between endogenous proteins during hydrogel-tissue hybridization allows for natural expansion upon protein denaturation and dissociation. The expanded tissue preserves its protein content, its fine subcellular details, and its organ-scale intercellular connectivity. We use off-the-shelf antibodies for multiple rounds of immunolabeling and imaging of a tissue's magnified proteome, and our experiments demonstrate a success rate of 82% (100/122 antibodies tested). We show that specimen size can be reversibly modulated to image both inter-regional connections and fine synaptic architectures in the mouse brain.

  2. Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy

    PubMed Central

    Qin, Nan; Zhang, Shaoqing; Jiang, Jianjuan; Corder, Stephanie Gilbert; Qian, Zhigang; Zhou, Zhitao; Lee, Woonsoo; Liu, Keyin; Wang, Xiaohan; Li, Xinxin; Shi, Zhifeng; Mao, Ying; Bechtel, Hans A.; Martin, Michael C.; Xia, Xiaoxia; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.; Liu, Mengkun; Tao, Tiger H.

    2016-01-01

    Silk protein fibres produced by silkworms and spiders are renowned for their unparalleled mechanical strength and extensibility arising from their high-β-sheet crystal contents as natural materials. Investigation of β-sheet-oriented conformational transitions in silk proteins at the nanoscale remains a challenge using conventional imaging techniques given their limitations in chemical sensitivity or limited spatial resolution. Here, we report on electron-regulated nanoscale polymorphic transitions in silk proteins revealed by near-field infrared imaging and nano-spectroscopy at resolutions approaching the molecular level. The ability to locally probe nanoscale protein structural transitions combined with nanometre-precision electron-beam lithography offers us the capability to finely control the structure of silk proteins in two and three dimensions. Our work paves the way for unlocking essential nanoscopic protein structures and critical conditions for electron-induced conformational transitions, offering new rules to design protein-based nanoarchitectures. PMID:27713412

  3. Magnetic resonance imaging of the rat Harderian gland

    PubMed Central

    Sbarbati, Andrea; Calderan, Laura; Nicolato, Elena; Marzola, Pasquina; Lunati, Ernesto; Donatella, Benati; Bernardi, Paolo; Osculati, Francesco

    2002-01-01

    The intra-orbital lachrymal gland (Harderian gland, or HG) of the female rat was studied by magnetic resonance imaging (MRI) to evaluate whether MRI can be used to visualize the gland in vivo and localized-1H-spectroscopy detect its lipid content. The results were correlated with post-mortem anatomical sections, and with light and electron microscopy. On MRI, HG presented as a mass located between the ocular bulb and the orbit. In strongly T2W sequences the secretory structures had a reduced signal while intraparenchymal connective tissue was visible. T2-quantitative maps values of HG (60.12 ± 8.15 ms, mean ± SD) were different from other tissues (i.e. muscular tissue, T2 = 44.79 ± 3.43 ms and olfactory bulb, T2 = 79.26 ± 4.25 ms). In contrast-enhanced-MRI, HG had a signal-intensity-drop of 0.074 ± 0.072 (mean ± SD), after injection of AMI-25, significantly different from the muscle (0.17 ± 0.10). Localized MRI spectra gave a large part of the signal originating from fat protons, but with a significant percentage from water protons. At light and electron microscopy the lipid deposition appeared to be composed of low-density material filling a large part of the cytoplasm, and the porphyrin aggregates were easily recognizable. The data demonstrate that an in vivo study of the HG was feasible and that high-field MRI allowed analysis of the gross anatomy detecting the lipid content of the gland. PMID:12363274

  4. Mechanism of disease in early osteoarthritis: application of modern MR imaging techniques -- a technical report.

    PubMed

    Jobke, Bjoern; Bolbos, Radu; Saadat, Ehsan; Cheng, Jonathan; Li, Xiaojuan; Majumdar, Sharmila

    2013-01-01

    The application of biomolecular magnetic resonance imaging becomes increasingly important in the context of early cartilage changes in degenerative and inflammatory joint disease before gross morphological changes become apparent. In this limited technical report, we investigate the correlation of MRI T1, T2 and T1ρ relaxation times with quantitative biochemical measurements of proteoglycan and collagen contents of cartilage in close synopsis with histologic morphology. A recently developed MRI sequence, T1ρ, was able to detect early intracartilaginous degeneration quantitatively and also qualitatively by color mapping demonstrating a higher sensitivity than standard T2-weighted sequences. The results correlated highly with reduced proteoglycan content and disrupted collagen architecture as measured by biochemistry and histology. The findings lend support to a clinical implementation that allows rapid visual capturing of pathology on a local, millimeter level. Further information about articular cartilage quality otherwise not detectable in vivo, via normal inspection, is needed for orthopedic treatment decisions in the present and future. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Improving Large-Scale Image Retrieval Through Robust Aggregation of Local Descriptors.

    PubMed

    Husain, Syed Sameed; Bober, Miroslaw

    2017-09-01

    Visual search and image retrieval underpin numerous applications, however the task is still challenging predominantly due to the variability of object appearance and ever increasing size of the databases, often exceeding billions of images. Prior art methods rely on aggregation of local scale-invariant descriptors, such as SIFT, via mechanisms including Bag of Visual Words (BoW), Vector of Locally Aggregated Descriptors (VLAD) and Fisher Vectors (FV). However, their performance is still short of what is required. This paper presents a novel method for deriving a compact and distinctive representation of image content called Robust Visual Descriptor with Whitening (RVD-W). It significantly advances the state of the art and delivers world-class performance. In our approach local descriptors are rank-assigned to multiple clusters. Residual vectors are then computed in each cluster, normalized using a direction-preserving normalization function and aggregated based on the neighborhood rank. Importantly, the residual vectors are de-correlated and whitened in each cluster before aggregation, leading to a balanced energy distribution in each dimension and significantly improved performance. We also propose a new post-PCA normalization approach which improves separability between the matching and non-matching global descriptors. This new normalization benefits not only our RVD-W descriptor but also improves existing approaches based on FV and VLAD aggregation. Furthermore, we show that the aggregation framework developed using hand-crafted SIFT features also performs exceptionally well with Convolutional Neural Network (CNN) based features. The RVD-W pipeline outperforms state-of-the-art global descriptors on both the Holidays and Oxford datasets. On the large scale datasets, Holidays1M and Oxford1M, SIFT-based RVD-W representation obtains a mAP of 45.1 and 35.1 percent, while CNN-based RVD-W achieve a mAP of 63.5 and 44.8 percent, all yielding superior performance to the state-of-the-art.

  6. Martian Surface Compositions and Spectral Unit Mapping From the Thermal Emission Imaging System

    NASA Astrophysics Data System (ADS)

    Bandfield, J. L.; Christensen, P. R.; Rogers, D.

    2005-12-01

    The Thermal Emission Imaging System (THEMIS) on board the Mars Odyssey spacecraft observes Mars at nine spectral intervals between 6 and 15 microns and at 100 meter spatial sampling. This spectral and spatial resolution allows for mapping of local spectral units and coarse compositional determination of a variety of rock-forming materials such as carbonates, sulfates, and silicates. A number of data processing and atmospheric correction techniques have been developed to ease and speed the interpretation of multispectral THEMIS infrared images. These products and techniques are in the process of being made publicly available via the THEMIS website and were used to produce the results presented here. Spectral variability at kilometer scales in THEMIS data is more common in the southern highlands than in the northern lowlands. Many of the spectral units are associated with a mobile surface layer such as dune fields and mantled dust. However, a number of spectral units appear to be directly tied to the local geologic rock units. These spectral units are commonly associated with crater walls, floors, and ejecta blankets. Other surface compositions are correlated with layered volcanic materials and knobby remnant terrains. Most of the spectral variability observed to date appears to be tied to a variation in silicate mineralogy. Olivine rich units that have been previously reported in Nili Fossae, Ares Valles, and the Valles Marineris region appear to be sparse but common in a number of regions in the southern highlands. Variations in silica content consistent with previously reported global surface units also appear to be present in THEMIS images, allowing for an examination of their local geologic context. Previously reported quartz and feldspar rich exposures in northern Syrtis Major appear more extensive in the region than previously reported. A coherent global and local picture of the mineralogy of the Martian surface is emerging from THEMIS measurements along with other orbital thermal and near infrared spectroscopy measurements from the Mars Express and Mars Global Surveyor spacecraft.

  7. Highly resolved imaging at the soil - plant root interface: A combination of fluorescence imaging and neutron radiography

    NASA Astrophysics Data System (ADS)

    Rudolph, N.; Oswald, S. E.; Lehmann, E.

    2012-12-01

    This study represents a novel experimental set up to non-invasivley map the gradients of biogeochemical parameters at the soil -root interface of plants in situ. The patterns of oxygen, pH and the soil water content distribution were mapped in high resolution with a combination of fluorescence imaging and neutron radiography. Measuring the real-time distribution of water, pH and oxygen concentration would enable us to locate the active parts of the roots in respect to water uptake, exudation and respiration. Roots performance itself is variable as a function of age and development stage and is interrelated with local soil conditions such as water and oxygen availability or nutrients and pH buffering capacity in soil. Non-destructive imaging methods such as fluorescence and neutron imaging have provided a unique opportunity to unravel some of these complex processes. Thin glass containers (inner size 10cm x 10cm x 1.5 cm) were filled with 2 different sandy soils. Sensor foil for O2 and pH were installed on the inner-sides of the containers. We grew lupine plants in the container under controlled conditions until the root system was developed. Growing plants at different stages prior to the imaging experiment, we took neutron radiographs and fluorescence images of 10-day old and 30-day old root systems of lupine plants over a range of soil water contents, and therefore a range of root activities and oxygen changes. We observed the oxygen consumption pattern, the pH changes, and the root water uptake of lupine plants over the course of several days. We observed a higher respiration activity around the lateral roots than for the tap root. The oxygen depletion zones around the roots extended to farther distances after each rewatering of the samples. Root systems of the plants were mapped from the neutron radiograps. Close association of the roots distribution and the the location of oxygen depletion patterns provided evidence that this effect was caused by roots. The oxygen deficit pattern intensified with increasing root age. Due to the high soil water content after rewatering, the aeration from atmosphere was limited. pH dynamic was closely related to the root age. Initially, the soil pH strongly decreased around the young growing tap root. This pattern changed with time to an increased pH around the tap root but a strong acidification in the vicinity of lateral roots. After each rewatering, the pH increased which might be due to the dilution of H+ in high soil water contents. With our coupled imaging set up we were able to monitor the dynamics of oxygen, pH and water content around the roots of plant with high spatial and temporal resolutions over day and night at a wide range of soil water contents. Our experimental set up provides the opportunity to simultaneousely map the dynamics of these vital parameters in the root zone of plants.

  8. Content dependent selection of image enhancement parameters for mobile displays

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Gyoo; Kang, Yoo-Jin; Kim, Han-Eol; Kim, Ka-Hee; Kim, Choon-Woo

    2011-01-01

    Mobile devices such as cellular phones and portable multimedia player with capability of playing terrestrial digital multimedia broadcasting (T-DMB) contents have been introduced into consumer market. In this paper, content dependent image quality enhancement method for sharpness and colorfulness and noise reduction is presented to improve perceived image quality on mobile displays. Human visual experiments are performed to analyze viewers' preference. Relationship between the objective measures and the optimal values of image control parameters are modeled by simple lookup tables based on the results of human visual experiments. Content dependent values of image control parameters are determined based on the calculated measures and predetermined lookup tables. Experimental results indicate that dynamic selection of image control parameters yields better image quality.

  9. Educational use of World Wide Web pages on CD-ROM.

    PubMed

    Engel, Thomas P; Smith, Michael

    2002-01-01

    The World Wide Web is increasingly important for medical education. Internet served pages may also be used on a local hard disk or CD-ROM without a network or server. This allows authors to reuse existing content and provide access to users without a network connection. CD-ROM offers several advantages over network delivery of Web pages for several applications. However, creating Web pages for CD-ROM requires careful planning. Issues include file names, relative links, directory names, default pages, server created content, image maps, other file types and embedded programming. With care, it is possible to create server based pages that can be copied directly to CD-ROM. In addition, Web pages on CD-ROM may reference Internet served pages to provide the best features of both methods.

  10. Machine vision and appearance based learning

    NASA Astrophysics Data System (ADS)

    Bernstein, Alexander

    2017-03-01

    Smart algorithms are used in Machine vision to organize or extract high-level information from the available data. The resulted high-level understanding the content of images received from certain visual sensing system and belonged to an appearance space can be only a key first step in solving various specific tasks such as mobile robot navigation in uncertain environments, road detection in autonomous driving systems, etc. Appearance-based learning has become very popular in the field of machine vision. In general, the appearance of a scene is a function of the scene content, the lighting conditions, and the camera position. Mobile robots localization problem in machine learning framework via appearance space analysis is considered. This problem is reduced to certain regression on an appearance manifold problem, and newly regression on manifolds methods are used for its solution.

  11. Cervical cancer educational pamphlets: Do they miss the mark for Mexican immigrant women's needs?

    PubMed

    Hunter, Jennifer L

    2005-11-01

    The rate of invasive cervical cancer in US Hispanic women is nearly doubled that of non-Hispanics. Using in-depth interviews and content/grade level analysis of educational materials, this study explores the relevance of cervical cancer education materials to the needs of Mexican immigrant women. It also addresses health literacy issues that create barriers to learning. Findings show aspects of language, content, reading level, structure, and visual images in 22 cervical cancer pamphlets from 11 health care sites in a Midwest city were not relevant to the learning needs or health literacy levels of local Mexican immigrant women. Further research is recommended to establish an evidence base regarding optimal presentation of key elements of the cervical cancer educational message for Mexican immigrant women.

  12. Learning semantic histopathological representation for basal cell carcinoma classification

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Ricardo; Rueda, Andrea; Romero, Eduardo

    2013-03-01

    Diagnosis of a histopathology glass slide is a complex process that involves accurate recognition of several structures, their function in the tissue and their relation with other structures. The way in which the pathologist represents the image content and the relations between those objects yields a better and accurate diagnoses. Therefore, an appropriate semantic representation of the image content will be useful in several analysis tasks such as cancer classification, tissue retrieval and histopahological image analysis, among others. Nevertheless, to automatically recognize those structures and extract their inner semantic meaning are still very challenging tasks. In this paper we introduce a new semantic representation that allows to describe histopathological concepts suitable for classification. The approach herein identify local concepts using a dictionary learning approach, i.e., the algorithm learns the most representative atoms from a set of random sampled patches, and then models the spatial relations among them by counting the co-occurrence between atoms, while penalizing the spatial distance. The proposed approach was compared with a bag-of-features representation in a tissue classification task. For this purpose, 240 histological microscopical fields of view, 24 per tissue class, were collected. Those images fed a Support Vector Machine classifier per class, using 120 images as train set and the remaining ones for testing, maintaining the same proportion of each concept in the train and test sets. The obtained classification results, averaged from 100 random partitions of training and test sets, shows that our approach is more sensitive in average than the bag-of-features representation in almost 6%.

  13. Self-defensive antibiotic-loaded layer-by-layer coatings: Imaging of localized bacterial acidification and pH-triggering of antibiotic release.

    PubMed

    Albright, Victoria; Zhuk, Iryna; Wang, Yuhao; Selin, Victor; van de Belt-Gritter, Betsy; Busscher, Henk J; van der Mei, Henny C; Sukhishvili, Svetlana A

    2017-10-01

    Self-defensive antibiotic-loaded coatings have shown promise in inhibiting growth of pathogenic bacteria adhering to biomaterial implants and devices, but direct proof that their antibacterial release is triggered by bacterially-induced acidification of the immediate environment under buffered conditions remained elusive. Here, we demonstrate that Staphylococcus aureus and Escherichia coli adhering to such coatings generate highly localized acidification, even in buffered conditions, to activate pH-triggered, self-defensive antibiotic release. To this end, we utilized chemically crosslinked layer-by-layer hydrogel coatings of poly(methacrylic acid) with a covalently attached pH-sensitive SNARF-1 fluorescent label for imaging, and unlabeled-antibiotic (gentamicin or polymyxin B) loaded coatings for antibacterial studies. Local acidification of the coatings induced by S. aureus and E. coli adhering to the coatings was demonstrated by confocal-laser-scanning-microscopy via wavelength-resolved imaging. pH-triggered antibiotic release under static, small volume conditions yielded high bacterial killing efficiencies for S. aureus and E. coli. Gentamicin-loaded films retained their antibacterial activity against S. aureus under fluid flow in buffered conditions. Antibacterial activity increased with the number of polymer layers in the films. Altogether, pH-triggered, self-defensive antibiotic-loaded coatings become activated by highly localized acidification in the immediate environment of an adhering bacterium, offering potential for clinical application with minimized side-effects. Polymeric coatings were created that are able to uptake and selectively release antibiotics upon stimulus by adhering bacteria in order to understand the fundamental mechanisms behind pH-triggered antibiotic release as a potential way to prevent biomaterial-associated infections. Through fluorescent imaging studies, this work importantly shows that adhering bacteria produce highly localized pH changes even in buffer. Accordingly such coatings only demonstrate antibacterial activity by antibiotic release in the presence of adhering bacteria. This is clinically important, because ad libitum releasing antibiotic coatings usually show a burst release and have often lost their antibiotic content when bacteria adhere. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Unsupervised symmetrical trademark image retrieval in soccer telecast using wavelet energy and quadtree decomposition

    NASA Astrophysics Data System (ADS)

    Ong, Swee Khai; Lim, Wee Keong; Soo, Wooi King

    2013-04-01

    Trademark, a distinctive symbol, is used to distinguish products or services provided by a particular person, group or organization from other similar entries. As trademark represents the reputation and credit standing of the owner, it is important to differentiate one trademark from another. Many methods have been proposed to identify, classify and retrieve trademarks. However, most methods required features database and sample sets for training prior to recognition and retrieval process. In this paper, a new feature on wavelet coefficients, the localized wavelet energy, is introduced to extract features of trademarks. With this, unsupervised content-based symmetrical trademark image retrieval is proposed without the database and prior training set. The feature analysis is done by an integration of the proposed localized wavelet energy and quadtree decomposed regional symmetrical vector. The proposed framework eradicates the dependence on query database and human participation during the retrieval process. In this paper, trademarks for soccer games sponsors are the intended trademark category. Video frames from soccer telecast are extracted and processed for this study. Reasonably good localization and retrieval results on certain categories of trademarks are achieved. A distinctive symbol is used to distinguish products or services provided by a particular person, group or organization from other similar entries.

  15. Content-based image retrieval applied to bone age assessment

    NASA Astrophysics Data System (ADS)

    Fischer, Benedikt; Brosig, André; Welter, Petra; Grouls, Christoph; Günther, Rolf W.; Deserno, Thomas M.

    2010-03-01

    Radiological bone age assessment is based on local image regions of interest (ROI), such as the epiphysis or the area of carpal bones. These are compared to a standardized reference and scores determining the skeletal maturity are calculated. For computer-aided diagnosis, automatic ROI extraction and analysis is done so far mainly by heuristic approaches. Due to high variations in the imaged biological material and differences in age, gender and ethnic origin, automatic analysis is difficult and frequently requires manual interactions. On the contrary, epiphyseal regions (eROIs) can be compared to previous cases with known age by content-based image retrieval (CBIR). This requires a sufficient number of cases with reliable positioning of the eROI centers. In this first approach to bone age assessment by CBIR, we conduct leaving-oneout experiments on 1,102 left hand radiographs and 15,428 metacarpal and phalangeal eROIs from the USC hand atlas. The similarity of the eROIs is assessed by cross-correlation of 16x16 scaled eROIs. The effects of the number of eROIs, two age computation methods as well as the number of considered CBIR references are analyzed. The best results yield an error rate of 1.16 years and a standard deviation of 0.85 years. As the appearance of the hand varies naturally by up to two years, these results clearly demonstrate the applicability of the CBIR approach for bone age estimation.

  16. Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma

    PubMed Central

    Tamosaityte, Sandra; Leipnitz, Elke; Geiger, Kathrin D.; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Background Coherent anti-Stokes Raman scattering (CARS) microscopy provides fine resolution imaging and displays morphochemical properties of unstained tissue. Here, we evaluated this technique to delineate and identify brain tumors. Methods Different human tumors (glioblastoma, brain metastases of melanoma and breast cancer) were induced in an orthotopic mouse model. Cryosections were investigated by CARS imaging tuned to probe C-H molecular vibrations, thereby addressing the lipid content of the sample. Raman microspectroscopy was used as reference. Histopathology provided information about the tumor's localization, cell proliferation and vascularization. Results The morphochemical contrast of CARS images enabled identifying brain tumors irrespective of the tumor type and properties: All tumors were characterized by a lower CARS signal intensity than the normal parenchyma. On this basis, tumor borders and infiltrations could be identified with cellular resolution. Quantitative analysis revealed that the tumor-related reduction of CARS signal intensity was more pronounced in glioblastoma than in metastases. Raman spectroscopy enabled relating the CARS intensity variation to the decline of total lipid content in the tumors. The analysis of the immunohistochemical stainings revealed no correlation between tumor-induced cytological changes and the extent of CARS signal intensity reductions. The results were confirmed on samples of human glioblastoma. Conclusions CARS imaging enables label-free, rapid and objective identification of primary and secondary brain tumors. Therefore, it is a potential tool for diagnostic neuropathology as well as for intraoperative tumor delineation. PMID:25198698

  17. Application of content-based image compression to telepathology

    NASA Astrophysics Data System (ADS)

    Varga, Margaret J.; Ducksbury, Paul G.; Callagy, Grace

    2002-05-01

    Telepathology is a means of practicing pathology at a distance, viewing images on a computer display rather than directly through a microscope. Without compression, images take too long to transmit to a remote location and are very expensive to store for future examination. However, to date the use of compressed images in pathology remains controversial. This is because commercial image compression algorithms such as JPEG achieve data compression without knowledge of the diagnostic content. Often images are lossily compressed at the expense of corrupting informative content. None of the currently available lossy compression techniques are concerned with what information has been preserved and what data has been discarded. Their sole objective is to compress and transmit the images as fast as possible. By contrast, this paper presents a novel image compression technique, which exploits knowledge of the slide diagnostic content. This 'content based' approach combines visually lossless and lossy compression techniques, judiciously applying each in the appropriate context across an image so as to maintain 'diagnostic' information while still maximising the possible compression. Standard compression algorithms, e.g. wavelets, can still be used, but their use in a context sensitive manner can offer high compression ratios and preservation of diagnostically important information. When compared with lossless compression the novel content-based approach can potentially provide the same degree of information with a smaller amount of data. When compared with lossy compression it can provide more information for a given amount of compression. The precise gain in the compression performance depends on the application (e.g. database archive or second opinion consultation) and the diagnostic content of the images.

  18. Exploring s-CIELAB as a scanner metric for print uniformity

    NASA Astrophysics Data System (ADS)

    Hertel, Dirk W.

    2005-01-01

    The s-CIELAB color difference metric combines the standard CIELAB metric for perceived color difference with spatial contrast sensitivity filtering. When studying the performance of digital image processing algorithms, maps of spatial color difference between 'before' and 'after' images are a measure of perceived image difference. A general image quality metric can be obtained by modeling the perceived difference from an ideal image. This paper explores the s-CIELAB concept for evaluating the quality of digital prints. Prints present the challenge that the 'ideal print' which should serve as the reference when calculating the delta E* error map is unknown, and thus be estimated from the scanned print. A reasonable estimate of what the ideal print 'should have been' is possible at least for images of known content such as flat fields or continuous wedges, where the error map can be calculated against a global or local mean. While such maps showing the perceived error at each pixel are extremely useful when analyzing print defects, it is desirable to statistically reduce them to a more manageable dataset. Examples of digital print uniformity are given, and the effect of specific print defects on the s-CIELAB delta E* metric are discussed.

  19. An algorithm for encryption of secret images into meaningful images

    NASA Astrophysics Data System (ADS)

    Kanso, A.; Ghebleh, M.

    2017-03-01

    Image encryption algorithms typically transform a plain image into a noise-like cipher image, whose appearance is an indication of encrypted content. Bao and Zhou [Image encryption: Generating visually meaningful encrypted images, Information Sciences 324, 2015] propose encrypting the plain image into a visually meaningful cover image. This improves security by masking existence of encrypted content. Following their approach, we propose a lossless visually meaningful image encryption scheme which improves Bao and Zhou's algorithm by making the encrypted content, i.e. distortions to the cover image, more difficult to detect. Empirical results are presented to show high quality of the resulting images and high security of the proposed algorithm. Competence of the proposed scheme is further demonstrated by means of comparison with Bao and Zhou's scheme.

  20. Content-independent embedding scheme for multi-modal medical image watermarking.

    PubMed

    Nyeem, Hussain; Boles, Wageeh; Boyd, Colin

    2015-02-04

    As the increasing adoption of information technology continues to offer better distant medical services, the distribution of, and remote access to digital medical images over public networks continues to grow significantly. Such use of medical images raises serious concerns for their continuous security protection, which digital watermarking has shown great potential to address. We present a content-independent embedding scheme for medical image watermarking. We observe that the perceptual content of medical images varies widely with their modalities. Recent medical image watermarking schemes are image-content dependent and thus they may suffer from inconsistent embedding capacity and visual artefacts. To attain the image content-independent embedding property, we generalise RONI (region of non-interest, to the medical professionals) selection process and use it for embedding by utilising RONI's least significant bit-planes. The proposed scheme thus avoids the need for RONI segmentation that incurs capacity and computational overheads. Our experimental results demonstrate that the proposed embedding scheme performs consistently over a dataset of 370 medical images including their 7 different modalities. Experimental results also verify how the state-of-the-art reversible schemes can have an inconsistent performance for different modalities of medical images. Our scheme has MSSIM (Mean Structural SIMilarity) larger than 0.999 with a deterministically adaptable embedding capacity. Our proposed image-content independent embedding scheme is modality-wise consistent, and maintains a good image quality of RONI while keeping all other pixels in the image untouched. Thus, with an appropriate watermarking framework (i.e., with the considerations of watermark generation, embedding and detection functions), our proposed scheme can be viable for the multi-modality medical image applications and distant medical services such as teleradiology and eHealth.

  1. Local/non-local regularized image segmentation using graph-cuts: application to dynamic and multispectral MRI.

    PubMed

    Hanson, Erik A; Lundervold, Arvid

    2013-11-01

    Multispectral, multichannel, or time series image segmentation is important for image analysis in a wide range of applications. Regularization of the segmentation is commonly performed using local image information causing the segmented image to be locally smooth or piecewise constant. A new spatial regularization method, incorporating non-local information, was developed and tested. Our spatial regularization method applies to feature space classification in multichannel images such as color images and MR image sequences. The spatial regularization involves local edge properties, region boundary minimization, as well as non-local similarities. The method is implemented in a discrete graph-cut setting allowing fast computations. The method was tested on multidimensional MRI recordings from human kidney and brain in addition to simulated MRI volumes. The proposed method successfully segment regions with both smooth and complex non-smooth shapes with a minimum of user interaction.

  2. Image information content and patient exposure.

    PubMed

    Motz, J W; Danos, M

    1978-01-01

    Presently, patient exposure and x-ray tube kilovoltage are determined by image visibility requirements on x-ray film. With the employment of image-processing techniques, image visibility may be manipulated and the exposure may be determined only by the desired information content, i.e., by the required degree of tissue-density descrimination and spatial resolution. This work gives quantitative relationships between the image information content and the patient exposure, give estimates of the minimum exposures required for the detection of image signals associated with particular radiological exams. Also, for subject thickness larger than approximately 5 cm, the results show that the maximum information content may be obtained at a single kilovoltage and filtration with the simultaneous employment of image-enhancement and antiscatter techniques. This optimization may be used either to reduce the patient exposure or to increase the retrieved information.

  3. Investigating the Link Between Radiologists Gaze, Diagnostic Decision, and Image Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tourassi, Georgia; Voisin, Sophie; Paquit, Vincent C

    2013-01-01

    Objective: To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods: Gaze data and diagnostic decisions were collected from six radiologists who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Texture analysis was performed in mammographic regions that attracted radiologists attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results: By poolingmore » the data from all radiologists machine learning produced highly accurate predictive models linking image content, gaze, cognition, and error. Merging radiologists gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the radiologists diagnostic errors while confirming 96.2% of their correct diagnoses. The radiologists individual errors could be adequately predicted by modeling the behavior of their peers. However, personalized tuning appears to be beneficial in many cases to capture more accurately individual behavior. Conclusions: Machine learning algorithms combining image features with radiologists gaze data and diagnostic decisions can be effectively developed to recognize cognitive and perceptual errors associated with the diagnostic interpretation of mammograms.« less

  4. Interpretive versus noninterpretive content in top-selling radiology textbooks: what are we teaching medical students?

    PubMed

    Webb, Emily M; Vella, Maya; Straus, Christopher M; Phelps, Andrew; Naeger, David M

    2015-04-01

    There are little data as to whether appropriate, cost effective, and safe ordering of imaging examinations are adequately taught in US medical school curricula. We sought to determine the proportion of noninterpretive content (such as appropriate ordering) versus interpretive content (such as reading a chest x-ray) in the top-selling medical student radiology textbooks. We performed an online search to identify a ranked list of the six top-selling general radiology textbooks for medical students. Each textbook was reviewed including content in the text, tables, images, figures, appendices, practice questions, question explanations, and glossaries. Individual pages of text and individual images were semiquantitatively scored on a six-level scale as to the percentage of material that was interpretive versus noninterpretive. The predominant imaging modality addressed in each was also recorded. Descriptive statistical analysis was performed. All six books had more interpretive content. On average, 1.4 pages of text focused on interpretation for every one page focused on noninterpretive content. Seventeen images/figures were dedicated to interpretive skills for every one focused on noninterpretive skills. In all books, the largest proportion of text and image content was dedicated to plain films (51.2%), with computed tomography (CT) a distant second (16%). The content on radiographs (3.1:1) and CT (1.6:1) was more interpretive than not. The current six top-selling medical student radiology textbooks contain a preponderance of material teaching image interpretation compared to material teaching noninterpretive skills, such as appropriate imaging examination selection, rational utilization, and patient safety. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  5. Decoding the direction of imagined visual motion using 7 T ultra-high field fMRI

    PubMed Central

    Emmerling, Thomas C.; Zimmermann, Jan; Sorger, Bettina; Frost, Martin A.; Goebel, Rainer

    2016-01-01

    There is a long-standing debate about the neurocognitive implementation of mental imagery. One form of mental imagery is the imagery of visual motion, which is of interest due to its naturalistic and dynamic character. However, so far only the mere occurrence rather than the specific content of motion imagery was shown to be detectable. In the current study, the application of multi-voxel pattern analysis to high-resolution functional data of 12 subjects acquired with ultra-high field 7 T functional magnetic resonance imaging allowed us to show that imagery of visual motion can indeed activate the earliest levels of the visual hierarchy, but the extent thereof varies highly between subjects. Our approach enabled classification not only of complex imagery, but also of its actual contents, in that the direction of imagined motion out of four options was successfully identified in two thirds of the subjects and with accuracies of up to 91.3% in individual subjects. A searchlight analysis confirmed the local origin of decodable information in striate and extra-striate cortex. These high-accuracy findings not only shed new light on a central question in vision science on the constituents of mental imagery, but also show for the first time that the specific sub-categorical content of visual motion imagery is reliably decodable from brain imaging data on a single-subject level. PMID:26481673

  6. Using High-Content Imaging to Analyze Toxicological Tipping ...

    EPA Pesticide Factsheets

    Presentation at International Conference on Toxicological Alternatives & Translational Toxicology (ICTATT) held in China and Discussing the possibility of using High Content Imaging to Analyze Toxicological Tipping Points Slide Presentation at International Conference on Toxicological Alternatives & Translational Toxicology (ICTATT) held in China and Discussing the possibility of using High Content Imaging to Analyze Toxicological Tipping Points

  7. Exemplar-Based Image and Video Stylization Using Fully Convolutional Semantic Features.

    PubMed

    Zhu, Feida; Yan, Zhicheng; Bu, Jiajun; Yu, Yizhou

    2017-05-10

    Color and tone stylization in images and videos strives to enhance unique themes with artistic color and tone adjustments. It has a broad range of applications from professional image postprocessing to photo sharing over social networks. Mainstream photo enhancement softwares, such as Adobe Lightroom and Instagram, provide users with predefined styles, which are often hand-crafted through a trial-and-error process. Such photo adjustment tools lack a semantic understanding of image contents and the resulting global color transform limits the range of artistic styles it can represent. On the other hand, stylistic enhancement needs to apply distinct adjustments to various semantic regions. Such an ability enables a broader range of visual styles. In this paper, we first propose a novel deep learning architecture for exemplar-based image stylization, which learns local enhancement styles from image pairs. Our deep learning architecture consists of fully convolutional networks (FCNs) for automatic semantics-aware feature extraction and fully connected neural layers for adjustment prediction. Image stylization can be efficiently accomplished with a single forward pass through our deep network. To extend our deep network from image stylization to video stylization, we exploit temporal superpixels (TSPs) to facilitate the transfer of artistic styles from image exemplars to videos. Experiments on a number of datasets for image stylization as well as a diverse set of video clips demonstrate the effectiveness of our deep learning architecture.

  8. Endosonography guided management of pancreatic fluid collections

    PubMed Central

    Vilmann, Andreas S; Menachery, John; Tang, Shou-Jiang; Srinivasan, Indu; Vilmann, Peter

    2015-01-01

    The revised Atlanta classification of acute pancreatitis was adopted by international consensus, and is based on actual local and systemic determinants of disease severity. The local determinant is pancreatic necrosis (sterile or infected), and the systemic determinant is organ failure. Local complications of pancreatitis can include acute peri-pancreatic fluid collection, acute necrotic collection, pseudocyst formation, and walled-off necrosis. Interventional endoscopic ultrasound (EUS) has been increasing utilized in managing these local complications. After performing a PubMed search, the authors manually applied pre-defined inclusion criteria or a filter to identify publications relevant to EUS and pancreatic collections (PFCs). The authors then reviewed the utility, efficacy, and risks associated with using therapeutic EUS and involved EUS devices in treating PFCs. Due to the development and regulatory approval of improved and novel endoscopic devices specifically designed for transmural drainage of fluid and necrotic debris (access and patency devices), the authors predict continuing evolution in the management of PFCs. We believe that EUS will become an indispensable part of procedures used to diagnose PFCs and perform image-guided interventions. After draining a PFC, the amount of tissue necrosis is the most important predictor of a successful outcome. Hence, it seems logical to classify these collections based on their percentage of necrotic component or debris present when viewed by imaging methods or EUS. Finally, the authors propose an algorithm for managing fluid collections based on their size, location, associated symptoms, internal echogenic patterns, and content. PMID:26557008

  9. Vertebral hemangioma: an important differential in the evaluation of locally aggressive spinal lesions.

    PubMed

    Alexander, Justin; Meir, Adam; Vrodos, Nikitas; Yau, Yun-Hom

    2010-08-15

    A case report and a discussion of recent published data. To highlight the importance of vertebral hemangioma (VH) as a differential diagnosis in the evaluation of locally aggressive spinal lesions. VH commonly occur as incidental findings, however, locally aggressive VH have been described. Difficulties in diagnosing these lesions are well reported and relate to changes in fat content causing uncharacteristic appearances on imaging. The management options for these lesions include a combination of observation, embolization, sclerotherapy, surgical decompression, or stabilization and radiotherapy. A 45-year-old patient who was previously well presented with back pain and rapidly progressive paraparesis. Imaging confirmed the presence of an extensive lesion centered within the right T3 vertebral pedicle with intrusion into the spinal canal. Urgent surgical decompression was undertaken and was complicated by extensive intraoperative hemorrhage requiring massive transfusion. Histologically, the lesion was shown to be a cavernous VH with no evidence of malignancy. Following radiation oncology review, he was offered adjuvant radiotherapy to minimize the risks of recurrence. He achieved a near full neurologic recovery within 2 weeks and had a full recovery by 12 months. VH should be considered in the evaluation of locally aggressive spinal lesions. Angiography is a useful adjunct in the evaluation of these lesions, both as a diagnostic and therapeutic tool. After diagnosed correctly a wide range of treatment options exist that may prevent the patient from undergoing major surgical resection and reconstruction procedures, which may be associated with high rates of morbidity.

  10. An Open Source Agenda for Research Linking Text and Image Content Features.

    ERIC Educational Resources Information Center

    Goodrum, Abby A.; Rorvig, Mark E.; Jeong, Ki-Tai; Suresh, Chitturi

    2001-01-01

    Proposes methods to utilize image primitives to support term assignment for image classification. Proposes to release code for image analysis in a common tool set for other researchers to use. Of particular focus is the expansion of work by researchers in image indexing to include image content-based feature extraction capabilities in their work.…

  11. Content-based retrieval of historical Ottoman documents stored as textual images.

    PubMed

    Saykol, Ediz; Sinop, Ali Kemal; Güdükbay, Ugur; Ulusoy, Ozgür; Cetin, A Enis

    2004-03-01

    There is an accelerating demand to access the visual content of documents stored in historical and cultural archives. Availability of electronic imaging tools and effective image processing techniques makes it feasible to process the multimedia data in large databases. In this paper, a framework for content-based retrieval of historical documents in the Ottoman Empire archives is presented. The documents are stored as textual images, which are compressed by constructing a library of symbols occurring in a document, and the symbols in the original image are then replaced with pointers into the codebook to obtain a compressed representation of the image. The features in wavelet and spatial domain based on angular and distance span of shapes are used to extract the symbols. In order to make content-based retrieval in historical archives, a query is specified as a rectangular region in an input image and the same symbol-extraction process is applied to the query region. The queries are processed on the codebook of documents and the query images are identified in the resulting documents using the pointers in textual images. The querying process does not require decompression of images. The new content-based retrieval framework is also applicable to many other document archives using different scripts.

  12. Human Resource Local Content in Ghana's Upstream Petroleum Industry

    NASA Astrophysics Data System (ADS)

    Benin, Papa

    Enactment of Ghana's Petroleum (Local Content and Local Participation) Regulations, 2013 (L.I. 2204) was intended to regulate the percentage of local products, personnel, financing, and goods and services rendered within Ghana's upstream petroleum industry value chain. Five years after the inception of Ghana's upstream oil and gas industry, a gap is evident between the requirements of L.I. 2204 and professional practice. Drawing on Lewin's change theory, a cross-sectional study was conducted to examine the extent of differences between the prevailing human resource local content and the requirements of L.I. 2204 in Ghana's upstream petroleum industry. The extent to which training acquired by indigenous Ghanaians seeking jobs in Ghana's oil fields affects the prevalent local content in its upstream petroleum industry was also examined. Survey data were collected from 97 management, technical, and other staff in 2 multinational petroleum companies whose oil and gas development plans have been approved by the Petroleum Commission of Ghana. To answer the research questions and test their hypotheses, one-way ANOVA was performed with staff category (management, technical, and other) as the independent variable and prevalent local content as the dependent variable. Results indicated that prevailing local content in Ghana's upstream petroleum industry meets the requirements of L.I. 2204. Further, training acquired by indigenous Ghanaians seeking jobs in Ghana's oil fields affects the prevalent local content in its offshore petroleum industry. Findings may encourage leaders within multinational oil companies and the Petroleum Commission of Ghana to organize educational seminars that equip indigenous Ghanaians with specialized skills for working in Ghana's upstream petroleum industry.

  13. Simultaneous total electron content and all-sky camera measurements of an auroral arc

    NASA Astrophysics Data System (ADS)

    Kintner, P. M.; Kil, H.; Deehr, C.; Schuck, P.

    2002-07-01

    We present an example of Global Positioning System (GPS) derived total electron content (TEC) and all-sky camera (ASC) images that show increases of TEC by ~10 × 1016 electrons m-2 (10 TEC units) occurring simultaneously with auroral light in ASC images. The TEC example appears to be an E region density enhancement produced by two discrete auroral arcs occurring in the late morning auroral oval at 1000 LT. This suggests that GPS signal TEC measurements can be used to detect individual auroral arcs and that individual discrete auroral arcs are responsible for some high-latitude phase scintillations. The specific auroral feature detected was a poleward moving auroral form believed to occur in the polar cap where the ionosphere is convecting antisunward. The magnitude of the rate of change of TEC (dTEC/dt) is comparable to that previously reported. However, the timescales associated with the event, the order of 1 min, suggest that the data sampling technique commonly used by chain GPS TEC receivers (averaging and time decimation) will undersample E region TEC perturbations produced by active auroral displays. The localized nature of this example implies that L1 ranging errors of at least 1.6 m will be introduced by auroral arcs into systems relying on differential GPS for navigation or augmentation. Although the TEC and auroral arcs presented herein occurred in the late morning auroral oval, we expect that the effects of discrete auroral arcs on GPS TEC and subsequent ranging errors should occur at all local times. Furthermore, GPS receivers can be used to detect individual discrete arcs.

  14. Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications.

    PubMed

    Sivasubramanian, Kathyayini; Mathiyazhakan, Malathi; Wiraja, Christian; Upputuri, Paul Kumar; Xu, Chenjie; Pramanik, Manojit

    2017-04-01

    Photoacoustic imaging has become an emerging tool for theranostic applications. Not only does it help in

  15. Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications

    NASA Astrophysics Data System (ADS)

    Sivasubramanian, Kathyayini; Mathiyazhakan, Malathi; Wiraja, Christian; Upputuri, Paul Kumar; Xu, Chenjie; Pramanik, Manojit

    2017-04-01

    Photoacoustic imaging has become an emerging tool for theranostic applications. Not only does it help in in vivo, noninvasive imaging of biological structures at depths but it can also be used for drug release and therapeutic applications. We explore near-infrared light-sensitive liposomes coated with gold nanostars (AuNSs) for both imaging and drug release applications using a photoacoustic imaging system. Being amphiphilic, the liposomes lipid bilayer and the aqueous core enable encapsulation of both hydrophobic and hydrophilic drugs. The AuNSs on the surface of the liposomes act as photon absorbers due to their intrinsic surface plasmon resonance. Upon excitation by laser light at specific wavelength, AuNSs facilitate rapid release of the contents encapsulated in the liposomes due to local heating and pressure wave formation (photoacoustic wave). Herein, we describe the design and optimization of the AuNSs-coated liposomes and demonstrate the release of both hydrophobic and hydrophilic model drugs (paclitaxel and calcein, respectively) through laser excitation at near-infrared wavelength. The use of AuNSs-coated liposomes as contrast agents for photoacoustic imaging is also explored with tissue phantom experiments. In comparison to blood, the AuNSs-coated liposomes have better contrast (approximately two times) at 2-cm imaging depth.

  16. The impact of image-size manipulation and sugar content on children's cereal consumption.

    PubMed

    Neyens, E; Aerts, G; Smits, T

    2015-12-01

    Previous studies have demonstrated that portion sizes and food energy-density influence children's eating behavior. However, the potential effects of front-of-pack image-sizes of serving suggestions and sugar content have not been tested. Using a mixed experimental design among young children, this study examines the effects of image-size manipulation and sugar content on cereal and milk consumption. Children poured and consumed significantly more cereal and drank significantly more milk when exposed to a larger sized image of serving suggestion as compared to a smaller image-size. Sugar content showed no main effects. Nevertheless, cereal consumption only differed significantly between small and large image-sizes when sugar content was low. An advantage of this study was the mundane setting in which the data were collected: a school's dining room instead of an artificial lab. Future studies should include a control condition, with children eating by themselves to reflect an even more natural context. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The Mathematics of Four or More N-Localizers for Stereotactic Neurosurgery.

    PubMed

    Brown, Russell A

    2015-10-13

    The mathematics that were originally developed for the N-localizer apply to three N-localizers that produce three sets of fiducials in a tomographic image. Some applications of the N-localizer use four N-localizers that produce four sets of fiducials; however, the mathematics that apply to three sets of fiducials do not apply to four sets of fiducials. This article presents mathematics that apply to four or more sets of fiducials that all lie within one planar tomographic image. In addition, these mathematics are extended to apply to four or more fiducials that do not all lie within one planar tomographic image, as may be the case with magnetic resonance (MR) imaging where a volume is imaged instead of a series of planar tomographic images. Whether applied to a planar image or a volume image, the mathematics of four or more N-localizers provide a statistical measure of the quality of the image data that may be influenced by factors, such as the nonlinear distortion of MR images.

  18. Short-term EEG dynamics and neural generators evoked by navigational images

    PubMed Central

    Leroy, Axelle; Cevallos, Carlos; Cebolla, Ana-Maria; Caharel, Stéphanie; Dan, Bernard

    2017-01-01

    The ecological environment offered by virtual reality is primarily supported by visual information. The different image contents and their rhythmic presentation imply specific bottom-up and top-down processing. Because these processes already occur during passive observation we studied the brain responses evoked by the presentation of specific 3D virtual tunnels with respect to 2D checkerboard. For this, we characterized electroencephalograhy dynamics (EEG), the evoked potentials and related neural generators involved in various visual paradigms. Time-frequency analysis showed modulation of alpha-beta oscillations indicating the presence of stronger prediction and after-effects of the 3D-tunnel with respect to the checkerboard. Whatever the presented image, the generators of the P100 were situated bilaterally in the occipital cortex (BA18, BA19) and in the right inferior temporal cortex (BA20). In checkerboard but not 3D-tunnel presentation, the left fusiform gyrus (BA37) was additionally recruited. P200 generators were situated in the temporal cortex (BA21) and the cerebellum (lobule VI/Crus I) specifically for the checkerboard while the right parahippocampal gyrus (BA36) and the cerebellum (lobule IV/V and IX/X) were involved only during the 3D-tunnel presentation. For both type of image, P300 generators were localized in BA37 but also in BA19, the right BA21 and the cerebellar lobule VI for only the checkerboard and the left BA20-BA21 for only the 3D-tunnel. Stronger P300 delta-theta oscillations recorded in this later situation point to a prevalence of the effect of changing direction over the proper visual content of the 3D-tunnel. The parahippocampal gyrus (BA36) implicated in navigation was also identified when the 3D-tunnel was compared to their scrambled versions, highlighting an action-oriented effect linked to navigational content. PMID:28632774

  19. Quantitative MR Imaging of Hepatic Steatosis: Validation in Ex Vivo Human Livers

    PubMed Central

    Bannas, Peter; Kramer, Harald; Hernando, Diego; Agni, Rashmi; Cunningham, Ashley M.; Mandal, Rakesh; Motosugi, Utaroh; Sharma, Samir D.; del Rio, Alejandro Munoz; Fernandez, Luis; Reeder, Scott B.

