Local auxin production underlies a spatially restricted neighbor-detection response in Arabidopsis
Michaud, Olivier
2017-01-01
Competition for light triggers numerous developmental adaptations known as the “shade-avoidance syndrome” (SAS). Important molecular events underlying specific SAS responses have been identified. However, in natural environments light is often heterogeneous, and it is currently unknown how shading affecting part of a plant leads to local responses. To study this question, we analyzed upwards leaf movement (hyponasty), a rapid adaptation to neighbor proximity, in Arabidopsis. We show that manipulation of the light environment at the leaf tip triggers a hyponastic response that is restricted to the treated leaf. This response is mediated by auxin synthesized in the blade and transported to the petiole. Our results suggest that a strong auxin response in the vasculature of the treated leaf and auxin signaling in the epidermis mediate leaf elevation. Moreover, the analysis of an auxin-signaling mutant reveals signaling bifurcation in the control of petiole elongation versus hyponasty. Our work identifies a mechanism for a local shade response that may pertain to other plant adaptations to heterogeneous environments. PMID:28652343
Sun/shade conditions affect recruitment and local adaptation of a columnar cactus in dry forests.
Miranda-Jácome, Antonio; Montaña, Carlos; Fornoni, Juan
2013-02-01
Facilitation among plants in water-limited environments (i.e. where evapotranspiration overcomes the availability of water during the growing season) has been considered a local adaptation to water and light conditions. Among cacti, early life-history stages can benefit from the facilitative effects of nurse plants that reduce solar radiation and water stress. However, whether light condition itself acts as an agent of selection through facilitation remains untested. The aim of this study was to determine (1) whether light conditions affect seedling recruitment, (2) whether the positive effect of shade on seedling recruitment is more intense under more stressful conditions and (3) whether shade condition (facilitation) reduces the magnitude of local adaptation on seedling recruitment relative to full sunlight conditions. A reciprocal transplant experiment, coupled with the artificial manipulation of sun/shade conditions, was performed to test for the effects of local adaptation on germination, seedling survival and growth, using two demes of the columnar cactus Pilosocereus leucocephalus, representing different intensities of stressful conditions. Full sunlight conditions reduced recruitment success and supported the expectation of lower recruitment in more stressful environments. Significant local adaptation was mainly detected under full sunlight conditions, indicating that this environmental factor acts as an agent of selection at both sites. The results supported the expectation that the magnitude of local adaptation, driven by the effects of facilitative nurse plants, is less intense under reduced stressful conditions. This study is the first to demonstrate that sun/shade conditions act as a selective agent accounting for local adaptation in water-limited environments, and that facilitation provided by nurse plants in these environments can attenuate the patterns of local adaptation among plants benefiting from the nurse effect.
Sun/shade conditions affect recruitment and local adaptation of a columnar cactus in dry forests
Miranda-Jácome, Antonio; Montaña, Carlos; Fornoni, Juan
2013-01-01
Background and Aims Facilitation among plants in water-limited environments (i.e. where evapotranspiration overcomes the availability of water during the growing season) has been considered a local adaptation to water and light conditions. Among cacti, early life-history stages can benefit from the facilitative effects of nurse plants that reduce solar radiation and water stress. However, whether light condition itself acts as an agent of selection through facilitation remains untested. The aim of this study was to determine (1) whether light conditions affect seedling recruitment, (2) whether the positive effect of shade on seedling recruitment is more intense under more stressful conditions and (3) whether shade condition (facilitation) reduces the magnitude of local adaptation on seedling recruitment relative to full sunlight conditions. Methods A reciprocal transplant experiment, coupled with the artificial manipulation of sun/shade conditions, was performed to test for the effects of local adaptation on germination, seedling survival and growth, using two demes of the columnar cactus Pilosocereus leucocephalus, representing different intensities of stressful conditions. Key Results Full sunlight conditions reduced recruitment success and supported the expectation of lower recruitment in more stressful environments. Significant local adaptation was mainly detected under full sunlight conditions, indicating that this environmental factor acts as an agent of selection at both sites. Conclusions The results supported the expectation that the magnitude of local adaptation, driven by the effects of facilitative nurse plants, is less intense under reduced stressful conditions. This study is the first to demonstrate that sun/shade conditions act as a selective agent accounting for local adaptation in water-limited environments, and that facilitation provided by nurse plants in these environments can attenuate the patterns of local adaptation among plants benefiting from the nurse effect. PMID:23223204
Types of drinkers and drinking settings: an application of a mathematical model.
Mubayi, Anuj; Greenwood, Priscilla; Wang, Xiaohong; Castillo-Chávez, Carlos; Gorman, Dennis M; Gruenewald, Paul; Saltz, Robert F
2011-04-01
US college drinking data and a simple population model of alcohol consumption are used to explore the impact of social and contextual parameters on the distribution of light, moderate and heavy drinkers. Light drinkers become moderate drinkers under social influence, moderate drinkers may change environments and become heavy drinkers. We estimate the drinking reproduction number, R(d) , the average number of individual transitions from light to moderate drinking that result from the introduction of a moderate drinker in a population of light drinkers. Ways of assessing and ranking progression of drinking risks and data-driven definitions of high- and low-risk drinking environments are introduced. Uncertainty and sensitivity analyses, via a novel statistical approach, are conducted to assess R(d) variability and to analyze the role of context on drinking dynamics. Our estimates show R(d) well above the critical value of 1. R(d) estimates correlate positively with the proportion of time spent by moderate drinkers in high-risk drinking environments. R(d) is most sensitive to variations in local social mixing contact rates within low-risk environments. The parameterized model with college data suggests that high residence times of moderate drinkers in low-risk environments maintain heavy drinking. With regard to alcohol consumption in US college students, drinking places, the connectivity (traffic) between drinking venues and the strength of socialization in local environments are important determinants in transitions between light, moderate and heavy drinking as well as in long-term prediction of the drinking dynamics. © 2010 The Authors, Addiction © 2010 Society for the Study of Addiction.
Global positioning method based on polarized light compass system
NASA Astrophysics Data System (ADS)
Liu, Jun; Yang, Jiangtao; Wang, Yubo; Tang, Jun; Shen, Chong
2018-05-01
This paper presents a global positioning method based on a polarized light compass system. A main limitation of polarization positioning is the environment such as weak and locally destroyed polarization environments, and the solution to the positioning problem is given in this paper which is polarization image de-noising and segmentation. Therefore, the pulse coupled neural network is employed for enhancing positioning performance. The prominent advantages of the present positioning technique are as follows: (i) compared to the existing position method based on polarized light, better sun tracking accuracy can be achieved and (ii) the robustness and accuracy of positioning under weak and locally destroyed polarization environments, such as cloudy or building shielding, are improved significantly. Finally, some field experiments are given to demonstrate the effectiveness and applicability of the proposed global positioning technique. The experiments have shown that our proposed method outperforms the conventional polarization positioning method, the real time longitude and latitude with accuracy up to 0.0461° and 0.0911°, respectively.
Yano, S; Terashima, I
2001-12-01
Physiological and ecological characteristics of sun and shade leaves have been compared in detail, but their developmental processes, in particular their light sensory mechanisms, are still unknown. This study compares the development of sun and shade leaves of Chenopodium album L., paying special attention to the light sensory site. We hypothesized that mature leaves sense the light environment, and that this information determines anatomy of new leaves. To examine this hypothesis, we shaded plants partially. In the low-light apex treatment (LA), the shoot apex with developing leaves was covered by a cap made of a shading screen and received photosynthetically active photon flux density (PPFD) of 60 micromol m(-2 )s(-1), while the remaining mature leaves were exposed to 360 micromol m(-2 )s(-1). In the high-light apex treatment (HA), the apex was exposed while the mature leaves were covered by a shade screen. After these treatments for 6 d, we analyzed leaf anatomy and chloroplast ultrastructure. The anatomy of LA leaves with a two-layered palisade tissue was similar to that of sun leaves, while their chloroplasts were shade-type with thick grana. The anatomy of HA leaves and shade leaves was similar and both had one-layered palisade tissue, while chloroplasts of HA leaves were sun-type having thin grana. These results clearly demonstrate that new leaves differentiate depending on the light environment of mature leaves, while chloroplasts differentiate depending on the local light environment.
Periodical cicadas use light for oviposition site selection.
Yang, Louie H
2006-12-07
Organisms use incomplete information from local experience to assess the suitability of potential habitat sites over a wide range of spatial and temporal scales. Although ecologists have long recognized the importance of spatial scales in habitat selection, few studies have investigated the temporal scales of habitat selection. In particular, cues in the immediate environment may commonly provide indirect information about future habitat quality. In periodical cicadas (Magicicada spp.), oviposition site selection represents a very long-term habitat choice. Adult female cicadas insert eggs into tree branches during a few weeks in the summer of emergence, but their oviposition choices determine the underground habitats of root-feeding nymphs over the following 13 or 17 years. Here, field experiments are used to show that female cicadas use the local light environment of host trees during the summer of emergence to select long-term host trees. Light environments may also influence oviposition microsite selection within hosts, suggesting a potential behavioural mechanism for associating solar cues with host trees. In contrast, experimental nutrient enrichment of host trees did not influence cicada oviposition densities. These findings suggest that the light environments around host trees may provide a robust predictor of host tree quality in the near future. This habitat selection may influence the spatial distribution of several cicada-mediated ecological processes in eastern North American forests.
Periodical cicadas use light for oviposition site selection
Yang, Louie H
2006-01-01
Organisms use incomplete information from local experience to assess the suitability of potential habitat sites over a wide range of spatial and temporal scales. Although ecologists have long recognized the importance of spatial scales in habitat selection, few studies have investigated the temporal scales of habitat selection. In particular, cues in the immediate environment may commonly provide indirect information about future habitat quality. In periodical cicadas (Magicicada spp.), oviposition site selection represents a very long-term habitat choice. Adult female cicadas insert eggs into tree branches during a few weeks in the summer of emergence, but their oviposition choices determine the underground habitats of root-feeding nymphs over the following 13 or 17 years. Here, field experiments are used to show that female cicadas use the local light environment of host trees during the summer of emergence to select long-term host trees. Light environments may also influence oviposition microsite selection within hosts, suggesting a potential behavioural mechanism for associating solar cues with host trees. In contrast, experimental nutrient enrichment of host trees did not influence cicada oviposition densities. These findings suggest that the light environments around host trees may provide a robust predictor of host tree quality in the near future. This habitat selection may influence the spatial distribution of several cicada-mediated ecological processes in eastern North American forests. PMID:17015354
Low-Power Light Guiding and Localization in Optoplasmonic Chains Obtained by Directed Self-Assembly
Ahn, Wonmi; Zhao, Xin; Hong, Yan; Reinhard, Björn M.
2016-01-01
Optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and, at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth. PMID:26931149
Physical behaviour of anthropogenic light propagation into the nocturnal environment
Aubé, Martin
2015-01-01
Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al. 2005 Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane. PMID:25780231
Physical behaviour of anthropogenic light propagation into the nocturnal environment.
Aubé, Martin
2015-05-05
Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al. 2005 Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Vertical nanopillars for highly localized fluorescence imaging
Xie, Chong; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao
2011-01-01
Observing individual molecules in a complex environment by fluorescence microscopy is becoming increasingly important in biological and medical research, for which critical reduction of observation volume is required. Here, we demonstrate the use of vertically aligned silicon dioxide nanopillars to achieve below-the-diffraction-limit observation volume in vitro and inside live cells. With a diameter much smaller than the wavelength of visible light, a transparent silicon dioxide nanopillar embedded in a nontransparent substrate restricts the propagation of light and affords evanescence wave excitation along its vertical surface. This effect creates highly confined illumination volume that selectively excites fluorescence molecules in the vicinity of the nanopillar. We show that this nanopillar illumination can be used for in vitro single-molecule detection at high fluorophore concentrations. In addition, we demonstrate that vertical nanopillars interface tightly with live cells and function as highly localized light sources inside the cell. Furthermore, specific chemical modification of the nanopillar surface makes it possible to locally recruit proteins of interest and simultaneously observe their behavior within the complex, crowded environment of the cell. PMID:21368157
Low-power light guiding and localization in optoplasmonic chains obtained by directed self-assembly
Ahn, Wonmi; Zhao, Xin; Hong, Yan; ...
2016-03-02
Here, optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and,more » at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth.« less
Carr, Joel; D'Odorico, Paul; McGlathery, Karen; Wiberg, Patricia L.
2016-01-01
In shallow coastal bays where nutrient loading and riverine inputs are low, turbidity, and the consequent light environment are controlled by resuspension of bed sediments due to wind-waves and tidal currents. High sediment resuspension and low light environments can limit benthic primary productivity; however, both currents and waves are affected by the presence of benthic plants such as seagrass. This feedback between the presence of benthic primary producers such as seagrass and the consequent light environment has been predicted to induce bistable dynamics locally. However, these vegetated areas influence a larger area than they footprint, including a barren adjacent downstream area which exhibits reduced shear stresses. Here we explore through modeling how the patchy structure of seagrass meadows on a landscape may affect sediment resuspension and the consequent light environment due to the presence of this sheltered region. Heterogeneous vegetation covers comprising a mosaic of randomly distributed patches were generated to investigate the effect of patch modified hydrodynamics. Actual cover of vegetation on the landscape was used to facilitate comparisons across landscape realizations. Hourly wave and current shear stresses on the landscape along with suspended sediment concentration and light attenuation characteristics were then calculated and spatially averaged to examine how actual cover and mean water depth affect the bulk sediment and light environment. The results indicate that an effective cover, which incorporates the sheltering area, has important controls on the distributions of shear stress, suspended sediment, light environment, and consequent seagrass habitat suitability. Interestingly, an optimal habitat occurs within a depth range where, if actual cover is reduced past some threshold, the bulk light environment would no longer favor seagrass growth.
Prazeres, Martina; Roberts, T Edward; Pandolfi, John M
2017-03-23
Large benthic foraminifera (LBF) are crucial marine calcifiers in coral reefs, and sensitive to environmental changes. Yet, many species successfully colonise a wide range of habitats including highly fluctuating environments. We tested the combined effects of ocean warming, local impacts and different light levels on populations of the common LBF Amphistegina lobifera collected along a cross-shelf gradient of temperature and nutrients fluctuations. We analysed survivorship, bleaching frequency, chlorophyll a content and fecundity. Elevated temperature and nitrate significantly reduced survivorship and fecundity of A. lobifera across populations studied. This pattern was exacerbated when combined with below optimum light levels. Inshore populations showed a consistent resistance to increased temperature and nitrate levels, but all populations studied were significantly affected by light reduction. These findings demonstrated the capacity of some populations of LBF to acclimate to local conditions; nonetheless improvements in local water quality can ultimately ameliorate effects of climate change in local LBF populations.
Bolnick, Daniel I; Hendrix, Kimberly; Jordan, Lyndon Alexander; Veen, Thor; Brock, Chad D
2016-08-01
Variation in male nuptial colour signals might be maintained by negative frequency-dependent selection. This can occur if males are more aggressive towards rivals with locally common colour phenotypes. To test this hypothesis, we introduced red or melanic three-dimensional printed-model males into the territories of nesting male stickleback from two optically distinct lakes with different coloured residents. Red-throated models were attacked more in the population with red males, while melanic models were attacked more in the melanic male lake. Aggression against red versus melanic models also varied across a depth gradient within each lake, implying that the local light environment also modulated the strength of negative frequency dependence acting on male nuptial colour. © 2016 The Author(s).
Classification of light sources and their interaction with active and passive environments
NASA Astrophysics Data System (ADS)
El-Dardiry, Ramy G. S.; Faez, Sanli; Lagendijk, Ad
2011-03-01
Emission from a molecular light source depends on its optical and chemical environment. This dependence is different for various sources. We present a general classification in terms of constant-amplitude and constant-power sources. Using this classification, we have described the response to both changes in the local density of states and stimulated emission. The unforeseen consequences of this classification are illustrated for photonic studies by random laser experiments and are in good agreement with our correspondingly developed theory. Our results require a revision of studies on sources in complex media.
Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed ‡
Avanthey, Loïca; Beaudoin, Laurent; Gademer, Antoine; Roux, Michel
2016-01-01
Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results. PMID:27196913
Efficient visibility encoding for dynamic illumination in direct volume rendering.
Kronander, Joel; Jönsson, Daniel; Löw, Joakim; Ljung, Patric; Ynnerman, Anders; Unger, Jonas
2012-03-01
We present an algorithm that enables real-time dynamic shading in direct volume rendering using general lighting, including directional lights, point lights, and environment maps. Real-time performance is achieved by encoding local and global volumetric visibility using spherical harmonic (SH) basis functions stored in an efficient multiresolution grid over the extent of the volume. Our method enables high-frequency shadows in the spatial domain, but is limited to a low-frequency approximation of visibility and illumination in the angular domain. In a first pass, level of detail (LOD) selection in the grid is based on the current transfer function setting. This enables rapid online computation and SH projection of the local spherical distribution of visibility information. Using a piecewise integration of the SH coefficients over the local regions, the global visibility within the volume is then computed. By representing the light sources using their SH projections, the integral over lighting, visibility, and isotropic phase functions can be efficiently computed during rendering. The utility of our method is demonstrated in several examples showing the generality and interactive performance of the approach.
Proper PIN1 Distribution Is Needed for Root Negative Phototropism in Arabidopsis
Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang
2014-01-01
Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism. PMID:24465665
Proper PIN1 distribution is needed for root negative phototropism in Arabidopsis.
Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang
2014-01-01
Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism.
Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Matsui, Hirofumi; Kanamori, Toshiyuki
2014-05-07
Cell sorting is an essential and efficient experimental tool for the isolation and characterization of target cells. A three-dimensional environment is crucial in determining cell behavior and cell fate in biological analysis. Herein, we have applied photodegradable hydrogels to optical cell separation from a 3D environment using a computer-controlled light irradiation system. The hydrogel is composed of photocleavable tetra-arm polyethylene glycol and gelatin, which optimized cytocompatibility to adjust a composition of crosslinker and gelatin. Local light irradiation could degrade the hydrogel corresponding to the micropattern image designed on a laptop; minimum resolution of photodegradation was estimated at 20 µm. Light irradiation separated an encapsulated fluorescent microbead without any contamination of neighbor beads, even at multiple targets. Upon selective separation of target cells in the hydrogels, the separated cells have grown on another dish, resulting in pure culture. Cell encapsulation, light irradiation and degradation products exhibited negligible cytotoxicity in overall process.
Marshall, Kate L. A.; Philpot, Kate E.; Damas-Moreira, Isabel; Stevens, Martin
2015-01-01
Within-species colour variation is widespread among animals. Understanding how this arises can elucidate evolutionary mechanisms, such as those underlying reproductive isolation and speciation. Here, we investigated whether five island populations of Aegean wall lizards (Podarcis erhardii) have more effective camouflage against their own (local) island substrates than against other (non-local) island substrates to avian predators, and whether this was linked to island differences in substrate appearance. We also investigated whether degree of local substrate matching varied among island populations and between sexes. In most populations, both sexes were better matched against local backgrounds than against non-local backgrounds, particularly in terms of luminance (perceived lightness), which usually occurred when local and non-local backgrounds were different in appearance. This was found even between island populations that historically had a land connection and in populations that have been isolated relatively recently, suggesting that isolation in these distinct island environments has been sufficient to cause enhanced local background matching, sometimes on a rapid evolutionary time-scale. However, heightened local matching was poorer in populations inhabiting more variable and unstable environments with a prolonged history of volcanic activity. Overall, these results show that lizard coloration is tuned to provide camouflage in local environments, either due to genetic adaptation or changes during development. Yet, the occurrence and extent of selection for local matching may depend on specific conditions associated with local ecology and biogeographic history. These results emphasize how anti-predator adaptations to different environments can drive divergence within a species, which may contribute to reproductive isolation among populations and lead to ecological speciation. PMID:26372454
Marshall, Kate L A; Philpot, Kate E; Damas-Moreira, Isabel; Stevens, Martin
2015-01-01
Within-species colour variation is widespread among animals. Understanding how this arises can elucidate evolutionary mechanisms, such as those underlying reproductive isolation and speciation. Here, we investigated whether five island populations of Aegean wall lizards (Podarcis erhardii) have more effective camouflage against their own (local) island substrates than against other (non-local) island substrates to avian predators, and whether this was linked to island differences in substrate appearance. We also investigated whether degree of local substrate matching varied among island populations and between sexes. In most populations, both sexes were better matched against local backgrounds than against non-local backgrounds, particularly in terms of luminance (perceived lightness), which usually occurred when local and non-local backgrounds were different in appearance. This was found even between island populations that historically had a land connection and in populations that have been isolated relatively recently, suggesting that isolation in these distinct island environments has been sufficient to cause enhanced local background matching, sometimes on a rapid evolutionary time-scale. However, heightened local matching was poorer in populations inhabiting more variable and unstable environments with a prolonged history of volcanic activity. Overall, these results show that lizard coloration is tuned to provide camouflage in local environments, either due to genetic adaptation or changes during development. Yet, the occurrence and extent of selection for local matching may depend on specific conditions associated with local ecology and biogeographic history. These results emphasize how anti-predator adaptations to different environments can drive divergence within a species, which may contribute to reproductive isolation among populations and lead to ecological speciation.
McClain, Devon; Thomas, Nicole; Nguyen, Tri; O'Brien, Kevin P; Jiao, Jun
2010-11-01
In this study, we report the development of a microenvironment probe station capable of detecting the effect of small changes to the local environment around a carbon nanotube conduction channel. The microenvironment probe station is highly versatile and is used to characterize alterations in carbon nanotube field effect transistor electrical behavior in response to changes in temperature, gas species, infrared and ultraviolet light. All devices were electrically characterized in atmospheric, ultrahigh vacuum and oxygen-rich environments. The results suggest that devices could be changed from n-type at 1 x 10(-8) torr through an intermediate ambipolar state at 1 x 10(-4) torr to p-type at atmosphere solely by increasing the oxygen concentration. The average resistance of these carbon nanotube field effect transistors after annealing was observed to decrease by approximately 54% from their initial value under ultrahigh vacuum to their final value in the presence of pure oxygen while corresponding threshold voltages shifts were also observed. Illumination with infrared light resulted in a approximately 10% increase in drain current with an estimated response time <1 fs due to photon-induced electron-hole pair generation. Illumination with ultraviolet light resulted in approximately 5-15% reduction in drain current due to photon-induced desorption of oxygen adsorbate.
Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC.
Mohammed, Nazmi A; Elkarim, Mohammed Abd
2015-08-10
This work explores and evaluates the effect of diffuse light reflection on the accuracy of indoor localization systems based on visible light communication (VLC) in a high reflectivity environment using a received signal strength indication (RSSI) technique. The effect of the essential receiver (Rx) and transmitter (Tx) parameters on the localization error with different transmitted LED power and wall reflectivity factors is investigated at the worst Rx coordinates for a directed/overall link. Since this work assumes harsh operating conditions (i.e., a multipath model, high reflectivity surfaces, worst Rx position), an error of ≥ 1.46 m is found. To achieve a localization error in the range of 30 cm under these conditions with moderate LED power (i.e., P = 0.45 W), low reflectivity walls (i.e., ρ = 0.1) should be used, which would enable a localization error of approximately 7 mm at the room's center.
Achieving Passive Localization with Traffic Light Schedules in Urban Road Sensor Networks
Niu, Qiang; Yang, Xu; Gao, Shouwan; Chen, Pengpeng; Chan, Shibing
2016-01-01
Localization is crucial for the monitoring applications of cities, such as road monitoring, environment surveillance, vehicle tracking, etc. In urban road sensor networks, sensors are often sparely deployed due to the hardware cost. Under this sparse deployment, sensors cannot communicate with each other via ranging hardware or one-hop connectivity, rendering the existing localization solutions ineffective. To address this issue, this paper proposes a novel Traffic Lights Schedule-based localization algorithm (TLS), which is built on the fact that vehicles move through the intersection with a known traffic light schedule. We can first obtain the law by binary vehicle detection time stamps and describe the law as a matrix, called a detection matrix. At the same time, we can also use the known traffic light information to construct the matrices, which can be formed as a collection called a known matrix collection. The detection matrix is then matched in the known matrix collection for identifying where sensors are located on urban roads. We evaluate our algorithm by extensive simulation. The results show that the localization accuracy of intersection sensors can reach more than 90%. In addition, we compare it with a state-of-the-art algorithm and prove that it has a wider operational region. PMID:27735871
Algorithmic Approaches for Place Recognition in Featureless, Walled Environments
2015-01-01
inertial measurement unit LIDAR light detection and ranging RANSAC random sample consensus SLAM simultaneous localization and mapping SUSAN smallest...algorithm 38 21 Typical input image for general junction based algorithm 39 22 Short exposure image of hallway junction taken by LIDAR 40 23...discipline of simultaneous localization and mapping ( SLAM ) has been studied intensively over the past several years. Many technical approaches
Stem cell activation by light guides plant organogenesis.
Yoshida, Saiko; Mandel, Therese; Kuhlemeier, Cris
2011-07-01
Leaves originate from stem cells located at the shoot apical meristem. The meristem is shielded from the environment by older leaves, and leaf initiation is considered to be an autonomous process that does not depend on environmental cues. Here we show that light acts as a morphogenic signal that controls leaf initiation and stabilizes leaf positioning. Leaf initiation in tomato shoot apices ceases in the dark but resumes in the light, an effect that is mediated through the plant hormone cytokinin. Dark treatment also affects the subcellular localization of the auxin transporter PIN1 and the concomitant formation of auxin maxima. We propose that cytokinin is required for meristem propagation, and that auxin redirects cytokinin-inducible meristem growth toward organ formation. In contrast to common wisdom over the last 150 years, the light environment controls the initiation of lateral organs by regulating two key hormones: auxin and cytokinin.
Stem cell activation by light guides plant organogenesis
Yoshida, Saiko; Mandel, Therese; Kuhlemeier, Cris
2011-01-01
Leaves originate from stem cells located at the shoot apical meristem. The meristem is shielded from the environment by older leaves, and leaf initiation is considered to be an autonomous process that does not depend on environmental cues. Here we show that light acts as a morphogenic signal that controls leaf initiation and stabilizes leaf positioning. Leaf initiation in tomato shoot apices ceases in the dark but resumes in the light, an effect that is mediated through the plant hormone cytokinin. Dark treatment also affects the subcellular localization of the auxin transporter PIN1 and the concomitant formation of auxin maxima. We propose that cytokinin is required for meristem propagation, and that auxin redirects cytokinin-inducible meristem growth toward organ formation. In contrast to common wisdom over the last 150 years, the light environment controls the initiation of lateral organs by regulating two key hormones: auxin and cytokinin. PMID:21724835
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Wonmi; Zhao, Xin; Hong, Yan
Here, optoplasmonic structures contain plasmonic components embedded in a defined photonic environment to create synergistic interactions between photonic and plasmonic components. Here, we show that chains of optical microspheres containing gold nanoparticles in their evanescent field combine the light guiding properties of a microsphere chain with the light localizing properties of a plasmonic nanoantenna. We implement these materials through template guided self-assembly and investigate their fundamental electromagnetic working principles through combination of electromagnetic simulations and experimental characterization. We demonstrate that optoplasmonic chains implemented by directed self-assembly achieve a significant reduction in guiding losses when compared with conventional plasmonic waveguides and,more » at the same time, retain the light localizing properties of plasmonic antennas at pre-defined locations. The results reinforce the potential of optoplasmonic structures for realizing low-loss optical interconnects with high bandwidth.« less
Bypass Ratio: The US Air Force and Light-Attack Aviation
2013-06-01
for making recommendations which optimize base activity and its impact on the environment. Local and state politics can keep a base open even if it is...for the region, and this conduct can affect global commerce. Such disruption and destabilization in turn can have large impacts on the US diplomatic... IFR ) operations, emergency procedures, low-level flight and two-ship formation flight by this stage. Once track selection occurs, the light-attack
Code of Federal Regulations, 2012 CFR
2012-04-01
... protect the environment and the public health and safety, including standards under a tribal-state compact... health and safety standards adopted by the tribe in light of climate, geography, and other local...
Coupling of the Models of Human Physiology and Thermal Comfort
NASA Astrophysics Data System (ADS)
Pokorny, J.; Jicha, M.
2013-04-01
A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.
Light in Thermal Environments (LITE) Workshop
NASA Technical Reports Server (NTRS)
1993-01-01
Light emitted from high temperature black smokers (350 C) at mid-ocean ridge spreading centers has been documented, but the source of this light and its photochemical and biological consequences have yet to be investigated. Preliminary studies indicate that thermal radiation alone might account for the 'glow' and that a novel photoreceptor in shrimp colonizing black smoker chimneys may detect this 'glow.' A more controversial question is whether there may be sufficient photon flux of appropriate wavelengths to support geothermally-driven photosynthesis (GDP) by microorganisms. Although only a very low level of visible and near infrared light may be emitted from any single hydrothermal vent, several aspects of the light make it of more than enigmatic interest. First, the light is clearly linked to geophysical (and perhaps geochemical) processes; its attributes may serve as powerful index parameters for monitoring change in these processes. Second, while the glow at a vent orifice is a very local phenomenon, more expansive subsurface environments may be illuminated, thereby increasing the spatial scale at which biological consequences of this light might be considered. Third, in contrast to intermittent bioluminescent light sources in the deep sea, the light emitted at vents almost certainly glows or flickers continuously over the life of the individual black smokers (years to decades); collectively, light emitted from black smokers along the ocean's spreading centers superimposed on background Cerenkov radiation negates the concept of the deep sea as an environment devoid of abiotic light. Finally, the history of hydrothermal activity predates the origin of life; light in the deep sea has been a continuous phenomenon on a geological time scale and may have served either as a seed or refugium for the evolution of biological photochemical reactions or adaptations.
Localized surface plasmons in vibrating graphene nanodisks
NASA Astrophysics Data System (ADS)
Wang, Weihua; Li, Bo-Hong; Stassen, Erik; Mortensen, N. Asger; Christensen, Johan
2016-02-01
Localized surface plasmons are confined collective oscillations of electrons in metallic nanoparticles. When driven by light, the optical response is dictated by geometrical parameters and the dielectric environment and plasmons are therefore extremely important for sensing applications. Plasmons in graphene disks have the additional benefit of being highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters, such as molecules, for future nanophotonic devices.
NASA Astrophysics Data System (ADS)
Procaccini, Gabriele; Ruocco, Miriam; Marín-Guirao, Lázaro; Dattolo, Emanuela; Brunet, Christophe; D'Esposito, Daniela; Lauritano, Chiara; Mazzuca, Silvia; Serra, Ilia Anna; Bernardo, Letizia; Piro, Amalia; Beer, Sven; Björk, Mats; Gullström, Martin; Buapet, Pimchanok; Rasmusson, Lina M.; Felisberto, Paulo; Gobert, Sylvie; Runcie, John W.; Silva, João; Olivé, Irene; Costa, Monya M.; Barrote, Isabel; Santos, Rui
2017-02-01
Here we present the results of a multiple organizational level analysis conceived to identify acclimative/adaptive strategies exhibited by the seagrass Posidonia oceanica to the daily fluctuations in the light environment, at contrasting depths. We assessed changes in photophysiological parameters, leaf respiration, pigments, and protein and mRNA expression levels. The results show that the diel oscillations of P. oceanica photophysiological and respiratory responses were related to transcripts and proteins expression of the genes involved in those processes and that there was a response asynchrony between shallow and deep plants probably caused by the strong differences in the light environment. The photochemical pathway of energy use was more effective in shallow plants due to higher light availability, but these plants needed more investment in photoprotection and photorepair, requiring higher translation and protein synthesis than deep plants. The genetic differentiation between deep and shallow stands suggests the existence of locally adapted genotypes to contrasting light environments. The depth-specific diel rhythms of photosynthetic and respiratory processes, from molecular to physiological levels, must be considered in the management and conservation of these key coastal ecosystems.
Procaccini, Gabriele; Ruocco, Miriam; Marín-Guirao, Lázaro; Dattolo, Emanuela; Brunet, Christophe; D’Esposito, Daniela; Lauritano, Chiara; Mazzuca, Silvia; Serra, Ilia Anna; Bernardo, Letizia; Piro, Amalia; Beer, Sven; Björk, Mats; Gullström, Martin; Buapet, Pimchanok; Rasmusson, Lina M.; Felisberto, Paulo; Gobert, Sylvie; Runcie, John W.; Silva, João; Olivé, Irene; Costa, Monya M.; Barrote, Isabel; Santos, Rui
2017-01-01
Here we present the results of a multiple organizational level analysis conceived to identify acclimative/adaptive strategies exhibited by the seagrass Posidonia oceanica to the daily fluctuations in the light environment, at contrasting depths. We assessed changes in photophysiological parameters, leaf respiration, pigments, and protein and mRNA expression levels. The results show that the diel oscillations of P. oceanica photophysiological and respiratory responses were related to transcripts and proteins expression of the genes involved in those processes and that there was a response asynchrony between shallow and deep plants probably caused by the strong differences in the light environment. The photochemical pathway of energy use was more effective in shallow plants due to higher light availability, but these plants needed more investment in photoprotection and photorepair, requiring higher translation and protein synthesis than deep plants. The genetic differentiation between deep and shallow stands suggests the existence of locally adapted genotypes to contrasting light environments. The depth-specific diel rhythms of photosynthetic and respiratory processes, from molecular to physiological levels, must be considered in the management and conservation of these key coastal ecosystems. PMID:28211527
Venkataraman, Rohini; Kamaluddeen, Majeeda; Amin, Harish; Lodha, Abhay
2018-01-15
In utero sensory stimuli and interaction with the environment strongly influence early phases of fetal and infant development. Extremely premature infants are subjected to noxious procedures and routine monitoring, in addition to exposure to excessive light and noise, which disturb the natural sleep cycle and induce stress. Non-invasive ventilation, measures to prevent sepsis, and human milk feeding improve short-term and long-term neurodevelopmental outcomes in premature infants. To preserve brain function, and to improve quality of life and long-term neurodevelopmental outcomes, the focus now is on the neonatal intensive care unit (NICU) environment and its impact on the infant during hospital stay. The objectives of this write-up are to understand the effects of environmental factors, including lighting and noise in the NICU, on sensory development of the infant, the need to decrease parental and caregiver stress, and to review existing literature, local policies and recommendations.
Local Positioning System Using Flickering Infrared LEDs
Raharijaona, Thibaut; Mawonou, Rodolphe; Nguyen, Thanh Vu; Colonnier, Fabien; Boyron, Marc; Diperi, Julien; Viollet, Stéphane
2017-01-01
A minimalistic optical sensing device for the indoor localization is proposed to estimate the relative position between the sensor and active markers using amplitude modulated infrared light. The innovative insect-based sensor can measure azimuth and elevation angles with respect to two small and cheap active infrared light emitting diodes (LEDs) flickering at two different frequencies. In comparison to a previous lensless visual sensor that we proposed for proximal localization (less than 30 cm), we implemented: (i) a minimalistic sensor in terms of small size (10 cm3), light weight (6 g) and low power consumption (0.4 W); (ii) an Arduino-compatible demodulator for fast analog signal processing requiring low computational resources; and (iii) an indoor positioning system for a mobile robotic application. Our results confirmed that the proposed sensor was able to estimate the position at a distance of 2 m with an accuracy as small as 2-cm at a sampling frequency of 100 Hz. Our sensor can be also suitable to be implemented in a position feedback loop for indoor robotic applications in GPS-denied environment. PMID:29099743
Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle †
Ito, Seigo; Hiratsuka, Shigeyoshi; Ohta, Mitsuhiko; Matsubara, Hiroyuki; Ogawa, Masaru
2018-01-01
We present our third prototype sensor and a localization method for Automated Guided Vehicles (AGVs), for which small imaging LIght Detection and Ranging (LIDAR) and fusion-based localization are fundamentally important. Our small imaging LIDAR, named the Single-Photon Avalanche Diode (SPAD) LIDAR, uses a time-of-flight method and SPAD arrays. A SPAD is a highly sensitive photodetector capable of detecting at the single-photon level, and the SPAD LIDAR has two SPAD arrays on the same chip for detection of laser light and environmental light. Therefore, the SPAD LIDAR simultaneously outputs range image data and monocular image data with the same coordinate system and does not require external calibration among outputs. As AGVs travel both indoors and outdoors with vibration, this calibration-less structure is particularly useful for AGV applications. We also introduce a fusion-based localization method, named SPAD DCNN, which uses the SPAD LIDAR and employs a Deep Convolutional Neural Network (DCNN). SPAD DCNN can fuse the outputs of the SPAD LIDAR: range image data, monocular image data and peak intensity image data. The SPAD DCNN has two outputs: the regression result of the position of the SPAD LIDAR and the classification result of the existence of a target to be approached. Our third prototype sensor and the localization method are evaluated in an indoor environment by assuming various AGV trajectories. The results show that the sensor and localization method improve the localization accuracy. PMID:29320434
Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle.
Ito, Seigo; Hiratsuka, Shigeyoshi; Ohta, Mitsuhiko; Matsubara, Hiroyuki; Ogawa, Masaru
2018-01-10
We present our third prototype sensor and a localization method for Automated Guided Vehicles (AGVs), for which small imaging LIght Detection and Ranging (LIDAR) and fusion-based localization are fundamentally important. Our small imaging LIDAR, named the Single-Photon Avalanche Diode (SPAD) LIDAR, uses a time-of-flight method and SPAD arrays. A SPAD is a highly sensitive photodetector capable of detecting at the single-photon level, and the SPAD LIDAR has two SPAD arrays on the same chip for detection of laser light and environmental light. Therefore, the SPAD LIDAR simultaneously outputs range image data and monocular image data with the same coordinate system and does not require external calibration among outputs. As AGVs travel both indoors and outdoors with vibration, this calibration-less structure is particularly useful for AGV applications. We also introduce a fusion-based localization method, named SPAD DCNN, which uses the SPAD LIDAR and employs a Deep Convolutional Neural Network (DCNN). SPAD DCNN can fuse the outputs of the SPAD LIDAR: range image data, monocular image data and peak intensity image data. The SPAD DCNN has two outputs: the regression result of the position of the SPAD LIDAR and the classification result of the existence of a target to be approached. Our third prototype sensor and the localization method are evaluated in an indoor environment by assuming various AGV trajectories. The results show that the sensor and localization method improve the localization accuracy.
Jiménez-Solano, Alberto; Galisteo-López, Juan F; Míguez, Hernán
2018-04-19
Tailoring the interaction of electromagnetic radiation with matter is central to the development of optoelectronic devices. This becomes particularly relevant for a new generation of devices offering the possibility of solution processing with competitive efficiencies as well as new functionalities. These devices, containing novel materials such as inorganic colloidal quantum dots or hybrid organic-inorganic lead halide perovskites, commonly demand thin (tens of nanometers) active layers in order to perform optimally and thus maximizing the way electromagnetic radiation interacts with these layers is essential. In this Perspective, we discuss the relevance of tailoring the optical environment of the active layer in an optoelectronic device and illustrate it with two real-world systems comprising photovoltaic cells and light emitting devices.
Scales of Star Formation: Does Local Environment Matter?
NASA Astrophysics Data System (ADS)
Bittle, Lauren
2018-01-01
I will present my work on measuring molecular gas properties in local universe galaxies to assess the impact of local environment on the gas and thus star formation. I will also discuss the gas properties on spatial scales that span an order of magnitude to best understand the layers of star formation processes. Local environments within these galaxies include external mechanisms from starburst supernova shells, spiral arm structure, and superstar cluster radiation. Observations of CO giant molecular clouds (GMC) of ~150pc resolution in IC 10, the Local Group dwarf starburst, probe the large-scale diffuse gas, some of which are near supernova bubble ridges. We mapped CO clouds across the spiral NGC 7793 at intermediate scales of ~20pc resolution with ALMA. With the clouds, we can test theories of cloud formation and destruction in relation to the spiral arm pattern and cluster population from the HST LEGUS analysis. Addressing the smallest scales, I will show results of 30 Doradus ALMA observations of sub-parsec dense molecular gas clumps only 15pc away from a superstar cluster R136. Though star formation occurs directly from the collapse of densest molecular gas, we test theories of scale-free star formation, which suggests a constant slope of the mass function from ~150pc GMCs to sub-parsec clumps. Probing environments including starburst supernova shells, spiral arm structure, and superstar cluster radiation shed light on how these local external mechanisms affect the molecular gas at various scales of star formation.
NASA Astrophysics Data System (ADS)
Walker, Constance E.
2010-01-01
The preservation of dark skies is a growing global concern, yet it is one of the easiest environmental problems people can address on local levels. For this reason, the goal of the IYA Dark Skies Awareness Cornerstone Project is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs. These programs provide resources on light pollution for new technologies like a presence in Second Life and podcasts, for local thematic events at national parks and observatory open houses, for international thematic events like International Dark Skies Week and Earth Hour, for a program in the arts like an international photo contest, for global citizen-science programs that measure night sky brightness worldwide, and for educational materials like a kit with a light shielding demonstration. These programs have been successfully used around the world during IYA to raise awareness of the effects of light pollution on public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy. The presentation will provide an update, take a look ahead at the project's sustainability, and describe how people can be involved in the future. Information about the programs is at www.darkskiesawareness.org.
Promoting Dark Skies Awareness Programs Beyond the International Year of Astronomy 2009
NASA Astrophysics Data System (ADS)
Walker, Constance E.; Dark Skies Working Group
2010-01-01
The preservation of dark skies is a growing global concern, yet it is one of the easiest environmental problems people can address on local levels. For this reason, the goal of the International Year of Astronomy 2009 (IYA2009) Dark Skies Awareness Cornerstone Project is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs. These programs provide resources on light pollution for new technologies like a presence in Second Life and podcasts, for local thematic events at national parks and observatory open houses, for international thematic events like International Dark Skies Week and Earth Hour, for a program in the arts like an international photo contest, for global citizen-science programs that measure night sky brightness worldwide, and for educational materials like a kit with a light shielding demonstration. These programs have been successfully used around the world during IYA2009 to raise awareness of the effects of light pollution on public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy. The poster will provide an update, take a look ahead at the project's sustainability, and describe how people can be involved in the future. Information about the programs is at www.darkskiesawareness.org.
EMC effect for light nuclei: New results from Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aji Daniel
High energy lepton scattering has been the primary tool for mapping out the quark distributions of nucleons and nuclei. Measurements of deep inelastic scattering in nuclei show that the quark distributions in heavy nuclei are not simply the sum of the quark distributions of the constituent proton and neutron, as one might expect for a weakly bound system. This modification of the quark distributions in nuclei is known as the EMC effect. I will discuss the results from Jefferson Lab (JLab) experiment E03-103, a precise measurement of the EMC effect in few-body nuclei with emphasis on the large x region.more » Data from the light nuclei suggests that the nuclear dependence of the high x quark distribution may depend on the nucleon's local environment, rather than being a purely bulk effect. In addition, I will also discuss about a future experiment at the upgraded 12 GeV Jefferson Lab facility which will further investigate the role of the local nuclear environment and the influence of detailed nuclear structure to the modification of quark distributions.« less
Galván-Tejada, Carlos E.; García-Vázquez, Juan Pablo; Galván-Tejada, Jorge I.; Delgado-Contreras, J. Rubén; Brena, Ramon F.
2015-01-01
In this paper, we present the development of an infrastructure-less indoor location system (ILS), which relies on the use of a microphone, a magnetometer and a light sensor of a smartphone, all three of which are essentially passive sensors, relying on signals available practically in any building in the world, no matter how developed the region is. In our work, we merge the information from those sensors to estimate the user’s location in an indoor environment. A multivariate model is applied to find the user’s location, and we evaluate the quality of the resulting model in terms of sensitivity and specificity. Our experiments were carried out in an office environment during summer and winter, to take into account changes in light patterns, as well as changes in the Earth’s magnetic field irregularities. The experimental results clearly show the benefits of using the information fusion of multiple sensors when contrasted with the use of a single source of information. PMID:26295237
Galván-Tejada, Carlos E; García-Vázquez, Juan Pablo; Galván-Tejada, Jorge I; Delgado-Contreras, J Rubén; Brena, Ramon F
2015-08-18
In this paper, we present the development of an infrastructure-less indoor location system (ILS), which relies on the use of a microphone, a magnetometer and a light sensor of a smartphone, all three of which are essentially passive sensors, relying on signals available practically in any building in the world, no matter how developed the region is. In our work, we merge the information from those sensors to estimate the user's location in an indoor environment. A multivariate model is applied to find the user's location, and we evaluate the quality of the resulting model in terms of sensitivity and specificity. Our experiments were carried out in an office environment during summer and winter, to take into account changes in light patterns, as well as changes in the Earth's magnetic field irregularities. The experimental results clearly show the benefits of using the information fusion of multiple sensors when contrasted with the use of a single source of information.
Localized, plasmon-mediated heating from embedded nanoparticles in nanocomposites
NASA Astrophysics Data System (ADS)
Maity, Somsubhra; Downen, Lori; Bochinski, Jason; Clarke, Laura
2010-03-01
Metallic nanoparticles exhibit a surface plasmon resonance which, when excited with visible light, results in a dramatic increase in the nanoparticle temperature. Previously such localized heating has been primarily employed in biomedical research and other experiments involving aqueous environments. In this work, we investigated use of the nanoparticles in solid phase to re-shape, bond, melt, and otherwise process nanofibrous mats of ˜200 nm diameter nanofibers doped with ˜80 nm spherical gold nanoparticles. Under low light intensities (100 mW/cm^2 @ 532 nm) and dilute nanoparticle loading (˜0.15% volume fraction), irradiation of a few minutes melted nanofibrous mats of poly (ethylene oxide) (Tm = 65 degree C). Control samples without gold nanoparticles displayed no melting. Because the heat is generated from within the material and only at the nanoparticle locations, this technique enables true nanoprocessing -- the non-contact, controlled application of heat at specific nano-sized locations within a material to effect desired local changes. Funded by CMMI-0829379.
Protecting the Local Dark-Sky Areas around the International Observatories in Chile.
NASA Astrophysics Data System (ADS)
Smith, M. G.
2001-12-01
This report covers efforts by IAU Commission 50's new Working Group on Light Pollution to slow or halt the spread of incipient light pollution near the VLT, the Magellan 6.5m telescopes, Gemini South, SOAR, Blanco and many smaller telescopes in Chile. An effort has just begun to protect the ALMA site in Northern Chile from RFI. Such work includes extensive outreach programs to the local population, schools and industry as well as to local, regional and national levels of government in Chile. The group is working internationally with such organizations as the IDA; one member has recently led the production of "The first world atlas of the artificial night-sky brightness". These efforts have resulted in the first national-level environmental legislation covering dark skies as part of a government effort to protect the environment. Chilean manufacturers are now producing competitive, full-cut-off, street lighting designed specifically to comply with the new legislation. The Chilean national tourism agency is supporting "Astronomical Tourism" based on the dark, clear skies of Chile. An international conference on Controlling Light Pollution and RFI will be held in La Serena, Chile on 5-7 March, 2002, backed up by a parallel meeting of Chilean amateur astronomers. Much work remains to be done. Most of this work is supported by funding from the US National Science Foundation through CTIO, and from ESO, OCIW and CONAMA.
NASA Astrophysics Data System (ADS)
Park, Byullee; Lee, Hongki; Upputuri, Paul Kumar; Pramanik, Manojit; Kim, Donghyun; Kim, Chulhong
2018-02-01
Super-resolution microscopy has been increasingly important to delineate nanoscale biological structures or nanoparticles. With these increasing demands, several imaging modalities, including super-resolution fluorescence microscope (SRFM) and electron microscope (EM), have been developed and commercialized. These modalities achieve nanoscale resolution, however, SRFM cannot image without fluorescence, and sample preparation of EM is not suitable for biological specimens. To overcome those disadvantages, we have numerically studied the possibility of superresolution photoacoustic microscopy (SR-PAM) based on near-field localization of light. Photoacoustic (PA) signal is generally acquired based on optical absorption contrast; thus it requires no agents or pre-processing for the samples. The lateral resolution of the conventional photoacoustic microscopy is limited to 200 nm by diffraction limit, therefore reducing the lateral resolution is a major research impetus. Our approach to breaking resolution limit is to use laser pulses of extremely small spot size as a light source. In this research, we simulated the PA signal by constructing the three dimensional SR-PAM system environment using the k-Wave toolbox. As the light source, we simulated ultrashort light pulses using geometrical nanoaperture with near-field localization of surface plasmons. Through the PA simulation, we have successfully distinguish cuboids spaced 3 nm apart. In the near future, we will develop the SR-PAM and it will contribute to biomedical and material sciences.
Light pollution and protection of optical telescope sites
NASA Astrophysics Data System (ADS)
Tan, Huisong; Cen, Xuefen
2002-03-01
There is now great investment in astronomy as a science in China and other countries. We are currently looking forward to the fruits of the astronomical instruments. Unfortunately the light pollution influences optical/infrared observations on the contrast and the signal-to-noise ratio. Astronomy has been retreated to mountains, deserts and into space. The only way is human being aiming for good lighting environments and protecting the telescope sites. The Commission Internationale d'Eclairage, the International Dark-sky Association, the IAU Commission 21 (The Light of the Night Sky) and 50 (Protection of Existing and Potential Observatory Sites) have done many efforts in this field to control light pollution. Some countries (Japan, Chile) or local (Tucson, USA; Canarias, Spain) governments have issued guidelines for light pollution to keep dark sky for observatories. These guidelines could be used as references in China. If we do not solve the question of light pollution, the merely a few acceptable observatories in China have to be retreated.
Green laser light activates the inner ear
NASA Astrophysics Data System (ADS)
Wenzel, Gentiana I.; Balster, Sven; Zhang, Kaiyin; Lim, Hubert H.; Reich, Uta; Massow, Ole; Lubatschowski, Holger; Ertmer, Wolfgang; Lenarz, Thomas; Reuter, Guenter
2009-07-01
The hearing performance with conventional hearing aids and cochlear implants is dramatically reduced in noisy environments and for sounds more complex than speech (e. g. music), partially due to the lack of localized sensorineural activation across different frequency regions with these devices. Laser light can be focused in a controlled manner and may provide more localized activation of the inner ear, the cochlea. We sought to assess whether visible light with parameters that could induce an optoacoustic effect (532 nm, 10-ns pulses) would activate the cochlea. Auditory brainstem responses (ABRs) were recorded preoperatively in anesthetized guinea pigs to confirm normal hearing. After opening the bulla, a 50-μm core-diameter optical fiber was positioned in the round window niche and directed toward the basilar membrane. Optically induced ABRs (OABRs), similar in shape to those of acoustic stimulation, were elicited with single pulses. The OABR peaks increased with energy level (0.6 to 23 μJ/pulse) and remained consistent even after 30 minutes of continuous stimulation at 13 μJ, indicating minimal or no stimulation-induced damage within the cochlea. Our findings demonstrate that visible light can effectively and reliably activate the cochlea without any apparent damage. Further studies are in progress to investigate the frequency-specific nature and mechanism of green light cochlear activation.
Quantum phase transitions of light in a dissipative Dicke-Bose-Hubbard model
NASA Astrophysics Data System (ADS)
Wu, Ren-Cun; Tan, Lei; Zhang, Wen-Xuan; Liu, Wu-Ming
2017-09-01
The impact that the environment has on the quantum phase transition of light in the Dicke-Bose-Hubbard model is investigated. Based on the quasibosonic approach, mean-field theory, and perturbation theory, the formulation of the Hamiltonian, the eigenenergies, and the superfluid order parameter are obtained analytically. Compared with the ideal cases, the order parameter of the system evolves with time as the photons naturally decay in their environment. When the system starts with the superfluid state, the dissipation makes the photons more likely to localize, and a greater hopping energy of photons is required to restore the long-range phase coherence of the localized state of the system. Furthermore, the Mott lobes depend crucially on the numbers of atoms and photons (which disappear) of each site, and the system tends to be classical with the number of atoms increasing; however, the atomic number is far lower than that expected under ideal circumstances. As there is an inevitable interaction between the coupled-cavity array and its surrounding environment in the actual experiments, the system is intrinsically dissipative. The results obtained here provide a more realistic image for characterizing the dissipative nature of quantum phase transitions in lossy platforms, which will offer valuable insight into quantum simulation of a dissipative system and which are helpful in guiding experimentalists in open quantum systems.
Astrophysical Nuclear Reaction Rates in the Dense Metallic Environments
NASA Astrophysics Data System (ADS)
Kilic, Ali Ihsan
2017-09-01
Nuclear reaction rates can be enhanced by many orders of magnitude in dense and relatively cold astrophysical plasmas such as in white dwarfs, brown dwarfs, and giant planets. Similar conditions are also present in supernova explosions where the ignition conditions are vital for cosmological models. White dwarfs are compact objects that have both extremely high interior densities and very strong local magnetic fields. For the first time, a new formula has been developed to explain cross section and reaction rate quantities for light elements that includes not only the nuclear component but also the material dependence, magnetic field, and crystal structure dependency in dense metallic environments. I will present the impact of the developed formula on the cross section and reaction rates for light elements. This could have possible technological applications in energy production using nuclear fusion reactions.
Object Recognition and Localization: The Role of Tactile Sensors
Aggarwal, Achint; Kirchner, Frank
2014-01-01
Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments. PMID:24553087
ERIC Educational Resources Information Center
Cortez-Riggio, Kim-Marie
2011-01-01
Project "Green Footprint" is a local community environment project created by fifth-grade students to remind the citizens of their school (and Earth) to tread lightly on Mother Nature's creations. The students chose to focus on the air quality outside the school, specifically the carbon emissions produced by idling cars. Students complete Internet…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karve, Abhijit A; Weston, David; Jawdy, Sara
2012-01-01
Shade avoidance signaling in higher plants involves perception of the incident red/far-red (R/FR) light by phytochromes and the modulation of downstream transcriptional networks to regulate developmental plasticity in relation to heterogeneous light environments. In this study, we characterized the expression and functional features of Populus phytochrome (PHY) gene family as well as the transcriptional responses of Populus to the changes in R/FR light. Expression data indicated that PHYA is the predominant PHY in the dark grown Populus seedling whereas PHYBs are most abundant in mature tissue types. Out of three Populus PHYs, PHYA is light labile and localized to cytosolmore » in dark whereas both PHYB1 and PHYB2 are light stable and are localized to nucleus in mesophyll protoplasts. When expressed in Arabidopsis, PHYB1 rescued Arabidopsis phyB mutant phenotype whereas PHYB2 did not, suggesting functional diversification between these two gene family members. However, phenotypes of transgenic Populus lines with altered expression of PHYB1, PHYB2 or both and the expression of candidate shade response genes in these transgenic lines suggest that PHYB1 and PHYB2 may have distinct yet overlapping functions. The RNAseq results and analysis of Populus exposed to enriched-FR light indicate that genes associated in cell wall modification and brassinosteroid signaling were induced under far red light. Overall our data indicate that Populus transcriptional responses are at least partially conserved with Arabidopsis.« less
Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation
Yang, Jiun-Chan; Ji, Jin; Hogle, James M.; Larson, Dale N.
2009-01-01
We performed multiplexed sensing on nanohole array devices to simultaneously obtain information on molecular absorption, scattering, and refractive-index change, which were distinguished by using different array structures with distinct optical behavior. Up to 25 arrays were fabricated within a 65 μm × 50 μm area to provide real-time information of the local surface environment. The performance of multiplexed sensing was examined by flowing NaCl, coomassie blue, bovine serum albumin, and liposome solutions that exhibit different visible light absorption / scattering properties and different refractive indices. Experimental artifacts from light source fluctuation, sample injections, and light scattering induced by aggregates in solutions were detected by monitoring superwavelength holes or nanohole arrays with different periodicity and hole diameters. PMID:19157848
Low-Light Image Enhancement Using Adaptive Digital Pixel Binning
Yoo, Yoonjong; Im, Jaehyun; Paik, Joonki
2015-01-01
This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP). Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor. PMID:26121609
Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides
Hackett, Timothy A.; Baldwin, D. J.; Paudyal, Durga
2017-05-17
Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spinmore » orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. As a result, through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.« less
Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides
NASA Astrophysics Data System (ADS)
Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.
2017-11-01
Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. Through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.
Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hackett, Timothy A.; Baldwin, D. J.; Paudyal, Durga
Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spinmore » orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry structures. As a result, through crystal field calculations we also illustrate the crystal field ground state 4f multiplets of light lanthanides.« less
Chakkarapani, Suresh Kumar; Sun, Yucheng; Lee, Seungah; Fang, Ning; Kang, Seong Ho
2018-05-22
Three-dimensional (3D) orientations of individual anisotropic plasmonic nanoparticles in aggregates were observed in real time by integrated light sheet super-resolution microscopy ( iLSRM). Asymmetric light scattering of a gold nanorod (AuNR) was used to trigger signals based on the polarizer angle. Controlled photoswitching was achieved by turning the polarizer and obtaining a series of images at different polarization directions. 3D subdiffraction-limited super-resolution images were obtained by superlocalization of scattering signals as a function of the anisotropic optical properties of AuNRs. Varying the polarizer angle allowed resolution of the orientation of individual AuNRs. 3D images of individual nanoparticles were resolved in aggregated regions, resulting in as low as 64 nm axial resolution and 28 nm spatial resolution. The proposed imaging setup and localization approach demonstrates a convenient method for imaging under a noisy environment where the majority of scattering noise comes from cellular components. This integrated 3D iLSRM and localization technique was shown to be reliable and useful in the field of 3D nonfluorescence super-resolution imaging.
Face Recognition Using Local Quantized Patterns and Gabor Filters
NASA Astrophysics Data System (ADS)
Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.
2015-05-01
The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.
Jones, Alan M
2010-01-01
N-myc downregulated (NDR) genes were discovered more than fifteen years ago. Indirect evidence support a role in tumor progression and cellular differentiation, but their biochemical function is still unknown. Our detailed analyses on Arabidopsis NDR proteins (deisgnated NDR-like, NDL) show their involvement in altering auxin transport, local auxin gradients and expression level of auxin transport proteins. Animal NDL proteins may be involved in membrane recycling of E-cadherin and effector for the small GTPase. In light of these findings, we hypothesize that NDL proteins regulate vesicular trafficking of auxin transport facilitator PIN proteins by biochemically alterating the local lipid environment of PIN proteins. PMID:20724844
The influence of environment on the properties of galaxies
NASA Astrophysics Data System (ADS)
Hashimoto, Yasuhiro
1999-11-01
I will present the result of the evaluation of the environmental influences on three important galactic properties; morphology, star formation rate, and interaction in the local universe. I have used a very large and homogeneous sample of 15749 galaxies drawn from the Las Campanas Redshift Survey (Shectman et al. 1996). This data set consists of galaxies inhabiting the entire range of galactic environments, from the sparsest field to the densest clusters, thus allowing me to study environmental variations without combing multiple data sets with inhomogeneous characteristics. Furthermore, I can also extend the research to a ``general'' environmental investigation by, for the first time, decoupling the very local environment, as characterized by local galaxy density, from the effects of larger-scale environments, such as membership in a cluster. The star formation rate is characterized by the strength of EW(OII), while the galactic morphology is characterized by the automatically-measured concentration index (e.g. Okamura, Kodaira, & Watanabe 1984), which is more closely related to the bulge-to-disk ratio of galaxies than Hubble type, and is therefore expected to behave more independently on star formation activity in a galaxy. On the other hand, the first systematic quantitative investigation of the environmental influence on the interaction of galaxies is made by using two automatically-determined objective measures; the asymmetry index and existence of companions. The principal conclusions of this work are: (1)The concentration of the galactic light profile (characterized by the concentration index) is predominantly correlated with the relatively small-scale environment which is characterized by the local galaxy density. (2)The star formation rate of galaxies (characterized by the EW(OII)) is correlated both with the small-scale environment (the local galaxy density) and the larger scale environment which is characterized by the cluster membership. For weakly star forming galaxies, the star formation rate is correlated both with the local galaxy density and rich cluster membership. It also shows a correlation with poor cluster membership. For strongly star forming galaxies, the star formation rate is correlated with the local density and the poor cluster membership. (3)Interacting galaxies (characterized by the asymmetry index and/or the existence of apparent companions) show no correlation with rich cluster membership, but show a fair to strong correlation with the poor cluster membership.
Peripheral Processing Facilitates Optic Flow-Based Depth Perception
Li, Jinglin; Lindemann, Jens P.; Egelhaaf, Martin
2016-01-01
Flying insects, such as flies or bees, rely on consistent information regarding the depth structure of the environment when performing their flight maneuvers in cluttered natural environments. These behaviors include avoiding collisions, approaching targets or spatial navigation. Insects are thought to obtain depth information visually from the retinal image displacements (“optic flow”) during translational ego-motion. Optic flow in the insect visual system is processed by a mechanism that can be modeled by correlation-type elementary motion detectors (EMDs). However, it is still an open question how spatial information can be extracted reliably from the responses of the highly contrast- and pattern-dependent EMD responses, especially if the vast range of light intensities encountered in natural environments is taken into account. This question will be addressed here by systematically modeling the peripheral visual system of flies, including various adaptive mechanisms. Different model variants of the peripheral visual system were stimulated with image sequences that mimic the panoramic visual input during translational ego-motion in various natural environments, and the resulting peripheral signals were fed into an array of EMDs. We characterized the influence of each peripheral computational unit on the representation of spatial information in the EMD responses. Our model simulations reveal that information about the overall light level needs to be eliminated from the EMD input as is accomplished under light-adapted conditions in the insect peripheral visual system. The response characteristics of large monopolar cells (LMCs) resemble that of a band-pass filter, which reduces the contrast dependency of EMDs strongly, effectively enhancing the representation of the nearness of objects and, especially, of their contours. We furthermore show that local brightness adaptation of photoreceptors allows for spatial vision under a wide range of dynamic light conditions. PMID:27818631
Paes, Thécia A S V; Rietzler, Arnola C; Pujoni, Diego G F; Maia-Barbosa, Paulina M
2016-03-01
Temperature and light are acknowledged as important factors for hatching of resting eggs. The knowledge of how they affect hatching rates of this type of egg is important for the comprehension of the consequences of warming waters in recolonization of aquatic ecosystems dependent on dormant populations. This study aimed at comparing the influence of different temperature and light conditions on hatching rates of Daphnia ambigua andDaphnia laevis resting eggs from tropical environments. The ephippia were collected in the sediment of three aquatic ecosystems, in southeastern Brazil. For each lake, the resting eggs were exposed to temperatures of 20, 24, 28 and 32 °C, under light (12 h photoperiod) and dark conditions. The results showed that the absence of light and high temperatures have a negative influence on the hatching rates. Statistical differences for hatching rates were also found when comparing the studied ecosystems (ranging from 0.6 to 31%), indicating the importance of local environmental factors for diapause and maintenance of active populations.
NASA Astrophysics Data System (ADS)
Diyanah Samsuri, Nurul; Maisarah Mukhtar, Wan; Rashid, Affa Rozana Abdul; Dasuki, Karsono Ahmad; Awangku Yussuf, Awangku Abdul Rahman Hj.
2017-11-01
Gold nanoparticles (GNPs) have been known as an excellent characteristic for Local Surface Plasmon Resonance (LSPR) sensors due to their sensitive spectral response to the local environment of the nanoparticle surface and ease of monitoring the light signal due to their strong scattering or absorption. Prior the technologies, GNPs based LSPR has been commercialized and have become a central tool for characterizing and quantifying in various field. In this review, we presented a brief introduction on the history of surface plasmon, the theory behind the surface plasmon resonance (SPR) and the principles of LSPR. We also reported on the synthetization as well of the properties of the GNPs and the applications in current LSPR sensors.
Gravel, Dominique; Beaudet, Marilou; Messier, Christian
2008-10-01
Understanding coexistence of highly shade-tolerant tree species is a longstanding challenge for forest ecologists. A conceptual model for the coexistence of sugar maple (Acer saccharum) and American beech (Fagus grandibfolia) has been proposed, based on a low-light survival/high-light growth trade-off, which interacts with soil fertility and small-scale spatiotemporal variation in the environment. In this study, we first tested whether the spatial distribution of seedlings and saplings can be predicted by the spatiotemporal variability of light availability and soil fertility, and second, the manner in which the process of environmental filtering changes with regeneration size. We evaluate the support for this hypothesis relative to the one for a neutral model, i.e., for seed rain density predicted from the distribution of adult trees. To do so, we performed intensive sampling over 86 quadrats (5 x 5 m) in a 0.24-ha plot in a mature maple-beech community in Quebec, Canada. Maple and beech abundance, soil characteristics, light availability, and growth history (used as a proxy for spatiotemporal variation in light availability) were finely measured to model variation in sapling composition across different size classes. Results indicate that the variables selected to model species distribution do effectively change with size, but not as predicted by the conceptual model. Our results show that variability in the environment is not sufficient to differentiate these species' distributions in space. Although species differ in their spatial distribution in the small size classes, they tend to correlate at the larger size class in which recruitment occurs. Overall, the results are not supportive of a model of coexistence based on small-scale variations in the environment. We propose that, at the scale of a local stand, the lack of fit of the model could result from the high similarity of species in the range of environmental conditions encountered, and we suggest that coexistence would be stable only at larger spatial scales at which variability in the environment is greater.
Momentum distributions for the quantum delta-kicked rotor with decoherence
Vant; Ball; Christensen
2000-05-01
We report on the momentum distribution line shapes for the quantum delta-kicked rotor in the presence of environment induced decoherence. Experimental and numerical results are presented. In the experiment ultracold cesium atoms are subjected to a pulsed standing wave of near resonant light. Spontaneous scattering of photons destroys dynamical localization. For the scattering rates used in our experiment the momentum distribution shapes remain essentially exponential.
NASA Astrophysics Data System (ADS)
Cui, Chen; Asari, Vijayan K.
2014-03-01
Biometric features such as fingerprints, iris patterns, and face features help to identify people and restrict access to secure areas by performing advanced pattern analysis and matching. Face recognition is one of the most promising biometric methodologies for human identification in a non-cooperative security environment. However, the recognition results obtained by face recognition systems are a affected by several variations that may happen to the patterns in an unrestricted environment. As a result, several algorithms have been developed for extracting different facial features for face recognition. Due to the various possible challenges of data captured at different lighting conditions, viewing angles, facial expressions, and partial occlusions in natural environmental conditions, automatic facial recognition still remains as a difficult issue that needs to be resolved. In this paper, we propose a novel approach to tackling some of these issues by analyzing the local textural descriptions for facial feature representation. The textural information is extracted by an enhanced local binary pattern (ELBP) description of all the local regions of the face. The relationship of each pixel with respect to its neighborhood is extracted and employed to calculate the new representation. ELBP reconstructs a much better textural feature extraction vector from an original gray level image in different lighting conditions. The dimensionality of the texture image is reduced by principal component analysis performed on each local face region. Each low dimensional vector representing a local region is now weighted based on the significance of the sub-region. The weight of each sub-region is determined by employing the local variance estimate of the respective region, which represents the significance of the region. The final facial textural feature vector is obtained by concatenating the reduced dimensional weight sets of all the modules (sub-regions) of the face image. Experiments conducted on various popular face databases show promising performance of the proposed algorithm in varying lighting, expression, and partial occlusion conditions. Four databases were used for testing the performance of the proposed system: Yale Face database, Extended Yale Face database B, Japanese Female Facial Expression database, and CMU AMP Facial Expression database. The experimental results in all four databases show the effectiveness of the proposed system. Also, the computation cost is lower because of the simplified calculation steps. Research work is progressing to investigate the effectiveness of the proposed face recognition method on pose-varying conditions as well. It is envisaged that a multilane approach of trained frameworks at different pose bins and an appropriate voting strategy would lead to a good recognition rate in such situation.
Homeostasis lighting control based on relationship between lighting environment and human behavior
NASA Astrophysics Data System (ADS)
Ueda, Risa; Mita, Akira
2015-03-01
Although each person has own preferences, living spaces which can respond to various preferences and needs have not become reality. Focusing on the lighting environments which influence on the impression of living spaces, this research aims to offer comfortable lighting environments for each resident by a flexible control. This research examines the relationship between lighting environments and human behaviors considering colored lights. In accord with the relationship, this research proposes an illuminance-color control system which flexibly changes spatial environments responding to human conditions. Firstly, the psychological evaluation was conducted in order to build human models for various environments. As a result, preferred lighting environments for each examinee were determined for particular behaviors. Moreover, satisfaction levels of lighting environments were calculated by using seven types of impression of the environments as parameters. The results were summarized as human models. Secondly, this research proposed "Homeostasis Lighting Control System", which employs the human models. Homeostasis lighting control system embodies the algorithm of homeostasis, which is one of the functions of the physiological adaptation. Human discomfort feelings are obtained automatically by the sensor agent robot. The system can offer comfortable lighting environments without controlling environments by residents autonomously based on the information from the robot. This research takes into accounts both illuminance and color. The robot communicates with the server which contains human models, then the system corresponds to individuals. Combining these three systems, the proposed system can effectively control the lighting environment. At last, the feasibility of the proposed system was verified by simulation experiments.
A Single LiDAR-Based Feature Fusion Indoor Localization Algorithm.
Wang, Yun-Ting; Peng, Chao-Chung; Ravankar, Ankit A; Ravankar, Abhijeet
2018-04-23
In past years, there has been significant progress in the field of indoor robot localization. To precisely recover the position, the robots usually relies on multiple on-board sensors. Nevertheless, this affects the overall system cost and increases computation. In this research work, we considered a light detection and ranging (LiDAR) device as the only sensor for detecting surroundings and propose an efficient indoor localization algorithm. To attenuate the computation effort and preserve localization robustness, a weighted parallel iterative closed point (WP-ICP) with interpolation is presented. As compared to the traditional ICP, the point cloud is first processed to extract corners and line features before applying point registration. Later, points labeled as corners are only matched with the corner candidates. Similarly, points labeled as lines are only matched with the lines candidates. Moreover, their ICP confidence levels are also fused in the algorithm, which make the pose estimation less sensitive to environment uncertainties. The proposed WP-ICP architecture reduces the probability of mismatch and thereby reduces the ICP iterations. Finally, based on given well-constructed indoor layouts, experiment comparisons are carried out under both clean and perturbed environments. It is shown that the proposed method is effective in significantly reducing computation effort and is simultaneously able to preserve localization precision.
A Single LiDAR-Based Feature Fusion Indoor Localization Algorithm
Wang, Yun-Ting; Peng, Chao-Chung; Ravankar, Ankit A.; Ravankar, Abhijeet
2018-01-01
In past years, there has been significant progress in the field of indoor robot localization. To precisely recover the position, the robots usually relies on multiple on-board sensors. Nevertheless, this affects the overall system cost and increases computation. In this research work, we considered a light detection and ranging (LiDAR) device as the only sensor for detecting surroundings and propose an efficient indoor localization algorithm. To attenuate the computation effort and preserve localization robustness, a weighted parallel iterative closed point (WP-ICP) with interpolation is presented. As compared to the traditional ICP, the point cloud is first processed to extract corners and line features before applying point registration. Later, points labeled as corners are only matched with the corner candidates. Similarly, points labeled as lines are only matched with the lines candidates. Moreover, their ICP confidence levels are also fused in the algorithm, which make the pose estimation less sensitive to environment uncertainties. The proposed WP-ICP architecture reduces the probability of mismatch and thereby reduces the ICP iterations. Finally, based on given well-constructed indoor layouts, experiment comparisons are carried out under both clean and perturbed environments. It is shown that the proposed method is effective in significantly reducing computation effort and is simultaneously able to preserve localization precision. PMID:29690624
NDR proteins: lessons learned from Arabidopsis and animal cells prompt a testable hypothesis.
Mudgil, Yashwanti; Jones, Alan M
2010-08-01
N-myc Down Regulated (NDR) genes were discovered more than fifteen years ago. Indirect evidence support a role in tumor progression and cellular differentiation, but their biochemical function is still unknown. Our detailed analyses on Arabidopsis NDL proteins show their involvement in altering auxin transport, local auxin gradients and expression level of auxin transport proteins. Animal NDL proteins may be involved in membrane recycling of E-cadherin and effector for the small GTPase. In light of these findings, we hypothesize that NDL proteins regulate vesicular trafficking of auxin transport facilitator PIN proteins by biochemically alterating the local lipid environment of PIN proteins.
Shin, Yu-Bin; Woo, Seung-Hyun; Kim, Dong-Hyeon; Kim, Jinseong; Kim, Jae-Jin; Park, Jin Young
2015-01-01
This study was performed to explore how direct/indirect lighting affects emotions and brain oscillations compared to the direct lighting when brightness and color temperature are controlled. Twenty-eight subjects (12 females; mean age 22.5) participated. The experimental conditions consisted of two lighting environments: direct/indirect lighting (400 lx downlight, 300 lx uplight) and direct lighting (700 lx downlight). On each trial, a luminance environment was presented for 4 min, followed by participants rated their emotional feelings of the lighting environment. EEG data were recorded during the experiment. Spectral analysis was performed for the range of delta, theta, alpha, beta, and gamma ranges. The participants felt cooler and more pleasant and theta oscillations on the F4, F8, T4, and TP7 electrodes were more enhanced in the direct/indirect lighting environment compared to the direct lighting environment. There was significant correlation between the "cool" rating and the theta power of the F8 electrode. The participants felt more pleasant in the direct/indirect lighting environment, indicating that space with direct/indirect lighting modulated subjective perception. Additionally, our results suggest that theta oscillatory activity can be used as a biological marker that reflects emotional status in different lighting environments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Rhodopsin expression in the zebrafish pineal gland from larval to adult stage.
Magnoli, Domenico; Zichichi, Rosalia; Laurà, Rosaria; Guerrera, Maria Cristina; Campo, Salvatore; de Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino
2012-03-09
The zebrafish pineal gland plays an important role in different physiological functions including the regulation of the circadian clock. In the fish pineal gland the pinealocytes are made up of different segments: outer segment, inner segment and basal pole. Particularly, in the outer segment the rhodopsin participates in the external environment light reception that represents the first biochemical step in the melatonin production. It is well known that the rhodopsin in the adult zebrafish is well expressed in the pineal gland but both the expression and the cellular localization of this protein during development remain still unclear. In this study using qRT-PCR, sequencing and immunohistochemistry the expression as well as the protein localization of the rhodopsin in the zebrafish from larval (10 dpf) to adult stage (90 dpf) were demonstrated. The rhodopsin mRNA expression presents a peak of expression at 10 dpf, a further reduction to 50 dpf before increasing again in the adult stage. Moreover, the cellular localization of the rhodopsin-like protein was always localized in the pinealocyte at all ages examined. Our results demonstrated the involvement of the rhodopsin in the zebrafish pineal gland physiology particularly in the light capture during the zebrafish lifespan. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Thompson Alves de Souza, Carlos Eduardo
Application of Earth Sciencés Technology in Mapping the of Brazilian Coast: Localization, Analysis & Monitoring of the Archaeological Sites with Remote Sensing & LiDAR Carlos Eduardo Thompson Alves de Souza cethompsoniii@hotmail.com Archaeologist Member of the European Association of Archaeologists B.A.Archaeology MA.Remote Sensing Abstract The Archaeological Research in Urban Environment with the Air Light Detection and Ranging is problematic for the Overlay Layers mixed with contexts concerning the Interpretation of Archaeological Data. However, in the Underwater Archaeology the results are excellent. This paper considers the application of Remote Sensing and Air Light Detection and Ranging (LIDAR) as separate things as well as Land Archaeology and the Underwater Archaeology. European Archaeologists know very little about Brazil and the article presents an Overview of Research in Brazil with Remote Sensing in Archaeology and Light Detection and Ranging in Land Archaeology and Underwater Archaeology, because Brazil has Continental Dimensions. Braziliańs Methodology for Location, Analysis and Monitoring of Archaeological Sites is necessarily more Complex and Innovative and therefore can serve as a New Paradigm for other archaeologists involved in the Advanced Management Heritage.
Operating organic light-emitting diodes imaged by super-resolution spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, John T.; Granick, Steve
Super-resolution stimulated emission depletion (STED) microscopy is adapted here for materials characterization that would not otherwise be possible. With the example of organic light-emitting diodes (OLEDs), spectral imaging with pixel-by-pixel wavelength discrimination allows us to resolve local-chain environment encoded in the spectral response of the semi-conducting polymer, and correlate chain packing with local electroluminescence by using externally applied current as the excitation source. We observe nanoscopic defects that would be unresolvable by traditional microscopy. They are revealed in electroluminescence maps in operating OLEDs with 50 nm spatial resolution. We find that brightest emission comes from regions with more densely packedmore » chains. Conventional microscopy of an operating OLED would lack the resolution needed to discriminate these features, while traditional methods to resolve nanoscale features generally cannot be performed when the device is operating. As a result, this points the way towards real-time analysis of materials design principles in devices as they actually operate.« less
NASA Astrophysics Data System (ADS)
Amini, Changeez; Taherpour, Abbas; Khattab, Tamer; Gazor, Saeed
2017-01-01
This paper presents an improved propagation channel model for the visible light in indoor environments. We employ this model to derive an enhanced positioning algorithm using on the relation between the time-of-arrivals (TOAs) and the distances for two cases either by assuming known or unknown transmitter and receiver vertical distances. We propose two estimators, namely the maximum likelihood estimator and an estimator by employing the method of moments. To have an evaluation basis for these methods, we calculate the Cramer-Rao lower bound (CRLB) for the performance of the estimations. We show that the proposed model and estimations result in a superior performance in positioning when the transmitter and receiver are perfectly synchronized in comparison to the existing state-of-the-art counterparts. Moreover, the corresponding CRLB of the proposed model represents almost about 20 dB reduction in the localization error bound in comparison with the previous model for some practical scenarios.
Operating organic light-emitting diodes imaged by super-resolution spectroscopy
King, John T.; Granick, Steve
2016-06-21
Super-resolution stimulated emission depletion (STED) microscopy is adapted here for materials characterization that would not otherwise be possible. With the example of organic light-emitting diodes (OLEDs), spectral imaging with pixel-by-pixel wavelength discrimination allows us to resolve local-chain environment encoded in the spectral response of the semi-conducting polymer, and correlate chain packing with local electroluminescence by using externally applied current as the excitation source. We observe nanoscopic defects that would be unresolvable by traditional microscopy. They are revealed in electroluminescence maps in operating OLEDs with 50 nm spatial resolution. We find that brightest emission comes from regions with more densely packedmore » chains. Conventional microscopy of an operating OLED would lack the resolution needed to discriminate these features, while traditional methods to resolve nanoscale features generally cannot be performed when the device is operating. As a result, this points the way towards real-time analysis of materials design principles in devices as they actually operate.« less
NASA Astrophysics Data System (ADS)
Cadier, Mathilde; Sourisseau, Marc; Gorgues, Thomas; Edwards, Christopher A.; Memery, Laurent
2017-05-01
Tidal front ecosystems are especially dynamic environments usually characterized by high phytoplankton biomass and high primary production. However, the description of functional microbial diversity occurring in these regions remains only partially documented. In this article, we use a numerical model, simulating a large number of phytoplankton phenotypes to explore the three-dimensional spatial patterns of phytoplankton abundance and diversity in the Iroise Sea (western Brittany). Our results suggest that, in boreal summer, a seasonally marked tidal front shapes the phytoplankton species richness. A diversity maximum is found in the surface mixed layer located slightly west of the tidal front (i.e., not strictly co-localized with high biomass concentrations) which separates tidally mixed from stratified waters. Differences in phenotypic composition between sub-regions with distinct hydrodynamic regimes (defined by vertical mixing, nutrients gradients and light penetration) are discussed. Local growth and/or physical transport of phytoplankton phenotypes are shown to explain our simulated diversity distribution. We find that a large fraction (64%) of phenotypes present during the considered period of September are ubiquitous, found in the frontal area and on both sides of the front (i.e., over the full simulated domain). The frontal area does not exhibit significant differences between its community composition and that of either the well-mixed region or an offshore Deep Chlorophyll Maximum (DCM). Only three phenotypes (out of 77) specifically grow locally and are found at substantial concentration only in the surface diversity maximum. Thus, this diversity maximum is composed of a combination of ubiquitous phenotypes with specific picoplankton deriving from offshore, stratified waters (including specific phenotypes from both the surface and the DCM) and imported through physical transport, completed by a few local phenotypes. These results are discussed in light of the three-dimensional general circulation at frontal interfaces. Processes identified by this study are likely to be common in tidal front environments and may be generalized to other shallow, tidally mixed environments worldwide.
Perennially ice-covered Lake Hoare, Antarctica: physical environment, biology and sedimentation
NASA Technical Reports Server (NTRS)
Wharton, R. A. Jr; Simmons, G. M. Jr; McKay, C. P.; Wharton RA, J. r. (Principal Investigator)
1989-01-01
Lake Hoare (77 degrees 38' S, 162 degrees 53' E) is a perennially ice-covered lake at the eastern end of Taylor Valley in southern Victoria Land, Antarctica. The environment of this lake is controlled by the relatively thick ice cover (3-5 m) which eliminates wind generated currents, restricts gas exchange and sediment deposition, and reduces light penetration. The ice cover is in turn largely controlled by the extreme seasonality of Antarctica and local climate. Lake Hoare and other dry valley lakes may be sensitive indicators of short term (< 100 yr) climatic and/or anthropogenic changes in the dry valleys since the onset of intensive exploration over 30 years ago. The time constants for turnover of the water column and lake ice are 50 and 10 years, respectively. The turnover time for atmospheric gases in the lake is 30-60 years. Therefore, the lake environment responds to changes on a 10-100 year timescale. Because the ice cover has a controlling influence on the lake (e.g. light penetration, gas content of water, and sediment deposition), it is probable that small changes in ice ablation, sediment loading on the ice cover, or glacial meltwater (or groundwater) inflow will affect ice cover dynamics and will have a major impact on the lake environment and biota.
Lighting design for globally illuminated volume rendering.
Zhang, Yubo; Ma, Kwan-Liu
2013-12-01
With the evolution of graphics hardware, high quality global illumination becomes available for real-time volume rendering. Compared to local illumination, global illumination can produce realistic shading effects which are closer to real world scenes, and has proven useful for enhancing volume data visualization to enable better depth and shape perception. However, setting up optimal lighting could be a nontrivial task for average users. There were lighting design works for volume visualization but they did not consider global light transportation. In this paper, we present a lighting design method for volume visualization employing global illumination. The resulting system takes into account view and transfer-function dependent content of the volume data to automatically generate an optimized three-point lighting environment. Our method fully exploits the back light which is not used by previous volume visualization systems. By also including global shadow and multiple scattering, our lighting system can effectively enhance the depth and shape perception of volumetric features of interest. In addition, we propose an automatic tone mapping operator which recovers visual details from overexposed areas while maintaining sufficient contrast in the dark areas. We show that our method is effective for visualizing volume datasets with complex structures. The structural information is more clearly and correctly presented under the automatically generated light sources.
Sugitani, K; Mimura, K; Takeuchi, M; Yamaguchi, T; Suzuki, K; Senda, R; Asahara, Y; Wallis, S; Van Kranendonk, M J
2015-11-01
The 3.4-Ga Strelley Pool Formation (SPF) at the informally named 'Waterfall Locality' in the Goldsworthy greenstone belt of the Pilbara Craton, Western Australia, provides deeper insights into ancient, shallow subaqueous to possibly subaerial ecosystems. Outcrops at this locality contain a thin (<3 m) unit of carbonaceous and non-carbonaceous cherts and silicified sandstones that were deposited in a shallow-water coastal environment, with hydrothermal activities, consistent with the previous studies. Carbonaceous, sulfide-rich massive black cherts with coniform structures up to 3 cm high are characterized by diverse rare earth elements (REE) signatures including enrichment of light [light rare earth elements (LREE)] or middle rare earth elements and by enrichment of heavy metals represented by Zn. The massive black cherts were likely deposited by mixing of hydrothermal and non-hydrothermal fluids. Coniform structures in the cherts are characterized by diffuse laminae composed of sulfide particles, suggesting that unlike stromatolites, they were formed dominantly through physico-chemical processes related to hydrothermal activity. The cherts yield microfossils identical to previously described carbonaceous films, small and large spheres, and lenticular microfossils. In addition, new morphological types such as clusters composed of large carbonaceous spheroids (20-40 μm across each) with fluffy or foam-like envelope are identified. Finely laminated carbonaceous cherts are devoid of heavy metals and characterized by the enrichment of LREE. This chert locally contains conical to domal structures characterized by truncation of laminae and trapping of detrital grains and is interpreted as siliceous stromatolite formed by very early or contemporaneous silicification of biomats with the contribution of silica-rich hydrothermal fluids. Biological affinities of described microfossils and microbes constructing siliceous stromatolites are under investigation. However, this study emphasizes how diverse the microbial community in Paleoarchean coastal hydrothermal environment was. We propose the diversity is at least partially due to the availability of various energy sources in this depositional environment including reducing chemicals and sunlight. © 2015 John Wiley & Sons Ltd.
An interdisciplinary lighting design studio: Opportunities and challenges of collaborative learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzowski, M.; Ginthner, D.
1997-12-31
Interdisciplinary study is based on the proposition that collaboration will enrich and expand understanding within a discipline and will also reveal connections to other fields of study, the community, the natural environment, etc. This study, the community, the natural environment, etc. This paper will present the results of a collaborative lighting design studio which was conducted by the Department of Architecture and the Interior Design Program at the University of Minnesota. The objectives of the studio were threefold: (1) To provide an opportunity for collaboration between students in design disciplines, (2) to introduce students to collaboration with design practitioners andmore » clients, and (3) to expose students to interdisciplinary work prior to graduation. Three projects by local firms were used for the design investigation. The following discussion will explore the opportunities and challenges of collaborative education and the interdisciplinary design studio. The objectives, roles of the teachers and the students, coursework, and future directions will be considered.« less
Kranz, Alexandrea M; Forgan, Leonard G; Cole, Gemma L; Endler, John A
2018-06-19
Light environments critically impact species that rely on vision to survive and reproduce. Animal visual systems must accommodate changes in light that occur from minutes to years, yet the mechanistic basis of their response to spectral (color) changes is largely unknown. Here we used a laboratory experiment where replicate guppy populations were kept under three different light environments for up to 8-12 generations to explore possible differences in the expression levels of nine guppy opsin genes. Previous evidence for opsin expression-light environment 'tuning' has been either correlative or focused exclusively on the relationship between the light environment and opsin expression over one or two generations. In our multi-generation experiment, the relative expression levels of nine different guppy opsin genes responded differently to light environment changes: some did not respond, while others differed due to phenotypic plasticity. Moreover, for the LWS-1 opsin we found that, while we observed a wide range of plastic responses under different light conditions, common plastic responses (where the population replicates all followed the same trajectory) occurred only after multigenerational exposure to different light environments. Taken together this suggests that opsin expression plasticity plays an important role in light environment 'tuning' in different light environments on different time scales, and, in turn, has important implications for both visual system function and evolution. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Environmental Systems Test Stand
NASA Astrophysics Data System (ADS)
Barta, D.; Young, J.; Ewert, M.; Lee, S.; Wells, P.; Fortson, R.; Castillo, J.
A test stand has been developed for the evaluation of prototype lighting, environmental control and crop cultivation technologies for plant production within an advanced life support system. Design of the test stand was based on preliminary designs of the center growth bay of the Biomass Production Chamber, one of several modules of the Bioregenerative Planetary Life Support Systems Test Complex (BIO- Plex). It consists of two controlled-environment shelves, each with 4.7 m2 of area for crop growth (150 cm width, 315 cm length). There are two chilled water loops, one for operation at conventional temperatures (5-10C) for air temperature and humidity control and one for operation at higher temperatures (15-50C) for waste heat acquisition and heating. Modular light boxes, utilizing either air-cooled or water- jacketed HPS lamps, have been developed. This modular design will allow for easy replacement of new lighting technologies within the light banks. An advanced data acquisition and control system has been developed utilizing localized, networked- based data acquisition modules and programmed with object-based control software.
Bian, Zhong Hua; Yang, Qi Chang; Liu, Wen Ke
2015-03-30
Phytochemicals in vegetables are important for human health, and their biosynthesis, metabolism and accumulation are affected by environmental factors. Light condition (light quality, light intensity and photoperiod) is one of the most important environmental variables in regulating vegetable growth, development and phytochemical accumulation, particularly for vegetables produced in controlled environments. With the development of light-emitting diode (LED) technology, the regulation of light environments has become increasingly feasible for the provision of ideal light quality, intensity and photoperiod for protected facilities. In this review, the effects of light quality regulation on phytochemical accumulation in vegetables produced in controlled environments are identified, highlighting the research progress and advantages of LED technology as a light environment regulation tool for modifying phytochemical accumulation in vegetables. © 2014 Society of Chemical Industry.
Transcription in space--environmental vs. genetic effects on differential immune gene expression.
Lenz, Tobias L
2015-09-01
Understanding how organisms adapt to their local environment is one of the key goals in molecular ecology. Adaptation can be achieved through qualitative changes in the coding sequence and/or quantitative changes in gene expression, where the optimal dosage of a gene's product in a given environment is being selected for. Differences in gene expression among populations inhabiting distinct environments can be suggestive of locally adapted gene regulation and have thus been studied in different species (Whitehead & Crawford ; Hodgins-Davis & Townsend ). However, in contrast to a gene's coding sequence, its expression level at a given point in time may depend on various factors, including the current environment. Although critical for understanding the extent of local adaptation, it is usually difficult to disentangle the heritable differences in gene regulation from environmental effects. In this issue of Molecular Ecology, Stutz et al. () describe an experiment in which they reciprocally transplanted three-spined sticklebacks (Gasterosteus aculeatus) between independent pairs of small and large lakes. Their experimental design allows them to attribute differences in gene expression among sticklebacks either to lake of origin or destination lake. Interestingly, they find that translocated sticklebacks show a pattern of gene expression more similar to individuals from the destination lake than to individuals from the lake of origin, suggesting that expression of the targeted genes is more strongly regulated by environmental effects than by genetics. The environmental effect by itself is not entirely surprising; however, the relative extent of it is. Especially when put in the context of local adaptation and population differentiation, as done here, these findings cast a new light onto the heritability of differential gene expression and specifically its relative importance during population divergence and ultimately ecological speciation. © 2015 John Wiley & Sons Ltd.
A test of the size-constraint hypothesis for a limit to sexual dimorphism in plants.
Labouche, Anne-Marie; Pannell, John R
2016-07-01
In flowering plants, many dioecious species display a certain degree of sexual dimorphism in non-reproductive traits, but this dimorphism tends to be much less striking than that found in animals. Sexual size dimorphism in plants may be limited because competition for light in crowded environments so strongly penalises small plants. The idea that competition for light constrains the evolution of strong sexual size dimorphism in plants (the size-constraint hypothesis) implies a strong dependency of the expression of sexual size dimorphism on the neighbouring density as a result of the capacity of plants to adjust their reproductive effort and investment in growth in response to their local environment. Here, we tested this hypothesis by experimentally altering the context of competition for light among male-female pairs of the light-demanding dioecious annual plant Mercurialis annua. We found that males were smaller than females across all treatments, but sexual size dimorphism was diminished for pairs grown at higher densities. This result is consistent with the size-constraint hypothesis. We discuss our results in terms of the tension between selection on size acting in opposite directions on males and females, which have different optima under sexual selection, and stabilizing selection for similar sizes in males and females, which have similar optima under viability selection for plasticity in size expression under different density conditions.
Liran, Oded; Milrad, Yuval; Eilenberg, Haviva; Weiner, Iddo
2016-01-01
Photosynthetic hydrogen production in the microalga Chlamydomonas reinhardtii is catalyzed by two [FeFe]-hydrogenase isoforms, HydA1 and HydA2, both irreversibly inactivated upon a few seconds exposure to atmospheric oxygen. Until recently, it was thought that hydrogenase is not active in air-grown microalgal cells. In contrast, we show that the entire pool of cellular [FeFe]-hydrogenase remains active in air-grown cells due to efficient scavenging of oxygen. Using membrane inlet mass spectrometry, 18O2 isotope, and various inhibitors, we were able to dissect the various oxygen uptake mechanisms. We found that both chlororespiration, catalyzed by plastid terminal oxidase, and Mehler reactions, catalyzed by photosystem I and Flavodiiron proteins, significantly contribute to oxygen uptake rate. This rate is considerably enhanced with increasing light, thus forming local anaerobic niches at the proximity of the stromal face of the thylakoid membrane. Furthermore, we found that in transition to high light, the hydrogen production rate is significantly enhanced for a short duration (100 s), thus indicating that [FeFe]-hydrogenase functions as an immediate sink for surplus electrons in aerobic as well as in anaerobic environments. In summary, we show that an anaerobic locality in the chloroplast preserves [FeFe]-hydrogenase activity and supports continuous hydrogen production in air-grown microalgal cells. PMID:27443604
Model of annual plants dynamics with facilitation and competition.
Droz, Michel; Pękalski, Andrzej
2013-10-21
An individual-based model describing the dynamics of one type of annual plants is presented. We use Monte Carlo simulations where each plant has its own history and the interactions among plants are between nearest neighbours. The character of the interaction (positive or negative) depends on local conditions. The plants compete for two external resources-water and light. The amount of water and/or light a plant receives depends on the external factor but also on local arrangement. Survival, growth and seed production of plants are determined by how well their demands for the resources are met. The survival and seeds production tests have a probabilistic character, which makes the dynamics more realistic than by using a deterministic approach. There is a non-linear coupling between the external supplies. Water evaporates from the soil at a rate depending on constant evaporation rate, local conditions and the amount of light. We examine the dynamics of the plant population along two environmental gradients, allowing also for surplus of water and/or light. We show that the largest number of plants is when the demands for both resources are equal to the supplies. We estimate also the role of evaporation and we find that it depends on the situation. It could be negative, but sometimes it has a positive character. We show that the link between the type of interaction (positive or negative) and external conditions has a complex character. In general in favourable environment plants have a stronger tendency for competitive interactions, leading to mostly isolated plants. When the conditions are getting more difficult, cooperation becomes the dominant type of interactions and the plants grow in clusters. The type of plants-sun-loving or shade tolerating, plays also an important role. © 2013 Elsevier Ltd. All rights reserved.
A numerical experiment on light pollution from distant sources
NASA Astrophysics Data System (ADS)
Kocifaj, M.