    2015-01-01

    Emerging magnetic resonance imaging (MRI) biomarkers of hepatic steatosis have demonstrated tremendous promise for accurate quantification of hepatic triglyceride concentration. These methods quantify the “proton density fat-fraction” (PDFF), which reflects the concentration of triglycerides in tissue. Previous in vivo studies have compared MRI-PDFF with histologic steatosis grading for assessment of hepatic steatosis. However, the correlation of MRI-PDFF with the underlying hepatic triglyceride content remained unknown. The aim of this ex vivo study was to validate the accuracy of MRI-PDFF as an imaging biomarker of hepatic steatosis. Using ex vivo human livers, we compared MRI-PDFF with magnetic resonance spectroscopy-PDFF (MRS-PDFF), biochemical triglyceride extraction and histology as three independent reference standards. A secondary aim was to compare the precision of MRI-PDFF relative to biopsy for the quantification of hepatic steatosis. MRI-PDFF was prospectively performed at 1.5T in 13 explanted human livers. We performed co-localized paired evaluation of liver fat content in all nine Couinaud segments using single-voxel MRS-PDFF (n=117), tissue wedges for biochemical triglyceride extraction (n=117), and five core biopsies performed in each segment for histologic grading (n=585). Accuracy of MRI-PDFF was assessed through linear regression with MRS-PDFF, triglyceride extraction and histology. Intra-observer agreement, inter-observer agreement and repeatability of MRI-PDFF and histologic grading were assessed through Bland-Altman analyses. MRI-PDFF showed an excellent correlation with MRS-PDFF (r=0.984; CI: 0.978–0.989) and strong correlation with histology (r=0.850; CI: 0.791–0.894) and triglyceride extraction (r=0.871; CI: 0.818–0.909). Intra-observer agreement, inter-observer agreement and repeatability showed a significantly smaller variance for MRI-PDFF than for histologic steatosis grading (all p<0.001). Conclusion MRI-PDFF is an accurate, precise and reader-independent non-invasive imaging biomarker of liver triglyceride content, capable of steatosis quantification over the entire liver. PMID:26224591

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Emily B.; Williams, Angela; Heidel, Eric

    Highlights: •Polybasic peptide p5 binds human light chain amyloid extracts. •The binding of p5 with amyloid involves both glycosaminoglycans and fibrils. •Heparinase treatment led to a correlation between p5 binding and fibril content. •p5 binding to AL amyloid requires electrostatic interactions. -- Abstract: In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, theremore » are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as therapeutics for the treatment of amyloid diseases.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchi, Luciana; Efremova, Boryana; Hodge, Paul

    We present a comprehensive study of young stellar populations in six dwarf galaxies in or near the Local Group: Phoenix, Pegasus, Sextans A, Sextans B, WLM, and NGC 6822. Their star-forming regions, selected from GALEX wide-field far-UV imaging, were imaged (at sub-pc resolution) with the WFPC2 camera on board the Hubble Space Telescope (HST) in six bandpasses from far-UV to I to detect and characterize their hot massive star content. This study is part of HST treasury survey program HST-GO-11079; the general data characteristics and reduction procedures are detailed in this paper and results are presented for the first sixmore » galaxies. From a total of 180 HST images, we provide catalogs of the multi-band stellar photometry and derive the physical parameters of massive stars by analyzing it with model-atmosphere colors. We use the results to infer ages, number of massive stars, extinction, and spatial characteristics of the young stellar populations. The hot massive star content varies largely across our galaxy sample, from an inconspicuous presence in Phoenix and Pegasus to the highest relative abundance of young massive stars in Sextans A and WLM. Albeit to a largely varying extent, most galaxies show a very young population (a few Myrs, except for Phoenix), and older ones (a few 10{sup 7} years in Sextans A, Sextans B, NGC 6822, and WLM, {approx}10{sup 8}yr in Phoenix and Pegasus), suggesting discrete bursts of recent star formation in the mapped regions. The hot massive star content (indicative of the young populations) broadly correlates with the total galaxy stellar mass represented by the integrated optical magnitude, although it varies by a factor of {approx}3 between Sextans A, WLM, and Sextans B, which have similar M{sub V}. Extinction properties are also derived.« less

  2. System for pathology categorization and retrieval in chest radiographs

    NASA Astrophysics Data System (ADS)

    Avni, Uri; Greenspan, Hayit; Konen, Eli; Sharon, Michal; Goldberger, Jacob

    2011-03-01

    In this paper we present an overview of a system we have been developing for the past several years for efficient image categorization and retrieval in large radiograph archives. The methodology is based on local patch representation of the image content, using a bag of visual words approach and similarity-based categorization with a kernel based SVM classifier. We show an application to pathology-level categorization of chest x-ray data, the most popular examination in radiology. Our study deals with pathology detection and identification of individual pathologies including right and left pleural effusion, enlarged heart and cases of enlarged mediastinum. The input from a radiologist provided a global label for the entire image (healthy/pathology), and the categorization was conducted on the entire image, with no need for segmentation algorithms or any geometrical rules. An automatic diagnostic-level categorization, even on such an elementary level as healthy vs pathological, provides a useful tool for radiologists on this popular and important examination. This is a first step towards similarity-based categorization, which has a major clinical implications for computer-assisted diagnostics.

  3. Structural and Functional Magnetic Resonance Imaging of the Cerebellum: Considerations for Assessing Cerebellar Ataxias.

    PubMed

    Deistung, Andreas; Stefanescu, Maria R; Ernst, Thomas M; Schlamann, Marc; Ladd, Mark E; Reichenbach, Jürgen R; Timmann, Dagmar

    2016-02-01

    Magnetic resonance imaging (MRI) of the brain is of high interest for diagnosing and understanding degenerative ataxias. Here, we present state-of-the-art MRI methods to characterize structural alterations of the cerebellum and introduce initial experiments to show abnormalities in the cerebellar nuclei. Clinically, T1-weighted MR images are used to assess atrophy of the cerebellar cortex, the brainstem, and the spinal cord, whereas T2-weighted and PD-weighted images are typically employed to depict potential white matter lesions that may be associated with certain types of ataxias. More recently, attention has also focused on the characterization of the cerebellar nuclei, which are discernible on spatially highly resolved iron-sensitive MR images due to their relatively high iron content, including T2 (*)-weighted images, susceptibility-weighted images (SWI), effective transverse relaxation rate (R2 (*)) maps, and quantitative susceptibility maps (QSM). Among these iron-sensitive techniques, QSM reveals the best contrast between cerebellar nuclei and their surroundings. In particular, the gyrification of the dentate nuclei is prominently depicted, even at the clinically widely available field strength of 3 T. The linear relationship between magnetic susceptibility and local iron content allows for determination of iron deposition in cerebellar nuclei non-invasively. The increased signal-to-noise ratio of ultrahigh-field MRI (B0 ≥ 7 T) and advances in spatial normalization methods enable functional MRI (fMRI) at the level of the cerebellar cortex and cerebellar nuclei. Data from initial fMRI studies are presented in three common forms of hereditary ataxias (Friedreich's ataxia, spinocerebellar ataxia type 3, and spinocerebellar ataxia type 6). Characteristic changes in the fMRI signal are discussed in the light of histopathological data and current knowledge of the underlying physiology of the fMRI signal in the cerebellum.

  4. Method for the reduction of image content redundancy in large image databases

    DOEpatents

    Tobin, Kenneth William; Karnowski, Thomas P.

    2010-03-02

    A method of increasing information content for content-based image retrieval (CBIR) systems includes the steps of providing a CBIR database, the database having an index for a plurality of stored digital images using a plurality of feature vectors, the feature vectors corresponding to distinct descriptive characteristics of the images. A visual similarity parameter value is calculated based on a degree of visual similarity between features vectors of an incoming image being considered for entry into the database and feature vectors associated with a most similar of the stored images. Based on said visual similarity parameter value it is determined whether to store or how long to store the feature vectors associated with the incoming image in the database.

  5. Automated Slide Scanning and Segmentation in Fluorescently-labeled Tissues Using a Widefield High-content Analysis System.

    PubMed

    Poon, Candice C; Ebacher, Vincent; Liu, Katherine; Yong, Voon Wee; Kelly, John James Patrick

    2018-05-03

    Automated slide scanning and segmentation of fluorescently-labeled tissues is the most efficient way to analyze whole slides or large tissue sections. Unfortunately, many researchers spend large amounts of time and resources developing and optimizing workflows that are only relevant to their own experiments. In this article, we describe a protocol that can be used by those with access to a widefield high-content analysis system (WHCAS) to image any slide-mounted tissue, with options for customization within pre-built modules found in the associated software. Not originally intended for slide scanning, the steps detailed in this article make it possible to acquire slide scanning images in the WHCAS which can be imported into the associated software. In this example, the automated segmentation of brain tumor slides is demonstrated, but the automated segmentation of any fluorescently-labeled nuclear or cytoplasmic marker is possible. Furthermore, there are a variety of other quantitative software modules including assays for protein localization/translocation, cellular proliferation/viability/apoptosis, and angiogenesis that can be run. This technique will save researchers time and effort and create an automated protocol for slide analysis.

  6. High content analysis of differentiation and cell death in human adipocytes.

    PubMed

    Doan-Xuan, Quang Minh; Sarvari, Anitta K; Fischer-Posovszky, Pamela; Wabitsch, Martin; Balajthy, Zoltan; Fesus, Laszlo; Bacso, Zsolt

    2013-10-01

    Understanding adipocyte biology and its homeostasis is in the focus of current obesity research. We aimed to introduce a high-content analysis procedure for directly visualizing and quantifying adipogenesis and adipoapoptosis by laser scanning cytometry (LSC) in a large population of cell. Slide-based image cytometry and image processing algorithms were used and optimized for high-throughput analysis of differentiating cells and apoptotic processes in cell culture at high confluence. Both preadipocytes and adipocytes were simultaneously scrutinized for lipid accumulation, texture properties, nuclear condensation, and DNA fragmentation. Adipocyte commitment was found after incubation in adipogenic medium for 3 days identified by lipid droplet formation and increased light absorption, while terminal differentiation of adipocytes occurred throughout day 9-14 with characteristic nuclear shrinkage, eccentric nuclei localization, chromatin condensation, and massive lipid deposition. Preadipocytes were shown to be more prone to tumor necrosis factor alpha (TNFα)-induced apoptosis compared to mature adipocytes. Importantly, spontaneous DNA fragmentation was observed at early stage when adipocyte commitment occurs. This DNA damage was independent from either spontaneous or induced apoptosis and probably was part of the differentiation program. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  7. Corneal tissue water content mapping with THz imaging: preliminary clinical results (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Bajwa, Neha; Deng, Sophie X.; Taylor, Zachary; Grundfest, Warren

    2016-03-01

    Well-regulated corneal water content is critical for ocular health and function and can be adversely affected by a number of diseases and injuries. Current clinical practice limits detection of unhealthy corneal water content levels to central corneal thickness measurements performed by ultrasound or optical coherence tomography. Trends revealing increasing or decreasing corneal thickness are fair indicators of corneal water content by individual measurements are highly inaccurate due to the poorly understood relationship between corneal thickness and natural physiologic variation. Recently the utility of THz imaging to accuarately measure corneal water content has been explored on with rabbit models. Preliminary experiments revealed that contact with dielectric windows confounded imaging data and made it nearly impossible to deconvolve thickness variations due to contact from thickness variations due to water content variation. A follow up study with a new optical design allowed the acquisition of rabbit data and the results suggest that the observed, time varying contrast was due entirely to the water dynamics of the cornea. This paper presents the first ever in vivo images of human cornea. Five volunteers with healthy cornea were recruited and their eyes were imaged three times over the course of a few minutes with our novel imaging system. Noticeable changes in corneal reflectivity were observed and attributed to the drying of the tear film. The results suggest that clinically compatible, non-contact corneal imaging is feasible and indicate that signal acquired from non-contact imaging of the cornea is a complicated coupling of stromal water content and tear film.

  8. Annotating image ROIs with text descriptions for multimodal biomedical document retrieval

    NASA Astrophysics Data System (ADS)

    You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-01-01

    Regions of interest (ROIs) that are pointed to by overlaid markers (arrows, asterisks, etc.) in biomedical images are expected to contain more important and relevant information than other regions for biomedical article indexing and retrieval. We have developed several algorithms that localize and extract the ROIs by recognizing markers on images. Cropped ROIs then need to be annotated with contents describing them best. In most cases accurate textual descriptions of the ROIs can be found from figure captions, and these need to be combined with image ROIs for annotation. The annotated ROIs can then be used to, for example, train classifiers that separate ROIs into known categories (medical concepts), or to build visual ontologies, for indexing and retrieval of biomedical articles. We propose an algorithm that pairs visual and textual ROIs that are extracted from images and figure captions, respectively. This algorithm based on dynamic time warping (DTW) clusters recognized pointers into groups, each of which contains pointers with identical visual properties (shape, size, color, etc.). Then a rule-based matching algorithm finds the best matching group for each textual ROI mention. Our method yields a precision and recall of 96% and 79%, respectively, when ground truth textual ROI data is used.

  9. Store-and-feedforward adaptive gaming system for hand-finger motion tracking in telerehabilitation.

    PubMed

    Lockery, Daniel; Peters, James F; Ramanna, Sheela; Shay, Barbara L; Szturm, Tony

    2011-05-01

    This paper presents a telerehabilitation system that encompasses a webcam and store-and-feedforward adaptive gaming system for tracking finger-hand movement of patients during local and remote therapy sessions. Gaming-event signals and webcam images are recorded as part of a gaming session and then forwarded to an online healthcare content management system (CMS) that separates incoming information into individual patient records. The CMS makes it possible for clinicians to log in remotely and review gathered data using online reports that are provided to help with signal and image analysis using various numerical measures and plotting functions. Signals from a 6 degree-of-freedom magnetic motion tracking system provide a basis for video-game sprite control. The MMT provides a path for motion signals between common objects manipulated by a patient and a computer game. During a therapy session, a webcam that captures images of the hand together with a number of performance metrics provides insight into the quality, efficiency, and skill of a patient.

  10. Adaptation to implied tilt: extensive spatial extrapolation of orientation gradients

    PubMed Central

    Roach, Neil W.; Webb, Ben S.

    2013-01-01

    To extract the global structure of an image, the visual system must integrate local orientation estimates across space. Progress is being made toward understanding this integration process, but very little is known about whether the presence of structure exerts a reciprocal influence on local orientation coding. We have previously shown that adaptation to patterns containing circular or radial structure induces tilt-aftereffects (TAEs), even in locations where the adapting pattern was occluded. These spatially “remote” TAEs have novel tuning properties and behave in a manner consistent with adaptation to the local orientation implied by the circular structure (but not physically present) at a given test location. Here, by manipulating the spatial distribution of local elements in noisy circular textures, we demonstrate that remote TAEs are driven by the extrapolation of orientation structure over remarkably large regions of visual space (more than 20°). We further show that these effects are not specific to adapting stimuli with polar orientation structure, but require a gradient of orientation change across space. Our results suggest that mechanisms of visual adaptation exploit orientation gradients to predict the local pattern content of unfilled regions of space. PMID:23882243

  11. Incremental concept learning with few training examples and hierarchical classification

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Eendebak, Pieter T.; Schutte, Klamer; Azzopardi, George; Burghouts, Gertjan J.

    2015-10-01

    Object recognition and localization are important to automatically interpret video and allow better querying on its content. We propose a method for object localization that learns incrementally and addresses four key aspects. Firstly, we show that for certain applications, recognition is feasible with only a few training samples. Secondly, we show that novel objects can be added incrementally without retraining existing objects, which is important for fast interaction. Thirdly, we show that an unbalanced number of positive training samples leads to biased classifier scores that can be corrected by modifying weights. Fourthly, we show that the detector performance can deteriorate due to hard-negative mining for similar or closely related classes (e.g., for Barbie and dress, because the doll is wearing a dress). This can be solved by our hierarchical classification. We introduce a new dataset, which we call TOSO, and use it to demonstrate the effectiveness of the proposed method for the localization and recognition of multiple objects in images.

  12. Data Mining and Knowledge Discovery tools for exploiting big Earth-Observation data

    NASA Astrophysics Data System (ADS)

    Espinoza Molina, D.; Datcu, M.

    2015-04-01

    The continuous increase in the size of the archives and in the variety and complexity of Earth-Observation (EO) sensors require new methodologies and tools that allow the end-user to access a large image repository, to extract and to infer knowledge about the patterns hidden in the images, to retrieve dynamically a collection of relevant images, and to support the creation of emerging applications (e.g.: change detection, global monitoring, disaster and risk management, image time series, etc.). In this context, we are concerned with providing a platform for data mining and knowledge discovery content from EO archives. The platform's goal is to implement a communication channel between Payload Ground Segments and the end-user who receives the content of the data coded in an understandable format associated with semantics that is ready for immediate exploitation. It will provide the user with automated tools to explore and understand the content of highly complex images archives. The challenge lies in the extraction of meaningful information and understanding observations of large extended areas, over long periods of time, with a broad variety of EO imaging sensors in synergy with other related measurements and data. The platform is composed of several components such as 1.) ingestion of EO images and related data providing basic features for image analysis, 2.) query engine based on metadata, semantics and image content, 3.) data mining and knowledge discovery tools for supporting the interpretation and understanding of image content, 4.) semantic definition of the image content via machine learning methods. All these components are integrated and supported by a relational database management system, ensuring the integrity and consistency of Terabytes of Earth Observation data.

  13. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.

    PubMed

    Hu, Leland S; Ning, Shuluo; Eschbacher, Jennifer M; Gaw, Nathan; Dueck, Amylou C; Smith, Kris A; Nakaji, Peter; Plasencia, Jonathan; Ranjbar, Sara; Price, Stephen J; Tran, Nhan; Loftus, Joseph; Jenkins, Robert; O'Neill, Brian P; Elmquist, William; Baxter, Leslie C; Gao, Fei; Frakes, David; Karis, John P; Zwart, Christine; Swanson, Kristin R; Sarkaria, Jann; Wu, Teresa; Mitchell, J Ross; Li, Jing

    2015-01-01

    Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). Multi-parametric MRI and texture analysis can help characterize and visualize GBM's spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.

  14. Spatial mapping of mineralization with manganese-enhanced magnetic resonance imaging

    USGS Publications Warehouse

    Chesnick, I.E.; Centeno, J.A.; Todorov, T.I.; Koenig, A.E.; Potter, K.

    2011-01-01

    Paramagnetic manganese can be employed as a calcium surrogate to sensitize the magnetic resonance imaging (MRI) technique to the processing of calcium during the bone formation process. At low doses, after just 48h of exposure, osteoblasts take up sufficient quantities of manganese to cause marked reductions in the water proton T1 values compared with untreated cells. After just 24h of exposure, 25??M MnCl2 had no significant effect on cell viability. However, for mineralization studies 100??M MnCl2 was used to avoid issues of manganese depletion in calvarial organ cultures and a post-treatment delay of 48h was implemented to ensure that manganese ions taken up by osteoblasts is deposited as mineral. All specimens were identified by their days in vitro (DIV). Using inductively coupled plasma optical emission spectroscopy (ICP-OES), we confirmed that Mn-treated calvariae continued to deposit mineral in culture and that the mineral composition was similar to that of age-matched controls. Notably there was a significant decrease in the manganese content of DIV18 compared with DIV11 specimens, possibly relating to less manganese sequestration as a result of mineral maturation. More importantly, quantitative T1 maps of Mn-treated calvariae showed localized reductions in T1 values over the calvarial surface, indicative of local variations in the surface manganese content. This result was verified with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We also found that ??R1 values, calculated by subtracting the relaxation rate of Mn-treated specimens from the relaxation rate of age-matched controls, were proportional to the surface manganese content and thus mineralizing activity. From this analysis, we established that mineralization of DIV4 and DIV11 specimens occurred in all tissue zones, but was reduced for DIV18 specimens because of mineral maturation with less manganese sequestration. In DIV25 specimens, active mineralization was observed for the expanding superficial surface and ??R1 values were increased due to the mineralization of small, previously unmineralized areas. Our findings support the use of manganese-enhanced MRI (MEMRI) to study well-orchestrated mineralizing events that occur during embryonic development. In conclusion, MEMRI is more sensitive to the study of mineralization than traditional imaging approaches. ?? 2011.

  15. Simple video format for mobile applications

    NASA Astrophysics Data System (ADS)

    Smith, John R.; Miao, Zhourong; Li, Chung-Sheng

    2000-04-01

    With the advent of pervasive computing, there is a growing demand for enabling multimedia applications on mobile devices. Large numbers of pervasive computing devices, such as personal digital assistants (PDAs), hand-held computer (HHC), smart phones, portable audio players, automotive computing devices, and wearable computers are gaining access to online information sources. However, the pervasive computing devices are often constrained along a number of dimensions, such as processing power, local storage, display size and depth, connectivity, and communication bandwidth, which makes it difficult to access rich image and video content. In this paper, we report on our initial efforts in designing a simple scalable video format with low-decoding and transcoding complexity for pervasive computing. The goal is to enable image and video access for mobile applications such as electronic catalog shopping, video conferencing, remote surveillance and video mail using pervasive computing devices.

  16. Discrimination of rock classes and alteration products in southwestern Saudi Arabia with computer-enhanced LANDSAT data

    NASA Technical Reports Server (NTRS)

    Blodget, H. W.; Gunther, F. J.; Podwysocki, M. H.

    1978-01-01

    Digital LANDSAT MSS data for an area in the southwestern Arabian Shield were computer-enhanced to improve discrimination of rock classes, and recognition of gossans associated with massive sulphide deposits. The test area is underlain by metamorphic rocks that are locally intruded by granites; these are partly overlain by sandstones. The test area further includes the Wadi Wassat and Wadi Qatan massive sulphide deposits, which are commonly capped by gossans of ferric oxides, silica, and carbonates. Color patterns and boundaries on contrast-stretched ratio color composite imagery, and on complementary images constructed using principal component and canonical analyses transformations, correspond exceptionally well to 1:100,000 scale field maps. A qualitative visual comparison of information content showed that the ratio enhancement provided the best overall image for identification of rock type and alteration products.

  17. Nuclear DNA content variation in life history phases of the Bonnemasoniaceae (Rhodophyta).

    PubMed

    Salvador Soler, Noemi; Gómez Garreta, Amelia; Ribera Siguan, Ma Antonia; Kapraun, Donald F

    2014-01-01

    Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-localizing fluorochrome DAPI (4', 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes (spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases range from 1.15-1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis, as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an ancestral genome.

  18. Local structure-based image decomposition for feature extraction with applications to face recognition.

    PubMed

    Qian, Jianjun; Yang, Jian; Xu, Yong

    2013-09-01

    This paper presents a robust but simple image feature extraction method, called image decomposition based on local structure (IDLS). It is assumed that in the local window of an image, the macro-pixel (patch) of the central pixel, and those of its neighbors, are locally linear. IDLS captures the local structural information by describing the relationship between the central macro-pixel and its neighbors. This relationship is represented with the linear representation coefficients determined using ridge regression. One image is actually decomposed into a series of sub-images (also called structure images) according to a local structure feature vector. All the structure images, after being down-sampled for dimensionality reduction, are concatenated into one super-vector. Fisher linear discriminant analysis is then used to provide a low-dimensional, compact, and discriminative representation for each super-vector. The proposed method is applied to face recognition and examined using our real-world face image database, NUST-RWFR, and five popular, publicly available, benchmark face image databases (AR, Extended Yale B, PIE, FERET, and LFW). Experimental results show the performance advantages of IDLS over state-of-the-art algorithms.

  19. Complex Event Processing for Content-Based Text, Image, and Video Retrieval

    DTIC Science & Technology

    2016-06-01

    NY): Wiley- Interscience; 2000. Feldman R, Sanger J. The text mining handbook: advanced approaches in analyzing unstructured data. New York (NY...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval

  20. Content metamorphosis in synthetic holography

    NASA Astrophysics Data System (ADS)

    Desbiens, Jacques

    2013-02-01

    A synthetic hologram is an optical system made of hundreds of images amalgamated in a structure of holographic cells. Each of these images represents a point of view on a three-dimensional space which makes us consider synthetic holography as a multiple points of view perspective system. In the composition of a computer graphics scene for a synthetic hologram, the field of view of the holographic image can be divided into several viewing zones. We can attribute these divisions to any object or image feature independently and operate different transformations on image content. In computer generated holography, we tend to consider content variations as a continuous animation much like a short movie. However, by composing sequential variations of image features in relation with spatial divisions, we can build new narrative forms distinct from linear cinematographic narration. When observers move freely and change their viewing positions, they travel from one field of view division to another. In synthetic holography, metamorphoses of image content are within the observer's path. In all imaging Medias, the transformation of image features in synchronisation with the observer's position is a rare occurrence. However, this is a predominant characteristic of synthetic holography. This paper describes some of my experimental works in the development of metamorphic holographic images.

  1. QBIC project: querying images by content, using color, texture, and shape

    NASA Astrophysics Data System (ADS)

    Niblack, Carlton W.; Barber, Ron; Equitz, Will; Flickner, Myron D.; Glasman, Eduardo H.; Petkovic, Dragutin; Yanker, Peter; Faloutsos, Christos; Taubin, Gabriel

    1993-04-01

    In the query by image content (QBIC) project we are studying methods to query large on-line image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include medical (`Give me other images that contain a tumor with a texture like this one'), photo-journalism (`Give me images that have blue at the top and red at the bottom'), and many others in art, fashion, cataloging, retailing, and industry. Key issues include derivation and computation of attributes of images and objects that provide useful query functionality, retrieval methods based on similarity as opposed to exact match, query by image example or user drawn image, the user interfaces, query refinement and navigation, high dimensional database indexing, and automatic and semi-automatic database population. We currently have a prototype system written in X/Motif and C running on an RS/6000 that allows a variety of queries, and a test database of over 1000 images and 1000 objects populated from commercially available photo clip art images. In this paper we present the main algorithms for color texture, shape and sketch query that we use, show example query results, and discuss future directions.

  2. Predicting visual semantic descriptive terms from radiological image data: preliminary results with liver lesions in CT.

    PubMed

    Depeursinge, Adrien; Kurtz, Camille; Beaulieu, Christopher; Napel, Sandy; Rubin, Daniel

    2014-08-01

    We describe a framework to model visual semantics of liver lesions in CT images in order to predict the visual semantic terms (VST) reported by radiologists in describing these lesions. Computational models of VST are learned from image data using linear combinations of high-order steerable Riesz wavelets and support vector machines (SVM). In a first step, these models are used to predict the presence of each semantic term that describes liver lesions. In a second step, the distances between all VST models are calculated to establish a nonhierarchical computationally-derived ontology of VST containing inter-term synonymy and complementarity. A preliminary evaluation of the proposed framework was carried out using 74 liver lesions annotated with a set of 18 VSTs from the RadLex ontology. A leave-one-patient-out cross-validation resulted in an average area under the ROC curve of 0.853 for predicting the presence of each VST. The proposed framework is expected to foster human-computer synergies for the interpretation of radiological images while using rotation-covariant computational models of VSTs to 1) quantify their local likelihood and 2) explicitly link them with pixel-based image content in the context of a given imaging domain.

  3. Measurement of food-related approach-avoidance biases: Larger biases when food stimuli are task relevant.

    PubMed

    Lender, Anja; Meule, Adrian; Rinck, Mike; Brockmeyer, Timo; Blechert, Jens

    2018-06-01

    Strong implicit responses to food have evolved to avoid energy depletion but contribute to overeating in today's affluent environments. The Approach-Avoidance Task (AAT) supposedly assesses implicit biases in response to food stimuli: Participants push pictures on a monitor "away" or pull them "near" with a joystick that controls a corresponding image zoom. One version of the task couples movement direction with image content-independent features, for example, pulling blue-framed images and pushing green-framed images regardless of content ('irrelevant feature version'). However, participants might selectively attend to this feature and ignore image content and, thus, such a task setup might underestimate existing biases. The present study tested this attention account by comparing two irrelevant feature versions of the task with either a more peripheral (image frame color: green vs. blue) or central (small circle vs. cross overlaid over the image content) image feature as response instruction to a 'relevant feature version', in which participants responded to the image content, thus making it impossible to ignore that content. Images of chocolate-containing foods and of objects were used, and several trait and state measures were acquired to validate the obtained biases. Results revealed a robust approach bias towards food only in the relevant feature condition. Interestingly, a positive correlation with state chocolate craving during the task was found when all three conditions were combined, indicative of criterion validity of all three versions. However, no correlations were found with trait chocolate craving. Results provide a strong case for the relevant feature version of the AAT for bias measurement. They also point to several methodological avenues for future research around selective attention in the irrelevant versions and task validity regarding trait vs. state variables. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Issues in quantification of registered respiratory gated PET/CT in the lung.

    PubMed

    Cuplov, Vesna; Holman, Beverley F; McClelland, Jamie; Modat, Marc; Hutton, Brian F; Thielemans, Kris

    2017-12-14

    PET/CT quantification of lung tissue is limited by several difficulties: the lung density and local volume changes during respiration, the anatomical mismatch between PET and CT and the relative contributions of tissue, air and blood to the PET signal (the tissue fraction effect). Air fraction correction (AFC) has been shown to improve PET image quantification in the lungs. Methods to correct for the movement and anatomical mismatch involve respiratory gating and image registration techniques. While conventional registration methods only account for spatial mismatch, the Jacobian determinant of the deformable registration transformation field can be used to estimate local volume changes and could therefore potentially be used to correct (i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local volume changes. This work aims to investigate the relationship between variations in the lung due to respiration, specifically density, tracer concentration and local volume changes. In particular, we study the effect of AFC and JC on PET quantitation after registration of respiratory gated PET/CT patient data. Six patients suffering from lung cancer with solitary pulmonary nodules underwent [Formula: see text]F-FDG PET/cine-CT. The PET data were gated into six respiratory gates using displacement gating based on a real-time position management (RPM) signal and reconstructed with matched gated CT. The PET tracer concentration and tissue density were extracted from registered gated PET and CT images before and after corrections (AFC or JC) and compared to the values from the reference images. Before correction, we observed a linear correlation between the PET tracer concentration values and density. Across all gates and patients, the maximum relative change in PET tracer concentration before (after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%) and 16.2% (6.8%) respectively. Overall our results show that both AFC or JC largely explain the observed changes in PET tracer activity over the respiratory cycle. We also speculate that a second order effect is related to change in fluid content but this needs further investigation. Consequently, either AFC or JC is recommended when combining lung PET images from different gates to reduce noise.

  5. Issues in quantification of registered respiratory gated PET/CT in the lung

    NASA Astrophysics Data System (ADS)

    Cuplov, Vesna; Holman, Beverley F.; McClelland, Jamie; Modat, Marc; Hutton, Brian F.; Thielemans, Kris

    2018-01-01

    PET/CT quantification of lung tissue is limited by several difficulties: the lung density and local volume changes during respiration, the anatomical mismatch between PET and CT and the relative contributions of tissue, air and blood to the PET signal (the tissue fraction effect). Air fraction correction (AFC) has been shown to improve PET image quantification in the lungs. Methods to correct for the movement and anatomical mismatch involve respiratory gating and image registration techniques. While conventional registration methods only account for spatial mismatch, the Jacobian determinant of the deformable registration transformation field can be used to estimate local volume changes and could therefore potentially be used to correct (i.e. Jacobian Correction, JC) the PET signal for changes in concentration due to local volume changes. This work aims to investigate the relationship between variations in the lung due to respiration, specifically density, tracer concentration and local volume changes. In particular, we study the effect of AFC and JC on PET quantitation after registration of respiratory gated PET/CT patient data. Six patients suffering from lung cancer with solitary pulmonary nodules underwent 18 F-FDG PET/cine-CT. The PET data were gated into six respiratory gates using displacement gating based on a real-time position management (RPM) signal and reconstructed with matched gated CT. The PET tracer concentration and tissue density were extracted from registered gated PET and CT images before and after corrections (AFC or JC) and compared to the values from the reference images. Before correction, we observed a linear correlation between the PET tracer concentration values and density. Across all gates and patients, the maximum relative change in PET tracer concentration before (after) AFC was found to be 16.2% (4.1%) and the maximum relative change in tissue density and PET tracer concentration before (after) JC was found to be 17.1% (5.5%) and 16.2% (6.8%) respectively. Overall our results show that both AFC or JC largely explain the observed changes in PET tracer activity over the respiratory cycle. We also speculate that a second order effect is related to change in fluid content but this needs further investigation. Consequently, either AFC or JC is recommended when combining lung PET images from different gates to reduce noise.

  6. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks

    PubMed Central

    Samson, Edward B.; Tsao, David S.; Zimak, Jan; McLaughlin, R. Tyler; Trenton, Nicholaus J.; Mace, Emily M.; Orange, Jordan S.; Schweikhard, Volker

    2017-01-01

    ABSTRACT IQGAP1 is a large, multi-domain scaffold that helps orchestrate cell signaling and cytoskeletal mechanics by controlling interactions among a spectrum of receptors, signaling intermediates, and cytoskeletal proteins. While this coordination is known to impact cell morphology, motility, cell adhesion, and vesicular traffic, among other functions, the spatiotemporal properties and regulatory mechanisms of IQGAP1 have not been fully resolved. Herein, we describe a series of super-resolution and live-cell imaging analyses that identified a role for IQGAP1 in the regulation of an actin cytoskeletal shell surrounding a novel membranous compartment that localizes selectively to the basal cortex of polarized epithelial cells (MCF-10A). We also show that IQGAP1 appears to both stabilize the actin coating and constrain its growth. Loss of compartmental IQGAP1 initiates a disassembly mechanism involving rapid and unconstrained actin polymerization around the compartment and dispersal of its vesicle contents. Together, these findings suggest IQGAP1 achieves this control by harnessing both stabilizing and antagonistic interactions with actin. They also demonstrate the utility of these compartments for image-based investigations of the spatial and temporal dynamics of IQGAP1 within endosome-specific actin networks. PMID:28455356

  7. An analytical optimization model for infrared image enhancement via local context

    NASA Astrophysics Data System (ADS)

    Xu, Yongjian; Liang, Kun; Xiong, Yiru; Wang, Hui

    2017-12-01

    The requirement for high-quality infrared images is constantly increasing in both military and civilian areas, and it is always associated with little distortion and appropriate contrast, while infrared images commonly have some shortcomings such as low contrast. In this paper, we propose a novel infrared image histogram enhancement algorithm based on local context. By constraining the enhanced image to have high local contrast, a regularized analytical optimization model is proposed to enhance infrared images. The local contrast is determined by evaluating whether two intensities are neighbors and calculating their differences. The comparison on 8-bit images shows that the proposed method can enhance the infrared images with more details and lower noise.

  8. Robust 3D-2D image registration: application to spine interventions and vertebral labeling in the presence of anatomical deformation

    NASA Astrophysics Data System (ADS)

    Otake, Yoshito; Wang, Adam S.; Webster Stayman, J.; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Khanna, A. Jay; Gokaslan, Ziya L.; Siewerdsen, Jeffrey H.

    2013-12-01

    We present a framework for robustly estimating registration between a 3D volume image and a 2D projection image and evaluate its precision and robustness in spine interventions for vertebral localization in the presence of anatomical deformation. The framework employs a normalized gradient information similarity metric and multi-start covariance matrix adaptation evolution strategy optimization with local-restarts, which provided improved robustness against deformation and content mismatch. The parallelized implementation allowed orders-of-magnitude acceleration in computation time and improved the robustness of registration via multi-start global optimization. Experiments involved a cadaver specimen and two CT datasets (supine and prone) and 36 C-arm fluoroscopy images acquired with the specimen in four positions (supine, prone, supine with lordosis, prone with kyphosis), three regions (thoracic, abdominal, and lumbar), and three levels of geometric magnification (1.7, 2.0, 2.4). Registration accuracy was evaluated in terms of projection distance error (PDE) between the estimated and true target points in the projection image, including 14 400 random trials (200 trials on the 72 registration scenarios) with initialization error up to ±200 mm and ±10°. The resulting median PDE was better than 0.1 mm in all cases, depending somewhat on the resolution of input CT and fluoroscopy images. The cadaver experiments illustrated the tradeoff between robustness and computation time, yielding a success rate of 99.993% in vertebral labeling (with ‘success’ defined as PDE <5 mm) using 1,718 664 ± 96 582 function evaluations computed in 54.0 ± 3.5 s on a mid-range GPU (nVidia, GeForce GTX690). Parameters yielding a faster search (e.g., fewer multi-starts) reduced robustness under conditions of large deformation and poor initialization (99.535% success for the same data registered in 13.1 s), but given good initialization (e.g., ±5 mm, assuming a robust initial run) the same registration could be solved with 99.993% success in 6.3 s. The ability to register CT to fluoroscopy in a manner robust to patient deformation could be valuable in applications such as radiation therapy, interventional radiology, and an assistant to target localization (e.g., vertebral labeling) in image-guided spine surgery.

  9. Impact deformation behavior of duplex and superaustenitic stainless steels welds by split Hopkinson pressure bar

    NASA Astrophysics Data System (ADS)

    Wang, Shing-Hoa; Huang, Chih-Sheng; Lee, Woei-Shyan; Chen, Tao-Hsing; Wu, Chia-Chang; Lien, Charles; Tsai, Hung-Yin

    2009-12-01

    A considerable volume of γ phase increases in the fusion zone (weld metal) for two duplex stainless steels after a high-strain-rate impact. The strain-induced γ phase formation in the fusion zone results in local hardness variation depending on the strain rate. The α phase content in the fusion zone decreases as the impact strain rate increases for SAF 2205 DSS and SAF 2507 DSS. The results of the two-phase content measured by Ferritoscope correspond to that assessed by image analyses. In contrast, superaustenite stainless steel is unaffected by such an impact owing to its fully stable austenization. Impacted welds at a high strain rate of 5 × 103 s-1 reveal feather-like surface creases along the solidified curved columnar grain boundaries. The apparent surface creases are formed due to the presence of diffuse Lüders bands, which are caused by heavy plastic deformation in coarse-grain materials.

  10. Exploiting Measurement Uncertainty Estimation in Evaluation of GOES-R ABI Image Navigation Accuracy Using Image Registration Techniques

    NASA Technical Reports Server (NTRS)

    Haas, Evan; DeLuccia, Frank

    2016-01-01

    In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.

  11. Optronic System Imaging Simulator (OSIS): imager simulation tool of the ECOMOS project

    NASA Astrophysics Data System (ADS)

    Wegner, D.; Repasi, E.

    2018-04-01

    ECOMOS is a multinational effort within the framework of an EDA Project Arrangement. Its aim is to provide a generally accepted and harmonized European computer model for computing nominal Target Acquisition (TA) ranges of optronic imagers operating in the Visible or thermal Infrared (IR). The project involves close co-operation of defense and security industry and public research institutes from France, Germany, Italy, The Netherlands and Sweden. ECOMOS uses two approaches to calculate Target Acquisition (TA) ranges, the analytical TRM4 model and the image-based Triangle Orientation Discrimination model (TOD). In this paper the IR imager simulation tool, Optronic System Imaging Simulator (OSIS), is presented. It produces virtual camera imagery required by the TOD approach. Pristine imagery is degraded by various effects caused by atmospheric attenuation, optics, detector footprint, sampling, fixed pattern noise, temporal noise and digital signal processing. Resulting images might be presented to observers or could be further processed for automatic image quality calculations. For convenience OSIS incorporates camera descriptions and intermediate results provided by TRM4. For input OSIS uses pristine imagery tied with meta information about scene content, its physical dimensions, and gray level interpretation. These images represent planar targets placed at specified distances to the imager. Furthermore, OSIS is extended by a plugin functionality that enables integration of advanced digital signal processing techniques in ECOMOS such as compression, local contrast enhancement, digital turbulence mitiga- tion, to name but a few. By means of this image-based approach image degradations and image enhancements can be investigated, which goes beyond the scope of the analytical TRM4 model.

  12. Characteristics of knowledge content in a curated online evidence library.

    PubMed

    Varada, Sowmya; Lacson, Ronilda; Raja, Ali S; Ip, Ivan K; Schneider, Louise; Osterbur, David; Bain, Paul; Vetrano, Nicole; Cellini, Jacqueline; Mita, Carol; Coletti, Margaret; Whelan, Julia; Khorasani, Ramin

    2018-05-01

    To describe types of recommendations represented in a curated online evidence library, report on the quality of evidence-based recommendations pertaining to diagnostic imaging exams, and assess underlying knowledge representation. The evidence library is populated with clinical decision rules, professional society guidelines, and locally developed best practice guidelines. Individual recommendations were graded based on a standard methodology and compared using chi-square test. Strength of evidence ranged from grade 1 (systematic review) through grade 5 (recommendations based on expert opinion). Finally, variations in the underlying representation of these recommendations were identified. The library contains 546 individual imaging-related recommendations. Only 15% (16/106) of recommendations from clinical decision rules were grade 5 vs 83% (526/636) from professional society practice guidelines and local best practice guidelines that cited grade 5 studies (P < .0001). Minor head trauma, pulmonary embolism, and appendicitis were topic areas supported by the highest quality of evidence. Three main variations in underlying representations of recommendations were "single-decision," "branching," and "score-based." Most recommendations were grade 5, largely because studies to test and validate many recommendations were absent. Recommendation types vary in amount and complexity and, accordingly, the structure and syntax of statements they generate. However, they can be represented in single-decision, branching, and score-based representations. In a curated evidence library with graded imaging-based recommendations, evidence quality varied widely, with decision rules providing the highest-quality recommendations. The library may be helpful in highlighting evidence gaps, comparing recommendations from varied sources on similar clinical topics, and prioritizing imaging recommendations to inform clinical decision support implementation.

  13. Many local pattern texture features: which is better for image-based multilabel human protein subcellular localization classification?

    PubMed

    Yang, Fan; Xu, Ying-Ying; Shen, Hong-Bin

    2014-01-01

    Human protein subcellular location prediction can provide critical knowledge for understanding a protein's function. Since significant progress has been made on digital microscopy, automated image-based protein subcellular location classification is urgently needed. In this paper, we aim to investigate more representative image features that can be effectively used for dealing with the multilabel subcellular image samples. We prepared a large multilabel immunohistochemistry (IHC) image benchmark from the Human Protein Atlas database and tested the performance of different local texture features, including completed local binary pattern, local tetra pattern, and the standard local binary pattern feature. According to our experimental results from binary relevance multilabel machine learning models, the completed local binary pattern, and local tetra pattern are more discriminative for describing IHC images when compared to the traditional local binary pattern descriptor. The combination of these two novel local pattern features and the conventional global texture features is also studied. The enhanced performance of final binary relevance classification model trained on the combined feature space demonstrates that different features are complementary to each other and thus capable of improving the accuracy of classification.

  14. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules.

    PubMed

    Burnette, Dylan T; Sengupta, Prabuddha; Dai, Yuhai; Lippincott-Schwartz, Jennifer; Kachar, Bechara

    2011-12-27

    Superresolution imaging techniques based on the precise localization of single molecules, such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), achieve high resolution by fitting images of single fluorescent molecules with a theoretical Gaussian to localize them with a precision on the order of tens of nanometers. PALM/STORM rely on photoactivated proteins or photoswitching dyes, respectively, which makes them technically challenging. We present a simple and practical way of producing point localization-based superresolution images that does not require photoactivatable or photoswitching probes. Called bleaching/blinking assisted localization microscopy (BaLM), the technique relies on the intrinsic bleaching and blinking behaviors characteristic of all commonly used fluorescent probes. To detect single fluorophores, we simply acquire a stream of fluorescence images. Fluorophore bleach or blink-off events are detected by subtracting from each image of the series the subsequent image. Similarly, blink-on events are detected by subtracting from each frame the previous one. After image subtractions, fluorescence emission signals from single fluorophores are identified and the localizations are determined by fitting the fluorescence intensity distribution with a theoretical Gaussian. We also show that BaLM works with a spectrum of fluorescent molecules in the same sample. Thus, BaLM extends single molecule-based superresolution localization to samples labeled with multiple conventional fluorescent probes.

  15. [Quantitative image of bone mineral content--dual energy subtraction in a single exposure].

    PubMed

    Katoh, T

    1990-09-25

    A dual energy subtraction system was constructed on an experimental basis for the quantitative image of bone mineral content. The system consists of a radiography system and an image processor. Two radiograms were taken with dual x-ray energy in a single exposure using an x-ray beam dichromized by a tin filter. In this system, a film cassette was used where a low speed film-screen system, a copper filter and a high speed film-screen system were layered on top of each other. The images were read by a microdensitometer and processed by a personal computer. The image processing included the corrections of the film characteristics and heterogeneity in the x-ray field, and the dual energy subtraction in which the effect of the high energy component of the dichromized beam on the tube side image was corrected. In order to determine the accuracy of the system, experiments using wedge phantoms made of mixtures of epoxy resin and bone mineral-equivalent materials in various fractions were performed for various tube potentials and film processing conditions. The results indicated that the relative precision of the system was within +/- 4% and that the propagation of the film noise was within +/- 11 mg/cm2 for the 0.2 mm pixels. The results also indicated that the system response was independent of the tube potential and the film processing condition. The bone mineral weight in each phalanx of the freshly dissected hand of a rhesus monkey was measured by this system and compared with the ash weight. The results showed an error of +/- 10%, slightly larger than that of phantom experiments, which is probably due to the effect of fat and the variation of focus-object distance. The air kerma in free air at the object was approximately 0.5 mGy for one exposure. The results indicate that this system is applicable to clinical use and provides useful information for evaluating a time-course of localized bone disease.

  16. A neotropical Miocene pollen database employing image-based search and semantic modeling.

    PubMed

    Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W; Jaramillo, Carlos; Shyu, Chi-Ren

    2014-08-01

    Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery.

  17. Deformable image registration with content mismatch: a demons variant to account for added material and surgical devices in the target image

    NASA Astrophysics Data System (ADS)

    Nithiananthan, S.; Uneri, A.; Schafer, S.; Mirota, D.; Otake, Y.; Stayman, J. W.; Zbijewski, W.; Khanna, A. J.; Reh, D. D.; Gallia, G. L.; Siewerdsen, J. H.

    2013-03-01

    Fast, accurate, deformable image registration is an important aspect of image-guided interventions. Among the factors that can confound registration is the presence of additional material in the intraoperative image - e.g., contrast bolus or a surgical implant - that was not present in the prior image. Existing deformable registration methods generally fail to account for tissue excised between image acquisitions and typically simply "move" voxels within the images with no ability to account for tissue that is removed or introduced between scans. We present a variant of the Demons algorithm to accommodate such content mismatch. The approach combines segmentation of mismatched content with deformable registration featuring an extra pseudo-spatial dimension representing a reservoir from which material can be drawn into the registered image. Previous work tested the registration method in the presence of tissue excision ("missing tissue"). The current paper tests the method in the presence of additional material in the target image and presents a general method by which either missing or additional material can be accommodated. The method was tested in phantom studies, simulations, and cadaver models in the context of intraoperative cone-beam CT with three examples of content mismatch: a variable-diameter bolus (contrast injection); surgical device (rod), and additional material (bone cement). Registration accuracy was assessed in terms of difference images and normalized cross correlation (NCC). We identify the difficulties that traditional registration algorithms encounter when faced with content mismatch and evaluate the ability of the proposed method to overcome these challenges.