2011-08-01
To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.
Ruscetta, Melissa N; Palmer, Catherine V; Durrant, John D; Grayhack, Judith; Ryan, Carey
2007-10-01
The chief complaint of individuals with hearing impairment is difficulty hearing in noise, with directional microphones emerging as the most capable remediation. Our purpose was to determine the impact of directional microphones on localization disability and concurrent handicap. Fifty-seven individuals participated unaided and then in groups of 19, using omni-directional microphones, directional-microphones, or toggle-switch equipped amplification. The outcome measure was a localization disabilities and handicaps questionnaire. Comparisons between the unaided group versus the aided groups, and the directional-microphone groups versus the other two aided groups revealed no significant differences. None of the microphone schemes either increased or decreased self-perceived localization disability or handicap. Objective measures of localization ability are warranted and if significance is noted, clinicians should caution patients when moving in their environment. If no significant objective differences exist, in light of the subjective findings in this investigation concern over decreases in quality of life and safety with directional microphones need not be considered.
``Dark Skies are a Universal Resource'' Programs Planned for the International Year of Astronomy
NASA Astrophysics Data System (ADS)
Walker, C. E.; Berglund, K.; Bueter, C.; Crelin, B.; Duriscoe, D.; Moore, C.; Gauthier, A.; Gay, P. L.; Foster, T.; Heatherly, S. A.; Maddalena, R.; Mann, T.; Patten, K.; Pompea, S. M.; Sparks, R.; Schaaf, F.; Simmons, M.; Smith, C.; Smith, M.; Tafreshi, B.
2008-11-01
In an effort to help more people appreciate the ongoing loss of a dark night sky for much of the world's population and to raise public knowledge about diverse impacts of excess artificial lighting on local environments, the International Year of Astronomy's Dark Skies Working Group has established six ``Dark Skies'' programs and six ``Dark Skies'' resources. The Dark Skies programs include GLOBE at Night (with Earth Hour), Astronomy Nights in the [National] Parks, Dark Skies Discovery Sites, Quiet Skies, Good Neighbor Lighting, and a digital photography contest. Resources include the light education toolkit, the ``Let There Be Night'' DVD and planetarium program, the 6-minute video, online interactions like Second Life, podcasts, and traveling exhibits. The programs and resources are summarized here, as they were in a poster for the June 2008 ASP/AAS conference. For more information on these programs and resources, visit http://astronomy2009.us/darkskies/.
A voltage-dependent chloride channel fine-tunes photosynthesis in plants
Herdean, Andrei; Teardo, Enrico; Nilsson, Anders K.; Pfeil, Bernard E.; Johansson, Oskar N.; Ünnep, Renáta; Nagy, Gergely; Zsiros, Ottó; Dana, Somnath; Solymosi, Katalin; Garab, Győző; Szabó, Ildikó; Spetea, Cornelia; Lundin, Björn
2016-01-01
In natural habitats, plants frequently experience rapid changes in the intensity of sunlight. To cope with these changes and maximize growth, plants adjust photosynthetic light utilization in electron transport and photoprotective mechanisms. This involves a proton motive force (PMF) across the thylakoid membrane, postulated to be affected by unknown anion (Cl−) channels. Here we report that a bestrophin-like protein from Arabidopsis thaliana functions as a voltage-dependent Cl− channel in electrophysiological experiments. AtVCCN1 localizes to the thylakoid membrane, and fine-tunes PMF by anion influx into the lumen during illumination, adjusting electron transport and the photoprotective mechanisms. The activity of AtVCCN1 accelerates the activation of photoprotective mechanisms on sudden shifts to high light. Our results reveal that AtVCCN1, a member of a conserved anion channel family, acts as an early component in the rapid adjustment of photosynthesis in variable light environments. PMID:27216227
Population-specific responses to light influence herbivory in the understory shrub Lindera benzoin.
Mooney, E H; Niesenbaum, R A
2012-12-01
Plants display photosynthetic plasticity in response to variation in light environment, and the extent of this plasticity often varies with genotype, i.e., genotype x environment interaction. Herbivory may also covary with light environment as a result of light-induced changes in photosynthetic traits. For example, greater levels of photoprotective phenolic compounds in high-light environments may reduce host quality to herbivores. We investigated intraspecific variation in photosynthetic responses to light and its consequences for herbivory in the understory shrub, Lindera benzoin (Lauraceae). We transplanted five plants from eight populations (N = 240) into three replicate sun and shade common gardens. Two years after transplantation, we tested for population x light environment interactions in six photosynthesis-related responses: specific leaf area, water content, chlorophyll content, chlorophyll fluorescence (F(0)), maximum quantum yield (F(v)/F(m)), and total phenolics. We assessed seasonal herbivory and consumption by a specialist lepidopteran herbivore (Epimecis hortaria). This allowed us to test for (1) population-specific patterns of photosynthetic acclimation and photoinhibition, (2) population-specific production of phenolics in response to photoinhibition, and (3) population-specific photosynthetic responses that contribute to population x light environment interactions in herbivory. Population X light environment interactions were insignificant in leaf variables but statistically significant for herbivory measured as consumption by E. hortaria. We found similar trends for population x light environment interactions in seasonal herbivory. Total phenolics and minimum chlorophyll fluorescence (F(0)) were significant covariates with herbivory, but their effects depended on light environment and population of origin. High-light environments eliminated differences among populations in how these leaf variables affected herbivory, while population-specific relationships were apparent in the shade. Analysis of total phenolics revealed that they were likely induced by photoinhibition, but that this response varied among the populations we assessed. However, phenolics increased herbivory in L. benzoin, which would limit the fitness value of this protective response to light-induced photoinhibition. Our results suggest that herbivores could affect evolution of photosynthetic plasticity in L. benzoin.
NASA Astrophysics Data System (ADS)
Guan, Weipeng; Wu, Yuxiang; Xie, Canyu; Chen, Hao; Cai, Ye; Chen, Yingcong
2017-10-01
An indoor positioning algorithm based on visible light communication (VLC) is presented. This algorithm is used to calculate a three-dimensional (3-D) coordinate of an indoor optical wireless environment, which includes sufficient orders of multipath reflections from reflecting surfaces of the room. Leveraging the global optimization ability of the genetic algorithm (GA), an innovative framework for 3-D position estimation based on a modified genetic algorithm is proposed. Unlike other techniques using VLC for positioning, the proposed system can achieve indoor 3-D localization without making assumptions about the height or acquiring the orientation angle of the mobile terminal. Simulation results show that an average localization error of less than 1.02 cm can be achieved. In addition, in most VLC-positioning systems, the effect of reflection is always neglected and its performance is limited by reflection, which makes the results not so accurate for a real scenario and the positioning errors at the corners are relatively larger than other places. So, we take the first-order reflection into consideration and use artificial neural network to match the model of a nonlinear channel. The studies show that under the nonlinear matching of direct and reflected channels the average positioning errors of four corners decrease from 11.94 to 0.95 cm. The employed algorithm is emerged as an effective and practical method for indoor localization and outperform other existing indoor wireless localization approaches.
Trueba, Santiago; Isnard, Sandrine; Barthélémy, Daniel; Olson, Mark E.
2016-01-01
Understanding the distribution of traits across the angiosperm phylogeny helps map the nested hierarchy of features that characterize key nodes. Finding that Amborella is sister to the rest of the angiosperms has raised the question of whether it shares certain key functional trait characteristics, and plastic responses apparently widespread within the angiosperms at large. With this in mind, we test the hypothesis that local canopy openness induces plastic responses. We used this variation in morphological and functional traits to estimate the pervasiveness of trait scaling and leaf and stem economics. We studied the architecture of Amborella and how it varies under different degrees of canopy openness. We analyzed the coordination of 12 leaf and stem structural and functional traits, and the association of this covariation with differing morphologies. The Amborella habit is made up of a series of sympodial modules that vary in size and branching pattern under different canopy openness. Amborella stems vary from self-supporting to semi-scandent. Changes in stem elongation and leaf size in Amborella produce distinct morphologies under different light environments. Correlations were found between most leaf and stem functional traits. Stem tissue rigidity decreased with increasing canopy openness. Despite substantial modulation of leaf size and leaf mass per area by light availability, branches in different light environments had similar leaf area-stem size scaling. The sympodial growth observed in Amborella could point to an angiosperm synapomorphy. Our study provides evidence of intraspecific coordination between leaf and stem economic spectra. Trait variation along these spectra is likely adaptive under different light environments and is consistent with these plastic responses having been present in the angiosperm common ancestor. PMID:27672131
Using polarized muons as ultrasensitive spin labels in free radical chemistry
NASA Astrophysics Data System (ADS)
McKenzie, Iain; Roduner, Emil
2009-08-01
In a chemical sense, the positive muon is a light proton. It is obtained at the ports of accelerators in beams with a spin polarization of 100%, which makes it a highly sensitive probe of matter. The muonium atom is a light hydrogen isotope, nine times lighter than H, with a muon as its nucleus. It reacts the same way as H, and by addition to double bonds it is implemented in free radicals in which the muon serves as a fully polarized spin label. It is reviewed here how the muon can be used to obtain information about muonium and radical reaction rates, radical structure, dynamics, and local environments. It can even tell us what a fragrance molecule does in a shampoo.
Light-Toned Layering in a Labyrinthus Noctis Pit
2017-01-03
Understanding both the spatial and temporal distribution of hydrated (water-bearing) minerals on Mars is essential for deciphering the aqueous history of the planet. Over 300 meters of layered beds are exposed in this trough of Noctis Labyrinthus, at the western edge of Valles Marineris. The beds are mixtures of light- and dark-toned materials, and include units that contain hydrated minerals, like sulfates and clays. Mapping these minerals and their stratigraphic relationships indicates numerous hydrologic and/or depositional events in localized environments spread over time. The diversity of materials within the trough implies active hydrologic processes and/or changing chemical conditions, perhaps due to influxes of groundwater from nearby Tharsis volcanism. http://photojournal.jpl.nasa.gov/catalog/PIA14455
NASA Astrophysics Data System (ADS)
Moraes, Thiago A.; Barlow, Peter W.; Klingelé, Emile; Gallep, Cristiano M.
2012-06-01
Semi-circadian rhythms of spontaneous photon emission from wheat seedlings germinated and grown in a constant environment (darkened chamber) were found to be synchronized with the rhythm of the local gravimetric (lunisolar) tidal acceleration. Time courses of the photon-count curves were also found to match the growth velocity profile of the seedlings. Pair-wise analyses of the data—growth, photon count, and tidal—by local tracking correlation always revealed significant coefficients ( P > 0.7) for more than 80% of any of the time periods considered. Using fast Fourier transform, the photon-count data revealed periodic components similar to those of the gravimetric tide. Time courses of biophoton emissions would appear to be an additional, useful, and innovative tool in both chronobiological and biophysical studies.
NASA Astrophysics Data System (ADS)
Longhurst, J. W. S.; Lindley, S. J.; Watson, A. F. R.; Conlan, D. E.
In the light of recent episodes of poor air quality in many of the U.K.'s major urban areas, concern has been expressed regarding the apparent inability of existing air quality control procedures to effectively tackle contemporary scenarios. As a result of this, a new philosophy for air quality control has been sought which can provide a solid basis for the preservation and future improvement of air quality. It is proposed that a suitable mechanism for this would be found through the adoption of an integrated and holistic local air quality management approach. This paper will present and discuss a theoretical framework for the application of local air quality management in the U.K. and investigate the potential of the Environment Act (1995) to provide such a framework.
Adaptation to climate change--exploring the potential of locally adapted breeds.
Hoffmann, Irene
2013-06-01
The livestock sector and agriculture as a whole face unprecedented challenges to increase production while improving the environment. On the basis of a literature review, the paper first discusses challenges related to climate change, food security and other drivers of change in livestock production. On the basis of a recent discourse in ecology, a framework for assessing livestock species' and breeds' vulnerability to climate change is presented. The second part of the paper draws on an analysis of data on breed qualities obtained from the Food and Agriculture Organization's Domestic Animal Diversity Information System (DAD-IS) to explore the range of adaptation traits present in today's breed diversity. The analysis produced a first mapping of a range of ascribed adaptation traits of national breed populations. It allowed to explore what National Coordinators understand by 'locally adapted' and other terms that describe general adaptation, to better understand the habitat, fodder and temperature range of each species and to shed light on the environments in which targeted search for adaptation traits could focus.
Decentralized reinforcement-learning control and emergence of motion patterns
NASA Astrophysics Data System (ADS)
Svinin, Mikhail; Yamada, Kazuyaki; Okhura, Kazuhiro; Ueda, Kanji
1998-10-01
In this paper we propose a system for studying emergence of motion patterns in autonomous mobile robotic systems. The system implements an instance-based reinforcement learning control. Three spaces are of importance in formulation of the control scheme. They are the work space, the sensor space, and the action space. Important feature of our system is that all these spaces are assumed to be continuous. The core part of the system is a classifier system. Based on the sensory state space analysis, the control is decentralized and is specified at the lowest level of the control system. However, the local controllers are implicitly connected through the perceived environment information. Therefore, they constitute a dynamic environment with respect to each other. The proposed control scheme is tested under simulation for a mobile robot in a navigation task. It is shown that some patterns of global behavior--such as collision avoidance, wall-following, light-seeking--can emerge from the local controllers.
Indoor-Outdoor Detection Using a Smart Phone Sensor.
Wang, Weiping; Chang, Qiang; Li, Qun; Shi, Zesen; Chen, Wei
2016-09-22
In the era of mobile internet, Location Based Services (LBS) have developed dramatically. Seamless Indoor and Outdoor Navigation and Localization (SNAL) has attracted a lot of attention. No single positioning technology was capable of meeting the various positioning requirements in different environments. Selecting different positioning techniques for different environments is an alternative method. Detecting the users' current environment is crucial for this technique. In this paper, we proposed to detect the indoor/outdoor environment automatically without high energy consumption. The basic idea was simple: we applied a machine learning algorithm to classify the neighboring Global System for Mobile (GSM) communication cellular base station's signal strength in different environments, and identified the users' current context by signal pattern recognition. We tested the algorithm in four different environments. The results showed that the proposed algorithm was capable of identifying open outdoors, semi-outdoors, light indoors and deep indoors environments with 100% accuracy using the signal strength of four nearby GSM stations. The required hardware and signal are widely available in our daily lives, implying its high compatibility and availability.
Recording temporal lobe epileptic activity with MEG in a light-weight magnetic shield.
Carrette, Evelien; Op de Beeck, Marc; Bourguignon, Mathieu; Boon, Paul; Vonck, Kristl; Legros, Benjamin; Goldman, Serge; Van Bogaert, Patrick; De Tiège, Xavier
2011-06-01
To assess the interictal epileptic discharges (IEDs) detection rate of magnetoencephalography (MEG) recordings performed in a new light-weight magnetic shielding (LMSR) concept in a large group of consecutive patients with presumed mesiotemporal lobe epilepsy (MTLE). Thirty-eight patients (23 women; age range: 6-63 years) with presumed MTLE were prospectively studied. MEG investigations were performed with the 306-channel Elekta Neuromag® MEG-system installed in a normal hospital environment into a LMSR (MaxShield, Elekta Oy). Equivalent current dipoles (ECD, g/% > 80%) corresponding to epileptic events were fitted to each patient's spherical head model at IEDs onset and peak and then superimposed on the patient's co-registered MRI. IEDs were observed in 26 out of 38 patients (68.4%). Temporal ECDs were mesial in 14 patients, anterior in 23 patients and posterior in 8 patients. Interestingly, in 6 patients, ECDs fitted at spike-onset were localized in the hippocampus while at the peak of the spike, they had an anterior temporal location. MEG using LMSR provides adequate signal to noise ratio (SNR) to allow reliable detection and localization of single epileptic abnormalities on continuous MEG data in 68% of patients with presumed MTLE. Moreover, mesial temporal epileptic sources were detected in 54% of patients with abnormal MEG. The SNR of MEG data acquired using the LMSR is therefore suitable for the non-invasive localization of epileptic foci in patients with MTLE. The use of LMSR, which are cheaper and smaller than conventional MSR, should facilitate the development of MEG in clinical environments. Copyright © 2011 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Lighting, sleep and circadian rhythm: An intervention study in the intensive care unit.
Engwall, Marie; Fridh, Isabell; Johansson, Lotta; Bergbom, Ingegerd; Lindahl, Berit
2015-12-01
Patients in an intensive care unit (ICU) may risk disruption of their circadian rhythm. In an intervention research project a cycled lighting system was set up in an ICU room to support patients' circadian rhythm. Part I aimed to compare experiences of the lighting environment in two rooms with different lighting environments by lighting experiences questionnaire. The results indicated differences in advantage for the patients in the intervention room (n=48), in perception of daytime brightness (p=0.004). In nighttime, greater lighting variation (p=0.005) was found in the ordinary room (n=52). Part II aimed to describe experiences of lighting in the room equipped with the cycled lighting environment. Patients (n=19) were interviewed and the results were presented in categories: "A dynamic lighting environment", "Impact of lighting on patients' sleep", "The impact of lighting/lights on circadian rhythm" and "The lighting calms". Most had experiences from sleep disorders and half had nightmares/sights and circadian rhythm disruption. Nearly all were pleased with the cycled lighting environment, which together with daylight supported their circadian rhythm. In night's actual lighting levels helped patients and staff to connect which engendered feelings of calm. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Liu, Jing; Hosseinpour, Pegah M.; Luo, Si; ...
2014-11-19
To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO₂ nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O₂ (oxidizing), Ar (inert), and H₂ (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO₂ nanotube samplesmore » partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (~5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO₂ nanotubes regardless of their length. The annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H₂-annealed nanotubes than with the Ar- and O₂-annealed nanotube samples. This enhanced photocatalytic response of the H₂-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti 3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure, crystal structure, and the local chemical environment on the photocatalytic activity and may be employed for tailoring the materials' properties for photocatalysis and other energy-related applications.« less
Auditory and visual localization accuracy in young children and adults.
Martin, Karen; Johnstone, Patti; Hedrick, Mark
2015-06-01
This study aimed to measure and compare sound and light source localization ability in young children and adults who have normal hearing and normal/corrected vision in order to determine the extent to which age, type of stimuli, and stimulus order affects sound localization accuracy. Two experiments were conducted. The first involved a group of adults only. The second involved a group of 30 children aged 3 to 5 years. Testing occurred in a sound-treated booth containing a semi-circular array of 15 loudspeakers set at 10° intervals from -70° to 70° azimuth. Each loudspeaker had a tiny light bulb and a small picture fastened underneath. Seven of the loudspeakers were used to randomly test sound and light source identification. The sound stimulus was the word "baseball". The light stimulus was a flashing of a light bulb triggered by the digital signal of the word "baseball". Each participant was asked to face 0° azimuth, and identify the location of the test stimulus upon presentation. Adults used a computer mouse to click on an icon; children responded by verbally naming or walking toward the picture underneath the corresponding loudspeaker or light. A mixed experimental design using repeated measures was used to determine the effect of age and stimulus type on localization accuracy in children and adults. A mixed experimental design was used to compare the effect of stimulus order (light first/last) and varying or fixed intensity sound on localization accuracy in children and adults. Localization accuracy was significantly better for light stimuli than sound stimuli for children and adults. Children, compared to adults, showed significantly greater localization errors for audition. Three-year-old children had significantly greater sound localization errors compared to 4- and 5-year olds. Adults performed better on the sound localization task when the light localization task occurred first. Young children can understand and attend to localization tasks, but show poorer localization accuracy than adults in sound localization. This may be a reflection of differences in sensory modality development and/or central processes in young children, compared to adults. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Liu, Jie; Xu, Muyun; Estavillo, Gonzalo M.; Delhaize, Emmanuel; White, Rosemary G.; Zhou, Meixue; Ryan, Peter R.
2018-01-01
We examined the function of OsALMT4 in rice (Oryza sativa L.) which is a member of the aluminum-activated malate transporter family. Previous studies showed that OsALMT4 localizes to the plasma membrane and that expression in transgenic rice lines results in a constitutive release of malate from the roots. Here, we show that OsALMT4 is expressed widely in roots, shoots, flowers, and grain but not guard cells. Expression was also affected by ionic and osmotic stress, light and to the hormones ABA, IAA, and salicylic acid. Malate efflux from the transgenic plants over-expressing OsALMT4 was inhibited by niflumate and salicylic acid. Growth of transgenic lines with either increased OsALMT4 expression or reduced expression was measured in different environments. Light intensity caused significant differences in growth between the transgenic lines and controls. When day-time light was reduced from 700 to 300 μmol m-2s-1 independent transgenic lines with either increased or decreased OsALMT4 expression accumulated less biomass compared to their null controls. This response was not associated with differences in photosynthetic capacity, stomatal conductance or sugar concentrations in tissues. We propose that by disrupting malate fluxes across the plasma membrane carbon partitioning and perhaps signaling are affected which compromises growth under low light. We conclude that OsALMT4 is expressed widely in rice and facilitates malate efflux from different cell types. Altering OsALMT4 expression compromises growth in low-light environments. PMID:29774038
Light and color as biological stimuli for the well-being in space long duration missions.
NASA Astrophysics Data System (ADS)
Schlacht, I.; Masali, M.; Ferrino, M.
Foreword In a microgravitational space environment the human biorhythm its sensory perception and all its psycho-physiological system comes completely upset by the absence of gravity and of external terrestrial references beyond the effects of constraint in a limited space This type of environment is defined extreme confined In order to create a human centered design in sight of missions of long duration We will have to consider above all these factors in order to try to increase the well-being the comfort and the productivity of the astronauts In this context we have elaborated a design concept that forecasts to resume the variety and the variability of the terrestrial stimuli through factors like the light and the color so as to recreate the input of the normal circadian cycle subsubsection Light and color and psycho-physiological well-being The human circadian rhythms day all around cycle of the organism s function are regulated by a sort of biological clock presumably localized in the hypothalamus The more obvious examples of this clock are the heartbeat the menstrual cycle the variation of the body temperature and the hormonal production during the day the behavior of plants and animals Those organism functions are influenced by the variation of the light around of the 24 hours The emission of an environmental light can restore sout s the earthly solar cycle irradiating the subject with the same frequency beams present on the Earth this irradiation should vary the intensity during the day like the
Light and color as biological stimuli for the well-being in space long duration missions
NASA Astrophysics Data System (ADS)
Schlacht, S.; Masali, M.; Musso, M.
Foreword In a microgravitational space environment the human biorhythm its sensory perception and all its psycho-physiological system comes completely upset by the absence of gravity and of external terrestrial references beyond the effects of constraint in a limited space This type of environment is defined extreme confined In order to create a human centered design in sight of missions of long duration We will have to consider above all these factors in order to try to increase the well-being the comfort and the productivity of the astronauts In this context we have elaborated a design concept that forecasts to resume the variety and the variability of the terrestrial stimuli through factors like the light and the color so as to recreate the input of the normal circadian cycle subsubsection Light and color and psycho-physiological well-being The human circadian rhythms day all around cycle of the organism s function are regulated by a sort of biological clock presumably localized in the hypothalamus The more obvious examples of this clock are the heartbeat the menstrual cycle the variation of the body temperature and the hormonal production during the day the behavior of plants and animals Those organism functions are influenced by the variation of the light around of the 24 hours The emission of an environmental light can restore sout s the earthly solar cycle irradiating the subject with the same frequency beams present on the Earth this irradiation should vary the intensity during the day like the
Revealing Hidden Conformational Space of LOV Protein VIVID Through Rigid Residue Scan Simulations
NASA Astrophysics Data System (ADS)
Zhou, Hongyu; Zoltowski, Brian D.; Tao, Peng
2017-04-01
VIVID(VVD) protein is a Light-Oxygen-Voltage(LOV) domain in circadian clock system. Upon blue light activation, a covalent bond is formed between VVD residue Cys108 and its cofactor flavin adenine dinucleotide(FAD), and prompts VVD switching from Dark state to Light state with significant conformational deviation. However, the mechanism of this local environment initiated global protein conformational change remains elusive. We employed a recently developed computational approach, rigid residue scan(RRS), to systematically probe the impact of the internal degrees of freedom in each amino acid residue of VVD on its overall dynamics by applying rigid body constraint on each residue in molecular dynamics simulations. Key residues were identified with distinctive impacts on Dark and Light states, respectively. All the simulations display wide range of distribution on a two-dimensional(2D) plot upon structural root-mean-square deviations(RMSD) from either Dark or Light state. Clustering analysis of the 2D RMSD distribution leads to 15 representative structures with drastically different conformation of N-terminus, which is also a key difference between Dark and Light states of VVD. Further principle component analyses(PCA) of RRS simulations agree with the observation of distinctive impact from individual residues on Dark and Light states.
The Social Implications of Light at Night
NASA Astrophysics Data System (ADS)
Henshaw, Colin
2015-08-01
Summary: It has been shown that Light at Night (LAN) has serious implications for both the environment and human health. What is considered here are the social implications that arise from these problems, and what needs to be done to redress these issues.Introduction: Light at Night is a serious environmental problem whose environmental and medical implications have been seriously underestimated. If no action is taken the problem will become progressively worse and may reach a point where nothing can be done about it. The issues arising from it need to be identified andappropriate action taken to mitigate these issues as far as possible. Hopefully this can be done amicably by self regulation within communities, but if this fails then stringent anti-light pollution legislation will have to be enacted. Some countries and local authorities have already begun to make faltering steps in this direction1, but so far the measures taken have been minimal and largely ineffective. Light at Night (and the light pollution resulting from it) therefore remains a problem and continues to get worse despite the measures already taken to reduce it. Domes of scattered light continue to hang above our cities, killing off our wildlife and endangering public health. Attitudes need to change and urgent measures need to be taken in order to reduce or eliminate its impact.
LAN MAP: An Innovative Airborne Light at Night Mapping Project
NASA Astrophysics Data System (ADS)
Craine, Eric R.; Craine, B. L.; Craine, E. M.; Craine, P. R.
2013-01-01
Widespread installation of inefficient and misdirected artificial light at night (LAN) has led to increasing concerns about light pollution and its impact, not only on astronomical facilities but larger communities as well. Light pollution impacts scientific research, environmental ecosystems, human health, and quality of life. In recent years, the public policy response to light pollution has included formulation of government codes to regulate lighting design and installation. Various environmental groups now include light pollution among their rallying themes to protest both specific and general developments. The latter efforts are often conducted in the absence of any quantitative data and are frequently charged by emotion rather than reason. To bring some scientific objectivity, and quantitative data, to these discussions, we have developed a suite of tools for simultaneous photometric measurements and temporal monitoring of both local communities and the sky overhead. We have also developed novel protocols for the use of these tools, including a triad of airborne, ground mobile, and ground static photometric surveys. We present a summary of these tools and protocols, with special emphasis on the airborne systems, and discuss baseline and follow-up measurements of LAN environments in the vicinity of numerous observatories in Arizona, the home of the initial LAN MAP surveys.
Revealing Hidden Conformational Space of LOV Protein VIVID Through Rigid Residue Scan Simulations
Zhou, Hongyu; Zoltowski, Brian D.; Tao, Peng
2017-01-01
VIVID(VVD) protein is a Light-Oxygen-Voltage(LOV) domain in circadian clock system. Upon blue light activation, a covalent bond is formed between VVD residue Cys108 and its cofactor flavin adenine dinucleotide(FAD), and prompts VVD switching from Dark state to Light state with significant conformational deviation. However, the mechanism of this local environment initiated global protein conformational change remains elusive. We employed a recently developed computational approach, rigid residue scan(RRS), to systematically probe the impact of the internal degrees of freedom in each amino acid residue of VVD on its overall dynamics by applying rigid body constraint on each residue in molecular dynamics simulations. Key residues were identified with distinctive impacts on Dark and Light states, respectively. All the simulations display wide range of distribution on a two-dimensional(2D) plot upon structural root-mean-square deviations(RMSD) from either Dark or Light state. Clustering analysis of the 2D RMSD distribution leads to 15 representative structures with drastically different conformation of N-terminus, which is also a key difference between Dark and Light states of VVD. Further principle component analyses(PCA) of RRS simulations agree with the observation of distinctive impact from individual residues on Dark and Light states. PMID:28425502
NASA Lighting Research, Test, & Analysis
NASA Technical Reports Server (NTRS)
Clark, Toni
2015-01-01
The Habitability and Human Factors Branch, at Johnson Space Center, in Houston, TX, provides technical guidance for the development of spaceflight lighting requirements, verification of light system performance, analysis of integrated environmental lighting systems, and research of lighting-related human performance issues. The Habitability & Human Factors Lighting Team maintains two physical facilities that are integrated to provide support. The Lighting Environment Test Facility (LETF) provides a controlled darkroom environment for physical verification of lighting systems with photometric and spetrographic measurement systems. The Graphics Research & Analysis Facility (GRAF) maintains the capability for computer-based analysis of operational lighting environments. The combined capabilities of the Lighting Team at Johnson Space Center have been used for a wide range of lighting-related issues.
NASA Astrophysics Data System (ADS)
Ghavaminejad, Amin; Samarikhalaj, Melisa; Aguilar, Ludwig Erik; Park, Chan Hee; Kim, Cheol Sang
2016-09-01
This study reports on an intelligent composite hydrogel with both pH-dependent drug release in a cancer environment and heat generation based on NIR laser exposure, for the combined application of photothermal therapy (PTT) and multidrug chemotherapy. For the first time in the literature, Dopamine nanoparticle (DP) was incorporated as a highly effective photothermal agent as well as anticancer drug, bortezomib (BTZ) carrier inside a stimuli responsive pNIPAAm-co-pAAm hydrogel. When light is applied to the composite hydrogel, DP nanoparticle absorbs the light, which is dissipated locally as heat to impact cancer cells via hyperthermia. On the other hand, facile release of the anticancer drug BTZ from the surface of DP encapsulated hydrogel could be achieved due to the dissociation between catechol groups of DP and the boronic acid functionality of BTZ in typical acidic cancer environment. In order to increase the synergistic effect by dual drug delivery, Doxorubicin (DOXO) were also loaded to pNIPAAm-co-pAAm/DP-BTZ hydrogel and the effect of monotherapy as well as combined therapy were detailed by a complete characterization. Our results suggest that these mussel inspired nanocomposite with excellent heating property and controllable multidrug release can be considered as a potential material for cancer therapy.
Mubayi, Anuj; Greenwood, Priscilla E.; Castillo-Chávez, Carlos; Gruenewald, Paul; Gorman, Dennis M.
2009-01-01
Alcohol consumption is a function of social dynamics, environmental contexts, individuals’ preferences and family history. Empirical surveys have focused primarily on identification of risk factors for high-level drinking but have done little to clarify the underlying mechanisms at work. Also, there have been few attempts to apply nonlinear dynamics to the study of these mechanisms and processes at the population level. A simple framework where drinking is modeled as a socially contagious process in low- and high-risk connected environments is introduced. Individuals are classified as light, moderate (assumed mobile), and heavy drinkers. Moderate drinkers provide the link between both environments, that is, they are assumed to be the only individuals drinking in both settings. The focus here is on the effect of moderate drinkers, measured by the proportion of their time spent in “low-” versus “high-” risk drinking environments, on the distribution of drinkers. A simple model within our contact framework predicts that if the relative residence times of moderate drinkers is distributed randomly between low- and high-risk environments then the proportion of heavy drinkers is likely to be higher than expected. However, the full story even in a highly simplified setting is not so simple because “strong” local social mixing tends to increase high-risk drinking on its own. High levels of social interaction between light and moderate drinkers in low-risk environments can diminish the importance of the distribution of relative drinking times on the prevalence of heavy drinking. PMID:20161388
Growth of locally isolated microalga in POME to produce lipid as alternative energy sources
NASA Astrophysics Data System (ADS)
Elvitriana; Munir, E.; Delvian; Wahyuningsih, H.
2018-04-01
Purpose of this study was to find the best growth of locally isolated microalgae that produce lipids from Palm Oil Mill Effluent (POME) as an alternative energy source. Microalgae was cultivated in POME in glass vessel at room temperature using a lighting intensity of 13,000 lux and continuously aeration for 24 and 12 hours, respectively. Biomass of microalgae were analyzed daily to get their growth by spectrophotometry at 624 nm wavelength, whereas Modified Bligh and Dyer method determined lipid content. Results show that the best growth occurred at 10% inoculum with lighting cycle and aeration of 24 hours (on/off) and resulting highest biomass content of 0.99 g dry weight/L followed by the decrease of organic substances in POME. The percentage reduction of COD, BOD, TSS, and oil at POME reached above 92%, while phosphate concentration reached 89.2%. Cultivation of microalgae in POME for 12 days showed its ability to reduce organic substances and nutrients in POME and produced biomass with lipid content of 35%. These results reached to the conclusion that locally isolated microalgae has an ability to treat POME safely for environment and POME can be used as a growing medium of microalgae that produces lipids.
Reasonable use of artificial lighting in building energy saving
NASA Astrophysics Data System (ADS)
Hou, Yuhan
2018-06-01
The architectural light environment is a crucial part of the built environment. Appropriate lighting can not only meet the needs of people's production and life, but also have a positive impact on people's mental state and feelings. Architectural lighting occupies a vital part of building energy consumption. At present, China's lighting electricity consumption has accounted for 12% of the total electricity generated in the country. Promoting lighting energy conservation can play an important role in alleviating energy shortages. This article mainly discusses how to make reasonable use of artificial lighting and choose suitable light sources to reduce the energy consumed by lighting under the condition of satisfying a good architectural light environment.
NASA Astrophysics Data System (ADS)
Bensel, Holly; Dorrell, Genna; Feng, James; Hicks, Sean; Mars Liu, Jason; Liu, Steven; Moczygemba, Mitchell; Sheng, Jason; Sternenburg, Leah; Than, Emi; Timmons, Emry; Wen, Jerry; Yaeger, Bella; You, Ruiyang
2016-01-01
The Rogue Valley in Southwest Oregon was known for its beautiful dark skies, but due to population growth the dark skies are vanishing. A light pollution chart using Defense Meteorological Satellite Program (DMSP) data was published in 2006, but did not show the spatial variation in detail. In the spring of 2014, the 9th grade physics students, astronomy students, and members of the Astronomy Club from St. Mary's School conducted the first detailed night sky survey. The purpose of the survey is to create a baseline of the variations in light pollution in the Rogue Valley.The project continued into 2015, incorporating suggestions made at the 2014 AAS Conference to improve the study by including more light meter data and community outreach. Students used light meters, Loss of the Night app, and the Dark Sky meter app. Students researched light pollution and its effects on the environment, measured night sky brightness in the Rogue Valley, and completed a light audit in an area of their choice. They created a presentation for a final physics grade. The basis for this project, along with procedures can be found on the GaN, Globe at Night, (www.globeatnight.org) website. The light audit and research portion were developed from the Dark Sky Rangers section of the website (www.globeatnight.org/dsr/).The 2014 survey and public outreach increased awareness of light pollution in the Rogue Valley and around the state of Oregon. Examples include a local senior project to change lighting at a baseball stadium and a 4-H club in Northeast Oregon starting a GaN survey in their area. GaN shows growth in the amount of data collected in Oregon from 8 data points in 2006 to 193 in 2014. The Rogue Valley magnitude data from the spring of 2015 indicates a drop from an average magnitude of 4 to an average magnitude of 2. This is due to hazy skies from smoke drifting into the valley from a Siberian wildfire. Data collection during the summer and fall was hampered due to smoke from local wildfires.
Reinforcement learning of periodical gaits in locomotion robots
NASA Astrophysics Data System (ADS)
Svinin, Mikhail; Yamada, Kazuyaki; Ushio, S.; Ueda, Kanji
1999-08-01
Emergence of stable gaits in locomotion robots is studied in this paper. A classifier system, implementing an instance- based reinforcement learning scheme, is used for sensory- motor control of an eight-legged mobile robot. Important feature of the classifier system is its ability to work with the continuous sensor space. The robot does not have a prior knowledge of the environment, its own internal model, and the goal coordinates. It is only assumed that the robot can acquire stable gaits by learning how to reach a light source. During the learning process the control system, is self-organized by reinforcement signals. Reaching the light source defines a global reward. Forward motion gets a local reward, while stepping back and falling down get a local punishment. Feasibility of the proposed self-organized system is tested under simulation and experiment. The control actions are specified at the leg level. It is shown that, as learning progresses, the number of the action rules in the classifier systems is stabilized to a certain level, corresponding to the acquired gait patterns.
In-Situ Phase Transition Control in the Supercooled State for Robust Active Glass Fiber.
Lv, Shichao; Cao, Maoqing; Li, Chaoyu; Li, Jiang; Qiu, Jianrong; Zhou, Shifeng
2017-06-21
The construction of a dopant-activated photonic composite is of great technological importance for various applications, including smart lighting, optical amplification, laser, and optical detection. The bonding arrangement around the introduced dopants largely determines the properties, yet it remains a daunting challenge to manipulate the local state of the matrix (i.e., phase) inside the transparent composite in a controllable manner. Here we demonstrate that the relaxation of the supercooled state enables in-situ phase transition control in glass. Benefiting from the unique local atom arrangement manner, the strategy offers the possibility for simultaneously tuning the chemical environment of the incorporated dopant and engineering the dopant-host interaction. This allows us to effectively activate the dopant with high efficiency (calculated as ∼100%) and profoundly enhance the dopant-host energy-exchange interaction. Our results highlight that the in-situ phase transition control in glass may provide new opportunities for fabrication of unusual photonic materials with intense broadband emission at ∼1100 nm and development of the robust optical detection unit with high compactness and broadband photon-harvesting capability (from X-ray to ultraviolet light).
Determining Light Pollution of the Global Sky: GLOBE at Night
NASA Astrophysics Data System (ADS)
Henderson, S.; Meymaris, K.; Ward, D.; Walker, C.; Russell, R.; Pompea, S.; Salisbury, D.
2006-05-01
GLOBE at Night is an international science event designed to observe and record the visible stars as a means of measuring light pollution in a given location. Increased and robust understanding of our environment requires learning opportunities that take place outside of the conventional K-12 classroom and beyond the confines of the school day. This hands-on learning activity extended the traditional classroom and school day last March with a week of nighttime sky observations involving teachers, students and their families. The quality of the night sky for stellar observations is impacted by several factors including human activities. By observing cloud cover and locating specific constellations in the sky, students from around the world learned how the lights in their community contribute to light pollution, exploring the relationship between science, technology and their society. Students learned that light pollution impacts more than just the visibility of stars at night. Lights at night impact both the biology and ecology of many species in our environment. Students were able to participate in this global scientific campaign by submitting their observations through an online database, allowing for authentic worldwide research and analysis by participating scientists. Students and their families learned how latitude and longitude coordinates provide a location system to map and analyze the observation data submitted from around the globe. The collected data is available online for use by students, teachers and scientists worldwide to assess how the quality of the night sky varies around the world. This session will share how students and scientists across the globe can explore and analyze the results of this exciting campaign. GLOBE at Night is a collaborative effort sponsored by The GLOBE Program, the National Optical Astronomy Observatory (NOAO), Centro de Apoyo a la Didactica de la Astronomia (CADIAS), Windows to the Universe, and ESRI. The GLOBE Program is an international inquiry-based program designed to engage teachers with their students in partnership with research scientists to better understand the environment at local, regional, and global scales. The GLOBE Program is managed by the University Corporation for Atmospheric Research and Colorado State University with funding from NASA, NSF, and the U.S. Department of State.
Optimal growth entails risky localization in population dynamics
NASA Astrophysics Data System (ADS)
Gueudré, Thomas; Martin, David G.
2018-03-01
Essential to each other, growth and exploration are jointly observed in alive and inanimate entities, such as animals, cells or goods. But how the environment's structural and temporal properties weights in this balance remains elusive. We analyze a model of stochastic growth with time correlations and diffusive dynamics that sheds light on the way populations grow and spread over general networks. This model suggests natural explanations of empirical facts in econo-physics or ecology, such as the risk-return trade-off and the Zipf law. We conclude that optimal growth leads to a localized population distribution, but such risky position can be mitigated through the space geometry. These results have broad applicability and are subsequently illustrated over an empirical study of financial data.
NASA Technical Reports Server (NTRS)
Clark, T. A.; Brainard, G.; Salazar, G.; Johnston, S.; Schwing, B.; Litaker, H.; Kolomenski, A.; Venus, D.; Tran, K.; Hanifin, J.;
2017-01-01
NASA has demonstrated an interest in improving astronaut health and performance through the installment of a new lighting countermeasure on the International Space Station. The Solid State Lighting Assembly (SSLA) system is designed to positively influence astronaut health by providing a daily change to light spectrum to improve circadian entrainment. Unfortunately, existing NASA standards and requirements define ambient light level requirements for crew sleep and other tasks, yet the number of light-emitting diode (LED) indicators and displays within a habitable volume is currently uncontrolled. Because each of these light sources has its own unique spectral properties, the additive lighting environment ends up becoming something different from what was planned or researched. Restricting the use of displays and indicators is not a solution because these systems provide beneficial feedback to the crew. The research team for this grant used computer-based computational modeling and real-world lighting mockups to document the impact that light sources other than the ambient lighting system contribute to the ambient spectral lighting environment. In particular, the team was focused on understanding the impacts of long-term tasks located in front of avionics or computer displays. The team also wanted to understand options for mitigating the changes to the ambient light spectrum in the interest of maintaining the performance of a lighting countermeasure. The project utilized a variety of physical and computer-based simulations to determine direct relationships between system implementation and light spectrum. Using real-world data, computer models were built in the commercially available optics analysis software Zemax Optics Studio(c). The team also built a mockup test facility that had the same volume and configuration as one of the Zemax models. The team collected over 1200 spectral irradiance measurements, each representing a different configuration of the mockup. Analysis of the data showed a measurable impact on ambient light spectrum. This data showed that obvious design techniques exist that can be used to bind the ambient light spectrum closer to the planned spectral operating environment for the observer's eye point. The following observations should be considered when designing an operational environment that is dominated by computer displays. When more light is directed into the field of view of the observer, the greater the impact it will make on various human factors issues that depend on spectral shape and intensity. Because viewing angle has a large part to play in the amount of light flux on the crewmember's retina, beam shape, combined with light source location is an important factor for determining percent probable incident flux on the observer from any combination of light sources. Computer graphics design and display lumen output are major factors influencing the amount of spectrally intense light projected into the environment and in the viewer's direction. Use of adjustable white point display software was useful only if the predominant background color was white and if it matched the ambient light system's color. Display graphics that used a predominantly black background had the least influence on unplanned spectral energy projected into the environment. Percent reflectance makes a difference in total energy reflected back into an environment, and within certain architectural geometries, reflectance can be used to control the amount of a light spectrum that is allowed to perpetuate in the environment. Data showed that room volume and distance from significant light sources influence the total spectrum in a room. Smaller environments had a homogenizing effect on total light spectrum, whereas light from multiple sources in larger environments was less mixed. The findings indicated above should be considered when making recommendations for practice or standards for architectural systems. The ambient lighting system, surface reflectance, and display and indicator implementation all factor into the users' spectral environment. A variety of low-cost solutions exist to mitigate the impact of light from non-architectural lighting systems, and much potential for system automation and integration of display systems with the ambient environment. This team believes that proper planning can be used to avoid integration problems and also believes that human-in-the-loop evaluations, real-world test and measurement, and computer modeling can be used to determine how changes to a process, display graphics, and architecture will help maintain the planned spectral operating lighting environment.
Bud development and shoot morphology in relation to crown location
Kukk, Maarja; Sõber, Anu
2015-01-01
Plant architecture is shaped by endogenous growth processes interacting with the local environment. The current study investigated crown development in young black alder trees, assessing the effects of local light conditions and branch height on individual bud mass and contents. In addition, we examined the characteristics of parent shoots [the cross-sectional area (CSA) of stem and total leaf area, shoot length, the number of nodes, the number and total mass of buds per shoot] and leaf–stem as well as bud–stem allometry, as several recent studies link bud development to hydraulic architecture. We sampled shoots from top branches and two lower-crown locations: one subjected to deep shade and the other resembling the upper branches in light availability. Sampling was carried out three times between mid-July and late October, spanning from the early stages of bud growth to dormancy. Individual bud mass and shoot characteristics varied in response to light conditions, whereas leaf–stem allometry depended on branch height, most likely compensating for the increasing length of hydraulic pathways. Despite the differences in individual bud mass, the number of preformed leaves varied little across the crown, indicating that the plasticity in shoot characteristics was mainly achieved by neoformation. The relationship between total bud mass and stem CSA scaled similarly across crown locations. However, scaling slopes gradually decreased throughout the sampling period, driven by bud rather than by stem growth. This suggests that the allometry of total bud mass and CSA of stem is regulated locally, instead of resulting from crown-level processes. PMID:26187607
Ley-Bosch, Carlos; Quintana-Suárez, Miguel A.
2018-01-01
Indoor localization estimation has become an attractive research topic due to growing interest in location-aware services. Many research works have proposed solving this problem by using wireless communication systems based on radiofrequency. Nevertheless, those approaches usually deliver an accuracy of up to two metres, since they are hindered by multipath propagation. On the other hand, in the last few years, the increasing use of light-emitting diodes in illumination systems has provided the emergence of Visible Light Communication technologies, in which data communication is performed by transmitting through the visible band of the electromagnetic spectrum. This brings a brand new approach to high accuracy indoor positioning because this kind of network is not affected by electromagnetic interferences and the received optical power is more stable than radio signals. Our research focus on to propose a fingerprinting indoor positioning estimation system based on neural networks to predict the device position in a 3D environment. Neural networks are an effective classification and predictive method. The localization system is built using a dataset of received signal strength coming from a grid of different points. From the these values, the position in Cartesian coordinates (x,y,z) is estimated. The use of three neural networks is proposed in this work, where each network is responsible for estimating the position by each axis. Experimental results indicate that the proposed system leads to substantial improvements to accuracy over the widely-used traditional fingerprinting methods, yielding an accuracy above 99% and an average error distance of 0.4 mm. PMID:29601525
Multi-texture local ternary pattern for face recognition
NASA Astrophysics Data System (ADS)
Essa, Almabrok; Asari, Vijayan
2017-05-01
In imagery and pattern analysis domain a variety of descriptors have been proposed and employed for different computer vision applications like face detection and recognition. Many of them are affected under different conditions during the image acquisition process such as variations in illumination and presence of noise, because they totally rely on the image intensity values to encode the image information. To overcome these problems, a novel technique named Multi-Texture Local Ternary Pattern (MTLTP) is proposed in this paper. MTLTP combines the edges and corners based on the local ternary pattern strategy to extract the local texture features of the input image. Then returns a spatial histogram feature vector which is the descriptor for each image that we use to recognize a human being. Experimental results using a k-nearest neighbors classifier (k-NN) on two publicly available datasets justify our algorithm for efficient face recognition in the presence of extreme variations of illumination/lighting environments and slight variation of pose conditions.
High resolution surface plasmon microscopy for cell imaging
NASA Astrophysics Data System (ADS)
Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.
2010-04-01
We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.
Akbari, Jafar; Dehghan, Habibollah; Azmoon, Hiva
2013-01-01
Work environment affects human productivity and his performance. The aims of this study were to investigate the effects of lighting and noise levels on human productivity in the automotive assembly industry. Method. Subjects were 181 workers from different parts of an automobile assembly industry. Illuminance (Lx) at the height of 30 inches from the surface of work station and noise (dBA) were locally measured. Also human productivity by the Goldsmith and Hersey scale (1980) was measured. Data were analyzed by using SPSS v20 Pearson correlation coefficient. Results. The results showed that the relationship between noise level and human productivity is negative and significant (P < 0.05, r = −0.178), but there was no significant relationship between lighting and human productivity (P > 0.05). Conclusion. Based on the results, in assembly tasks, noise has a negative impact on human productivity, and lighting does not affect this. So, in order to increase employee productivity, noise control and reduction to less than the standard values (less than 85 dB) is necessary. PMID:24250340
Akbari, Jafar; Dehghan, Habibollah; Azmoon, Hiva; Forouharmajd, Farhad
2013-01-01
Work environment affects human productivity and his performance. The aims of this study were to investigate the effects of lighting and noise levels on human productivity in the automotive assembly industry. Subjects were 181 workers from different parts of an automobile assembly industry. Illuminance (Lx) at the height of 30 inches from the surface of work station and noise (dBA) were locally measured. Also human productivity by the Goldsmith and Hersey scale (1980) was measured. Data were analyzed by using SPSS v20 Pearson correlation coefficient. The results showed that the relationship between noise level and human productivity is negative and significant (P < 0.05, r = -0.178), but there was no significant relationship between lighting and human productivity (P > 0.05). Based on the results, in assembly tasks, noise has a negative impact on human productivity, and lighting does not affect this. So, in order to increase employee productivity, noise control and reduction to less than the standard values (less than 85 dB) is necessary.
Representations and uses of light distribution functions
NASA Astrophysics Data System (ADS)
Lalonde, Paul Albert
1998-11-01
At their lowest level, all rendering algorithms depend on models of local illumination to define the interplay of light with the surfaces being rendered. These models depend both on the representations of light scattering at a surface due to reflection and to an equal extent on the representation of light sources and light fields. Both emission and reflection have in common that they describe how light leaves a surface as a function of direction. Reflection also depends on an incident light direction. Emission can depend on the position on the light source We call the functions representing emission and reflection light distribution functions (LDF's). There are some difficulties to using measured light distribution functions. The data sets are very large-the size of the data grows with the fourth power of the sampling resolution. For example, a bidirectional reflectance distribution function (BRDF) sampled at five degrees angular resolution, which is arguably insufficient to capture highlights and other high frequency effects in the reflection, can easily require one and a half million samples. Once acquired this data requires some form of interpolation to use them. Any compression method used must be efficient, both in space and in the time required to evaluate the function at a point or over a range of points. This dissertation examines a wavelet representation of light distribution functions that addresses these issues. A data structure is presented that allows efficient reconstruction of LDFs for a given set of parameters, making the wavelet representation feasible for rendering tasks. Texture mapping methods that take advantage of our LDF representations are examined, as well as techniques for filtering LDFs, and methods for using wavelet compressed bidirection reflectance distribution functions (BRDFs) and light sources with Monte Carlo path tracing algorithms. The wavelet representation effectively compresses BRDF and emission data while inducing only a small error in the reconstructed signal. The representation can be used to evaluate efficiently some integrals that appear in shading computation which allows fast, accurate computation of local shading. The representation can be used to represent light fields and is used to reconstruct views of environments interactively from a precomputed set of views. The representation of the BRDF also allows the efficient generation of reflected directions for Monte Carlo array tracing applications. The method can be integrated into many different global illumination algorithms, including ray tracers and wavelet radiosity systems.
Enhancing Localized Evaporation through Separated Light Absorbing Centers and Scattering Centers
Zhao, Dengwu; Duan, Haoze; Yu, Shengtao; Zhang, Yao; He, Jiaqing; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao
2015-01-01
This report investigates the enhancement of localized evaporation via separated light absorbing particles (plasmonic absorbers) and scattering particles (polystyrene nanoparticles). Evaporation has been considered as one of the most important phase-change processes in modern industries. To improve the efficiency of evaporation, one of the most feasible methods is to localize heat at the top water layer rather than heating the bulk water. In this work, the mixture of purely light absorptive plasmonic nanostructures such as gold nanoparticles and purely scattering particles (polystyrene nanoparticles) are employed to confine the incident light at the top of the solution and convert light to heat. Different concentrations of both the light absorbing centers and the light scattering centers were evaluated and the evaporation performance can be largely enhanced with the balance between absorbing centers and scattering centers. The findings in this study not only provide a new way to improve evaporation efficiency in plasmonic particle-based solution, but also shed lights on the design of new solar-driven localized evaporation systems. PMID:26606898
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudier, J.L.; Jover, E.; Cau, P.
1988-05-01
Alpha-scorpion toxins bind specifically to the voltage-sensitive sodium channel in excitable membranes, and binding is potential-dependent. The radioiodinated toxin II from the scorpion Androctonus australis Hector (alpha ScTx) was used to localize voltage-sensitive sodium channels on the presynaptic side of mouse neuromuscular junctions (NMJ) by autoradiography using both light and electron microscopy. Silver grain localization was analyzed by the cross-fire method. At the light-microscopic level, grain density over NMJ appeared 6-8x higher than over nonjunctional muscle membrane. The specificity of labeling was verified by competition/displacement with an excess of native alpha ScTx. Labeling was also inhibited by incubation in depolarizingmore » conditions, showing its potential-dependence. At the electron-microscopic level, analysis showed that voltage-sensitive sodium channels labeled with alpha ScTx were almost exclusively localized on membranes, as expected. Due to washout after incubation, appreciable numbers of binding sites were not found on the postsynaptic membranes. However, on the presynaptic side, alpha ScTx-labeled voltage-sensitive sodium channels were localized on the membrane of non-myelin-forming Schwann cells covering NMJ. The axonal presynaptic membrane was not labeled. These results show that voltage-sensitive sodium channels are present on glial cells in vivo, as already demonstrated in vitro. It is proposed that these glial channels could be indirectly involved in the ionic homeostasis of the axonal environment.« less
NASA Astrophysics Data System (ADS)
Zou, Yuan; Shen, Tianxing
2013-03-01
Besides illumination calculating during architecture and luminous environment design, to provide more varieties of photometric data, the paper presents combining relation between luminous environment design and SM light environment measuring system, which contains a set of experiment devices including light information collecting and processing modules, and can offer us various types of photometric data. During the research process, we introduced a simulation method for calibration, which mainly includes rebuilding experiment scenes in 3ds Max Design, calibrating this computer aid design software in simulated environment under conditions of various typical light sources, and fitting the exposure curves of rendered images. As analytical research went on, the operation sequence and points for attention during the simulated calibration were concluded, connections between Mental Ray renderer and SM light environment measuring system were established as well. From the paper, valuable reference conception for coordination between luminous environment design and SM light environment measuring system was pointed out.
Low Mass Printable Devices for Energy Capture, Storage, and Use
NASA Technical Reports Server (NTRS)
Frazier, Donald O.; Singer, Christopher E.; Rogers, Jan R.; Schramm, Harry F.; Fabisinski, Leo L.; Lowenthal, Mark; Ray, William J.; Fuller, Kirk A.
2010-01-01
The energy-efficient, environmentally friendly technology that will be presented is the result of a Space Act Agreement between NthDegree Technologies Worldwide, Inc., and the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC). The work combines semiconductor and printing technologies to advance lightweight electronic and photonic devices having excellent potential for commercial and exploration applications. Device development involves three projects that relate to energy generation and consumption: (1) a low-mass efficient (low power, low heat emission) micro light-emitting diode (LED) area lighting device; (2) a low-mass omni-directional efficient photovoltaic (PV) device with significantly improved energy capture; and (3) a new approach to building super-capacitors. These three technologies, energy capture, storage, and usage (e.g., lighting), represent a systematic approach for building efficient local micro-grids that are commercially feasible; furthermore, these same technologies, appropriately replacing lighting with lightweight power generation, will be useful for enabling inner planetary missions using smaller launch vehicles and to facilitate surface operations during lunar and planetary surface missions. The PV device model is a two sphere, light trapped sheet approximately 2-mm thick. The model suggests a significant improvement over current thin film systems. For lighting applications, all three technology components are printable in-line by printing sequential layers on a standard screen or flexographic direct impact press using the three-dimensional printing technique (3DFM) patented by NthDegree. One primary contribution to this work in the near term by the MSFC is to test the robustness of prototype devices in the harsh environments that prevail in space and on the lunar surface. It is anticipated that this composite device, of which the lighting component has passed off-gassing testing, will function appropriately in such environments consistent with NASA s exploration missions. Advanced technologies such as this show promise for both space flight and terrestrial applications.
Cioloboc, Daniela; Kennedy, Christopher; Boice, Emily N; Clark, Emily R; Kurtz, Donald M
2018-01-08
Traditional photodynamic therapy for cancer relies on dye-photosensitized generation of singlet oxygen. However, therapeutically effective singlet oxygen generation requires well-oxygenated tissues, whereas many tumor environments tend to be hypoxic. We describe a platform for targeted enhancement of photodynamic therapy that produces singlet oxygen in oxygenated environments and hydroxyl radical, which is typically regarded as the most toxic reactive oxygen species, in hypoxic environments. The 24-subunit iron storage protein bacterioferritin (Bfr) has the unique property of binding 12 heme groups in its protein shell. We inserted the isostructural photosensitizer, zinc(II) protoporphyrin IX (ZnP), in place of the hemes and extended the surface-exposed N-terminal ends of the Bfr subunits with a peptide targeting a receptor that is hyperexpressed on the cell surface of many tumors and tumor vasculature. We then loaded the inner cavity with ∼2500 irons as a ferric oxyhydroxide polymer and finally conjugated 2 kDa polyethylene glycol to the outer surface. We showed that the inserted ZnP photosensitizes generation of both singlet oxygen and the hydroxyl radical, the latter via the reaction of photoreleased ferrous iron with hydrogen peroxide. This targeted iron-loaded ZnP-Bfr construct was endocytosed by C32 melanoma cells and localized to lysosomes. Irradiating the treated cells with light at wavelengths overlapping the ZnP Soret absorption band induced photosensitized intracellular Fe 2+ release and substantial lowering of cell viability. This targeted, light-triggered production of intracellular singlet oxygen and Fenton-reactive iron could potentially be developed into a phototherapeutic adjunct for many types of cancers.
Analysis of the gravitaxis signal transduction chain in Euglena gracilis
NASA Astrophysics Data System (ADS)
Nasir, Adeel
Abstract Euglena gracilis is a photosynthetic, eukaryotic flagellate. It can adapt autotrophic and heterotrophic mode of growth and respond to different stimuli, this makes it an organism of choice for different research disciplines. It swims to reach a suitable niche by employing different stimuli such as oxygen, light, gravity and different chemicals. Among these stimuli light and gravity are the most important. Phototaxis (locomotion under light stimulus) and gravitaxis (locomotion under gravity stimulus) synergistically help cells to attain an optimal niche in the environment. However, in the complete absence of light or under scarcity of detectable light, cells can totally depend on gravity to find its swimming path. Therefore gravity has certain advantages over other stimuli.Unlike phototatic signal transduction chain of Euglena gracilis no clear primary gravity receptor has been identified in Euglena cells so far. However, there are some convincing evidence that TRP like channels act as a primary gravity receptor in Euglena gracilis.Use of different inhibitors gave rise to the involvement of protein kinase and calmodulin proteins in signal transduction chain of Euglena gracilis. Recently, specific calmodulin (Calmodulin 2) and protein kinase (PKA) have been identified as potential candidates of gravitactic signal transduction chain. Further characterization and investigation of these candidates was required. Therefore a combination of biochemical and genetic techniques was employed to localize proteins in cells and also to find interacting partners. For localization studies, specific antibodies were raised and characterized. Specificity of antibodies was validated by knockdown mutants, Invitro-translated proteins and heterologously expressed proteins. Cell fractionation studies, involving separation of the cell body and flagella for western blot analysis and confocal immunofluorescence studies were performed for subcellular localization. In order to find interacting partners, yeast two hybrid screen was conducted by using commercially synthesized cDNA library for Euglena gracilis. For both protein kinase and calmodulin some putative interacting partners were found. These plausible candidates are subjected for further validation studies, to verify the protein-protein interaction. In addition, some differential expression studies are also performed for these proteins to evaluate their expression levels under conditions which are known to affect gravitaxis in Euglena gracilis. Taken together, these data are in good agreement with some of already predicted studies for protein localization, but at the same time provides new insights for further studies.
NASA Astrophysics Data System (ADS)
Mantel, Claire; Korhonen, Jari; Pedersen, Jesper M.; Bech, Søren; Andersen, Jakob Dahl; Forchhammer, Søren
2015-01-01
This paper focuses on the influence of ambient light on the perceived quality of videos displayed on Liquid Crystal Display (LCD) with local backlight dimming. A subjective test assessing the quality of videos with two backlight dimming methods and three lighting conditions, i.e. no light, low light level (5 lux) and higher light level (60 lux) was organized to collect subjective data. Results show that participants prefer the method exploiting local dimming possibilities to the conventional full backlight but that this preference varies depending on the ambient light level. The clear preference for one method at the low light conditions decreases at the high ambient light, confirming that the ambient light significantly attenuates the perception of the leakage defect (light leaking through dark pixels). Results are also highly dependent on the content of the sequence, which can modulate the effect of the ambient light from having an important influence on the quality grades to no influence at all.
Nonthermal effects in photostimulated solid state reaction of Mn doped SrTiO3
NASA Astrophysics Data System (ADS)
Daraselia, D.; Japaridze, D.; Jibuti, Z.; Shengelaya, A.; Müller, K. A.
2017-04-01
The effect of a photostimulated solid state reaction was investigated in Mn doped SrTiO3 samples. Light irradiation was performed by either halogen or UV lamps in order to study the effect of the spectral composition, and the results were compared with samples prepared at the same temperatures in a conventional furnace. The obtained samples were studied by X-ray diffraction for structural characterization and by Electron Paramagnetic Resonance, which provides microscopic information about the local environment as well as the valence state of Mn ions. It was found that light irradiation significantly enhances the solid state reaction rate compared to synthesis in the conventional furnace. Moreover, it was observed that UV lamp irradiation is much more effective compared to halogen lamps. This indicates that the absorption of light with energy larger than the materials band gap plays an important role and points towards the nonthermal mechanism of the photostimulated solid state reaction.
Kumar, G. Ajay; Patil, Ashok Kumar; Patil, Rekha; Park, Seong Sill; Chai, Young Ho
2017-01-01
Mapping the environment of a vehicle and localizing a vehicle within that unknown environment are complex issues. Although many approaches based on various types of sensory inputs and computational concepts have been successfully utilized for ground robot localization, there is difficulty in localizing an unmanned aerial vehicle (UAV) due to variation in altitude and motion dynamics. This paper proposes a robust and efficient indoor mapping and localization solution for a UAV integrated with low-cost Light Detection and Ranging (LiDAR) and Inertial Measurement Unit (IMU) sensors. Considering the advantage of the typical geometric structure of indoor environments, the planar position of UAVs can be efficiently calculated from a point-to-point scan matching algorithm using measurements from a horizontally scanning primary LiDAR. The altitude of the UAV with respect to the floor can be estimated accurately using a vertically scanning secondary LiDAR scanner, which is mounted orthogonally to the primary LiDAR. Furthermore, a Kalman filter is used to derive the 3D position by fusing primary and secondary LiDAR data. Additionally, this work presents a novel method for its application in the real-time classification of a pipeline in an indoor map by integrating the proposed navigation approach. Classification of the pipeline is based on the pipe radius estimation considering the region of interest (ROI) and the typical angle. The ROI is selected by finding the nearest neighbors of the selected seed point in the pipeline point cloud, and the typical angle is estimated with the directional histogram. Experimental results are provided to determine the feasibility of the proposed navigation system and its integration with real-time application in industrial plant engineering. PMID:28574474
NASA Astrophysics Data System (ADS)
Galisteo-López, Juan F.
2017-02-01
Controlling the emission of a light source demands acting on its local photonic environment via the local density of states (LDOS). Approaches to exert such control on large scale samples, commonly relying on self-assembly methods, usually lack from a precise positioning of the emitter within the material. Alternatively expensive and time consuming techniques can be used to produce samples of small dimensions where a deterministic control on emitter position can be achieved. In this work we present a full solution process approach to fabricate photonic architectures containing nano-emitters which position can be controlled with nanometer precision over squared milimiter regions. By a combination of spin and dip coating we fabricate one-dimensional (1D) nanoporous photonic crystals, which potential in different fields such as photovoltaics or sensing has been previously reported, containing monolayers of luminescent polymeric nanospheres. We demonstrate how, by modifying the position of the emitters within the photonic crystal, their emission properties (photoluminescence intensity and angular distribution) can be deterministically modified. Further, the nano-emitters can be used as a probe to study the LDOS distribution within these systems with a spatial resolution of 25 nm (provided by the probe size) carrying out macroscopic measurements over squared milimiter regions. Routes to enhance light-matter interaction in this kind of systems by combining them with metallic surfaces are finally discussed.
NASA Astrophysics Data System (ADS)
Davidge, T. J.; Beck, Tracy L.; McGregor, Peter J.
2010-02-01
The identification of individual stars in crowded environments using photometric information alone is confounded by source confusion. However, with the addition of spectroscopic information it is possible to distinguish between blends and areas where the light is dominated by a single star, using the widths of absorption features. We describe a procedure for identifying locations in kinematically hot environments where the light is dominated by a single star, and apply this method to spectra with 0.1″ angular resolution covering the 2.1-2.3 μm interval in the central regions of M32. Targets for detailed investigation are selected as areas of localized brightness enhancement. Three locations where at least 60% of the K-band light comes from a single bright star, and another with light that is dominated by two stars with very different velocities, are identified. The dominant stars are evolving near the tip of the asymptotic giant branch (AGB), and have M5 III spectral type. The lack of a dispersion in spectral type suggests that the upper AGB within the central arcsecond of M32 has a dispersion in J - K of only a few hundredths of a magnitude, in agreement with what is seen at larger radii. One star has weaker atomic absorption lines than the others, such that [M/H] is 0.2 dex lower. Such a difference in metallicity is consistent with the metallicity dispersion inferred from the photometric width of the AGB in M32. The use of line width to distinguish between blends involving many relatively faint stars, none of which dominate the light output, and areas that are dominated by a single intrinsically bright star could be extended to crowded environments in other nearby galaxies. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Science and Technology Facilities Council (UK), the National Research Council of Canada (Canada), CONICYT (Chile), the Australian Research Council (Australia), the Ministerio da Ciencia e Technologia (Brazil), and the Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina).
Measures of Light in Studies on Light-Driven Plant Plasticity in Artificial Environments
Niinemets, Ülo; Keenan, Trevor F.
2012-01-01
Within-canopy variation in light results in profound canopy profiles in foliage structural, chemical, and physiological traits. Studies on within-canopy variations in key foliage traits are often conducted in artificial environments, including growth chambers with only artificial light, and greenhouses with and without supplemental light. Canopy patterns in these systems are considered to be representative to outdoor conditions, but in experiments with artificial and supplemental lighting, the intensity of artificial light strongly deceases with the distance from the light source, and natural light intensity in greenhouses is less than outdoors due to limited transmittance of enclosure walls. The implications of such changes in radiation conditions on canopy patterns of foliage traits have not yet been analyzed. We developed model-based methods for retrospective estimation of distance vs. light intensity relationships, for separation of the share of artificial and natural light in experiments with combined light and for estimation of average enclosure transmittance, and estimated daily integrated light at the time of sampling (Qint,C), at foliage formation (Qint,G), and during foliage lifetime (Qint,av). The implications of artificial light environments were analyzed for altogether 25 studies providing information on within-canopy gradients of key foliage traits for 70 species × treatment combinations. Across the studies with artificial light, Qint,G for leaves formed at different heights in the canopy varied from 1.8- to 6.4-fold due to changing the distance between light source and growing plants. In experiments with combined lighting, the share of natural light at the top of the plants varied threefold, and the share of natural light strongly increased with increasing depth in the canopy. Foliage nitrogen content was most strongly associated with Qint,G, but photosynthetic capacity with Qint,C, emphasizing the importance of explicit description of light environment during foliage lifetime. The reported and estimated transmittances of enclosures varied between 0.27 and 0.85, and lack of consideration of the reduction of light compared with outdoor conditions resulted in major underestimation of foliage plasticity to light. The study emphasizes that plant trait vs. light relationships in artificial systems are not directly comparable to natural environments unless modifications in lighting conditions in artificial environments are taken into account. PMID:22822407
NASA Astrophysics Data System (ADS)
Paredes-Miranda, G.; Arnott, W. P.; Jimenez, J. L.; Aiken, A. C.; Gaffney, J. S.; Marley, N. A.
2009-06-01
A photoacoustic spectrometer, a nephelometer, an aethalometer, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in North East Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethalometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 07:00 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the photochemical production of secondary aerosol (inorganic and organic) is approximately 75% of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.
NASA Astrophysics Data System (ADS)
Paredes-Miranda, G.; Arnott, W. P.; Jimenez, J. L.; Aiken, A. C.; Gaffney, J. S.; Marley, N. A.
2008-09-01
A photoacoustic spectrometer, a nephelometer, an aetholemeter, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in north east Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethelometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 7 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the same-day photochemical production of secondary aerosol (inorganic and organic) is approximately 40 percent of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.
International lighting in controlled environments workshop: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-31
Lighting is a central and critical aspect of control in environmental research for plant research and is gaining recognition as a significant factor to control carefully for animal and human research. Thus this workshop was convened to reevaluate the technology that is available today and to work toward developing guidelines for the most effective use of lighting in controlled environments with emphasis on lighting for plants but also to initiate interest in the development of improved guidelines for human and animal research. There are a number of established guidelines for lighting in human and animal environments. Development of new lightingmore » guidelines is necessary for three reasons: (1) recent scientific discoveries show that in addition to supporting the sensation of vision, light has profound nonvisual biological and behavioral effects in both animals and humans; (2) federal regulations (EPACT 1992) are requiring all indoor environments to become more energy efficient with a specific emphasis on energy conservation in lighting; (3) lighting engineers and manufacturers have developed a wealth of new light sources and lighting products that can be applied in animal and human environments. The workshop was aimed at bringing together plant scientists and physical scientists to interact in the discussions. It involved participation of biological scientists involved in studying mechanisms of light reactions and those involved in utilizing lighting for production of plants and maintenance of animals in controlled environments. It included participation of physical scientists from universities and government involved in research as well as those from industry involved in producing lamps and in construction of controlled growth facilities. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less
The game of go as a complex network
NASA Astrophysics Data System (ADS)
Georgeot, Bertrand; Giraud, Olivier; Kandiah, Vivek
2014-03-01
We have studied the game of go, one of the most ancient and complex board games, from a complex network perspective. We have defined a proper categorization of moves taking into account the local environment, and shown that in this case Zipf's law emerges from data taken from real games. The network shows differences between professional and amateur games, different level of amateurs, or different phases of the game. Certain eigenvectors are localized on specific groups of moves which correspond to different strategies (communities of moves). The point of view developed should allow to better modelize such games and could also help to design simulators which could in the future beat good human players. Our approach could be used for other types of games, and in parallel shed light on the human decision making process.
NASA Technical Reports Server (NTRS)
Clark, Toni A.
2014-01-01
In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed Extra Vehicular Activities are mandatory to ensure safety to the crew and all others involved. Innovation in testing techniques is important as well. The advent of Solid State Lighting technology and the lack of stable national and international standards for its implementation pose new challenges on how to design, test and verify individual light fixtures and the environment that uses them. The ISS will soon be replacing its internal fluorescent lighting system to a solid state LED system. The Solid State Lighting Assembly will be used not only for general lighting, but also as a medical countermeasure to control the circadian rhythm of the crew. The new light source has performance criteria very specific to its spectral fingerprint, creating new challenges that were originally not as significant during the original design of the ISS. This presentation will showcase findings and toolsets our team is using to assist in the planning of tasks, and design of operational lighting environments on the International Space Station.
LED Context Lighting System in Residential Areas
Im, Kyoung-Mi
2014-01-01
As issues of environment and energy draw keen interest around the globe due to such problems as global warming and the energy crisis, LED with high optical efficiency is brought to the fore as the next generation lighting. In addition, as the national income level gets higher and life expectancy is extended, interest in the enhancement of life quality is increasing. Accordingly, the trend of lightings is changing from mere adjustment of light intensity to system lighting in order to enhance the quality of one's life as well as reduce energy consumption. Thus, this study aims to design LED context lighting system that automatically recognizes the location and acts of a user in residential areas and creates an appropriate lighting environment. The proposed system designed in this study includes three types of processing: first, the creation of a lighting environment index suitable for the user's surroundings and lighting control scenarios and second, it measures and analyzes the optical characteristics that change depending on the dimming control of lighting and applies them to the index. Lastly, it adopts PIR, piezoelectric, and power sensor to grasp the location and acts of the user and create a lighting environment suitable for the current context. PMID:25101325
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
...-AA00 Special Local Regulation; Lake Havasu City Christmas Boat Parade of Lights; Colorado River; Lake... Boat Parade of Lights on the Colorado River. This modification is necessary to reflect the actual dates... of Lights will involve fifty vessels in Lake Havasu, AZ transiting Thompson Bay, proceeding through...
NASA Astrophysics Data System (ADS)
Hosono, Satsuki; Kawashima, Natsumi; Wollherr, Dirk; Ishimaru, Ichiro
2016-05-01
The distributed networks for information collection of chemical components with high-mobility objects, such as drones or smartphones, will work effectively for investigations, clarifications and predictions against unexpected local terrorisms and disasters like localized torrential downpours. We proposed and reported the proposed spectroscopic line-imager for smartphones in this conference. In this paper, we will mention the wide-area spectroscopic-image construction by estimating 6 DOF (Degrees Of Freedom: parallel movements=x,y,z and rotational movements=θx, θy, θz) from line data to observe and analyze surrounding chemical-environments. Recently, smartphone movies, what were photographed by peoples happened to be there, had worked effectively to analyze what kinds of phenomenon had happened around there. But when a gas tank suddenly blew up, we did not recognize from visible-light RGB-color cameras what kinds of chemical gas components were polluting surrounding atmospheres. Conventionally Fourier spectroscopy had been well known as chemical components analysis in laboratory usages. But volatile gases should be analyzed promptly at accident sites. And because the humidity absorption in near and middle infrared lights has very high sensitivity, we will be able to detect humidity in the sky from wide field spectroscopic image. And also recently, 6-DOF sensors are easily utilized for estimation of position and attitude for UAV (Unmanned Air Vehicle) or smartphone. But for observing long-distance views, accuracies of angle measurements were not sufficient to merge line data because of leverage theory. Thus, by searching corresponding pixels between line spectroscopic images, we are trying to estimate 6-DOF in high accuracy.
Reduced street lighting at night and health: A rapid appraisal of public views in England and Wales
Green, Judith; Perkins, Chloe; Steinbach, Rebecca; Edwards, Phil
2015-01-01
Financial and carbon reduction incentives have prompted many local authorities to reduce street lighting at night. Debate on the public health implications has centred on road accidents, fear of crime and putative health gains from reduced exposure to artificial light. However, little is known about public views of the relationship between reduced street lighting and health. We undertook a rapid appraisal in eight areas of England and Wales using ethnographic data, a household survey and documentary sources. Public concern focused on road safety, fear of crime, mobility and seeing the night sky but, for the majority in areas with interventions, reductions went unnoticed. However, more private concerns tapped into deep-seated anxieties about darkness, modernity ‘going backwards’, and local governance. Pathways linking lighting reductions and health are mediated by place, expectations of how localities should be lit, and trust in local authorities to act in the best interests of local communities. PMID:26057894
Dong, Tingfa; Li, Junyu; Zhang, Yuanbin; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang
2015-06-01
The degree to which branches are autonomous in their acclimation responses to alteration in light environment is still poorly understood. We investigated the effects of shading of the sapling crown of Cunninghamia lanceolata (Lamb.) Hook on the whole-tree and mid-crown branch growth and current-year foliage structure and physiology. Four treatments providing 0, 50, 75 and 90% shading compared with full daylight (denoted as Treatment(0), Treatment(50%), Treatment(75%) and Treatment(90%), and Shaded(0), Shaded(50%), Shaded(75%) and Shaded(90%) for the shaded branches and Sunlit(0), Sunlit(50%), Sunlit(75%) and Sunlit(90%) for the opposite sunlit branches under natural light conditions, respectively), were applied over two consecutive growing seasons. Shading treatments decreased the growth of basal stem diameter, leaf dry mass per unit leaf area, stomatal conductance, transpiration rate, the ratio of water-soluble to structural leaf nitrogen content, photosynthetic nitrogen-use efficiency and instantaneous and long-term (estimated from carbon isotope composition) water-use efficiency in shaded branches. Differences between shaded and sunlit branches increased with increasing severity and duration of shading. A non-autonomous, partly compensatory behavior of non-shaded branches was observed for most traits, thus reflecting the dependence between the traits of sunlit branches and the severity of shading of the opposite crown half. The results collectively indicated that tree growth and branch and leaf acclimation responses of C. lanceolata are not only affected by the local light environment, but also by relative within-crown light conditions. We argue that such a non-autonomous branch response to changes in light conditions can improve whole-tree resource optimization. These results contribute to better understanding of tree growth and utilization of water and nitrogen under heterogeneous light conditions within tree canopies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Caribbean mesophotic coral ecosystems are unlikely climate change refugia.
Smith, Tyler B; Gyory, Joanna; Brandt, Marilyn E; Miller, William J; Jossart, Jonathan; Nemeth, Richard S
2016-08-01
Deeper coral reefs experience reduced temperatures and light and are often shielded from localized anthropogenic stressors such as pollution and fishing. The deep reef refugia hypothesis posits that light-dependent stony coral species at deeper depths are buffered from thermal stress and will avoid bleaching-related mass mortalities caused by increasing sea surface temperatures under climate change. This hypothesis has not been tested because data collection on deeper coral reefs is difficult. Here we show that deeper (mesophotic) reefs, 30-75 m depth, in the Caribbean are not refugia because they have lower bleaching threshold temperatures than shallow reefs. Over two thermal stress events, mesophotic reef bleaching was driven by a bleaching threshold that declines 0.26 °C every +10 m depth. Thus, the main premise of the deep reef refugia hypothesis that cooler environments are protective is incorrect; any increase in temperatures above the local mean warmest conditions can lead to thermal stress and bleaching. Thus, relatively cooler temperatures can no longer be considered a de facto refugium for corals and it is likely that many deeper coral reefs are as vulnerable to climate change as shallow water reefs. © 2015 John Wiley & Sons Ltd.
2018-01-01
Light is arguably the most important abiotic factor for living organisms. Organisms evolved under specific lighting conditions and their behavior, physiology, and ecology are inexorably linked to light. Understanding light effects on biology could not be more important as present anthropogenic effects are greatly changing the light environments in which animals exist. The two biggest anthropogenic contributors changing light environments are: (1) anthropogenic lighting at night (i.e., light pollution); and (2) deforestation and the built environment. I highlight light importance for butterfly behavior, physiology, and ecology and stress the importance of including light as a conservation factor for conserving butterfly biodiversity. This review focuses on four parts: (1) Introducing the nature and extent of light. (2) Visual and non-visual light reception in butterflies. (3) Implications of unnatural lighting for butterflies across several different behavioral and ecological contexts. (4). Future directions for quantifying the threat of unnatural lighting on butterflies and simple approaches to mitigate unnatural light impacts on butterflies. I urge future research to include light as a factor and end with the hopeful thought that controlling many unnatural light conditions is simply done by flipping a switch. PMID:29439549
Massively parallel processor networks with optical express channels
Deri, R.J.; Brooks, E.D. III; Haigh, R.E.; DeGroot, A.J.
1999-08-24
An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination. 3 figs.
Massively parallel processor networks with optical express channels
Deri, Robert J.; Brooks, III, Eugene D.; Haigh, Ronald E.; DeGroot, Anthony J.
1999-01-01
An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination.
Observation of Bloch oscillations in complex PT-symmetric photonic lattices
Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf
2015-01-01
Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations. PMID:26639941
Observation of Bloch oscillations in complex PT-symmetric photonic lattices
NASA Astrophysics Data System (ADS)
Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf
2015-12-01
Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Lewis A.; Habershon, Scott, E-mail: S.Habershon@warwick.ac.uk
Pigment-protein complexes (PPCs) play a central role in facilitating excitation energy transfer (EET) from light-harvesting antenna complexes to reaction centres in photosynthetic systems; understanding molecular organisation in these biological networks is key to developing better artificial light-harvesting systems. In this article, we combine quantum-mechanical simulations and a network-based picture of transport to investigate how chromophore organization and protein environment in PPCs impacts on EET efficiency and robustness. In a prototypical PPC model, the Fenna-Matthews-Olson (FMO) complex, we consider the impact on EET efficiency of both disrupting the chromophore network and changing the influence of (local and global) environmental dephasing. Surprisingly,more » we find a large degree of resilience to changes in both chromophore network and protein environmental dephasing, the extent of which is greater than previously observed; for example, FMO maintains EET when 50% of the constituent chromophores are removed, or when environmental dephasing fluctuations vary over two orders-of-magnitude relative to the in vivo system. We also highlight the fact that the influence of local dephasing can be strongly dependent on the characteristics of the EET network and the initial excitation; for example, initial excitations resulting in rapid coherent decay are generally insensitive to the environment, whereas the incoherent population decay observed following excitation at weakly coupled chromophores demonstrates a more pronounced dependence on dephasing rate as a result of the greater possibility of local exciton trapping. Finally, we show that the FMO electronic Hamiltonian is not particularly optimised for EET; instead, it is just one of many possible chromophore organisations which demonstrate a good level of EET transport efficiency following excitation at different chromophores. Overall, these robustness and efficiency characteristics are attributed to the highly connected nature of the chromophore network and the presence of multiple EET pathways, features which might easily be built into artificial photosynthetic systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jing; Hosseinpour, Pegah M.; Lewis, Laura H., E-mail: lhlewis@neu.edu
To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO{sub 2} nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O{sub 2} (oxidizing), Ar (inert), and H{sub 2} (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO{submore » 2} nanotube samples partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (∼5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO{sub 2} nanotubes regardless of their length. However, the annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H{sub 2}-annealed nanotubes than with the Ar- and O{sub 2}-annealed nanotube samples. This enhanced photocatalytic response of the H{sub 2}-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti{sup 3+} and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure, crystal structure, and the local chemical environment on the photocatalytic activity and may be employed for tailoring the materials' properties for photocatalysis and other energy-related applications.« less
Evolution of circular and linear polarization in scattering environments
van der Laan, John D.; Wright, Jeremy Benjamin; Scrymgeour, David A.; ...
2015-12-02
This study quantifies the polarization persistence and memory of circularly polarized light in forward-scattering and isotropic (Rayleigh regime) environments; and for the first time, details the evolution of both circularly and linearly polarized states through scattering environments. Circularly polarized light persists through a larger number of scattering events longer than linearly polarized light for all forward-scattering environments; but not for scattering in the Rayleigh regime. Circular polarization’s increased persistence occurs for both forward and backscattered light. The simulated environments model polystyrene microspheres in water with particle diameters of 0.1 μm, 2.0 μm, and 3.0 μm. The evolution of the polarizationmore » states as they scatter throughout the various environments are illustrated on the Poincaré sphere after one, two, and ten scattering events.« less
NASA Technical Reports Server (NTRS)
Bolin, Kenneth (Inventor); Flynn, David (Inventor); Fowski, Walter (Inventor); Miklus, Kenneth (Inventor); Kissh, Frank (Inventor); Abreu, Rene (Inventor)
1993-01-01
A method and apparatus for tracking a light source in a transient event rich environment locks on to a light source incident on a field-of-view 1 of a charge-coupled-device (CCD) array 6, validates the permanence of said light source and transmits data relating to the brilliance and location of said light source if said light source is determined to be permanent.
van der Post, Daniel J.; Semmann, Dirk
2011-01-01
Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or “recognize patterns” in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it depends on local decision making. We compare two model variants which differ in the individual decision making that can evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it generates, plays an important role in foraging success, particularly in patchy environments where one of the main challenges is “staying in patches”. In the restricted model this is achieved by genetic adaptation of move and search behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for properties of movement to be specialized for detection of patches with more food, a larger scale information processing not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape. PMID:21998571
van der Post, Daniel J; Semmann, Dirk
2011-10-01
Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or "recognize patterns" in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it depends on local decision making. We compare two model variants which differ in the individual decision making that can evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it generates, plays an important role in foraging success, particularly in patchy environments where one of the main challenges is "staying in patches". In the restricted model this is achieved by genetic adaptation of move and search behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for properties of movement to be specialized for detection of patches with more food, a larger scale information processing not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape.
Red light for Anderson localization
NASA Astrophysics Data System (ADS)
Skipetrov, S. E.; Page, J. H.
2016-02-01
During the last 30 years, the search for Anderson localization of light in three-dimensional (3D) disordered samples yielded a number of experimental observations that were first considered successful, then disputed by opponents, and later refuted by their authors. This includes recent results for light in TiO2 powders that Sperling et al now show to be due to fluorescence and not to Anderson localization (2016 New J. Phys. 18 013039). The difficulty of observing Anderson localization of light in 3D may be due to a number of factors: insufficient optical contrast between the components of the disordered material, near-field effects, etc. The way to overcome these difficulties may consist in using partially ordered materials, complex structured scatterers, or clouds of cold atoms in magnetic fields.
3D Virtual Environment Used to Support Lighting System Management in a Building
NASA Astrophysics Data System (ADS)
Sampaio, A. Z.; Ferreira, M. M.; Rosário, D. P.
The main aim of the research project, which is in progress at the UTL, is to develop a virtual interactive model as a tool to support decision-making in the planning of construction maintenance and facilities management. The virtual model gives the capacity to allow the user to transmit, visually and interactively, information related to the components of a building, defined as a function of the time variable. In addition, the analysis of solutions for repair work/substitution and inherent cost are predicted, the results being obtained interactively and visualized in the virtual environment itself. The first component of the virtual prototype concerns the management of lamps in a lighting system. It was applied in a study case. The interactive application allows the examination of the physical model, visualizing, for each element modeled in 3D and linked to a database, the corresponding technical information concerned with the use of the material, calculated for different points in time during their life. The control of a lamp stock, the constant updating of lifetime information and the planning of periodical local inspections are attended on the prototype. This is an important mean of cooperation between collaborators involved in the building management.
First-principles theory of doping in layered oxide electrode materials
NASA Astrophysics Data System (ADS)
Hoang, Khang
2017-12-01
Doping lithium-ion battery electrode materials Li M O2 (M = Co, Ni, Mn) with impurities has been shown to be an effective way to optimize their electrochemical properties. Here, we report a detailed first-principles study of layered oxides LiCoO2, LiNiO2, and LiMnO2 lightly doped with transition-metal (Fe, Co, Ni, Mn) and non-transition-metal (Mg, Al) impurities using hybrid-density-functional defect calculations. We find that the lattice site preference is dependent on both the dopant's charge and spin states, which are coupled strongly to the local lattice environment and can be affected by the presence of codopant(s), and the relative abundance of the host compound's constituting elements in the synthesis environment. On the basis of the structure and energetics of the impurities and their complexes with intrinsic point defects, we determine all possible low-energy impurity-related defect complexes, thus providing defect models for further analyses of the materials. From a materials modeling perspective, these lightly doped compounds also serve as model systems for understanding the more complex, mixed-metal, Li M O2 -based battery cathode materials.
Plasmonic gold nanostar for biomedical sensing
NASA Astrophysics Data System (ADS)
Liu, Yang; Yuan, Hsiangkuo; Fales, Andrew M.; Vo-Dinh, Tuan
2014-03-01
Cancer has become one of most significant death reasons and causes approximately 7.9 million human deaths worldwide each year. The challenge to detect cancer at an early stage makes cancer-related biomarkers sensing attract more and more research interest and efforts. Surface-enhanced Raman scattering (SERS) provides a promising method for various biomarkers (DNA, RNA, protein, et al.) detection due to its high sensitivity, specificity and capability for multiple analytes detection. Raman spectroscopy is a non-destructive photon-scattering technique, which provides molecule-specific information on molecular vibrational energy levels. SERS takes advantage of plasmonic effects and can enhance Raman signal up to 1015 at "hot spots". Due to its excellent sensitivity, SERS has been capable of achieving single-molecule detection limit. Local pH environment has been identified to be a potential biomarker for cancer diagnosis since solid cancer contains highly acidic environments. A near-infrared (NIR) SERS nanoprobe based on gold nanostars for pH sensing is developed for future cancer detection. Near-infrared (NIR) light is more suitable for in vivo applications because of its low attenuation rate and tissue auto fluorescence. SERS spectrum of pH reporter under various pH environments is monitored and used for pH sensing. Furthermore, density functional theory (DFT) calculation is performed to investigate Raman spectra changes with pH at the molecular level. The study demonstrates that SERS is a sensitive tool to monitor minor molecular structural changes due to local pH environment for cancer detection.
The contribution of dynamic visual cues to audiovisual speech perception.
Jaekl, Philip; Pesquita, Ana; Alsius, Agnes; Munhall, Kevin; Soto-Faraco, Salvador
2015-08-01
Seeing a speaker's facial gestures can significantly improve speech comprehension, especially in noisy environments. However, the nature of the visual information from the speaker's facial movements that is relevant for this enhancement is still unclear. Like auditory speech signals, visual speech signals unfold over time and contain both dynamic configural information and luminance-defined local motion cues; two information sources that are thought to engage anatomically and functionally separate visual systems. Whereas, some past studies have highlighted the importance of local, luminance-defined motion cues in audiovisual speech perception, the contribution of dynamic configural information signalling changes in form over time has not yet been assessed. We therefore attempted to single out the contribution of dynamic configural information to audiovisual speech processing. To this aim, we measured word identification performance in noise using unimodal auditory stimuli, and with audiovisual stimuli. In the audiovisual condition, speaking faces were presented as point light displays achieved via motion capture of the original talker. Point light displays could be isoluminant, to minimise the contribution of effective luminance-defined local motion information, or with added luminance contrast, allowing the combined effect of dynamic configural cues and local motion cues. Audiovisual enhancement was found in both the isoluminant and contrast-based luminance conditions compared to an auditory-only condition, demonstrating, for the first time the specific contribution of dynamic configural cues to audiovisual speech improvement. These findings imply that globally processed changes in a speaker's facial shape contribute significantly towards the perception of articulatory gestures and the analysis of audiovisual speech. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hadi, Khatereh; DuBose, Jennifer R; Ryherd, Erica
2016-04-01
This study investigates the perception of nurses about their lighting environment at medical-surgical hospital units in order to understand areas of improvement for lighting at these units. The bulk of the research about nurses and lighting is focused on nighttime nursing, exploring the disruptions of nurses' circadian rhythm and maintaining alertness. The understanding of nurses' perception about lighting and its impact on nurses' task performance and patient examination remains imprecise. This study used an online survey to ask a set of questions about lighting in medical-surgical units at five key locations including centralized nurse stations, decentralized nurse stations (DCNS), patient bedsides, patient bathrooms, and corridors from 393 survey participants. It then explored the survey findings in more depth through conducting focus groups with eight volunteer nurses. Lighting conditions at patient besides and DCNSs were significantly less desirable for nurses compared to other locations. A significant relationship between nurses' access to lighting controls (switches and dimmers) and satisfaction about the lighting environment was found. No significant relationship was observed between the individual characteristics of nurses (such as age, years of experience, etc.) and findings of this study. Thoughtful design of the lighting environment can improve nurses' satisfaction and perception about their working environment. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Park, Dubok; Han, David K.; Ko, Hanseok
2017-05-01
Optical imaging systems are often degraded by scattering due to atmospheric particles, such as haze, fog, and mist. Imaging under nighttime haze conditions may suffer especially from the glows near active light sources as well as scattering. We present a methodology for nighttime image dehazing based on an optical imaging model which accounts for varying light sources and their glow. First, glow effects are decomposed using relative smoothness. Atmospheric light is then estimated by assessing global and local atmospheric light using a local atmospheric selection rule. The transmission of light is then estimated by maximizing an objective function designed on the basis of weighted entropy. Finally, haze is removed using two estimated parameters, namely, atmospheric light and transmission. The visual and quantitative comparison of the experimental results with the results of existing state-of-the-art methods demonstrates the significance of the proposed approach.
State-local policy management project. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-08-01
The report describes case studies to explore new approaches for increasing state and local coordination in planning and managing programs in areas with significant scientific and technical components such as energy and environment. Specifically, the case studies reveal efforts of various states in the areas of energy conservation, weatherization, emergency preparedness, and air quality. Successes and failures of Maryland's decentralized approach to energy conservation are documented; success of the thermal and lighting efficiency standards program in Texas is discussed; state aid for local energy conservation programs in Clinton County, Michigan, is reviewed; and the success of the weatherization program inmore » Oregon is examined. Pilot programs in weatherization in Pennsylvania are shown to have led a statewide effort. Two Minnesota projects in emergency preparedness are documented and factors for success are listed. In addition, long-range planning for fuel shortages in New York is examined and the benefits of regional planning in Fairfax County, Virgina, are noted. Efforts are examined to improve air quality in Ohio, California, and New Jersey.« less
A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application.
Vivacqua, Rafael; Vassallo, Raquel; Martins, Felipe
2017-10-16
Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.
A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application
Vassallo, Raquel
2017-01-01
Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle’s backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation. PMID:29035334
Anderson, Jill T; Geber, Monica A
2010-02-01
In heterogeneous landscapes, divergent selection can favor the evolution of locally adapted ecotypes, especially when interhabitat gene flow is minimal. However, if habitats differ in size or quality, source-sink dynamics can shape evolutionary trajectories. Upland and bottomland forests of the southeastern USA differ in water table depth, light availability, edaphic conditions, and plant community. We conducted a multiyear reciprocal transplant experiment to test whether Elliott's blueberry (Vaccinium elliottii) is locally adapted to these contrasting environments. Additionally, we exposed seedlings and cuttings to prolonged drought and flooding in the greenhouse to assess fitness responses to abiotic stress. Contrary to predictions of local adaptation, V. elliottii families exhibited significantly higher survivorship and growth in upland than in bottomland forests and under drought than flooded conditions, regardless of habitat of origin. Neutral population differentiation was minimal, suggesting widespread interhabitat migration. Population density, reproductive output, and genetic diversity were all significantly greater in uplands than in bottomlands. These disparities likely result in asymmetric gene flow from uplands to bottomlands. Thus, adaptation to a marginal habitat can be constrained by small populations, limited fitness, and immigration from a benign habitat. Our study highlights the importance of demography and genetic diversity in the evolution of local (mal)adaptation.