  18. Improved Compressive Sensing of Natural Scenes Using Localized Random Sampling

    PubMed Central

    Barranca, Victor J.; Kovačič, Gregor; Zhou, Douglas; Cai, David

    2016-01-01

    Compressive sensing (CS) theory demonstrates that by using uniformly-random sampling, rather than uniformly-spaced sampling, higher quality image reconstructions are often achievable. Considering that the structure of sampling protocols has such a profound impact on the quality of image reconstructions, we formulate a new sampling scheme motivated by physiological receptive field structure, localized random sampling, which yields significantly improved CS image reconstructions. For each set of localized image measurements, our sampling method first randomly selects an image pixel and then measures its nearby pixels with probability depending on their distance from the initially selected pixel. We compare the uniformly-random and localized random sampling methods over a large space of sampling parameters, and show that, for the optimal parameter choices, higher quality image reconstructions can be consistently obtained by using localized random sampling. In addition, we argue that the localized random CS optimal parameter choice is stable with respect to diverse natural images, and scales with the number of samples used for reconstruction. We expect that the localized random sampling protocol helps to explain the evolutionarily advantageous nature of receptive field structure in visual systems and suggests several future research areas in CS theory and its application to brain imaging. PMID:27555464

  19. Backwards compatible high dynamic range video compression

    NASA Astrophysics Data System (ADS)

    Dolzhenko, Vladimir; Chesnokov, Vyacheslav; Edirisinghe, Eran A.

    2014-02-01

    This paper presents a two layer CODEC architecture for high dynamic range video compression. The base layer contains the tone mapped video stream encoded with 8 bits per component which can be decoded using conventional equipment. The base layer content is optimized for rendering on low dynamic range displays. The enhancement layer contains the image difference, in perceptually uniform color space, between the result of inverse tone mapped base layer content and the original video stream. Prediction of the high dynamic range content reduces the redundancy in the transmitted data while still preserves highlights and out-of-gamut colors. Perceptually uniform colorspace enables using standard ratedistortion optimization algorithms. We present techniques for efficient implementation and encoding of non-uniform tone mapping operators with low overhead in terms of bitstream size and number of operations. The transform representation is based on human vision system model and suitable for global and local tone mapping operators. The compression techniques include predicting the transform parameters from previously decoded frames and from already decoded data for current frame. Different video compression techniques are compared: backwards compatible and non-backwards compatible using AVC and HEVC codecs.

  20. Updating the maize karyotype by chromosome DNA sizing.

    PubMed

    Silva, Jéssica Coutinho; Carvalho, Carlos Roberto; Clarindo, Wellington Ronildo

    2018-01-01

    The karyotype is a basic concept regarding the genome, fundamentally described by the number and morphological features of all chromosomes. Chromosome class, centromeric index, intra- and interchromosomal asymmetry index, and constriction localization are important in clinical, systematic and evolutionary approaches. In spite of the advances in karyotype characterization made over the last years, new data about the chromosomes can be generated from quantitative methods, such as image cytometry. Therefore, using Zea mays L., this study aimed to update the species' karyotype by supplementing information on chromosome DNA sizing. After adjustment of the procedures, chromosome morphometry and class as well as knob localization enabled describing the Z. mays karyotype. In addition, applying image cytometry, DNA sizing was unprecedentedly measured for the arms and satellite of all chromosomes. This way, unambiguous identification of the chromosome pairs, and hence the assembly of 51 karyograms, were only possible after the DNA sizing of each chromosome, their arms and satellite portions. These accurate, quantitative and reproducible data also enabled determining the distribution and variation of DNA content in each chromosome. From this, a correlation between DNA amount and total chromosome length evidenced that the mean DNA content of chromosome 9 was higher than that of chromosome 8. The chromosomal DNA sizing updated the Z. mays karyotype, providing insights into its dynamic genome with regards to the organization of the ten chromosomes and their respective portions. Considering the results and the relevance of cytogenetics in the current scenario of comparative sequencing and genomics, chromosomal DNA sizing should be incorporated as an additional parameter for karyotype definition. Based on this study, it can be affirmed that cytogenetic approaches go beyond the simple morphological description of chromosomes.

  1. Updating the maize karyotype by chromosome DNA sizing

    PubMed Central

    2018-01-01

    The karyotype is a basic concept regarding the genome, fundamentally described by the number and morphological features of all chromosomes. Chromosome class, centromeric index, intra- and interchromosomal asymmetry index, and constriction localization are important in clinical, systematic and evolutionary approaches. In spite of the advances in karyotype characterization made over the last years, new data about the chromosomes can be generated from quantitative methods, such as image cytometry. Therefore, using Zea mays L., this study aimed to update the species’ karyotype by supplementing information on chromosome DNA sizing. After adjustment of the procedures, chromosome morphometry and class as well as knob localization enabled describing the Z. mays karyotype. In addition, applying image cytometry, DNA sizing was unprecedentedly measured for the arms and satellite of all chromosomes. This way, unambiguous identification of the chromosome pairs, and hence the assembly of 51 karyograms, were only possible after the DNA sizing of each chromosome, their arms and satellite portions. These accurate, quantitative and reproducible data also enabled determining the distribution and variation of DNA content in each chromosome. From this, a correlation between DNA amount and total chromosome length evidenced that the mean DNA content of chromosome 9 was higher than that of chromosome 8. The chromosomal DNA sizing updated the Z. mays karyotype, providing insights into its dynamic genome with regards to the organization of the ten chromosomes and their respective portions. Considering the results and the relevance of cytogenetics in the current scenario of comparative sequencing and genomics, chromosomal DNA sizing should be incorporated as an additional parameter for karyotype definition. Based on this study, it can be affirmed that cytogenetic approaches go beyond the simple morphological description of chromosomes. PMID:29293613

  2. Novel active contour model based on multi-variate local Gaussian distribution for local segmentation of MR brain images

    NASA Astrophysics Data System (ADS)

    Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong

    2017-12-01

    Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.

  3. A novel fast-neutron detector concept for energy-selective imaging and imaging spectroscopy.

    PubMed

    Cortesi, M; Dangendorf, V; Zboray, R; Prasser, H-M

    2014-07-01

    We present and discuss the operational principle of a new fast-neutron detector concept suitable for either energy-selective imaging or for imaging spectroscopy. The detector is comprised of a series of energy-selective stacks of converter foils immersed in a noble-gas based mixture, coupled to a position-sensitive charge readout. Each foil in the various stacks is made of two layers of different thicknesses, fastened together: a hydrogen-rich (plastic) layer for neutron-to-proton conversion, and a hydrogen-free coating to selectively stop/absorb the recoil protons below a certain energy cut-off. The neutron-induced recoil protons, that escape the converter foils, release ionization electrons in the gas gaps between consecutive foils. The electrons are then drifted towards and localized by a position-sensitive charge amplification and readout stage. Comparison of the images detected by stacks with different energy cut-offs allows energy-selective imaging. Neutron energy spectrometry is realized by analyzing the responses of a sufficient large number of stacks of different energy response and unfolding techniques. In this paper, we present the results of computer simulation studies and discuss the expected performance of the new detector concept. Potential applications in various fields are also briefly discussed, in particularly, the application of energy-selective fast-neutron imaging for nuclear safeguards application, with the aim of determining the plutonium content in Mixed Oxide (MOX) fuels.

  4. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  5. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.

    PubMed

    Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua

    2015-09-01

    High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.

  6. Investigations on the effect of frequency and noise in a localization technique based on microwave imaging for an in-body RF source

    NASA Astrophysics Data System (ADS)

    Chandra, Rohit; Balasingham, Ilangko

    2015-05-01

    Localization of a wireless capsule endoscope finds many clinical applications from diagnostics to therapy. There are potentially two approaches of the electromagnetic waves based localization: a) signal propagation model based localization using a priori information about the persons dielectric channels, and b) recently developed microwave imaging based localization without using any a priori information about the persons dielectric channels. In this paper, we study the second approach in terms of a variety of frequencies and signal-to-noise ratios for localization accuracy. To this end, we select a 2-D anatomically realistic numerical phantom for microwave imaging at different frequencies. The selected frequencies are 13:56 MHz, 431:5 MHz, 920 MHz, and 2380 MHz that are typically considered for medical applications. Microwave imaging of a phantom will provide us with an electromagnetic model with electrical properties (relative permittivity and conductivity) of the internal parts of the body and can be useful as a foundation for localization of an in-body RF source. Low frequency imaging at 13:56 MHz provides a low resolution image with high contrast in the dielectric properties. However, at high frequencies, the imaging algorithm is able to image only the outer boundaries of the tissues due to low penetration depth as higher frequency means higher attenuation. Furthermore, recently developed localization method based on microwave imaging is used for estimating the localization accuracy at different frequencies and signal-to-noise ratios. Statistical evaluation of the localization error is performed using the cumulative distribution function (CDF). Based on our results, we conclude that the localization accuracy is minimally affected by the frequency or the noise. However, the choice of the frequency will become critical if the purpose of the method is to image the internal parts of the body for tumor and/or cancer detection.

  7. Trans-cis isomerization of lipophilic dyes probing membrane microviscosity in biological membranes and in live cells.

    PubMed

    Chmyrov, Volodymyr; Spielmann, Thiemo; Hevekerl, Heike; Widengren, Jerker

    2015-06-02

    Membrane environment and fluidity can modulate the dynamics and interactions of membrane proteins and can thereby strongly influence the function of cells and organisms in general. In this work, we demonstrate that trans-cis isomerization of lipophilic dyes is a useful parameter to monitor packaging and fluidity of biomembranes. Fluorescence fluctuations, generated by trans-cis isomerization of the thiocarbocyanine dye Merocyanine 540 (MC540), were first analyzed by fluorescence correlation spectroscopy (FCS) in different alcohol solutions. Similar isomerization kinetics of MC540 in lipid vesicles could then also be monitored, and the influence of lipid polarity, membrane curvature, and cholesterol content was investigated. While no influence of membrane curvature and lipid polarity could be observed, a clear decrease in the isomerization rates could be observed with increasing cholesterol contents in the vesicle membranes. Finally, procedures to spatially map photoinduced and thermal isomerization rates on live cells by transient state (TRAST) imaging were established. On the basis of these procedures, MC540 isomerization was studied on live MCF7 cells, and TRAST images of the cells at different temperatures were found to reliably detect differences in the isomerization parameters. Our studies indicate that trans-cis isomerization is a useful parameter for probing membrane dynamics and that the TRAST imaging technique can provide spatial maps of photoinduced isomerization as well as both photoinduced and thermal back-isomerization, resolving differences in local membrane microviscosity in live cells.

  8. Estimating scatter in cone beam CT with striped ratio grids: A preliminary investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Scott, E-mail: sshsieh@stanford.edu

    2016-09-15

    Purpose: To propose a new method for estimating scatter in x-ray imaging. Conventional antiscatter grids reject scatter at an efficiency that is constant or slowly varying over the surface of the grid. A striped ratio antiscatter grid, composed of stripes that alternate between high and low grid ratio, could be used instead. Such a striped ratio grid would reduce scatter-to-primary ratio as a conventional grid would, but more importantly, the signal discontinuities at the boundaries of stripes can be used to estimate local scatter content. Methods: Signal discontinuities provide information on scatter, but are contaminated by variation in primary radiation.more » A nonlinear image processing algorithm is used to estimate the scatter content in the presence of primary variation. We emulated a striped ratio grid by imaging phantoms with two sequential CT scans, one with and one without a conventional grid. These two scans are processed together to mimic a striped ratio grid. This represents a best case limit of the striped ratio grid, in that the extent of grid ratio modulation is very high and the scatter contrast is maximized. Results: In a uniform cylinder, the striped ratio grid virtually eliminates cupping. Artifacts from scatter are improved in an anthropomorphic phantom. Some banding artifacts are induced by the striped ratio grid. Conclusions: Striped ratio grids could be a simple and effective evolution of conventional antiscatter grids. Construction and validation of a physical prototype remains an important future step.« less

  9. Image enhancement using the hypothesis selection filter: theory and application to JPEG decoding.

    PubMed

    Wong, Tak-Shing; Bouman, Charles A; Pollak, Ilya

    2013-03-01

    We introduce the hypothesis selection filter (HSF) as a new approach for image quality enhancement. We assume that a set of filters has been selected a priori to improve the quality of a distorted image containing regions with different characteristics. At each pixel, HSF uses a locally computed feature vector to predict the relative performance of the filters in estimating the corresponding pixel intensity in the original undistorted image. The prediction result then determines the proportion of each filter used to obtain the final processed output. In this way, the HSF serves as a framework for combining the outputs of a number of different user selected filters, each best suited for a different region of an image. We formulate our scheme in a probabilistic framework where the HSF output is obtained as the Bayesian minimum mean square error estimate of the original image. Maximum likelihood estimates of the model parameters are determined from an offline fully unsupervised training procedure that is derived from the expectation-maximization algorithm. To illustrate how to apply the HSF and to demonstrate its potential, we apply our scheme as a post-processing step to improve the decoding quality of JPEG-encoded document images. The scheme consistently improves the quality of the decoded image over a variety of image content with different characteristics. We show that our scheme results in quantitative improvements over several other state-of-the-art JPEG decoding methods.

  10. Variations in backward masking with different masking stimuli: II. The effects of spatially quantised masks in the light of local contour interaction, interchannel inhibition, perceptual retouch, and substitution theories.

    PubMed

    Bachmann, Talis; Luiga, Iiris; Põder, Endel

    2005-01-01

    In part I we showed that with spatially non-overlapping targets and masks both local metacontrast-like interactions and attentional processes are involved in backward masking. In this second part we extend the strategy of varying the contents of masks to pattern masking where targets and masks overlap in space, in order to compare different masking theories. Images of human faces were backward-masked by three types of spatially quantised masks (the same faces as targets, faces different from targets, and Gaussian noise with power spectra typical for faces). Configural characteristics, rather than the spectral content of the mask, predicted the extent of masking at relatively long stimulus onset asynchronies (SOAs). This poses difficulties for the theory of transient-on-sustained inhibition as the principal mechanism of masking and also for local contour interaction being a decisive factor in pattern masking. The scale of quantisation had no effect on the masking capacity of noise masks and a strong effect on the capacity of different-face masks. Also, the decrease of configural masking with an increase in the coarseness of the quantisation of the mask highlights ambiguities inherent in the re-entrance-based substitution theory of masking. Different masking theories cannot solve the problems of masking separately. They should be combined in order to create a complex, yet comprehensible mode of interaction for the different mechanisms involved in visual backward masking.

  11. Image transport through a disordered optical fibre mediated by transverse Anderson localization.

    PubMed

    Karbasi, Salman; Frazier, Ryan J; Koch, Karl W; Hawkins, Thomas; Ballato, John; Mafi, Arash

    2014-02-25

    Transverse Anderson localization of light allows localized optical-beam-transport through a transversely disordered and longitudinally invariant medium. Its successful implementation in disordered optical fibres recently resulted in the propagation of localized beams of radii comparable to that of conventional optical fibres. Here we demonstrate optical image transport using transverse Anderson localization of light. The image transport quality obtained in the polymer disordered optical fibre is comparable to or better than some of the best commercially available multicore image fibres with less pixelation and higher contrast. It is argued that considerable improvement in image transport quality can be obtained in a disordered fibre made from a glass matrix with near wavelength-size randomly distributed air-holes with an air-hole fill-fraction of 50%. Our results open the way to device-level implementation of the transverse Anderson localization of light with potential applications in biological and medical imaging.

  12. Near-infrared imaging of water in human hair.

    PubMed

    Egawa, Mariko; Hagihara, Motofumi; Yanai, Motohiro

    2013-02-01

    The water content of hair can be evaluated by weighing, the Karl Fischer method, and from electrical properties. However, these methods cannot be used to study the distribution of water in the hair. Imaging techniques are required for this purpose. In this study, a highly sensitive near-infrared (NIR) imaging system was developed for evaluating water in human hair. The results obtained from NIR imaging and conventional methods were compared. An extended indium-gallium-arsenide NIR camera (detection range: 1100-2200 nm) and diffuse illumination unit developed in our laboratory were used to obtain a NIR image of hair. A water image was obtained using a 1950-nm interference filter and polarization filter. Changes in the hair water content with relative humidity (20-95% RH) and after immersion in a 7% (w/w) sorbitol solution were measured using the NIR camera and an insulation resistance tester. The changes in the water content after treatment with two types of commercially available shampoo were also measured using the NIR camera. As the water content increased with changes in the relative humidity, the brightness of the water image decreased and the insulation resistance decreased. The brightness in the NIR image of hair treated with sorbitol solution was lower than that in the image of hair treated with water. This shows the sorbitol-treated hair contains more water than water-treated hair. The sorbitol-treated hair had a lower resistance after treatment than before, which also shows that sorbitol treatment increases the water content. With this system, we could detect a difference in the moisturizing effect between two commercially available shampoos. The highly sensitive imaging system could be used to study water in human hair. Changes in the water content of hair depended on the relative humidity and treatment with moisturizer. The results obtained using the NIR imaging system were similar to those obtained using a conventional method. Our system could detect differences in the moisturizing effects of two commercially available shampoos. © 2012 John Wiley & Sons A/S.

  13. Current approaches and future role of high content imaging in safety sciences and drug discovery.

    PubMed

    van Vliet, Erwin; Daneshian, Mardas; Beilmann, Mario; Davies, Anthony; Fava, Eugenio; Fleck, Roland; Julé, Yvon; Kansy, Manfred; Kustermann, Stefan; Macko, Peter; Mundy, William R; Roth, Adrian; Shah, Imran; Uteng, Marianne; van de Water, Bob; Hartung, Thomas; Leist, Marcel

    2014-01-01

    High content imaging combines automated microscopy with image analysis approaches to simultaneously quantify multiple phenotypic and/or functional parameters in biological systems. The technology has become an important tool in the fields of safety sciences and drug discovery, because it can be used for mode-of-action identification, determination of hazard potency and the discovery of toxicity targets and biomarkers. In contrast to conventional biochemical endpoints, high content imaging provides insight into the spatial distribution and dynamics of responses in biological systems. This allows the identification of signaling pathways underlying cell defense, adaptation, toxicity and death. Therefore, high content imaging is considered a promising technology to address the challenges for the "Toxicity testing in the 21st century" approach. Currently, high content imaging technologies are frequently applied in academia for mechanistic toxicity studies and in pharmaceutical industry for the ranking and selection of lead drug compounds or to identify/confirm mechanisms underlying effects observed in vivo. A recent workshop gathered scientists working on high content imaging in academia, pharmaceutical industry and regulatory bodies with the objective to compile the state-of-the-art of the technology in the different institutions. Together they defined technical and methodological gaps, proposed quality control measures and performance standards, highlighted cell sources and new readouts and discussed future requirements for regulatory implementation. This review summarizes the discussion, proposed solutions and recommendations of the specialists contributing to the workshop.

  14. Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques--subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis.

    PubMed

    Leonardo, T; Farhi, E; Boisson, A-M; Vial, J; Cloetens, P; Bohic, S; Rivasseau, C

    2014-02-01

    The newly discovered unicellular micro-alga Coccomyxa actinabiotis proves to be highly radio-tolerant and strongly concentrates radionuclides, as well as large amounts of toxic metals. This study helps in the understanding of the mechanisms involved in the accumulation and detoxification of silver and cobalt. Elemental distribution inside Coccomyxa actinabiotis cells was determined using synchrotron nano X-ray fluorescence spectroscopy at the ID22 nano fluorescence imaging beamline of the European Synchrotron Radiation Facility. The high resolution and high sensitivity of this technique enabled the assessment of elemental associations and exclusions in subcellular micro-algae compartments. A quantitative treatment of the scans was implemented to yield absolute concentrations of each endogenous and exogenous element with a spatial resolution of 100 nm and compared to the macroscopic content in cobalt and silver determined using inductively coupled plasma-mass spectrometry. The nano X-ray fluorescence imaging was complemented by transmission electron microscopy coupled to X-ray microanalysis (TEM-EDS), yielding differential silver distribution in the cell wall, cytosol, nucleus, chloroplast and mitochondria with unique resolution. The analysis of endogenous elements in control cells revealed that iron had a unique distribution; zinc, potassium, manganese, molybdenum, and phosphate had their maxima co-localized in the same area; and sulfur, copper and chlorine were almost homogeneously distributed among the whole cell. The subcellular distribution and quantification of cobalt and silver in micro-alga, assessed after controlled exposure to various concentrations, revealed that exogenous metals were mainly sequestered inside the cell rather than on mucilage or the cell wall, with preferential compartmentalization. Cobalt was homogeneously distributed outside of the chloroplast. Silver was localized in the cytosol at low concentration and in the whole cell excluding the nucleus at high concentration. Exposure to low concentrations of cobalt or silver did not alter the localization nor the concentration of endogenous elements within the cells. To our knowledge, this is the first report on element co-localization and segregation at the sub-cellular level in micro-algae by means of synchrotron nano X-ray fluorescence spectroscopy.

  15. Detecting mineral content in turbid medium using nonlinear Raman imaging: feasibility study

    PubMed Central

    Arora, Rajan; Petrov, Georgi I.; Noojin, Gary D.; Thomas, Patrick A.; Denton, Michael L.; Rockwell, Benjamin A.; Thomas, Robert J.; Yakovlev, Vladislav V.

    2012-01-01

    Osteoporosis is a bone disease characterized by reduced mineral content with resulting changes in bone architecture, which in turn increases the risk of bone fracture. Raman spectroscopy has an intrinsic sensitivity to the chemical content of the bone, but its application to study bones in vivo is limited due to strong optical scattering in tissue. It has been proposed that Raman excitation with photoacoustic detection can successfully address the problem of chemically specific imaging in deep tissue. In this report, the principal possibility of photoacoustic imaging for detecting mineral content is evaluated. PMID:22337734

  16. Method for indexing and retrieving manufacturing-specific digital imagery based on image content

    DOEpatents

    Ferrell, Regina K.; Karnowski, Thomas P.; Tobin, Jr., Kenneth W.

    2004-06-15

    A method for indexing and retrieving manufacturing-specific digital images based on image content comprises three steps. First, at least one feature vector can be extracted from a manufacturing-specific digital image stored in an image database. In particular, each extracted feature vector corresponds to a particular characteristic of the manufacturing-specific digital image, for instance, a digital image modality and overall characteristic, a substrate/background characteristic, and an anomaly/defect characteristic. Notably, the extracting step includes generating a defect mask using a detection process. Second, using an unsupervised clustering method, each extracted feature vector can be indexed in a hierarchical search tree. Third, a manufacturing-specific digital image associated with a feature vector stored in the hierarchicial search tree can be retrieved, wherein the manufacturing-specific digital image has image content comparably related to the image content of the query image. More particularly, can include two data reductions, the first performed based upon a query vector extracted from a query image. Subsequently, a user can select relevant images resulting from the first data reduction. From the selection, a prototype vector can be calculated, from which a second-level data reduction can be performed. The second-level data reduction can result in a subset of feature vectors comparable to the prototype vector, and further comparable to the query vector. An additional fourth step can include managing the hierarchical search tree by substituting a vector average for several redundant feature vectors encapsulated by nodes in the hierarchical search tree.

  17. Terrain clutter simulation using physics-based scattering model and digital terrain profile data

    NASA Astrophysics Data System (ADS)

    Park, James; Johnson, Joel T.; Ding, Kung-Hau; Kim, Kristopher; Tenbarge, Joseph

    2015-05-01

    Localization of a wireless capsule endoscope finds many clinical applications from diagnostics to therapy. There are potentially two approaches of the electromagnetic waves based localization: a) signal propagation model based localization using a priori information about the persons dielectric channels, and b) recently developed microwave imaging based localization without using any a priori information about the persons dielectric channels. In this paper, we study the second approach in terms of a variety of frequencies and signal-to-noise ratios for localization accuracy. To this end, we select a 2-D anatomically realistic numerical phantom for microwave imaging at different frequencies. The selected frequencies are 13:56 MHz, 431:5 MHz, 920 MHz, and 2380 MHz that are typically considered for medical applications. Microwave imaging of a phantom will provide us with an electromagnetic model with electrical properties (relative permittivity and conductivity) of the internal parts of the body and can be useful as a foundation for localization of an in-body RF source. Low frequency imaging at 13:56 MHz provides a low resolution image with high contrast in the dielectric properties. However, at high frequencies, the imaging algorithm is able to image only the outer boundaries of the tissues due to low penetration depth as higher frequency means higher attenuation. Furthermore, recently developed localization method based on microwave imaging is used for estimating the localization accuracy at different frequencies and signal-to-noise ratios. Statistical evaluation of the localization error is performed using the cumulative distribution function (CDF). Based on our results, we conclude that the localization accuracy is minimally affected by the frequency or the noise. However, the choice of the frequency will become critical if the purpose of the method is to image the internal parts of the body for tumor and/or cancer detection.

  18. Breaking the acoustic diffraction barrier with localization optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Razansky, Daniel

    2018-02-01

    Diffraction causes blurring of high-resolution features in images and has been traditionally associated to the resolution limit in light microscopy and other imaging modalities. The resolution of an imaging system can be generally assessed via its point spread function, corresponding to the image acquired from a point source. However, the precision in determining the position of an isolated source can greatly exceed the diffraction limit. By combining the estimated positions of multiple sources, localization-based imaging has resulted in groundbreaking methods such as super-resolution fluorescence optical microscopy and has also enabled ultrasound imaging of microvascular structures with unprecedented spatial resolution in deep tissues. Herein, we introduce localization optoacoustic tomography (LOT) and discuss on the prospects of using localization imaging principles in optoacoustic imaging. LOT was experimentally implemented by real-time imaging of flowing particles in 3D with a recently-developed volumetric optoacoustic tomography system. Provided the particles were separated by a distance larger than the diffraction-limited resolution, their individual locations could be accurately determined in each frame of the acquired image sequence and the localization image was formed by superimposing a set of points corresponding to the localized positions of the absorbers. The presented results demonstrate that LOT can significantly enhance the well-established advantages of optoacoustic imaging by breaking the acoustic diffraction barrier in deep tissues and mitigating artifacts due to limited-view tomographic acquisitions.

  19. Exploring Models and Data for Remote Sensing Image Caption Generation

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoqiang; Wang, Binqiang; Zheng, Xiangtao; Li, Xuelong

    2018-04-01

    Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at https://github.com/201528014227051/RSICD_optimal

  20. Finger Vein Segmentation from Infrared Images Based on a Modified Separable Mumford Shah Model and Local Entropy Thresholding

    PubMed Central

    Dermatas, Evangelos

    2015-01-01

    A novel method for finger vein pattern extraction from infrared images is presented. This method involves four steps: preprocessing which performs local normalization of the image intensity, image enhancement, image segmentation, and finally postprocessing for image cleaning. In the image enhancement step, an image which will be both smooth and similar to the original is sought. The enhanced image is obtained by minimizing the objective function of a modified separable Mumford Shah Model. Since, this minimization procedure is computationally intensive for large images, a local application of the Mumford Shah Model in small window neighborhoods is proposed. The finger veins are located in concave nonsmooth regions and, so, in order to distinct them from the other tissue parts, all the differences between the smooth neighborhoods, obtained by the local application of the model, and the corresponding windows of the original image are added. After that, veins in the enhanced image have been sufficiently emphasized. Thus, after image enhancement, an accurate segmentation can be obtained readily by a local entropy thresholding method. Finally, the resulted binary image may suffer from some misclassifications and, so, a postprocessing step is performed in order to extract a robust finger vein pattern. PMID:26120357

  1. Locating faces in color photographs using neural networks

    NASA Astrophysics Data System (ADS)

    Brown, Joe R.; Talley, Jim

    1994-03-01

    This paper summarizes a research effort in finding the locations and sizes of faces in color images (photographs, video stills, etc.) if, in fact, faces are presented. Scenarios for using such a system include serving as the means of localizing skin for automatic color balancing during photo processing or it could be used as a front-end in a customs port of energy context for a system which identified persona non grata given a database of known faces. The approach presented here is a hybrid system including: a neural pre-processor, some conventional image processing steps, and a neural classifier as the final face/non-face discriminator. Neither the training (containing 17,655 faces) nor the test (containing 1829 faces) imagery databases were constrained in their content or quality. The results for the pilot system are reported along with a discussion for improving the current system.

  2. Minimum Information Specification For In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE)

    PubMed Central

    Deutsch, Eric W; Ball, Catherine A; Berman, Jules J; Bova, G Steven; Brazma, Alvis; Bumgarner, Roger E; Campbell, David; Causton, Helen C; Christiansen, Jeffrey H; Daian, Fabrice; Dauga, Delphine; Davidson, Duncan R; Gimenez, Gregory; Goo, Young Ah; Grimmond, Sean; Henrich, Thorsten; Herrmann, Bernhard G; Johnson, Michael H; Korb, Martin; Mills, Jason C; Oudes, Asa J; Parkinson, Helen E; Pascal, Laura E; Pollet, Nicolas; Quackenbush, John; Ramialison, Mirana; Ringwald, Martin; Salgado, David; Sansone, Susanna-Assunta; Sherlock, Gavin; Stoeckert, Christian J; Swedlow, Jason; Taylor, Ronald C; Walashek, Laura; Warford, Anthony; Wilkinson, David G; Zhou, Yi; Zon, Leonard I; Liu, Alvin Y; True, Lawrence D

    2015-01-01

    One purpose of the biomedical literature is to report results in sufficient detail so that the methods of data collection and analysis can be independently replicated and verified. Here we present for consideration a minimum information specification for gene expression localization experiments, called the “Minimum Information Specification For In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE)”. It is modelled after the MIAME (Minimum Information About a Microarray Experiment) specification for microarray experiments. Data specifications like MIAME and MISFISHIE specify the information content without dictating a format for encoding that information. The MISFISHIE specification describes six types of information that should be provided for each experiment: Experimental Design, Biomaterials and Treatments, Reporters, Staining, Imaging Data, and Image Characterizations. This specification has benefited the consortium within which it was initially developed and is expected to benefit the wider research community. We welcome feedback from the scientific community to help improve our proposal. PMID:18327244

  3. bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring

    PubMed Central

    Trovisco, Vítor; Belaya, Katsiaryna; Nashchekin, Dmitry; Irion, Uwe; Sirinakis, George; Butler, Richard; Lee, Jack J; Gavis, Elizabeth R; St Johnston, Daniel

    2016-01-01

    bicoid mRNA localises to the Drosophila oocyte anterior from stage 9 of oogenesis onwards to provide a local source for Bicoid protein for embryonic patterning. Live imaging at stage 9 reveals that bicoid mRNA particles undergo rapid Dynein-dependent movements near the oocyte anterior, but with no directional bias. Furthermore, bicoid mRNA localises normally in shot2A2, which abolishes the polarised microtubule organisation. FRAP and photo-conversion experiments demonstrate that the RNA is stably anchored at the anterior, independently of microtubules. Thus, bicoid mRNA is localised by random active transport and anterior anchoring. Super-resolution imaging reveals that bicoid mRNA forms 110–120 nm particles with variable RNA content, but constant size. These particles appear to be well-defined structures that package the RNA for transport and anchoring. DOI: http://dx.doi.org/10.7554/eLife.17537.001 PMID:27791980

  4. Triazole-based Zn²⁺-specific molecular marker for fluorescence bioimaging.

    PubMed

    Sinha, Sougata; Mukherjee, Trinetra; Mathew, Jomon; Mukhopadhyay, Subhra K; Ghosh, Subrata

    2014-04-25

    Fluorescence bioimaging potential, both in vitro and in vivo, of a yellow emissive triazole-based molecular marker has been investigated and demonstrated. Three different kinds of cells, viz Bacillus thuringiensis, Candida albicans, and Techoma stans pollen grains were used to investigate the intracellular zinc imaging potential of 1 (in vitro studies). Fluorescence imaging of translocation of zinc through the stem of small herb, Peperomia pellucida, having transparent stem proved in vivo bioimaging capability of 1. This approach will enable in screening cell permeability and biostability of a newly developed probe. Similarly, the current method for detection and localization of zinc in Gram seed sprouts could be an easy and potential alternative of the existing analytical methods to investigate the efficiency of various strategies applied for increasing zinc-content in cereal crops. The probe-zinc ensemble has efficiently been applied for detecting phosphate-based biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Superpixel-based structure classification for laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Bodenstedt, Sebastian; Görtler, Jochen; Wagner, Martin; Kenngott, Hannes; Müller-Stich, Beat Peter; Dillmann, Rüdiger; Speidel, Stefanie

    2016-03-01

    Minimally-invasive interventions offers multiple benefits for patients, but also entails drawbacks for the surgeon. The goal of context-aware assistance systems is to alleviate some of these difficulties. Localizing and identifying anatomical structures, maligned tissue and surgical instruments through endoscopic image analysis is paramount for an assistance system, making online measurements and augmented reality visualizations possible. Furthermore, such information can be used to assess the progress of an intervention, hereby allowing for a context-aware assistance. In this work, we present an approach for such an analysis. First, a given laparoscopic image is divided into groups of connected pixels, so-called superpixels, using the SEEDS algorithm. The content of a given superpixel is then described using information regarding its color and texture. Using a Random Forest classifier, we determine the class label of each superpixel. We evaluated our approach on a publicly available dataset for laparoscopic instrument detection and achieved a DICE score of 0.69.

  6. A novel segmentation method for uneven lighting image with noise injection based on non-local spatial information and intuitionistic fuzzy entropy

    NASA Astrophysics Data System (ADS)

    Yu, Haiyan; Fan, Jiulun

    2017-12-01

    Local thresholding methods for uneven lighting image segmentation always have the limitations that they are very sensitive to noise injection and that the performance relies largely upon the choice of the initial window size. This paper proposes a novel algorithm for segmenting uneven lighting images with strong noise injection based on non-local spatial information and intuitionistic fuzzy theory. We regard an image as a gray wave in three-dimensional space, which is composed of many peaks and troughs, and these peaks and troughs can divide the image into many local sub-regions in different directions. Our algorithm computes the relative characteristic of each pixel located in the corresponding sub-region based on fuzzy membership function and uses it to replace its absolute characteristic (its gray level) to reduce the influence of uneven light on image segmentation. At the same time, the non-local adaptive spatial constraints of pixels are introduced to avoid noise interference with the search of local sub-regions and the computation of local characteristics. Moreover, edge information is also taken into account to avoid false peak and trough labeling. Finally, a global method based on intuitionistic fuzzy entropy is employed on the wave transformation image to obtain the segmented result. Experiments on several test images show that the proposed method has excellent capability of decreasing the influence of uneven illumination on images and noise injection and behaves more robustly than several classical global and local thresholding methods.

  7. Flickr's Potential as an Academic Image Resource: An Exploratory Study

    ERIC Educational Resources Information Center

    Angus, Emma; Stuart, David; Thelwall, Mike

    2010-01-01

    Many web 2.0 sites are extremely popular and contain vast amounts of content, but how much of this content is useful in academia? This exploratory paper investigates the potential use of the popular web 2.0 image site Flickr as an academic image resource. The study identified images tagged with any one of 12 subject names derived from recognized…

  8. Color Image Restoration Using Nonlocal Mumford-Shah Regularizers

    NASA Astrophysics Data System (ADS)

    Jung, Miyoun; Bresson, Xavier; Chan, Tony F.; Vese, Luminita A.

    We introduce several color image restoration algorithms based on the Mumford-Shah model and nonlocal image information. The standard Ambrosio-Tortorelli and Shah models are defined to work in a small local neighborhood, which are sufficient to denoise smooth regions with sharp boundaries. However, textures are not local in nature and require semi-local/non-local information to be denoised efficiently. Inspired from recent work (NL-means of Buades, Coll, Morel and NL-TV of Gilboa, Osher), we extend the standard models of Ambrosio-Tortorelli and Shah approximations to Mumford-Shah functionals to work with nonlocal information, for better restoration of fine structures and textures. We present several applications of the proposed nonlocal MS regularizers in image processing such as color image denoising, color image deblurring in the presence of Gaussian or impulse noise, color image inpainting, and color image super-resolution. In the formulation of nonlocal variational models for the image deblurring with impulse noise, we propose an efficient preprocessing step for the computation of the weight function w. In all the applications, the proposed nonlocal regularizers produce superior results over the local ones, especially in image inpainting with large missing regions. Experimental results and comparisons between the proposed nonlocal methods and the local ones are shown.

  9. Superresolution Imaging of Human Cytomegalovirus vMIA Localization in Sub-Mitochondrial Compartments

    PubMed Central

    Bhuvanendran, Shivaprasad; Salka, Kyle; Rainey, Kristin; Sreetama, Sen Chandra; Williams, Elizabeth; Leeker, Margretha; Prasad, Vidhya; Boyd, Jonathan; Patterson, George H.; Jaiswal, Jyoti K.; Colberg-Poley, Anamaris M.

    2014-01-01

    The human cytomegalovirus (HCMV) viral mitochondria-localized inhibitor of apoptosis (vMIA) protein, traffics to mitochondria-associated membranes (MAM), where the endoplasmic reticulum (ER) contacts the outer mitochondrial membrane (OMM). vMIA association with the MAM has not been visualized by imaging. Here, we have visualized this by using a combination of confocal and superresolution imaging. Deconvolution of confocal microscopy images shows vMIA localizes away from mitochondrial matrix at the Mitochondria-ER interface. By gated stimulated emission depletion (GSTED) imaging, we show that along this interface vMIA is distributed in clusters. Through multicolor, multifocal structured illumination microscopy (MSIM), we find vMIA clusters localize away from MitoTracker Red, indicating its OMM localization. GSTED and MSIM imaging show vMIA exists in clusters of ~100–150 nm, which is consistent with the cluster size determined by Photoactivated Localization Microscopy (PALM). With these diverse superresolution approaches, we have imaged the clustered distribution of vMIA at the OMM adjacent to the ER. Our findings directly compare the relative advantages of each of these superresolution imaging modalities for imaging components of the MAM and sub-mitochondrial compartments. These studies establish the ability of superresolution imaging to provide valuable insight into viral protein location, particularly in the sub-mitochondrial compartments, and into their clustered organization. PMID:24721787

  10. Parallel magnetic resonance imaging using coils with localized sensitivities.

    PubMed

    Goldfarb, James W; Holland, Agnes E

    2004-09-01

    The purpose of this study was to present clinical examples and illustrate the inefficiencies of a conventional reconstruction using a commercially available phased array coil with localized sensitivities. Five patients were imaged at 1.5 T using a cardiac-synchronized gadolinium-enhanced acquisition and a commercially available four-element phased array coil. Four unique sets of images were reconstructed from the acquired k-space data: (a) sum-of-squares image using four elements of the coil; localized sum-of-squares images from the (b) anterior coils and (c) posterior coils and a (c) local reconstruction. Images were analyzed for artifacts and usable field-of-view. Conventional image reconstruction produced images with fold-over artifacts in all cases spanning a portion of the image (mean 90 mm; range 36-126 mm). The local reconstruction removed fold-over artifacts and resulted in an effective increase in the field-of-view (mean 50%; range 20-70%). Commercially available phased array coils do not always have overlapping sensitivities. Fold-over artifacts can be removed using an alternate reconstruction method. When assessing the advantages of parallel imaging techniques, gains achieved using techniques such as SENSE and SMASH should be gauged against the acquisition time of the localized method rather than the conventional sum-of-squares method.

  11. CAMEL: concept annotated image libraries

    NASA Astrophysics Data System (ADS)

    Natsev, Apostol; Chadha, Atul; Soetarman, Basuki; Vitter, Jeffrey S.

    2001-01-01

    The problem of content-based image searching has received considerable attention in the last few years. Thousands of images are now available on the Internet, and many important applications require searching of images in domains such as E-commerce, medical imaging, weather prediction, satellite imagery, and so on. Yet, content-based image querying is still largely unestablished as a mainstream field, nor is it widely used by search engines. We believe that two of the major hurdles for this poor acceptance are poor retrieval quality and usability.

  12. CAMEL: concept annotated image libraries

    NASA Astrophysics Data System (ADS)

    Natsev, Apostol; Chadha, Atul; Soetarman, Basuki; Vitter, Jeffrey S.

    2000-12-01

    The problem of content-based image searching has received considerable attention in the last few years. Thousands of images are now available on the Internet, and many important applications require searching of images in domains such as E-commerce, medical imaging, weather prediction, satellite imagery, and so on. Yet, content-based image querying is still largely unestablished as a mainstream field, nor is it widely used by search engines. We believe that two of the major hurdles for this poor acceptance are poor retrieval quality and usability.

  13. Interest point detection for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Dorado-Muñoz, Leidy P.; Vélez-Reyes, Miguel; Roysam, Badrinath; Mukherjee, Amit

    2009-05-01

    This paper presents an algorithm for automated extraction of interest points (IPs)in multispectral and hyperspectral images. Interest points are features of the image that capture information from its neighbours and they are distinctive and stable under transformations such as translation and rotation. Interest-point operators for monochromatic images were proposed more than a decade ago and have since been studied extensively. IPs have been applied to diverse problems in computer vision, including image matching, recognition, registration, 3D reconstruction, change detection, and content-based image retrieval. Interest points are helpful in data reduction, and reduce the computational burden of various algorithms (like registration, object detection, 3D reconstruction etc) by replacing an exhaustive search over the entire image domain by a probe into a concise set of highly informative points. An interest operator seeks out points in an image that are structurally distinct, invariant to imaging conditions, stable under geometric transformation, and interpretable which are good candidates for interest points. Our approach extends ideas from Lowe's keypoint operator that uses local extrema of Difference of Gaussian (DoG) operator at multiple scales to detect interest point in gray level images. The proposed approach extends Lowe's method by direct conversion of scalar operations such as scale-space generation, and extreme point detection into operations that take the vector nature of the image into consideration. Experimental results with RGB and hyperspectral images which demonstrate the potential of the method for this application and the potential improvements of a fully vectorial approach over band-by-band approaches described in the literature.

  14. Medical image integrity control and forensics based on watermarking--approximating local modifications and identifying global image alterations.

    PubMed

    Huang, H; Coatrieux, G; Shu, H Z; Luo, L M; Roux, Ch

    2011-01-01

    In this paper we present a medical image integrity verification system that not only allows detecting and approximating malevolent local image alterations (e.g. removal or addition of findings) but is also capable to identify the nature of global image processing applied to the image (e.g. lossy compression, filtering …). For that purpose, we propose an image signature derived from the geometric moments of pixel blocks. Such a signature is computed over regions of interest of the image and then watermarked in regions of non interest. Image integrity analysis is conducted by comparing embedded and recomputed signatures. If any, local modifications are approximated through the determination of the parameters of the nearest generalized 2D Gaussian. Image moments are taken as image features and serve as inputs to one classifier we learned to discriminate the type of global image processing. Experimental results with both local and global modifications illustrate the overall performances of our approach.

  15. Evaluation of methods to produce an image library for automatic patient model localization for dose mapping during fluoroscopically guided procedures

    NASA Astrophysics Data System (ADS)

    Kilian-Meneghin, Josh; Xiong, Z.; Rudin, S.; Oines, A.; Bednarek, D. R.

    2017-03-01

    The purpose of this work is to evaluate methods for producing a library of 2D-radiographic images to be correlated to clinical images obtained during a fluoroscopically-guided procedure for automated patient-model localization. The localization algorithm will be used to improve the accuracy of the skin-dose map superimposed on the 3D patient- model of the real-time Dose-Tracking-System (DTS). For the library, 2D images were generated from CT datasets of the SK-150 anthropomorphic phantom using two methods: Schmid's 3D-visualization tool and Plastimatch's digitally-reconstructed-radiograph (DRR) code. Those images, as well as a standard 2D-radiographic image, were correlated to a 2D-fluoroscopic image of a phantom, which represented the clinical-fluoroscopic image, using the Corr2 function in Matlab. The Corr2 function takes two images and outputs the relative correlation between them, which is fed into the localization algorithm. Higher correlation means better alignment of the 3D patient-model with the patient image. In this instance, it was determined that the localization algorithm will succeed when Corr2 returns a correlation of at least 50%. The 3D-visualization tool images returned 55-80% correlation relative to the fluoroscopic-image, which was comparable to the correlation for the radiograph. The DRR images returned 61-90% correlation, again comparable to the radiograph. Both methods prove to be sufficient for the localization algorithm and can be produced quickly; however, the DRR method produces more accurate grey-levels. Using the DRR code, a library at varying angles can be produced for the localization algorithm.

  16. Humans make efficient use of natural image statistics when performing spatial interpolation.

    PubMed

    D'Antona, Anthony D; Perry, Jeffrey S; Geisler, Wilson S

    2013-12-16

    Visual systems learn through evolution and experience over the lifespan to exploit the statistical structure of natural images when performing visual tasks. Understanding which aspects of this statistical structure are incorporated into the human nervous system is a fundamental goal in vision science. To address this goal, we measured human ability to estimate the intensity of missing image pixels in natural images. Human estimation accuracy is compared with various simple heuristics (e.g., local mean) and with optimal observers that have nearly complete knowledge of the local statistical structure of natural images. Human estimates are more accurate than those of simple heuristics, and they match the performance of an optimal observer that knows the local statistical structure of relative intensities (contrasts). This optimal observer predicts the detailed pattern of human estimation errors and hence the results place strong constraints on the underlying neural mechanisms. However, humans do not reach the performance of an optimal observer that knows the local statistical structure of the absolute intensities, which reflect both local relative intensities and local mean intensity. As predicted from a statistical analysis of natural images, human estimation accuracy is negligibly improved by expanding the context from a local patch to the whole image. Our results demonstrate that the human visual system exploits efficiently the statistical structure of natural images.

  17. Fast live cell imaging at nanometer scale using annihilating filter-based low-rank Hankel matrix approach

    NASA Astrophysics Data System (ADS)

    Min, Junhong; Carlini, Lina; Unser, Michael; Manley, Suliana; Ye, Jong Chul

    2015-09-01

    Localization microscopy such as STORM/PALM can achieve a nanometer scale spatial resolution by iteratively localizing fluorescence molecules. It was shown that imaging of densely activated molecules can accelerate temporal resolution which was considered as major limitation of localization microscopy. However, this higher density imaging needs to incorporate advanced localization algorithms to deal with overlapping point spread functions (PSFs). In order to address this technical challenges, previously we developed a localization algorithm called FALCON1, 2 using a quasi-continuous localization model with sparsity prior on image space. It was demonstrated in both 2D/3D live cell imaging. However, it has several disadvantages to be further improved. Here, we proposed a new localization algorithm using annihilating filter-based low rank Hankel structured matrix approach (ALOHA). According to ALOHA principle, sparsity in image domain implies the existence of rank-deficient Hankel structured matrix in Fourier space. Thanks to this fundamental duality, our new algorithm can perform data-adaptive PSF estimation and deconvolution of Fourier spectrum, followed by truly grid-free localization using spectral estimation technique. Furthermore, all these optimizations are conducted on Fourier space only. We validated the performance of the new method with numerical experiments and live cell imaging experiment. The results confirmed that it has the higher localization performances in both experiments in terms of accuracy and detection rate.

  18. A microwave imaging-based 3D localization algorithm for an in-body RF source as in wireless capsule endoscopes.

    PubMed

    Chandra, Rohit; Balasingham, Ilangko

    2015-01-01

    A microwave imaging-based technique for 3D localization of an in-body RF source is presented. Such a technique can be useful for localization of an RF source as in wireless capsule endoscopes for positioning of any abnormality in the gastrointestinal tract. Microwave imaging is used to determine the dielectric properties (relative permittivity and conductivity) of the tissues that are required for a precise localization. A 2D microwave imaging algorithm is used for determination of the dielectric properties. Calibration method is developed for removing any error due to the used 2D imaging algorithm on the imaging data of a 3D body. The developed method is tested on a simple 3D heterogeneous phantom through finite-difference-time-domain simulations. Additive white Gaussian noise at the signal-to-noise ratio of 30 dB is added to the simulated data to make them more realistic. The developed calibration method improves the imaging and the localization accuracy. Statistics on the localization accuracy are generated by randomly placing the RF source at various positions inside the small intestine of the phantom. The cumulative distribution function of the localization error is plotted. In 90% of the cases, the localization accuracy was found within 1.67 cm, showing the capability of the developed method for 3D localization.

  19. Exploiting spectral content for image segmentation in GPR data

    NASA Astrophysics Data System (ADS)

    Wang, Patrick K.; Morton, Kenneth D., Jr.; Collins, Leslie M.; Torrione, Peter A.

    2011-06-01

    Ground-penetrating radar (GPR) sensors provide an effective means for detecting changes in the sub-surface electrical properties of soils, such as changes indicative of landmines or other buried threats. However, most GPR-based pre-screening algorithms only localize target responses along the surface of the earth, and do not provide information regarding an object's position in depth. As a result, feature extraction algorithms are forced to process data from entire cubes of data around pre-screener alarms, which can reduce feature fidelity and hamper performance. In this work, spectral analysis is investigated as a method for locating subsurface anomalies in GPR data. In particular, a 2-D spatial/frequency decomposition is applied to pre-screener flagged GPR B-scans. Analysis of these spatial/frequency regions suggests that aspects (e.g. moments, maxima, mode) of the frequency distribution of GPR energy can be indicative of the presence of target responses. After translating a GPR image to a function of the spatial/frequency distributions at each pixel, several image segmentation approaches can be applied to perform segmentation in this new transformed feature space. To illustrate the efficacy of the approach, a performance comparison between feature processing with and without the image segmentation algorithm is provided.

  20. On edge-aware path-based color spatial sampling for Retinex: from Termite Retinex to Light Energy-driven Termite Retinex

    NASA Astrophysics Data System (ADS)

    Simone, Gabriele; Cordone, Roberto; Serapioni, Raul Paolo; Lecca, Michela

    2017-05-01

    Retinex theory estimates the human color sensation at any observed point by correcting its color based on the spatial arrangement of the colors in proximate regions. We revise two recent path-based, edge-aware Retinex implementations: Termite Retinex (TR) and Energy-driven Termite Retinex (ETR). As the original Retinex implementation, TR and ETR scan the neighborhood of any image pixel by paths and rescale their chromatic intensities by intensity levels computed by reworking the colors of the pixels on the paths. Our interest in TR and ETR is due to their unique, content-based scanning scheme, which uses the image edges to define the paths and exploits a swarm intelligence model for guiding the spatial exploration of the image. The exploration scheme of ETR has been showed to be particularly effective: its paths are local minima of an energy functional, designed to favor the sampling of image pixels highly relevant to color sensation. Nevertheless, since its computational complexity makes ETR poorly practicable, here we present a light version of it, named Light Energy-driven TR, and obtained from ETR by implementing a modified, optimized minimization procedure and by exploiting parallel computing.

  1. Radiotherapy treatment planning: benefits of CT-MR image registration and fusion in tumor volume delineation.

    PubMed

    Djan, Igor; Petrović, Borislava; Erak, Marko; Nikolić, Ivan; Lucić, Silvija

    2013-08-01

    Development of imaging techniques, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), made great impact on radiotherapy treatment planning by improving the localization of target volumes. Improved localization allows better local control of tumor volumes, but also minimizes geographical misses. Mutual information is obtained by registration and fusion of images achieved manually or automatically. The aim of this study was to validate the CT-MRI image fusion method and compare delineation obtained by CT versus CT-MRI image fusion. The image fusion software (XIO CMS 4.50.0) was applied to delineate 16 patients. The patients were scanned on CT and MRI in the treatment position within an immobilization device before the initial treatment. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated on CT alone and on CT+MRI images consecutively and image fusion was obtained. Image fusion showed that CTV delineated on a CT image study set is mainly inadequate for treatment planning, in comparison with CTV delineated on CT-MRI fused image study set. Fusion of different modalities enables the most accurate target volume delineation. This study shows that registration and image fusion allows precise target localization in terms of GTV and CTV and local disease control.

  2. A neotropical Miocene pollen database employing image-based search and semantic modeling1

    PubMed Central

    Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W.; Jaramillo, Carlos; Shyu, Chi-Ren

    2014-01-01

    • Premise of the study: Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Methods: Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Results: Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Discussion: Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery. PMID:25202648

  3. Visual Based Retrieval Systems and Web Mining--Introduction.

    ERIC Educational Resources Information Center

    Iyengar, S. S.

    2001-01-01

    Briefly discusses Web mining and image retrieval techniques, and then presents a summary of articles in this special issue. Articles focus on Web content mining, artificial neural networks as tools for image retrieval, content-based image retrieval systems, and personalizing the Web browsing experience using media agents. (AEF)

  4. Spatial assessment of soluble solid contents on apple slices using hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    A partial least squares regression (PLSR) model to map internal soluble solids content (SSC) of apples using visible/near-infrared (VNIR) hyperspectral imaging was developed. The reflectance spectra of sliced apples were extracted from hyperspectral absorbance images obtained in the 400e1000 nm rang...

  5. SIFT Meets CNN: A Decade Survey of Instance Retrieval.

    PubMed

    Zheng, Liang; Yang, Yi; Tian, Qi

    2018-05-01

    In the early days, content-based image retrieval (CBIR) was studied with global features. Since 2003, image retrieval based on local descriptors (de facto SIFT) has been extensively studied for over a decade due to the advantage of SIFT in dealing with image transformations. Recently, image representations based on the convolutional neural network (CNN) have attracted increasing interest in the community and demonstrated impressive performance. Given this time of rapid evolution, this article provides a comprehensive survey of instance retrieval over the last decade. Two broad categories, SIFT-based and CNN-based methods, are presented. For the former, according to the codebook size, we organize the literature into using large/medium-sized/small codebooks. For the latter, we discuss three lines of methods, i.e., using pre-trained or fine-tuned CNN models, and hybrid methods. The first two perform a single-pass of an image to the network, while the last category employs a patch-based feature extraction scheme. This survey presents milestones in modern instance retrieval, reviews a broad selection of previous works in different categories, and provides insights on the connection between SIFT and CNN-based methods. After analyzing and comparing retrieval performance of different categories on several datasets, we discuss promising directions towards generic and specialized instance retrieval.

  6. Indexing the medical open access literature for textual and content-based visual retrieval.

    PubMed

    Eggel, Ivan; Müller, Henning

    2010-01-01

    Over the past few years an increasing amount of scientific journals have been created in an open access format. Particularly in the medical field the number of openly accessible journals is enormous making a wide body of knowledge available for analysis and retrieval. Part of the trend towards open access publications can be linked to funding bodies such as the NIH1 (National Institutes of Health) and the Swiss National Science Foundation (SNF2) requiring funded projects to make all articles of funded research available publicly. This article describes an approach to make part of the knowledge of open access journals available for retrieval including the textual information but also the images contained in the articles. For this goal all articles of 24 journals related to medical informatics and medical imaging were crawled from the web pages of BioMed Central. Text and images of the PDF (Portable Document Format) files were indexed separately and a web-based retrieval interface allows for searching via keyword queries or by visual similarity queries. Starting point for a visual similarity query can be an image on the local hard disk that is uploaded or any image found via the textual search. Search for similar documents is also possible.

  7. Object segmentation controls image reconstruction from natural scenes

    PubMed Central

    2017-01-01

    The structure of the physical world projects images onto our eyes. However, those images are often poorly representative of environmental structure: well-defined boundaries within the eye may correspond to irrelevant features of the physical world, while critical features of the physical world may be nearly invisible at the retinal projection. The challenge for the visual cortex is to sort these two types of features according to their utility in ultimately reconstructing percepts and interpreting the constituents of the scene. We describe a novel paradigm that enabled us to selectively evaluate the relative role played by these two feature classes in signal reconstruction from corrupted images. Our measurements demonstrate that this process is quickly dominated by the inferred structure of the environment, and only minimally controlled by variations of raw image content. The inferential mechanism is spatially global and its impact on early visual cortex is fast. Furthermore, it retunes local visual processing for more efficient feature extraction without altering the intrinsic transduction noise. The basic properties of this process can be partially captured by a combination of small-scale circuit models and large-scale network architectures. Taken together, our results challenge compartmentalized notions of bottom-up/top-down perception and suggest instead that these two modes are best viewed as an integrated perceptual mechanism. PMID:28827801

  8. 10 CFR 2.309 - Hearing requests, petitions to intervene, requirements for standing, and contentions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., local governmental body, and affected, Federally-recognized Indian Tribe. (i) A State, local governmental body (county, municipality or other subdivision), and any affected Federally-recognized Indian... contention requirements in paragraph (f) of this section), except that a State, local governmental body or...

  9. 10 CFR 2.309 - Hearing requests, petitions to intervene, requirements for standing, and contentions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., local governmental body, and affected, Federally-recognized Indian Tribe. (i) A State, local governmental body (county, municipality or other subdivision), and any affected Federally-recognized Indian... contention requirements in paragraph (f) of this section), except that a State, local governmental body or...

  10. Influence of High Mn-Cu-Mo on Microstructure and Fatigue characteristics of Austempered Ductile Iron

    NASA Astrophysics Data System (ADS)

    Banavasi Shashidhar, M.; Ravishankar, K. S.; Naik Padmayya, S.

    2018-03-01

    The impacts of high Mn content on microstructure and fatigue characteristics of ADI at 300, 350 and 400 °C for 120 min have been examined. Optical microscopy images reveals bainite morphology only at 300°C. Higher Mn contents hinders bainite transformation in the locales of Mn and Mo segregation, where in stage II reaction initiates near the graphite nodules before stage I reaction ends away from the nodules which creates more unreacted austenite volume after cooling forming martensite around the periphery creating austenite-martensite zone at 350 °C and tremendously articulated at 400°C. Feathery ferrite laths, stable retained austenite and uniform density hardness in the matrix, promotes higher toughness and fatigue properties (250 MPa @ 106 cycles) at 300 °C. Presence of stage II carbides in the eutectic cell and austenite-martensite zone in the intercellular regions, due to their embrittlement in the matrix, makes easy crack path for initiation and propagation deteriorating properties at 350°C and above. SEM images of fatigue fractured surface revealed that at 300°C, showed a regular crack interconnecting graphite nodule, fatigue striation and quazi-cleavage fracture mode, and at 350 & 400°C reveals the carbide, austenite-martensite and porosity/defect final fracture region.

  11. Buddhism, science, and market: The globalisation of Tibetan medicine.

    PubMed

    Janes, Craig R

    2002-01-01

    In this paper I discuss the processes by which Tibetan medicine has become globalised, and the ways in which these have come to determine, constrain, and, ultimately, transform local practices of healing in both Tibet and the West. I examine the degree to which globalisation, in particular international market capitalism, operating in this case through the Chinese state, structures the content of primary medical resources, confers legitimacy to certain technologies, and sets the ground rules by which the healers in charge of deploying such technologies are set into conversation with one another. I also argue that the cultural dimensions of globalisation enter the local context through the multiple-stranded flows of people, images, and ideas, and contribute to redefinitions of identity, suffering, and body praxis among patients/consumers in diverse local contexts. I proceed within two registers of analysis. In the first, I analyse these movements in the context of Tibetan medicine as it has been transformed, practised, and used, in the Tibet Autonomous Region of China. In the second, the analytic lens shifts to a focus on Tibetan medicine as a 'global' alternative medicine in North America and Europe. The focus throughout is on the global-local dialectic: how Tibetan medicine is both produced as global commodity and consumed as 'local' tradition.

  12. Information retrieval from holographic interferograms: Fundamentals and problems

    NASA Technical Reports Server (NTRS)

    Vest, Charles M.

    1987-01-01

    Holographic interferograms can contain large amounts of information about flow and temperature fields. Their information content can be very high because they can be viewed from many different directions. This multidirectionality, and fringe localization add to the information contained in the fringe pattern if diffuse illumination is used. Additional information, and increased accuracy can be obtained through the use of dual reference wave holography to add reference fringes or to effect discrete phase shift or hetrodyne interferometry. Automated analysis of fringes is possible if interferograms are of simple structure and good quality. However, in practice a large number of practical problems can arise, so that a difficult image processing task results.

  13. Resolution analysis of archive films for the purpose of their optimal digitization and distribution

    NASA Astrophysics Data System (ADS)

    Fliegel, Karel; Vítek, Stanislav; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2017-09-01

    With recent high demand for ultra-high-definition (UHD) content to be screened in high-end digital movie theaters but also in the home environment, film archives full of movies in high-definition and above are in the scope of UHD content providers. Movies captured with the traditional film technology represent a virtually unlimited source of UHD content. The goal to maintain complete image information is also related to the choice of scanning resolution and spatial resolution for further distribution. It might seem that scanning the film material in the highest possible resolution using state-of-the-art film scanners and also its distribution in this resolution is the right choice. The information content of the digitized images is however limited, and various degradations moreover lead to its further reduction. Digital distribution of the content in the highest image resolution might be therefore unnecessary or uneconomical. In other cases, the highest possible resolution is inevitable if we want to preserve fine scene details or film grain structure for archiving purposes. This paper deals with the image detail content analysis of archive film records. The resolution limit in captured scene image and factors which lower the final resolution are discussed. Methods are proposed to determine the spatial details of the film picture based on the analysis of its digitized image data. These procedures allow determining recommendations for optimal distribution of digitized video content intended for various display devices with lower resolutions. Obtained results are illustrated on spatial downsampling use case scenario, and performance evaluation of the proposed techniques is presented.

  14. Nuclear DNA Content Variation in Life History Phases of the Bonnemasoniaceae (Rhodophyta)

    PubMed Central

    Salvador Soler, Noemi; Gómez Garreta, Amelia; Ribera Siguan, Mª Antonia; Kapraun, Donald F.

    2014-01-01

    Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-localizing fluorochrome DAPI (4′, 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes (spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases range from 1.15–1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis, as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an ancestral genome. PMID:24465835

  15. Nanoparticulate NaA zeolite composites for MRI: Effect of iron oxide content on image contrast

    NASA Astrophysics Data System (ADS)

    Gharehaghaji, Nahideh; Divband, Baharak; Zareei, Loghman

    2018-06-01

    In the current study, Fe3O4/NaA nanocomposites with various amounts of Fe3O4 (3.4, 6.8 & 10.2 wt%) were synthesized and characterized to study the effect of nano iron oxide content on the magnetic resonance (MR) image contrast. The cell viability of the nanocomposites was investigated by MTT assay method. T2 values as well as r2 relaxivities were determined with a 1.5 T MRI scanner. The results of the MTT assay confirmed the nanocomposites cytocompatibility up to 6.8% of the iron oxide content. Although the magnetization saturations and susceptibility values of the nanocomposites were increased as a function of the iron oxide content, their relaxivity was decreased from 921.78 mM-1 s-1 for the nanocomposite with the lowest iron oxide content to 380.16 mM-1 s-1 for the highest one. Therefore, Fe3O4/NaA nanocomposite with 3.4% iron oxide content led to the best MR image contrast. Nano iron oxide content and dispersion in the nanocomposites structure have important role in the nanocomposite r2 relaxivity and the MR image contrast. Aggregation of the iron oxide nanoparticles is a limiting factor in using of the high iron oxide content nanocomposites.

  16. Content standards for medical image metadata

    NASA Astrophysics Data System (ADS)

    d'Ornellas, Marcos C.; da Rocha, Rafael P.

    2003-12-01

    Medical images are at the heart of the healthcare diagnostic procedures. They have provided not only a noninvasive mean to view anatomical cross-sections of internal organs but also a mean for physicians to evaluate the patient"s diagnosis and monitor the effects of the treatment. For a Medical Center, the emphasis may shift from the generation of image to post processing and data management since the medical staff may generate even more processed images and other data from the original image after various analyses and post processing. A medical image data repository for health care information system is becoming a critical need. This data repository would contain comprehensive patient records, including information such as clinical data and related diagnostic images, and post-processed images. Due to the large volume and complexity of the data as well as the diversified user access requirements, the implementation of the medical image archive system will be a complex and challenging task. This paper discusses content standards for medical image metadata. In addition it also focuses on the image metadata content evaluation and metadata quality management.

  17. The Image of Women in the National Education Text Books in Jordan

    ERIC Educational Resources Information Center

    Al-Khalidi, Nasiema Mustafa Sadeq

    2016-01-01

    The study aimed to identify the image of women and how it was dealt with in the National Education books in Jordan, where the content of the National Education books analyzed and for multiple age stages, also it addressed the content analysis of images, concepts and fees, activities and evaluation to identify the image of women in the family, at…

  18. A domain-knowledge-inspired mathematical framework for the description and classification of H&E stained histopathology images.

    PubMed

    Massar, Melody L; Bhagavatula, Ramamurthy; Ozolek, John A; Castro, Carlos A; Fickus, Matthew; Kovačević, Jelena

    2011-10-19

    We present the current state of our work on a mathematical framework for identification and delineation of histopathology images-local histograms and occlusion models. Local histograms are histograms computed over defined spatial neighborhoods whose purpose is to characterize an image locally. This unit of description is augmented by our occlusion models that describe a methodology for image formation. In the context of this image formation model, the power of local histograms with respect to appropriate families of images will be shown through various proved statements about expected performance. We conclude by presenting a preliminary study to demonstrate the power of the framework in the context of histopathology image classification tasks that, while differing greatly in application, both originate from what is considered an appropriate class of images for this framework.

  19. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.

    PubMed

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-08-31

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments.

  20. A Probabilistic Feature Map-Based Localization System Using a Monocular Camera

    PubMed Central

    Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun

    2015-01-01

    Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284

  1. Locality constrained joint dynamic sparse representation for local matching based face recognition.

    PubMed

    Wang, Jianzhong; Yi, Yugen; Zhou, Wei; Shi, Yanjiao; Qi, Miao; Zhang, Ming; Zhang, Baoxue; Kong, Jun

    2014-01-01

    Recently, Sparse Representation-based Classification (SRC) has attracted a lot of attention for its applications to various tasks, especially in biometric techniques such as face recognition. However, factors such as lighting, expression, pose and disguise variations in face images will decrease the performances of SRC and most other face recognition techniques. In order to overcome these limitations, we propose a robust face recognition method named Locality Constrained Joint Dynamic Sparse Representation-based Classification (LCJDSRC) in this paper. In our method, a face image is first partitioned into several smaller sub-images. Then, these sub-images are sparsely represented using the proposed locality constrained joint dynamic sparse representation algorithm. Finally, the representation results for all sub-images are aggregated to obtain the final recognition result. Compared with other algorithms which process each sub-image of a face image independently, the proposed algorithm regards the local matching-based face recognition as a multi-task learning problem. Thus, the latent relationships among the sub-images from the same face image are taken into account. Meanwhile, the locality information of the data is also considered in our algorithm. We evaluate our algorithm by comparing it with other state-of-the-art approaches. Extensive experiments on four benchmark face databases (ORL, Extended YaleB, AR and LFW) demonstrate the effectiveness of LCJDSRC.

  2. Image Description with Local Patterns: An Application to Face Recognition

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Ahrary, Alireza; Kamata, Sei-Ichiro

    In this paper, we propose a novel approach for presenting the local features of digital image using 1D Local Patterns by Multi-Scans (1DLPMS). We also consider the extentions and simplifications of the proposed approach into facial images analysis. The proposed approach consists of three steps. At the first step, the gray values of pixels in image are represented as a vector giving the local neighborhood intensity distrubutions of the pixels. Then, multi-scans are applied to capture different spatial information on the image with advantage of less computation than other traditional ways, such as Local Binary Patterns (LBP). The second step is encoding the local features based on different encoding rules using 1D local patterns. This transformation is expected to be less sensitive to illumination variations besides preserving the appearance of images embedded in the original gray scale. At the final step, Grouped 1D Local Patterns by Multi-Scans (G1DLPMS) is applied to make the proposed approach computationally simpler and easy to extend. Next, we further formulate boosted algorithm to extract the most discriminant local features. The evaluated results demonstrate that the proposed approach outperforms the conventional approaches in terms of accuracy in applications of face recognition, gender estimation and facial expression.

  3. Mass-storage management for distributed image/video archives

    NASA Astrophysics Data System (ADS)

    Franchi, Santina; Guarda, Roberto; Prampolini, Franco

    1993-04-01

    The realization of image/video database requires a specific design for both database structures and mass storage management. This issue has addressed the project of the digital image/video database system that has been designed at IBM SEMEA Scientific & Technical Solution Center. Proper database structures have been defined to catalog image/video coding technique with the related parameters, and the description of image/video contents. User workstations and servers are distributed along a local area network. Image/video files are not managed directly by the DBMS server. Because of their wide size, they are stored outside the database on network devices. The database contains the pointers to the image/video files and the description of the storage devices. The system can use different kinds of storage media, organized in a hierarchical structure. Three levels of functions are available to manage the storage resources. The functions of the lower level provide media management. They allow it to catalog devices and to modify device status and device network location. The medium level manages image/video files on a physical basis. It manages file migration between high capacity media and low access time media. The functions of the upper level work on image/video file on a logical basis, as they archive, move and copy image/video data selected by user defined queries. These functions are used to support the implementation of a storage management strategy. The database information about characteristics of both storage devices and coding techniques are used by the third level functions to fit delivery/visualization requirements and to reduce archiving costs.

  4. Analysis of marine multi-channel seismic data using a 2D continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Vuong, A. K.; Zhang, J.; Gibson, R. L.; Sager, W. W.

    2011-12-01

    Marine multi-channel seismic (MCS) profiles provide important constraints on crustal structure beneath the sea floor. MCS data usually provide good images of the upper part of the oceanic crust, especially in sedimentary layers. In contrast, it is often difficult to interpret deeper layers, especially those within the igneous basement, which is often nearly seismically transparent. That difference in interpretability occurs because sediments typically have continuous, well-layered and easily-traced structural features, whereas volcanic materials are characterized by smaller features with poorer lateral continuity and often with weak impedance contrasts. Since the basement tends to create weaker reflections, the signal-to-noise ratio decreases, creating additional difficulties that can be exacerbated by the presence of multiples generated by the sea floor and other sources of noise. However, it is still important to characterize the basement accurately to better understand oceanic crust formation and associated basaltic volcanism. We analyzed marine MCS data collected by R/V Marcus G. Langseth across the TAMU Massif of Shatsky Rise in the Northwest Pacific. The seismic data from this experiment display the typical problems in imaging basement features. Therefore, we seek to facilitate interpretation by applying 2-D continuous wavelet transforms to the data. Conventional Fourier methods transform 2-D seismic data from space and time domains to wavenumber and frequency, but the results are global in that there is no knowledge of temporal or spatial variations in frequency or wavenumber content. In contrast, wavelet transforms provide estimates of the local frequency and wavenumber content of the seismic image. The transform achieves this result by utilizing a localized, 2D wavelet function instead of the infinite sines and cosines applied in Fourier transforms. We utilize an anisotropic Mexican hat wavelet, where the horizontal and vertical scales are related to wavelength and period of the data, respectively. When analyzing the Shatsky Rise data set, we find, for example, that much of the noise in the seismic image of the basement is at small wavelengths corresponding to several traces, about 25 m. Using the wavelet transforms, we can extract reflection events at longer wavelengths corresponding to expected features in the subsurface. Observing reflections at a certain wavelength provides an estimate of the size scale of the associated geologic structures. The results at a frequency of 31.25 Hz, near the dominant frequency of the data, provide images of reflectors in the deep part of oceanic crust with scales from 200 m to 2000 m that are much easier to interpret than in the original seismic image. In particular, at scales from 200 m to 1000 m, we can see many reflectors with consistent with sizes and locations for localized magma intrusions into the oceanic crust. However, for spatial scales of about 2000 m, only a few reflectors are observed, suggesting there are fewer intrusions of this dimension. These features can also be examined at a range of frequencies to provide additional insights, and the wavelet transform can also be generalized to estimate dips of reflectors.

  5. Assessing the utility of FIB-SEM images for shale digital rock physics

    NASA Astrophysics Data System (ADS)

    Kelly, Shaina; El-Sobky, Hesham; Torres-Verdín, Carlos; Balhoff, Matthew T.

    2016-09-01

    Shales and other unconventional or low permeability (tight) reservoirs house vast quantities of hydrocarbons, often demonstrate considerable water uptake, and are potential repositories for fluid sequestration. The pore-scale topology and fluid transport mechanisms within these nanoporous sedimentary rocks remain to be fully understood. Image-informed pore-scale models are useful tools for studying porous media: a debated question in shale pore-scale petrophysics is whether there is a representative elementary volume (REV) for shale models? Furthermore, if an REV exists, how does it differ among petrophysical properties? We obtain three dimensional (3D) models of the topology of microscale shale volumes from image analysis of focused ion beam-scanning electron microscope (FIB-SEM) image stacks and investigate the utility of these models as a potential REV for shale. The scope of data used in this work includes multiple local groups of neighboring FIB-SEM images of different microscale sizes, corresponding core-scale (milli- and centimeters) laboratory data, and, for comparison, series of two-dimensional (2D) cross sections from broad ion beam SEM images (BIB-SEM), which capture a larger microscale field of view than the FIB-SEM images; this array of data is larger than the majority of investigations with FIB-SEM-derived microscale models of shale. Properties such as porosity, organic matter content, and pore connectivity are extracted from each model. Assessments of permeability with single phase, pressure-driven flow simulations are performed in the connected pore space of the models using the lattice-Boltzmann method. Calculated petrophysical properties are compared to those of neighboring FIB-SEM images and to core-scale measurements of the sample associated with the FIB-SEM sites. Results indicate that FIB-SEM images below ∼5000 μm3 volume (the largest volume analyzed) are not a suitable REV for shale permeability and pore-scale networks; i.e. field of view is compromised at the expense of detailed, but often unconnected, nanopore morphology. Further, we find that it is necessary to acquire several local FIB-SEM or BIB-SEM images and correlate their extracted geometric properties to improve the likelihood of achieving representative values of porosity and organic matter volume. Our work indicates that FIB-SEM images of microscale volumes of shale are a qualitative tool for petrophysical and transport analysis. Finally, we offer alternatives for quantitative pore-scale assessments of shale.

  6. DWT-based stereoscopic image watermarking

    NASA Astrophysics Data System (ADS)

    Chammem, A.; Mitrea, M.; Pr"teux, F.

    2011-03-01

    Watermarking already imposed itself as an effective and reliable solution for conventional multimedia content protection (image/video/audio/3D). By persistently (robustly) and imperceptibly (transparently) inserting some extra data into the original content, the illegitimate use of data can be detected without imposing any annoying constraint to a legal user. The present paper deals with stereoscopic image protection by means of watermarking techniques. That is, we first investigate the peculiarities of the visual stereoscopic content from the transparency and robustness point of view. Then, we advance a new watermarking scheme designed so as to reach the trade-off between transparency and robustness while ensuring a prescribed quantity of inserted information. Finally, this method is evaluated on two stereoscopic image corpora (natural image and medical data).

  7. Creating Effective Media Messaging for Rural Smoke-free Policy.

    PubMed

    Riker, Carol A; Butler, Karen M; Ricks, JaNelle M; Record, Rachael A; Begley, Kathy; Anderson, Debra Gay; Hahn, Ellen J

    2015-01-01

    Objectives were to (1) explore perceived effectiveness of existing smoke-free print advertisements in rural communities and (2) generate message content, characteristics, and media delivery channels that resonate with residents. Qualitative methods design. Thirty-nine rural adults recruited by community partners. Content analysis of findings from individuals in four focus groups who participated in general discussion and reviewed eight print ads related to secondhand smoke (SHS) and smoke-free policy. Six content themes were identified: smoking/SHS dangers, worker health, analogies, economic impact, rights, and nostalgia. Seven message characteristics were recognized: short/to the point, large enough to read, graphic images, poignant stories, statistics/charts/graphs, message sender, and messages targeting different groups. Four media delivery channels were considered most effective: local media, technology, billboard messages, and print materials. Seeking input from key informants is essential to reaching rural residents. Use of analogies in media messaging is a distinct contribution to the literature on effective smoke-free campaigns. Other findings support previous studies of effective messaging and delivery channels. Further research is needed to examine effectiveness of themes related to message content in smoke-free ads and delivery strategies. Effective media messaging can lead to policy change in rural communities to reduce exposure to SHS. © 2015 Wiley Periodicals, Inc.

  8. Localization accuracy of sphere fiducials in computed tomography images

    NASA Astrophysics Data System (ADS)

    Kobler, Jan-Philipp; Díaz Díaz, Jesus; Fitzpatrick, J. Michael; Lexow, G. Jakob; Majdani, Omid; Ortmaier, Tobias

    2014-03-01

    In recent years, bone-attached robots and microstereotactic frames have attracted increasing interest due to the promising targeting accuracy they provide. Such devices attach to a patient's skull via bone anchors, which are used as landmarks during intervention planning as well. However, as simulation results reveal, the performance of such mechanisms is limited by errors occurring during the localization of their bone anchors in preoperatively acquired computed tomography images. Therefore, it is desirable to identify the most suitable fiducials as well as the most accurate method for fiducial localization. We present experimental results of a study focusing on the fiducial localization error (FLE) of spheres. Two phantoms equipped with fiducials made from ferromagnetic steel and titanium, respectively, are used to compare two clinically available imaging modalities (multi-slice CT (MSCT) and cone-beam CT (CBCT)), three localization algorithms as well as two methods for approximating the FLE. Furthermore, the impact of cubic interpolation applied to the images is investigated. Results reveal that, generally, the achievable localization accuracy in CBCT image data is significantly higher compared to MSCT imaging. The lowest FLEs (approx. 40 μm) are obtained using spheres made from titanium, CBCT imaging, template matching based on cross correlation for localization, and interpolating the images by a factor of sixteen. Nevertheless, the achievable localization accuracy of spheres made from steel is only slightly inferior. The outcomes of the presented study will be valuable considering the optimization of future microstereotactic frame prototypes as well as the operative workflow.

  9. Using High-Content Imaging to Analyze Toxicological Tipping Points (ICTATT meeting China)

    EPA Science Inventory

    Presentation at International Conference on Toxicological Alternatives & Translational Toxicology (ICTATT) held in China and Discussing the possibility of using High Content Imaging to Analyze Toxicological Tipping Points

  10. Detection of triterpene acids distribution in loquat (Eriobotrya japonica) leaf using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Shi, Jiyong; Chen, Wu; Zou, Xiaobo; Xu, Yiwei; Huang, Xiaowei; Zhu, Yaodi; Shen, Tingting

    2018-01-01

    Hyperspectral images (431-962 nm) and partial least squares (PLS) were used to detect the distribution of triterpene acids within loquat (Eriobotrya japonica) leaves. 72 fresh loquat leaves in the young group, mature group and old group were collected for hyperspectral imaging; and triterpene acids content of the loquat leaves was analyzed using high performance liquid chromatography (HPLC). Then the spectral data of loquat leaf hyperspectral images and the triterpene acids content were employed to build calibration models. After spectra pre-processing and wavelength selection, an optimum calibration model (Rp = 0.8473, RMSEP = 2.61 mg/g) for predicting triterpene acids was obtained by synergy interval partial least squares (siPLS). Finally, spectral data of each pixel in the loquat leaf hyperspectral image were extracted and substituted into the optimum calibration model to predict triterpene acids content of each pixel. Therefore, the distribution map of triterpene acids content was obtained. As shown in the distribution map, triterpene acids are accumulated mainly in the leaf mesophyll regions near the main veins, and triterpene acids concentration of young group is less than that of mature and old groups. This study showed that hyperspectral imaging is suitable to determine the distribution of active constituent content in medical herbs in a rapid and non-invasive manner.

  11. Modeling the effects of contrast enhancement on target acquisition performance

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd W.; Fanning, Jonathan D.

    2008-04-01

    Contrast enhancement and dynamic range compression are currently being used to improve the performance of infrared imagers by increasing the contrast between the target and the scene content, by better utilizing the available gray levels either globally or locally. This paper assesses the range-performance effects of various contrast enhancement algorithms for target identification with well contrasted vehicles. Human perception experiments were performed to determine field performance using contrast enhancement on the U.S. Army RDECOM CERDEC NVESD standard military eight target set using an un-cooled LWIR camera. The experiments compare the identification performance of observers viewing linearly scaled images and various contrast enhancement processed images. Contrast enhancement is modeled in the US Army thermal target acquisition model (NVThermIP) by changing the scene contrast temperature. The model predicts improved performance based on any improved target contrast, regardless of feature saturation or enhancement. To account for the equivalent blur associated with each contrast enhancement algorithm, an additional effective MTF was calculated and added to the model. The measured results are compared with the predicted performance based on the target task difficulty metric used in NVThermIP.

  12. Security policy speculation of user uploaded images on content sharing sites

    NASA Astrophysics Data System (ADS)

    Iyapparaja, M.; Tiwari, Maneesh

    2017-11-01

    Innovation is developing step by step tremendously. As there are numerous social locales where information likes pictures, sound, video and so forth are shared by the client to each other. In concentrate to all exercises on social locales, there is need of protection to pictures. Because of this reason, I utilized Adaptive protection strategy forecast instrument to give security to the pictures. Issue identified with pictures is the huge issue in social locales like Facebook, twitter and so on. So here the part of a social thought, security to pictures, metadata and so on is produced. To conquer this issue we produced an answer which is 2 systems which understanding to a background marked by the pictures gives appropriated answer for them. Here we give an arrangement to the specific sort of pictures by characterizing them and in addition giving protection to pictures which are transferred agreement to a calculation that we utilized. Consequently as indicated by this arrangement expectation pictures take after a similar approach on up and coming pictures and give successful security to them.

  13. Effective absorption correction for energy dispersive X-ray mapping in a scanning transmission electron microscope: analysing the local indium distribution in rough samples of InGaN alloy layers.

    PubMed

    Wang, X; Chauvat, M-P; Ruterana, P; Walther, T

    2017-12-01

    We have applied our previous method of self-consistent k*-factors for absorption correction in energy-dispersive X-ray spectroscopy to quantify the indium content in X-ray maps of thick compound InGaN layers. The method allows us to quantify the indium concentration without measuring the sample thickness, density or beam current, and works even if there is a drastic local thickness change due to sample roughness or preferential thinning. The method is shown to select, point-by-point in a two-dimensional spectrum image or map, the k*-factor from the local Ga K/L intensity ratio that is most appropriate for the corresponding sample geometry, demonstrating it is not the sample thickness measured along the electron beam direction but the optical path length the X-rays have to travel through the sample that is relevant for the absorption correction. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  14. Statistical analysis of ionospheric TEC anomalies before global M w ≥ 7.0 earthquakes using data of CODE GIM

    NASA Astrophysics Data System (ADS)

    Liu, Wenjing; Xu, Liang

    2017-07-01

    Based on Center of Orbit Determination in Europe (CODE) global ionospheric map (GIM) data, a statistical analysis of local total electron content (TEC) anomalies before 121 low-depth ( D ≤ 100 km) strong ( M w ≥ 7.0) earthquakes has been made using the sliding median differential calculation method combining with a new approach of image processing technique. The results show that significant local TEC anomalies could be observed 0-6 days before 80 earthquakes, about 66.1% out of the total. The positive anomalies occur more often than negative ones. For 26 cases, both positive and negative anomalies are observed before the shock. The pre-earthquake TEC anomalies show local time recurrence for 38 earthquakes, which occur around the same local time on different days. The local time distribution of the pre-earthquake TEC anomalies mainly concentrates between 19 and 06 LT, roughly from the sunset to sunrise. Most of the pre-earthquake TEC anomalies do not locate above the epicenter but shift to the south. The pre-earthquake TEC anomalies could be extracted near the magnetic conjugate point of the epicenter for 40 events, which is 50% out of the total 80 cases with significant local TEC anomalies. In general, the signs of the anomalies around epicenter and its conjugate point are the same, but the abnormal magnitude and lasting time are not.

  15. Bones, body parts, and sex appeal: An analysis of #thinspiration images on popular social media.

    PubMed

    Ghaznavi, Jannath; Taylor, Laramie D

    2015-06-01

    The present study extends research on thinspiration images, visual and/or textual images intended to inspire weight loss, from pro-eating disorder websites to popular photo-sharing social media websites. The article reports on a systematic content analysis of thinspiration images (N=300) on Twitter and Pinterest. Images tended to be sexually suggestive and objectifying with a focus on ultra-thin, bony, scantily-clad women. Results indicated that particular social media channels and labels (i.e., tags) were characterized by more segmented, bony content and greater social endorsement compared to others. In light of theories of media influence, results offer insight into the potentially harmful effects of exposure to sexually suggestive and objectifying content in large online communities on body image, quality of life, and mental health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Content-Based Management of Image Databases in the Internet Age

    ERIC Educational Resources Information Center

    Kleban, James Theodore

    2010-01-01

    The Internet Age has seen the emergence of richly annotated image data collections numbering in the billions of items. This work makes contributions in three primary areas which aid the management of this data: image representation, efficient retrieval, and annotation based on content and metadata. The contributions are as follows. First,…

  17. Hybrid active contour model for inhomogeneous image segmentation with background estimation

    NASA Astrophysics Data System (ADS)

    Sun, Kaiqiong; Li, Yaqin; Zeng, Shan; Wang, Jun

    2018-03-01

    This paper proposes a hybrid active contour model for inhomogeneous image segmentation. The data term of the energy function in the active contour consists of a global region fitting term in a difference image and a local region fitting term in the original image. The difference image is obtained by subtracting the background from the original image. The background image is dynamically estimated from a linear filtered result of the original image on the basis of the varying curve locations during the active contour evolution process. As in existing local models, fitting the image to local region information makes the proposed model robust against an inhomogeneous background and maintains the accuracy of the segmentation result. Furthermore, fitting the difference image to the global region information makes the proposed model robust against the initial contour location, unlike existing local models. Experimental results show that the proposed model can obtain improved segmentation results compared with related methods in terms of both segmentation accuracy and initial contour sensitivity.

  18. Product Differentiation in Local Television News.

    ERIC Educational Resources Information Center

    Atwater, Tony

    A study was conducted to investigate the extent to which local television stations exhibited diversity in newscast content within three midwest broadcast markets. A second objective was to describe the nature of the news content characteristic of local news stories that were broadcast by only one station within a market (or unique news stories). A…

  19. Localization, Localization, Localization

    NASA Technical Reports Server (NTRS)

    Parker, T.; Malin, M.; Golombek, M.; Duxbury, T.; Johnson, A.; Guinn, J.; McElrath, T.; Kirk, R.; Archinal, B.; Soderblom, L.

    2004-01-01

    Localization of the two Mars Exploration Rovers involved three independent approaches to place the landers with respect to the surface of Mars and to refine the location of those points on the surface with the Mars control net: 1) Track the spacecraft through entry, descent, and landing, then refine the final roll stop position by radio tracking and comparison to images taken during descent; 2) Locate features on the horizon imaged by the two rovers and compare them to the MOC and THEMIS VIS images, and the DIMES images on the two MER landers; and 3) 'Check' and refine locations by acquisition of MOC 1.5 meter and 50 cm/pixel images.

  20. Content-based image exploitation for situational awareness

    NASA Astrophysics Data System (ADS)

    Gains, David

    2008-04-01

    Image exploitation is of increasing importance to the enterprise of building situational awareness from multi-source data. It involves image acquisition, identification of objects of interest in imagery, storage, search and retrieval of imagery, and the distribution of imagery over possibly bandwidth limited networks. This paper describes an image exploitation application that uses image content alone to detect objects of interest, and that automatically establishes and preserves spatial and temporal relationships between images, cameras and objects. The application features an intuitive user interface that exposes all images and information generated by the system to an operator thus facilitating the formation of situational awareness.

  1. A Variational Level Set Approach Based on Local Entropy for Image Segmentation and Bias Field Correction.

    PubMed

    Tang, Jian; Jiang, Xiaoliang

    2017-01-01

    Image segmentation has always been a considerable challenge in image analysis and understanding due to the intensity inhomogeneity, which is also commonly known as bias field. In this paper, we present a novel region-based approach based on local entropy for segmenting images and estimating the bias field simultaneously. Firstly, a local Gaussian distribution fitting (LGDF) energy function is defined as a weighted energy integral, where the weight is local entropy derived from a grey level distribution of local image. The means of this objective function have a multiplicative factor that estimates the bias field in the transformed domain. Then, the bias field prior is fully used. Therefore, our model can estimate the bias field more accurately. Finally, minimization of this energy function with a level set regularization term, image segmentation, and bias field estimation can be achieved. Experiments on images of various modalities demonstrated the superior performance of the proposed method when compared with other state-of-the-art approaches.

  2. The Role of Sexual Images in Online and Offline Sexual Behaviour With Minors.

    PubMed

    Quayle, Ethel; Newman, Emily

    2015-06-01

    Sexual images have long been associated with sexual interest and behaviour with minors. The Internet has impacted access to existing content and the ability to create content which can be uploaded and distributed. These images can be used forensically to determine the legality of the behaviour, but importantly for psychiatry, they offer insight into motivation, sexual interest and deviance, the relationship between image content and offline sexual behaviour, and how they might be used in online solicitation and grooming with children and adolescents. Practitioners will need to consider the function that these images may serve, the motivation for their use and the challenges of assessment. This article provides an overview of the literature on the use of illegal images and the parallels with existing paraphilias, such as exhibitionism and voyeurism. The focus is on recent research on the Internet and sexual images of children, including the role that self-taken images by youth may play in the offending process.

  3. What do you think of my picture? Investigating factors of influence in profile images context perception

    NASA Astrophysics Data System (ADS)

    Mazza, F.; Da Silva, M. P.; Le Callet, P.; Heynderickx, I. E. J.

    2015-03-01

    Multimedia quality assessment has been an important research topic during the last decades. The original focus on artifact visibility has been extended during the years to aspects as image aesthetics, interestingness and memorability. More recently, Fedorovskaya proposed the concept of 'image psychology': this concept focuses on additional quality dimensions related to human content processing. While these additional dimensions are very valuable in understanding preferences, it is very hard to define, isolate and measure their effect on quality. In this paper we continue our research on face pictures investigating which image factors influence context perception. We collected perceived fit of a set of images to various content categories. These categories were selected based on current typologies in social networks. Logistic regression was adopted to model category fit based on images features. In this model we used both low level and high level features, the latter focusing on complex features related to image content. In order to extract these high level features, we relied on crowdsourcing, since computer vision algorithms are not yet sufficiently accurate for the features we needed. Our results underline the importance of some high level content features, e.g. the dress of the portrayed person and scene setting, in categorizing image.

  4. Benefit-risk communication in paediatric imaging: What do referring physicians, radiographers and radiologists think, say and do?

    PubMed

    Portelli, J L; McNulty, J P; Bezzina, P; Rainford, L

    2018-02-01

    To assess how referrers and practitioners disclose benefit-risk information about medical imaging examinations to paediatric patients and their parents/guardians; to gauge their confidence in doing so; and to seek their opinion about who is responsible for disclosing such information. This study followed on from a previously published study, with a questionnaire distributed in staggered phases to 146 radiographers, 22 radiology practitioners, 55 emergency physicians and 43 paediatricians at a primary paediatric referral centre in Malta. The questionnaire sought details about referrers' and practitioners' practice of disclosing benefit-risk information, as well as their opinion about their confidence and responsibility to do so. An overall response rate of 63.2% (168/266) was achieved. Most referrers and practitioners would generally explain the purpose of the imaging examination, with fewer providing benefit-risk information. The content and the approach adopted to communicate benefit-risk information varied, at times considerably. While 75% (123/164) felt that the responsibility to provide benefit-risk information was a shared one between referrers and practitioners, only 32.1% (53/165) reported a high level of confidence in their own ability to do so. Our findings highlight potential knowledge and skills gaps amongst local referrers and practitioners. This needs addressing so as to ensure that paediatric patients and their parents/guardians are provided with adequate, reassuring and consistent information. Additionally, we recommend that local referrers and practitioners come together and develop a consensus document that can offer guidance on how to go about discussing the benefits and risks of paediatric imaging examinations. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  5. Visual analytics for semantic queries of TerraSAR-X image content

    NASA Astrophysics Data System (ADS)

    Espinoza-Molina, Daniela; Alonso, Kevin; Datcu, Mihai

    2015-10-01

    With the continuous image product acquisition of satellite missions, the size of the image archives is considerably increasing every day as well as the variety and complexity of their content, surpassing the end-user capacity to analyse and exploit them. Advances in the image retrieval field have contributed to the development of tools for interactive exploration and extraction of the images from huge archives using different parameters like metadata, key-words, and basic image descriptors. Even though we count on more powerful tools for automated image retrieval and data analysis, we still face the problem of understanding and analyzing the results. Thus, a systematic computational analysis of these results is required in order to provide to the end-user a summary of the archive content in comprehensible terms. In this context, visual analytics combines automated analysis with interactive visualizations analysis techniques for an effective understanding, reasoning and decision making on the basis of very large and complex datasets. Moreover, currently several researches are focused on associating the content of the images with semantic definitions for describing the data in a format to be easily understood by the end-user. In this paper, we present our approach for computing visual analytics and semantically querying the TerraSAR-X archive. Our approach is mainly composed of four steps: 1) the generation of a data model that explains the information contained in a TerraSAR-X product. The model is formed by primitive descriptors and metadata entries, 2) the storage of this model in a database system, 3) the semantic definition of the image content based on machine learning algorithms and relevance feedback, and 4) querying the image archive using semantic descriptors as query parameters and computing the statistical analysis of the query results. The experimental results shows that with the help of visual analytics and semantic definitions we are able to explain the image content using semantic terms and the relations between them answering questions such as what is the percentage of urban area in a region? or what is the distribution of water bodies in a city?