Bodvard, Kristofer; Wrangborg, David; Tapani, Sofia; Logg, Katarina; Sliwa, Piotr; Blomberg, Anders; Kvarnström, Mats; Käll, Mikael
2011-02-01
Light exposure is a potentially powerful stress factor during in vivo optical microscopy studies. In yeast, the general transcription factor Msn2p translocates from the cytoplasm to the nucleus in response to illumination. However, previous time-lapse fluorescence microscopy studies of Msn2p have utilized a variety of discrete exposure settings, which makes it difficult to correlate stress levels and illumination parameters. We here investigate how continuous illumination with blue light, corresponding to GFP excitation wavelengths, affects the localization pattern of Msn2p-GFP in budding yeast. The localization pattern was analyzed using a novel approach that combines wavelet decomposition and change point analysis. It was found that the Msn2p nucleocytoplasmic localization trajectories for individual cells exhibit up to three distinct and successive states; i) Msn2p localizes to the cytoplasm; ii) Msn2p rapidly shuttles between the cytoplasm and the nucleus; iii) Msn2p localizes to the nucleus. Many cells pass through all states consecutively at high light intensities, while at lower light intensities most cells only reach states i) or ii). This behaviour strongly indicates that continuous light exposure gradually increases the stress level over time, presumably through continuous accumulation of toxic photoproducts, thereby forcing the cell through a bistable region corresponding to nucleocytoplasmic oscillations. We also show that the localization patterns are dependent on protein kinase A (PKA) activity, i.e. yeast cells with constantly low PKA activity showed a stronger stress response. In particular, the nucleocytoplasmic oscillation frequency was found to be significantly higher for cells with low PKA activity for all light intensities. 2010 Elsevier B.V. All rights reserved.
Sakoh, Akifumi; Takahashi, Masahide; Yoko, Toshinobu; Nishii, Junji; Nishiyama, Hiroaki; Miyamoto, Isamu
2003-10-20
The photoluminescence spectra of the divalent Ge (Ge2+) center in GeO2-SiO2 glasses with different photosensitivities were investigated by means of excitation-emission energy mapping. The ultraviolet light induced photorefractivity has been correlated with the local structure around the Ge2+ centers. The glasses with a larger photorefractivity tended to exhibit a greater band broadening of the singlet-singlet transition on the higher excitation energy side accompanied by an increase in the Stokes shifts. This strongly suggests the existence of highly photosensitive Ge2+ centers with higher excitation energies. It is also found that the introduction of a hydroxyl group or boron species in GeO2-SiO2 glasses under appropriate conditions modifies the local environment of Ge2+ leading to an enhanced photorefractivity.
Control of microfabricated structures powered by flagellated bacteria using phototaxis
NASA Astrophysics Data System (ADS)
Steager, Edward; Kim, Chang-Beom; Patel, Jigarkumar; Bith, Socheth; Naik, Chandan; Reber, Lindsay; Kim, Min Jun
2007-06-01
Flagellated bacteria have been employed as microactuators in low Reynolds number fluidic environments. SU-8 microstructures have been fabricated and released on the surface of swarming Serratia marcescens, and the flagella propel the structures along the swarm surface. Phototactic control of these structures is demonstrated by exposing the localized regions of the swarm to ultraviolet light. The authors additionally discuss the control of microstructures in an open channel powered by bacteria which have been docked through a blotting technique. A tracking algorithm has been developed to analyze swarming patterns of the bacteria as well as the kinematics of the microstructures.
NASA Astrophysics Data System (ADS)
Skvarenina, L.; Gajdos, A.; Macku, R.; Skarvada, P.
2017-12-01
The aim of this research is to detect and localize microstructural defects by using an electrically excited light emission from a forward/reverse-bias stressed pn-junction in thin-film Cu(In; Ga)Se2 solar cells with metal wrap through architecture. A different origin of the local light emission from intrinsic/extrinsic imperfections in these chalcopyrite-based solar cells can be distinguished by a spectrally-filtered electroluminescence mapping. After a light emission mapping and localization of the defects in a macro scale is performed a micro scale exploration of the solar cell surface by a scanning electron microscope which follows the particular defects obtained by an electroluminescence. In particular, these macroscopic/microscopic examinations are performed independently, then the searching of the corresponding defects in the micro scale is rather difficult due to a diffused light emission obtained from the macro scale localization. Some of the defects accompanied by a highly intense light emission very often lead to a strong local overheating. Therefore, the lock-in infrared thermography is also performed along with an electroluminescence mapping.
Wavelets and spacetime squeeze
NASA Technical Reports Server (NTRS)
Han, D.; Kim, Y. S.; Noz, Marilyn E.
1993-01-01
It is shown that the wavelet is the natural language for the Lorentz covariant description of localized light waves. A model for covariant superposition is constructed for light waves with different frequencies. It is therefore possible to construct a wave function for light waves carrying a covariant probability interpretation. It is shown that the time-energy uncertainty relation (Delta(t))(Delta(w)) is approximately 1 for light waves is a Lorentz-invariant relation. The connection between photons and localized light waves is examined critically.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission...
40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.
Code of Federal Regulations, 2014 CFR
2014-07-01
...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...
40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...
40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...
40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.
Code of Federal Regulations, 2012 CFR
2012-07-01
...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...
40 CFR 264.1057 - Standards: Valves in gas/vapor service or in light liquid -service.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: Valves in gas/vapor service or in light liquid -service. (a) Each valve in gas/vapor or light liquid... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service or in light liquid -service. 264.1057 Section 264.1057 Protection of Environment ENVIRONMENTAL...
An ANN-Based Smart Tomographic Reconstructor in a Dynamic Environment
de Cos Juez, Francisco J.; Lasheras, Fernando Sánchez; Roqueñí, Nieves; Osborn, James
2012-01-01
In astronomy, the light emitted by an object travels through the vacuum of space and then the turbulent atmosphere before arriving at a ground based telescope. By passing through the atmosphere a series of turbulent layers modify the light's wave-front in such a way that Adaptive Optics reconstruction techniques are needed to improve the image quality. A novel reconstruction technique based in Artificial Neural Networks (ANN) is proposed. The network is designed to use the local tilts of the wave-front measured by a Shack Hartmann Wave-front Sensor (SHWFS) as inputs and estimate the turbulence in terms of Zernike coefficients. The ANN used is a Multi-Layer Perceptron (MLP) trained with simulated data with one turbulent layer changing in altitude. The reconstructor was tested using three different atmospheric profiles and compared with two existing reconstruction techniques: Least Squares type Matrix Vector Multiplication (LS) and Learn and Apply (L + A). PMID:23012524
Pinheiro, Marcos Paulo Gomes; Silva, José Hilário Tavares; Cavalcanti, Katrine Bezerra; de Azevedo, Paulo Roberto Medeiros; de Melo Ximenes, Maria de Fátima Freire
2013-12-01
Phlebotomine vectors transmit parasites and can cause visceral leishmaniasis (VL) or cutaneous leishmaniasis (TL). Phlebotomine females are hematophagous but need to ingest carbohydrates, possibly promoting the development of protozoan parasites in their digestive tract. The present study evaluated the species composition and abundance across several habitats in a metropolitan landscape, as well as associations among phlebotomines, plants, and local climatic parameters. Three consecutive monthly collections were carried out in an Atlantic Forest fragment, using CDC light traps in peridomestic areas and cashew, coconut, and mango tree. plantations. Eight species of phlebotomine were captured: Evandromyia evandroi, Lutzomyia longipalpis, Psathyromyia shannoni, Sciopemyia sordellii, Evandromyia walkeri, Psychodopygus wellcomei, Nyssomyia whitmani, and Nyssomyia intermedia, primarily from the forest environment. L. longipalpis was confirmed as a species adapted to anthropic environments, while P. wellcomei was shown to be predominately forest-dwelling. Phlebotomines exhibited diversified food consumption patterns in relation to carbohydrate sources. They fed on both native and exotic species of arboreal and shrubby vegetables and gramineous plants. © 2013 The Society for Vector Ecology.
Vignion-Dewalle, Anne-Sophie; Baert, Gregory; Thecua, Elise; Lecomte, Fabienne; Vicentini, Claire; Abi-Rached, Henry; Mortier, Laurent; Mordon, Serge
2018-04-18
Topical photodynamic therapy is an established treatment modality for various dermatological conditions, including actinic keratosis. In Europe, the approved protocols for photodynamic therapy of actinic keratosis involve irradiation with either an Aktilite CL 128 lamp or daylight, whereas irradiation with the Blu-U illuminator is approved in the United States. Many other protocols using irradiation by a variety of light sources are also clinically efficient. This paper aims to compare 10 different protocols with clinically proven efficacy for photodynamic therapy of actinic keratosis and the available spectral irradiance of the light source. Effective irradiance, effective light dose, and local damage are compared. We also investigate whether there is an association between the complete response rate at 3 months and the effective light dose or local damage. The effective irradiance, also referred to as protoporphyrin IX-weighted irradiance, is obtained by integrating the spectral irradiance weighted by the normalized absorption spectrum of protoporphyrin IX over the wavelength. Integrating the effective irradiance over the irradiation time yields the effective light dose, which is also known as the protoporphyrin IX-weighted light dose. Local damage, defined as the total cumulative singlet oxygen molecules produced during treatment, is estimated using mathematical modeling of the photodynamic therapy process. This modeling is based on an iterative procedure taking into account the spatial and temporal variations in the protoporphyrin IX absorption spectrum during treatment. The protocol for daylight photodynamic therapy on a clear sunny day, the protocol for daylight photodynamic therapy on an overcast day, the photodynamic therapy protocol for a white LED lamp for operating rooms and the photodynamic therapy protocol for the Blu-U illuminator perform better than the six other protocols-all involving red light illumination-in terms of both effective light dose and local damage. However, no association between the complete response rate at 3 months and the effective light dose or local damage was found. Protocols that achieve high complete response rates at 3 months and low pain scores should be preferred regardless of the effective light dose and local damage. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Vignion-Dewalle, Anne-Sophie; Betrouni, Nacim; Tylcz, Jean-Baptiste; Vermandel, Maximilien; Mortier, Laurent; Mordon, Serge
2015-05-01
Photodynamic therapy (PDT) is an emerging treatment modality for various diseases, especially for cancer therapy. Although high efficacy is demonstrated for PDT using standardized protocols in nonhyperkeratotic actinic keratoses, alternative light doses expected to increase efficiency, to reduce adverse effects or to expand the use of PDT, are still being evaluated and refined. We propose a comparison of the three most common light doses in the treatment of actinic keratosis with 5-aminolevulinic acid PDT through mathematical modeling. The proposed model is based on an iterative procedure that involves determination of the local fluence rate, updating of the local optical properties, and estimation of the local damage induced by the therapy. This model was applied on a simplified skin sample model including an actinic keratosis lesion, with three different light doses (red light dose, 37 J/cm2, 75 mW/cm2, 500 s blue light dose, 10 J/cm2, 10 mW/cm2, 1000 s and daylight dose, 9000 s). Results analysis shows that the three studied light doses, although all efficient, lead to variable local damage. Defining reference damage enables the nonoptimal parameters for the current light doses to be refined and the treatment to be more suitable.
Optical control of antibacterial activity
NASA Astrophysics Data System (ADS)
Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.
2013-11-01
Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.
NASA Astrophysics Data System (ADS)
Francois, Alexandre; Boehm, Jonathan; Penno, Megan; Hoffmann, Peter; Monro, Tanya M.
2011-05-01
The management of threats such as pandemics and explosives, and of health and the environment requires the rapid deployment of highly sensitive detection tools. Sensors based on Surface Plasmon Resonance (SPR) allow rapid, labelfree, highly sensitive detection, and indeed this phenomenon underpins the only label-free optical biosensing technology that is available commercially. In these sensors, the existence of surface plasmons is inferred indirectly from absorption features that correspond to the coupling of light to the surface plasmon. Although SPR is not intrinsically a radiative process, under certain conditions the surface plasmon can itself couple to the local photon states, and emit light. Here we show for the first time that by collecting and characterising this re-emitted light, it is possible to realise new SPR sensing architectures that are more compact, versatile and robust than existing approaches. It is applicable to a range of SPR geometries, including optical fibres. As an example, this approach has been used to demonstrate the detection of a protein identified as a being a biomarker for cancer.
Position Estimation and Local Mapping Using Omnidirectional Images and Global Appearance Descriptors
Berenguer, Yerai; Payá, Luis; Ballesta, Mónica; Reinoso, Oscar
2015-01-01
This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown) position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images) taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods. PMID:26501289
NASA Astrophysics Data System (ADS)
Ermes, Markus; Lehnen, Stephan; Cao, Zhao; Bittkau, Karsten; Carius, Reinhard
2015-06-01
In thin optoelectronic devices, like organic light emitting diodes (OLED) or thin-film solar cells (TFSC), light propagation, which is initiated by a local point source, is of particular importance. In OLEDs, light is generated in the layer by the luminescence of single molecules, whereas in TFSCs, light is coupled into the devices by scattering at small surface features. In both applications, light propagation within the active layers has a significant impact on the optical device performance. Scanning near-field optical microscopy (SNOM) using aperture probes is a powerful tool to investigate this propagation with a high spatial resolution. Dual-probe SNOM allows simulating the local light generation by an illumination probe as well as the detection of the light propagated through the layer. In our work, we focus on the light propagation in thin silicon films as used in thin-film silicon solar cells. We investigate the light-in-coupling from an illuminating probe via rigorous solution of Maxwell's equations using a Finite-Difference Time-Domain approach, especially to gain insight into the light distribution inside a thin layer, which is not accessible in the experiment. The structures investigated include at and structured surfaces with varying illumination positions and wavelengths. From the performed simulations, we define a "spatial sensitivity" which is characteristic for the local structure and illumination position. This quantity can help to identify structures which are beneficial as well as detrimental to absorption inside the investigated layer. We find a strong dependence of the spatial sensitivity on the surface structure as well as both the absorption coefficient and the probe position. Furthermore, we investigate inhomogeneity in local light propagation resulting from different surface structures and illumination positions.
Yaakub, Siti M; Chen, Eugene; Bouma, Tjeerd J; Erftemeijer, Paul L A; Todd, Peter A
2014-06-30
Seagrasses have substantial capacity to survive long periods of light reduction, but how acclimation to chronic low light environments may influence their ability to cope with additional stress is poorly understood. This study examines the effect of temporal light reduction by adding two levels of shading to Halophila ovalis plants in two meadows with different light histories, one characterized by a low light (turbid) environment and the other by a relatively high light (clear) environment. Additional shading resulted in complete mortality for both shading treatments at the turbid site while the clear site showed a pattern of decreased shoot density and increased photochemical efficiency (Fv/Fm) with increased shading. These contrasting results for the same species in two different locations indicate that acclimation to chronic low light regimes can affect seagrass resilience and highlights the importance of light history in determining the outcome of exposure to further (short-term) stress. Copyright © 2013 Elsevier Ltd. All rights reserved.
Room-temperature quantum noise limited spectrometry and methods of the same
Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher Thomas
2014-08-26
In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving first light from a scene input, a second input aperture adapted for receiving second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.
Room-temperature quantum noise limited spectrometry and methods of the same
Stevens, Charles G; Tringe, Joseph W
2014-12-02
In one embodiment, a heterodyne detection system for detecting light includes a first input aperture adapted for receiving a first light from a scene input, a second input aperture adapted for receiving a second light from a local oscillator input, a broadband local oscillator adapted for providing the second light to the second input aperture, a dispersive element adapted for dispersing the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is adapted for concentrating incident light from a primary condensing lens onto the detector, and the detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are disclosed according to more embodiments.
Room-temperature quantum noise limited spectrometry and methods of the same
Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher T.
2016-08-02
In one embodiment, a heterodyne detection system for detecting light includes a first input aperture configured to receive first light from a scene input, a second input aperture configured to receive second light from a local oscillator input, a broadband local oscillator configured to provide the second light to the second input aperture, a dispersive element configured to disperse the first light and the second light, and a final condensing lens coupled to an infrared detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the infrared detector, and the infrared detector is a square-law detector capable of sensing the frequency difference between the first light and the second light. More systems and methods for detecting light are described according to other embodiments.
Cognitive Mapping Based on Conjunctive Representations of Space and Movement
Zeng, Taiping; Si, Bailu
2017-01-01
It is a challenge to build robust simultaneous localization and mapping (SLAM) system in dynamical large-scale environments. Inspired by recent findings in the entorhinal–hippocampal neuronal circuits, we propose a cognitive mapping model that includes continuous attractor networks of head-direction cells and conjunctive grid cells to integrate velocity information by conjunctive encodings of space and movement. Visual inputs from the local view cells in the model provide feedback cues to correct drifting errors of the attractors caused by the noisy velocity inputs. We demonstrate the mapping performance of the proposed cognitive mapping model on an open-source dataset of 66 km car journey in a 3 km × 1.6 km urban area. Experimental results show that the proposed model is robust in building a coherent semi-metric topological map of the entire urban area using a monocular camera, even though the image inputs contain various changes caused by different light conditions and terrains. The results in this study could inspire both neuroscience and robotic research to better understand the neural computational mechanisms of spatial cognition and to build robust robotic navigation systems in large-scale environments. PMID:29213234
Light-Mediated Hormonal Regulation of Plant Growth and Development.
de Wit, Mieke; Galvão, Vinicius Costa; Fankhauser, Christian
2016-04-29
Light is crucial for plant life, and perception of the light environment dictates plant growth, morphology, and developmental changes. Such adjustments in growth and development in response to light conditions are often established through changes in hormone levels and signaling. This review discusses examples of light-regulated processes throughout a plant's life cycle for which it is known how light signals lead to hormonal regulation. Light acts as an important developmental switch in germination, photomorphogenesis, and transition to flowering, and light cues are essential to ensure light capture through architectural changes during phototropism and the shade avoidance response. In describing well-established links between light perception and hormonal changes, we aim to give insight into the mechanisms that enable plants to thrive in variable light environments.
Stoepler, Teresa M; Lill, John T
2013-10-01
A variety of ecological factors influence host use by parasitoids, including both abiotic and biotic factors. Light environment is one important abiotic parameter that differs among habitats and influences a suite of plant nutritional and resistance traits that in turn affect herbivore performance. However, the extent to which these bottom-up effects "cascade up" to affect higher trophic levels and the relative importance of direct and indirect effects of sunlight on tritrophic interactions are unclear. The objective of this study was to test how light environment (light gap vs. shaded forest understory) and leaf type (sun vs. shade leaves) affect the performance and incidence of parasitism of two species of moth larvae, Euclea delphinii and Acharia stimulea (Limacodidae). We manipulated the leaf phenotype of potted white oak saplings by growing them in either full sun or full shade throughout leaf expansion to produce sun and shade leaves, respectively. These saplings were then placed in light gap and adjacent shaded understory habitats in the forest in a full-factorial design, and stocked with sentinel larvae that were exposed to parasitism ("exposed" experiments). We reared additional larvae in sleeve cages (protected from parasitism) to isolate light environment and leaf phenotype treatment effects on larval performance in the absence of enemies ("bagged" experiments). In the exposed experiments, light environment strongly affected the likelihood of parasitism, while leaf phenotype did not. Euclea delphinii larvae were up to 6.6 times more likely to be parasitized in light gaps than in shaded understory habitats. This pattern was consistent for both tachinid fly and wasp parasitoids across two separate experiments. However, the larval performance of both species in the bagged experiments was maximized in the shade-habitat/sun-leaf treatment, a habitat/leaf-type combination that occurs infrequently in nature. Taken together, our results suggest that the direct effects of light environment on the incidence of parasitism supersede any indirect effects resulting from altered leaf quality and reveal inherent ecological trade-offs for herbivores confronted with choosing between sunny (high leaf quality, harsh environment, high parasitism) and shaded (reduced leaf quality less harsh environment, reduced parasitism) habitats.
Dark Skies Rangers - Fighting light pollution and simulating dark skies
NASA Astrophysics Data System (ADS)
Doran, Rosa; Correia, Nelson; Guerra, Rita; Costa, Ana
2015-03-01
Dark Skies Rangers is an awareness program aimed at students of all ages to stimulate them to make an audit of light pollution in their school/district. The young light pollution fighters evaluate the level of light pollution, how much energy is being wasted, and produce a report to be delivered to the local authorities. They are also advised to promote a light pollution awareness campaign to the local community targeting not only the dark skies but also other implications such as effects in our health, to the flora and fauna, etc.
NASA Astrophysics Data System (ADS)
Vulcani, Benedetta; De Lucia, Gabriella; Poggianti, Bianca M.; Bundy, Kevin; More, Surhud; Calvi, Rosa
2014-06-01
We present a comparison between the observed galaxy stellar mass function and the one predicted from the De Lucia & Blaizot semi-analytic model applied to the Millennium Simulation, for cluster satellites and galaxies in the field (meant as a wide portion of the sky, including all environments), in the local universe (z ~ 0.06), and at intermediate redshift (z ~ 0.6), with the aim to shed light on the processes which regulate the mass distribution in different environments. While the mass functions in the field and in its finer environments (groups, binary, and single systems) are well matched in the local universe down to the completeness limit of the observational sample, the model overpredicts the number of low-mass galaxies in the field at z ~ 0.6 and in clusters at both redshifts. Above M * = 1010.25 M ⊙, it reproduces the observed similarity of the cluster and field mass functions but not the observed evolution. Our results point out two shortcomings of the model: an incorrect treatment of cluster-specific environmental effects and an overefficient galaxy formation at early times (as already found by, e.g., Weinmann et al.). Next, we consider only simulations. Also using the Guo et al. model, we find that the high-mass end of the mass functions depends on halo mass: only very massive halos host massive galaxies, with the result that their mass function is flatter. Above M * = 109.4 M ⊙, simulations show an evolution in the number of the most massive galaxies in all environments. Mass functions obtained from the two prescriptions are different, however, results are qualitatively similar, indicating that the adopted methods to model the evolution of central and satellite galaxies still have to be better implemented in semi-analytic models.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles. 86.1811-10 Section 86.1811-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission Standards for Clean-Fuel Vehicles § 88.10...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission Standards for Clean-Fuel Vehicles § 88.10...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Emission standards for light-duty vehicles, light-duty trucks and medium-duty passenger vehicles. 86.1811-10 Section 86.1811-10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Clean-fuel vehicle tailpipe emission standards for light-duty vehicles and light-duty trucks. 88.104-94 Section 88.104-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Emission Standards for Clean-Fuel Vehicles § 88.104...
Low-cost cryo-light microscopy stage fabrication for correlated light/electron microscopy.
Carlson, David B; Evans, James E
2011-06-05
The coupling of cryo-light microscopy (cryo-LM) and cryo-electron microscopy (cryo-EM) poses a number of advantages for understanding cellular dynamics and ultrastructure. First, cells can be imaged in a near native environment for both techniques. Second, due to the vitrification process, samples are preserved by rapid physical immobilization rather than slow chemical fixation. Third, imaging the same sample with both cryo-LM and cryo-EM provides correlation of data from a single cell, rather than a comparison of "representative samples". While these benefits are well known from prior studies, the widespread use of correlative cryo-LM and cryo-EM remains limited due to the expense and complexity of buying or building a suitable cryogenic light microscopy stage. Here we demonstrate the assembly, and use of an inexpensive cryogenic stage that can be fabricated in any lab for less than $40 with parts found at local hardware and grocery stores. This cryo-LM stage is designed for use with reflected light microscopes that are fitted with long working distance air objectives. For correlative cryo-LM and cryo-EM studies, we adapt the use of carbon coated standard 3-mm cryo-EM grids as specimen supports. After adsorbing the sample to the grid, previously established protocols for vitrifying the sample and transferring/handling the grid are followed to permit multi-technique imaging. As a result, this setup allows any laboratory with a reflected light microscope to have access to direct correlative imaging of frozen hydrated samples.
Light, Colour & Air Quality: Important Elements of the Learning Environment?
ERIC Educational Resources Information Center
Hathaway, Warren E.
1987-01-01
Reviews and evaluates studies of the effects of light, color, and air quality on the learning environment. Concludes that studies suggest a role for light in establishing and maintaining physiological functions and balances and a need for improved air quality in airtight, energy efficient buildings. (JHZ)
Khajepour, Fateme; Hosseini, Seyed Abbas; Ghorbani Nasrabadi, Rasoul; Markou, Giorgos
2015-08-01
A study was conducted to investigate the effect of light intensity (21, 42, and 63 μmol photons m(-2) s(-1)) and photoperiod (8:16, 12:12, and 16:8 h light/dark) on the biomass production and its biochemical composition (total carotenoids, chlorophyll a, phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC), total protein, and carbohydrates) of a local isolate of Nostoc calcicola. The results revealed that N. calcicola prefers dim light; however, the most of the levels of light intensity and photoperiod investigated did not have a significant impact on biomass production. Increasing light intensity biomass content of chlorophyll a, PE, PC, APC, and total protein decreased, while total carotenoids and carbohydrate increased. The same behavior was observed also when light duration (photoperiod) increased. The interaction effect of increasing light intensity and photoperiod resulted in an increase of carbohydrate and total carotenoids, and to the decrease of chlorophyll a, PE, PC, APC, and total protein content. The results indicate that varying the light regime, it is capable to manipulate the biochemical composition of the local isolate of N. calcicola, producing either valuable phycobiliproteins or proteins under low light intensity and shorter photoperiods, or producing carbohydrates and carotenoids under higher light intensities and longer photoperiods.
Evaluating local policy adoption campaigns in California: Tobacco Retail License (TRL) adoption.
Satterlund, Travis D; Treiber, Jeanette; Haun, Sue; Cassady, Diana
2014-06-01
As part of its state-wide "denormalization" campaign, the California Tobacco Control Program has funded local tobacco control projects to secure tobacco retail licenses (TRLs) in their communities. TRL policies generate funding by requiring tobacco retailers within a jurisdiction to obtain a license, which is in addition to the state license that tobacco retailers are legally required to purchase to sell tobacco products. The funding provided by TRLs enables local law enforcement to carry out inspection and enforcement operations. This paper examines the unique processes by which local project campaigns attempt to get TRL policies adopted in communities across the State of California. Twenty-two local projects submitted final evaluation reports pertaining to the adoption of TRLs, and the reports from these projects form the basis of the analysis. Successful campaigns tended to include the following strategies: (1) determining policy readiness; (2) gathering local data; (3) identifying and working with a "champion"; (4) building relationships with local law enforcement agencies and decision makers; and (5) educating community and decision makers. The major challenges faced by local projects included budget cuts and staffing issues, concern about creating an unfavorable environment for business by imposing more regulations and fees, and complaints about using law enforcement resources for tobacco control in light of more "pressing" public safety issues. These challenges proved difficult for local projects to overcome, and also highlight the need for projects to create and carry out strong but flexible tactical plans that incorporate the aforementioned strategies.
Invariance of visual operations at the level of receptive fields
Lindeberg, Tony
2013-01-01
The brain is able to maintain a stable perception although the visual stimuli vary substantially on the retina due to geometric transformations and lighting variations in the environment. This paper presents a theory for achieving basic invariance properties already at the level of receptive fields. Specifically, the presented framework comprises (i) local scaling transformations caused by objects of different size and at different distances to the observer, (ii) locally linearized image deformations caused by variations in the viewing direction in relation to the object, (iii) locally linearized relative motions between the object and the observer and (iv) local multiplicative intensity transformations caused by illumination variations. The receptive field model can be derived by necessity from symmetry properties of the environment and leads to predictions about receptive field profiles in good agreement with receptive field profiles measured by cell recordings in mammalian vision. Indeed, the receptive field profiles in the retina, LGN and V1 are close to ideal to what is motivated by the idealized requirements. By complementing receptive field measurements with selection mechanisms over the parameters in the receptive field families, it is shown how true invariance of receptive field responses can be obtained under scaling transformations, affine transformations and Galilean transformations. Thereby, the framework provides a mathematically well-founded and biologically plausible model for how basic invariance properties can be achieved already at the level of receptive fields and support invariant recognition of objects and events under variations in viewpoint, retinal size, object motion and illumination. The theory can explain the different shapes of receptive field profiles found in biological vision, which are tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time, from a requirement that the visual system should be invariant to the natural types of image transformations that occur in its environment. PMID:23894283
Human local adaptation of the TRPM8 cold receptor along a latitudinal cline.
Key, Felix M; Abdul-Aziz, Muslihudeen A; Mundry, Roger; Peter, Benjamin M; Sekar, Aarthi; D'Amato, Mauro; Dennis, Megan Y; Schmidt, Joshua M; Andrés, Aida M
2018-05-01
Ambient temperature is a critical environmental factor for all living organisms. It was likely an important selective force as modern humans recently colonized temperate and cold Eurasian environments. Nevertheless, as of yet we have limited evidence of local adaptation to ambient temperature in populations from those environments. To shed light on this question, we exploit the fact that humans are a cosmopolitan species that inhabit territories under a wide range of temperatures. Focusing on cold perception-which is central to thermoregulation and survival in cold environments-we show evidence of recent local adaptation on TRPM8. This gene encodes for a cation channel that is, to date, the only temperature receptor known to mediate an endogenous response to moderate cold. The upstream variant rs10166942 shows extreme population differentiation, with frequencies that range from 5% in Nigeria to 88% in Finland (placing this SNP in the 0.02% tail of the FST empirical distribution). When all populations are jointly analyzed, allele frequencies correlate with latitude and temperature beyond what can be explained by shared ancestry and population substructure. Using a Bayesian approach, we infer that the allele originated and evolved neutrally in Africa, while positive selection raised its frequency to different degrees in Eurasian populations, resulting in allele frequencies that follow a latitudinal cline. We infer strong positive selection, in agreement with ancient DNA showing high frequency of the allele in Europe 3,000 to 8,000 years ago. rs10166942 is important phenotypically because its ancestral allele is protective of migraine. This debilitating disorder varies in prevalence across human populations, with highest prevalence in individuals of European descent-precisely the population with the highest frequency of rs10166942 derived allele. We thus hypothesize that local adaptation on previously neutral standing variation may have contributed to the genetic differences that exist in the prevalence of migraine among human populations today.
Kelly, Kristen L; Dalton, Shannon R; Wai, Rebecca B; Ramchandani, Kanika; Xu, Rosalind J; Linse, Sara; Londergan, Casey H
2018-03-22
Seven native residues on the regulatory protein calmodulin, including three key methionine residues, were replaced (one by one) by the vibrational probe amino acid cyanylated cysteine, which has a unique CN stretching vibration that reports on its local environment. Almost no perturbation was caused by this probe at any of the seven sites, as reported by CD spectra of calcium-bound and apo calmodulin and binding thermodynamics for the formation of a complex between calmodulin and a canonical target peptide from skeletal muscle myosin light chain kinase measured by isothermal titration. The surprising lack of perturbation suggests that this probe group could be applied directly in many protein-protein binding interfaces. The infrared absorption bands for the probe groups reported many dramatic changes in the probes' local environments as CaM went from apo- to calcium-saturated to target peptide-bound conditions, including large frequency shifts and a variety of line shapes from narrow (interpreted as a rigid and invariant local environment) to symmetric to broad and asymmetric (likely from multiple coexisting and dynamically exchanging structures). The fast intrinsic time scale of infrared spectroscopy means that the line shapes report directly on site-specific details of calmodulin's variable structural distribution. Though quantitative interpretation of the probe line shapes depends on a direct connection between simulated ensembles and experimental data that does not yet exist, formation of such a connection to data such as that reported here would provide a new way to evaluate conformational ensembles from data that directly contains the structural distribution. The calmodulin probe sites developed here will also be useful in evaluating the binding mode of calmodulin with many uncharacterized regulatory targets.
Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung
2018-01-01
The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets. PMID:29748495
Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung
2018-05-10
The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.
Larsen, Thomas; Hunt, Terry; Lipo, Carl; Solsvik, Reidar; Wallsgrove, Natalie; Ka'apu‐Lyons, Cassie; Close, Hilary G.; Popp, Brian N.
2017-01-01
Abstract Objectives The Rapa Nui “ecocide” narrative questions whether the prehistoric population caused an avoidable ecological disaster through rapid deforestation and over‐exploitation of natural resources. The objective of this study was to characterize prehistoric human diets to shed light on human adaptability and land use in an island environment with limited resources. Materials and methods Materials for this study included human, faunal, and botanical remains from the archaeological sites Anakena and Ahu Tepeu on Rapa Nui, dating from c. 1400 AD to the historic period, and modern reference material. We used bulk carbon and nitrogen isotope analyses and amino acid compound specific isotope analyses (AA‐CSIA) of collagen isolated from prehistoric human and faunal bone, to assess the use of marine versus terrestrial resources and to investigate the underlying baseline values. Similar isotope analyses of archaeological and modern botanical and marine samples were used to characterize the local environment. Results Results of carbon and nitrogen AA‐CSIA independently show that around half the protein in diets from the humans measured came from marine sources; markedly higher than previous estimates. We also observed higher δ15N values in human collagen than could be expected from the local environment. Discussion Our results suggest highly elevated δ15N values could only have come from consumption of crops grown in substantially manipulated soils. These findings strongly suggest that the prehistoric population adapted and exhibited astute environmental awareness in a harsh environment with nutrient poor soils. Our results also have implications for evaluating marine reservoir corrections of radiocarbon dates. PMID:28664976
Jarman, Catrine L; Larsen, Thomas; Hunt, Terry; Lipo, Carl; Solsvik, Reidar; Wallsgrove, Natalie; Ka'apu-Lyons, Cassie; Close, Hilary G; Popp, Brian N
2017-10-01
The Rapa Nui "ecocide" narrative questions whether the prehistoric population caused an avoidable ecological disaster through rapid deforestation and over-exploitation of natural resources. The objective of this study was to characterize prehistoric human diets to shed light on human adaptability and land use in an island environment with limited resources. Materials for this study included human, faunal, and botanical remains from the archaeological sites Anakena and Ahu Tepeu on Rapa Nui, dating from c. 1400 AD to the historic period, and modern reference material. We used bulk carbon and nitrogen isotope analyses and amino acid compound specific isotope analyses (AA-CSIA) of collagen isolated from prehistoric human and faunal bone, to assess the use of marine versus terrestrial resources and to investigate the underlying baseline values. Similar isotope analyses of archaeological and modern botanical and marine samples were used to characterize the local environment. Results of carbon and nitrogen AA-CSIA independently show that around half the protein in diets from the humans measured came from marine sources; markedly higher than previous estimates. We also observed higher δ 15 N values in human collagen than could be expected from the local environment. Our results suggest highly elevated δ 15 N values could only have come from consumption of crops grown in substantially manipulated soils. These findings strongly suggest that the prehistoric population adapted and exhibited astute environmental awareness in a harsh environment with nutrient poor soils. Our results also have implications for evaluating marine reservoir corrections of radiocarbon dates. © 2017 Wiley Periodicals, Inc.
Dynamic lighting system for the learning environment: performance of elementary students.
Choi, Kyungah; Suk, Hyeon-Jeong
2016-05-16
This study aims to investigate the effects of lighting color temperatures on elementary students' performance, and thereby propose a dynamic lighting system for a smart learning environment. Three empirical studies were conducted: First, physiological responses were measured as a potential mediator of performance. Second, cognitive and behavioral responses were observed during academic and recess activities. Lastly, the experiment was carried out in a real-life setting with prolonged exposure. With a comprehensive analysis of the three studies, three lighting presets-3500 K, 5000 K, and 6500 K-are suggested for easy, standard, and intensive activity, respectively. The study is expected to act as a good stepping stone for developing dynamic lighting systems to support students' performance in learning environments.
Second harmonic generation from small particle aggregates
NASA Astrophysics Data System (ADS)
Mochan, W. Luis; Ortiz, Guillermo P.; Mendoza, Bernardo S.; Brudny, Vera L.
2001-03-01
Novel nanofabrication techniques are capable of producing nanoparticles with controled structures which include small clusters, self-assembled particles, quantum dots, vesicles, etc. The non-linear optical scattering of these structures are important for applications, and can be used for their physical characterization. The second harmonic (SH) field radiated by a single small spherical particle has surface and bulk, dipolar and quadrupolar contributions of similar intensities and is strongly dependent of the local environment of the particle [1], in contrast to the linear case. In this work we calculate the nonlinear scattering by particle aggregates and we investigate the effects on the SH generation of the disorder induced field fluctuations and of the localization of light. We acknowledge the partial support from DGAPA-UNAM (grant IN110999), Conacyt (31120-E and 26651-E), CIP and UBACyT. [1] Vera L. Brudny, Bernardo S. Mendoza, and W. Luis Mochán, Phys. Rev. B 62, 11152 (2000).
An Outdoor Navigation Platform with a 3D Scanner and Gyro-assisted Odometry
NASA Astrophysics Data System (ADS)
Yoshida, Tomoaki; Irie, Kiyoshi; Koyanagi, Eiji; Tomono, Masahiro
This paper proposes a light-weight navigation platform that consists of gyro-assisted odometry, a 3D laser scanner and map-based localization for human-scale robots. The gyro-assisted odometry provides highly accurate positioning only by dead-reckoning. The 3D laser scanner has a wide field of view and uniform measuring-point distribution. The map-based localization is robust and computationally inexpensive by utilizing a particle filter on a 2D grid map generated by projecting 3D points on to the ground. The system uses small and low-cost sensors, and can be applied to a variety of mobile robots in human-scale environments. Outdoor navigation experiments were conducted at the Tsukuba Challenge held in 2009 and 2010, which is an open proving ground for human-scale robots. Our robot successfully navigated the assigned 1-km courses in a fully autonomous mode multiple times.
NASA Astrophysics Data System (ADS)
Forte, Paulo M. F.; Felgueiras, P. E. R.; Ferreira, Flávio P.; Sousa, M. A.; Nunes-Pereira, Eduardo J.; Bret, Boris P. J.; Belsley, Michael S.
2017-01-01
An automatic optical inspection system for detecting local defects on specular surfaces is presented. The system uses an image display to produce a sequence of structured diffuse illumination patterns and a digital camera to acquire the corresponding sequence of images. An image enhancement algorithm, which measures the local intensity variations between bright- and dark-field illumination conditions, yields a final image in which the defects are revealed with a high contrast. Subsequently, an image segmentation algorithm, which compares statistically the enhanced image of the inspected surface with the corresponding image for a defect-free template, allows separating defects from non-defects with an adjusting decision threshold. The method can be applied to shiny surfaces of any material including metal, plastic and glass. The described method was tested on the plastic surface of a car dashboard system. We were able to detect not only scratches but also dust and fingerprints. In our experiment we observed a detection contrast increase from about 40%, when using an extended light source, to more than 90% when using a structured light source. The presented method is simple, robust and can be carried out with short cycle times, making it appropriate for applications in industrial environments.
Image transport through a disordered optical fibre mediated by transverse Anderson localization.
Karbasi, Salman; Frazier, Ryan J; Koch, Karl W; Hawkins, Thomas; Ballato, John; Mafi, Arash
2014-02-25
Transverse Anderson localization of light allows localized optical-beam-transport through a transversely disordered and longitudinally invariant medium. Its successful implementation in disordered optical fibres recently resulted in the propagation of localized beams of radii comparable to that of conventional optical fibres. Here we demonstrate optical image transport using transverse Anderson localization of light. The image transport quality obtained in the polymer disordered optical fibre is comparable to or better than some of the best commercially available multicore image fibres with less pixelation and higher contrast. It is argued that considerable improvement in image transport quality can be obtained in a disordered fibre made from a glass matrix with near wavelength-size randomly distributed air-holes with an air-hole fill-fraction of 50%. Our results open the way to device-level implementation of the transverse Anderson localization of light with potential applications in biological and medical imaging.
Nighttime highway construction illumination.
DOT National Transportation Integrated Search
2014-08-01
The nighttime driving environment, consisting of roadway illumination, signs, vehicle lighting and markers, delineators : and flashing lights, can be complex or even confusing for both pedestrians and drivers. The nighttime construction : environment...
Modular Homogeneous Chromophore–Catalyst Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulfort, Karen L.; Utschig, Lisa M.
2016-05-17
Photosynthetic reaction center (RC) proteins convert incident solar energy to chemical energy through a network of molecular cofactors which have been evolutionarily tuned to couple efficient light-harvesting, directional electron transfer, and long-lived charge separation with secondary reaction sequences. These molecular cofactors are embedded within a complex protein environment which precisely positions each cofactor in optimal geometries along efficient electron transfer pathways with localized protein environments facilitating sequential and accumulative charge transfer. By contrast, it is difficult to approach a similar level of structural complexity in synthetic architectures for solar energy conversion. However, by using appropriate self-assembly strategies, we anticipate thatmore » molecular modules, which are independently synthesized and optimized for either light-harvesting or redox catalysis, can be organized into spatial arrangements that functionally mimic natural photosynthesis. In this Account, we describe a modular approach to new structural designs for artificial photosynthesis which is largely inspired by photosynthetic RC proteins. We focus on recent work from our lab which uses molecular modules for light-harvesting or proton reduction catalysis in different coordination geometries and different platforms, spanning from discrete supramolecular assemblies to molecule–nanoparticle hybrids to protein-based biohybrids. Molecular modules are particularly amenable to high-resolution characterization of the ground and excited state of each module using a variety of physical techniques; such spectroscopic interrogation helps our understanding of primary artificial photosynthetic mechanisms. In particular, we discuss the use of transient optical spectroscopy, EPR, and X-ray scattering techniques to elucidate dynamic structural behavior and light-induced kinetics and the impact on photocatalytic mechanism. Two different coordination geometries of supramolecular photocatalyst based on the [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) light-harvesting module with cobaloxime-based catalyst module are compared, with progress in stabilizing photoinduced charge separation identified. These same modules embedded in the small electron transfer protein ferredoxin exhibit much longer charge-separation, enabled by stepwise electron transfer through the native [2Fe-2S] cofactor. We anticipate that the use of interchangeable, molecular modules which can interact in different coordination geometries or within entirely different structural platforms will provide important fundamental insights into the effect of environment on parameters such as electron transfer and charge separation, and ultimately drive more efficient designs for artificial photosynthesis.« less
40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...
40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...
40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...
40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...
40 CFR 65.108 - Standards: Connectors in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Standards: Connectors in gas/vapor service and in light liquid service. (a) Compliance schedule. Except as... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 65.108 Section 65.108 Protection of Environment ENVIRONMENTAL...
High-light acclimation in Quercus robur L.seedlings upon over-topped a shaded environment
Anna M. Jensen; Emile S. Gardiner; Kevin C. Vaughn
2012-01-01
High developmental plasticity at the seedling-level during acclimation to the light environment may be an important determinant of seedling establishment and growth in temperate broadleaf forests, especially in dense understories where spatial light availability can vary greatly. Pedunculate oak (Quercus robur L.) seedlings were raised beneath a...
Veilleux, Carrie C; Cummings, Molly E
2012-12-01
Although variation in the color of light in terrestrial diurnal and twilight environments has been well documented, relatively little work has examined the color of light in nocturnal habitats. Understanding the range and sources of variation in nocturnal light environments has important implications for nocturnal vision, particularly following recent discoveries of nocturnal color vision. In this study, we measured nocturnal irradiance in a dry forest/woodland and a rainforest in Madagascar over 34 nights. We found that a simple linear model including the additive effects of lunar altitude, lunar phase and canopy openness successfully predicted total irradiance flux measurements across 242 clear sky measurements (r=0.85, P<0.0001). However, the relationship between these variables and spectral irradiance was more complex, as interactions between lunar altitude, lunar phase and canopy openness were also important predictors of spectral variation. Further, in contrast to diurnal conditions, nocturnal forests and woodlands share a yellow-green-dominant light environment with peak flux at 560 nm. To explore how nocturnal light environments influence nocturnal vision, we compared photoreceptor spectral tuning, habitat preference and diet in 32 nocturnal mammals. In many species, long-wavelength-sensitive cone spectral sensitivity matched the peak flux present in nocturnal forests and woodlands, suggesting a possible adaptation to maximize photon absorption at night. Further, controlling for phylogeny, we found that fruit/flower consumption significantly predicted short-wavelength-sensitive cone spectral tuning in nocturnal mammals (P=0.002). These results suggest that variation in nocturnal light environments and species ecology together influence cone spectral tuning and color vision in nocturnal mammals.
Layman, Craig A.
2017-01-01
Natural selection plays an important role in the evolution of sexual communication systems. Here, we assess the effect of two well-known selection agents, transmission environment and predation, on interpopulation variation in sexual signals. Our model system is a series of 21 populations of Bahamian mosquitofish subjected to independent variation in optical conditions and predation risk. We show that optically diverse environments, caused by locally variable dissolved organic carbon concentrations, rather than spatial variation in predation, drove divergence in fin coloration (fin redness). We found a unimodal pattern of phenotypic variation along the optical gradient indicating a threshold-type response of visual signals to broad variation in optical conditions. We discuss evolutionary and ecological mechanisms that may drive such a pattern as well as the implications of non-monotonic clines for evolutionary differentiation. PMID:28381625
Kawaguchi, Kosuke; Yurimoto, Hiroya; Oku, Masahide; Sakai, Yasuyoshi
2011-01-01
The yeast Candida boidinii capable of growth on methanol proliferates and survives on the leaves of Arabidopsis thaliana. The local methanol concentration at the phyllosphere of growing A. thaliana exhibited daily periodicity, and yeast cells responded by altering both the expression of methanol-inducible genes and peroxisome proliferation. Even under these dynamically changing environmental conditions, yeast cells proliferated 3 to 4 times in 11 days. Among the C1-metabolic enzymes, enzymes in the methanol assimilation pathway, but not formaldehyde dissimilation or anti-oxidizing enzymes, were necessary for yeast proliferation at the phyllosphere. Furthermore, both peroxisome assembly and pexophagy, a selective autophagy pathway that degrades peroxisomes, were necessary for phyllospheric proliferation. Thus, the present study sheds light on the life cycle and physiology of yeast in the natural environment at both the molecular and cellular levels. PMID:21966472
Giery, Sean T; Layman, Craig A
2017-04-12
Natural selection plays an important role in the evolution of sexual communication systems. Here, we assess the effect of two well-known selection agents, transmission environment and predation, on interpopulation variation in sexual signals. Our model system is a series of 21 populations of Bahamian mosquitofish subjected to independent variation in optical conditions and predation risk. We show that optically diverse environments, caused by locally variable dissolved organic carbon concentrations, rather than spatial variation in predation, drove divergence in fin coloration (fin redness). We found a unimodal pattern of phenotypic variation along the optical gradient indicating a threshold-type response of visual signals to broad variation in optical conditions. We discuss evolutionary and ecological mechanisms that may drive such a pattern as well as the implications of non-monotonic clines for evolutionary differentiation. © 2017 The Author(s).
Atomistic material behavior at extreme pressures
Beland, Laurent K.; Osetskiy, Yury N.; Stoller, Roger E.
2016-08-05
Computer simulations are routinely performed to model the response of materials to extreme environments, such as neutron (or ion) irradiation. The latter involves high-energy collisions from which a recoiling atom creates a so-called atomic displacement cascade. These cascades involve coordinated motion of atoms in the form of supersonic shockwaves. These shockwaves are characterized by local atomic pressures >15 GPa and interatomic distances <2 Å. Similar pressures and interatomic distances are observed in other extreme environment, including short-pulse laser ablation, high-impact ballistic collisions and diamond anvil cells. Displacement cascade simulations using four different force fields, with initial kinetic energies ranging frommore » 1 to 40 keV, show that there is a direct relationship between these high-pressure states and stable defect production. An important shortcoming in the modeling of interatomic interactions at these short distances, which in turn determines final defect production, is brought to light.« less
NASA Astrophysics Data System (ADS)
Røstad, Anders; Kaartvedt, Stein; Aksnes, Dag L.