  6. Development and characterization of a handheld hyperspectral Raman imaging probe system for molecular characterization of tissue on mesoscopic scales.

    PubMed

    St-Arnaud, Karl; Aubertin, Kelly; Strupler, Mathias; Madore, Wendy-Julie; Grosset, Andrée-Anne; Petrecca, Kevin; Trudel, Dominique; Leblond, Frédéric

    2018-01-01

    Raman spectroscopy is a promising cancer detection technique for surgical guidance applications. It can provide quantitative information relating to global tissue properties associated with structural, metabolic, immunological, and genetic biochemical phenomena in terms of molecular species including amino acids, lipids, proteins, and nucleic acid (DNA). To date in vivo Raman spectroscopy systems mostly included probes and biopsy needles typically limited to single-point tissue interrogation over a scale between 100 and 500 microns. The development of wider field handheld systems could improve tumor localization for a range of open surgery applications including brain, ovarian, and skin cancers. Here we present a novel Raman spectroscopy implementation using a coherent imaging bundle of fibers to create a probe capable of reconstructing molecular images over mesoscopic fields of view. Detection is performed using linear scanning with a rotation mirror and an imaging spectrometer. Different slits widths were tested at the entrance of the spectrometer to optimize spatial and spectral resolution while preserving sufficient signal-to-noise ratios to detect the principal Raman tissue features. The nonbiological samples, calcite and polytetrafluoroethylene (PTFE), were used to characterize the performance of the system. The new wide-field probe was tested on ex vivo samples of calf brain and swine tissue. Raman spectral content of both tissue types were validated with data from the literature and compared with data acquired with a single-point Raman spectroscopy probe. The single-point probe was used as the gold standard against which the new instrument was benchmarked as it has already been thoroughly validated for biological tissue characterization. We have developed and characterized a practical noncontact handheld Raman imager providing tissue information at a spatial resolution of 115 microns over a field of view >14 mm 2 and a spectral resolution of 6 cm -1 over the whole fingerprint region. Typical integration time to acquire an entire Raman image over swine tissue was set to approximately 100 s. Spectra acquired with both probes (single-point and wide-field) showed good agreement, with a Pearson correlation factor >0.85 over different tissue categories. Protein and lipid content of imaged tissue were manifested into the measured spectra which correlated well with previous findings in the literature. An example of quantitative molecular map is presented for swine tissue and calf brain based on the ratio of protein-to-lipid content showing clear delineations between white and gray matter as well as between adipose and muscle tissue. We presented the development of a Raman imaging probe with a field of view of a few millimeters and a spatial resolution consistent with standard surgical imaging methods using an imaging bundle. Spectra acquired with the newly developed system on swine tissue and calf brain correlated well with an establish single-point probe and observed spectral features agreed with previous finding in the literature. The imaging probe has demonstrated its ability to reconstruct molecular images of soft tissues. The approach presented here has a lot of potential for the development of surgical Raman imaging probe to guide the surgeon during cancer surgery. © 2017 American Association of Physicists in Medicine.

  7. Towards Portable Large-Scale Image Processing with High-Performance Computing.

    PubMed

    Huo, Yuankai; Blaber, Justin; Damon, Stephen M; Boyd, Brian D; Bao, Shunxing; Parvathaneni, Prasanna; Noguera, Camilo Bermudez; Chaganti, Shikha; Nath, Vishwesh; Greer, Jasmine M; Lyu, Ilwoo; French, William R; Newton, Allen T; Rogers, Baxter P; Landman, Bennett A

    2018-05-03

    High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called "spiders." The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software development and expansion, and (3) scalable spider deployment compatible with HPC clusters and local workstations.

  8. Image contrast enhancement using adjacent-blocks-based modification for local histogram equalization

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Pan, Zhibin

    2017-11-01

    Infrared images usually have some non-ideal characteristics such as weak target-to-background contrast and strong noise. Because of these characteristics, it is necessary to apply the contrast enhancement algorithm to improve the visual quality of infrared images. Histogram equalization (HE) algorithm is a widely used contrast enhancement algorithm due to its effectiveness and simple implementation. But a drawback of HE algorithm is that the local contrast of an image cannot be equally enhanced. Local histogram equalization algorithms are proved to be the effective techniques for local image contrast enhancement. However, over-enhancement of noise and artifacts can be easily found in the local histogram equalization enhanced images. In this paper, a new contrast enhancement technique based on local histogram equalization algorithm is proposed to overcome the drawbacks mentioned above. The input images are segmented into three kinds of overlapped sub-blocks using the gradients of them. To overcome the over-enhancement effect, the histograms of these sub-blocks are then modified by adjacent sub-blocks. We pay more attention to improve the contrast of detail information while the brightness of the flat region in these sub-blocks is well preserved. It will be shown that the proposed algorithm outperforms other related algorithms by enhancing the local contrast without introducing over-enhancement effects and additional noise.

  9. A microstructural study of SAFOD gouge from actively creeping San Andreas Fault zone; Implications for shear localization models

    NASA Astrophysics Data System (ADS)

    Blackburn, E. D.; Hadizadeh, J.; Babaie, H. A.

    2009-12-01

    The prevailing models of shear localization in fault gouges are mainly based on experimental aggregates that necessarily neglect the effects of chemical and mechanical maturation with time. The SAFOD cores have provided a chance to test whether cataclasis as a deformation mechanism and factors such as porosity and particle size, critical in some existing shear localization models continue to be critical in mature gouges. We studied a core sample from 3194m MD in the SAFOD phase 3, which consists of intensely foliated shale-siltstone cataclasites in contact with less deformed shale. Microstructures were studied in 3 perpendicular planes with reference to foliation using high resolution scanning electron microscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The cataclastic foliation, recognizable at length scales >100 μm, is primarily defined by bands of clay gouge with distinct microstructure, clay content, and porosity. Variations in elemental composition and porosity of the clay gouge were measured continuously across the foliation. Prominent features within the foliation bands include lens-shaped clusters of highly brecciated and veined siltstone fragments, pyrite smears, and pyrite-cemented cataclasites. The microstructural relations and chemical data provide clear evidence of multiple episodes of veining and deformation with some possibility of relative age determination for the episodes. There is evidence of syn-deformation hydrothermal changes including growth and brittle shear of pyrite, alteration of host shale clays to illite-smectite clays and Fe-rich smectite. Evidence of grain-boundary corrosion of non-clay mineral fragments suggests pressure solution creep. The gouge porosity estimates varied from 0-18% (about 3% in less deformed shale) with the highest value in the bands with abundant siltstone fragments. The banding is mechanically significant since it pervasively segregates the gouge into regions of low clay content, high-porosity and regions of low-porosity, high clay content. It appears from our data that shear localization in the gouge involves pressure solution as well as cataclastic flow assisted by alteration-softening. While the porous bands are potential conduits for fluid flow and could be sites for pressure solution creep, the clay-rich bands could serve as sites of shear localization due to their lower dilatancy rate. A better understanding of interaction between the two deformation mechanisms might shed light on the nature of microearthquake activity in the creeping segment of the SAF.

  10. Academics' Perspectives on the Challenges and Opportunities for Student-Generated Mobile Content in Malaysia

    ERIC Educational Resources Information Center

    Ariffin, Shamsul Arrieya; Malim, Tanjong

    2016-01-01

    In Malaysian universities, there is a scarcity of local content to support student learning. Mobile content is predominantly supplied by the United States and the United Kingdom. This research aims to understand the situation from the academic perspective, particularly in the field of local cultural studies. Student-generated multimedia is…

  11. Quantification and localization of hesperidin and rutin in Citrus sinensis grafted on C. limonia after Xylella fastidiosa infection by HPLC-UV and MALDI imaging mass spectrometry.

    PubMed

    Soares, Márcio Santos; da Silva, Danielle Fernandes; Forim, Moacir Rossi; da Silva, Maria Fátima das Graças Fernandes; Fernandes, João Batista; Vieira, Paulo Cezar; Silva, Denise Brentan; Lopes, Norberto Peporine; de Carvalho, Sérgio Alves; de Souza, Alessandra Alves; Machado, Marcos Antônio

    2015-07-01

    A high performance liquid chromatography-ultraviolet (HPLC-UV) method was developed for quantifying hesperidin and rutin levels in leaves and stems of Citrus limonia, with a good linearity over a range of 1.0-80.0 and 1.0-50.0 μg mL(-1) respectively, with r(2)>0.999 for all curves. The limits of detection (LOD) for both flavonoids were 0.6 and 0.5 μg mL(-1), respectively, with quantification (LOQ) being 2.0 and 1.0 μg mL(-1), respectively. The quantification method was applied to Citrus sinensis grafted onto C. limonia with and without CVC (citrus variegated chlorosis) symptoms after Xylella fastidiosa infection. The total content of rutin was low and practically constant in all analyses in comparison with hesperidin, which showed a significant increase in its amount in symptomatic leaves. Scanning electron microscopy studies on leaves with CVC symptoms showed vessel occlusion by biofilm, and a crystallized material was noted. Considering the difficulty in isolating these crystals for analysis, tissue sections were analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) to confirm the presence of hesperidin at the site of infection. The images constructed from MS/MS data with a specific diagnostic fragment ion (m/z 483) also showed higher ion intensities for it in infected plants than in healthy ones, mainly in the vessel regions. These data suggest that hesperidin plays a role in the plant-pathogen interaction, probably as a phytoanticipin. This method was also applied to C. sinensis and C. limonia seedlings, and comparison with the graft results showed that the rootstock had an increased hesperidin content ∼3.6 fold greater in the graft stem than in the stem of C. sinensis seedlings. Increase in hesperidin content by rootstock can be related to induced internal defense mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Tumor Volume and Metabolism of Prostate Cancer Determined by Proton Magnetic Resonance Spectroscopic Imaging at 3T Without Endorectal Coil Reveal Potential Clinical Implications in the Context of Radiation Oncology;Prostate cancer; Magnetic resonance spectroscopic imaging; Radiation oncology; Tumor volume; Biomarkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crehange, Gilles, E-mail: gcrehange@cgfl.fr; Parfait, Sebastien; Liegard, Melanie

    2011-07-15

    Purpose: To determine whether a relationship exists between the tumor volume (TV) or relative choline content determined using magnetic resonance spectroscopy imaging (MRSI) at 3T and the clinical prognostic parameters for patients with localized prostate cancer (PCa). Methods and Materials: A total of 72 men (mean age, 67.8 {+-} 6.2 years) were stratified as having low-risk (n = 26), intermediate-risk (n = 24), or high-risk (n = 22) PCa. MRSI was performed at 3T using a phased-array coil. Spectra are expressed as the total choline/citrate, total choline plus creatine/citrate, and total choline plus polyamines plus creatine/citrate ratios. The mean ratiomore » of the most pathologic voxels and the MRSI-based TV were also determined. Results: The mean values of the total choline/citrate, total choline plus creatine/citrate, and total choline plus polyamine plus creatine/citrate ratios were greater for Stage T2b or greater tumors vs. Stage T2a or less tumors: 7.53 {+-} 13.60 vs. 2.31 {+-} 5.65 (p = .018), 8.98 {+-} 14.58 vs. 2.56 {+-} 5.70 (p = .016), and 10.32 {+-} 15.47 vs. 3.55 {+-} 6.16 (p = .014), respectively. The mean MRSI-based TV for Stage T2b or greater and Stage T2a or less tumors was significantly different (2.23 {+-} 2.62 cm{sup 3} vs. 1.26 {+-} 2.06 cm{sup 3}, respectively; p = .030). This TV correlated with increased prostate-specific antigen levels (odds ratio, 1.293; p = .012). Patients with high-risk PCa had a larger TV than did the patients with intermediate-risk PCa. A similar result was found for the intermediate-risk group compared with the low-risk group (odds ratio, 1.225; p = .041). Conclusion: Biomarkers expressing the relative choline content and TV were significant parameters for the localization of PCa and could be helpful for determining the prognosis more accurately.« less

  13. Developing a NIR multispectral imaging for prediction and visualization of peanut protein content using variable selection algorithms

    NASA Astrophysics Data System (ADS)

    Cheng, Jun-Hu; Jin, Huali; Liu, Zhiwei

    2018-01-01

    The feasibility of developing a multispectral imaging method using important wavelengths from hyperspectral images selected by genetic algorithm (GA), successive projection algorithm (SPA) and regression coefficient (RC) methods for modeling and predicting protein content in peanut kernel was investigated for the first time. Partial least squares regression (PLSR) calibration model was established between the spectral data from the selected optimal wavelengths and the reference measured protein content ranged from 23.46% to 28.43%. The RC-PLSR model established using eight key wavelengths (1153, 1567, 1972, 2143, 2288, 2339, 2389 and 2446 nm) showed the best predictive results with the coefficient of determination of prediction (R2P) of 0.901, and root mean square error of prediction (RMSEP) of 0.108 and residual predictive deviation (RPD) of 2.32. Based on the obtained best model and image processing algorithms, the distribution maps of protein content were generated. The overall results of this study indicated that developing a rapid and online multispectral imaging system using the feature wavelengths and PLSR analysis is potential and feasible for determination of the protein content in peanut kernels.

  14. Galileo imaging observations of Lunar Maria and related deposits

    NASA Astrophysics Data System (ADS)

    Greeley, Ronald; Kadel, Steven D.; Williams, David A.; Gaddis, Lisa R.; Head, James W.; McEwen, Alfred S.; Murchie, Scott L.; Nagel, Engelbert; Neukum, Gerhard; Pieters, Carle M.; Sunshine, Jessica M.; Wagner, Roland; Belton, Michael J. S.

    The Galileo spacecraft imaged parts of the western limb and far side of the Moon in December 1990. Ratios of 0.41/0.56 μm filter images from the Solid State Imaging (SSI) experiment provided information on the titanium content of mare deposits; ratios of the 0.76/0.99 μm images indicated 1 μm absorptions associated with Fe2+ in mafic minerals. Mare ages were derived from crater statistics obtained from Lunar Orbiter images. Results on mare compositions in western Oceanus Procellarum and the Humorum basin are consistent with previous Earth-based observations, thus providing confidence in the use of Galileo data to extract compositional information. Mare units in the Grimaldi and Riccioli basins range in age from 3.25 to 3.48 Ga and consist of medium- to medium-high titanium (<4 to 7% TiO2) content lavas. The Schiller-Zucchius basin shows a higher 0.76/0.99 μm ratio than the surrounding highlands, indicating a potentially higher mafic mineral content consistent with previous interpretations that the area includes mare deposits blanketed by highland ejecta and light plains materials. The oldest mare materials in the Orientale basin occur in south-central Mare Orientale and are 3.7 Ga old; youngest mare materials are in Lacus Autumni and are 2.85 Ga old; these units are medium- to medium-high titanium (<4 to 7% TiO2) basalts. Thus, volcanism was active in Orientale for 0.85 Ga, but lavas were relatively constant in composition. Galileo data suggest that Mendel-Rydberg mare is similar to Mare Orientale; cryptomare are present as well. Thus, the mare lavas on the western limb and far side (to 178°E) are remarkably uniform in composition, being generally of medium- to medium-high titanium content and having relatively low 0.76/0.99 μm ratios. This region of the Moon is between two postulated large impact structures, the Procellarum and the South Pole-Aitken basins, and may have a relatively thick crust. In areas underlain by an inferred thinner crust, i.e., zones within large basins (as at Apollo), titanium content is often higher. However, no mare deposits with titanium abundances approaching those of the high-titanium (9 to 14% TiO2) Apollo 11 and 17 basalts nor of the high-titanium regions of central Oceanus Procellarum are seen on the western limb or eastern far side. Light plains deposits are generally indistinct from the surrounding highlands in the SSI data and are inferred to be derived primarily from the same material that forms the highlands. Some of the light plains are too young to be related to basin-forming impacts, suggesting possible volcanic origin. Dark mantle deposit compositions derived from SSI data are consistent with Earth-based observations of similar near-side deposits and are interpreted to be pyroclastic materials. However, the moderate albedo and 1 μm absorption of the dark mantle deposit on the southwest margin of the Orientale basin suggest it is a local pyroclastic deposit contaminated with underlying highland materials from the Orientale impact.

  15. Bio-inspired display of polarization information using selected visual cues

    NASA Astrophysics Data System (ADS)

    Yemelyanov, Konstantin M.; Lin, Shih-Schon; Luis, William Q.; Pugh, Edward N., Jr.; Engheta, Nader

    2003-12-01

    For imaging systems the polarization of electromagnetic waves carries much potentially useful information about such features of the world as the surface shape, material contents, local curvature of objects, as well as about the relative locations of the source, object and imaging system. The imaging system of the human eye however, is "polarization-blind", and cannot utilize the polarization of light without the aid of an artificial, polarization-sensitive instrument. Therefore, polarization information captured by a man-made polarimetric imaging system must be displayed to a human observer in the form of visual cues that are naturally processed by the human visual system, while essentially preserving the other important non-polarization information (such as spectral and intensity information) in an image. In other words, some forms of sensory substitution are needed for representing polarization "signals" without affecting other visual information such as color and brightness. We are investigating several bio-inspired representational methodologies for mapping polarization information into visual cues readily perceived by the human visual system, and determining which mappings are most suitable for specific applications such as object detection, navigation, sensing, scene classifications, and surface deformation. The visual cues and strategies we are exploring are the use of coherently moving dots superimposed on image to represent various range of polarization signals, overlaying textures with spatial and/or temporal signatures to segregate regions of image with differing polarization, modulating luminance and/or color contrast of scenes in terms of certain aspects of polarization values, and fusing polarization images into intensity-only images. In this talk, we will present samples of our findings in this area.

  16. High-order statistics of weber local descriptors for image representation.

    PubMed

    Han, Xian-Hua; Chen, Yen-Wei; Xu, Gang

    2015-06-01

    Highly discriminant visual features play a key role in different image classification applications. This study aims to realize a method for extracting highly-discriminant features from images by exploring a robust local descriptor inspired by Weber's law. The investigated local descriptor is based on the fact that human perception for distinguishing a pattern depends not only on the absolute intensity of the stimulus but also on the relative variance of the stimulus. Therefore, we firstly transform the original stimulus (the images in our study) into a differential excitation-domain according to Weber's law, and then explore a local patch, called micro-Texton, in the transformed domain as Weber local descriptor (WLD). Furthermore, we propose to employ a parametric probability process to model the Weber local descriptors, and extract the higher-order statistics to the model parameters for image representation. The proposed strategy can adaptively characterize the WLD space using generative probability model, and then learn the parameters for better fitting the training space, which would lead to more discriminant representation for images. In order to validate the efficiency of the proposed strategy, we apply three different image classification applications including texture, food images and HEp-2 cell pattern recognition, which validates that our proposed strategy has advantages over the state-of-the-art approaches.

  17. Level set segmentation of medical images based on local region statistics and maximum a posteriori probability.

    PubMed

    Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan

    2013-01-01

    This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.

  18. Color Imaging management in film processing

    NASA Astrophysics Data System (ADS)

    Tremeau, Alain; Konik, Hubert; Colantoni, Philippe

    2003-12-01

    The latest research projects in the laboratory LIGIV concerns capture, processing, archiving and display of color images considering the trichromatic nature of the Human Vision System (HSV). Among these projects one addresses digital cinematographic film sequences of high resolution and dynamic range. This project aims to optimize the use of content for the post-production operators and for the end user. The studies presented in this paper address the use of metadata to optimise the consumption of video content on a device of user's choice independent of the nature of the equipment that captured the content. Optimising consumption includes enhancing the quality of image reconstruction on a display. Another part of this project addresses the content-based adaptation of image display. Main focus is on Regions of Interest (ROI) operations, based on the ROI concepts of MPEG-7. The aim of this second part is to characterize and ensure the conditions of display even if display device or display media changes. This requires firstly the definition of a reference color space and the definition of bi-directional color transformations for each peripheral device (camera, display, film recorder, etc.). The complicating factor is that different devices have different color gamuts, depending on the chromaticity of their primaries and the ambient illumination under which they are viewed. To match the displayed image to the aimed appearance, all kind of production metadata (camera specification, camera colour primaries, lighting conditions) should be associated to the film material. Metadata and content build together rich content. The author is assumed to specify conditions as known from digital graphics arts. To control image pre-processing and image post-processing, these specifications should be contained in the film's metadata. The specifications are related to the ICC profiles but need additionally consider mesopic viewing conditions.

  19. Image/text automatic indexing and retrieval system using context vector approach

    NASA Astrophysics Data System (ADS)

    Qing, Kent P.; Caid, William R.; Ren, Clara Z.; McCabe, Patrick

    1995-11-01

    Thousands of documents and images are generated daily both on and off line on the information superhighway and other media. Storage technology has improved rapidly to handle these data but indexing this information is becoming very costly. HNC Software Inc. has developed a technology for automatic indexing and retrieval of free text and images. This technique is demonstrated and is based on the concept of `context vectors' which encode a succinct representation of the associated text and features of sub-image. In this paper, we will describe the Automated Librarian System which was designed for free text indexing and the Image Content Addressable Retrieval System (ICARS) which extends the technique from the text domain into the image domain. Both systems have the ability to automatically assign indices for a new document and/or image based on the content similarities in the database. ICARS also has the capability to retrieve images based on similarity of content using index terms, text description, and user-generated images as a query without performing segmentation or object recognition.

  20. 3D-Holoscopic Imaging: A New Dimension to Enhance Imaging in Minimally Invasive Therapy in Urologic Oncology

    PubMed Central

    Aggoun, Amar; Swash, Mohammad; Grange, Philippe C.R.; Challacombe, Benjamin; Dasgupta, Prokar

    2013-01-01

    Abstract Background and Purpose Existing imaging modalities of urologic pathology are limited by three-dimensional (3D) representation on a two-dimensional screen. We present 3D-holoscopic imaging as a novel method of representing Digital Imaging and Communications in Medicine data images taken from CT and MRI to produce 3D-holographic representations of anatomy without special eyewear in natural light. 3D-holoscopic technology produces images that are true optical models. This technology is based on physical principles with duplication of light fields. The 3D content is captured in real time with the content viewed by multiple viewers independently of their position, without 3D eyewear. Methods We display 3D-holoscopic anatomy relevant to minimally invasive urologic surgery without the need for 3D eyewear. Results The results have demonstrated that medical 3D-holoscopic content can be displayed on commercially available multiview auto-stereoscopic display. Conclusion The next step is validation studies comparing 3D-Holoscopic imaging with conventional imaging. PMID:23216303

  1. Image aesthetic quality evaluation using convolution neural network embedded learning

    NASA Astrophysics Data System (ADS)

    Li, Yu-xin; Pu, Yuan-yuan; Xu, Dan; Qian, Wen-hua; Wang, Li-peng

    2017-11-01

    A way of embedded learning convolution neural network (ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches.

  2. Content-based multiple bitstream image transmission over noisy channels.

    PubMed

    Cao, Lei; Chen, Chang Wen

    2002-01-01

    In this paper, we propose a novel combined source and channel coding scheme for image transmission over noisy channels. The main feature of the proposed scheme is a systematic decomposition of image sources so that unequal error protection can be applied according to not only bit error sensitivity but also visual content importance. The wavelet transform is adopted to hierarchically decompose the image. The association between the wavelet coefficients and what they represent spatially in the original image is fully exploited so that wavelet blocks are classified based on their corresponding image content. The classification produces wavelet blocks in each class with similar content and statistics, therefore enables high performance source compression using the set partitioning in hierarchical trees (SPIHT) algorithm. To combat the channel noise, an unequal error protection strategy with rate-compatible punctured convolutional/cyclic redundancy check (RCPC/CRC) codes is implemented based on the bit contribution to both peak signal-to-noise ratio (PSNR) and visual quality. At the receiving end, a postprocessing method making use of the SPIHT decoding structure and the classification map is developed to restore the degradation due to the residual error after channel decoding. Experimental results show that the proposed scheme is indeed able to provide protection both for the bits that are more sensitive to errors and for the more important visual content under a noisy transmission environment. In particular, the reconstructed images illustrate consistently better visual quality than using the single-bitstream-based schemes.

  3. An integrated content and metadata based retrieval system for art.

    PubMed

    Lewis, Paul H; Martinez, Kirk; Abas, Fazly Salleh; Fauzi, Mohammad Faizal Ahmad; Chan, Stephen C Y; Addis, Matthew J; Boniface, Mike J; Grimwood, Paul; Stevenson, Alison; Lahanier, Christian; Stevenson, James

    2004-03-01

    A new approach to image retrieval is presented in the domain of museum and gallery image collections. Specialist algorithms, developed to address specific retrieval tasks, are combined with more conventional content and metadata retrieval approaches, and implemented within a distributed architecture to provide cross-collection searching and navigation in a seamless way. External systems can access the different collections using interoperability protocols and open standards, which were extended to accommodate content based as well as text based retrieval paradigms. After a brief overview of the complete system, we describe the novel design and evaluation of some of the specialist image analysis algorithms including a method for image retrieval based on sub-image queries, retrievals based on very low quality images and retrieval using canvas crack patterns. We show how effective retrieval results can be achieved by real end-users consisting of major museums and galleries, accessing the distributed but integrated digital collections.

  4. Deeply learnt hashing forests for content based image retrieval in prostate MR images

    NASA Astrophysics Data System (ADS)

    Shah, Amit; Conjeti, Sailesh; Navab, Nassir; Katouzian, Amin

    2016-03-01

    Deluge in the size and heterogeneity of medical image databases necessitates the need for content based retrieval systems for their efficient organization. In this paper, we propose such a system to retrieve prostate MR images which share similarities in appearance and content with a query image. We introduce deeply learnt hashing forests (DL-HF) for this image retrieval task. DL-HF effectively leverages the semantic descriptiveness of deep learnt Convolutional Neural Networks. This is used in conjunction with hashing forests which are unsupervised random forests. DL-HF hierarchically parses the deep-learnt feature space to encode subspaces with compact binary code words. We propose a similarity preserving feature descriptor called Parts Histogram which is derived from DL-HF. Correlation defined on this descriptor is used as a similarity metric for retrieval from the database. Validations on publicly available multi-center prostate MR image database established the validity of the proposed approach. The proposed method is fully-automated without any user-interaction and is not dependent on any external image standardization like image normalization and registration. This image retrieval method is generalizable and is well-suited for retrieval in heterogeneous databases other imaging modalities and anatomies.

  5. Spin echo SPI methods for quantitative analysis of fluids in porous media.

    PubMed

    Li, Linqing; Han, Hui; Balcom, Bruce J

    2009-06-01

    Fluid density imaging is highly desirable in a wide variety of porous media measurements. The SPRITE class of MRI methods has proven to be robust and general in their ability to generate density images in porous media, however the short encoding times required, with correspondingly high magnetic field gradient strengths and filter widths, and low flip angle RF pulses, yield sub-optimal S/N images, especially at low static field strength. This paper explores two implementations of pure phase encode spin echo 1D imaging, with application to a proposed new petroleum reservoir core analysis measurement. In the first implementation of the pulse sequence, we modify the spin echo single point imaging (SE-SPI) technique to acquire the k-space origin data point, with a near zero evolution time, from the free induction decay (FID) following a 90 degrees excitation pulse. Subsequent k-space data points are acquired by separately phase encoding individual echoes in a multi-echo acquisition. T(2) attenuation of the echo train yields an image convolution which causes blurring. The T(2) blur effect is moderate for porous media with T(2) lifetime distributions longer than 5 ms. As a robust, high S/N, and fast 1D imaging method, this method will be highly complementary to SPRITE techniques for the quantitative analysis of fluid content in porous media. In the second implementation of the SE-SPI pulse sequence, modification of the basic measurement permits fast determination of spatially resolved T(2) distributions in porous media through separately phase encoding each echo in a multi-echo CPMG pulse train. An individual T(2) weighted image may be acquired from each echo. The echo time (TE) of each T(2) weighted image may be reduced to 500 micros or less. These profiles can be fit to extract a T(2) distribution from each pixel employing a variety of standard inverse Laplace transform methods. Fluid content 1D images are produced as an essential by product of determining the spatially resolved T(2) distribution. These 1D images do not suffer from a T(2) related blurring. The above SE-SPI measurements are combined to generate 1D images of the local saturation and T(2) distribution as a function of saturation, upon centrifugation of petroleum reservoir core samples. The logarithm mean T(2) is observed to shift linearly with water saturation. This new reservoir core analysis measurement may provide a valuable calibration of the Coates equation for irreducible water saturation, which has been widely implemented in NMR well logging measurements.

  6. Restoration of STORM images from sparse subset of localizations (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexander A.; Gelikonov, Grigory V.; Gelikonov, Valentine M.

    2016-02-01

    To construct a Stochastic Optical Reconstruction Microscopy (STORM) image one should collect sufficient number of localized fluorophores to satisfy Nyquist criterion. This requirement limits time resolution of the method. In this work we propose a probabalistic approach to construct STORM images from a subset of localized fluorophores 3-4 times sparser than required from Nyquist criterion. Using a set of STORM images constructed from number of localizations sufficient for Nyquist criterion we derive a model which allows us to predict the probability for every location to be occupied by a fluorophore at the end of hypothetical acquisition, having as an input parameters distribution of already localized fluorophores in the proximity of this location. We show that probability map obtained from number of fluorophores 3-4 times less than required by Nyquist criterion may be used as superresolution image itself. Thus we are able to construct STORM image from a subset of localized fluorophores 3-4 times sparser than required from Nyquist criterion, proportionaly decreasing STORM data acquisition time. This method may be used complementary with other approaches desined for increasing STORM time resolution.

  7. Peptide p5 binds both heparinase-sensitive glycosaminoglycans and fibrils in patient-derived AL amyloid extracts.

    PubMed

    Martin, Emily B; Williams, Angela; Heidel, Eric; Macy, Sallie; Kennel, Stephen J; Wall, Jonathan S

    2013-06-21

    In previously published work, we have described heparin-binding synthetic peptides that preferentially recognize amyloid deposits in a mouse model of reactive systemic (AA) amyloidosis and can be imaged by using positron and single photon emission tomographic imaging. We wanted to extend these findings to the most common form of visceral amyloidosis, namely light chain (AL); however, there are no robust experimental animal models of AL amyloidosis. To further define the binding of the lead peptide, p5, to AL amyloid, we characterized the reactivity in vitro of p5 with in situ and patient-derived AL amyloid extracts which contain both hypersulfated heparan sulfate proteoglycans as well as amyloid fibrils. Histochemical staining demonstrated that the peptide specifically localized with tissue-associated AL amyloid deposits. Although we anticipated that p5 would undergo electrostatic interactions with the amyloid-associated glycosaminoglycans expressing heparin-like side chains, no significant correlation between peptide binding and glycosaminoglycan content within amyloid extracts was observed. In contrast, following heparinase I treatment, although overall binding was reduced, a positive correlation between peptide binding and amyloid fibril content became evident. This interaction was further confirmed using synthetic light chain fibrils that contain no carbohydrates. These data suggest that p5 can bind to both the sulfated glycosaminoglycans and protein fibril components of AL amyloid. Understanding these complex electrostatic interactions will aid in the optimization of synthetic peptides for use as amyloid imaging agents and potentially as therapeutics for the treatment of amyloid diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Surface erosion and sedimentation caused by ejecta from the lunar crater Tycho

    NASA Astrophysics Data System (ADS)

    Shkuratov, Y.; Basilevsky, A.; Kaydash, V.; Ivanov, B.; Korokhin, V.; Videen, G.

    2018-02-01

    We use Kaguya MI images acquired at wavelengths 415, 750, and 950 nm to map TiO2 and FeO content and the parameter of optical maturity OMAT in lunar regions Lubiniezky E and Taurus-Littrow with a spatial resolution of 20 m using the Lucey method [Lucey et al., JGR 2000, 105. 20,297]. We show that some ejecta from large craters, such as Tycho and Copernicus may cause lunar surface erosion, transportation of the eroded material and its sedimentation. The traces of the erosion resemble wind tails observed on Earth, Mars, and Venus, although the Moon has no atmosphere. The highland material of the local topographic prominences could be mobilized by Tycho's granolometrically fine ejecta and caused by its transportation along the ejecta way to adjacent mare areas and subsequent deposition. The tails of mobilized material reveal lower abundances of Ti and Fe than the surrounding mare surface. We have concluded that high-Ti streaks also seen in the Lubiniezky E site, which show unusual combinations of the TiO2 and FeO content on the correlation diagram, could be the result of erosion by Tycho's ejecta too. In these locations, Tycho's material did not form a consolidated deposit, but resulted in erosion of the mare surface material that became intermixed, consequently, diluting the ejecta. The Taurus-Littrow did provide evidence of the mechanical effect of Tycho's ejecta on the local landforms (landslide, secondary craters) and do not show the compositional signature of Tycho's ejecta probably due to intermixing with local materials and dilution.

  9. Local facet approximation for image stitching

    NASA Astrophysics Data System (ADS)

    Li, Jing; Lai, Shiming; Liu, Yu; Wang, Zhengming; Zhang, Maojun

    2018-01-01

    Image stitching aims at eliminating multiview parallax and generating a seamless panorama given a set of input images. This paper proposes a local adaptive stitching method, which could achieve both accurate and robust image alignments across the whole panorama. A transformation estimation model is introduced by approximating the scene as a combination of neighboring facets. Then, the local adaptive stitching field is constructed using a series of linear systems of the facet parameters, which enables the parallax handling in three-dimensional space. We also provide a concise but effective global projectivity preserving technique that smoothly varies the transformations from local adaptive to global planar. The proposed model is capable of stitching both normal images and fisheye images. The efficiency of our method is quantitatively demonstrated in the comparative experiments on several challenging cases.

  10. Images of turbulent, absorbing-emitting atmospheres and their application to windshear detection

    NASA Astrophysics Data System (ADS)

    Watt, David W.; Philbrick, Daniel A.

    1991-03-01

    The simulation of images generated by thermally-radiating, optically- thick turbulent media are discussed and the time-dependent evolution of these images is modeled. This characteristics of these images are particularly applicable to the atmosphere in the 13-15 mm band and their behavior may have application in detecting aviation hazards. The image is generated by volumetric thermal emission by atmospheric constituents within the field-of-view of the detector. The structure of the turbulent temperature field and the attenuating properties of the atmosphere interact with the field-of-view's geometry to produce a localized region which dominates the optical flow of the image. The simulations discussed in this paper model the time-dependent behavior of images generated by atmospheric flows viewed from an airborne platform. The images ar modelled by (1) generating a random field of temperature fluctuations have the proper spatial structure, (2) adding these fluctuation to the baseline temperature field of the atmospheric event, (3) accumulating the image on the detector from radiation emitted in the imaging volume, (4) allowing the individual radiating points within the imaging volume to move with the local velocity, (5) recalculating the thermal field and generating a new image. This approach was used to simulate the images generated by the temperature and velocity fields of a windshear. The simulation generated pais of images separated by a small time interval. These image paris were analyzed by image cross-correlation. The displacement of the cross-correlation peak was used to infer the velocity at the localized region. The localized region was found to depend weakly on the shape of the velocity profile. Prediction of the localized region, the effects of imaging from a moving platform, alternative image analysis schemes, and possible application to aviation hazards are discussed.

  11. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle †

    PubMed Central

    Ito, Seigo; Hiratsuka, Shigeyoshi; Ohta, Mitsuhiko; Matsubara, Hiroyuki; Ogawa, Masaru

    2018-01-01

    We present our third prototype sensor and a localization method for Automated Guided Vehicles (AGVs), for which small imaging LIght Detection and Ranging (LIDAR) and fusion-based localization are fundamentally important. Our small imaging LIDAR, named the Single-Photon Avalanche Diode (SPAD) LIDAR, uses a time-of-flight method and SPAD arrays. A SPAD is a highly sensitive photodetector capable of detecting at the single-photon level, and the SPAD LIDAR has two SPAD arrays on the same chip for detection of laser light and environmental light. Therefore, the SPAD LIDAR simultaneously outputs range image data and monocular image data with the same coordinate system and does not require external calibration among outputs. As AGVs travel both indoors and outdoors with vibration, this calibration-less structure is particularly useful for AGV applications. We also introduce a fusion-based localization method, named SPAD DCNN, which uses the SPAD LIDAR and employs a Deep Convolutional Neural Network (DCNN). SPAD DCNN can fuse the outputs of the SPAD LIDAR: range image data, monocular image data and peak intensity image data. The SPAD DCNN has two outputs: the regression result of the position of the SPAD LIDAR and the classification result of the existence of a target to be approached. Our third prototype sensor and the localization method are evaluated in an indoor environment by assuming various AGV trajectories. The results show that the sensor and localization method improve the localization accuracy. PMID:29320434

  12. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle.

    PubMed

    Ito, Seigo; Hiratsuka, Shigeyoshi; Ohta, Mitsuhiko; Matsubara, Hiroyuki; Ogawa, Masaru

    2018-01-10

    We present our third prototype sensor and a localization method for Automated Guided Vehicles (AGVs), for which small imaging LIght Detection and Ranging (LIDAR) and fusion-based localization are fundamentally important. Our small imaging LIDAR, named the Single-Photon Avalanche Diode (SPAD) LIDAR, uses a time-of-flight method and SPAD arrays. A SPAD is a highly sensitive photodetector capable of detecting at the single-photon level, and the SPAD LIDAR has two SPAD arrays on the same chip for detection of laser light and environmental light. Therefore, the SPAD LIDAR simultaneously outputs range image data and monocular image data with the same coordinate system and does not require external calibration among outputs. As AGVs travel both indoors and outdoors with vibration, this calibration-less structure is particularly useful for AGV applications. We also introduce a fusion-based localization method, named SPAD DCNN, which uses the SPAD LIDAR and employs a Deep Convolutional Neural Network (DCNN). SPAD DCNN can fuse the outputs of the SPAD LIDAR: range image data, monocular image data and peak intensity image data. The SPAD DCNN has two outputs: the regression result of the position of the SPAD LIDAR and the classification result of the existence of a target to be approached. Our third prototype sensor and the localization method are evaluated in an indoor environment by assuming various AGV trajectories. The results show that the sensor and localization method improve the localization accuracy.

  13. Public sentiment and discourse about Zika virus on Instagram.

    PubMed

    Seltzer, E K; Horst-Martz, E; Lu, M; Merchant, R M

    2017-09-01

    Social media have strongly influenced the awareness and perceptions of public health emergencies, and a considerable amount of social media content is now shared through images, rather than text alone. This content can impact preparedness and response due to the popularity and real-time nature of social media platforms. We sought to explore how the image-sharing platform Instagram is used for information dissemination and conversation during the current Zika outbreak. This was a retrospective review of publicly posted images about Zika on Instagram. Using the keyword '#zika' we identified 500 images posted on Instagram from May to August 2016. Images were coded by three reviewers and contextual information was collected for each image about sentiment, image type, content, audience, geography, reliability, and engagement. Of 500 images tagged with #zika, 342 (68%) contained content actually related to Zika. Of the 342 Zika-specific images, 299 were coded as 'health' and 193 were coded 'public interest'. Some images had multiple 'health' and 'public interest' codes. Health images tagged with #zika were primarily related to transmission (43%, 129/299) and prevention (48%, 145/299). Transmission-related posts were more often mosquito-human transmission (73%, 94/129) than human-human transmission (27%, 35/129). Mosquito bite prevention posts outnumbered safe sex prevention; (84%, 122/145) and (16%, 23/145) respectively. Images with a target audience were primarily aimed at women (95%, 36/38). Many posts (60%, 61/101) included misleading, incomplete, or unclear information about the virus. Additionally, many images expressed fear and negative sentiment, (79/156, 51%). Instagram can be used to characterize public sentiment and highlight areas of focus for public health, such as correcting misleading or incomplete information or expanding messages to reach diverse audiences. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  14. Ubiquitous picture-rich content representation

    NASA Astrophysics Data System (ADS)

    Wang, Wiley; Dean, Jennifer; Muzzolini, Russ

    2010-02-01

    The amount of digital images taken by the average consumer is consistently increasing. People enjoy the convenience of storing and sharing their pictures through online (digital) and offline (traditional) media. A set of pictures can be uploaded to: online photo services, web blogs and social network websites. Alternatively, these images can be used to generate: prints, cards, photo books or other photo products. Through uploading and sharing, images are easily transferred from one format to another. And often, a different set of associated content (text, tags) is created across formats. For example, on his web blog, a user may journal his experiences of his recent travel; on his social network website, his friends tag and comment on the pictures; in his online photo album, some pictures are titled and keyword-tagged. When the user wants to tell a complete story, perhaps in a photo book, he must collect, across all formats: the pictures, writings and comments, etc. and organize them in a book format. The user has to arrange the content of his trip in each format. The arrangement, the associations between the images, tags, keywords and text, cannot be shared with other formats. In this paper, we propose a system that allows the content to be easily created and shared across various digital media formats. We define a uniformed data association structure to connect: images, documents, comments, tags, keywords and other data. This content structure allows the user to switch representation formats without reediting. The framework under each format can emphasize (display or hide) content elements based on preference. For example, a slide show view will emphasize the display of pictures with limited text; a blog view will display highlighted images and journal text; and the photo book will try to fit in all images and text content. In this paper, we will discuss the strategy to associate pictures with text content, so that it can naturally tell a story. We will also list sample solutions on different formats such as: picture view, blog view and photo book view.

  15. Depth Reconstruction from Single Images Using a Convolutional Neural Network and a Condition Random Field Model.

    PubMed

    Liu, Dan; Liu, Xuejun; Wu, Yiguang

    2018-04-24

    This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN) and a continuous pairwise Conditional Random Field (CRF) model. Semantic information and relative depth trends of local regions inside the image are integrated into the framework. A deep CNN network is firstly used to automatically learn a hierarchical feature representation of the image. To get more local details in the image, the relative depth trends of local regions are incorporated into the network. Combined with semantic information of the image, a continuous pairwise CRF is then established and is used as the loss function of the unified model. Experiments on real scenes demonstrate that the proposed approach is effective and that the approach obtains satisfactory results.

  16. GPR Image and Signal Processing for Pavement and Road Monitoring on Android Smartphones and Tablets

    NASA Astrophysics Data System (ADS)

    Benedetto, Francesco; Benedetto, Andrea; Tedeschi, Antonio

    2014-05-01

    Ground Penetrating Radar (GPR) is a geophysical method that uses radar pulses to image the subsurface. This non-destructive method uses electromagnetic radiation and detects the reflected signals from subsurface structures. It can detect objects, changes in material, and voids and cracks. GPR has many applications in a number of fields. In the field of civil engineering one of the most advanced technologies used for road pavement monitoring is based on the deployment of advanced GPR systems. One of the most relevant causes of road pavement damage is often referable to water intrusion in structural layers. In this context, GPR has been recently proposed as a method to estimate moisture content in a porous medium without preventive calibration. Hence, the development of methods to obtain an estimate of the moisture content is a crucial research field involving economic, social and strategic aspects in road safety for a great number of public and private Agencies. In particular, a recent new approach was proposed to estimate moisture content in a porous medium basing on the theory of Rayleigh scattering, showing a shift of the frequency peak of the GPR spectrum towards lower frequencies as the moisture content increases in the soil. Addressing some of these issues, this work proposes a mobile application, for smartphones and tablets, for GPR image and signal processing. Our application has been designed for the Android mobile operating system, since it is open source and android mobile platforms are selling the most smartphones in the world (2013). The GPR map can be displayed in black/white or color and the user can zoom and navigate into the image. The map can be loaded in two different ways: from the local memory of the portable device or from a remote server. This latter possibility can be very useful for real-time and mobile monitoring of road and pavement inspection. In addition, the application allows analyzing the GPR data also in the frequency domain. It is possible to visualize the GPR spectrum, and the application returns the (abscissa of the) frequency peak of the GPR spectrum. It is also possible to visualize more GPR spectra on the same figure, in order to understand if a frequency shift (related to moisture content) has been observed. Finally, the GPR spectra can be exported as a JPEG file. This application has a strategic and innovative potentiality for all the Agencies involved in roads and highway management in order to improve the onsite efficiency and effectiveness of the works. ACKNOWLEDGMENT This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."

  17. Processing Dynamic Image Sequences from a Moving Sensor.

    DTIC Science & Technology

    1984-02-01

    65 Roadsign Image Sequence ..... ................ ... 70 Roadsign Sequence with Redundant Features .. ........ . 79 Roadsign Subimage...Selected Feature Error Values .. ........ 66 2c. Industrial Image Selected Feature Local Search Values. .. .... 67 3ab. Roadsign Image Error Values...72 3c. Roadsign Image Local Search Values ............. 73 4ab. Roadsign Redundant Feature Error Values. ............ 8 4c. Roadsign

  18. Brain Slice Staining and Preparation for Three-Dimensional Super-Resolution Microscopy

    PubMed Central

    German, Christopher L.; Gudheti, Manasa V.; Fleckenstein, Annette E.; Jorgensen, Erik M.

    2018-01-01

    Localization microscopy techniques – such as photoactivation localization microscopy (PALM), fluorescent PALM (FPALM), ground state depletion (GSD), and stochastic optical reconstruction microscopy (STORM) – provide the highest precision for single molecule localization currently available. However, localization microscopy has been largely limited to cell cultures due to the difficulties that arise in imaging thicker tissue sections. Sample fixation and antibody staining, background fluorescence, fluorophore photoinstability, light scattering in thick sections, and sample movement create significant challenges for imaging intact tissue. We have developed a sample preparation and image acquisition protocol to address these challenges in rat brain slices. The sample preparation combined multiple fixation steps, saponin permeabilization, and tissue clarification. Together, these preserve intracellular structures, promote antibody penetration, reduce background fluorescence and light scattering, and allow acquisition of images deep in a 30 μm thick slice. Image acquisition challenges were resolved by overlaying samples with a permeable agarose pad and custom-built stainless steel imaging adapter, and sealing the imaging chamber. This approach kept slices flat, immobile, bathed in imaging buffer, and prevented buffer oxidation during imaging. Using this protocol, we consistently obtained single molecule localizations of synaptic vesicle and active zone proteins in three-dimensions within individual synaptic terminals of the striatum in rat brain slices. These techniques may be easily adapted to the preparation and imaging of other tissues, substantially broadening the application of super-resolution imaging. PMID:28924666

  19. Strongly localized image states of spherical graphitic particles.

    PubMed

    Gumbs, Godfrey; Balassis, Antonios; Iurov, Andrii; Fekete, Paula

    2014-01-01

    We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.

  20. Measuring water contents in animal organ tissues using terahertz spectroscopic imaging.

    PubMed

    Lee, Kyumin; Jeoung, Kiyong; Kim, Sang Hoon; Ji, Young-Bin; Son, Hyeyoung; Choi, Yuna; Huh, Young-Min; Suh, Jin-Suck; Oh, Seung Jae

    2018-04-01

    We investigated the water contents in several organ tissues such as the liver, spleen, kidney, and brain tissue of rats using the terahertz spectroscopic imaging technique. The water contents of the tissues were determined by using a simple equation containing the absorption coefficients of fresh and lyophilized tissues and water. We compared the measured water contents with the difference in mass of tissues before and after lyophilization. All results showed a good match except for the kidney, which has several Bowman's capsules.

  1. New approach for cognitive analysis and understanding of medical patterns and visualizations

    NASA Astrophysics Data System (ADS)

    Ogiela, Marek R.; Tadeusiewicz, Ryszard

    2003-11-01

    This paper presents new opportunities for applying linguistic description of the picture merit content and AI methods to undertake tasks of the automatic understanding of images semantics in intelligent medical information systems. A successful obtaining of the crucial semantic content of the medical image may contribute considerably to the creation of new intelligent multimedia cognitive medical systems. Thanks to the new idea of cognitive resonance between stream of the data extracted from the image using linguistic methods and expectations taken from the representaion of the medical knowledge, it is possible to understand the merit content of the image even if teh form of the image is very different from any known pattern. This article proves that structural techniques of artificial intelligence may be applied in the case of tasks related to automatic classification and machine perception based on semantic pattern content in order to determine the semantic meaning of the patterns. In the paper are described some examples presenting ways of applying such techniques in the creation of cognitive vision systems for selected classes of medical images. On the base of scientific research described in the paper we try to build some new systems for collecting, storing, retrieving and intelligent interpreting selected medical images especially obtained in radiological and MRI examinations.

  2. Redundancy of stereoscopic images: Experimental evaluation

    NASA Astrophysics Data System (ADS)

    Yaroslavsky, L. P.; Campos, J.; Espínola, M.; Ideses, I.

    2005-12-01

    With the recent advancement in visualization devices over the last years, we are seeing a growing market for stereoscopic content. In order to convey 3D content by means of stereoscopic displays, one needs to transmit and display at least 2 points of view of the video content. This has profound implications on the resources required to transmit the content, as well as demands on the complexity of the visualization system. It is known that stereoscopic images are redundant which may prove useful for compression and may have positive effect on the construction of the visualization device. In this paper we describe an experimental evaluation of data redundancy in color stereoscopic images. In the experiments with computer generated and real life test stereo images, several observers visually tested the stereopsis threshold and accuracy of parallax measurement in anaglyphs and stereograms as functions of the blur degree of one of two stereo images. In addition, we tested the color saturation threshold in one of two stereo images for which full color 3D perception with no visible color degradations was maintained. The experiments support a theoretical estimate that one has to add, to data required to reproduce one of two stereoscopic images, only several percents of that amount of data in order to achieve stereoscopic perception.

  3. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.

    2016-02-01

    We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.

  4. Enhancing the pictorial content of digital holograms at 100 frames per second.

    PubMed

    Tsang, P W M; Poon, T-C; Cheung, K W K

    2012-06-18

    We report a low complexity, non-iterative method for enhancing the sharpness, brightness, and contrast of the pictorial content that is recorded in a digital hologram, without the need of re-generating the latter from the original object scene. In our proposed method, the hologram is first back-projected to a 2-D virtual diffraction plane (VDP) which is located at close proximity to the original object points. Next the field distribution on the VDP, which shares similar optical properties as the object scene, is enhanced. Subsequently, the processed VDP is expanded into a full hologram. We demonstrate two types of enhancement: a modified histogram equalization to improve the brightness and contrast, and localized high-boost-filtering (LHBF) to increase the sharpness. Experiment results have demonstrated that our proposed method is capable of enhancing a 2048x2048 hologram at a rate of around 100 frames per second. To the best of our knowledge, this is the first time real-time image enhancement is considered in the context of digital holography.

  5. Ionospheric total electron content anomalies due to Typhoon Nakri on 29 May 2008: A nonlinear principal component analysis

    NASA Astrophysics Data System (ADS)

    Lin, Jyh-Woei

    2012-09-01

    This paper uses Nonlinear Principal Component Analysis (NLPCA) and Principal Component Analysis (PCA) to determine Total Electron Content (TEC) anomalies in the ionosphere for the Nakri Typhoon on 29 May, 2008 (UTC). NLPCA, PCA and image processing are applied to the global ionospheric map (GIM) with transforms conducted for the time period 12:00-14:00 UT on 29 May 2008 when the wind was most intense. Results show that at a height of approximately 150-200 km the TEC anomaly using NLPCA is more localized; however its intensity increases with height and becomes more widespread. The TEC anomalies are not found by PCA. Potential causes of the results are discussed with emphasis given to vertical acoustic gravity waves. The approximate position of the typhoon's eye can be detected if the GIM is divided into fine enough maps with adequate spatial-resolution at GPS-TEC receivers. This implies that the trace of the typhoon in the regional GIM is caught using NLPCA.

  6. Into the Dark Domain: The UK Web Archive as a Source for the Contemporary History of Public Health

    PubMed Central

    Gorsky, Martin

    2015-01-01

    With the migration of the written record from paper to digital format, archivists and historians must urgently consider how web content should be conserved, retrieved and analysed. The British Library has recently acquired a large number of UK domain websites, captured 1996–2010, which is colloquially termed the Dark Domain Archive while technical issues surrounding user access are resolved. This article reports the results of an invited pilot project that explores methodological issues surrounding use of this archive. It asks how the relationship between UK public health and local government was represented on the web, drawing on the ‘declinist’ historiography to frame its questions. It points up some difficulties in developing an aggregate picture of web content due to duplication of sites. It also highlights their potential for thematic and discourse analysis, using both text and image, illustrated through an argument about the contradictory rationale for public health policy under New Labour. PMID:26217072

  7. Sources and Resources Into the Dark Domain: The UK Web Archive as a Source for the Contemporary History of Public Health.

    PubMed

    Gorsky, Martin

    2015-08-01

    With the migration of the written record from paper to digital format, archivists and historians must urgently consider how web content should be conserved, retrieved and analysed. The British Library has recently acquired a large number of UK domain websites, captured 1996-2010, which is colloquially termed the Dark Domain Archive while technical issues surrounding user access are resolved. This article reports the results of an invited pilot project that explores methodological issues surrounding use of this archive. It asks how the relationship between UK public health and local government was represented on the web, drawing on the 'declinist' historiography to frame its questions. It points up some difficulties in developing an aggregate picture of web content due to duplication of sites. It also highlights their potential for thematic and discourse analysis, using both text and image, illustrated through an argument about the contradictory rationale for public health policy under New Labour.

  8. The real deal: Willingness-to-pay and satiety expectations are greater for real foods versus their images.

    PubMed

    Romero, Carissa A; Compton, Michael T; Yang, Yueran; Snow, Jacqueline C

    2017-11-23

    Laboratory studies of human dietary choice have relied on computerized two-dimensional (2D) images as stimuli, whereas in everyday life, consumers make decisions in the context of real foods that have actual caloric content and afford grasping and consumption. Surprisingly, few studies have compared whether real foods are valued more than 2D images of foods, and in the studies that have, differences in the stimuli and testing conditions could have resulted in inflated bids for the real foods. Moreover, although the caloric content of food images has been shown to influence valuation, no studies to date have investigated whether 'real food exposure effects' on valuation reflect greater sensitivity to the caloric content of real foods versus images. Here, we compared willingness-to-pay (WTP) for, and expectations about satiety after consuming, everyday snack foods that were displayed as real foods versus 2D images. Critically, our 2D images were matched closely to the real foods for size, background, illumination, and apparent distance, and trial presentation and stimulus timing were identical across conditions. We used linear mixed effects modeling to determine whether effects of display format were modulated by food preference and the caloric content of the foods. Compared to food images, observers were willing to pay 6.62% more for (Experiment 1) and believed that they would feel more satiated after consuming (Experiment 2), foods displayed as real objects. Moreover, these effects appeared to be consistent across food preference, caloric content, as well as observers' estimates of the caloric content of the foods. Together, our results confirm that consumers' perception and valuation of everyday foods is influenced by the format in which they are displayed. Our findings raise important new insights into the factors that shape dietary choice in real-world contexts and highlight potential avenues for improving public health approaches to diet and obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Disability in Physical Education Textbooks: An Analysis of Image Content

    ERIC Educational Resources Information Center

    Taboas-Pais, Maria Ines; Rey-Cao, Ana

    2012-01-01

    The aim of this paper is to show how images of disability are portrayed in physical education textbooks for secondary schools in Spain. The sample was composed of 3,316 images published in 36 textbooks by 10 publishing houses. A content analysis was carried out using a coding scheme based on categories employed in other similar studies and adapted…

  10. Political leaders and the media. Can we measure political leadership images in newspapers using computer-assisted content analysis?

    PubMed

    Aaldering, Loes; Vliegenthart, Rens

    Despite the large amount of research into both media coverage of politics as well as political leadership, surprisingly little research has been devoted to the ways political leaders are discussed in the media. This paper studies whether computer-aided content analysis can be applied in examining political leadership images in Dutch newspaper articles. It, firstly, provides a conceptualization of political leader character traits that integrates different perspectives in the literature. Moreover, this paper measures twelve political leadership images in media coverage, based on a large-scale computer-assisted content analysis of Dutch media coverage (including almost 150.000 newspaper articles), and systematically tests the quality of the employed measurement instrument by assessing the relationship between the images, the variance in the measurement, the over-time development of images for two party leaders and by comparing the computer results with manual coding. We conclude that the computerized content analysis provides a valid measurement for the leadership images in Dutch newspapers. Moreover, we find that the dimensions political craftsmanship, vigorousness, integrity, communicative performances and consistency are regularly applied in discussing party leaders, but that portrayal of party leaders in terms of responsiveness is almost completely absent in Dutch newspapers.

  11. Improved image retrieval based on fuzzy colour feature vector

    NASA Astrophysics Data System (ADS)

    Ben-Ahmeida, Ahlam M.; Ben Sasi, Ahmed Y.

    2013-03-01

    One of Image indexing techniques is the Content-Based Image Retrieval which is an efficient way for retrieving images from the image database automatically based on their visual contents such as colour, texture, and shape. In this paper will be discuss how using content-based image retrieval (CBIR) method by colour feature extraction and similarity checking. By dividing the query image and all images in the database into pieces and extract the features of each part separately and comparing the corresponding portions in order to increase the accuracy in the retrieval. The proposed approach is based on the use of fuzzy sets, to overcome the problem of curse of dimensionality. The contribution of colour of each pixel is associated to all the bins in the histogram using fuzzy-set membership functions. As a result, the Fuzzy Colour Histogram (FCH), outperformed the Conventional Colour Histogram (CCH) in image retrieving, due to its speedy results, where were images represented as signatures that took less size of memory, depending on the number of divisions. The results also showed that FCH is less sensitive and more robust to brightness changes than the CCH with better retrieval recall values.

  12. Multimodal Medical Image Fusion by Adaptive Manifold Filter.

    PubMed

    Geng, Peng; Liu, Shuaiqi; Zhuang, Shanna

    2015-01-01

    Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. The modified local contrast information is proposed to fuse multimodal medical images. Firstly, the adaptive manifold filter is introduced into filtering source images as the low-frequency part in the modified local contrast. Secondly, the modified spatial frequency of the source images is adopted as the high-frequency part in the modified local contrast. Finally, the pixel with larger modified local contrast is selected into the fused image. The presented scheme outperforms the guided filter method in spatial domain, the dual-tree complex wavelet transform-based method, nonsubsampled contourlet transform-based method, and four classic fusion methods in terms of visual quality. Furthermore, the mutual information values by the presented method are averagely 55%, 41%, and 62% higher than the three methods and those values of edge based similarity measure by the presented method are averagely 13%, 33%, and 14% higher than the three methods for the six pairs of source images.

  13. No-reference multiscale blur detection tool for content based image retrieval

    NASA Astrophysics Data System (ADS)

    Ezekiel, Soundararajan; Stocker, Russell; Harrity, Kyle; Alford, Mark; Ferris, David; Blasch, Erik; Gorniak, Mark

    2014-06-01

    In recent years, digital cameras have been widely used for image capturing. These devices are equipped in cell phones, laptops, tablets, webcams, etc. Image quality is an important component of digital image analysis. To assess image quality for these mobile products, a standard image is required as a reference image. In this case, Root Mean Square Error and Peak Signal to Noise Ratio can be used to measure the quality of the images. However, these methods are not possible if there is no reference image. In our approach, a discrete-wavelet transformation is applied to the blurred image, which decomposes into the approximate image and three detail sub-images, namely horizontal, vertical, and diagonal images. We then focus on noise-measuring the detail images and blur-measuring the approximate image to assess the image quality. We then compute noise mean and noise ratio from the detail images, and blur mean and blur ratio from the approximate image. The Multi-scale Blur Detection (MBD) metric provides both an assessment of the noise and blur content. These values are weighted based on a linear regression against full-reference y values. From these statistics, we can compare to normal useful image statistics for image quality without needing a reference image. We then test the validity of our obtained weights by R2 analysis as well as using them to estimate image quality of an image with a known quality measure. The result shows that our method provides acceptable results for images containing low to mid noise levels and blur content.

  14. Space Place Prime

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Austin J.; Novati, Alexander; Fisher, Diane K.; Leon, Nancy J.; Netting, Ruth

    2013-01-01

    Space Place Prime is public engagement and education software for use on iPad. It targets a multi-generational audience with news, images, videos, and educational articles from the Space Place Web site and other NASA sources. New content is downloaded daily (or whenever the user accesses the app) via the wireless connection. In addition to the Space Place Web site, several NASA RSS feeds are tapped to provide new content. Content is retained for the previous several days, or some number of editions of each feed. All content is controlled on the server side, so features about the latest news, or changes to any content, can be made without updating the app in the Apple Store. It gathers many popular NASA features into one app. The interface is a boundless, slidable- in-any-direction grid of images, unique for each feature, and iconized as image, video, or article. A tap opens the feature. An alternate list mode presents menus of images, videos, and articles separately. Favorites can be tagged for permanent archive. Face - book, Twitter, and e-mail connections make any feature shareable.

  15. Determination of fat and total protein content in milk using conventional digital imaging.

    PubMed

    Kucheryavskiy, Sergey; Melenteva, Anastasiia; Bogomolov, Andrey

    2014-04-01

    The applicability of conventional digital imaging to quantitative determination of fat and total protein in cow's milk, based on the phenomenon of light scatter, has been proved. A new algorithm for extracting features from digital images of milk samples has been developed. The algorithm takes into account spatial distribution of light, diffusely transmitted through a sample. The proposed method has been tested on two sample sets prepared from industrial raw milk standards, with variable fat and protein content. Partial Least-Squares (PLS) regression on the features calculated from images of monochromatically illuminated milk samples resulted in models with high prediction performance when analysed the sets separately (best models with cross-validated R(2)=0.974 for protein and R(2)=0.973 for fat content). However when analysed the sets jointly with the obtained results were significantly worse (best models with cross-validated R(2)=0.890 for fat content and R(2)=0.720 for protein content). The results have been compared with previously published Vis/SW-NIR spectroscopic study of similar samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Restoring 2D content from distorted documents.

    PubMed

    Brown, Michael S; Sun, Mingxuan; Yang, Ruigang; Yun, Lin; Seales, W Brent

    2007-11-01

    This paper presents a framework to restore the 2D content printed on documents in the presence of geometric distortion and non-uniform illumination. Compared with textbased document imaging approaches that correct distortion to a level necessary to obtain sufficiently readable text or to facilitate optical character recognition (OCR), our work targets nontextual documents where the original printed content is desired. To achieve this goal, our framework acquires a 3D scan of the document's surface together with a high-resolution image. Conformal mapping is used to rectify geometric distortion by mapping the 3D surface back to a plane while minimizing angular distortion. This conformal "deskewing" assumes no parametric model of the document's surface and is suitable for arbitrary distortions. Illumination correction is performed by using the 3D shape to distinguish content gradient edges from illumination gradient edges in the high-resolution image. Integration is performed using only the content edges to obtain a reflectance image with significantly less illumination artifacts. This approach makes no assumptions about light sources and their positions. The results from the geometric and photometric correction are combined to produce the final output.

  17. Social Image Tag Ranking by Two-View Learning

    NASA Astrophysics Data System (ADS)

    Zhuang, Jinfeng; Hoi, Steven C. H.

    Tags play a central role in text-based social image retrieval and browsing. However, the tags annotated by web users could be noisy, irrelevant, and often incomplete for describing the image contents, which may severely deteriorate the performance of text-based image retrieval models. In order to solve this problem, researchers have proposed techniques to rank the annotated tags of a social image according to their relevance to the visual content of the image. In this paper, we aim to overcome the challenge of social image tag ranking for a corpus of social images with rich user-generated tags by proposing a novel two-view learning approach. It can effectively exploit both textual and visual contents of social images to discover the complicated relationship between tags and images. Unlike the conventional learning approaches that usually assumes some parametric models, our method is completely data-driven and makes no assumption about the underlying models, making the proposed solution practically more effective. We formulate our method as an optimization task and present an efficient algorithm to solve it. To evaluate the efficacy of our method, we conducted an extensive set of experiments by applying our technique to both text-based social image retrieval and automatic image annotation tasks. Our empirical results showed that the proposed method can be more effective than the conventional approaches.

  18. High-resolution imaging of the low velocity layer in Alaskan subduction zone with scattered waves and interferometry

    NASA Astrophysics Data System (ADS)

    Kim, D.; Keranen, K. M.; Abers, G. A.; Kim, Y.; Li, J.; Shillington, D. J.; Brown, L. D.

    2017-12-01

    The physical factors that control the rupture process of great earthquakes at convergent plate boundaries remain incompletely understood. While recent developments in imaging using the teleseismic wavefield have led to marked advances at wavelengths of a couple kilometers to tens of kilometers, higher resolution imaging of the rupture zone would improve the resolution of imaging and thus provide improved parameter estimation, as the teleseismic wavefield is fundamentally limited by its low frequency content. This study compares and evaluates two seismic imaging techniques using the high-frequency signals from teleseismic coda versus earthquake scattered waves to image the subducting Yakutat oceanic plateau in the Alaska subduction zone. We use earthquakes recorded by the MOOS PASSCAL broadband deployment in southern Alaska. In our first method, we select local earthquakes that lie directly beneath and laterally near the recording array for imaging, and extract body wave information via a simple autocorrelation and stacking. Profiles analogous to seismic reflection profile are constructed using the near-vertically travelling waves. In our second method, we compute teleseismic receiver functions within the 0.02-1.0 Hz frequency band. Both results image interfaces that we associate with the subducting oceanic plate in Alaska-Aleutian system, with greater resolution than commonly used methods with teleseismic sources. Structural details from our results can further our understanding of the conditions and materials that characterize the subduction megathrusts, and the techniques can be employed in other regions along the Alaska-Aleutian system and at other convergent margins with suitable seismic arrays.

  19. Remote sensing image segmentation using local sparse structure constrained latent low rank representation

    NASA Astrophysics Data System (ADS)

    Tian, Shu; Zhang, Ye; Yan, Yimin; Su, Nan; Zhang, Junping

    2016-09-01

    Latent low-rank representation (LatLRR) has been attached considerable attention in the field of remote sensing image segmentation, due to its effectiveness in exploring the multiple subspace structures of data. However, the increasingly heterogeneous texture information in the high spatial resolution remote sensing images, leads to more severe interference of pixels in local neighborhood, and the LatLRR fails to capture the local complex structure information. Therefore, we present a local sparse structure constrainted latent low-rank representation (LSSLatLRR) segmentation method, which explicitly imposes the local sparse structure constraint on LatLRR to capture the intrinsic local structure in manifold structure feature subspaces. The whole segmentation framework can be viewed as two stages in cascade. In the first stage, we use the local histogram transform to extract the texture local histogram features (LHOG) at each pixel, which can efficiently capture the complex and micro-texture pattern. In the second stage, a local sparse structure (LSS) formulation is established on LHOG, which aims to preserve the local intrinsic structure and enhance the relationship between pixels having similar local characteristics. Meanwhile, by integrating the LSS and the LatLRR, we can efficiently capture the local sparse and low-rank structure in the mixture of feature subspace, and we adopt the subspace segmentation method to improve the segmentation accuracy. Experimental results on the remote sensing images with different spatial resolution show that, compared with three state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.

  20. Supervised learning of tools for content-based search of image databases

    NASA Astrophysics Data System (ADS)

    Delanoy, Richard L.

    1996-03-01

    A computer environment, called the Toolkit for Image Mining (TIM), is being developed with the goal of enabling users with diverse interests and varied computer skills to create search tools for content-based image retrieval and other pattern matching tasks. Search tools are generated using a simple paradigm of supervised learning that is based on the user pointing at mistakes of classification made by the current search tool. As mistakes are identified, a learning algorithm uses the identified mistakes to build up a model of the user's intentions, construct a new search tool, apply the search tool to a test image, display the match results as feedback to the user, and accept new inputs from the user. Search tools are constructed in the form of functional templates, which are generalized matched filters capable of knowledge- based image processing. The ability of this system to learn the user's intentions from experience contrasts with other existing approaches to content-based image retrieval that base searches on the characteristics of a single input example or on a predefined and semantically- constrained textual query. Currently, TIM is capable of learning spectral and textural patterns, but should be adaptable to the learning of shapes, as well. Possible applications of TIM include not only content-based image retrieval, but also quantitative image analysis, the generation of metadata for annotating images, data prioritization or data reduction in bandwidth-limited situations, and the construction of components for larger, more complex computer vision algorithms.

  1. The collection of images of an insulator taken outdoors in varying lighting conditions with additional laser spots.

    PubMed

    Tomaszewski, Michał; Ruszczak, Bogdan; Michalski, Paweł

    2018-06-01

    Electrical insulators are elements of power lines that require periodical diagnostics. Due to their location on the components of high-voltage power lines, their imaging can be cumbersome and time-consuming, especially under varying lighting conditions. Insulator diagnostics with the use of visual methods may require localizing insulators in the scene. Studies focused on insulator localization in the scene apply a number of methods, including: texture analysis, MRF (Markov Random Field), Gabor filters or GLCM (Gray Level Co-Occurrence Matrix) [1], [2]. Some methods, e.g. those which localize insulators based on colour analysis [3], rely on object and scene illumination, which is why the images from the dataset are taken under varying lighting conditions. The dataset may also be used to compare the effectiveness of different methods of localizing insulators in images. This article presents high-resolution images depicting a long rod electrical insulator under varying lighting conditions and against different backgrounds: crops, forest and grass. The dataset contains images with visible laser spots (generated by a device emitting light at the wavelength of 532 nm) and images without such spots, as well as complementary data concerning the illumination level and insulator position in the scene, the number of registered laser spots, and their coordinates in the image. The laser spots may be used to support object-localizing algorithms, while the images without spots may serve as a source of information for those algorithms which do not need spots to localize an insulator.

  2. Improved localization accuracy in stochastic super-resolution fluorescence microscopy by K-factor image deshadowing

    PubMed Central

    Ilovitsh, Tali; Meiri, Amihai; Ebeling, Carl G.; Menon, Rajesh; Gerton, Jordan M.; Jorgensen, Erik M.; Zalevsky, Zeev

    2013-01-01

    Localization of a single fluorescent particle with sub-diffraction-limit accuracy is a key merit in localization microscopy. Existing methods such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) achieve localization accuracies of single emitters that can reach an order of magnitude lower than the conventional resolving capabilities of optical microscopy. However, these techniques require a sparse distribution of simultaneously activated fluorophores in the field of view, resulting in larger time needed for the construction of the full image. In this paper we present the use of a nonlinear image decomposition algorithm termed K-factor, which reduces an image into a nonlinear set of contrast-ordered decompositions whose joint product reassembles the original image. The K-factor technique, when implemented on raw data prior to localization, can improve the localization accuracy of standard existing methods, and also enable the localization of overlapping particles, allowing the use of increased fluorophore activation density, and thereby increased data collection speed. Numerical simulations of fluorescence data with random probe positions, and especially at high densities of activated fluorophores, demonstrate an improvement of up to 85% in the localization precision compared to single fitting techniques. Implementing the proposed concept on experimental data of cellular structures yielded a 37% improvement in resolution for the same super-resolution image acquisition time, and a decrease of 42% in the collection time of super-resolution data with the same resolution. PMID:24466491

  3. Misaligned Image Integration With Local Linear Model.

    PubMed

    Baba, Tatsuya; Matsuoka, Ryo; Shirai, Keiichiro; Okuda, Masahiro

    2016-05-01

    We present a new image integration technique for a flash and long-exposure image pair to capture a dark scene without incurring blurring or noisy artifacts. Most existing methods require well-aligned images for the integration, which is often a burdensome restriction in practical use. We address this issue by locally transferring the colors of the flash images using a small fraction of the corresponding pixels in the long-exposure images. We formulate the image integration as a convex optimization problem with the local linear model. The proposed method makes it possible to integrate the color of the long-exposure image with the detail of the flash image without causing any harmful effects to its contrast, where we do not need perfect alignment between the images by virtue of our new integration principle. We show that our method successfully outperforms the state of the art in the image integration and reference-based color transfer for challenging misaligned data sets.

  4. Inferring Biological Structures from Super-Resolution Single Molecule Images Using Generative Models

    PubMed Central

    Maji, Suvrajit; Bruchez, Marcel P.

    2012-01-01

    Localization-based super resolution imaging is presently limited by sampling requirements for dynamic measurements of biological structures. Generating an image requires serial acquisition of individual molecular positions at sufficient density to define a biological structure, increasing the acquisition time. Efficient analysis of biological structures from sparse localization data could substantially improve the dynamic imaging capabilities of these methods. Using a feature extraction technique called the Hough Transform simple biological structures are identified from both simulated and real localization data. We demonstrate that these generative models can efficiently infer biological structures in the data from far fewer localizations than are required for complete spatial sampling. Analysis at partial data densities revealed efficient recovery of clathrin vesicle size distributions and microtubule orientation angles with as little as 10% of the localization data. This approach significantly increases the temporal resolution for dynamic imaging and provides quantitatively useful biological information. PMID:22629348

  5. Object localization in handheld thermal images for fireground understanding

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Florian; Merci, Bart; Jalalvand, Azarakhsh; Verstockt, Steven

    2017-05-01

    Despite the broad application of the handheld thermal imaging cameras in firefighting, its usage is mostly limited to subjective interpretation by the person carrying the device. As remedies to overcome this limitation, object localization and classification mechanisms could assist the fireground understanding and help with the automated localization, characterization and spatio-temporal (spreading) analysis of the fire. An automated understanding of thermal images can enrich the conventional knowledge-based firefighting techniques by providing the information from the data and sensing-driven approaches. In this work, transfer learning is applied on multi-labeling convolutional neural network architectures for object localization and recognition in monocular visual, infrared and multispectral dynamic images. Furthermore, the possibility of analyzing fire scene images is studied and their current limitations are discussed. Finally, the understanding of the room configuration (i.e., objects location) for indoor localization in reduced visibility environments and the linking with Building Information Models (BIM) are investigated.

  6. Localized surface plasmon enhanced cellular imaging using random metallic structures

    NASA Astrophysics Data System (ADS)

    Son, Taehwang; Lee, Wonju; Kim, Donghyun

    2017-02-01

    We have studied fluorescence cellular imaging with randomly distributed localized near-field induced by silver nano-islands. For the fabrication of nano-islands, a 10-nm silver thin film evaporated on a BK7 glass substrate with an adhesion layer of 2-nm thick chromium. Micrometer sized silver square pattern was defined using e-beam lithography and then the film was annealed at 200°C. Raw images were restored using electric field distribution produced on the surface of random nano-islands. Nano-islands were modeled from SEM images. 488-nm p-polarized light source was set to be incident at 60°. Simulation results show that localized electric fields were created among nano-islands and that their average size was found to be 135 nm. The feasibility was tested using conventional total internal reflection fluorescence microscopy while the angle of incidence was adjusted to maximize field enhancement. Mouse microphage cells were cultured on nano-islands, and actin filaments were selectively stained with FITC-conjugated phalloidin. Acquired images were deconvolved based on linear imaging theory, in which molecular distribution was sampled by randomly distributed localized near-field and blurred by point spread function of far-field optics. The optimum fluorophore distribution was probabilistically estimated by repetitively matching a raw image. The deconvolved images are estimated to have a resolution in the range of 100-150 nm largely determined by the size of localized near-fields. We also discuss and compare the results with images acquired with periodic nano-aperture arrays in various optical configurations to excite localized plasmonic fields and to produce super-resolved molecular images.

  7. Controlled-Release Microcapsules for Smart Coatings for Corrosion Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Corrosion is a serious problem that has enormous costs and serious safety implications. Localized corrosion, such as pitting, is very dangerous and can cause catastrophic failures. The NASA Corrosion Technology Laboratory at Kennedy Space Center is developing a smart coating based on pH-sensitive microcapsules for corrosion applications. These versatile microcapsules are designed to be incorporated into a smart coating and deliver their core content when corrosion starts. Corrosion indication was the first function incorporated into the microcapsules. Current efforts are focused on incorporating the corrosion inhibition function through the encapsulation of corrosion inhibitors into water core and oil core microcapsules. Scanning electron microscopy (SEM) images of encapsulated corrosion inhibitors are shown.

  8. Local multifractal detrended fluctuation analysis for non-stationary image's texture segmentation

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Li, Zong-shou; Li, Jin-wei

    2014-12-01

    Feature extraction plays a great important role in image processing and pattern recognition. As a power tool, multifractal theory is recently employed for this job. However, traditional multifractal methods are proposed to analyze the objects with stationary measure and cannot for non-stationary measure. The works of this paper is twofold. First, the definition of stationary image and 2D image feature detection methods are proposed. Second, a novel feature extraction scheme for non-stationary image is proposed by local multifractal detrended fluctuation analysis (Local MF-DFA), which is based on 2D MF-DFA. A set of new multifractal descriptors, called local generalized Hurst exponent (Lhq) is defined to characterize the local scaling properties of textures. To test the proposed method, both the novel texture descriptor and other two multifractal indicators, namely, local Hölder coefficients based on capacity measure and multifractal dimension Dq based on multifractal differential box-counting (MDBC) method, are compared in segmentation experiments. The first experiment indicates that the segmentation results obtained by the proposed Lhq are better than the MDBC-based Dq slightly and superior to the local Hölder coefficients significantly. The results in the second experiment demonstrate that the Lhq can distinguish the texture images more effectively and provide more robust segmentations than the MDBC-based Dq significantly.

  9. Uses of software in digital image analysis: a forensic report

    NASA Astrophysics Data System (ADS)

    Sharma, Mukesh; Jha, Shailendra

    2010-02-01

    Forensic image analysis is required an expertise to interpret the content of an image or the image itself in legal matters. Major sub-disciplines of forensic image analysis with law enforcement applications include photo-grammetry, photographic comparison, content analysis and image authentication. It has wide applications in forensic science range from documenting crime scenes to enhancing faint or indistinct patterns such as partial fingerprints. The process of forensic image analysis can involve several different tasks, regardless of the type of image analysis performed. Through this paper authors have tried to explain these tasks, which are described in to three categories: Image Compression, Image Enhancement & Restoration and Measurement Extraction. With the help of examples like signature comparison, counterfeit currency comparison and foot-wear sole impression using the software Canvas and Corel Draw.

  10. Nutrition quality test of fermented waste vegetables by bioactivator local microorganisms (MOL) and effective microorganism (EM4)

    NASA Astrophysics Data System (ADS)

    Mirwandono, E.; Sitepu, M.; Wahyuni, T. H.; Hasnudi; Ginting, N.; Siregar, G. AW; Sembiring, I.

    2018-02-01

    Livestock feed mostly used waste which has low nutrition content and one way to improve feed content by fermentation. The objective of this study was to evaluate the effect of bioactifator types on fermented vegetables waste for animal feed.The research was conducted in Nutrition and Animal Feed Laboratory, Universitas Sumatera Utara from May until July 2016. The research was factorial completely randomized design of 3 x 3 with 3 replications. Factor I were bioactivator types which were control, local bioactivator and EM4 (Effective Microorganisms 4). Factor II were time of incubation 3, 5 and 7 days. Parameters were moisture content, ash, Nitrogen Free Extract (NFE) and Total Digestible Nutrient (TDN). The results showed that bioactivator types either local activator or EM4 has highly significantly different effect (P<0,01) on water content, NFE and TDN on vegetables waste while there was no different between local bioactifator with EM4 on all parameters. Time of incubation 7 days has highly significantly different effect (P<0,01) on NFE, TDN and significant different (P<0,05) on water content and ash. In conclusion local bioactifators could improve animal feed by fermenting vegetables waste and it is more available for livestockers.

  11. Automated reference-free detection of motion artifacts in magnetic resonance images.

    PubMed

    Küstner, Thomas; Liebgott, Annika; Mauch, Lukas; Martirosian, Petros; Bamberg, Fabian; Nikolaou, Konstantin; Yang, Bin; Schick, Fritz; Gatidis, Sergios

    2018-04-01

    Our objectives were to provide an automated method for spatially resolved detection and quantification of motion artifacts in MR images of the head and abdomen as well as a quality control of the trained architecture. T1-weighted MR images of the head and the upper abdomen were acquired in 16 healthy volunteers under rest and under motion. Images were divided into overlapping patches of different sizes achieving spatial separation. Using these patches as input data, a convolutional neural network (CNN) was trained to derive probability maps for the presence of motion artifacts. A deep visualization offers a human-interpretable quality control of the trained CNN. Results were visually assessed on probability maps and as classification accuracy on a per-patch, per-slice and per-volunteer basis. On visual assessment, a clear difference of probability maps was observed between data sets with and without motion. The overall accuracy of motion detection on a per-patch/per-volunteer basis reached 97%/100% in the head and 75%/100% in the abdomen, respectively. Automated detection of motion artifacts in MRI is feasible with good accuracy in the head and abdomen. The proposed method provides quantification and localization of artifacts as well as a visualization of the learned content. It may be extended to other anatomic areas and used for quality assurance of MR images.

  12. Cloud-based application for rice moisture content measurement using image processing technique and perceptron neural network

    NASA Astrophysics Data System (ADS)

    Cruz, Febus Reidj G.; Padilla, Dionis A.; Hortinela, Carlos C.; Bucog, Krissel C.; Sarto, Mildred C.; Sia, Nirlu Sebastian A.; Chung, Wen-Yaw

    2017-02-01

    This study is about the determination of moisture content of milled rice using image processing technique and perceptron neural network algorithm. The algorithm involves several inputs that produces an output which is the moisture content of the milled rice. Several types of milled rice are used in this study, namely: Jasmine, Kokuyu, 5-Star, Ifugao, Malagkit, and NFA rice. The captured images are processed using MATLAB R2013a software. There is a USB dongle connected to the router which provided internet connection for online web access. The GizDuino IOT-644 is used for handling the temperature and humidity sensor, and for sending and receiving of data from computer to the cloud storage. The result is compared to the actual moisture content range using a moisture tester for milled rice. Based on results, this study provided accurate data in determining the moisture content of the milled rice.

  13. Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging

    PubMed Central

    Zheng, Weili; Nichol, Helen; Liu, Saifeng; Cheng, Yu-Chung N.; Haacke, E. Mark

    2013-01-01

    Measuring iron content in the brain has important implications for a number of neurodegenerative diseases. Quantitative susceptibility mapping (QSM), derived from magnetic resonance images, has been used to measure total iron content in vivo and in post mortem brain. In this paper, we show how magnetic susceptibility from QSM correlates with total iron content measured by X-ray fluorescence (XRF) imaging and by inductively coupled plasma mass spectrometry (ICPMS). The relationship between susceptibility and ferritin iron was estimated at 1.10 ± 0.08 ppb susceptibility per μg iron/g wet tissue, similar to that of iron in fixed (frozen/thawed) cadaveric brain and previously published data from unfixed brains. We conclude that magnetic susceptibility can provide a direct and reliable quantitative measurement of iron content and that it can be used clinically at least in regions with high iron content. PMID:23591072

  14. Evolution of strain localization in variable-width three-dimensional unsaturated laboratory-scale cut slopes

    USGS Publications Warehouse

    Morse, Michael S.; Lu, Ning; Wayllace, Alexandra; Godt, Jonathan W.

    2017-01-01

    To experimentally validate a recently developed theory for predicting the stability of cut slopes under unsaturated conditions, the authors measured increasing strain localization in unsaturated slope cuts prior to abrupt failure. Cut slope width and moisture content were controlled and varied in a laboratory, and a sliding door that extended the height of the free face of the slope was lowered until the cut slope failed. A particle image velocimetry tool was used to quantify soil displacement in the x-y">x-y (horizontal) and x-z">x-z (vertical) planes, and strain was calculated from the displacement. Areas of maximum strain localization prior to failure were shown to coincide with the location of the eventual failure plane. Experimental failure heights agreed with the recently developed stability theory for unsaturated cut slopes (within 14.3% relative error) for a range of saturation and cut slope widths. A theoretical threshold for sidewall influence on cut slope failures was also proposed to quantify the relationship between normalized sidewall width and critical height. The proposed relationship was consistent with the cut slope experiment results, and is intended for consideration in future geotechnical experiment design. The experimental data of evolution of strain localization presented herein provide a physical basis from which future numerical models of strain localization can be validated.

  15. Deep learning massively accelerates super-resolution localization microscopy.

    PubMed

    Ouyang, Wei; Aristov, Andrey; Lelek, Mickaël; Hao, Xian; Zimmer, Christophe

    2018-06-01

    The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in ∼3 h, yielding an image spanning spatial scales from ∼20 nm to ∼2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.

  16. The regional approach and regional studies method in the process of geography teaching

    NASA Astrophysics Data System (ADS)

    Dermendzhieva, Stela; Doikov, Martin

    2017-03-01

    We define the regional approach as a manner of relations among the global trends of development of the "Society-man-nature" system and the local differentiating level of knowledge. Conditionally, interactions interlace under the influence of the character of Geography as a science, education, approaches, goals and teaching methods. Global, national and local development differentiates in three concentric circles at the level of knowledge. It is determined as a conception of modern, complex and effective mechanism for young people, through which knowledge develops in regional historical and cultural perspective; self-consciousness for socio-economic and cultural integration is formed as a part of the. historical-geographical image of the native land. This way an attitude to the. native land is formed as a connecting construct between patriotism to the motherland and the same in global aspect. The possibility for integration and cooperation of the educative geographical content with all the local historical-geographical, regional, profession orientating, artistic, municipal and district institutions, is outlined. Contemporary geographical education appears to be a powerful and indispensable mechanism for organization of human sciences, while the regional approach and the application of the regional studies method stimulate and motivate the development and realization of optimal capacities for direct connection with the local structures and environments.

  17. Nano-fEM: protein localization using photo-activated localization microscopy and electron microscopy.

    PubMed

    Watanabe, Shigeki; Richards, Jackson; Hollopeter, Gunther; Hobson, Robert J; Davis, Wayne M; Jorgensen, Erik M

    2012-12-03

    Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated (1-3). However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated (4-7). However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot (8-10). We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.

  18. Role of imaging and biopsy to assess local recurrence after definitive treatment for prostate carcinoma (surgery, radiotherapy, cryotherapy, HIFU).

    PubMed

    Martino, Pasquale; Scattoni, Vincenzo; Galosi, Andrea B; Consonni, Paolo; Trombetta, Carlo; Palazzo, Silvano; Maccagnano, Carmen; Liguori, Giovanni; Valentino, Massimo; Battaglia, Michele; Barozzi, Libero

    2011-10-01

    Defining the site of recurrent disease early after definitive treatment for a localized prostate cancer is a critical issue as it may greatly influence the subsequent therapeutic strategy or patient management. A systematic review of the literature was performed by searching Medline from January 1995 up to January 2011. Electronic searches were limited to the English language, and the keywords prostate cancer, radiotherapy [RT], high intensity focused ultrasound [HIFU], cryotherapy [CRIO], transrectal ultrasound [TRUS], magnetic resonance [MRI], PET/TC, and prostate biopsy were used. Despite the fact that diagnosis of a local recurrence is based on PSA values and kinetics, imaging by means of different techniques may be a prerequisite for effective disease management. Unfortunately, prostate cancer local recurrences are very difficult to detect by TRUS and conventional imaging that have shown limited accuracy at least at early stages. On the contrary, functional and molecular imaging such as dynamic contrast-enhanced MRI (DCE-MRI), and diffusion-weighted imaging (DWI), offers the possibility of imaging molecular or cellular processes of individual tumors. Recently, PET/CT, using 11C-choline, 18F-fluorocholine or 11C-acetate has been successfully proposed in detecting local recurrences as well as distant metastases. Nevertheless, in controversial cases, it is necessary to perform a biopsy of the prostatic fossa or a biopsy of the prostate to assess the presence of a local recurrence under guidance of MRI or TRUS findings. It is likely that imaging will be extensively used in the future to detect and localize prostate cancer local recurrences before salvage treatment.

  19. Quantifying the abundance of faint, low-redshift satellite galaxies in the COSMOS survey

    NASA Astrophysics Data System (ADS)

    Xi, ChengYu; Taylor, James E.; Massey, Richard J.; Rhodes, Jason; Koekemoer, Anton; Salvato, Mara

    2018-06-01

    Faint dwarf satellite galaxies are important as tracers of small-scale structure, but remain poorly characterized outside the Local Group, due to the difficulty of identifying them consistently at larger distances. We review a recently proposed method for estimating the average satellite population around a given sample of nearby bright galaxies, using a combination of size and magnitude cuts (to select low-redshift dwarf galaxies preferentially) and clustering measurements (to estimate the fraction of true satellites in the cut sample). We test this method using the high-precision photometric redshift catalog of the COSMOS survey, exploring the effect of specific cuts on the clustering signal. The most effective of the size-magnitude cuts considered recover the clustering signal around low-redshift primaries (z < 0.15) with about two-thirds of the signal and 80% of the signal-to-noise ratio obtainable using the full COSMOS photometric redshifts. These cuts are also fairly efficient, with more than one third of the selected objects being clustered satellites. We conclude that structural selection represents a useful tool in characterizing dwarf populations to fainter magnitudes and/or over larger areas than are feasible with spectroscopic surveys. In reviewing the low-redshift content of the COSMOS field, we also note the existence of several dozen objects that appear resolved or partially resolved in the HST imaging, and are confirmed to be local (at distances of ˜250 Mpc or less) by their photometric or spectroscopic redshifts. This underlines the potential for future space-based surveys to reveal local populations of intrinsically faint galaxies through imaging alone.

  20. Multiresolution image registration in digital x-ray angiography with intensity variation modeling.

    PubMed

    Nejati, Mansour; Pourghassem, Hossein

    2014-02-01

    Digital subtraction angiography (DSA) is a widely used technique for visualization of vessel anatomy in diagnosis and treatment. However, due to unavoidable patient motions, both externally and internally, the subtracted angiography images often suffer from motion artifacts that adversely affect the quality of the medical diagnosis. To cope with this problem and improve the quality of DSA images, registration algorithms are often employed before subtraction. In this paper, a novel elastic registration algorithm for registration of digital X-ray angiography images, particularly for the coronary location, is proposed. This algorithm includes a multiresolution search strategy in which a global transformation is calculated iteratively based on local search in coarse and fine sub-image blocks. The local searches are accomplished in a differential multiscale framework which allows us to capture both large and small scale transformations. The local registration transformation also explicitly accounts for local variations in the image intensities which incorporated into our model as a change of local contrast and brightness. These local transformations are then smoothly interpolated using thin-plate spline interpolation function to obtain the global model. Experimental results with several clinical datasets demonstrate the effectiveness of our algorithm in motion artifact reduction.

  1. Hierarchical content-based image retrieval by dynamic indexing and guided search

    NASA Astrophysics Data System (ADS)

    You, Jane; Cheung, King H.; Liu, James; Guo, Linong

    2003-12-01

    This paper presents a new approach to content-based image retrieval by using dynamic indexing and guided search in a hierarchical structure, and extending data mining and data warehousing techniques. The proposed algorithms include: a wavelet-based scheme for multiple image feature extraction, the extension of a conventional data warehouse and an image database to an image data warehouse for dynamic image indexing, an image data schema for hierarchical image representation and dynamic image indexing, a statistically based feature selection scheme to achieve flexible similarity measures, and a feature component code to facilitate query processing and guide the search for the best matching. A series of case studies are reported, which include a wavelet-based image color hierarchy, classification of satellite images, tropical cyclone pattern recognition, and personal identification using multi-level palmprint and face features.

  2. Content based information retrieval in forensic image databases.

    PubMed

    Geradts, Zeno; Bijhold, Jurrien

    2002-03-01

    This paper gives an overview of the various available image databases and ways of searching these databases on image contents. The developments in research groups of searching in image databases is evaluated and compared with the forensic databases that exist. Forensic image databases of fingerprints, faces, shoeprints, handwriting, cartridge cases, drugs tablets, and tool marks are described. The developments in these fields appear to be valuable for forensic databases, especially that of the framework in MPEG-7, where the searching in image databases is standardized. In the future, the combination of the databases (also DNA-databases) and possibilities to combine these can result in stronger forensic evidence.

  3. 'Strong is the new skinny': A content analysis of #fitspiration images on Instagram.

    PubMed

    Tiggemann, Marika; Zaccardo, Mia

    2018-07-01

    'Fitspiration' is an online trend designed to inspire viewers towards a healthier lifestyle by promoting exercise and healthy food. This study provides a content analysis of fitspiration imagery on the social networking site Instagram. A set of 600 images were coded for body type, activity, objectification and textual elements. Results showed that the majority of images of women contained only one body type: thin and toned. In addition, most images contained objectifying elements. Accordingly, while fitspiration images may be inspirational for viewers, they also contain a number of elements likely to have negative effects on the viewer's body image.

  4. The Implementation of Schools' Policy in the Development of the Local Content Curriculum in Primary Schools in Pacitan, Indonesia

    ERIC Educational Resources Information Center

    Maryono

    2016-01-01

    This study aims to describe the culture and local potential in Pacitan, East Java, as well as the implementation of local content in primary schools in the area, and some factors that support and hinder their implementation. This research is a qualitative case study. There were five primary schools used as samples obtained through purposive…

  5. Myocardial Fat Quantification in Humans: Evaluation by Two-Point Water-Fat Imaging and Localized Proton Spectroscopy

    PubMed Central

    Liu, Chia-Ying; Redheuil, Alban; Ouwerkerk, Ronald; Lima, Joao A. C.; Bluemke, David A.