2016-07-01
We make a comparison of the mesopelagic sound scattering layers (SLs) in two contrasting optical environments; the clear Red Sea and in murkier coastal waters of Norway (Masfjorden). The depth distributions of the SL in Masfjorden are shallower and narrower than those of the Red Sea. This difference in depth distribution is consistent with the hypothesis that the organisms of the SL distribute according to similar light comfort zones (LCZ) in the two environments. Our study suggest that surface and underwater light measurements ranging more than 10 orders of magnitude is required to assess the controlling effects of light on SL structure and dynamics.
Fang, Yun-Tuan; Ni, Zhi-Yao; Zhu, Na; Zhou, Jun
2016-01-13
We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively.
Light use efficiency for vegetables production in protected and indoor environments
NASA Astrophysics Data System (ADS)
Cocetta, Giacomo; Casciani, Daria; Bulgari, Roberta; Musante, Fulvio; Kołton, Anna; Rossi, Maurizio; Ferrante, Antonio
2017-01-01
In recent years, there is a growing interest for vegetables production in indoor or disadvantaged climatic zones by using greenhouses. The main problem of crop growing indoor or in environment with limited light availability is the correct choice of light source and the quality of lighting spectrum. In greenhouse and indoor cultivations, plant density is higher than in the open field and plants have to compete for light and nutrients. Nowadays, advanced systems for indoor horticulture use light emitting diodes (LED) for improving crop growth, enhancing the plant productivity and favouring the best nutritional quality formation. In closed environments, as indoor growing modules, the lighting system represents the only source of light and its features are fundamental for obtaining the best lighting performances for plant and the most efficient solution. LED lighting engines are more efficient compared to the lighting sources used traditionally in horticulture and allow light spectrum and intensity modulations to enhance the light use efficiency for plants. The lighting distribution and the digital controls are fundamental for tailoring the spectral distribution on each plant in specific moments of its growth and play an important role for optimizing growth and produce high-quality vegetables. LED lights can increase plant growth and yield, but also nutraceutical quality, since some light intensities increase pigments biosynthesis and enhance the antioxidants content of leaves or fruits: in this regards the selection of LED primary light sources in relation to the peaks of the absorbance curve of the plants is important.
Anderson localization of light near boundaries of disordered photonic lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jovic, Dragana M.; Texas A and M University at Qatar, P. O. Box 23874, Doha; Kivshar, Yuri S.
We study numerically the effect of boundaries on Anderson localization of light in truncated two-dimensional photonic lattices in a nonlinear medium. We demonstrate suppression of Anderson localization at the edges and corners, so that stronger disorder is needed near the boundaries to obtain the same localization as in the bulk. We find that the level of suppression depends on the location in the lattice (edge vs corner), as well as on the strength of disorder. We also discuss the effect of nonlinearity on various regimes of Anderson localization.
Method and system for sensing and identifying foreign particles in a gaseous environment
NASA Technical Reports Server (NTRS)
Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor)
2008-01-01
An optical method and system sense and identify a foreign particle in a gaseous environment. A light source generates light. An electrically-conductive sheet has an array of holes formed through the sheet. Each hole has a diameter that is less than one quarter of the light's wavelength. The sheet is positioned relative to the light source such that the light is incident on one face of the sheet. An optical detector is positioned adjacent the sheet's opposing face and is spaced apart therefrom such that a gaseous environment is adapted to be disposed there between. Alterations in the light pattern detected by the optical detector indicate the presence of a foreign particle in the holes or on the sheet, while a laser induced fluorescence (LIF) signature associated with the foreign particle indicates the identity of the foreign particle.
Barber, Nicholas A
2010-04-01
Insect herbivore abundances on host plants are influenced by both plant traits and the physical environment in which that plant grows. This study examined the role of the physical light environment and foliage characteristics in determining abundance of the lacebug Corythuca arcuata Say (Hemiptera: Tingidae) on Quercus alba L. I censused adult C. arcuata across a growing season, quantified leaf characteristics, and measured canopy cover over understory branches of mature Q. alba. Using an information-theoretic approach, a priori hypotheses of the relationship between light, plant traits, and C. arcuata abundance was evaluated. Abundance was best predicted by light environment and carbon content. Adult C. arcuata prefer trees growing under an open canopy and trees with low carbon content; abundance also positively correlated with leaf water content. Although carbon and water did not vary with light in this study, low carbon and high water content are often associated with shadier conditions, suggesting that C. arcuata faces a trade-off between preferences for physical habitat conditions and host plant characteristics.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Sampling Plans for Selective Enforcement Auditing of Light-Duty Vehicles XI Appendix XI to Part 86 Protection of Environment ENVIRONMENTAL... Enforcement Auditing of Light-Duty Vehicles 40% AQL Table 1—Sampling Plan Code Letter Annual sales of...
40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...
40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...
40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...
40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...
40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...
40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...
40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...
40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...
40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...
40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.
Code of Federal Regulations, 2012 CFR
2012-07-01
....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...
40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...
40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.
Code of Federal Regulations, 2013 CFR
2013-07-01
....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...
40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...
40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...
40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...
40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1028 - Agitators in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards § 63.1028 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1028 Section 63.1028 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...
40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...
40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...
40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...
40 CFR 63.174 - Standards: Connectors in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Equipment Leaks § 63.174 Standards: Connectors in gas/vapor service and in light liquid service. (a) The... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Connectors in gas/vapor service and in light liquid service. 63.174 Section 63.174 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1009 - Agitators in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... § 63.1009 Agitators in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Agitators in gas and vapor service and in light liquid service standards. 63.1009 Section 63.1009 Protection of Environment ENVIRONMENTAL...
40 CFR 265.1057 - Standards: Valves in gas/vapor service or in light liquid service.
Code of Federal Regulations, 2014 CFR
2014-07-01
....1057 Standards: Valves in gas/vapor service or in light liquid service. (a) Each valve in gas/vapor or... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service or in light liquid service. 265.1057 Section 265.1057 Protection of Environment ENVIRONMENTAL...
40 CFR 63.173 - Standards: Agitators in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Equipment Leaks § 63.173 Standards: Agitators in gas/vapor service and in light liquid service. (a)(1) Each... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 63.173 Section 63.173 Protection of Environment ENVIRONMENTAL...
40 CFR 65.106 - Standards: Valves in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Standards: Valves in gas/vapor service and in light liquid service. (a) Compliance schedule. (1) The owner... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 65.106 Section 65.106 Protection of Environment ENVIRONMENTAL PROTECTION...
40 CFR 63.1008 - Connectors in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 63.1008 Connectors in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Connectors in gas and vapor service and in light liquid service standards. 63.1008 Section 63.1008 Protection of Environment ENVIRONMENTAL...
40 CFR 63.1025 - Valves in gas and vapor service and in light liquid service standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Standards § 63.1025 Valves in gas and vapor service and in light liquid service standards. (a) Compliance... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Valves in gas and vapor service and in light liquid service standards. 63.1025 Section 63.1025 Protection of Environment ENVIRONMENTAL...
40 CFR 65.109 - Standards: Agitators in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Standards: Agitators in gas/vapor service and in light liquid service. (a) Compliance schedule. The owner or... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Standards: Agitators in gas/vapor service and in light liquid service. 65.109 Section 65.109 Protection of Environment ENVIRONMENTAL...
Localizing people in crosswalks with a moving handheld camera: proof of concept
NASA Astrophysics Data System (ADS)
Lalonde, Marc; Chapdelaine, Claude; Foucher, Samuel
2015-02-01
Although people or object tracking in uncontrolled environments has been acknowledged in the literature, the accurate localization of a subject with respect to a reference ground plane remains a major issue. This study describes an early prototype for the tracking and localization of pedestrians with a handheld camera. One application envisioned here is to analyze the trajectories of blind people going across long crosswalks when following different audio signals as a guide. This kind of study is generally conducted manually with an observer following a subject and logging his/her current position at regular time intervals with respect to a white grid painted on the ground. This study aims at automating the manual logging activity: with a marker attached to the subject's foot, a video of the crossing is recorded by a person following the subject, and a semi-automatic tool analyzes the video and estimates the trajectory of the marker with respect to the painted markings. Challenges include robustness to variations to lighting conditions (shadows, etc.), occlusions, and changes in camera viewpoint. Results are promising when compared to GNSS measurements.
NASA Astrophysics Data System (ADS)
Tsuzuku, Koichiro; Hagiwara, Tomoya; Takeoka, Shunsuke; Ikemoto, Yuka
2008-05-01
Vibration bands of dielectric ceramics appear at a mid-infrared (MIR) and those position and shape are changed owing to change environment of crystal lattice. Therefore, micro-focus MIR spectroscopy is a one of useful tool to evaluate very small size capacitor (e.g. smaller than 0.5 mm in chip size). Very small size multi-layer capacitor: MLCC are one of very important device to produce high quality electrical products such as cell phone, etc. Quality and reliability of MLCC are corresponding to not only average dielectric properties but also local fluctuation of them. Furthermore, local fluctuation of dielectric properties of MLCC could evaluate with MIR spectroscopy. It is possible to obtain a satisfied MIR spectrum from small size samples performed by a micro-focus spectrometer combined with synchrotron radiation as a high luminance light source at beam line BL43IR of SPring-8. From the above result, it is possible to evaluate the degree of homogeneity by comparing the shape change of Ti-O peak on IR spectra.
Enhancing Water Evaporation with Floating Synthetic Leaves
NASA Astrophysics Data System (ADS)
Boreyko, Jonathan; Vieitez, Joshua; Berrier, Austin; Roseveare, Matthew; Shi, Weiwei
2017-11-01
When a wetted nanoporous medium is exposed to a subsaturated ambient environment, the water menisci assume a concave curvature to achieve a negative pressure. This negative water pressure is required to balance the mismatch in water activity across the water-air interface to achieve local equilibrium. Here, we show that the diffusive evaporation rate of water can be greatly modulated by floating a nanoporous synthetic leaf at the water's free interface. For high ambient humidities, adding the leaf serves to enhance the evaporation rate, presumably by virtue of the menisci enhancing the effective liquid-vapor surface area. For low humidities, the menisci cannot achieve a local equilibrium and retreat partway into the leaf, which increases the local humidity directly above the menisci. In light of these two effects, we find the surprising result that leaves exposed to an ambient humidity of 90 percent can evaporate water at the same rate as leaves exposed to only 50 percent humidity. These findings have implications for using synthetic trees to enhance steam generation or water harvesting. This work was supported by the National Science Foundation (CBET-1653631).
Shibuta, Yasushi; Sakane, Shinji; Miyoshi, Eisuke; Okita, Shin; Takaki, Tomohiro; Ohno, Munekazu
2017-04-05
Can completely homogeneous nucleation occur? Large scale molecular dynamics simulations performed on a graphics-processing-unit rich supercomputer can shed light on this long-standing issue. Here, a billion-atom molecular dynamics simulation of homogeneous nucleation from an undercooled iron melt reveals that some satellite-like small grains surrounding previously formed large grains exist in the middle of the nucleation process, which are not distributed uniformly. At the same time, grains with a twin boundary are formed by heterogeneous nucleation from the surface of the previously formed grains. The local heterogeneity in the distribution of grains is caused by the local accumulation of the icosahedral structure in the undercooled melt near the previously formed grains. This insight is mainly attributable to the multi-graphics processing unit parallel computation combined with the rapid progress in high-performance computational environments.Nucleation is a fundamental physical process, however it is a long-standing issue whether completely homogeneous nucleation can occur. Here the authors reveal, via a billion-atom molecular dynamics simulation, that local heterogeneity exists during homogeneous nucleation in an undercooled iron melt.
The HR 4796A Debris System: Discovery of Extensive Exo-ring Dust Material
NASA Astrophysics Data System (ADS)
Schneider, Glenn; Debes, John H.; Grady, Carol A.; Gáspár, Andras; Henning, Thomas; Hines, Dean C.; Kuchner, Marc J.; Perrin, Marshall; Wisniewski, John P.
2018-02-01
The optically and IR-bright and starlight-scattering HR 4796A ringlike debris disk is one of the most- (and best-) studied exoplanetary debris systems. The presence of a yet-undetected planet has been inferred (or suggested) from the narrow width and inner/outer truncation radii of its r = 1.″05 (77 au) debris ring. We present new, highly sensitive Hubble Space Telescope (HST) visible-light images of the HR 4796A circumstellar debris system and its environment over a very wide range of stellocentric angles from 0.″32 (23 au) to ≈15″ (1100 au). These very high-contrast images were obtained with the Space Telescope Imaging Spectrograph (STIS) using six-roll PSF template–subtracted coronagraphy suppressing the primary light of HR 4796A, with three image-plane occulters, and simultaneously subtracting the background light from its close angular proximity M2.5V companion. The resulting images unambiguously reveal the debris ring embedded within a much larger, morphologically complex, and biaxially asymmetric exo-ring scattering structure. These images at visible wavelengths are sensitive to and map the spatial distribution, brightness, and radial surface density of micron-size particles over 5 dex in surface brightness. These particles in the exo-ring environment may be unbound from the system and interacting with the local ISM. Herein, we present a new morphological and photometric view of the larger-than-prior-seen HR 4796A exoplanetary debris system with sensitivity to small particles at stellocentric distances an order of magnitude greater than has previously been observed.
Fiber optic device for sensing the presence of a gas
Benson, David K.; Bechinger, Clemens S.; Tracy, C. Edwin
1998-01-01
A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material's optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment.
Passifloraceae seeds from the late Eocene of Colombia.
Martínez, Camila
2017-12-01
The plant fossil record for the neotropics is still sparse and temporally discontinuous. The location and description of new fossil material are fundamental for understanding evolutionary and biogeographic patterns of lineages. A new fossil record of Passifloraceae from the late Eocene of Colombia is described in this study. Plant fossils were collected from a new locality from the Eocene Esmeraldas Formation. Eighteen fossil seeds were selected, described, and compared with fossil and extant angiosperm seeds based on the literature and herbarium collections. Taxonomic affinities of the fossil seeds within Passifloraceae s.l. were evaluated by comparing morphological characters of the seeds in a phylogenetic context. Stratigraphic information associated with the fossil locality was used to interpret the environment and taphonomic processes associated with fossil deposition. A new seed fossil genus and species, Passifloroidesperma sogamosense gen. and sp. nov., is described and associated with the subfamily Passifloroideae based on the presence of a foveolate seed surface, ruminate endosperm, and a seed coat with prismatic palisade cells. The depositional environment of the locality is described as a floodplain associated with river channels. A detailed review of the Passifloraceae fossil record indicates that P. sogamosense is the oldest confirmed record of Passifloraceae. Its late Eocene age provides a minimum age that can be used as a calibration point for the crown Passifloroideae node in future dating analyses that together with its neotropical geographic location can shed light on the origin and diversification of the subfamily. © 2017 Botanical Society of America.
NASA Astrophysics Data System (ADS)
Desrochers, Johanne; Vermette, Patrick; Fontaine, Réjean; Bérubé-Lauzière, Yves
2008-06-01
Fluorescence optical diffuse tomography (fDOT) is of much interest in molecular imaging to retrieve information from fluorescence signals emitted from specifically targeted bioprocesses deep within living tissues. An exciting application of fDOT is in the growing field of tissue engineering, where 3D non-invasive imaging techniques are required to ultimately grow 3D engineered tissues. Via appropriate labelling strategies and fluorescent probes, fDOT has the potential to monitor culture environment and cells viability non-destructively directly within the bioreactor environment where tissues are to be grown. Our ultimate objective is to image the formation of blood vessels in bioreactor conditions. Herein, we use a non-contact setup for small animal fDOT imaging designed for 3D light collection around the sample. We previously presented a time of flight approach using a numerical constant fraction discrimination technique to assign an early photons arrival time to every fluorescence time point-spread function collected around the sample. Towards bioreactor in-situ imaging, we have shown the capability of our approach to localize a fluorophore-filled 500 μm capillary immersed coaxially in a cylindrically shaped bioreactor phantom containing an absorbing/scattering medium representative of experiments on real tissue cultures. Here, we go one step further, and present results for the 3D localization of thinner indocyanine green labelled capillaries (250 μm and 360 μm inner diameter) immersed in the same phantom conditions and geometry but with different spatial configurations (10° and 30° capillary inclination).
Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang
2016-01-01
Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J. The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. PMID:27702991
Abnormal environmental light exposure in the intensive care environment.
Fan, Emily P; Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C; Maas, Matthew B
2017-08-01
We sought to characterize ambient light exposure in the intensive care unit (ICU) environment to identify patterns of light exposure relevant to circadian regulation. A light monitor was affixed to subjects' bed at eye level in a modern intensive care unit and continuously recorded illuminescence for at least 24h per subject. Blood was sampled hourly and measured for plasma melatonin. Subjects underwent hourly vital sign and bedside neurologic assessments. Care protocols and the ICU environment were not modified for the study. A total of 67,324 30-second epochs of light data were collected from 17 subjects. Light intensity peaked in the late morning, median 64.1 (interquartile range 19.7-138.7) lux. The 75th percentile of light intensity exceeded 100lx only between 9AM and noon, and never exceeded 150lx. There was no correlation between melatonin amplitude and daytime, nighttime or total light exposure (Spearman's correlation coefficients all <0.2 and p>0.5). Patients' environmental light exposure in the intensive care unit is consistently low and follows a diurnal pattern. No effect of nighttime light exposure was observed on melatonin secretion. Inadequate daytime light exposure in the ICU may contribute to abnormal circadian rhythms. Copyright © 2017 Elsevier Inc. All rights reserved.
Hedley, John D; McMahon, Kathryn; Fearns, Peter
2014-01-01
A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments.
Hedley, John D.; McMahon, Kathryn; Fearns, Peter
2014-01-01
A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments. PMID:25347849
Light guide technology: using light to enhance safety
NASA Astrophysics Data System (ADS)
Lerner, William S.
2009-05-01
When used to detect extreme temperatures in harsh environments, warning devices have been placed at a distance from the "danger zone" for several reasons. The inability to mix electricity with flammable, caustic, liquid or volatile substances, the limited heat tolerances exhibited by most light sources, and the susceptibility of light sources to damage from vibration, have made the placement of a warning light directly within these harsh environments impossible. This paper describes a system that utilizes a beam of light to provide just such a warning. This system can be used with hard-wired or wireless sensors, side-light illumination, image projection and image transfer. The entire system may be self-contained and portable.
Nonlinear Frequency Conversion in III-V Semiconductor Photonic Crystals
2012-03-01
nanocavities, by localizing light into sub-cubic optical wavelength volumes with long photon storage times, can greatly enhance the efficiency of...dissertation shows how optical nanocavities, by localizing light into sub-cubic optical wavelength volumes with long photon storage times, can greatly...8.2.3 Lithographic localization of molecules to cavity region . . . . . 86 8.2.4 Low temperature spectroscopy of DNQDI . . . . . . . . . . . 89 8.2.5
D'Angelo, Cecilia; Sharon, Yoni; Tchernov, Dan; Wiedenmann, Joerg
2017-01-01
The depth distribution of reef-building corals exposes their photosynthetic symbionts of the genus Symbiodinium to extreme gradients in the intensity and spectral quality of the ambient light environment. Characterizing the mechanisms used by the coral holobiont to respond to the low intensity and reduced spectral composition of the light environment in deeper reefs (greater than 20 m) is fundamental to our understanding of the functioning and structure of reefs across depth gradients. Here, we demonstrate that host pigments, specifically photoconvertible red fluorescent proteins (pcRFPs), can promote coral adaptation/acclimatization to deeper-water light environments by transforming the prevalent blue light into orange-red light, which can penetrate deeper within zooxanthellae-containing tissues; this facilitates a more homogeneous distribution of photons across symbiont communities. The ecological importance of pcRFPs in deeper reefs is supported by the increasing proportion of red fluorescent corals with depth (measured down to 45 m) and increased survival of colour morphs with strong expression of pcRFPs in long-term light manipulation experiments. In addition to screening by host pigments from high light intensities in shallow water, the spectral transformation observed in deeper-water corals highlights the importance of GFP-like protein expression as an ecological mechanism to support the functioning of the coral–Symbiodinium association across steep environmental gradients. PMID:28679724
Smith, Edward G; D'Angelo, Cecilia; Sharon, Yoni; Tchernov, Dan; Wiedenmann, Joerg
2017-07-12
The depth distribution of reef-building corals exposes their photosynthetic symbionts of the genus Symbiodinium to extreme gradients in the intensity and spectral quality of the ambient light environment. Characterizing the mechanisms used by the coral holobiont to respond to the low intensity and reduced spectral composition of the light environment in deeper reefs (greater than 20 m) is fundamental to our understanding of the functioning and structure of reefs across depth gradients. Here, we demonstrate that host pigments, specifically photoconvertible red fluorescent proteins (pcRFPs), can promote coral adaptation/acclimatization to deeper-water light environments by transforming the prevalent blue light into orange-red light, which can penetrate deeper within zooxanthellae-containing tissues; this facilitates a more homogeneous distribution of photons across symbiont communities. The ecological importance of pcRFPs in deeper reefs is supported by the increasing proportion of red fluorescent corals with depth (measured down to 45 m) and increased survival of colour morphs with strong expression of pcRFPs in long-term light manipulation experiments. In addition to screening by host pigments from high light intensities in shallow water, the spectral transformation observed in deeper-water corals highlights the importance of GFP-like protein expression as an ecological mechanism to support the functioning of the coral- Symbiodinium association across steep environmental gradients. © 2017 The Authors.
Room-temperature quantum noise limited spectrometry and methods of the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher T.
According to one embodiment, a heterodyne detection system for detecting light, includes: a first input aperture configured to receive first light from a scene input; a second input aperture configured to receive second light from a local oscillator input; a broadband local oscillator configured to provide the second light to the second input aperture; a dispersive element configured to disperse the first light and the second light; and a final condensing lens coupled to a detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the detector. The detector is configured to sensemore » a frequency difference between the first light and the second light; and the final condensing lens comprises a plasmonic condensing lens. Methods for forming a plasmonic condensing lens to enable room temperature quantum noise limited spectrometry are also disclosed.« less
NASA Astrophysics Data System (ADS)
Brondijk, J. J.; Li, X.; Akkerman, H. B.; Blom, P. W. M.; de Boer, B.
2009-04-01
By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were modified with SAMs based on alkanethiols and perfluorinated alkanethiols, applied by microcontact printing, and their work functions have been measured. The molecules form a chemisorbed monolayer of only ˜1.5 nm on the gold surface, thereby locally changing the work function of the metal. Kelvin probe measurements show that the local work function can be tuned from 4.3 to 5.5 eV, which implies that this anode can be used as a hole blocking electrode or as a hole injecting electrode, respectively, in PLEDs based on poly( p-phenylene vinylene) (PPV) derivatives. By microcontact printing of SAMs with opposing dipole moments, the work function was locally modified and the charge injection in the PLED could be controlled down to the micrometer length scale. Consequently, the local light-emission exhibits a high contrast. Microcontact printing of SAMs is a simple and inexpensive method to pattern, with micrometer resolution, the light-emission for low-end applications like static displays.
Sensitivity of Polygonum aviculare Seeds to Light as Affected by Soil Moisture Conditions
Batlla, Diego; Nicoletta, Marcelo; Benech-Arnold, Roberto
2007-01-01
Background and Aims It has been hypothesized that soil moisture conditions could affect the dormancy status of buried weed seeds, and, consequently, their sensitivity to light stimuli. In this study, an investigation is made of the effect of different soil moisture conditions during cold-induced dormancy loss on changes in the sensitivity of Polygonum aviculare seeds to light. Methods Seeds buried in pots were stored under different constant and fluctuating soil moisture environments at dormancy-releasing temperatures. Seeds were exhumed at regular intervals during storage and were exposed to different light treatments. Changes in the germination response of seeds to light treatments during storage under the different moisture environments were compared in order to determine the effect of soil moisture on the sensitivity to light of P. aviculare seeds. Key Results Seed acquisition of low-fluence responses during dormancy release was not affected by either soil moisture fluctuations or different constant soil moisture contents. On the contrary, different soil moisture environments affected seed acquisition of very low fluence responses and the capacity of seeds to germinate in the dark. Conclusions The results indicate that under field conditions, the sensitivity to light of buried weed seeds could be affected by the soil moisture environment experienced during the dormancy release season, and this could affect their emergence pattern. PMID:17430979
Brawley, Elizabeth C
2009-01-01
Good lighting is perhaps the most important and least understood element in designing healthcare environments. Both physically and mentally challenged individuals become more vulnerable and dependent on their environment to compensate for sensory impairments, including dimming eyesight, which interferes to some degree with daily activities as well as social and leisure activities - the things that provide emotional and social well-being. Too few building designs today result in lighting that meets the needs of these individuals, regardless of age. Typical lighting in most care environments is inadequate to meet lighting needs affecting both vision and the photobiological (non-visual) needs of synchronization of circadian rhythm, which impacts sleep and depression. Well-designed lighting is one of the most important design elements that will support an individual's ability to perform normal daily activities and decrease the level of disability associated with these impairments. Daylight contains the spectrum to which the circadian clock is most sensitive and provides higher light levels during the day. Easily accessible outdoor gardens encourage individuals outside, providing the necessary regular exposure to direct bright light that sunlight provides. The combination good interior lighting and regular daylight exposure contributes to regaining and maintaining an active and fulfilling lifestyle - greatly improving quality of life.
Tomaszewski, Michał; Ruszczak, Bogdan; Michalski, Paweł
2018-06-01
Electrical insulators are elements of power lines that require periodical diagnostics. Due to their location on the components of high-voltage power lines, their imaging can be cumbersome and time-consuming, especially under varying lighting conditions. Insulator diagnostics with the use of visual methods may require localizing insulators in the scene. Studies focused on insulator localization in the scene apply a number of methods, including: texture analysis, MRF (Markov Random Field), Gabor filters or GLCM (Gray Level Co-Occurrence Matrix) [1], [2]. Some methods, e.g. those which localize insulators based on colour analysis [3], rely on object and scene illumination, which is why the images from the dataset are taken under varying lighting conditions. The dataset may also be used to compare the effectiveness of different methods of localizing insulators in images. This article presents high-resolution images depicting a long rod electrical insulator under varying lighting conditions and against different backgrounds: crops, forest and grass. The dataset contains images with visible laser spots (generated by a device emitting light at the wavelength of 532 nm) and images without such spots, as well as complementary data concerning the illumination level and insulator position in the scene, the number of registered laser spots, and their coordinates in the image. The laser spots may be used to support object-localizing algorithms, while the images without spots may serve as a source of information for those algorithms which do not need spots to localize an insulator.
NASA Technical Reports Server (NTRS)
Clark, T. A.; Salazar, G. A.; Brainard, G. C.; Litaker, H. L.; Hanifin, J.; Schwing, B. M.
2016-01-01
Even with no ambient lighting system "on", the International Space Station glows at night. The glow is caused by indicator lamps and displays that are not included with the specification of the ambient lighting system. How does this impact efforts to improve the astronaut's lighting environment to promote more effective sleep patterns? Do the extra indicators and displays add enough light to change the spectrum of light the crew sees during the day as well? If spacecraft environments are specifically engineered to have an ambient lighting system that emits a spectrum promoting a healthy circadian response, is there a way control the impact? The goal of this project is to investigate how additional light sources, such as displays and indicators change the effective light spectrum of the architectural lighting system and how impacts can be mitigated.
Sleep and intercontinental flights.
Nicholson, Anthony N
2006-12-01
At present there are no 'high-tech' solutions to the problems that may beset intercontinental travellers. Indications for the use of drugs are limited, and their use must accord with Good Clinical Practice. Essentially, travellers must look after their sleep, as far as possible, during and after the flight. The most useful time for sleep during the flight must be anticipated, caution exercised in the use of hypnotics in-flight as reduced mobility is a potential risk factor for venous thrombosis, and a strategy adopted, whether flying east or west, to adapt as quickly as possible to the working hours of the new locality. After an eastward flight a hypnotic may be useful, but this strategy is seldom necessary after a westward flight unless the journey has involved crossing more than 5 or 6 time zones. The claim that melatonin accelerates the shift of the sleep-wakefulness cycle to a new time zone is controversial, and its recommended use may prejudice alertness during working hours. Exposure to artificial light and avoidance of ambient light at certain times of the day could prove to be of help-possibly in conjunction with drugs. However, effective and practical alterations in the light environment must be devised before such strategies can be considered with confidence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malnoe, Alizee; Schultink, Alex; Shahrasbi, Sanya
Light utilization is finely tuned in photosynthetic organisms to prevent cellular damage. The dissipation of excess absorbed light energy, a process termed nonphotochemical quenching (NPQ), plays an important role in photoprotection. Little is known about the sustained or slowly reversible form(s) of NPQ and whether they are photoprotective, in part due to the lack of mutants. The Arabidopsis thaliana suppressor of quenching1 (soq1) mutant exhibits enhanced sustained NPQ, which we term qH. To identify molecular players involved in qH, we screened for suppressors of soq1 and isolated mutants affecting either chlorophyllide a oxygenase or the chloroplastic lipocalin, now renamed plastidmore » lipocalin (LCNP). An analysis of the mutants confirmed that qH is localized to the peripheral antenna (LHCII) of photosystem II and demonstrated that LCNP is required for qH, either directly (by forming NPQ sites) or indirectly (by modifying the LHCII membrane environment). qH operates under stress conditions such as cold and high light and is photoprotective, as it reduces lipid peroxidation levels.We propose that, under stress conditions, LCNP protects the thylakoid membrane by enabling sustained NPQ in LHCII, thereby preventing singlet oxygen stress.« less
Malnoe, Alizee; Schultink, Alex; Shahrasbi, Sanya; ...
2017-12-12
Light utilization is finely tuned in photosynthetic organisms to prevent cellular damage. The dissipation of excess absorbed light energy, a process termed nonphotochemical quenching (NPQ), plays an important role in photoprotection. Little is known about the sustained or slowly reversible form(s) of NPQ and whether they are photoprotective, in part due to the lack of mutants. The Arabidopsis thaliana suppressor of quenching1 (soq1) mutant exhibits enhanced sustained NPQ, which we term qH. To identify molecular players involved in qH, we screened for suppressors of soq1 and isolated mutants affecting either chlorophyllide a oxygenase or the chloroplastic lipocalin, now renamed plastidmore » lipocalin (LCNP). An analysis of the mutants confirmed that qH is localized to the peripheral antenna (LHCII) of photosystem II and demonstrated that LCNP is required for qH, either directly (by forming NPQ sites) or indirectly (by modifying the LHCII membrane environment). qH operates under stress conditions such as cold and high light and is photoprotective, as it reduces lipid peroxidation levels.We propose that, under stress conditions, LCNP protects the thylakoid membrane by enabling sustained NPQ in LHCII, thereby preventing singlet oxygen stress.« less
40 CFR 86.099-9 - Emission standards for 1999 and later model year light-duty trucks.
Code of Federal Regulations, 2011 CFR
2011-07-01
....099-9 Emission standards for 1999 and later model year light-duty trucks. (a)(1)(i)-(iii) [Reserved... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Emission standards for 1999 and later model year light-duty trucks. 86.099-9 Section 86.099-9 Protection of Environment ENVIRONMENTAL...
40 CFR 86.004-9 - Emission standards for 2004 and later model year light-duty trucks.
Code of Federal Regulations, 2013 CFR
2013-07-01
....004-9 Emission standards for 2004 and later model year light-duty trucks. Section 86.004-9 includes... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Emission standards for 2004 and later model year light-duty trucks. 86.004-9 Section 86.004-9 Protection of Environment ENVIRONMENTAL...
40 CFR 86.004-9 - Emission standards for 2004 and later model year light-duty trucks.
Code of Federal Regulations, 2012 CFR
2012-07-01
....004-9 Emission standards for 2004 and later model year light-duty trucks. Section 86.004-9 includes... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Emission standards for 2004 and later model year light-duty trucks. 86.004-9 Section 86.004-9 Protection of Environment ENVIRONMENTAL...
40 CFR 86.004-9 - Emission standards for 2004 and later model year light-duty trucks.
Code of Federal Regulations, 2010 CFR
2010-07-01
....004-9 Emission standards for 2004 and later model year light-duty trucks. Section 86.004-9 includes... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Emission standards for 2004 and later model year light-duty trucks. 86.004-9 Section 86.004-9 Protection of Environment ENVIRONMENTAL...
40 CFR 86.004-9 - Emission standards for 2004 and later model year light-duty trucks.
Code of Federal Regulations, 2011 CFR
2011-07-01
....004-9 Emission standards for 2004 and later model year light-duty trucks. Section 86.004-9 includes... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Emission standards for 2004 and later model year light-duty trucks. 86.004-9 Section 86.004-9 Protection of Environment ENVIRONMENTAL...
40 CFR 86.099-9 - Emission standards for 1999 and later model year light-duty trucks.
Code of Federal Regulations, 2010 CFR
2010-07-01
....099-9 Emission standards for 1999 and later model year light-duty trucks. (a)(1)(i)-(iii) [Reserved... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Emission standards for 1999 and later model year light-duty trucks. 86.099-9 Section 86.099-9 Protection of Environment ENVIRONMENTAL...
Light field rendering with omni-directional camera
NASA Astrophysics Data System (ADS)
Todoroki, Hiroshi; Saito, Hideo
2003-06-01
This paper presents an approach to capture visual appearance of a real environment such as an interior of a room. We propose the method for generating arbitrary viewpoint images by building light field with the omni-directional camera, which can capture the wide circumferences. Omni-directional camera used in this technique is a special camera with the hyperbolic mirror in the upper part of a camera, so that we can capture luminosity in the environment in the range of 360 degree of circumferences in one image. We apply the light field method, which is one technique of Image-Based-Rendering(IBR), for generating the arbitrary viewpoint images. The light field is a kind of the database that records the luminosity information in the object space. We employ the omni-directional camera for constructing the light field, so that we can collect many view direction images in the light field. Thus our method allows the user to explore the wide scene, that can acheive realistic representation of virtual enviroment. For demonstating the proposed method, we capture image sequence in our lab's interior environment with an omni-directional camera, and succesfully generate arbitray viewpoint images for virual tour of the environment.
Lighting the Learning Environment.
ERIC Educational Resources Information Center
Fielding, Randall
2000-01-01
Explores the benefits and pitfalls of day lighting, indirect light, and full-spectrum lamps for general illumination and accent lighting in classrooms. Discussions include lighting considerations in areas where computers are used and fixture cost factors versus efficiency. (GR)
Getting back to nature: a reality check for experiments in controlled environments.
Annunziata, Maria Grazia; Apelt, Federico; Carillo, Petronia; Krause, Ursula; Feil, Regina; Mengin, Virginie; Lauxmann, Martin A; Köhl, Karin; Nikoloski, Zoran; Stitt, Mark; Lunn, John E; Raines, Christine
2017-07-20
Irradiance from sunlight changes in a sinusoidal manner during the day, with irregular fluctuations due to clouds, and light-dark shifts at dawn and dusk are gradual. Experiments in controlled environments typically expose plants to constant irradiance during the day and abrupt light-dark transitions. To compare the effects on metabolism of sunlight versus artificial light regimes, Arabidopsis thaliana plants were grown in a naturally illuminated greenhouse around the vernal equinox, and in controlled environment chambers with a 12-h photoperiod and either constant or sinusoidal light profiles, using either white fluorescent tubes or light-emitting diodes (LEDs) tuned to a sunlight-like spectrum as the light source. Rosettes were sampled throughout a 24-h diurnal cycle for metabolite analysis. The diurnal metabolite profiles revealed that carbon and nitrogen metabolism differed significantly between sunlight and artificial light conditions. The variability of sunlight within and between days could be a factor underlying these differences. Pairwise comparisons of the artificial light sources (fluorescent versus LED) or the light profiles (constant versus sinusoidal) showed much smaller differences. The data indicate that energy-efficient LED lighting is an acceptable alternative to fluorescent lights, but results obtained from plants grown with either type of artificial lighting might not be representative of natural conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Towards mapping of rock walls using a UAV-mounted 2D laser scanner in GPS denied environments
NASA Astrophysics Data System (ADS)
Turner, Glen
In geotechnical engineering, the stability of rock excavations and walls is estimated by using tools that include a map of the orientations of exposed rock faces. However, measuring these orientations by using conventional methods can be time consuming, sometimes dangerous, and is limited to regions of the exposed rock that are reachable by a human. This thesis introduces a 2D, simulated, quadcopter-based rock wall mapping algorithm for GPS denied environments such as underground mines or near high walls on surface. The proposed algorithm employs techniques from the field of robotics known as simultaneous localization and mapping (SLAM) and is a step towards 3D rock wall mapping. Not only are quadcopters agile, but they can hover. This is very useful for confined spaces such as underground or near rock walls. The quadcopter requires sensors to enable self localization and mapping in dark, confined and GPS denied environments. However, these sensors are limited by the quadcopter payload and power restrictions. Because of these restrictions, a light weight 2D laser scanner is proposed. As a first step towards a 3D mapping algorithm, this thesis proposes a simplified scenario in which a simulated 1D laser range finder and 2D IMU are mounted on a quadcopter that is moving on a plane. Because the 1D laser does not provide enough information to map the 2D world from a single measurement, many measurements are combined over the trajectory of the quadcopter. Least Squares Optimization (LSO) is used to optimize the estimated trajectory and rock face for all data collected over the length of a light. Simulation results show that the mapping algorithm developed is a good first step. It shows that by combining measurements over a trajectory, the scanned rock face can be estimated using a lower-dimensional range sensor. A swathing manoeuvre is introduced as a way to promote loop closures within a short time period, thus reducing accumulated error. Some suggestions on how to improve the algorithm are also provided.
Herbivores modify selection on plant functional traits in a temperate rainforest understory.
Salgado-Luarte, Cristian; Gianoli, Ernesto
2012-08-01
There is limited evidence regarding the adaptive value of plant functional traits in contrasting light environments. It has been suggested that changes in these traits in response to light availability can increase herbivore susceptibility. We tested the adaptive value of plant functional traits linked with carbon gain in contrasting light environments and also evaluated whether herbivores can modify selection on these traits in each light environment. In a temperate rainforest, we examined phenotypic selection on functional traits in seedlings of the pioneer tree Aristotelia chilensis growing in sun (canopy gap) and shade (forest understory) and subjected to either natural herbivory or herbivore exclusion. We found differential selection on functional traits depending on light environment. In sun, there was positive directional selection on photosynthetic rate and relative growth rate (RGR), indicating that selection favors competitive ability in a high-resource environment. Seedlings with high specific leaf area (SLA) and intermediate RGR were selected in shade, suggesting that light capture and conservative resource use are favored in the understory. Herbivores reduced the strength of positive directional selection acting on SLA in shade. We provide the first demonstration that natural herbivory rates can change the strength of selection on plant ecophysiological traits, that is, attributes whose main function is resource uptake. Research addressing the evolution of shade tolerance should incorporate the selective role of herbivores.
International Lighting in Controlled Environments Workshop
NASA Technical Reports Server (NTRS)
Tibbits, Ted W. (Editor)
1994-01-01
Lighting is a central and critical aspect of control in environmental research for plant research and is gaining recognition as a significant factor to control carefully for animal and human research. Thus this workshop was convened to reevaluate the technology that is available today and to work toward developing guidelines for the most effective use of lighting in controlled environments with emphasis on lighting for plants but also to initiate interest in the development of improved guidelines for human and animal research.
2017-01-01
Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because—in nature—photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded by At4g02530) is required for growth acclimation of Arabidopsis thaliana plants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented that mph2 mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover, mph2—and previously characterized PSII repair-defective mutants—exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair. PMID:28874535
Behavioural environments and niche construction: the evolution of dim-light foraging in bees.
Wcislo, William T; Tierney, Simon M
2009-02-01
Most bees forage for floral resources during the day, but temporal patterns of foraging activity vary extensively, and foraging in dim-light environments has evolved repeatedly. Facultative dim-light foraging behaviour is known in five of nine families of bees, while obligate behaviour is known in four families and evolved independently at least 19 times. The light intensity under which bees forage varies by a factor of 10(8), and therefore the evolution of dim-light foraging represents the invasion of a new, extreme niche. The repeated evolution of dim-light foraging behaviour in bees allows tests of the hypothesis that behaviour acts as an evolutionary pacemaker. With the exception of one species of Apis, facultative dim-light foragers show no external structural traits that are thought to enable visually mediated flight behaviour in low-light environments. By contrast, most obligate dim-light foragers show a suite of convergent optical traits such as enlarged ocelli and compound eyes. In one intensively studied species (Megalopta genalis) these optical changes are associated with neurobiological changes to enhance photon capture. The available ecological evidence suggests that an escape from competition for pollen and nectar resources and avoidance of natural enemies are driving factors in the evolution of obligate dim-light foraging.
Liu, Jun; Last, Robert L
2017-09-19
Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because-in nature-photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded by At4g02530 ) is required for growth acclimation of Arabidopsis thaliana plants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented that mph2 mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover, mph2 -and previously characterized PSII repair-defective mutants-exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair.
NASA Astrophysics Data System (ADS)
Yu, Haiyan; Fan, Jiulun
2017-12-01
Local thresholding methods for uneven lighting image segmentation always have the limitations that they are very sensitive to noise injection and that the performance relies largely upon the choice of the initial window size. This paper proposes a novel algorithm for segmenting uneven lighting images with strong noise injection based on non-local spatial information and intuitionistic fuzzy theory. We regard an image as a gray wave in three-dimensional space, which is composed of many peaks and troughs, and these peaks and troughs can divide the image into many local sub-regions in different directions. Our algorithm computes the relative characteristic of each pixel located in the corresponding sub-region based on fuzzy membership function and uses it to replace its absolute characteristic (its gray level) to reduce the influence of uneven light on image segmentation. At the same time, the non-local adaptive spatial constraints of pixels are introduced to avoid noise interference with the search of local sub-regions and the computation of local characteristics. Moreover, edge information is also taken into account to avoid false peak and trough labeling. Finally, a global method based on intuitionistic fuzzy entropy is employed on the wave transformation image to obtain the segmented result. Experiments on several test images show that the proposed method has excellent capability of decreasing the influence of uneven illumination on images and noise injection and behaves more robustly than several classical global and local thresholding methods.
The complex nature of calcium cation interactions with phospholipid bilayers
Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz
2016-01-01
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association. PMID:27905555
“Beating speckles” via electrically-induced vibrations of Au nanorods embedded in sol-gel
Ritenberg, Margarita; Beilis, Edith; Ilovitsh, Asaf; Barkai, Zehava; Shahmoon, Asaf; Richter, Shachar; Zalevsky, Zeev; Jelinek, Raz
2014-01-01
Generation of macroscopic phenomena through manipulating nano-scale properties of materials is among the most fundamental goals of nanotechnology research. We demonstrate cooperative “speckle beats” induced through electric-field modulation of gold (Au) nanorods embedded in a transparent sol-gel host. Specifically, we show that placing the Au nanorod/sol-gel matrix in an alternating current (AC) field gives rise to dramatic modulation of incident light scattered from the material. The speckle light patterns take form of “beats”, for which the amplitude and frequency are directly correlated with the voltage and frequency, respectively, of the applied AC field. The data indicate that the speckle beats arise from localized vibrations of the gel-embedded Au nanorods, induced through the interactions between the AC field and the electrostatically-charged nanorods. This phenomenon opens the way for new means of investigating nanoparticles in constrained environments. Applications in electro-optical devices, such as optical modulators, movable lenses, and others are also envisaged. PMID:24413086
Thyroid Hormone and Seasonal Rhythmicity
Dardente, Hugues; Hazlerigg, David G.; Ebling, Francis J. P.
2014-01-01
Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity. PMID:24616714
Mayoral, Alvaro; Hall, Reece M; Jackowska, Roksana; Readman, Jennifer E
2016-12-23
In the present work, ETS-10 microporous titanosilicate has been synthesized and its structure characterized by means of powder XRD and aberration corrected scanning transmission electron microscopy (C s -corrected STEM). For the first time, sodium ions have been imaged sitting inside the 7-membered rings. The ion-exchange capability has been tested by the inclusion of rare earth metals (Eu, Tb and Gd) to produce a luminescent material which has been studied by atomic-resolution C s -corrected STEM. The data produced has allowed unambiguous imaging of light atoms in a microporous framework as well as determining the cationic metal positions for the first time, providing evidence of the importance of advanced electron microscopy methods for the study of the local environment of metals within zeolitic supports providing unique information of both systems (guest and support) at the same time. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Moline, Mark A.; Oliver, Matthew J.; Mobley, Curtis D.; Sundman, Lydia; Bensky, Thomas; Bergmann, Trisha; Bissett, W. Paul; Case, James; Raymond, Erika H.; Schofield, Oscar M. E.
2007-11-01
Nighttime water-leaving radiance is a function of the depth-dependent distribution of both the in situ bioluminescence emissions and the absorption and scattering properties of the water. The vertical distributions of these parameters were used as inputs for a modified one-dimensional radiative transfer model to solve for spectral bioluminescence water-leaving radiance from prescribed depths of the water column. Variation in the water-leaving radiance was consistent with local episodic physical forcing events, with tidal forcing, terrestrial runoff, particulate accumulation, and biological responses influencing the shorter timescale dynamics. There was a >90 nm shift in the peak water-leaving radiance from blue (˜474 nm) to green as light propagated to the surface. In addition to clues in ecosystem responses to physical forcing, the temporal dynamics in intensity and spectral quality of water-leaving radiance provide suitable ranges for assessing detection. This may provide the information needed to estimate the depth of internal light sources in the ocean, which is discussed in part 2 of this paper.
The complex nature of calcium cation interactions with phospholipid bilayers
NASA Astrophysics Data System (ADS)
Melcrová, Adéla; Pokorna, Sarka; Pullanchery, Saranya; Kohagen, Miriam; Jurkiewicz, Piotr; Hof, Martin; Jungwirth, Pavel; Cremer, Paul S.; Cwiklik, Lukasz
2016-12-01
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association.
Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law
NASA Astrophysics Data System (ADS)
Greffet, Jean-Jacques; Bouchon, Patrick; Brucoli, Giovanni; Marquier, François
2018-04-01
The goal of this paper is to introduce a local form of Kirchhoff law to model light emission by nonequilibrium bodies. While absorption by a finite-size body is usually described using the absorption cross section, we introduce a local absorption rate per unit volume and also a local thermal emission rate per unit volume. Their equality is a local form of Kirchhoff law. We revisit the derivation of this equality and extend it to situations with subsystems in local thermodynamic equilibrium but not in equilibrium between them, such as hot electrons in a metal or electrons with different Fermi levels in the conduction band and in the valence band of a semiconductor. This form of Kirchhoff law can be used to model (i) thermal emission by nonisothermal finite-size bodies, (ii) thermal emission by bodies with carriers at different temperatures, and (iii) spontaneous emission by semiconductors under optical (photoluminescence) or electrical pumping (electroluminescence). Finally, we show that the reciprocity relation connecting light-emitting diodes and photovoltaic cells derived by Rau is a particular case of the local Kirchhoff law.
United States Air Force School of Aerospace Medicine Laser Injury Guidebook
2012-04-01
unusual light sources? Have you seen this light(s) before? 2. Date, location, and circumstances a. Date and time (local & Zulu using a 24...hour clock) that the exposure occurred. local: DDMMYYYY hh:mm Zulu : DDMMYYYY hh:mm b. Location of exposure (if nonclassified). Describe location...test. Your retina, cornea, and lens appear normal and there is no evidence of injury. Most people , after encountering a laser incident, quite
Abercrombie, Kevin R.; Shiels, David; Rash, Tim
2001-02-06
A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.
NASA Astrophysics Data System (ADS)
Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.
2011-07-01
Interstitial fiber-optic-based approaches used in both diagnostic and therapeutic applications rely on localized light-tissue interactions. We present an optical technique to identify spectrally and spatially specific exogenous chromophores in highly scattering turbid media. Point radiance spectroscopy is based on directional light collection at a single point with a side-firing fiber that can be rotated up to 360 deg. A side firing fiber accepts light within a well-defined, solid angle, thus potentially providing an improved spatial resolution. Measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43 deg cleaved fiber (i.e., radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid. Light was collected with 1 deg increments through 360 deg-segment. Gold nanoparticles , placed into a 3.5-mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a potential noninvasive optical modality for prostate cancer monitoring.
Grabtchak, Serge; Palmer, Tyler J; Whelan, William M
2011-07-01
Interstitial fiber-optic-based approaches used in both diagnostic and therapeutic applications rely on localized light-tissue interactions. We present an optical technique to identify spectrally and spatially specific exogenous chromophores in highly scattering turbid media. Point radiance spectroscopy is based on directional light collection at a single point with a side-firing fiber that can be rotated up to 360 deg. A side firing fiber accepts light within a well-defined, solid angle, thus potentially providing an improved spatial resolution. Measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ∼43 deg cleaved fiber (i.e., radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid. Light was collected with 1 deg increments through 360 deg-segment. Gold nanoparticles , placed into a 3.5-mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a potential noninvasive optical modality for prostate cancer monitoring.
Improving School Lighting for Video Display Units.
ERIC Educational Resources Information Center
Parker-Jenkins, Marie; Parker-Jenkins, William
1985-01-01
Provides information to identify and implement the key characteristics which contribute to an efficient and comfortable visual display unit (VDU) lighting installation. Areas addressed include VDU lighting requirements, glare, lighting controls, VDU environment, lighting retrofit, optical filters, and lighting recommendations. A checklist to…
Light Emitting Diodes and Astronomical Environments: Results from in situ Field Measurements
NASA Astrophysics Data System (ADS)
Craine, Brian L.; Craine, Eric R.
2015-05-01
Light emitting diode (LED) light fixtures are rapidly becoming industry standards for outdoor lighting. They are promoted on the strength of long lifetimes (hence economic efficiencies), low power requirements, directability, active brightness controls, and energy efficiency. They also tend to produce spectral shifts that are undesirable in astronomical settings, but which can be moderated by filters. LED lighting for continuous roadway and parking lot lighting is particularly popular, and many communities are in the process of retrofitting Low Pressure Sodium (LPS) and other lights by tens of thousands of new LED fixtures at a time. What is the impact of this process on astronomical observatories and on dark skies upon which amateur astronomers rely? We bypass modeling and predictions to make actual measurements of these lights in the field. We report on original ground, airborne, and satellite observations of LED lights and discuss their light budgets, zenith angle functions, and impacts on observatory environs.
Lighting Automation - Flying an Earthlike Habit Project
NASA Technical Reports Server (NTRS)
Falker, Jay; Howard, Ricky; Culbert, Christopher; Clark, Toni Anne; Kolomenski, Andrei
2017-01-01
Our proposal will enable the development of automated spacecraft habitats for long duration missions. Majority of spacecraft lighting systems employ lamps or zone specific switches and dimmers. Automation is not in the "picture". If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. To transform how spacecraft lighting environments are automated, we will provide performance data on a standard lighting communication protocol. We will investigate utilization and application of an industry accepted lighting control protocol, DMX512. We will demonstrate how lighting automation can conserve power, assist with lighting countermeasures, and utilize spatial body tracking. By using DMX512 we will prove the "wheel" does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and potentially earthlike habitat.
NASA Astrophysics Data System (ADS)
Li, Wei; Jin, Yuanbin; Yu, Xudong; Zhang, Jing
2017-08-01
We experimentally study a protocol of using the broadband high-frequency squeezed vacuum to detect the low-frequency signal. In this scheme, the lower sideband field of the squeezed light carries the low-frequency modulation signal, and the two strong coherent light fields are applied as the bichromatic local oscillator in the homodyne detection to measure the quantum entanglement of the upper and lower sideband for the broadband squeezed light. The power of one of the local oscillators for detecting the upper sideband can be adjusted to optimize the conditional variance in the low-frequency regime by subtracting the photocurrent of the upper sideband field of the squeezed light from that of the lower sideband field. By means of the quantum correlation of the upper and lower sideband for the broadband squeezed light, the low-frequency signal beyond the standard quantum limit is measured. This scheme is appropriate for enhancing the sensitivity of the low-frequency signal by the aid of the broad squeezed light, such as gravitational waves detection, and does not need to directly produce the low-frequency squeezing in an optical parametric process.
Dutt, Ateet; Matsumoto, Yasuhiro; Santana-Rodríguez, G; Ramos, Estrella; Monroy, B Marel; Santoyo Salazar, J
2017-01-04
The impact of the surface reconstruction of the density distribution and photoluminescence of silicon quantum dots (QDs) embedded in a silicon oxide matrix (SiO x ) has been studied. Annealing treatments carried out on the as-deposited samples provoked the effusion of hydrogen species. Moreover, depending on the surrounding density and coalescence of QDs, they resulted in a change in the average size of the particles depending on the initial local environment. The shift in the luminescence spectra all over the visible region (blue, green and red) shows a strong dependence on the resultant change in the size and/or the passivation environment of QDs. Density functional theoretical (DFT) calculations support this fact and explain the possible electronic transitions (HOMO-LUMO gap) involved. Passivation in the presence of oxygen species lowers the band gap of Si 29 and Si 35 nanoclusters up to 1.7 eV, whereas, surface passivation in the environment of hydrogen species increases the band gap up to 4.4 eV. These results show a good agreement with the quantum confinement model described in this work and explain the shift in the luminescence all over the visible region. The results reported here offer vital insight into the mechanism of emission from silicon quantum dots which has been one of the most debated topics in the last two decades. QDs with multiple size distribution in different local environments (band gap) observed in this work could be used for the fabrication of light emission diodes (LEDs) or shift-conversion thin films in third generation efficient tandem solar cells for the maximum absorption of the solar spectrum in different wavelength regions.
Eskandarloo, Amir; Yousefi, Arman; Soheili, Setareh; Ghazikhanloo, Karim; Amini, Payam; Mohammadpoor, Haniyeh
2017-01-01
Background: Nowadays, digital radiography is widely used in dental practice. One of the most common types is Photo Stimulated Phosphor Plate (PSP). Objective: The aims of this experimental study were to evaluate the impacts of different combinations of storage conditions and varying delays in reading of digital images captured using PSPs. Methods: Standardized images of a step wedges were obtained using PSPs from the Digora digital systems. Plates were exposed and immediately scanned to produce the baseline gold standard. The plates were re-exposed and stored in four different storage conditions: white light, yellow light, natural light environment and dark room, then scanned after 10 and 30 minutes and 4 and 8 hours. Objective analysis was conducted by density measurements and the data were analyzed statistically using GEE test. Subjective analysis was performed by two oral and maxillofacial radiologists and the results were analyzed using McNemar’s test. Results: The results from GEE analysis show that in the natural light environment, the densities in 10 minutes did not differ from the baseline. The mean densities decreased significantly during the time in all environments. The mean densities in step 2 for the dark room environment decreased with a slighter slope in comparison to yellow environment significantly. Conclusion: PSP images showed significant decrease in the density in plates scanned for 10 minutes or longer after exposure which may not be detected clinically. The yellow light environment had a different impact on the quality of PSP images. The spatial resolution did not change significantly with time. PMID:29430262
Eskandarloo, Amir; Yousefi, Arman; Soheili, Setareh; Ghazikhanloo, Karim; Amini, Payam; Mohammadpoor, Haniyeh
2017-01-01
Nowadays, digital radiography is widely used in dental practice. One of the most common types is Photo Stimulated Phosphor Plate (PSP). The aims of this experimental study were to evaluate the impacts of different combinations of storage conditions and varying delays in reading of digital images captured using PSPs. Standardized images of a step wedges were obtained using PSPs from the Digora digital systems. Plates were exposed and immediately scanned to produce the baseline gold standard. The plates were re-exposed and stored in four different storage conditions: white light, yellow light, natural light environment and dark room, then scanned after 10 and 30 minutes and 4 and 8 hours. Objective analysis was conducted by density measurements and the data were analyzed statistically using GEE test. Subjective analysis was performed by two oral and maxillofacial radiologists and the results were analyzed using McNemar's test. The results from GEE analysis show that in the natural light environment, the densities in 10 minutes did not differ from the baseline. The mean densities decreased significantly during the time in all environments. The mean densities in step 2 for the dark room environment decreased with a slighter slope in comparison to yellow environment significantly. PSP images showed significant decrease in the density in plates scanned for 10 minutes or longer after exposure which may not be detected clinically. The yellow light environment had a different impact on the quality of PSP images. The spatial resolution did not change significantly with time.
Herbivores and nutrients control grassland plant diversity via light limitation
Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.
2014-01-01
Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.
Herbivores and nutrients control grassland plant diversity via light limitation.
Borer, Elizabeth T; Seabloom, Eric W; Gruner, Daniel S; Harpole, W Stanley; Hillebrand, Helmut; Lind, Eric M; Adler, Peter B; Alberti, Juan; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Chu, Chengjin; Cleland, Elsa E; Crawley, Michael J; Daleo, Pedro; Damschen, Ellen I; Davies, Kendi F; DeCrappeo, Nicole M; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Leakey, Andrew D B; Li, Wei; MacDougall, Andrew S; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Mortensen, Brent; O'Halloran, Lydia R; Orrock, John L; Pascual, Jesús; Prober, Suzanne M; Pyke, David A; Risch, Anita C; Schuetz, Martin; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren L; Williams, Ryan J; Wragg, Peter D; Wright, Justin P; Yang, Louie H
2014-04-24
Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.
Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang
2016-11-01
Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution
Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.
2016-01-01
We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939
Ludvigsen, Martin; Berge, Jørgen; Geoffroy, Maxime; Cohen, Jonathan H; De La Torre, Pedro R; Nornes, Stein M; Singh, Hanumant; Sørensen, Asgeir J; Daase, Malin; Johnsen, Geir
2018-01-01
Light is a major cue for nearly all life on Earth. However, most of our knowledge concerning the importance of light is based on organisms' response to light during daytime, including the dusk and dawn phase. When it is dark, light is most often considered as pollution, with increasing appreciation of its negative ecological effects. Using an Autonomous Surface Vehicle fitted with a hyperspectral irradiance sensor and an acoustic profiler, we detected and quantified the behavior of zooplankton in an unpolluted light environment in the high Arctic polar night and compared the results with that from a light-polluted environment close to our research vessels. First, in environments free of light pollution, the zooplankton community is intimately connected to the ambient light regime and performs synchronized diel vertical migrations in the upper 30 m despite the sun never rising above the horizon. Second, the vast majority of the pelagic community exhibits a strong light-escape response in the presence of artificial light, observed down to 100 m. We conclude that artificial light from traditional sampling platforms affects the zooplankton community to a degree where it is impossible to examine its abundance and natural rhythms within the upper 100 m. This study underscores the need to adjust sampling platforms, particularly in dim-light conditions, to capture relevant physical and biological data for ecological studies. It also highlights a previously unchartered susceptibility to light pollution in a region destined to see significant changes in light climate due to a reduced ice cover and an increased anthropogenic activity.
40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...
40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...
40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...
40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...
40 CFR 60.482-7a - Standards: Valves in gas/vapor service and in light liquid service.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-7a Standards: Valves in gas/vapor service and in light liquid service. (a)(1) Each valve shall be... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards: Valves in gas/vapor service and in light liquid service. 60.482-7a Section 60.482-7a Protection of Environment ENVIRONMENTAL...
Natural Ventilation of Buildings through Light Shafts. Design-Based Solution Proposals
NASA Astrophysics Data System (ADS)
Ángel Padilla-Marcos, Miguel; Meiss, Alberto; Feijó-Muñoz, Jesús
2017-10-01
This work analyses how the built environment affects the quality of the air to be introduced into buildings from light shafts. Several factors such as urban environment and building design intervene in the ability of the light shaft to produce its air change process. Urban areas continuously pollute the air in cities which affects the human health and the environment sustainability. Poor air quality outside buildings supposes a big energy waste to promote an acceptable air quality inside buildings. That requires a large flow rate to maintain the indoor air quality which is translated to an energy efficiency term. The main objective focuses on the impact of standardized architecture design in the quality of the indoor air dependent on the air change in the light shaft. The air change capacity of the outdoor space is numbered analysed using the concept of air change efficiency (ACE). ACE is determined by the built environment, the wind conditions and the design of the building containing light shafts. This concept is comparatively evaluated inside a control domain virtually defined to obtain the mean age of the air for a known air volume. The longer the light shaft in the wind direction is, the better the ACE is compared with other options. Light shafts up to 12 metres high are the most suitable in order to obtain acceptable efficiency results. Other studied cases verify that assumption. Different simplified tools for the technicians to evaluate the design of buildings containing light shafts are proposed. Some strategies of architectural design of buildings with light shafts to be used for ventilation are presented.
Dark Skies are a Universal Resource: Programs Planned for the International Year of Astronomy
NASA Astrophysics Data System (ADS)
Walker, Constance E.; US IYA Dark Skies Working Group
2008-05-01
The dark night sky is a natural resource that is being lost by much of the world's population. This loss is a growing, serious issue that impacts not only astronomical research, but also human health, ecology, safety, economics and energy conservation. One of the themes of the US Node targeted for the International Year of Astronomy (IYA) is "Dark Skies are a Universal Resource". The goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved locally in a variety of dark skies-related events. To reach this goal, activities are being developed that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Teaching Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights) 3) Organize events in the arts (e.g., a photography contest) 4) Involve citizen-scientists in unaided-eye and digital-meter star counting programs (e.g., GLOBE at Night, "How Many Stars?” and the Great World Wide Star Count) and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security (e.g., The Great Switch Out, Earth Hour, National Dark Skies Week, traveling exhibits and a 6-minute video tutorial on lighting issues). To deliver these programs, strategic networks have been established with the ASP's Night Sky Network's astronomy clubs, Astronomy from the Ground Up's science and nature centers and the Project and Family ASTRO programs, as well as the International Dark-Sky Association, GLOBE and the Astronomical League, among others. The poster presentation will outline the activities being developed, the plans for funding, implementation, marketing and the connections to the global cornerstone IYA project, "Dark Skies Awareness".
Fiber optic device for sensing the presence of a gas
Benson, D.K.; Bechinger, C.S.; Tracy, C.E.
1998-01-13
A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material`s optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment. 5 figs.
Tian, Liguo; Meng, Qinghao; Wang, Liping; Dong, Jianghui; Wu, Hai
2015-01-01
The plant electrical signal has some features, e.g. weak, low-frequency and time-varying. To detect changes in plant electrical signals, LED light source was used to create a controllable light environment in this study. The electrical signal data were collected from Sansevieria leaves under the different illumination conditions, and the data was analyzed in time domain, frequency domain and time–frequency domain, respectively. These analyses are helpful to explore the relationship between changes in the light environment and electrical signals in Sansevieria leaves. The changes in the plant electrical signal reflected the changes in the intensity of photosynthesis. In this study, we proposed a new method to express plant photosynthetic intensity as a function of the electrical signal. That is, the plant electrical signal can be used to describe the state of plant growth. PMID:26121469
Tian, Liguo; Meng, Qinghao; Wang, Liping; Dong, Jianghui; Wu, Hai
2015-01-01
The plant electrical signal has some features, e.g. weak, low-frequency and time-varying. To detect changes in plant electrical signals, LED light source was used to create a controllable light environment in this study. The electrical signal data were collected from Sansevieria leaves under the different illumination conditions, and the data was analyzed in time domain, frequency domain and time-frequency domain, respectively. These analyses are helpful to explore the relationship between changes in the light environment and electrical signals in Sansevieria leaves. The changes in the plant electrical signal reflected the changes in the intensity of photosynthesis. In this study, we proposed a new method to express plant photosynthetic intensity as a function of the electrical signal. That is, the plant electrical signal can be used to describe the state of plant growth.
Robakowski, Piotr; Bielinis, Ernest; Sendall, Kerrie
2018-05-01
This study addressed whether competition under different light environments was reflected by changes in leaf absorbed light energy partitioning, photosynthetic efficiency, relative growth rate and biomass allocation in invasive and native competitors. Additionally, a potential allelopathic effect of mulching with invasive Prunus serotina leaves on native Quercus petraea growth and photosynthesis was tested. The effect of light environment on leaf absorbed light energy partitioning and photosynthetic characteristics was more pronounced than the effects of interspecific competition and allelopathy. The quantum yield of PSII of invasive P. serotina increased in the presence of a competitor, indicating a higher plasticity in energy partitioning for the invasive over the native Q. petraea, giving it a competitive advantage. The most striking difference between the two study species was the higher crown-level net CO 2 assimilation rates (A crown ) of P. serotina compared with Q. petraea. At the juvenile life stage, higher relative growth rate and higher biomass allocation to foliage allowed P. serotina to absorb and use light energy for photosynthesis more efficiently than Q. petraea. Species-specific strategies of growth, biomass allocation, light energy partitioning and photosynthetic efficiency varied with the light environment and gave an advantage to the invader over its native competitor in competition for light. However, higher biomass allocation to roots in Q. petraea allows for greater belowground competition for water and nutrients as compared to P. serotina. This niche differentiation may compensate for the lower aboveground competitiveness of the native species and explain its ability to co-occur with the invasive competitor in natural forest settings.
Killingsworth, Murray C; Lai, Ken; Wu, Xiaojuan; Yong, Jim L C; Lee, C Soon
2012-11-01
Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy.
Lai, Ken; Wu, Xiaojuan; Yong, Jim L. C.; Lee, C. Soon
2012-01-01
Quantum dot nanocrystal probes (QDs) have been used for detection of somatostatin hormone in secretory granules of somatostatinoma tumor cells by immunofluorescence light microscopy, super-resolution light microscopy, and immunoelectron microscopy. Immunostaining for all modalities was done using sections taken from an epoxy resin-embedded tissue specimen and a similar labeling protocol. This approach allowed assessment of labeling at light microscopy level before examination at super-resolution and electron microscopy level and was a significant aid in interpretation. Etching of ultrathin sections with saturated sodium metaperiodate was a critical step presumably able to retrieve some tissue antigenicity masked by processing in epoxy resin. Immunofluorescence microscopy of QD-immunolabeled sections showed somatostatin hormone localization in cytoplasmic granules. Some variable staining of tumor gland-like structures appeared related to granule maturity and dispersal of granule contents within the tumor cell cytoplasm. Super-resolution light microscopy demonstrated localization of somatostatin within individual secretory granules to be heterogeneous, and this staining pattern was confirmed by immunoelectron microscopy. PMID:22899862
Adam, Alexander; Deimel, Stephan; Pardo-Medina, Javier; García-Martínez, Jorge; Konte, Tilen; Limón, M. Carmen; Avalos, Javier
2018-01-01
Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus. PMID:29324661
NASA Astrophysics Data System (ADS)
Gu, Wenjun; Zhang, Weizhi; Wang, Jin; Amini Kashani, M. R.; Kavehrad, Mohsen
2015-01-01
Over the past decade, location based services (LBS) have found their wide applications in indoor environments, such as large shopping malls, hospitals, warehouses, airports, etc. Current technologies provide wide choices of available solutions, which include Radio-frequency identification (RFID), Ultra wideband (UWB), wireless local area network (WLAN) and Bluetooth. With the rapid development of light-emitting-diodes (LED) technology, visible light communications (VLC) also bring a practical approach to LBS. As visible light has a better immunity against multipath effect than radio waves, higher positioning accuracy is achieved. LEDs are utilized both for illumination and positioning purpose to realize relatively lower infrastructure cost. In this paper, an indoor positioning system using VLC is proposed, with LEDs as transmitters and photo diodes as receivers. The algorithm for estimation is based on received-signalstrength (RSS) information collected from photo diodes and trilateration technique. By appropriately making use of the characteristics of receiver movements and the property of trilateration, estimation on three-dimensional (3-D) coordinates is attained. Filtering technique is applied to enable tracking capability of the algorithm, and a higher accuracy is reached compare to raw estimates. Gaussian mixture Sigma-point particle filter (GM-SPPF) is proposed for this 3-D system, which introduces the notion of Gaussian Mixture Model (GMM). The number of particles in the filter is reduced by approximating the probability distribution with Gaussian components.
Resource allocation in an annual herb: Effects of light, mycorrhizal fungi, and defoliation
NASA Astrophysics Data System (ADS)
Aguilar-Chama, Ana; Guevara, Roger
2016-02-01
Concurrent interactions and the availability of resources (e.g., light) affect the cost/benefit balance during mutualistic and antagonistic interactions, as well as plant resource allocation patterns. Mycorrhizal interactions and herbivory concur in most plants, where mycorrhizae can enhance the uptake of soil nutrients by plants as well as consuming a large fraction of the plant's carbon, and defoliation usually reduces light interception and photosynthesis, thereby causing direct losses to the hosts of mycorrhizal fungi. Both types of interactions affect the carbon budget of their host plants and thus we predict that the relative costs of herbivory and mycorrhizal colonization will increase when photosynthesis is reduced, for instance in light limited environments. We conducted a greenhouse experiment using Datura stramonium to investigate the effects of defoliation and mycorrhizal inoculation on the resource allocation patterns in two different light environments. Defoliated plants overcompensated in terms of leaf mass in both light environments, but total seed mass per fruit was negatively affected by defoliation in both light environments. Mycorrhizal inoculation had a positive effect on vegetative growth and the leaf nitrogen content, but defoliation negates the benefit of mycorrhizal interactions in terms of the leaf nitrogen content. In general, D. stramonium compensated for the relative costs of concurrent mycorrhizal interactions and defoliation; plants that lacked both interactions exhibited the same performance as plants with both types of interactions.
Sugiura, D; Tateno, M
2013-08-01
We investigated the nitrogen and carbohydrate allocation patterns of trees under heterogeneous light environments using saplings of the devil maple tree (Acer diabolicum) with Y-shaped branches. Different branch groups were created: all branches of a sapling exposed to full light (L-branches), all branches exposed to full shade (S-branches), and half of the branches of a sapling exposed to light (HL-branches) and the other half exposed to shade (HS-branches). Throughout the growth period, nitrogen was preferentially allocated to HL-branches, whereas nitrogen allocation to HS-branches was suppressed compared to L- and S-branches. HL-branches with the highest leaf nitrogen content (N(area)) also had the highest rates of growth, and HS-branches with the lowest N(area) had the lowest observed growth rates. In addition, net nitrogen assimilation, estimated using a photosynthesis model, was strongly correlated with branch growth and whole-plant growth. In contrast, patterns of photosynthate allocation to branches and roots were not affected by the light conditions of the other branch. These observations suggest that tree canopies develop as a result of resource allocation patterns, where the growth of sun-lit branches is favoured over shaded branches, which leads to enhanced whole-plant growth in heterogeneous light environments. Our results indicate that whole-plant growth is enhanced by the resource allocation patterns created for saplings in heterogeneous light environments.
NASA Astrophysics Data System (ADS)
Jones, Andrew C.
Optical spectroscopy represents a powerful characterization technique with the ability to directly interact with the electronic, spin, and lattice excitations in matter. In addition, through implementation of ultrafast techniques, further insight into the real-time dynamics of elementary interactions can be gained. However, the resolution of far-field microscopy techniques is restricted by the diffraction limit setting a spatial resolution limit in the 100s nm to micron range for visible and IR light, respectively. This resolution is too coarse for the characterization of mesoscopic phenomena in condensed matter physics. The development of experimental techniques with nanoscale resolution and sensitivity to optical fields has been a long standing obstacle to the characterization of condensed matter systems on their natural length scales. This dissertation focuses on the fundamental near-field optical properties of surfaces and nanoscale systems as well as the utilization of nano-optical techniques, specifically apertureless scattering-type Scanning Near-field Optical Microscopy (s-SNOM), to characterize said optical properties with nanometer scale resolution. First, the s-SNOM characterization of the field enhancement associated with the localized surface plasmon resonances on metallic structures is discussed. With their ability to localize light, plasmonic nano-structures are promising candidate systems to serve as molecular sensors and nano-photonic devices; however, it is well known that particle morphology and the plasmon resonance alone do not uniquely reflect the details of the local field distribution. Here, I demonstrate the use interferometric s-SNOM for imaging of the near-fields associated with plasmonic resonances of crystalline triangular silver nano-prisms in the visible spectral range. I subsequently show the extension of the concept of a localized plasmon into the mid-IR spectral range with the characterization of near-fields of silver nano-rods. Strong spatial field variation on lengths scales as short as 20 nm is observed associated with the dipolar and quadrupolar modes of both systems with details sensitively depending on the nanoparticle structure and environment. In light of recent publications predicting distinct spectral characteristics of thermal electromagnetic near-fields, I demonstrate the extension of s-SNOM techniques through the implementation of a heated atomic force microscope (AFM) tip acting as its own intrinsic light source for the characterization of thermal near-fields. Here, I detail the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. Modeling the thermal light scattering by the AFM, the scattering cross-section for thermal light may be related to the electromagnetic local density of states (EM-LDOS) above a surface. Lastly, the unique capability of s-SNOM techniques to characterize phase separation phenomena in correlated electron systems is discussed. This measurement capability provides new microscopic insight into the underlying mechanisms of the rich phase transition behavior exhibited by these materials. As a specific example, the infrared s-SNOM mapping of the metal-insulator transition and the associated nano-domain formation in individual VO2 micro-crystals subject to substrate stress is presented. Our results have important implications for the interpretation of the investigations of conventional polycrystalline thin films where the mutual interaction of constituent crystallites may affect the nature of phase separation processes.
Performance of multimirror quartzline lamps in a high-pressure, underwater environment
NASA Technical Reports Server (NTRS)
Slater, Howard A.
1988-01-01
Multimirror Quartzline Lamps are extremely versatile and effective for nonconventional imaging requirements such as high-speed photo and video instrumentation and high-magnification imaging. The lamps' versatility though, is not limited to conventional environments. Many research experiments and projects require a high pressure environment. Continuous photographic data acquisition in a high-pressure vessel requires wall penetrations and creates design problems as well as potential failure sites. Underwater photography adds the extra consideration of a liquid. This report expands upon the basic research presented in, Performance of Multimirror Quartzline Lamps in High-Pressure Environments, (NASA-TM-83793, Ernie Walker and Howard Slater, 1984). The report provides information to professional industrial, scientific, and technical photographers as well as research personnel on the survivability of lighting a multimirror quartzline lamp in a nonconventional high-pressure underwater environment. Test results of lighted ELH 300 W multimirror quartzline lamps under high-pressure conditions are documented and general information on the lamps' intensity (footcandle output), cone of light coverage, approximate color temperature is provided. Continuous lighting considerations in liquids are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.
Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less
Rodriguez, Paulina I; Dean, Jennifer; Kirkpatrick, Sharon; Berbary, Lisbeth; Scott, Steffanie
2016-06-09
This exploratory study aimed to shed light on the role of the food environment in shaping food access among immigrants living in the Region of Waterloo, Ontario. In this qualitative case study, in-depth interviews aided by photovoice were conducted with nine immigrants, and key informant (KI) interviews were conducted with nine community stakeholders (e.g., settlement workers, planners) who held expert knowledge of the local context with respect to both the food system and experiences of immigrants in interacting with this system. In this paper, we focus specifically on insights related to the food environment, applying the Analysis Grid for Environments Linked to Obesity Framework to assess economic, physical, socio-cultural and political aspects. Economic features of the food environment, including food prices and differential costs of different types of food, emerged as factors related to food access. However, interactions with the food environment were shaped by broader economic factors, such as limited employment opportunities and low income. Most immigrants felt that they had good geographic access to food, though KIs expressed concerns about the types of outlet and food that were most accessible. Immigrants discussed social networks and cultural food practices, whereas KIs discussed political issues related to supporting food security in the Region. This exploratory case study is consistent with prior research in highlighting the economic constraints within which food access exists but suggests that there may be a need to further dissect food environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jung Y., E-mail: jyhuang@faculty.nctu.edu.tw; Lin, Chien Y.
Ligand-induced receptor dimerization plays a crucial role in the signaling process of living cells. In this study, we developed a theoretical model and performed single-molecule tracking to explore the correlated diffusion processes of liganded epidermal growth factor receptors prior to dimer formation. We disclosed that both an attractive potential between liganded receptor proteins in proximity and correlated fluctuations in the local environments of the proteins play an important role to produce the observed correlated movement of the receptors. This result can serve as the foundation to shed light on the way in which receptor functions are regulated in plasma membranesmore » in vivo.« less
Loo, Billy W.
1982-01-01
A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).
Production of Transitional Diffused Layers by Electrospark Coating
NASA Astrophysics Data System (ADS)
Smolentsev, Vladislav P.; Boldyrev, Alexander I.; Smolentsev, Evgeniy V.; Boldyrev, Alexander A.; Mozgalin, Vladislav L.
2018-03-01
The article presents a new method for production of diffused transitional layers with nano- and microthickness by local removal of nanofilms on aluminum alloys. This allows procuring of high-quality coatings on fusible alloys (for example, on aluminum ones) by materials, the melting point of which is 2-3 times higher than that of the basis (for example, of cast iron). This permits imparting new useful properties to workpieces made from light alloys with decent values for electrochemical working. The authors show that application of coatings provides minimum heating of workpieces. This enables the regulation in temperature condition of operating environment and permits efficiency improving during the process of electrochemical working by means of higher density current supply.
Local Plasticity of Al Thin Films as Revealed by X-Ray Microdiffraction
NASA Astrophysics Data System (ADS)
Spolenak, R.; Brown, W. L.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.
2003-03-01
Grain-to-grain interactions dominate the plasticity of Al thin films and establish effective length scales smaller than the grain size. We have measured large strain distributions and their changes under plastic strain in 1.5-μm-thick Al0.5%Cu films using a 0.8-μm-diameter white x-ray probe at the Advanced Light Source. Strain distributions arise not only from the distribution of grain sizes and orientation, but also from the differences in grain shape and from stress environment. Multiple active glide plane domains have been found within single grains. Large grains behave like multiple smaller grains even before a dislocation substructure can evolve.
Boundaries steer the contraction of active gels
NASA Astrophysics Data System (ADS)
Schuppler, Matthias; Keber, Felix C.; Kröger, Martin; Bausch, Andreas R.
2016-10-01
Cells set up contractile actin arrays to drive various shape changes and to exert forces to their environment. To understand their assembly process, we present here a reconstituted contractile system, comprising F-actin and myosin II filaments, where we can control the local activation of myosin by light. By stimulating different symmetries, we show that the force balancing at the boundaries determine the shape changes as well as the dynamics of the global contraction. Spatially anisotropic attachment of initially isotropic networks leads to a self-organization of highly aligned contractile fibres, being reminiscent of the order formation in muscles or stress fibres. The observed shape changes and dynamics are fully recovered by a minimal physical model.
Aasamaa, Krõõt; Aphalo, Pedro José
2017-02-01
Stomatal anatomical traits and rapid responses to several components of visible light were measured in Tilia cordata Mill. seedlings grown in an open, fully sunlit field (C-set), or under different kinds of shade. The main questions were: (i) stomatal responses to which visible light spectrum regions are modified by growth-environment shade and (ii) which separate component of vegetational shade is most effective in eliciting the acclimation effects of the full vegetational shade. We found that stomatal opening in response to red or green light did not differ between the plants grown in the different environments. Stomatal response to blue light was increased (in comparison with that of C-set) in the leaves grown in full vegetational shade (IABW-set), in attenuated UVAB irradiance (AB-set) or in decreased light intensity (neutral shade) plus attenuated UVAB irradiance (IAB-set). In all sets, the addition of green light-two or four times stronger-into induction light barely changed the rate of the blue-light-stimulated stomatal opening. In the AB-set, stomatal response to blue light equalled the strong IABW-set response. In attenuated UVB-grown leaves, stomatal response fell midway between IABW- and C-set results. Blue light response by neutral shade-grown leaves did not differ from that of the C-set, and the response by the IAB-set did not differ from that of the AB-set. Stomatal size was not modified by growth environments. Stomatal density and index were remarkably decreased only in the IABW- and IAB-sets. It was concluded that differences in white light responses between T. cordata leaves grown in different light environments are caused only by their different blue light response. Differences in stomatal sensitivity are not dependent on altered stomatal anatomy. Attenuated UVAB irradiance is the most efficient component of vegetational shade in stimulating acclimation of stomata, whereas decreased light intensity plays a minor role. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Walker, C. E.; Pompea, S. M.
2008-12-01
GLOBE at Night is an international citizen-science event encouraging everyone, students, the general public, scientists and non-scientists, to measure local levels of light pollution and contribute observations online to a world map. This program is part of the Dark Skies Awareness Global Cornerstone Project for the International Year of Astronomy (IYA) in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved. Utilizing the international networks of its hosts, the GLOBE program at UCAR and the National Optical Astronomy Observatory, as well as Astronomical Society of the Pacific, the Association of Science and Technology Centers, the Astronomical League and the International Dark-Sky Association, GLOBE at Night is able to engage people from around the world. Data collection and online reporting is simple and user-friendly. During a 13-day campaign in February or March, citizen-scientists take data on light pollution levels by comparing observations with stellar maps of limiting magnitudes toward the constellation, Orion. For more precise measurements, citizen-scientists use digital sky brightness meters. During the campaign period over the last 3 years, 20,000 measurements from 100 countries have been logged. The collected data is available online in a variety of formats and for comparison with data from previous years, Earth at Night satellite data and population density data. We will discuss how students and scientists worldwide can explore and analyze these results. We will provide the "know-how" and the means for session participants to become community advocates for GLOBE at Night in their hometowns. We will also discuss lessons learned, best practices and campaign plans during IYA (March 16-28, 2009). For more information, visit http://www.globe.gov/GaN/.
Artificial light pollution increases nocturnal vigilance in peahens
Chisholm, Sarah; Byerley, Sydney D; Coy, Jeanee R.; Aziz, Aisyah; Wolf, Jamie A.; Gnerlich, Amanda C.
2015-01-01
Artificial light pollution is drastically changing the sensory environments of animals. Even though many animals are now living in these changed environments, the effect light pollution has on animal behavior is poorly understood. We investigated the effect of light pollution on nocturnal vigilance in peahens (Pavo cristatus). Captive peahens were exposed to either artificial lighting or natural lighting at night. We employed a novel method to record their vigilance behavior by attaching accelerometers to their heads and continuously monitoring their large head movements. We found that light pollution significantly increases nocturnal vigilance in peahens. Furthermore, the birds faced a trade-off between vigilance and sleep at night: peahens that were more vigilant spent less time sleeping. Given the choice, peahens preferred to roost away from high levels of artificial lighting but showed no preference for roosting without artificial lighting or with low levels of artificial lighting. Our study demonstrates that light pollution can have a substantial impact on animal behavior that can potentially result in fitness consequences. PMID:26339552
Artificial light pollution increases nocturnal vigilance in peahens.
Yorzinski, Jessica L; Chisholm, Sarah; Byerley, Sydney D; Coy, Jeanee R; Aziz, Aisyah; Wolf, Jamie A; Gnerlich, Amanda C
2015-01-01
Artificial light pollution is drastically changing the sensory environments of animals. Even though many animals are now living in these changed environments, the effect light pollution has on animal behavior is poorly understood. We investigated the effect of light pollution on nocturnal vigilance in peahens (Pavo cristatus). Captive peahens were exposed to either artificial lighting or natural lighting at night. We employed a novel method to record their vigilance behavior by attaching accelerometers to their heads and continuously monitoring their large head movements. We found that light pollution significantly increases nocturnal vigilance in peahens. Furthermore, the birds faced a trade-off between vigilance and sleep at night: peahens that were more vigilant spent less time sleeping. Given the choice, peahens preferred to roost away from high levels of artificial lighting but showed no preference for roosting without artificial lighting or with low levels of artificial lighting. Our study demonstrates that light pollution can have a substantial impact on animal behavior that can potentially result in fitness consequences.
Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca
1999-01-01
A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.
Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.
1999-07-27
A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.
Forecasting the Ocean’s Optical Environment: Development of the BioCast System
2014-09-01
impacting the satellite sensor. Having accounted for the intervening atmo- sphere, light propagation out of the ocean is fundamentally a boundary...radiance. Given these IOPs and some radiant quantity as boundary values, the physical process of light propagation is addressed via the radiative...water column and contribute heavily to the scattering of light . Ubiquitous in these environments are the optical properties of microalgal cells
Yan, Jiahao; Liu, Pu; Ma, Churong; Lin, Zhaoyong; Yang, Guowei
2016-04-28
Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields.
Szczurek, Aleksander; Klewes, Ludger; Xing, Jun; Gourram, Amine; Birk, Udo; Knecht, Hans; Dobrucki, Jurek W.; Mai, Sabine
2017-01-01
Abstract Advanced light microscopy is an important tool for nanostructure analysis of chromatin. In this report we present a general concept for Single Molecule localization Microscopy (SMLM) super-resolved imaging of DNA-binding dyes based on modifying the properties of DNA and the dye. By careful adjustment of the chemical environment leading to local, reversible DNA melting and hybridization control over the fluorescence signal of the DNA-binding dye molecules can be introduced. We postulate a transient binding as the basis for our variation of binding-activated localization microscopy (BALM). We demonstrate that several intercalating and minor-groove binding DNA dyes can be used to register (optically isolate) only a few DNA-binding dye signals at a time. To highlight this DNA structure fluctuation-assisted BALM (fBALM), we applied it to measure, for the first time, nanoscale differences in nuclear architecture in model ischemia with an anticipated structural resolution of approximately 50 nm. Our data suggest that this approach may open an avenue for the enhanced microscopic analysis of chromatin nano-architecture and hence the microscopic analysis of nuclear structure aberrations occurring in various pathological conditions. It may also become possible to analyse nuclear nanostructure differences in different cell types, stages of development or environmental stress conditions. PMID:28082388
NASA Astrophysics Data System (ADS)
Vacquié-Garcia, Jade; Guinet, Christophe; Laurent, Cécile; Bailleul, Frédéric
2015-03-01
Changes in marine environments, induced by the global warming, are likely to influence the prey field distribution and consequently the foraging behaviour and the distribution of top marine predators. Thanks to bio-logging, the simultaneous measurements of fine-scale foraging behaviors and oceanographic parameters by predators allow characterizing their foraging environments and provide insights into their prey distribution. In this context, we propose to delimit and to characterize the foraging environments of a marine predator, the Southern Elephant Seal (SES). To do so, the relationship between oceanographic factors and prey encounter events (PEE) was investigated in 12 females SES from Kerguelen Island simultaneously equipped with accelerometers and with a range of physical sensors (temperature, light and depth). PEEs were assessed from the accelerometer data at high spatio-temporal precision while the physical sensors allowed the continuous monitoring of environmental conditions encountered by the SES when diving. First, visited and foraging environments were distinguished according to the oceanographic conditions encountered in the absence and in presence of PEE. Then, a hierarchical classification of the physical parameters recorded during PEEs led to the distinction of five different foraging environments. These foraging environments were structured according to the main frontal systems of the SO. One was located north to the subantarctic front (SAF) and characterized by high temperature and depth, and low light levels. Another, characterized by intermediate levels of temperature, light and depth, was located between the SAF and the polar front (PF). And finally, the last three environments were all found south to the PF and, characterized by low temperature but highly variable depth and light levels. The large physical and/or spatial differences found between these environments suggest that, depending on the location, different prey communities are targeted by SES over a broad range of water temperature, light level and depth conditions. This result highlights the versatility of this marine predator. In addition, in most cases, PEEs were found deeper during the day than during the night, which is indicative of mesopelagic prey performing nycthemeral migration, a behaviour consistent with myctophids species thought to represent the bulk of Kerguelen SES female diets.
Yao, Jingyu; Jia, Lin; Khan, Naheed; Zheng, Qiong-Duan; Moncrief, Ashley; Hauswirth, William W.; Thompson, Debra A.; Zacks, David N.
2012-01-01
Purpose AAV-mediated gene therapy in the rd10 mouse, with retinal degeneration caused by mutation in the rod cyclic guanosine monophosphate phosphodiesterase β-subunit (PDEβ) gene, produces significant, but transient, rescue of photoreceptor structure and function. This study evaluates the ability of AAV-mediated delivery of X-linked inhibitor of apoptosis (XIAP) to enhance and prolong the efficacy of PDEβ gene-replacement therapy. Methods Rd10 mice were bred and housed in darkness. Two groups of animals were generated: Group 1 received sub-retinal AAV5-XIAP or AAV5-GFP at postnatal age (P) 4 or 21 days; Group 2 received sub-retinal AAV5-XIAP plus AAV5- PDEβ, AAV5-GFP plus AAV5- PDEβ, or AAV- PDEβ alone at age P4 or P21. Animals were maintained for an additional 4 weeks in darkness before being moved to a cyclic-light environment. A subset of animals from Group 1 received a second sub-retinal injection of AAV8-733-PDEβ two weeks after being moved to the light. Histology, immunohistochemistry, Western blots, and electroretinograms were performed at different times after moving to the light. Results Injection of AAV5-XIAP alone at P4 and 21 resulted in significant slowing of light-induced retinal degeneration, as measured by outer nuclear thickness and cell counts, but did not result in improved outer segment structure and rhodopsin localization. In contrast, co-injection of AAV5-XIAP and AAV5-PDEβ resulted in increased levels of rescue and decreased rates of retinal degeneration compared to treatment with AAV5-PDEβ alone. Mice treated with AAV5-XIAP at P4, but not P21, remained responsive to subsequent rescue by AAV8-733-PDEβ when injected two weeks after moving to a light-cycling environment. Conclusions Adjunctive treatment with the anti-apoptotic gene XIAP confers additive protective effect to gene-replacement therapy with AAV5-PDEβ in the rd10 mouse. In addition, AAV5-XIAP, when given early, can increase the age at which gene-replacement therapy remains effective, thus effectively prolonging the window of opportunity for therapeutic intervention. PMID:22615940
Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution
Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; ...
2016-01-01
Here, we have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single moleculemore » super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.« less
Responses of Primula vulgaris to light quality in the maternal and germination environments.
Marin, M; Blandino, C; Laverack, G; Toorop, P; Powell, A A
2018-05-22
In the model species Arabidopsis thaliana phytochromes mediate dormancy and germination responses to seasonal cues experienced during seed maturation on the maternal plants. However, the effect of the maternal light environment on seed germination in native wild species has not been studied well. This is particularly important given its practical application in the context of environmental restoration, when there can be marked changes in the canopy. Plants of Primula vulgaris were grown in the field over two vegetative seasons under four shading treatments from low to high ratio of red to far-red light (R:FR). Leaf and seed traits were assessed in response to the light treatments. The germination of seeds from these four maternal environments (pre-dispersal) was investigated at seven light and five temperature treatments (post-dispersal). Thinner leaves, larger leaf area and greater chlorophyll content were found in plants growing in reduced R:FR. Shading in the maternal environment led to increased seed size and yield, although the conditions experienced by the maternal plants had no effect on seed germination. Seeds responded strongly to the cues experienced in their immediate germination environment. Germination was always enhanced under higher R:FR conditions. The observed phenotypic trait variation plays a major role in the ability of P. vulgaris to grow in a wide range of light conditions. However, the increased germination capacity in response to a higher R:FR for all maternal environments suggests potential for seedling establishment under vegetative shade only in the presence of canopy gaps. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Use of Daylight and Aesthetic Image of Glass Facades in Contemporary Buildings
NASA Astrophysics Data System (ADS)
Roginska-Niesluchowska, Malgorzata
2017-10-01
The paper deals with the architecture of contemporary buildings in respect to their aesthetic image created by the use of natural light. Sustainability is regarded as a governing principle of contemporary architecture, where daylighting is an important factor as it affects energy consumption and environmental quality of the space inside a building. Environmental awareness of architecture, however, involves a much wider and more holistic view of design. The quality of sustainable architecture can be considered in its aesthetic and cultural context with regard to landscape, local tradition, and connection to the surrounding world. This approach is associated with the social mission of architecture, i.e. providing appropriate space for living, facilitating social relations and having positive impact on people. The purpose of the research is to study the use of daylight in creating an aesthetic image of contemporary buildings. The author focuses mainly on public buildings largely dedicated to art and culture which satisfy high functional and aesthetic requirements. The paper examines the genesis and current trends in the aesthetic image of modern buildings which use daylight as the main design strategy, focusing on the issues of glass facades. The main attention is given to the shaping of representative public areas which feature the glass facades. The research has been based on a case study, critical review of literature review, observation and synthesis. The study identifies and classifies different approaches to using daylight in these areas and highlights changes in the aesthetics of architecture made of glass, which uses daylight as the main design strategy. These changes are primarily caused by the development and spreading of new glazing materials and the use of digital method of design. The influence of light and its mode depends on glass materials but also on the local conditions of the site, and has a significant impact on the relationship between architecture and its natural and cultural environment. The subordination of architectural concept to the idea of natural lighting builds the relationship between form, function and the context of architecture, and is expressed in its structural, material and spatial properties, and in the resulting aesthetic order. Search for new architectural solutions is defined by local topographical, climatic, biological and cultural conditions. The architecture subordinate to the conception of contribution of light corresponds to the aesthetic aspirations of sustainability.
Temperature issues with white laser diodes, calculation and approach for new packages
NASA Astrophysics Data System (ADS)
Lachmayer, Roland; Kloppenburg, Gerolf; Stephan, Serge
2015-01-01
Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class systems mainly use HID or LED light sources. As a further step laser diode based systems offer a high luminance, efficiency and allow the realization of new dynamic and adaptive light functions and styling concepts. The use of white laser diode systems in automotive applications is still limited to laboratories and prototypes even though announcements of laser based front lighting systems have been made. But the environment conditions for vehicles and other industry sectors differ from laboratory conditions. Therefor a model of the system's thermal behavior is set up. The power loss of a laser diode is transported as thermal flux from the junction layer to the diode's case and on to the environment. Therefor its optical power is limited by the maximum junction temperature (for blue diodes typically 125 - 150 °C), the environment temperature and the diode's packaging with its thermal resistances. In a car's headlamp the environment temperature can reach up to 80 °C. While the difference between allowed case temperature and environment temperature is getting small or negative the relevant heat flux also becomes small or negative. In early stages of LED development similar challenges had to be solved. Adapting LED packages to the conditions in a vehicle environment lead to today's efficient and bright headlights. In this paper the need to transfer these results to laser diodes is shown by calculating the diodes lifetimes based on the presented model.