    2011-01-01

    Proton MR spectroscopy (1H-MRS) has been used for in vivo quantification of intracellular triglycerides within the sarcolemma. The purpose of this study was to assess whether breath-hold dual-echo in- and out-of-phase MRI at 3.0 T can quantify the fat content of the myocardium. Biases, including T1, T2∗, and noise, that confound the calculation of the fat fraction were carefully corrected. Thirty-four of 46 participants had both MRI and MRS data. The fat fractions from MRI showed a strong correlation with fat fractions from MRS (r = 0.78; P < 0.05). The mean myocardial fat fraction for all 34 subjects was 0.7 ± 0.5% (range: 0.11–3%) assessed with MRS and 1.04 ± 0.4% (range: 0.32–2.44%) assessed with in- and out-of-phase MRI (P < 0.05). Scanning times were less than 15 sec for Dixon imaging, plus an additional minute for the acquisition used for calculation, and 15-20 min for MRS. The average postprocessing time for MRS was 3 min and 5 min for MRI including T2∗ measurement. We conclude that the dual echo method provides a rapid means to detect and quantifying myocardial fat content in vivo. Correction/adjustment for field inhomogeneity using three or more echoes seems crucial for the dual echo approach. PMID:20373390

  6. Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue☆

    PubMed Central

    Pemmer, B.; Roschger, A.; Wastl, A.; Hofstaetter, J.G.; Wobrauschek, P.; Simon, R.; Thaler, H.W.; Roschger, P.; Klaushofer, K.; Streli, C.

    2013-01-01

    Trace elements are chemical elements in minute quantities, which are known to accumulate in the bone. Cortical and trabecular bones consist of bone structural units (BSUs) such as osteons and bone packets of different mineral content and are separated by cement lines. Previous studies investigating trace elements in bone lacked resolution and therefore very little is known about the local concentration of zinc (Zn), strontium (Sr) and lead (Pb) in BSUs of human bone. We used synchrotron radiation induced micro X-ray fluorescence analysis (SR μ-XRF) in combination with quantitative backscattered electron imaging (qBEI) to determine the distribution and accumulation of Zn, Sr, and Pb in human bone tissue. Fourteen human bone samples (10 femoral necks and 4 femoral heads) from individuals with osteoporotic femoral neck fractures as well as from healthy individuals were analyzed. Fluorescence intensity maps were matched with BE images and correlated with calcium (Ca) content. We found that Zn and Pb had significantly increased levels in the cement lines of all samples compared to the surrounding mineralized bone matrix. Pb and Sr levels were found to be correlated with the degree of mineralization. Interestingly, Zn intensities had no correlation with Ca levels. We have shown for the first time that there is a differential accumulation of the trace elements Zn, Pb and Sr in BSUs of human bone indicating different mechanisms of accumulation. PMID:23932972

  7. Effects of different cooling treatments on water diffusion, microcirculation, and water content within exercised muscles: evaluation by magnetic resonance T2-weighted and diffusion-weighted imaging.

    PubMed

    Yanagisawa, Osamu; Takahashi, Hideyuki; Fukubayashi, Toru

    2010-09-01

    In this study, we determined the effects of different cooling treatments on exercised muscles. Seven adults underwent four post-exercise treatments (20-min ice-bag application, 60-min gel-pack application at 10 degrees C and 17 degrees C, and non-cooling treatment) with at least 1 week between treatments. Magnetic resonance diffusion- and T2-weighted images were obtained to calculate the apparent diffusion coefficients (apparent diffusion coefficient 1, which reflects intramuscular water diffusion and microcirculation, and apparent diffusion coefficient 2, which is approximately equal to the true diffusion coefficient that excludes as much of the effect of intramuscular microcirculation as possible) and the T2 values (intramuscular water content level) of the ankle dorsiflexors, respectively, before and after ankle dorsiflexion exercise and after post-exercise treatment. The T2 values increased significantly after exercise and returned to pre-exercise values after each treatment; no significant differences were observed among the four post-exercise treatments. Both apparent diffusion coefficients also increased significantly after exercise and decreased significantly after the three cooling treatments; no significant difference was detected among the three cooling treatments. Local cooling suppresses both water diffusion and microcirculation within exercised muscles. Moreover, although the treatment time was longer, adequate cooling effects could be achieved using the gel-pack applications at relatively mild cooling temperatures.

  8. Simulating fiction: individual differences in literature comprehension revealed with FMRI.

    PubMed

    Nijhof, Annabel D; Willems, Roel M

    2015-01-01

    When we read literary fiction, we are transported to fictional places, and we feel and think along with the characters. Despite the importance of narrative in adult life and during development, the neurocognitive mechanisms underlying fiction comprehension are unclear. We used functional magnetic resonance imaging (fMRI) to investigate how individuals differently employ neural networks important for understanding others' beliefs and intentions (mentalizing), and for sensori-motor simulation while listening to excerpts from literary novels. Localizer tasks were used to localize both the cortical motor network and the mentalizing network in participants after they listened to excerpts from literary novels. Results show that participants who had high activation in anterior medial prefrontal cortex (aMPFC; part of the mentalizing network) when listening to mentalizing content of literary fiction, had lower motor cortex activity when they listened to action-related content of the story, and vice versa. This qualifies how people differ in their engagement with fiction: some people are mostly drawn into a story by mentalizing about the thoughts and beliefs of others, whereas others engage in literature by simulating more concrete events such as actions. This study provides on-line neural evidence for the existence of qualitatively different styles of moving into literary worlds, and adds to a growing body of literature showing the potential to study narrative comprehension with neuroimaging methods.

  9. Simulating Fiction: Individual Differences in Literature Comprehension Revealed with fMRI

    PubMed Central

    Nijhof, Annabel D.; Willems, Roel M.

    2015-01-01

    When we read literary fiction, we are transported to fictional places, and we feel and think along with the characters. Despite the importance of narrative in adult life and during development, the neurocognitive mechanisms underlying fiction comprehension are unclear. We used functional magnetic resonance imaging (fMRI) to investigate how individuals differently employ neural networks important for understanding others’ beliefs and intentions (mentalizing), and for sensori-motor simulation while listening to excerpts from literary novels. Localizer tasks were used to localize both the cortical motor network and the mentalizing network in participants after they listened to excerpts from literary novels. Results show that participants who had high activation in anterior medial prefrontal cortex (aMPFC; part of the mentalizing network) when listening to mentalizing content of literary fiction, had lower motor cortex activity when they listened to action-related content of the story, and vice versa. This qualifies how people differ in their engagement with fiction: some people are mostly drawn into a story by mentalizing about the thoughts and beliefs of others, whereas others engage in literature by simulating more concrete events such as actions. This study provides on-line neural evidence for the existence of qualitatively different styles of moving into literary worlds, and adds to a growing body of literature showing the potential to study narrative comprehension with neuroimaging methods. PMID:25671708

  10. Assessment of cardiac fibrosis: a morphometric method comparison for collagen quantification.

    PubMed

    Schipke, Julia; Brandenberger, Christina; Rajces, Alexandra; Manninger, Martin; Alogna, Alessio; Post, Heiner; Mühlfeld, Christian

    2017-04-01

    Fibrotic remodeling of the heart is a frequent condition linked to various diseases and cardiac dysfunction. Collagen quantification is an important objective in cardiac fibrosis research; however, a variety of different histological methods are currently used that may differ in accuracy. Here, frequently applied collagen quantification techniques were compared. A porcine model of early stage heart failure with preserved ejection fraction was used as an example. Semiautomated threshold analyses were imprecise, mainly due to inclusion of noncollagen structures or failure to detect certain collagen deposits. In contrast, collagen assessment by automated image analysis and light microscopy (LM)-stereology was more sensitive. Depending on the quantification method, the amount of estimated collagen varied and influenced intergroup comparisons. PicroSirius Red, Masson's trichrome, and Azan staining protocols yielded similar results, whereas the measured collagen area increased with increasing section thickness. Whereas none of the LM-based methods showed significant differences between the groups, electron microscopy (EM)-stereology revealed a significant collagen increase between cardiomyocytes in the experimental group, but not at other localizations. In conclusion, in contrast to the staining protocol, section thickness and the quantification method being used directly influence the estimated collagen content and thus, possibly, intergroup comparisons. EM in combination with stereology is a precise and sensitive method for collagen quantification if certain prerequisites are considered. For subtle fibrotic alterations, consideration of collagen localization may be necessary. Among LM methods, LM-stereology and automated image analysis are appropriate to quantify fibrotic changes, the latter depending on careful control of algorithm and comparable section staining. NEW & NOTEWORTHY Direct comparison of frequently applied histological fibrosis assessment techniques revealed a distinct relation of measured collagen and utilized quantification method as well as section thickness. Besides electron microscopy-stereology, which was precise and sensitive, light microscopy-stereology and automated image analysis proved to be appropriate for collagen quantification. Moreover, consideration of collagen localization might be important in revealing minor fibrotic changes. Copyright © 2017 the American Physiological Society.

  11. Image Location Estimation by Salient Region Matching.

    PubMed

    Qian, Xueming; Zhao, Yisi; Han, Junwei

    2015-11-01

    Nowadays, locations of images have been widely used in many application scenarios for large geo-tagged image corpora. As to images which are not geographically tagged, we estimate their locations with the help of the large geo-tagged image set by content-based image retrieval. In this paper, we exploit spatial information of useful visual words to improve image location estimation (or content-based image retrieval performances). We proposed to generate visual word groups by mean-shift clustering. To improve the retrieval performance, spatial constraint is utilized to code the relative position of visual words. We proposed to generate a position descriptor for each visual word and build fast indexing structure for visual word groups. Experiments show the effectiveness of our proposed approach.

  12. Image fusion using sparse overcomplete feature dictionaries

    DOEpatents

    Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt

    2015-10-06

    Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.

  13. Functional imaging of SDHx-related head and neck paragangliomas: comparison of 18F-fluorodihydroxyphenylalanine, 18F-fluorodopamine, 18F-fluoro-2-deoxy-D-glucose PET, 123I-metaiodobenzylguanidine scintigraphy, and 111In-pentetreotide scintigraphy.

    PubMed

    King, Kathryn S; Chen, Clara C; Alexopoulos, Dimitrios K; Whatley, Millie A; Reynolds, James C; Patronas, Nicholas; Ling, Alexander; Adams, Karen T; Xekouki, Paraskevi; Lando, Howard; Stratakis, Constantine A; Pacak, Karel

    2011-09-01

    Accurate diagnosis of head and neck paragangliomas is often complicated by biochemical silence and lack of catecholamine-associated symptoms, making accurate anatomical and functional imaging techniques essential to the diagnostic process. Ten patients (seven SDHD, three SDHB), with a total of 26 head and neck paragangliomas, were evaluated with anatomical and functional imaging. This study compares five different functional imaging techniques [(18)F-fluorodihydroxyphenylalanine ((18)F-FDOPA) positron emission tomography (PET), (18)F-fluorodopamine ((18)F-FDA) PET/computed tomography (CT), (18)F-fluoro-2-deoxy-D-glucose ((18)F-FDG) PET/CT, (123)I-metaiodobenzylguanidine ((123)I-MIBG) scintigraphy, and (111)In-pentetreotide scintigraphy] in the localization of head and neck paragangliomas. Prospectively (18)F-FDOPA PET localized 26 of 26 lesions in the 10 patients, CT/magnetic resonance imaging localized 21 of 26 lesions, (18)F-FDG PET/CT localized 20 of 26 lesions, (111)In-pentetreotide scintigraphy localized 16 of 25 lesions, (18)F-FDA PET/CT localized 12 of 26 lesions, and (123)I-MIBG scintigraphy localized eight of 26 lesions. Differences in imaging efficacy related to genetic phenotype, even in the present small sample size, included the negativity of (18)F-FDA PET/CT and (123)I-MIBG scintigraphy in patients with SDHB mutations and the accuracy of (18)F-FDG PET/CT in all patients with SDHD mutations, as compared with the accuracy of (18)F-FDG PET/CT in only one patient with an SDHB mutation. Overall, (18)F-FDOPA PET proved to be the most efficacious functional imaging modality in the localization of SDHx-related head and neck paragangliomas and may be a potential first-line functional imaging agent for the localization of these tumors.

  14. A blur-invariant local feature for motion blurred image matching

    NASA Astrophysics Data System (ADS)

    Tong, Qiang; Aoki, Terumasa

    2017-07-01

    Image matching between a blurred (caused by camera motion, out of focus, etc.) image and a non-blurred image is a critical task for many image/video applications. However, most of the existing local feature schemes fail to achieve this work. This paper presents a blur-invariant descriptor and a novel local feature scheme including the descriptor and the interest point detector based on moment symmetry - the authors' previous work. The descriptor is based on a new concept - center peak moment-like element (CPME) which is robust to blur and boundary effect. Then by constructing CPMEs, the descriptor is also distinctive and suitable for image matching. Experimental results show our scheme outperforms state of the art methods for blurred image matching

  15. Health promotion activities in annual reports of local governments: 'Health for All' targets as a tool for content analysis.

    PubMed

    Andersson, Camilla M; Bjärås, Gunilla E M; Tillgren, Per; Ostenson, Claes-Göran

    2003-09-01

    This article presents an instrument to study the annual reporting of health promotion activities in local governments within the three intervention municipalities of the Stockholm Diabetes Prevention Program (SDPP). The content of health promotion activities are described and the strengths, weaknesses and relevance of the method to health promotion discussed. A content analysis of local governmental reports from 1995-2000 in three Swedish municipalities. A matrix with WHO's 38 'Health for All' (HFA) targets from 1991 was used when coding the local health promotion activities. There are many public health initiatives within the local governmental structure even if they are not always addressed as health promotion. The main focuses in the local governmental reports were environmental issues, unemployment, social care and welfare. Local governmental reports were found to be a useful source of information that could provide knowledge about the priorities and organizational capacities for health promotion within local authorities. Additionally the HFA targets were an effective tool to identify and categorize systematically local health promotion activities in the annual reports of local governments. Identifying local health promotion initiatives by local authorities may ease the development of a health perspective and joint actions within the existing political and administrative structure. This paper provides a complementary method of attaining and structuring information about the local community for developments in health promotion.

  16. Convolution Comparison Pattern: An Efficient Local Image Descriptor for Fingerprint Liveness Detection

    PubMed Central

    Gottschlich, Carsten

    2016-01-01

    We present a new type of local image descriptor which yields binary patterns from small image patches. For the application to fingerprint liveness detection, we achieve rotation invariant image patches by taking the fingerprint segmentation and orientation field into account. We compute the discrete cosine transform (DCT) for these rotation invariant patches and attain binary patterns by comparing pairs of two DCT coefficients. These patterns are summarized into one or more histograms per image. Each histogram comprises the relative frequencies of pattern occurrences. Multiple histograms are concatenated and the resulting feature vector is used for image classification. We name this novel type of descriptor convolution comparison pattern (CCP). Experimental results show the usefulness of the proposed CCP descriptor for fingerprint liveness detection. CCP outperforms other local image descriptors such as LBP, LPQ and WLD on the LivDet 2013 benchmark. The CCP descriptor is a general type of local image descriptor which we expect to prove useful in areas beyond fingerprint liveness detection such as biological and medical image processing, texture recognition, face recognition and iris recognition, liveness detection for face and iris images, and machine vision for surface inspection and material classification. PMID:26844544

  17. Hierarchical Feature Extraction With Local Neural Response for Image Recognition.

    PubMed

    Li, Hong; Wei, Yantao; Li, Luoqing; Chen, C L P

    2013-04-01

    In this paper, a hierarchical feature extraction method is proposed for image recognition. The key idea of the proposed method is to extract an effective feature, called local neural response (LNR), of the input image with nontrivial discrimination and invariance properties by alternating between local coding and maximum pooling operation. The local coding, which is carried out on the locally linear manifold, can extract the salient feature of image patches and leads to a sparse measure matrix on which maximum pooling is carried out. The maximum pooling operation builds the translation invariance into the model. We also show that other invariant properties, such as rotation and scaling, can be induced by the proposed model. In addition, a template selection algorithm is presented to reduce computational complexity and to improve the discrimination ability of the LNR. Experimental results show that our method is robust to local distortion and clutter compared with state-of-the-art algorithms.

  18. RESEARCH ON ROBUST METHODS FOR EXTRACTING AND RECOGNIZING PHOTOGRAPHY MANAGEMENT ITEMS FROM VARIOUS IMAGE DATA Of CONSTRUCTION

    NASA Astrophysics Data System (ADS)

    Kitagawa, Etsuji; Tanaka, Shigenori; Abiko, Satoshi; Wakabayashi, Katsuma; Jiang, Wenyuan

    Recently, an electronic delivery for various documents is carried out by Ministry of Land, Infrastructure, Transport and Tourism in construction fields. One of them is image data of construction photography that must be delivered with information of photography management items such as construction name or type of works, etc. However, there is a problem that a lot of cost is needed to treat contents of these items from characters printed and handwritten on blackboard into these image data. In this research, we develop the system which can treat contents of these items by extracting contents of these items from the image data of construction photography taken in various scenes with preprocessing the image, recognizing characters with OCR and correcting error with natural language process. And we confirm the effectiveness of the system, by experimenting in each function of system and in entire system.

  19. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.

    PubMed

    Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi

    2010-12-15

    A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Self-adaptive relevance feedback based on multilevel image content analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yongying; Zhang, Yujin; Fu, Yu

    2001-01-01

    In current content-based image retrieval systems, it is generally accepted that obtaining high-level image features is a key to improve the querying. Among the related techniques, relevance feedback has become a hot research aspect because it combines the information from the user to refine the querying results. In practice, many methods have been proposed to achieve the goal of relevance feedback. In this paper, a new scheme for relevance feedback is proposed. Unlike previous methods for relevance feedback, our scheme provides a self-adaptive operation. First, based on multi- level image content analysis, the relevant images from the user could be automatically analyzed in different levels and the querying could be modified in terms of different analysis results. Secondly, to make it more convenient to the user, the procedure of relevance feedback could be led with memory or without memory. To test the performance of the proposed method, a practical semantic-based image retrieval system has been established, and the querying results gained by our self-adaptive relevance feedback are given.

  1. Self-adaptive relevance feedback based on multilevel image content analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yongying; Zhang, Yujin; Fu, Yu

    2000-12-01

    In current content-based image retrieval systems, it is generally accepted that obtaining high-level image features is a key to improve the querying. Among the related techniques, relevance feedback has become a hot research aspect because it combines the information from the user to refine the querying results. In practice, many methods have been proposed to achieve the goal of relevance feedback. In this paper, a new scheme for relevance feedback is proposed. Unlike previous methods for relevance feedback, our scheme provides a self-adaptive operation. First, based on multi- level image content analysis, the relevant images from the user could be automatically analyzed in different levels and the querying could be modified in terms of different analysis results. Secondly, to make it more convenient to the user, the procedure of relevance feedback could be led with memory or without memory. To test the performance of the proposed method, a practical semantic-based image retrieval system has been established, and the querying results gained by our self-adaptive relevance feedback are given.

  2. Image Recommendation Algorithm Using Feature-Based Collaborative Filtering

    NASA Astrophysics Data System (ADS)

    Kim, Deok-Hwan

    As the multimedia contents market continues its rapid expansion, the amount of image contents used in mobile phone services, digital libraries, and catalog service is increasing remarkably. In spite of this rapid growth, users experience high levels of frustration when searching for the desired image. Even though new images are profitable to the service providers, traditional collaborative filtering methods cannot recommend them. To solve this problem, in this paper, we propose feature-based collaborative filtering (FBCF) method to reflect the user's most recent preference by representing his purchase sequence in the visual feature space. The proposed approach represents the images that have been purchased in the past as the feature clusters in the multi-dimensional feature space and then selects neighbors by using an inter-cluster distance function between their feature clusters. Various experiments using real image data demonstrate that the proposed approach provides a higher quality recommendation and better performance than do typical collaborative filtering and content-based filtering techniques.

  3. High-resolution digital brain atlases: a Hubble telescope for the brain.

    PubMed

    Jones, Edward G; Stone, James M; Karten, Harvey J

    2011-05-01

    We describe implementation of a method for digitizing at microscopic resolution brain tissue sections containing normal and experimental data and for making the content readily accessible online. Web-accessible brain atlases and virtual microscopes for online examination can be developed using existing computer and internet technologies. Resulting databases, made up of hierarchically organized, multiresolution images, enable rapid, seamless navigation through the vast image datasets generated by high-resolution scanning. Tools for visualization and annotation of virtual microscope slides enable remote and universal data sharing. Interactive visualization of a complete series of brain sections digitized at subneuronal levels of resolution offers fine grain and large-scale localization and quantification of many aspects of neural organization and structure. The method is straightforward and replicable; it can increase accessibility and facilitate sharing of neuroanatomical data. It provides an opportunity for capturing and preserving irreplaceable, archival neurohistological collections and making them available to all scientists in perpetuity, if resources could be obtained from hitherto uninterested agencies of scientific support. © 2011 New York Academy of Sciences.

  4. Axonal Transport and Morphology: How Myelination gets Nerves into Shape

    NASA Astrophysics Data System (ADS)

    Jung, Peter; Zhao, Peng; Monsma, Paula; Brown, Tony

    2011-03-01

    The local caliber of mature axons is largely determined by neurofilament (NF) content. The axoskeleton, mainly consisting of NFs, however, is dynamic. NFs are assembled in the cell body and are transported by molecular motors on microtubule tracks along the axon at a slow rate of fractions of mm per day. We combine live cell fluorescent imaging techniques to access NF transport in myelinated and non-myelinated segments of axons with computational modeling of the active NF flow to show that a), myelination locally slows NF transport rates by regulating duty ratios and b), that the predicted increase in axon caliber agrees well with experiments. This study, for the first time, links NF kinetics directly to axonal morphology, providing a novel conceptual framework for the physical understanding of processes leading to the formation of axonal structures such as the ``Nodes of Ranvier'' as well as abnormal axonal swellings associated with neurodegenerative diseases like Amyotrophic lateral sclerosis (ALS). NSF grants # IOS-0818412(PJ) and IOS-0818653 (AB).

  5. Nanoscopic imaging of thick heterogeneous soft-matter structures in aqueous solution

    PubMed Central

    Bartsch, Tobias F.; Kochanczyk, Martin D.; Lissek, Emanuel N.; Lange, Janina R.; Florin, Ernst-Ludwig

    2016-01-01

    Precise nanometre-scale imaging of soft structures at room temperature poses a major challenge to any type of microscopy because fast thermal fluctuations lead to significant motion blur if the position of the structure is measured with insufficient bandwidth. Moreover, precise localization is also affected by optical heterogeneities, which lead to deformations in the imaged local geometry, the severity depending on the sample and its thickness. Here we introduce quantitative thermal noise imaging, a three-dimensional scanning probe technique, as a method for imaging soft, optically heterogeneous and porous matter with submicroscopic spatial resolution in aqueous solution. By imaging both individual microtubules and collagen fibrils in a network, we demonstrate that structures can be localized with a precision of ∼10 nm and that their local dynamics can be quantified with 50 kHz bandwidth and subnanometre amplitudes. Furthermore, we show how image distortions caused by optically dense structures can be corrected for. PMID:27596919

  6. Digital image registration method based upon binary boundary maps

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.; Andrus, J. F.; Campbell, C. W.

    1974-01-01

    A relatively fast method is presented for matching or registering the digital data of imagery from the same ground scene acquired at different times, or from different multispectral images, sensors, or both. It is assumed that the digital images can be registed by using translations and rotations only, that the images are of the same scale, and that little or no distortion exists between images. It is further assumed that by working with several local areas of the image, the rotational effects in the local areas can be neglected. Thus, by treating the misalignments of local areas as translations, it is possible to determine rotational and translational misalignments for a larger portion of the image containing the local areas. This procedure of determining the misalignment and then registering the data according to the misalignment can be repeated until the desired degree of registration is achieved. The method to be presented is based upon the use of binary boundary maps produced from the raw digital imagery rather than the raw digital data.

  7. Simultaneously Discovering and Localizing Common Objects in Wild Images.

    PubMed

    Wang, Zhenzhen; Yuan, Junsong

    2018-09-01

    Motivated by the recent success of supervised and weakly supervised common object discovery, in this paper, we move forward one step further to tackle common object discovery in a fully unsupervised way. Generally, object co-localization aims at simultaneously localizing objects of the same class across a group of images. Traditional object localization/detection usually trains specific object detectors which require bounding box annotations of object instances, or at least image-level labels to indicate the presence/absence of objects in an image. Given a collection of images without any annotations, our proposed fully unsupervised method is to simultaneously discover images that contain common objects and also localize common objects in corresponding images. Without requiring to know the total number of common objects, we formulate this unsupervised object discovery as a sub-graph mining problem from a weighted graph of object proposals, where nodes correspond to object proposals, and edges represent the similarities between neighbouring proposals. The positive images and common objects are jointly discovered by finding sub-graphs of strongly connected nodes, with each sub-graph capturing one object pattern. The optimization problem can be efficiently solved by our proposed maximal-flow-based algorithm. Instead of assuming that each image contains only one common object, our proposed solution can better address wild images where each image may contain multiple common objects or even no common object. Moreover, our proposed method can be easily tailored to the task of image retrieval in which the nodes correspond to the similarity between query and reference images. Extensive experiments on PASCAL VOC 2007 and Object Discovery data sets demonstrate that even without any supervision, our approach can discover/localize common objects of various classes in the presence of scale, view point, appearance variation, and partial occlusions. We also conduct broad experiments on image retrieval benchmarks, Holidays and Oxford5k data sets, to show that our proposed method, which considers both the similarity between query and reference images and also similarities among reference images, can help to improve the retrieval results significantly.

  8. A Picture is Worth 1,000 Words. The Use of Clinical Images in Electronic Medical Records.

    PubMed

    Ai, Angela C; Maloney, Francine L; Hickman, Thu-Trang; Wilcox, Allison R; Ramelson, Harley; Wright, Adam

    2017-07-12

    To understand how clinicians utilize image uploading tools in a home grown electronic health records (EHR) system. A content analysis of patient notes containing non-radiological images from the EHR was conducted. Images from 4,000 random notes from July 1, 2009 - June 30, 2010 were reviewed and manually coded. Codes were assigned to four properties of the image: (1) image type, (2) role of image uploader (e.g. MD, NP, PA, RN), (3) practice type (e.g. internal medicine, dermatology, ophthalmology), and (4) image subject. 3,815 images from image-containing notes stored in the EHR were reviewed and manually coded. Of those images, 32.8% were clinical and 66.2% were non-clinical. The most common types of the clinical images were photographs (38.0%), diagrams (19.1%), and scanned documents (14.4%). MDs uploaded 67.9% of clinical images, followed by RNs with 10.2%, and genetic counselors with 6.8%. Dermatology (34.9%), ophthalmology (16.1%), and general surgery (10.8%) uploaded the most clinical images. The content of clinical images referencing body parts varied, with 49.8% of those images focusing on the head and neck region, 15.3% focusing on the thorax, and 13.8% focusing on the lower extremities. The diversity of image types, content, and uploaders within a home grown EHR system reflected the versatility and importance of the image uploading tool. Understanding how users utilize image uploading tools in a clinical setting highlights important considerations for designing better EHR tools and the importance of interoperability between EHR systems and other health technology.

  9. Image-Based Localization for Indoor Environment Using Mobile Phone

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wang, H.; Zhan, K.; Zhao, J.; Gui, P.; Feng, T.

    2015-05-01

    Real-time indoor localization based on supporting infrastructures like wireless devices and QR codes are usually costly and labor intensive to implement. In this study, we explored a cheap alternative approach based on images for indoor localization. A user can localize him/herself by just shooting a photo of the surrounding indoor environment using the mobile phone. No any other equipment is required. This is achieved by employing image-matching and searching techniques with a dataset of pre-captured indoor images. In the beginning, a database of structured images of the indoor environment is constructed by using image matching and the bundle adjustment algorithm. Then each image's relative pose (its position and orientation) is estimated and the semantic locations of images are tagged. A user's location can then be determined by comparing a photo taken by the mobile phone to the database. This is done by combining quick image searching, matching and the relative orientation. This study also try to explore image acquisition plans and the processing capacity of off-the-shell mobile phones. During the whole pipeline, a collection of indoor images with both rich and poor textures are examined. Several feature detectors are used and compared. Pre-processing of complex indoor photo is also implemented on the mobile phone. The preliminary experimental results prove the feasibility of this method. In the future, we are trying to raise the efficiency of matching between indoor images and explore the fast 4G wireless communication to ensure the speed and accuracy of the localization based on a client-server framework.

  10. An Unsupervised kNN Method to Systematically Detect Changes in Protein Localization in High-Throughput Microscopy Images.

    PubMed

    Lu, Alex Xijie; Moses, Alan M

    2016-01-01

    Despite the importance of characterizing genes that exhibit subcellular localization changes between conditions in proteome-wide imaging experiments, many recent studies still rely upon manual evaluation to assess the results of high-throughput imaging experiments. We describe and demonstrate an unsupervised k-nearest neighbours method for the detection of localization changes. Compared to previous classification-based supervised change detection methods, our method is much simpler and faster, and operates directly on the feature space to overcome limitations in needing to manually curate training sets that may not generalize well between screens. In addition, the output of our method is flexible in its utility, generating both a quantitatively ranked list of localization changes that permit user-defined cut-offs, and a vector for each gene describing feature-wise direction and magnitude of localization changes. We demonstrate that our method is effective at the detection of localization changes using the Δrpd3 perturbation in Saccharomyces cerevisiae, where we capture 71.4% of previously known changes within the top 10% of ranked genes, and find at least four new localization changes within the top 1% of ranked genes. The results of our analysis indicate that simple unsupervised methods may be able to identify localization changes in images without laborious manual image labelling steps.

  11. Automatic Matching of Large Scale Images and Terrestrial LIDAR Based on App Synergy of Mobile Phone

    NASA Astrophysics Data System (ADS)

    Xia, G.; Hu, C.

    2018-04-01

    The digitalization of Cultural Heritage based on ground laser scanning technology has been widely applied. High-precision scanning and high-resolution photography of cultural relics are the main methods of data acquisition. The reconstruction with the complete point cloud and high-resolution image requires the matching of image and point cloud, the acquisition of the homonym feature points, the data registration, etc. However, the one-to-one correspondence between image and corresponding point cloud depends on inefficient manual search. The effective classify and management of a large number of image and the matching of large image and corresponding point cloud will be the focus of the research. In this paper, we propose automatic matching of large scale images and terrestrial LiDAR based on APP synergy of mobile phone. Firstly, we develop an APP based on Android, take pictures and record related information of classification. Secondly, all the images are automatically grouped with the recorded information. Thirdly, the matching algorithm is used to match the global and local image. According to the one-to-one correspondence between the global image and the point cloud reflection intensity image, the automatic matching of the image and its corresponding laser radar point cloud is realized. Finally, the mapping relationship between global image, local image and intensity image is established according to homonym feature point. So we can establish the data structure of the global image, the local image in the global image, the local image corresponding point cloud, and carry on the visualization management and query of image.

  12. Ultra-Rapid Categorization of Fourier-Spectrum Equalized Natural Images: Macaques and Humans Perform Similarly

    PubMed Central

    Girard, Pascal; Koenig-Robert, Roger

    2011-01-01

    Background Comparative studies of cognitive processes find similarities between humans and apes but also monkeys. Even high-level processes, like the ability to categorize classes of object from any natural scene under ultra-rapid time constraints, seem to be present in rhesus macaque monkeys (despite a smaller brain and the lack of language and a cultural background). An interesting and still open question concerns the degree to which the same images are treated with the same efficacy by humans and monkeys when a low level cue, the spatial frequency content, is controlled. Methodology/Principal Findings We used a set of natural images equalized in Fourier spectrum and asked whether it is still possible to categorize them as containing an animal and at what speed. One rhesus macaque monkey performed a forced-choice saccadic task with a good accuracy (67.5% and 76% for new and familiar images respectively) although performance was lower than with non-equalized images. Importantly, the minimum reaction time was still very fast (100 ms). We compared the performances of human subjects with the same setup and the same set of (new) images. Overall mean performance of humans was also lower than with original images (64% correct) but the minimum reaction time was still short (140 ms). Conclusion Performances on individual images (% correct but not reaction times) for both humans and the monkey were significantly correlated suggesting that both species use similar features to perform the task. A similar advantage for full-face images was seen for both species. The results also suggest that local low spatial frequency information could be important, a finding that fits the theory that fast categorization relies on a rapid feedforward magnocellular signal. PMID:21326600

  13. Imaging and characterizing cells using tomography

    PubMed Central

    Do, Myan; Isaacson, Samuel A.; McDermott, Gerry; Le Gros, Mark A.; Larabell, Carolyn A.

    2015-01-01

    We can learn much about cell function by imaging and quantifying sub-cellular structures, especially if this is done non-destructively without altering said structures. Soft x-ray tomography (SXT) is a high-resolution imaging technique for visualizing cells and their interior structure in 3D. A tomogram of the cell, reconstructed from a series of 2D projection images, can be easily segmented and analyzed. SXT has a very high specimen throughput compared to other high-resolution structure imaging modalities; for example, tomographic data for reconstructing an entire eukaryotic cell is acquired in a matter of minutes. SXT visualizes cells without the need for chemical fixation, dehydration, or staining of the specimen. As a result, the SXT reconstructions are close representations of cells in their native state. SXT is applicable to most cell types. The deep penetration of soft x-rays allows cells, even mammalian cells, to be imaged without being sectioned. Image contrast in SXT is generated by the differential attenuation soft x-ray illumination as it passes through the specimen. Accordingly, each voxel in the tomographic reconstruction has a measured linear absorption coefficient (LAC) value. LAC values are quantitative and give rise to each sub-cellular component having a characteristic LAC profile, allowing organelles to be identified and segmented from the milieu of other cell contents. In this chapter, we describe the fundamentals of SXT imaging and how this technique can answer real world questions in the study of the nucleus. We also describe the development of correlative methods for the localization of specific molecules in a SXT reconstruction. The combination of fluorescence and SXT data acquired from the same specimen produces composite 3D images, rich with detailed information on the inner workings of cells. PMID:25602704

  14. Intelligent content fitting for digital publishing

    NASA Astrophysics Data System (ADS)

    Lin, Xiaofan

    2006-02-01

    One recurring problem in Variable Data Printing (VDP) is that the existing contents cannot satisfy the VDP task as-is. So there is a strong need for content fitting technologies to support high-value digital publishing applications, in which text and image are the two major types of contents. This paper presents meta-Autocrop framework for image fitting and TextFlex technology for text fitting. The meta-Autocrop framework supports multiple modes: fixed aspect-ratio mode, advice mode, and verification mode. The TextFlex technology supports non-rectangular text wrapping and paragraph-based line breaking. We also demonstrate how these content fitting technologies are utilized in the overall automated composition and layout system.

  15. Enhanced simulator software for image validation and interpretation for multimodal localization super-resolution fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Erdélyi, Miklós; Sinkó, József; Gajdos, Tamás.; Novák, Tibor

    2017-02-01

    Optical super-resolution techniques such as single molecule localization have become one of the most dynamically developed areas in optical microscopy. These techniques routinely provide images of fixed cells or tissues with sub-diffraction spatial resolution, and can even be applied for live cell imaging under appropriate circumstances. Localization techniques are based on the precise fitting of the point spread functions (PSF) to the measured images of stochastically excited, identical fluorescent molecules. These techniques require controlling the rate between the on, off and the bleached states, keeping the number of active fluorescent molecules at an optimum value, so their diffraction limited images can be detected separately both spatially and temporally. Because of the numerous (and sometimes unknown) parameters, the imaging system can only be handled stochastically. For example, the rotation of the dye molecules obscures the polarization dependent PSF shape, and only an averaged distribution - typically estimated by a Gaussian function - is observed. TestSTORM software was developed to generate image stacks for traditional localization microscopes, where localization meant the precise determination of the spatial position of the molecules. However, additional optical properties (polarization, spectra, etc.) of the emitted photons can be used for further monitoring the chemical and physical properties (viscosity, pH, etc.) of the local environment. The image stack generating program was upgraded by several new features, such as: multicolour, polarization dependent PSF, built-in 3D visualization, structured background. These features make the program an ideal tool for optimizing the imaging and sample preparation conditions.

  16. Graphic imagery is not sufficient for increased attention to cigarette warnings: the role of text captions.

    PubMed

    Brown, Kyle G; Reidy, John G; Weighall, Anna R; Arden, Madelynne A

    2013-04-01

    The present study aims to assess the extent to which attention to UK cigarette warnings is attributable to the graphic nature of the content. A visual dot probe task was utilised, with the warnings serving as critical stimuli that were manipulated for the presence of graphic versus neutral image content, and the accompanying text caption. This mixed design yielded image content (graphic versus neutrally-matched images) and presence (versus absence) of text caption as within subjects variables and smoking status as a between-participants variable. The experiment took place within the laboratories of a UK university. Eighty-six psychology undergraduates (51% smokers, 69% female), predominantly of Caucasian ethnicity took part. Reaction times towards probes replacing graphic images relative to probes replacing neutral images were utilised to create an index of attentional bias. Bias scores (M = 10.20 ± 2.56) highlighted that the graphic image content of the warnings elicited attentional biases (relative to neutral images) for smokers. This only occurred in the presence of an accompanying text caption [t (43) = 3.950, P < 0.001] as opposed to when no caption was present [t (43) = 0.029, P = 0.977]. Non-smokers showed no biases in both instances. Graphic imagery on cigarette packets increases attentional capture, but only when accompanied by a text message about health risks. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  17. High-mass-resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress.

    PubMed

    Sarabia, Lenin D; Boughton, Berin A; Rupasinghe, Thusitha; van de Meene, Allison M L; Callahan, Damien L; Hill, Camilla B; Roessner, Ute

    2018-01-01

    Mass spectrometry imaging (MSI) is a technology that enables the visualization of the spatial distribution of hundreds to thousands of metabolites in the same tissue section simultaneously. Roots are below-ground plant organs that anchor plants to the soil, take up water and nutrients, and sense and respond to external stresses. Physiological responses to salinity are multifaceted and have predominantly been studied using whole plant tissues that cannot resolve plant salinity responses spatially. This study aimed to use a comprehensive approach to study the spatial distribution and profiles of metabolites, and to quantify the changes in the elemental content in young developing barley seminal roots before and after salinity stress. Here, we used a combination of liquid chromatography-mass spectrometry (LC-MS), inductively coupled plasma mass spectrometry (ICP-MS), and matrix-assisted laser desorption/ionization (MALDI-MSI) platforms to profile and analyze the spatial distribution of ions, metabolites and lipids across three anatomically different barley root zones before and after a short-term salinity stress (150 mM NaCl). We localized, visualized and discriminated compounds in fine detail along longitudinal root sections and compared ion, metabolite, and lipid composition before and after salt stress. Large changes in the phosphatidylcholine (PC) profiles were observed as a response to salt stress with PC 34:n showing an overall reduction in salt treated roots. ICP-MS analysis quantified changes in the elemental content of roots with increases of Na + and decreases of K + content. Our results established the suitability of combining three mass spectrometry platforms to analyze and map ionic and metabolic responses to salinity stress in plant roots and to elucidate tolerance mechanisms in response to abiotic stress, such as salinity stress.

  18. A content analysis of visual cancer information: prevalence and use of photographs and illustrations in printed health materials.

    PubMed

    King, Andy J

    2015-01-01

    Researchers and practitioners have an increasing interest in visual components of health information and health communication messages. This study contributes to this evolving body of research by providing an account of the visual images and information featured in printed cancer communication materials. Using content analysis, 147 pamphlets and 858 images were examined to determine how frequently images are used in printed materials, what types of images are used, what information is conveyed visually, and whether or not current recommendations for the inclusion of visual content were being followed. Although visual messages were found to be common in printed health materials, existing recommendations about the inclusion of visual content were only partially followed. Results are discussed in terms of how relevant theoretical frameworks in the areas of behavior change and visual persuasion seem to be used in these materials, as well as how more theory-oriented research is necessary in visual messaging efforts.

  19. A spatiotemporal decomposition strategy for personal home video management

    NASA Astrophysics Data System (ADS)

    Yi, Haoran; Kozintsev, Igor; Polito, Marzia; Wu, Yi; Bouguet, Jean-Yves; Nefian, Ara; Dulong, Carole

    2007-01-01

    With the advent and proliferation of low cost and high performance digital video recorder devices, an increasing number of personal home video clips are recorded and stored by the consumers. Compared to image data, video data is lager in size and richer in multimedia content. Efficient access to video content is expected to be more challenging than image mining. Previously, we have developed a content-based image retrieval system and the benchmarking framework for personal images. In this paper, we extend our personal image retrieval system to include personal home video clips. A possible initial solution to video mining is to represent video clips by a set of key frames extracted from them thus converting the problem into an image search one. Here we report that a careful selection of key frames may improve the retrieval accuracy. However, because video also has temporal dimension, its key frame representation is inherently limited. The use of temporal information can give us better representation for video content at semantic object and concept levels than image-only based representation. In this paper we propose a bottom-up framework to combine interest point tracking, image segmentation and motion-shape factorization to decompose the video into spatiotemporal regions. We show an example application of activity concept detection using the trajectories extracted from the spatio-temporal regions. The proposed approach shows good potential for concise representation and indexing of objects and their motion in real-life consumer video.

  20. Video and image retrieval beyond the cognitive level: the needs and possibilities

    NASA Astrophysics Data System (ADS)

    Hanjalic, Alan

    2000-12-01

    The worldwide research efforts in the are of image and video retrieval have concentrated so far on increasing the efficiency and reliability of extracting the elements of image and video semantics and so on improving the search and retrieval performance at the cognitive level of content abstraction. At this abstraction level, the user is searching for 'factual' or 'objective' content such as image showing a panorama of San Francisco, an outdoor or an indoor image, a broadcast news report on a defined topic, a movie dialog between the actors A and B or the parts of a basketball game showing fast breaks, steals and scores. These efforts, however, do not address the retrieval applications at the so-called affective level of content abstraction where the 'ground truth' is not strictly defined. Such applications are, for instance, those where subjectivity of the user plays the major role, e.g. the task of retrieving all images that the user 'likes most', and those that are based on 'recognizing emotions' in audiovisual data. Typical examples are searching for all images that 'radiate happiness', identifying all 'sad' movie fragments and looking for the 'romantic landscapes', 'sentimental' movie segments, 'movie highlights' or 'most exciting' moments of a sport event. This paper discusses the needs and possibilities for widening the current scope of research in the area of image and video search and retrieval in order to enable applications at the affective level of content abstraction.

  1. Video and image retrieval beyond the cognitive level: the needs and possibilities

    NASA Astrophysics Data System (ADS)

    Hanjalic, Alan

    2001-01-01

    The worldwide research efforts in the are of image and video retrieval have concentrated so far on increasing the efficiency and reliability of extracting the elements of image and video semantics and so on improving the search and retrieval performance at the cognitive level of content abstraction. At this abstraction level, the user is searching for 'factual' or 'objective' content such as image showing a panorama of San Francisco, an outdoor or an indoor image, a broadcast news report on a defined topic, a movie dialog between the actors A and B or the parts of a basketball game showing fast breaks, steals and scores. These efforts, however, do not address the retrieval applications at the so-called affective level of content abstraction where the 'ground truth' is not strictly defined. Such applications are, for instance, those where subjectivity of the user plays the major role, e.g. the task of retrieving all images that the user 'likes most', and those that are based on 'recognizing emotions' in audiovisual data. Typical examples are searching for all images that 'radiate happiness', identifying all 'sad' movie fragments and looking for the 'romantic landscapes', 'sentimental' movie segments, 'movie highlights' or 'most exciting' moments of a sport event. This paper discusses the needs and possibilities for widening the current scope of research in the area of image and video search and retrieval in order to enable applications at the affective level of content abstraction.

  2. SU-D-BRA-04: Computerized Framework for Marker-Less Localization of Anatomical Feature Points in Range Images Based On Differential Geometry Features for Image-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufi, M; Arimura, H; Toyofuku, F

    Purpose: To propose a computerized framework for localization of anatomical feature points on the patient surface in infrared-ray based range images by using differential geometry (curvature) features. Methods: The general concept was to reconstruct the patient surface by using a mathematical modeling technique for the computation of differential geometry features that characterize the local shapes of the patient surfaces. A region of interest (ROI) was firstly extracted based on a template matching technique applied on amplitude (grayscale) images. The extracted ROI was preprocessed for reducing temporal and spatial noises by using Kalman and bilateral filters, respectively. Next, a smooth patientmore » surface was reconstructed by using a non-uniform rational basis spline (NURBS) model. Finally, differential geometry features, i.e. the shape index and curvedness features were computed for localizing the anatomical feature points. The proposed framework was trained for optimizing shape index and curvedness thresholds and tested on range images of an anthropomorphic head phantom. The range images were acquired by an infrared ray-based time-of-flight (TOF) camera. The localization accuracy was evaluated by measuring the mean of minimum Euclidean distances (MMED) between reference (ground truth) points and the feature points localized by the proposed framework. The evaluation was performed for points localized on convex regions (e.g. apex of nose) and concave regions (e.g. nasofacial sulcus). Results: The proposed framework has localized anatomical feature points on convex and concave anatomical landmarks with MMEDs of 1.91±0.50 mm and 3.70±0.92 mm, respectively. A statistically significant difference was obtained between the feature points on the convex and concave regions (P<0.001). Conclusion: Our study has shown the feasibility of differential geometry features for localization of anatomical feature points on the patient surface in range images. The proposed framework might be useful for tasks involving feature-based image registration in range-image guided radiation therapy.« less

  3. Preferred Visuographic Images to Support Reading by People with Chronic Aphasia.

    PubMed

    Knollman-Porter, Kelly; Brown, Jessica; Hux, Karen; Wallace, Sarah E; Uchtman, Elizabeth

    2016-08-01

    Written materials used both clinically and in everyday reading tasks can contain visuographic images that vary in content and attributes. People with aphasia may benefit from visuographic images to support reading comprehension. Understanding the image type and feature preferences of individuals with aphasia is an important first step when developing guidelines for selecting reading materials that motivate and support reading comprehension. The study purposes were to determine the preferences and explore the perceptions of and opinions provided by adults with chronic aphasia regarding various image features and types on facilitating the reading process. Six adults with chronic aphasia ranked visuographic materials varying in context, engagement, and content regarding their perceived degree of helpfulness in comprehending written materials. Then, they participated in semi-structured interviews that allowed them to elaborate on their choices and convey opinions about potential benefits and detriments associated with preferred and non-preferred materials. All participants preferred high-context photographs rather than iconic images or portraits as potential supports to facilitate reading activities. Differences in opinions emerged across participants regarding the amount of preferred content included in high context images.

  4. Color Based Bags-of-Emotions

    NASA Astrophysics Data System (ADS)

    Solli, Martin; Lenz, Reiner

    In this paper we describe how to include high level semantic information, such as aesthetics and emotions, into Content Based Image Retrieval. We present a color-based emotion-related image descriptor that can be used for describing the emotional content of images. The color emotion metric used is derived from psychophysical experiments and based on three variables: activity, weight and heat. It was originally designed for single-colors, but recent research has shown that the same emotion estimates can be applied in the retrieval of multi-colored images. Here we describe a new approach, based on the assumption that perceived color emotions in images are mainly affected by homogenous regions, defined by the emotion metric, and transitions between regions. RGB coordinates are converted to emotion coordinates, and for each emotion channel, statistical measurements of gradient magnitudes within a stack of low-pass filtered images are used for finding interest points corresponding to homogeneous regions and transitions between regions. Emotion characteristics are derived for patches surrounding each interest point, and saved in a bag-of-emotions, that, for instance, can be used for retrieving images based on emotional content.

  5. Adaptive Localization of Focus Point Regions via Random Patch Probabilistic Density from Whole-Slide, Ki-67-Stained Brain Tumor Tissue

    PubMed Central

    Alomari, Yazan M.; MdZin, Reena Rahayu

    2015-01-01

    Analysis of whole-slide tissue for digital pathology images has been clinically approved to provide a second opinion to pathologists. Localization of focus points from Ki-67-stained histopathology whole-slide tissue microscopic images is considered the first step in the process of proliferation rate estimation. Pathologists use eye pooling or eagle-view techniques to localize the highly stained cell-concentrated regions from the whole slide under microscope, which is called focus-point regions. This procedure leads to a high variety of interpersonal observations and time consuming, tedious work and causes inaccurate findings. The localization of focus-point regions can be addressed as a clustering problem. This paper aims to automate the localization of focus-point regions from whole-slide images using the random patch probabilistic density method. Unlike other clustering methods, random patch probabilistic density method can adaptively localize focus-point regions without predetermining the number of clusters. The proposed method was compared with the k-means and fuzzy c-means clustering methods. Our proposed method achieves a good performance, when the results were evaluated by three expert pathologists. The proposed method achieves an average false-positive rate of 0.84% for the focus-point region localization error. Moreover, regarding RPPD used to localize tissue from whole-slide images, 228 whole-slide images have been tested; 97.3% localization accuracy was achieved. PMID:25793010

  6. Medical image classification using spatial adjacent histogram based on adaptive local binary patterns.

    PubMed

    Liu, Dong; Wang, Shengsheng; Huang, Dezhi; Deng, Gang; Zeng, Fantao; Chen, Huiling

    2016-05-01

    Medical image recognition is an important task in both computer vision and computational biology. In the field of medical image classification, representing an image based on local binary patterns (LBP) descriptor has become popular. However, most existing LBP-based methods encode the binary patterns in a fixed neighborhood radius and ignore the spatial relationships among local patterns. The ignoring of the spatial relationships in the LBP will cause a poor performance in the process of capturing discriminative features for complex samples, such as medical images obtained by microscope. To address this problem, in this paper we propose a novel method to improve local binary patterns by assigning an adaptive neighborhood radius for each pixel. Based on these adaptive local binary patterns, we further propose a spatial adjacent histogram strategy to encode the micro-structures for image representation. An extensive set of evaluations are performed on four medical datasets which show that the proposed method significantly improves standard LBP and compares favorably with several other prevailing approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. MediaNet: a multimedia information network for knowledge representation

    NASA Astrophysics Data System (ADS)

    Benitez, Ana B.; Smith, John R.; Chang, Shih-Fu

    2000-10-01

    In this paper, we present MediaNet, which is a knowledge representation framework that uses multimedia content for representing semantic and perceptual information. The main components of MediaNet include conceptual entities, which correspond to real world objects, and relationships among concepts. MediaNet allows the concepts and relationships to be defined or exemplified by multimedia content such as images, video, audio, graphics, and text. MediaNet models the traditional relationship types such as generalization and aggregation but adds additional functionality by modeling perceptual relationships based on feature similarity. For example, MediaNet allows a concept such as car to be defined as a type of a transportation vehicle, but which is further defined and illustrated through example images, videos and sounds of cars. In constructing the MediaNet framework, we have built on the basic principles of semiotics and semantic networks in addition to utilizing the audio-visual content description framework being developed as part of the MPEG-7 multimedia content description standard. By integrating both conceptual and perceptual representations of knowledge, MediaNet has potential to impact a broad range of applications that deal with multimedia content at the semantic and perceptual levels. In particular, we have found that MediaNet can improve the performance of multimedia retrieval applications by using query expansion, refinement and translation across multiple content modalities. In this paper, we report on experiments that use MediaNet in searching for images. We construct the MediaNet knowledge base using both WordNet and an image network built from multiple example images and extracted color and texture descriptors. Initial experimental results demonstrate improved retrieval effectiveness using MediaNet in a content-based retrieval system.

  8. Exponential decay of GC content detected by strand-symmetric substitution rates influences the evolution of isochore structure.

    PubMed

    Karro, J E; Peifer, M; Hardison, R C; Kollmann, M; von Grünberg, H H

    2008-02-01

    The distribution of guanine and cytosine nucleotides throughout a genome, or the GC content, is associated with numerous features in mammals; understanding the pattern and evolutionary history of GC content is crucial to our efforts to annotate the genome. The local GC content is decaying toward an equilibrium point, but the causes and rates of this decay, as well as the value of the equilibrium point, remain topics of debate. By comparing the results of 2 methods for estimating local substitution rates, we identify 620 Mb of the human genome in which the rates of the various types of nucleotide substitutions are the same on both strands. These strand-symmetric regions show an exponential decay of local GC content at a pace determined by local substitution rates. DNA segments subjected to higher rates experience disproportionately accelerated decay and are AT rich, whereas segments subjected to lower rates decay more slowly and are GC rich. Although we are unable to draw any conclusions about causal factors, the results support the hypothesis proposed by Khelifi A, Meunier J, Duret L, and Mouchiroud D (2006. GC content evolution of the human and mouse genomes: insights from the study of processed pseudogenes in regions of different recombination rates. J Mol Evol. 62:745-752.) that the isochore structure has been reshaped over time. If rate variation were a determining factor, then the current isochore structure of mammalian genomes could result from the local differences in substitution rates. We predict that under current conditions strand-symmetric portions of the human genome will stabilize at an average GC content of 30% (considerably less than the current 42%), thus confirming that the human genome has not yet reached equilibrium.

  9. Development of a hybrid image processing algorithm for automatic evaluation of intramuscular fat content in beef M. longissimus dorsi.

    PubMed

    Du, Cheng-Jin; Sun, Da-Wen; Jackman, Patrick; Allen, Paul

    2008-12-01

    An automatic method for estimating the content of intramuscular fat (IMF) in beef M. longissimus dorsi (LD) was developed using a sequence of image processing algorithm. To extract IMF particles within the LD muscle from structural features of intermuscular fat surrounding the muscle, three steps of image processing algorithm were developed, i.e. bilateral filter for noise removal, kernel fuzzy c-means clustering (KFCM) for segmentation, and vector confidence connected and flood fill for IMF extraction. The technique of bilateral filtering was firstly applied to reduce the noise and enhance the contrast of the beef image. KFCM was then used to segment the filtered beef image into lean, fat, and background. The IMF was finally extracted from the original beef image by using the techniques of vector confidence connected and flood filling. The performance of the algorithm developed was verified by correlation analysis between the IMF characteristics and the percentage of chemically extractable IMF content (P<0.05). Five IMF features are very significantly correlated with the fat content (P<0.001), including count densities of middle (CDMiddle) and large (CDLarge) fat particles, area densities of middle and large fat particles, and total fat area per unit LD area. The highest coefficient is 0.852 for CDLarge.

  10. Extraction of composite visual objects from audiovisual materials

    NASA Astrophysics Data System (ADS)

    Durand, Gwenael; Thienot, Cedric; Faudemay, Pascal

    1999-08-01

    An effective analysis of Visual Objects appearing in still images and video frames is required in order to offer fine grain access to multimedia and audiovisual contents. In previous papers, we showed how our method for segmenting still images into visual objects could improve content-based image retrieval and video analysis methods. Visual Objects are used in particular for extracting semantic knowledge about the contents. However, low-level segmentation methods for still images are not likely to extract a complex object as a whole but instead as a set of several sub-objects. For example, a person would be segmented into three visual objects: a face, hair, and a body. In this paper, we introduce the concept of Composite Visual Object. Such an object is hierarchically composed of sub-objects called Component Objects.

  11. Lymphangiography in the Diagnosis and Localization of Various Chyle Leaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deso, Steve; Ludwig, Benjamin; Kabutey, Nii-Kabu

    2012-02-15

    Purpose: Chyle leaks are rare entities infrequently encountered by most physicians. However, large centers providing advanced surgical care are inevitably confronted with chyle leaks as a complication of surgery, an extension of disease, or as a primary disorder. Regardless of the etiology, proper diagnosis and localization are paramount in the management of any chyle leak. Materials and Methods: Here we present 16 patients with 17 chyle leaks (5 chyluria, 8 chylothorax, and 4 chylous ascites) who underwent bipedal lymphangiography (LAG) and postprocedure computed tomography (CT) imaging. Results: In each case, the source of the chyle leak was identified and properlymore » localized to guide further treatment. Of the 16 patients who underwent LAG and postprocedure CT imaging, the initial LAG alone provided the diagnosis and localized the chyle leak in 4 patients (25%); the postprocedure CT imaging provided the diagnosis and localized the chyle leak in 6 patients (37.5%); and the two modalities were equal in the diagnosing and localizing the chyle leak in the remaining 6 patients (37.5%)ConclusionThese cases highlight the unparalleled abilities of LAG and the added benefit of post-LAG CT imaging in the diagnosis and fine anatomic localization of chyle leaks. In addition, these cases demonstrate the retained utility of LAG in these investigations despite the development of alternative tests involving CT, magnetic resonance imaging, and nuclear medicine imaging.« less

  12. An improved artifact removal in exposure fusion with local linear constraints

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Yu, Mali

    2018-04-01

    In exposure fusion, it is challenging to remove artifacts because of camera motion and moving objects in the scene. An improved artifact removal method is proposed in this paper, which performs local linear adjustment in artifact removal progress. After determining a reference image, we first perform high-dynamic-range (HDR) deghosting to generate an intermediate image stack from the input image stack. Then, a linear Intensity Mapping Function (IMF) in each window is extracted based on the intensities of intermediate image and reference image, the intensity mean and variance of reference image. Finally, with the extracted local linear constraints, we reconstruct a target image stack, which can be directly used for fusing a single HDR-like image. Some experiments have been implemented and experimental results demonstrate that the proposed method is robust and effective in removing artifacts especially in the saturated regions of the reference image.

  13. Coastal Research Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote-sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly.anomaly. Both the visible and infrared subsystems scan in "pushbroom" mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in acrosstrack linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15. Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft-position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas shown.

  14. Automatic detection of the inner ears in head CT images using deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Zhang, Dongqing; Noble, Jack H.; Dawant, Benoit M.

    2018-03-01

    Cochlear implants (CIs) use electrode arrays that are surgically inserted into the cochlea to stimulate nerve endings to replace the natural electro-mechanical transduction mechanism and restore hearing for patients with profound hearing loss. Post-operatively, the CI needs to be programmed. Traditionally, this is done by an audiologist who is blind to the positions of the electrodes relative to the cochlea and relies on the patient's subjective response to stimuli. This is a trial-and-error process that can be frustratingly long (dozens of programming sessions are not unusual). To assist audiologists, we have proposed what we call IGCIP for image-guided cochlear implant programming. In IGCIP, we use image processing algorithms to segment the intra-cochlear anatomy in pre-operative CT images and to localize the electrode arrays in post-operative CTs. We have shown that programming strategies informed by image-derived information significantly improve hearing outcomes for both adults and pediatric populations. We are now aiming at deploying these techniques clinically, which requires full automation. One challenge we face is the lack of standard image acquisition protocols. The content of the image volumes we need to process thus varies greatly and visual inspection and labelling is currently required to initialize processing pipelines. In this work we propose a deep learning-based approach to automatically detect if a head CT volume contains two ears, one ear, or no ear. Our approach has been tested on a data set that contains over 2,000 CT volumes from 153 patients and we achieve an overall 95.97% classification accuracy.

  15. Local region power spectrum-based unfocused ship detection method in synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Wei, Xiangfei; Wang, Xiaoqing; Chong, Jinsong

    2018-01-01

    Ships on synthetic aperture radar (SAR) images will be severely defocused and their energy will disperse into numerous resolution cells under long SAR integration time. Therefore, the image intensity of ships is weak and sometimes even overwhelmed by sea clutter on SAR image. Consequently, it is hard to detect the ships from SAR intensity images. A ship detection method based on local region power spectrum of SAR complex image is proposed. Although the energies of the ships are dispersed on SAR intensity images, their spectral energies are rather concentrated or will cause the power spectra of local areas of SAR images to deviate from that of sea surface background. Therefore, the key idea of the proposed method is to detect ships via the power spectra distortion of local areas of SAR images. The local region power spectrum of a moving target on SAR image is analyzed and the way to obtain the detection threshold through the probability density function (pdf) of the power spectrum is illustrated. Numerical P- and L-band airborne SAR ocean data are utilized and the detection results are also illustrated. Results show that the proposed method can well detect the unfocused ships, with a detection rate of 93.6% and a false-alarm rate of 8.6%. Moreover, by comparing with some other algorithms, it indicates that the proposed method performs better under long SAR integration time. Finally, the applicability of the proposed method and the way of parameters selection are also discussed.

  16. Beauty and science in a shot

    NASA Astrophysics Data System (ADS)

    Ciceri, Piera

    2017-04-01

    Taking pictures has become a daily action for young. Photography is an essential component of many areas of science, has played a crucial role in the study of anatomy, botany, archeology, ... Still today it is a "scientific tool" in the school textbooks: pictures describe, make reality larger or smaller, faster or slower, show evidence and experimental results. But a photograph has the ability to move, engage and inspire viewers. That means that a photograph can build an emotional bridge between science and people. People and students can get closer to science through beautiful, evocative and expressive shot. In this project students are involved in taking pictures with a scientific and aesthetic content looking around, setting an experiment, watching nature, playing with light, point of wiew, colors and perspective. They have to write a short text and a title that explains the scientific content, why and how they have taken the picture. Both description and title should let increase curiosity, could looks fun or stress artistic aspects. Student show their shots in an official public event in Milan managed by a committee of science and photograph experts and in a local event to parents and local community. "Shots of science" is a project promoted by the italian national association "Scienza under 18", the Physic Department of "Università degli Studi di Milano" and the "Museo di fotografia contemporanea" of Cinisello Balsamo (MI) that help students in discussing about scientific and artistic aspects of their shots. This project contributes to develop digital skills (such as to manage digital images, to share documents, to learn about copyright and creative commons license), communication skills (such as to write a caption, public speaking, to use a picture to communicate), collaboration skills (such as to work with pairs, to respect scheduled times, to be positive in giving and taking into account suggestions) and artistic skills (to learn how to compose a good image, proportions, background, point of view, light, contrast, to be creative).

  17. Multi-stage 3D-2D registration for correction of anatomical deformation in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Jacobson, M. W.; Goerres, J.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2017-06-01

    A multi-stage image-based 3D-2D registration method is presented that maps annotations in a 3D image (e.g. point labels annotating individual vertebrae in preoperative CT) to an intraoperative radiograph in which the patient has undergone non-rigid anatomical deformation due to changes in patient positioning or due to the intervention itself. The proposed method (termed msLevelCheck) extends a previous rigid registration solution (LevelCheck) to provide an accurate mapping of vertebral labels in the presence of spinal deformation. The method employs a multi-stage series of rigid 3D-2D registrations performed on sets of automatically determined and increasingly localized sub-images, with the final stage achieving a rigid mapping for each label to yield a locally rigid yet globally deformable solution. The method was evaluated first in a phantom study in which a CT image of the spine was acquired followed by a series of 7 mobile radiographs with increasing degree of deformation applied. Second, the method was validated using a clinical data set of patients exhibiting strong spinal deformation during thoracolumbar spine surgery. Registration accuracy was assessed using projection distance error (PDE) and failure rate (PDE  >  20 mm—i.e. label registered outside vertebra). The msLevelCheck method was able to register all vertebrae accurately for all cases of deformation in the phantom study, improving the maximum PDE of the rigid method from 22.4 mm to 3.9 mm. The clinical study demonstrated the feasibility of the approach in real patient data by accurately registering all vertebral labels in each case, eliminating all instances of failure encountered in the conventional rigid method. The multi-stage approach demonstrated accurate mapping of vertebral labels in the presence of strong spinal deformation. The msLevelCheck method maintains other advantageous aspects of the original LevelCheck method (e.g. compatibility with standard clinical workflow, large capture range, and robustness against mismatch in image content) and extends capability to cases exhibiting strong changes in spinal curvature.

  18. Model simulations of line-of-sight effects in airglow imaging of acoustic and fast gravity waves from ground and space

    NASA Astrophysics Data System (ADS)

    Aguilar Guerrero, J.; Snively, J. B.

    2017-12-01

    Acoustic waves (AWs) have been predicted to be detectable by imaging systems for the OH airglow layer [Snively, GRL, 40, 2013], and have been identified in spectrometer data [Pilger et al., JASP, 104, 2013]. AWs are weak in the mesopause region, but can attain large amplitudes in the F region [Garcia et al., GRL, 40, 2013] and have local impacts on the thermosphere and ionosphere. Similarly, fast GWs, with phase speeds over 100 m/s, may propagate to the thermosphere and impart significant local body forcing [Vadas and Fritts, JASTP, 66, 2004]. Both have been clearly identified in ionospheric total electron content (TEC), such as following the 2013 Moore, OK, EF5 tornado [Nishioka et al., GRL, 40, 2013] and following the 2011 Tohoku-Oki tsunami [e.g., Galvan et al., RS, 47, 2012, and references therein], but AWs have yet to be unambiguously imaged in MLT data and fast GWs have low amplitudes near the threshold of detection; nevertheless, recent imaging systems have sufficient spatial and temporal resolution and sensitivity to detect both AWs and fast GWs with short periods [e.g., Pautet et al., AO, 53, 2014]. The associated detectability challenges are related to the transient nature of their signatures and to systematic challenges due to line-of-sight (LOS) effects such as enhancements and cancelations due to integration along aligned or oblique wavefronts and geometric intensity enhancements. We employ a simulated airglow imager framework that incorporates 2D and 3D emission rate data and performs the necessary LOS integrations for synthetic imaging from ground- and space-based platforms to assess relative intensity and temperature perturbations. We simulate acoustic and fast gravity wave perturbations to the hydroxyl layer from a nonlinear, compressible model [e.g., Snively, 2013] for different idealized and realistic test cases. The results show clear signal enhancements when acoustic waves are imaged off-zenith or off-nadir and the temporal evolution of these signals is also important to discern the footprint of the acoustic signature and distinguish them from other wave phenomena or background variability. This comprehensive analysis allows for a practical characterization of how LOS effects determine the AW and FGW signatures, and provides guidance for their identification in wide-field imager data.

  19. Novel Algorithm for Classification of Medical Images

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Juneja, Monika

    2010-11-01

    Content-based image retrieval (CBIR) methods in medical image databases have been designed to support specific tasks, such as retrieval of medical images. These methods cannot be transferred to other medical applications since different imaging modalities require different types of processing. To enable content-based queries in diverse collections of medical images, the retrieval system must be familiar with the current Image class prior to the query processing. Further, almost all of them deal with the DICOM imaging format. In this paper a novel algorithm based on energy information obtained from wavelet transform for the classification of medical images according to their modalities is described. For this two types of wavelets have been used and have been shown that energy obtained in either case is quite distinct for each of the body part. This technique can be successfully applied to different image formats. The results are shown for JPEG imaging format.

  20. Resolving protein interactions and organization downstream the T cell antigen receptor using single-molecule localization microscopy: a review

    NASA Astrophysics Data System (ADS)

    Sherman, Eilon

    2016-06-01

    Signal transduction is mediated by heterogeneous and dynamic protein complexes. Such complexes play a critical role in diverse cell functions, with the important example of T cell activation. Biochemical studies of signalling complexes and their imaging by diffraction limited microscopy have resulted in an intricate network of interactions downstream the T cell antigen receptor (TCR). However, in spite of their crucial roles in T cell activation, much remains to be learned about these signalling complexes, including their heterogeneous contents and size distribution, their complex arrangements in the PM, and the molecular requirements for their formation. Here, we review how recent advancements in single molecule localization microscopy have helped to shed new light on the organization of signalling complexes in single molecule detail in intact T cells. From these studies emerges a picture where cells extensively employ hierarchical and dynamic patterns of nano-scale organization to control the local concentration of interacting molecular species. These patterns are suggested to play a critical role in cell decision making. The combination of SMLM with more traditional techniques is expected to continue and critically contribute to our understanding of multimolecular protein complexes and their significance to cell function.

  1. Improved estimates of partial volume coefficients from noisy brain MRI using spatial context.

    PubMed

    Manjón, José V; Tohka, Jussi; Robles, Montserrat

    2010-11-01

    This paper addresses the problem of accurate voxel-level estimation of tissue proportions in the human brain magnetic resonance imaging (MRI). Due to the finite resolution of acquisition systems, MRI voxels can contain contributions from more than a single tissue type. The voxel-level estimation of this fractional content is known as partial volume coefficient estimation. In the present work, two new methods to calculate the partial volume coefficients under noisy conditions are introduced and compared with current similar methods. Concretely, a novel Markov Random Field model allowing sharp transitions between partial volume coefficients of neighbouring voxels and an advanced non-local means filtering technique are proposed to reduce the errors due to random noise in the partial volume coefficient estimation. In addition, a comparison was made to find out how the different methodologies affect the measurement of the brain tissue type volumes. Based on the obtained results, the main conclusions are that (1) both Markov Random Field modelling and non-local means filtering improved the partial volume coefficient estimation results, and (2) non-local means filtering was the better of the two strategies for partial volume coefficient estimation. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Probing of protein localization and shuttling in mitochondrial microcompartments by FLIM with sub-diffraction resolution.

    PubMed

    Söhnel, Anna-Carina; Kohl, Wladislaw; Gregor, Ingo; Enderlein, Jörg; Rieger, Bettina; Busch, Karin B

    2016-08-01

    The cell is metabolically highly compartmentalized. Especially, mitochondria host many vital reactions in their different microcompartments. However, due to their small size, these microcompartments are not accessible by conventional microscopy. Here, we demonstrate that time-correlated single-photon counting (TCSPC) fluorescence lifetime-imaging microscopy (FLIM) classifies not only mitochondria, but different microcompartments inside mitochondria. Sensor proteins in the matrix had a different lifetime than probes at membrane proteins. Localization in the outer and inner mitochondrial membrane could be distinguished by significant differences in the lifetime. The method was sensitive enough to monitor shifts in protein location within mitochondrial microcompartments. Macromolecular crowding induced by changes in the protein content significantly affected the lifetime, while oxidizing conditions or physiological pH changes had only marginal effects. We suggest that FLIM is a versatile and completive method to monitor spatiotemporal events in mitochondria. The sensitivity in the time domain allows for gaining substantial information about sub-mitochondrial localization overcoming diffraction limitation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. [Estimation and Visualization of Nitrogen Content in Citrus Canopy Based on Two Band Vegetation Index (TBVI)].

    PubMed

    Wang, Qiao-nan; Ye, Xu-jun; Li, Jin-meng; Xiao, Yu-zhao; He, Yong

    2015-03-01

    Nitrogen is a necessary and important element for the growth and development of fruit orchards. Timely, accurate and nondestructive monitoring of nitrogen status in fruit orchards would help maintain the fruit quality and efficient production of the orchard, and mitigate the pollution of water resources caused by excessive nitrogen fertilization. This study investigated the capability of hyperspectral imagery for estimating and visualizing the nitrogen content in citrus canopy. Hyperspectral images were obtained for leaf samples in laboratory as well as for the whole canopy in the field with ImSpector V10E (Spectral Imaging Ltd., Oulu, Finland). The spectral datas for each leaf sample were represented by the average spectral data extracted from the selected region of interest (ROI) in the hyperspectral images with the aid of ENVI software. The nitrogen content in each leaf sample was measured by the Dumas combustion method with the rapid N cube (Elementar Analytical, Germany). Simple correlation analysis and the two band vegetation index (TBVI) were then used to develop the spectra data-based nitrogen content prediction models. Results obtained through the formula calculation indicated that the model with the two band vegetation index (TBVI) based on the wavelengths 811 and 856 nm achieved the optimal estimation of nitrogen content in citrus leaves (R2 = 0.607 1). Furthermore, the canopy image for the identified TBVI was calculated, and the nitrogen content of the canopy was visualized by incorporating the model into the TBVI image. The tender leaves, middle-aged leaves and elder leaves showed distinct nitrogen status from highto low-levels in the canopy image. The results suggested the potential of hyperspectral imagery for the nondestructive detection and diagnosis of nitrogen status in citrus canopy in real time. Different from previous studies focused on nitrogen content prediction at leaf level, this study succeeded in predicting and visualizing the nutrient content of fruit trees at canopy level. This would provide valuable information for the implementation of individual tree-based fertilization schemes in precision orchard management practices.

  4. Toxicological Tipping Points: Learning Boolean Networks from High-Content Imaging Data. (BOSC meeting)

    EPA Science Inventory

    The objective of this work is to elucidate biological networks underlying cellular tipping points using time-course data. We discretized the high-content imaging (HCI) data and inferred Boolean networks (BNs) that could accurately predict dynamic cellular trajectories. We found t...

  5. Image dehazing based on non-local saturation

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Zhang, Qian; Yang, Deyun; Hou, Yingkun; He, Xiaoting

    2018-04-01

    In this paper, a method based on non-local saturation algorithm is proposed to avoid block and halo effect for single image dehazing with dark channel prior. First we convert original image from RGB color space into HSV color space with the idea of non-local method. Image saturation is weighted equally by the size of fixed window according to image resolution. Second we utilize the saturation to estimate the atmospheric light value and transmission rate. Then through the function of saturation and transmission, the haze-free image is obtained based on the atmospheric scattering model. Comparing the results of existing methods, our method can restore image color and enhance contrast. We guarantee the proposed method with quantitative and qualitative evaluation respectively. Experiments show the better visual effect with high efficiency.

  6. Advanced digital image archival system using MPEG technologies

    NASA Astrophysics Data System (ADS)

    Chang, Wo

    2009-08-01

    Digital information and records are vital to the human race regardless of the nationalities and eras in which they were produced. Digital image contents are produced at a rapid pace from cultural heritages via digitalization, scientific and experimental data via high speed imaging sensors, national defense satellite images from governments, medical and healthcare imaging records from hospitals, personal collection of photos from digital cameras. With these mass amounts of precious and irreplaceable data and knowledge, what standards technologies can be applied to preserve and yet provide an interoperable framework for accessing the data across varieties of systems and devices? This paper presents an advanced digital image archival system by applying the international standard of MPEG technologies to preserve digital image content.

  7. Conversion of a traditional image archive into an image resource on compact disc.

    PubMed Central

    Andrew, S M; Benbow, E W

    1997-01-01

    The conversion of a traditional archive of pathology images was organised on 35 mm slides into a database of images stored on compact disc (CD-ROM), and textual descriptions were added to each image record. Students on a didactic pathology course found this resource useful as an aid to revision, despite relative computer illiteracy, and it is anticipated that students on a new problem based learning course, which incorporates experience with information technology, will benefit even more readily when they use the database as an educational resource. A text and image database on CD-ROM can be updated repeatedly, and the content manipulated to reflect the content and style of the courses it supports. Images PMID:9306931

  8. Characterization of rice physicochemical properties local rice germplasm from Tana Toraja regency of South Sulawesi

    NASA Astrophysics Data System (ADS)

    Masniawati, A.; Marwah Asrul, Nur Al; Johannes, E.; Asnady, M.

    2018-03-01

    The research about the characterization of physicochemical properties from local rice germplasm of Tana Toraja’s Regency, South Sulawesi aims to determine the physicochemical properties of rice as a parameter to indicate the quality of cooking. Local varieties categorized as germplasm that needs to be protected for future varietal improvement.In this research, the researchers used seven varieties of local rice. The parameters analyzed including physicochemical properties of amylose content, protein content, gel consistency, and gelatinization temperature. Percentage of amylose content ranged from 2 to 18 %. Pare Bumbungan and Pare Lalodo are categorized as waxy rice and Pare Ambo, Pare Bau, Pare Kobo, Pare Rogon and Pare Tallang are categorized as low amylose content. The percentage of protein content ranged from 7.3 to 9.5 %. Gelatinization temperature of rice showed high gelatinization temperature. Pare Bumbungan, Pare Kobo, Pare Lalodo, and Pare Rogon are categorized as soft gel consistency (˃50 mm). Pare Ambo, Pare Bau and Pare Tallang are categorized as medium gel consistency (36-50m). Pare Rogon and Pare Kobo are two kinds of rice varieties according to the quality of cooking criteria for consumers in Indonesia.

  9. Analysis of platinum content in biodegradable carboplatin-impregnated beads and retrospective assessment of tolerability for intralesional use of the beads in dogs following excision of subcutaneous sarcomas: 29 cases (2011-2014).

    PubMed

    Hess, Theresa A; Drinkhouse, Macy E; Prey, Joshua D; Miller, Jonathan M; Fettig, Arthur A; Carberry, Carol A; Brenn, Stephen H; Bailey, Dennis B

    2018-02-15

    OBJECTIVE To evaluate platinum content in biodegradable carboplatin-impregnated beads and retrospectively assess tolerability and outcome data for dogs treated by intralesional placement of such beads following surgical excision of subcutaneous sarcomas. DESIGN Evaluation study and retrospective case series. SAMPLE 9 carboplatin-impregnated beads and 29 client-owned dogs. PROCEDURES Platinum content in 9 carboplatin-impregnated beads from 3 lots was measured by spectrophotometry, and calculated carboplatin content was compared with the labeled content. Medical records were searched to identify dogs with subcutaneous sarcomas for which treatment included placement of carboplatin-impregnated beads between 2011 and 2014. Signalment, tumor characteristics, surgical and histologic data, adverse events, and local recurrences were recorded. Associations between variables of interest and adverse events or local disease-free interval were analyzed. RESULTS In vitro analysis identified a mean ± SD platinum content of 5.38 ± 0.97 mg/bead. Calculated carboplatin content (10.24 ± 1.84 mg/bead) was significantly greater than the labeled amount (4.6 mg/bead). Bead weight and total platinum content differed significantly among lots, but platinum content per bead weight did not. Mild-to-moderate local adverse events were reported for 11 of 29 tumors; all resolved without additional surgery. No dogs had signs of systemic toxicosis. Overall local disease-free rates 1, 2, and 3 years after surgery were 70%, 70%, and 58%, respectively, as determined by Kaplan-Meier analysis. CONCLUSIONS AND CLINICAL RELEVANCE Carboplatin-impregnated beads were well tolerated; however, results of in vitro tests indicated that caution is needed because of manufacturing inconsistencies.

  10. Improving Geoscience Outreach Through Multimedia Enhanced Web Sites - An Example From Connecticut

    NASA Astrophysics Data System (ADS)

    Hyatt, J. A.; Coron, C. R.; Schroeder, T. J.; Fleming, T.; Drzewiecki, P. A.

    2005-12-01

    Although large governmental web sites (e.g. USGS, NASA etc.) are important resources, particularly in relation to phenomena with global to regional significance (e.g. recent Tsunami and Hurricane disasters), smaller academic web portals continue to make substantive contributions to web-based learning in the geosciences. The strength of "home-grown" web sites is that they easily can be tailored to specific classes, they often focus on local geologic content, and they potentially integrate classroom, laboratory, and field-based learning in ways that improve introductory classes. Furthermore, innovative multimedia techniques including virtual reality, image manipulations, and interactive streaming video can improve visualization and be particularly helpful for first-time geology students. This poster reports on one such web site, Learning Tools in Earth Science (LTES, http://www.easternct .edu/personal/faculty/hyattj/LTES-v2/), a site developed by geoscience faculty at two state institutions. In contrast to some large web sites with media development teams, LTES geoscientists, with strong support from media and IT service departments, are responsible for geologic content and verification, media development and editing, and web development and authoring. As such, we have considerable control over both content and design of this site. At present the main content modules for LTES include "mineral" and "virtual field trip" links. The mineral module includes an interactive mineral gallery, and a virtual mineral box of 24 unidentified samples that are identical to those used in some of our classes. Students navigate an intuitive web portal to manipulate images and view streaming video segments that explain and undertake standard mineral identification tests. New elements highlighted in our poster include links to a virtual petrographic microscope, in which users can manipulate images to simulate stage rotation in both plane- and cross-polarized light. Virtual field trips include video-based excursions to sites in Georgia, Connecticut and Greenland. New to these VFT's is the integration of "virtual walks" in which users are able to navigate through some field sites in a virtual sense. Development of this resource is ongoing, but response from students, faculty outside of Earth Science and K-12 instructors indicate that this small web site can provide useful resources for those educators utilizing web-based learning in their courses. .edu/personal/faculty/hyattj/LTES-v2/

  11. Prediction of CT Substitutes from MR Images Based on Local Diffeomorphic Mapping for Brain PET Attenuation Correction.

    PubMed

    Wu, Yao; Yang, Wei; Lu, Lijun; Lu, Zhentai; Zhong, Liming; Huang, Meiyan; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2016-10-01

    Attenuation correction is important for PET reconstruction. In PET/MR, MR intensities are not directly related to attenuation coefficients that are needed in PET imaging. The attenuation coefficient map can be derived from CT images. Therefore, prediction of CT substitutes from MR images is desired for attenuation correction in PET/MR. This study presents a patch-based method for CT prediction from MR images, generating attenuation maps for PET reconstruction. Because no global relation exists between MR and CT intensities, we propose local diffeomorphic mapping (LDM) for CT prediction. In LDM, we assume that MR and CT patches are located on 2 nonlinear manifolds, and the mapping from the MR manifold to the CT manifold approximates a diffeomorphism under a local constraint. Locality is important in LDM and is constrained by the following techniques. The first is local dictionary construction, wherein, for each patch in the testing MR image, a local search window is used to extract patches from training MR/CT pairs to construct MR and CT dictionaries. The k-nearest neighbors and an outlier detection strategy are then used to constrain the locality in MR and CT dictionaries. Second is local linear representation, wherein, local anchor embedding is used to solve MR dictionary coefficients when representing the MR testing sample. Under these local constraints, dictionary coefficients are linearly transferred from the MR manifold to the CT manifold and used to combine CT training samples to generate CT predictions. Our dataset contains 13 healthy subjects, each with T1- and T2-weighted MR and CT brain images. This method provides CT predictions with a mean absolute error of 110.1 Hounsfield units, Pearson linear correlation of 0.82, peak signal-to-noise ratio of 24.81 dB, and Dice in bone regions of 0.84 as compared with real CTs. CT substitute-based PET reconstruction has a regression slope of 1.0084 and R 2 of 0.9903 compared with real CT-based PET. In this method, no image segmentation or accurate registration is required. Our method demonstrates superior performance in CT prediction and PET reconstruction compared with competing methods. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  12. Fast, low-dose patient localization on TomoTherapy via topogram registration.

    PubMed

    Moore, Kevin L; Palaniswaamy, Geethpriya; White, Benjamin; Goddu, S Murty; Low, Daniel A

    2010-08-01

    To investigate a protocol which efficiently localizes TomoTherapy patients with a scout imaging (topogram) mode that can be used with or instead of 3D megavoltage computed tomography (MVCT) imaging. The process presented here is twofold: (a) The acquisition of the topogram using the TomoTherapy MV imaging system and (b) the generation of a digitally reconstructed topogram (DRT) derived from a standard kV CT simulation data set. The unique geometric characteristics of the current TomoTherapy imaging system were explored both theoretically and by acquiring topograms of anthropomorphic phantoms and comparing these images to DRT images. The performance of the MV topogram imaging system in terms of image quality, dose incurred to the patient, and acquisition time was investigated using ionization chamber and radiographic film measurements. The time required to acquire a clinically usable topogram, limited by the maximum couch speed of 4.0 cm s(-1), was 12.5 s for a 50 cm long field. The patient dose was less than 1% of that delivered by a helical MVCT scan. Further refinements within the current TomoTherapy system, most notably decreasing the imaging beam repetition rate during MV topogram acquisition, would further reduce the topogram dose to less than 25 microGy per scan without compromising image quality. Topogram localization on TomoTherapy is a fast and low-dose alternative to 3D MVCT localization. A protocol designed that exclusively utilized MV topograms would result in a 30-fold reduction in imaging time and a 100-fold reduction in dose from localization scans using the current TomoTherapy workflow.

  13. In situ fluorescence imaging of localized corrosion with a pH-sensitive imaging fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panova, A.A.; Pantano, P.; Walt, D.R.

    1997-12-01

    A fiber optic pH-sensor capable of both visualizing corrosion sites and measuring local chemical concentrations is applied to real-time corrosion monitoring. The imaging fiber`s distal face containing an immobilized pH-sensitive fluorescent dye is brought into contact with metal surfaces submerged in aqueous buffers and fluorescence images are acquired as a function of time. The observed changes in fluorescence due to increases in pH at cathodic sites and decreases in pH at anodic sites are indicative of localized corrosion rates.

  14. Content-based image retrieval with ontological ranking

    NASA Astrophysics Data System (ADS)

    Tsai, Shen-Fu; Tsai, Min-Hsuan; Huang, Thomas S.

    2010-02-01

    Images are a much more powerful medium of expression than text, as the adage says: "One picture is worth a thousand words." It is because compared with text consisting of an array of words, an image has more degrees of freedom and therefore a more complicated structure. However, the less limited structure of images presents researchers in the computer vision community a tough task of teaching machines to understand and organize images, especially when a limit number of learning examples and background knowledge are given. The advance of internet and web technology in the past decade has changed the way human gain knowledge. People, hence, can exchange knowledge with others by discussing and contributing information on the web. As a result, the web pages in the internet have become a living and growing source of information. One is therefore tempted to wonder whether machines can learn from the web knowledge base as well. Indeed, it is possible to make computer learn from the internet and provide human with more meaningful knowledge. In this work, we explore this novel possibility on image understanding applied to semantic image search. We exploit web resources to obtain links from images to keywords and a semantic ontology constituting human's general knowledge. The former maps visual content to related text in contrast to the traditional way of associating images with surrounding text; the latter provides relations between concepts for machines to understand to what extent and in what sense an image is close to the image search query. With the aid of these two tools, the resulting image search system is thus content-based and moreover, organized. The returned images are ranked and organized such that semantically similar images are grouped together and given a rank based on the semantic closeness to the input query. The novelty of the system is twofold: first, images are retrieved not only based on text cues but their actual contents as well; second, the grouping is different from pure visual similarity clustering. More specifically, the inferred concepts of each image in the group are examined in the context of a huge concept ontology to determine their true relations with what people have in mind when doing image search.

  15. Partitioning medical image databases for content-based queries on a Grid.

    PubMed

    Montagnat, J; Breton, V; E Magnin, I

    2005-01-01

    In this paper we study the impact of executing a medical image database query application on the grid. For lowering the total computation time, the image database is partitioned into subsets to be processed on different grid nodes. A theoretical model of the application complexity and estimates of the grid execution overhead are used to efficiently partition the database. We show results demonstrating that smart partitioning of the database can lead to significant improvements in terms of total computation time. Grids are promising for content-based image retrieval in medical databases.

  16. Accurate and simple method for quantification of hepatic fat content using magnetic resonance imaging: a prospective study in biopsy-proven nonalcoholic fatty liver disease.

    PubMed

    Hatta, Tomoko; Fujinaga, Yasunari; Kadoya, Masumi; Ueda, Hitoshi; Murayama, Hiroaki; Kurozumi, Masahiro; Ueda, Kazuhiko; Komatsu, Michiharu; Nagaya, Tadanobu; Joshita, Satoru; Kodama, Ryo; Tanaka, Eiji; Uehara, Tsuyoshi; Sano, Kenji; Tanaka, Naoki

    2010-12-01

    To assess the degree of hepatic fat content, simple and noninvasive methods with high objectivity and reproducibility are required. Magnetic resonance imaging (MRI) is one such candidate, although its accuracy remains unclear. We aimed to validate an MRI method for quantifying hepatic fat content by calibrating MRI reading with a phantom and comparing MRI measurements in human subjects with estimates of liver fat content in liver biopsy specimens. The MRI method was performed by a combination of MRI calibration using a phantom and double-echo chemical shift gradient-echo sequence (double-echo fast low-angle shot sequence) that has been widely used on a 1.5-T scanner. Liver fat content in patients with nonalcoholic fatty liver disease (NAFLD, n = 26) was derived from a calibration curve generated by scanning the phantom. Liver fat was also estimated by optical image analysis. The correlation between the MRI measurements and liver histology findings was examined prospectively. Magnetic resonance imaging measurements showed a strong correlation with liver fat content estimated from the results of light microscopic examination (correlation coefficient 0.91, P < 0.001) regardless of the degree of hepatic steatosis. Moreover, the severity of lobular inflammation or fibrosis did not influence the MRI measurements. This MRI method is simple and noninvasive, has excellent ability to quantify hepatic fat content even in NAFLD patients with mild steatosis or advanced fibrosis, and can be performed easily without special devices.

  17. Social relevance drives viewing behavior independent of low-level salience in rhesus macaques

    PubMed Central

    Solyst, James A.; Buffalo, Elizabeth A.

    2014-01-01

    Quantifying attention to social stimuli during the viewing of complex social scenes with eye tracking has proven to be a sensitive method in the diagnosis of autism spectrum disorders years before average clinical diagnosis. Rhesus macaques provide an ideal model for understanding the mechanisms underlying social viewing behavior, but to date no comparable behavioral task has been developed for use in monkeys. Using a novel scene-viewing task, we monitored the gaze of three rhesus macaques while they freely viewed well-controlled composed social scenes and analyzed the time spent viewing objects and monkeys. In each of six behavioral sessions, monkeys viewed a set of 90 images (540 unique scenes) with each image presented twice. In two-thirds of the repeated scenes, either a monkey or an object was replaced with a novel item (manipulated scenes). When viewing a repeated scene, monkeys made longer fixations and shorter saccades, shifting from a rapid orienting to global scene contents to a more local analysis of fewer items. In addition to this repetition effect, in manipulated scenes, monkeys demonstrated robust memory by spending more time viewing the replaced items. By analyzing attention to specific scene content, we found that monkeys strongly preferred to view conspecifics and that this was not related to their salience in terms of low-level image features. A model-free analysis of viewing statistics found that monkeys that were viewed earlier and longer had direct gaze and redder sex skin around their face and rump, two important visual social cues. These data provide a quantification of viewing strategy, memory and social preferences in rhesus macaques viewing complex social scenes, and they provide an important baseline with which to compare to the effects of therapeutics aimed at enhancing social cognition. PMID:25414633

  18. Modernization of the International Volcanic Ash Website - a global resource for ashfall preparedness and impact guidance.

    NASA Astrophysics Data System (ADS)

    Wallace, K.; Leonard, G.; Stewart, C.; Wilson, T. M.; Randall, M.; Stovall, W. K.

    2015-12-01

    The internationally collaborative volcanic ash website (http://volcanoes.usgs.gov/ash/) has been an important global information resource for ashfall preparedness and impact guidance since 2004. Recent volcanic ashfalls with significant local, regional, and global impacts highlighted the need to improve the website to make it more accessible and pertinent to users worldwide. Recently, the Volcanic Ash Impacts Working Group (Cities and Volcanoes Commission of IAVCEI) redesigned and modernized the website. Improvements include 1) a database-driven back end, 2) reorganized menu navigation, 3) language translation, 4) increased downloadable content, 5) addition of ash-impact case studies, 7) expanded and updated references , 8) an image database, and 9) inclusion of cooperating organization's logos. The database-driven platform makes the website more dynamic and efficient to operate and update. New menus provide information about specific impact topics (buildings, transportation, power, health, agriculture, water and waste water, equipment and communications, clean up) and updated content has been added throughout all topics. A new "for scientists" menu includes information on ash collection and analysis. Website translation using Google translate will significantly increase user base. Printable resources (e.g. checklists, pamphlets, posters) provide information to people without Internet access. Ash impact studies are used to improve mitigation measures during future eruptions, and links to case studies will assist communities' preparation and response plans. The Case Studies menu is intended to be a living topic area, growing as new case studies are published. A database of all images from the website allows users to access larger resolution images and additional descriptive details. Logos clarify linkages among key contributors and assure users that the site is authoritative and science-based.

  19. Emotional reactivity to social stimuli in patients with eating disorders.

    PubMed

    Tapajóz P de Sampaio, Fernanda; Soneira, Sebastian; Aulicino, Alfredo; Harris, Paula; Allegri, Ricardo Francisco

    2015-10-30

    Patients with eating disorders often display a wide range of difficulties in psychosocial functioning. Most of the studies on this subject have focused on theory of mind; however, little is known about the subjective emotional reactivity of patients to social situations. The aim of this study was to evaluate the patients' perceptions of their own emotions when viewing pictures with social content. Emotional reactivity was assessed in 85 women (29 with anorexia nervosa, 28 with bulimia nervosa, and 28 healthy controls) by using 30 images from the International Affective Picture System. Images were divided into categories based on its social content and its emotional valence. The emotional response was evaluated through the Self-Assessment Manikin. Patients with bulimia nervosa presented higher arousal and lower control when viewing images with social content of pleasant, unpleasant, and neutral valence. Patients with anorexia nervosa reported higher arousal and lower control only for social images with neutral valence. There were no differences between groups for the control images. The finding of specific differences in emotional reactivity to pictures with social content contributes to a more accurate understanding of the difficulties of patients in social situations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Deep Emission-Line Imaging of Local Galactic Winds with NEWFIRM: Part II.

    NASA Astrophysics Data System (ADS)

    Veilleux, Sylvain; Trippe, Margaret; Swaters, Rob; Rupke, David; McCormick, Alex

    2010-08-01

    Galactic winds are the primary mechanism by which energy and metals are recycled in galaxies and deposited into the IGM. New observations are revealing the ubiquity of this process, particularly at high redshift. Measurements have shown that winds contain cool (molecular/neutral), warm (partly ionized), and hot (fully ionized) gases. Though most of the wind mass is likely contained in the dusty molecular gas, very little is known about this component. However, our recent observations of M 82 with NEWFIRM on the Mayall 4-m show that H_2 emission can be used as a sensitive tracer of the cool molecular wind component. We propose to use NEWFIRM to study the NIR emission- line properties of a small but representative set of local wind galaxies. Deep images of these objects will be obtained at H_2 2.122 (micron) and [Fe II] 1.644 (micron) and combined with existing optical emission-line maps to (1) constrain the importance of molecular gas in the energetics of these winds and (2) determine the nature of the interaction between the central energy injection zone and the wind material. 5 nights were allocated for this program in 10B; we now request to observe the rest of the sample. These data will complement an approved Spitzer program to constrain the hot dust content of these winds, and likely become part of A. McCormick's PhD thesis.

Top