Photothermal fabrication of microscale patterned DNA hydrogels
NASA Astrophysics Data System (ADS)
Shimomura, Suguru; Nishimura, Takahiro; Ogura, Yusuke; Tanida, Jun
2018-02-01
This paper introduces a method for fabricating microscale DNA hydrogels using irradiation with patterned light. Optical fabrication allows for the flexible and tunable formation of DNA hydrogels without changing the environmental conditions. Our scheme is based on local heat generation via the photothermal effect, which is induced by light irradiation on a quenching species. We demonstrate experimentally that, depending on the power and irradiation time, light irradiation enables the creation of local microscale DNA hydrogels, while the shapes of the DNA hydrogels are controlled by the irradiation patterns.
NASA Astrophysics Data System (ADS)
Ghosh, Subhabrata; N, Shivakiran Bhaktha B.
2018-06-01
Eu-doped 70SiO2–23HfO2–7ZnO (mol%) glass-ceramic waveguides have been fabricated by sol-gel method as a function of heat-treatment temperatures for on-chip blue-light emitting source applications. Structural evolution of spherical ZnO and spherical as well as rod-like HfO2 nanocrystalline structures have been observed with heat-treatments at different temperatures. Initially, in the as-prepared samples at 900 ◦C, both, Eu2+ as well as Eu3+ ions are found to be present in the ternary matrix. With controlled heat-treatments of up to 1000 ◦C for 2 h, local environment of Eu-ions become more crystalline in nature and the reduction of Eu3+ to Eu2+ takes place in such ZnO/HfO2 crystalline environments. In these ternary glass-ceramic waveguides, heat-treated at higher temperatures, the blue-light emission characteristic, which is the signature of 4f 65d \\to 4f 7 energy level transition of Eu2+ ions is found to be greatly enhanced. The as-prepared glass-ceramic waveguides exhibit a propagation loss of 0.4 ± 0.2 dB cm‑1 at 632.8 nm. Though the propagation losses increase with the growth of nanocrystals, the added functionalities achieved in the optimally heat-treated Eu-doped 70SiO2–23HfO2–7ZnO (mol%) waveguides, make them a viable functional optical material for the fabrication of on-chip blue-light emitting sources for integrated optic applications.
Doust, Alexander B; Marai, Christopher N J; Harrop, Stephen J; Wilk, Krystyna E; Curmi, Paul M G; Scholes, Gregory D
2004-11-12
Cryptophyte algae differ from cyanobacteria and red algae in the architecture of their photosynthetic light harvesting systems, even though all three are evolutionarily related. Central to cryptophyte light harvesting is the soluble antenna protein phycoerythrin 545 (PE545). The ultrahigh resolution crystal structure of PE545, isolated from a unicellular cryptophyte Rhodomonas CS24, is reported at both 1.1A and 0.97A resolution, revealing details of the conformation and environments of the chromophores. Absorption, emission and polarized steady state spectroscopy (298K, 77K), as well as ultrafast (20fs time resolution) measurements of population dynamics are reported. Coupled with complementary quantum chemical calculations of electronic transitions of the bilins, these enable assignment of spectral absorption characteristics to each chromophore in the structure. Spectral differences between the tetrapyrrole pigments due to chemical differences between bilins, as well as their binding and interaction with the local protein environment are described. Based on these assignments, and considering customized optical properties such as strong coupling, a model for light harvesting by PE545 is developed which explains the fast, directional harvesting of excitation energy. The excitation energy is funnelled from four peripheral pigments (beta158,beta82) into a central chromophore dimer (beta50/beta61) in approximately 1ps. Those chromophores, in turn, transfer the excitation energy to the red absorbing molecules located at the periphery of the complex in approximately 4ps. A final resonance energy transfer step sensitizes just one of the alpha19 bilins on a time scale of 22ps. Furthermore, it is concluded that binding of PE545 to the thylakoid membrane is not essential for efficient energy transfer to the integral membrane chlorophyll a-containing complexes associated with PS-II.
NASA Astrophysics Data System (ADS)
Colman, A. S.; Wessells, A.; Swaine, M. E.; Fogel, M. L.
2003-12-01
Stable isotopes of carbon and nitrogen have long been used as indicators of ecosystem structure and nutrient cycling in natural and anthropogenically disturbed terrestrial ecosytems. However, relatively few of these studies have targeted urban environments, where nitrogen and CO2 emissions dramatically impact atmospheric composition. Here we present the results of carbon and nitrogen isotope analyses of herbaceous plants growing in and around San Francisco. These plants were collected mainly as part of a public outreach walking tour of San Francisco ("The Weed Walk - Concrete Jungle") sponsored by the San Francisco Exploratorium. In all cases, the plants were sampled in areas with negligible forest canopy. A consortium of species was collected at each of several distinct sites to examine the localized and regional impact of automobile traffic and proximity to the ocean on isotopic compositions of carbon and nitrogen. δ 13C measurements trend towards relatively light values in the range of --26 to --36 permil. In comparison, the leaves from similar types of herbaceous species in relatively unpolluted and unforested environments typically have δ 13C values in the range of --22 to --28 permil. The observed light carbon isotopic compositions potentially reflect input of isotopically light CO2 emissions from fossil fuel burning, boosting atmospheric CO2 concentrations to >10 % above background. δ 15N values range from +4 to +9 permil. This is substantially offset from the --4 to +1 permil values that typify vegetation in regions where nitrogen oxides from fossil fuel combustion dominate the nitrogen inputs. The nitrogen isotope compositions might suggest nitrogen contributions from a marine source (typically +6 permil).
Ghosh, Subhabrata; Bhaktha B N, Shivakiran
2018-06-01
Eu-doped 70SiO 2 -23HfO 2 -7ZnO (mol%) glass-ceramic waveguides have been fabricated by sol-gel method as a function of heat-treatment temperatures for on-chip blue-light emitting source applications. Structural evolution of spherical ZnO and spherical as well as rod-like HfO 2 nanocrystalline structures have been observed with heat-treatments at different temperatures. Initially, in the as-prepared samples at 900 ◦ C, both, Eu 2+ as well as Eu 3+ ions are found to be present in the ternary matrix. With controlled heat-treatments of up to 1000 ◦ C for 2 h, local environment of Eu-ions become more crystalline in nature and the reduction of Eu 3+ to Eu 2+ takes place in such ZnO/HfO 2 crystalline environments. In these ternary glass-ceramic waveguides, heat-treated at higher temperatures, the blue-light emission characteristic, which is the signature of 4f 6 5d [Formula: see text] 4f 7 energy level transition of Eu 2+ ions is found to be greatly enhanced. The as-prepared glass-ceramic waveguides exhibit a propagation loss of 0.4 ± 0.2 dB cm -1 at 632.8 nm. Though the propagation losses increase with the growth of nanocrystals, the added functionalities achieved in the optimally heat-treated Eu-doped 70SiO 2 -23HfO 2 -7ZnO (mol%) waveguides, make them a viable functional optical material for the fabrication of on-chip blue-light emitting sources for integrated optic applications.
Ludvigsen, Martin; Berge, Jørgen; Geoffroy, Maxime; Cohen, Jonathan H.; De La Torre, Pedro R.; Nornes, Stein M.; Singh, Hanumant; Sørensen, Asgeir J.; Daase, Malin; Johnsen, Geir
2018-01-01
Light is a major cue for nearly all life on Earth. However, most of our knowledge concerning the importance of light is based on organisms’ response to light during daytime, including the dusk and dawn phase. When it is dark, light is most often considered as pollution, with increasing appreciation of its negative ecological effects. Using an Autonomous Surface Vehicle fitted with a hyperspectral irradiance sensor and an acoustic profiler, we detected and quantified the behavior of zooplankton in an unpolluted light environment in the high Arctic polar night and compared the results with that from a light-polluted environment close to our research vessels. First, in environments free of light pollution, the zooplankton community is intimately connected to the ambient light regime and performs synchronized diel vertical migrations in the upper 30 m despite the sun never rising above the horizon. Second, the vast majority of the pelagic community exhibits a strong light-escape response in the presence of artificial light, observed down to 100 m. We conclude that artificial light from traditional sampling platforms affects the zooplankton community to a degree where it is impossible to examine its abundance and natural rhythms within the upper 100 m. This study underscores the need to adjust sampling platforms, particularly in dim-light conditions, to capture relevant physical and biological data for ecological studies. It also highlights a previously unchartered susceptibility to light pollution in a region destined to see significant changes in light climate due to a reduced ice cover and an increased anthropogenic activity. PMID:29326985
Xu, Caixia; Zhang, Jingwen; Zou, Yingyin K; Zhao, Hua
2016-03-21
The enhancement of green upconverted emission from the Er3+/Yb3+ co-doped (Pb,La)(Zr,Ti)O3 ceramic powder under a pumping light with a wavelength of 1480 nm was observed to be greater than 30 times that from the bulk of the same sample. Weak localization of light supported by the spatial profile of scattered light facilitated the three-photon process contributing to stronger green upconverted emission. Significant backward light amplification was also observed and studied in detail. Additionally, the distribution of the localization zones in the sample was investigated using a probing laser beam with a wavelength of 532 nm. The findings in this work could be used in improving the solar cell efficiency, modulating color, and designing smart devices.
Locally-enhanced light scattering by a monocrystalline silicon wafer
NASA Astrophysics Data System (ADS)
Ma, Li; Zhang, Pan; Li, Zhen-Hua; Liu, Chun-Xiang; Li, Xing; Zhan, Zi-Jun; Ren, Xiao-Rong; He, Chang-Wei; Chen, Chao; Cheng, Chuan-Fu
2018-03-01
We study the optical properties of light scattering by a monocrystalline silicon wafer, by using transparent material to replicate its surface structure and illuminating a fabricated sample with a laser source. The experimental results show that the scattering field contains four spots of concentrated intensity with high local energy, and these spots are distributed at the four vertices of a square with lines of intensity linking adjacent spots. After discussing simulations of and theory about the formation of this light scattering, we conclude that the scattering field is formed by the effects of both geometrical optics and physical optics. Moreover, we calculate the central angle of the spots in the light field, and the result indicates that the locally-enhanced intensity spots have a definite scattering angle. These results may possibly provide a method for improving energy efficiency within mono-Si based solar cells.
Perfect absorption in nanotextured thin films via Anderson-localized photon modes
NASA Astrophysics Data System (ADS)
Aeschlimann, Martin; Brixner, Tobias; Differt, Dominik; Heinzmann, Ulrich; Hensen, Matthias; Kramer, Christian; Lükermann, Florian; Melchior, Pascal; Pfeiffer, Walter; Piecuch, Martin; Schneider, Christian; Stiebig, Helmut; Strüber, Christian; Thielen, Philip
2015-10-01
The enhancement of light absorption in absorber layers is crucial in a number of applications, including photovoltaics and thermoelectrics. The efficient use of natural resources and physical constraints such as limited charge extraction in photovoltaic devices require thin but efficient absorbers. Among the many different strategies used, light diffraction and light localization at randomly nanotextured interfaces have been proposed to improve absorption. Although already exploited in commercial devices, the enhancement mechanism for devices with nanotextured interfaces is still subject to debate. Using coherent two-dimensional nanoscopy and coherent light scattering, we demonstrate the existence of localized photonic states in nanotextured amorphous silicon layers as used in commercial thin-film solar cells. Resonant absorption in these states accounts for the enhanced absorption in the long-wavelength cutoff region. Our observations establish that Anderson localization—that is, strong localization—is a highly efficient resonant absorption enhancement mechanism offering interesting opportunities for the design of efficient future absorber layers.
3D multiplexed immunoplasmonics microscopy
NASA Astrophysics Data System (ADS)
Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel
2016-07-01
Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence.Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed technology is simple and compatible with standard epi-fluorescence microscopes used in biological and clinical laboratories. Thus, 3D multiplexed immunoplasmonics microscopy is ready for clinical applications as a cost-efficient alternative to immunofluorescence. Electronic supplementary information (ESI) available: Characterization of functionalized nanoparticles by UV-visible-NIR spectroscopy, standard dark field microscopy and reflected light microscopy. Immunofluorescence of cells. See DOI: 10.1039/c6nr01257d
Goodfellow, F; Murray, V; Ouki, S; Iversen, A; Sparks, A; Bartlett, T
2001-01-01
OBJECTIVES—To gather enough data from a large scale investigation involving two health authorities, to assess the possible concentrations and routes of exposure and the consequent health implications.To use the data to decide whether a polluted beach should remain open to the public. In Spring 1997, a chemical incident came to light at a beach on the south coast of England when a local resident reported a sulphurous smell, visible signs of oil, and reduced numbers of fishing bait. The beach was situated adjacent to a former gasworks site and was accessible to the public. The incident was reported to the local authority and was initially investigated by the Environment Agency and the local authority. An Environment Agency report confirmed contamination of the beach with cyanide, ammonia, and polycyclic aromatic hydrocarbons (PAHs) with associated potential health risks. The incident was then referred to the local health authorities for investigation. METHODS—The investigation was carried out in four stages: comprehensive sampling and analysis to identify the extent of contamination, followed by an assessment of risk to health; establishment of a long term monitoring programme to identify any changes in contaminant concentrations; investigation of the effects of the contamination on shellfish; and review of the routine monitoring data and current sampling strategy. RESULTS—The initial investigation confirmed that the beach was contaminated, with the most likely source being the adjacent former gasworks site. The level of contamination was not found to be likely to pose a hazard to users of the beach. However, subsequent investigation of shellfish in the area led to warning signs being erected on the beach to prevent human consumption of mussels contaminated with PAHs. CONCLUSIONS—Several lessons can be learnt from this investigation, which can be applied to incident management more generally: the importance of collaboration and coordination; the need for early involvement of the health authority; and the importance of carrying out appropriate sampling and analysis as soon as possible, to assess the risk to health and the environment. Keywords: public health; water pollutants; chemical; hydrocarbons; cyanides PMID:11245739
Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light.
Saito, Koichiro; Tatsuma, Tetsu
2018-05-09
The chirality of materials results in a wide variety of advanced technologies including image display, data storage, light management including negative refraction, and enantioselective catalysis and sensing. Here, we introduce chirality to plasmonic nanostructures by using circularly polarized light as the sole chiral source for the first time. Gold nanocuboids as precursors on a semiconductor were irradiated with circularly polarized light to localize electric fields at specific corners of the cuboids depending on the handedness of light and deposited dielectric moieties as electron oscillation boosters by the localized electric field. Thus, plasmonic nanostructures with high chirality were developed. The present bottom-up method would allow the large-scale and cost-effective fabrication of chiral materials and further applications to functional materials and devices.
Leaf dynamics and profitability in wild strawberries.
Jurik, Thomas W; Chabot, Brian F
1986-05-01
Leaf dynamics and carbon gain were evaluated for two species of wild strawberry, Fragaria virginiana and F. vesca. Five populations on sites representing a gradient of successional regrowth near Ithaca, N.Y., U.S.A., were studied for two or three years each. A computer-based model of plant growth and CO 2 exchange combined field studies of leaf biomass dynamics with previously-determined gas exchange rates to estimate carbon balances of leaves and whole plants in different environments.Leaves were produced throughout the growing season, although there was usually a decline in rate of leaf-production in mid-summer. Leaves produced in late spring had the largest area and longest lifespan (except for overwintering leaves produced in the fall). Specific Leaf Weight (SLW) varied little with time of leaf production, but differed greatly among populations; SLW increased with amount of light received in each habitat. The population in the most open habitat had the least seasonal variation in all leaf characters. F. vesca produced lighter, longer-lived leaves than F. virginiana.Simulations showed that age had the largest effect on leaf carbon gain in high-light environments; water stress and temperature had lesser effects. Leaf carbon gain in lowlight environments was relatively unaffected by age and environmental factors other than light. Leaves in high-light environments had the greatest lifetime profit and the greatest ratio of profit to cost. Increasing lifespan by 1/3 increased profit by 80% in low-light leaves and 50% in high-light leaves. Increasing the number of days during which the leaf had the potential to exhibit high photosynthetic rate in response to high light led to little change in profit of low-light leaves while increasing profit of high-light leaves by 49%.
Effects of type of light on mouse circadian behaviour and stress levels.
Alves-Simoes, Marta; Coleman, Georgia; Canal, Maria Mercè
2016-02-01
Light is the principal synchronizing environmental factor for the biological clock. Light quantity (intensity), and light quality (type of light source) can have different effects. The aim of this study was to determine the effects of the type of light experienced from the time of birth on mouse growth, circadian behaviour and stress levels. We raised pigmented and albino mice under 24 h light-dark cycles of either fluorescent or white light-emitting diode (LED) light source during the suckling stage, and the animals were then exposed to various light environments after weaning and their growth rate, locomotor activity and plasma corticosterone concentration were measured. We found that the type of light the animals were exposed to did not affect the animals' growth rates or stress levels. However, we observed significant effects on the expression of the locomotor activity rhythm under low contrast light-dark cycles in pigmented mice, and under constant light in both albino and pigmented mice. These results highlight the importance of environmental light quality (light source) on circadian behavioural rhythms, and the need for close monitoring of light environments in animal facilities. © The Author(s) 2015.
Effects of aging on identifying emotions conveyed by point-light walkers.
Spencer, Justine M Y; Sekuler, Allison B; Bennett, Patrick J; Giese, Martin A; Pilz, Karin S
2016-02-01
The visual system is able to recognize human motion simply from point lights attached to the major joints of an actor. Moreover, it has been shown that younger adults are able to recognize emotions from such dynamic point-light displays. Previous research has suggested that the ability to perceive emotional stimuli changes with age. For example, it has been shown that older adults are impaired in recognizing emotional expressions from static faces. In addition, it has been shown that older adults have difficulties perceiving visual motion, which might be helpful to recognize emotions from point-light displays. In the current study, 4 experiments were completed in which older and younger adults were asked to identify 3 emotions (happy, sad, and angry) displayed by 4 types of point-light walkers: upright and inverted normal walkers, which contained both local motion and global form information; upright scrambled walkers, which contained only local motion information; and upright random-position walkers, which contained only global form information. Overall, emotion discrimination accuracy was lower in older participants compared with younger participants, specifically when identifying sad and angry point-light walkers. In addition, observers in both age groups were able to recognize emotions from all types of point-light walkers, suggesting that both older and younger adults are able to recognize emotions from point-light walkers on the basis of local motion or global form. (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Struts, A. V.; Barmasov, A. V.; Brown, M. F.
2016-02-01
This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.
Salient sounds activate human visual cortex automatically
McDonald, John J.; Störmer, Viola S.; Martinez, Antigona; Feng, Wenfeng; Hillyard, Steven A.
2013-01-01
Sudden changes in the acoustic environment enhance perceptual processing of subsequent visual stimuli that appear in close spatial proximity. Little is known, however, about the neural mechanisms by which salient sounds affect visual processing. In particular, it is unclear whether such sounds automatically activate visual cortex. To shed light on this issue, the present study examined event-related brain potentials (ERPs) that were triggered either by peripheral sounds that preceded task-relevant visual targets (Experiment 1) or were presented during purely auditory tasks (Experiments 2, 3, and 4). In all experiments the sounds elicited a contralateral ERP over the occipital scalp that was localized to neural generators in extrastriate visual cortex of the ventral occipital lobe. The amplitude of this cross-modal ERP was predictive of perceptual judgments about the contrast of co-localized visual targets. These findings demonstrate that sudden, intrusive sounds reflexively activate human visual cortex in a spatially specific manner, even during purely auditory tasks when the sounds are not relevant to the ongoing task. PMID:23699530
Children's views of accident risks and prevention: a qualitative study
Green, J.; Hart, L.
1998-01-01
Objectives—To examine children's accounts of injury risks and opportunities for prevention. Setting—Schools, youth clubs, and a holiday activity scheme in the south east of England. Methods—Sixteen focus groups were held with 7–11 year old children. Transcripts of the discussions were analysed using qualitative methods. Results—Children were knowledgeable about injury risks and how to reduce them. They also saw injury prevention as primarily their own responsibility. However, they were also sophisticated in their criticisms of generalised prevention advice, and evaluated safety messages in the light of local environmental and social knowledge. Personal experience was more often reported as a reason for risk reduction than formal prevention advice. Risks for injury were not isolated from other risks faced. Conclusions—Effective educational interventions aimed at changing children's risk behaviour should build more on children's own competence and knowledge of their local environment, and stress the need to manage risks rather than avoid dangers. PMID:9595326
Localized Charges Control Exciton Energetics and Energy Dissipation in Doped Carbon Nanotubes.
Eckstein, Klaus H; Hartleb, Holger; Achsnich, Melanie M; Schöppler, Friedrich; Hertel, Tobias
2017-10-24
Doping by chemical or physical means is key for the development of future semiconductor technologies. Ideally, charge carriers should be able to move freely in a homogeneous environment. Here, we report on evidence suggesting that excess carriers in electrochemically p-doped semiconducting single-wall carbon nanotubes (s-SWNTs) become localized, most likely due to poorly screened Coulomb interactions with counterions in the Helmholtz layer. A quantitative analysis of blue-shift, broadening, and asymmetry of the first exciton absorption band also reveals that doping leads to hard segmentation of s-SWNTs with intrinsic undoped segments being separated by randomly distributed charge puddles approximately 4 nm in width. Light absorption in these doped segments is associated with the formation of trions, spatially separated from neutral excitons. Acceleration of exciton decay in doped samples is governed by diffusive exciton transport to, and nonradiative decay at charge puddles within 3.2 ps in moderately doped s-SWNTs. The results suggest that conventional band-filling in s-SWNTs breaks down due to inhomogeneous electrochemical doping.
Quality Lighting for the Learning Environment.
ERIC Educational Resources Information Center
Estes, R. C.
1984-01-01
A Houston, Texas, school district has found that indirect lighting fixtures combined with skylights lower energy bills and provide softer, more natural lighting. A principal feels the softer light may have a calming effect on students' behavior. (MLF)
Light as a central modulator of circadian rhythms, sleep and affect.
LeGates, Tara A; Fernandez, Diego C; Hattar, Samer
2014-07-01
Light has profoundly influenced the evolution of life on earth. As widely appreciated, light enables us to generate images of our environment. However, light - through intrinsically photosensitive retinal ganglion cells (ipRGCs) - also influences behaviours that are essential for our health and quality of life but are independent of image formation. These include the synchronization of the circadian clock to the solar day, tracking of seasonal changes and the regulation of sleep. Irregular light environments lead to problems in circadian rhythms and sleep, which eventually cause mood and learning deficits. Recently, it was found that irregular light can also directly affect mood and learning without producing major disruptions in circadian rhythms and sleep. In this Review, we discuss the indirect and direct influence of light on mood and learning, and provide a model for how light, the circadian clock and sleep interact to influence mood and cognitive functions.
Light focusing in the Anderson regime.
Leonetti, Marco; Karbasi, Salman; Mafi, Arash; Conti, Claudio
2014-07-29
Anderson localization is a regime in which diffusion is inhibited and waves (also electromagnetic waves) get localized. Here we exploit adaptive optics to achieve focusing in disordered optical fibres in the Anderson regime. By wavefront shaping and optimization, we observe the generation of a propagation-invariant beam, where light is trapped transversally by disorder, and show that Anderson localizations can be also excited by extended speckled beams. We demonstrate that disordered fibres allow a more efficient focusing action with respect to standard fibres in a way independent of their length, because of the propagation-invariant features and cooperative action of transverse localizations.
ERIC Educational Resources Information Center
Wohlfarth, H.; Sam, C.
The effects of varied lighting and coloring in the classroom environment were examined on the behavior of seven severely handicapped 8 to 11 year olds with behavior problems. Analysis of changes in systolic blood pressure indicated that Ss were more comfortable and relaxed in the experimental room (in which the fluorescent lights were replaced by…
A Machine-Learning-Driven Sky Model.
Satylmys, Pynar; Bashford-Rogers, Thomas; Chalmers, Alan; Debattista, Kurt
2017-01-01
Sky illumination is responsible for much of the lighting in a virtual environment. A machine-learning-based approach can compactly represent sky illumination from both existing analytic sky models and from captured environment maps. The proposed approach can approximate the captured lighting at a significantly reduced memory cost and enable smooth transitions of sky lighting to be created from a small set of environment maps captured at discrete times of day. The author's results demonstrate accuracy close to the ground truth for both analytical and capture-based methods. The approach has a low runtime overhead, so it can be used as a generic approach for both offline and real-time applications.
Effects on Training Using Illumination in Virtual Environments
NASA Technical Reports Server (NTRS)
Maida, James C.; Novak, M. S. Jennifer; Mueller, Kristian
1999-01-01
Camera based tasks are commonly performed during orbital operations, and orbital lighting conditions, such as high contrast shadowing and glare, are a factor in performance. Computer based training using virtual environments is a common tool used to make and keep CTW members proficient. If computer based training included some of these harsh lighting conditions, would the crew increase their proficiency? The project goal was to determine whether computer based training increases proficiency if one trains for a camera based task using computer generated virtual environments with enhanced lighting conditions such as shadows and glare rather than color shaded computer images normally used in simulators. Previous experiments were conducted using a two degree of freedom docking system. Test subjects had to align a boresight camera using a hand controller with one axis of rotation and one axis of rotation. Two sets of subjects were trained on two computer simulations using computer generated virtual environments, one with lighting, and one without. Results revealed that when subjects were constrained by time and accuracy, those who trained with simulated lighting conditions performed significantly better than those who did not. To reinforce these results for speed and accuracy, the task complexity was increased.
Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors
NASA Astrophysics Data System (ADS)
Noh, Hyeon-Kyun; Chang, K. J.; Ryu, Byungki; Lee, Woo-Jin
2011-09-01
We perform first-principles density functional calculations to investigate the atomic and electronic properties of various O-vacancy (VO) defects in amorphous indium gallium zinc oxides (a-IGZO). The formation energies of VO have a tendency to increase with increasing number of neighboring Ga atoms, whereas they are generally low in the environment surrounded with In atoms. Thus, adding Ga atoms suppresses the formation of O-deficiency defects, which are considered as the origin of device instability in a-IGZO-based thin film transistors. The conduction band edge state is characterized by the In s orbital and insensitive to disorder, in good agreement with the experimental finding that increasing the In content enhances the carrier density and mobility. In a-IGZO, while most VO defects are deep donors, some of the defects act as shallow donors due to local environments different from those in crystalline oxides. As ionized O vacancies can capture electrons, it is suggested that these defects are responsible for positive shifts of the threshold voltage observed under positive gate bias stress. Under light illumination stress, VO defects can be ionized, becoming VO2+ defects due to the negative-U behavior. When electrons are captured by applying a negative bias voltage, ionized VO2+ defects return to the original neutral charge state. Through molecular dynamics simulations, we find that the initial neutral state is restored by annealing, in good agreement with experiments, although the annealing temperature depends on the local environment. Our calculations show that VO defects play an important role in the instability of a-IGZO-based devices.
Industry Speed Bumps on Local Tobacco Control in Japan? The Case of Hyogo.
Yamada, Keiko; Mori, Nagisa; Kashiwabara, Mina; Yasuda, Sakiko; Horie, Rumi; Yamato, Hiroshi; Garçon, Loic; Armada, Francisco
2015-01-01
Despite being a signatory since 2004, Japan has not yet fully implemented Article 8 of the World Health Organization's Framework Convention on Tobacco Control regarding 100% protection against exposure to second-hand smoke (SHS). The Japanese government still recognizes designated smoking rooms (DSRs) in public space as a valid control measure. Furthermore, subnational initiatives for tobacco control in Japan are of limited effectiveness. Through an analysis of the Hyogo initiative in 2012, we identified key barriers to the achievement of a smoke-free environment. Using a descriptive case-study approach, we analyzed the smoke-free policy development process. The information was obtained from meeting minutes and other gray literature, such as public records, well as key informant interviews. Hyogo Prefecture established a committee to propose measures against SHS, and most committee members agreed with establishing completely smoke-free environments. However, the hospitality sector representatives opposed regulation, and tobacco companies were allowed to make a presentation to the committee. Further, political power shifted against completely smoke-free environments in the context of upcoming local elections, which was an obvious barrier to effective regulation. Throughout the approving process, advocacy by civil society for stronger regulation was weak. Eventually, the ordinance approved by the Prefectural Assembly was even weaker than the committee proposal and included wide exemptions. The analysis of Hyogo's SHS control initiative shed light on three factors that present challenges to implementing tobacco control regulations in Japan, from which other countries can also draw lessons: incomplete national legislation, the weakness of advocacy by the civil society, and the interference of the tobacco industry.
The Involvement of the Oxidative Stress in Murine Blue LED Light-Induced Retinal Damage Model.
Nakamura, Maho; Kuse, Yoshiki; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki
2017-01-01
The aim of study was to establish a mouse model of blue light emitting diode (LED) light-induced retinal damage and to evaluate the effects of the antioxidant N-acetylcysteine (NAC). Mice were exposed to 400 or 800 lx blue LED light for 2 h, and were evaluated for retinal damage 5 d later by electroretinogram amplitude and outer nuclear layer (ONL) thickness. Additionally, we investigated the effect of blue LED light exposure on shorts-wave-sensitive opsin (S-opsin), and rhodopsin expression by immunohistochemistry. Blue LED light induced light intensity dependent retinal damage and led to collapse of S-opsin and altered rhodopsin localization from inner and outer segments to ONL. Conversely, NAC administered at 100 or 250 mg/kg intraperitoneally twice a day, before dark adaptation and before light exposure. NAC protected the blue LED light-induced retinal damage in a dose-dependent manner. Further, blue LED light-induced decreasing of S-opsin levels and altered rhodopsin localization, which were suppressed by NAC. We established a mouse model of blue LED light-induced retinal damage and these findings indicated that oxidative stress was partially involved in blue LED light-induced retinal damage.
Manifestation of Hyperandrogenism in the Continuous Light Exposure-Induced PCOS Rat Model
Kang, Xuezhi; Jia, Lina; Shen, Xueyong
2015-01-01
Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder, and its pathogenesis has yet to be completely clarified. A fully convincing animal model has not been established for PCOS. In earlier studies, researchers have shown that the exposure of rats to continuous light can induce PCOS; nevertheless, hyperandrogenism, a key characteristic observed in human PCOS, has not been reported previously. In the present study, we found that (1) body weights decreased in female rats in a continuous light environment with both ovarian and uterine augmentation; (2) the estrous cycle in rats under continuous light environment was disordered, and polycystic ovary-like changes occurred, accompanied with fur loss and lethargy; and (3) serum testosterone levels in rats in a continuous light environment significantly increased. Our data suggest that continuous light can lead to the occurrence of PCOS in female rats without the need for drugs; this is a reasonable PCOS animal model that is more consistent with the natural disease state in humans; and poor sleep habits or negligence of sleep hygiene may be an important lifestyle factor in pathogenesis of PCOS. PMID:26064969
Redwood seedling responses to light patterns and intensities
Ronald W. Boldenow; Joe R. McBride
2017-01-01
Coast redwood (Sequoia sempervirens (D. Don) Endl.) seedlings were grown from seed in controlled environments with 16 hour photoperiods using three light patterns that mimicked full shade (constant light level), intermittent high light such as long duration sun flecks (low light with 15 minutes of intense light every 2 hours), and large...
Is countershading camouflage robust to lighting change due to weather?
Penacchio, Olivier; Lovell, P George; Harris, Julie M
2018-02-01
Countershading is a pattern of coloration thought to have evolved in order to implement camouflage. By adopting a pattern of coloration that makes the surface facing towards the sun darker and the surface facing away from the sun lighter, the overall amount of light reflected off an animal can be made more uniformly bright. Countershading could hence contribute to visual camouflage by increasing background matching or reducing cues to shape. However, the usefulness of countershading is constrained by a particular pattern delivering 'optimal' camouflage only for very specific lighting conditions. In this study, we test the robustness of countershading camouflage to lighting change due to weather, using human participants as a 'generic' predator. In a simulated three-dimensional environment, we constructed an array of simple leaf-shaped items and a single ellipsoidal target 'prey'. We set these items in two light environments: strongly directional 'sunny' and more diffuse 'cloudy'. The target object was given the optimal pattern of countershading for one of these two environment types or displayed a uniform pattern. By measuring detection time and accuracy, we explored whether and how target detection depended on the match between the pattern of coloration on the target object and scene lighting. Detection times were longest when the countershading was appropriate to the illumination; incorrectly camouflaged targets were detected with a similar pattern of speed and accuracy to uniformly coloured targets. We conclude that structural changes in light environment, such as caused by differences in weather, do change the effectiveness of countershading camouflage.
Conductive stability of graphene on PET and glass substrates under blue light irradiation
NASA Astrophysics Data System (ADS)
Cao, Xueying; Liu, Xianming; Li, Xiangdi; Lei, Xiaohua; Chen, Weimin
2018-01-01
Electrical properties of graphene transparent conductive film under visible light irradiation are investigated. The CVD-grown graphene on Polyethylene Terephthalate (PET) and glass substrates for flexible and rigid touch screen display application are chosen for research. The resistances of graphene with and without gold trichloride (AuCl3) doping are measured in vacuum and atmosphere environment under blue light irradiation. Results show that the conductivities of all samples change slowly under light irradiation. The change rate and degree are related to the substrate material, doping, environment and lighting power. Graphene on flexible PET substrate is more stable than that on rigid glass substrate. Doping can improve the electrical conductivity but induce instability under light irradiation. Finally, the main reason resulting in the graphene resistance slowly increasing under blue light irradiation is analyzed.
Global form and motion processing in healthy ageing.
Agnew, Hannah C; Phillips, Louise H; Pilz, Karin S
2016-05-01
The ability to perceive biological motion has been shown to deteriorate with age, and it is assumed that older adults rely more on the global form than local motion information when processing point-light walkers. Further, it has been suggested that biological motion processing in ageing is related to a form-based global processing bias. Here, we investigated the relationship between older adults' preference for form information when processing point-light actions and an age-related form-based global processing bias. In a first task, we asked older (>60years) and younger adults (19-23years) to sequentially match three different point-light actions; normal actions that contained local motion and global form information, scrambled actions that contained primarily local motion information, and random-position actions that contained primarily global form information. Both age groups overall performed above chance in all three conditions, and were more accurate for actions that contained global form information. For random-position actions, older adults were less accurate than younger adults but there was no age-difference for normal or scrambled actions. These results indicate that both age groups rely more on global form than local motion to match point-light actions, but can use local motion on its own to match point-light actions. In a second task, we investigated form-based global processing biases using the Navon task. In general, participants were better at discriminating the local letters but faster at discriminating global letters. Correlations showed that there was no significant linear relationship between performance in the Navon task and biological motion processing, which suggests that processing biases in form- and motion-based tasks are unrelated. Copyright © 2016. Published by Elsevier B.V.
Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion
Dunn, Timothy W; Mu, Yu; Narayan, Sujatha; Randlett, Owen; Naumann, Eva A; Yang, Chao-Tsung; Schier, Alexander F
2016-01-01
In the absence of salient sensory cues to guide behavior, animals must still execute sequences of motor actions in order to forage and explore. How such successive motor actions are coordinated to form global locomotion trajectories is unknown. We mapped the structure of larval zebrafish swim trajectories in homogeneous environments and found that trajectories were characterized by alternating sequences of repeated turns to the left and to the right. Using whole-brain light-sheet imaging, we identified activity relating to the behavior in specific neural populations that we termed the anterior rhombencephalic turning region (ARTR). ARTR perturbations biased swim direction and reduced the dependence of turn direction on turn history, indicating that the ARTR is part of a network generating the temporal correlations in turn direction. We also find suggestive evidence for ARTR mutual inhibition and ARTR projections to premotor neurons. Finally, simulations suggest the observed turn sequences may underlie efficient exploration of local environments. DOI: http://dx.doi.org/10.7554/eLife.12741.001 PMID:27003593
Huang, Chen-Han; Lin, Hsing-Ying; Lau, Ben-Chao; Liu, Chih-Yi; Chui, Hsiang-Chen; Tzeng, Yonhua
2010-12-20
We report on plasmon induced optical switching of electrical conductivity in two-dimensional (2D) arrays of silver (Ag) nanoparticles encapsulated inside nanochannels of porous anodic aluminum oxide (AAO) films. The reversible switching of photoconductivity greatly enhanced by an array of closely spaced Ag nanoparticles which are isolated from each other and from the ambient by thin aluminum oxide barrier layers are attributed to the improved electron transport due to the localized surface plasmon resonance and coupling among Ag nanoparticles. The photoconductivity is proportional to the power, and strongly dependent on the wavelength of light illumination. With Ag nanoparticles being isolated from the ambient environments by a thin layer of aluminum oxide barrier layer of controlled thickness in nanometers to tens of nanometers, deterioration of silver nanoparticles caused by environments is minimized. The electrochemically fabricated nanostructured Ag/AAO is inexpensive and promising for applications to integrated plasmonic circuits and sensors.
Schlicht, Markus; Volkmann, Dieter; Mancuso, Stefano
2008-01-01
The plant hormone auxin is secreted in root apices via phospholipase Dζ2 (PLDζ2) activity which produces specific population of phosphatidic acid that stimulates secretion of vesicles enriched with auxin. These vesicles were reported to be localized at plant synapses which are active in auxin secretion, especially at the transition zone of the root apex. There are several implications of this vesicular secretion of auxin. In root apices, auxin emerges as plant neurotransmitter-like signal molecule which coordinates activities of adjacent cells via electric and chemical signaling. Putative quantal release of auxin after electrical stimulation, if confirmed, would be part of neuronal communication between plant cells. As auxin transport across plant synapses is tightly linked with integrated sensory perception of environment, especially of omnipresent gravity and light, this process is proposed to mediate the plant perception of environment. These neuronal features allow sessile plants to integrate multitude of sensory signals into the adaptive behavior of whole plants and the animal-like exploratory behavior of growing roots. PMID:19704646
Carlotti, Marco; Degen, Maarten; Zhang, Yanxi; Chiechi, Ryan C
2016-09-15
Large-area tunneling junctions using eutectic Ga-In (EGaIn) as a top contact have proven to be a robust, reproducible, and technologically relevant platform for molecular electronics. Thus far, the majority of studies have focused on saturated molecules with backbones consisting mainly of alkanes in which the frontier orbitals are either highly localized or energetically inaccessible. We show that self-assembled monolayers of wire-like oligophenyleneethynylenes (OPEs), which are fully conjugated, only exhibit length-dependent tunneling behavior in a low-O 2 environment. We attribute this unexpected behavior to the sensitivity of injection current on environment. We conclude that, contrary to previous reports, the self-limiting layer of Ga 2 O 3 strongly influences transport properties and that the effect is related to the wetting behavior of the electrode. This result sheds light on the nature of the electrode-molecule interface and suggests that adhesive forces play a significant role in tunneling charge-transport in large-area molecular junctions.
Going All In: Unfavorable Sex Ratios Attenuate Choice Diversification.
Ackerman, Joshua M; Maner, Jon K; Carpenter, Stephanie M
2016-06-01
When faced with risky decisions, people typically choose to diversify their choices by allocating resources across a variety of options and thus avoid putting "all their eggs in one basket." The current research revealed that this tendency is reversed when people face an important cue to mating-related risk: skew in the operational sex ratio, or the ratio of men to women in the local environment. Counter to the typical strategy of choice diversification, findings from four studies demonstrated that the presence of romantically unfavorable sex ratios (those featuring more same-sex than opposite-sex individuals) led heterosexual people to diversify financial resources less and instead concentrate investment in high-risk/high-return options when making lottery, stock-pool, retirement-account, and research-funding decisions. These studies shed light on a key process by which people manage risks to mating success implied by unfavorable interpersonal environments. These choice patterns have important implications for mating behavior as well as other everyday forms of decision making. © The Author(s) 2016.
Energy harvesting: small scale energy production from ambient sources
NASA Astrophysics Data System (ADS)
Yeatman, Eric M.
2009-03-01
Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.
2016-01-01
Large-area tunneling junctions using eutectic Ga–In (EGaIn) as a top contact have proven to be a robust, reproducible, and technologically relevant platform for molecular electronics. Thus far, the majority of studies have focused on saturated molecules with backbones consisting mainly of alkanes in which the frontier orbitals are either highly localized or energetically inaccessible. We show that self-assembled monolayers of wire-like oligophenyleneethynylenes (OPEs), which are fully conjugated, only exhibit length-dependent tunneling behavior in a low-O2 environment. We attribute this unexpected behavior to the sensitivity of injection current on environment. We conclude that, contrary to previous reports, the self-limiting layer of Ga2O3 strongly influences transport properties and that the effect is related to the wetting behavior of the electrode. This result sheds light on the nature of the electrode–molecule interface and suggests that adhesive forces play a significant role in tunneling charge-transport in large-area molecular junctions. PMID:27738488
Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.
Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L
2017-06-14
Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.
An Illumination Modeling System for Human Factors Analyses
NASA Technical Reports Server (NTRS)
Huynh, Thong; Maida, James C.; Bond, Robert L. (Technical Monitor)
2002-01-01
Seeing is critical to human performance. Lighting is critical for seeing. Therefore, lighting is critical to human performance. This is common sense, and here on earth, it is easily taken for granted. However, on orbit, because the sun will rise or set every 45 minutes on average, humans working in space must cope with extremely dynamic lighting conditions. Contrast conditions of harsh shadowing and glare is also severe. The prediction of lighting conditions for critical operations is essential. Crew training can factor lighting into the lesson plans when necessary. Mission planners can determine whether low-light video cameras are required or whether additional luminaires need to be flown. The optimization of the quantity and quality of light is needed because of the effects on crew safety, on electrical power and on equipment maintainability. To address all of these issues, an illumination modeling system has been developed by the Graphics Research and Analyses Facility (GRAF) and Lighting Environment Test Facility (LETF) in the Space Human Factors Laboratory at NASA Johnson Space Center. The system uses physically based ray tracing software (Radiance) developed at Lawrence Berkeley Laboratories, a human factors oriented geometric modeling system (PLAID) and an extensive database of humans and environments. Material reflectivity properties of major surfaces and critical surfaces are measured using a gonio-reflectometer. Luminaires (lights) are measured for beam spread distribution, color and intensity. Video camera performances are measured for color and light sensitivity. 3D geometric models of humans and the environment are combined with the material and light models to form a system capable of predicting lighting conditions and visibility conditions in space.
Sloane, Philip D; Mitchell, C Madeline; Weisman, Gerald; Zimmerman, Sheryl; Foley, Kristie M Long; Lynn, Mary; Calkins, Margaret; Lawton, M Powell; Teresi, Jeanne; Grant, Leslie; Lindeman, David; Montgomery, Rhonda
2002-03-01
To develop an observational instrument that describes the ability of physical environments of institutional settings to address therapeutic goals for persons with dementia. A National Institute on Aging workgroup identified and subsequently revised items that evaluated exit control, maintenance, cleanliness, safety, orientation/cueing, privacy, unit autonomy, outdoor access, lighting, noise, visual/tactile stimulation, space/seating, and familiarity/homelikeness. The final instrument contains 84 discrete items and one global rating. A summary scale, the Special Care Unit Environmental Quality Scale (SCUEQS), consists of 18 items. Lighting items were validated using portable light meters. Concurrent criterion validation compared SCUEQS scores with the Professional Environmental Assessment Protocol (PEAP). Interrater kappa statistics for 74% of items were above.60. For another 10% of items, kappas could not be calculated due to empty cells, but interrater agreement was above 80%. The SCUEQS demonstrated an interrater reliability of.93, a test--retest reliability of.88, and an internal consistency of.81--.83. Light meter ratings correlated significantly with the Therapeutic Environment Screening Survey for Nursing Homes (TESS-NH) lighting items (r =.29--.38, p =.01--.04), and the SCUEQS correlated significantly with global PEAP ratings (r =.52, p <.01). The TESS-NH efficiently assesses discrete elements of the physical environment and has strong reliability and validity. The SCUEQS provides a quantitative measure of environmental quality in institutional settings.
Modelling the effect of diffuse light on canopy photosynthesis in controlled environments
NASA Technical Reports Server (NTRS)
Cavazzoni, James; Volk, Tyler; Tubiello, Francesco; Monje, Oscar; Janes, H. W. (Principal Investigator)
2002-01-01
A layered canopy model was used to analyze the effects of diffuse light on canopy gross photosynthesis in controlled environment plant growth chambers, where, in contrast to the field, highly diffuse light can occur at high irradiance. The model suggests that high diffuse light fractions (approximately 0.7) and irradiance (1400 micromoles m-2 s-1) may enhance crop life-cycle canopy gross photosynthesis for hydroponic wheat by about 20% compared to direct light at the same irradiance. Our simulations suggest that high accuracy is not needed in specifying diffuse light fractions in chambers between approximately 0.7 and 1, because simulated photosynthesis for closed canopies plateau in this range. We also examined the effect of leaf angle distribution on canopy photosynthesis under growth chamber conditions, as these distributions determine canopy extinction coefficients for direct and diffuse light. We show that the spherical leaf angle distribution is not suitable for modeling photosynthesis of planophile canopies (e.g., soybean and peanut) in growth chambers. Also, the absorption of the light reflected from the surface below the canopy should generally be included in model simulations, as the corresponding albedo values in the photosynthetically active range may be quite high in growth chambers (e.g., approximately 0.5). In addition to the modeling implications, our results suggest that diffuse light conditions should be considered when drawing conclusions from experiments in controlled environments.
Recording epileptic activity with MEG in a light-weight magnetic shield.
De Tiège, Xavier; Op de Beeck, Marc; Funke, Michael; Legros, Benjamin; Parkkonen, Lauri; Goldman, Serge; Van Bogaert, Patrick
2008-12-01
Ten patients with focal epilepsy were studied with magnetoencephalography (MEG) to determine if a new light-weight magnetically shielded room (lMSR) provides sufficient attenuation of magnetic interference to detect and localize the magnetic correlates of epileptic activity. Interictal MEG epileptic events co-localizing with the presumed location of the epileptogenic zone were found in all patients. MEG measurements performed in the lMSR provide an adequate signal-to-noise ratio for non-invasive localization of epileptic foci.
Aviation signal lighting : impacts of lighting characteristics on visibility.
DOT National Transportation Integrated Search
2011-01-01
This paper summarizes research on visual responses to colored light signals in the aviation and : roadway environment and on government requirements for lighting along airfields. The objective : is to identify gaps in the knowledge about how individu...
Niche construction on Bali: the gods of the countryside
Lansing, J. Stephen; Fox, Karyn M.
2011-01-01
Human niche construction encompasses both purely biological phenomena, such as the evolution of lactose tolerance, and dual inheritance theory, which investigates the transmission of cultural information. But does niche construction help to explain phenomena in which conscious intention also plays a role? The creation of the engineered landscape of Balinese rice terraces offers a test case. Population genetic analysis and archaeological evidence are used to investigate whether this phenomenon emerged historically from trial and error by generations of farmers, or alternatively was designed by Bali's rulers. In light of strong support for the former hypothesis, two models are developed to explore the emergence of functional structure at both local and global scales. As time goes forward and selected patterns of irrigation schedules are implemented, local variation in rice harvests influences future decisions by the farmers, creating a coupled human–natural system governed by feedback from the environment. This mathematical analysis received a measure of empirical support when government agricultural policies severed the local feedback channels, resulting in the almost instantaneous collapse of rice harvests. The historical process of niche construction may also have included an evolution of religious consciousness, reflected in the beliefs and practices of the water temple cult. PMID:21320905
Migrant decision-making in a frontier landscape
NASA Astrophysics Data System (ADS)
Salerno, Jonathan
2016-04-01
Across the tropics, rural farmers and livestock keepers use mobility as an adaptive livelihood strategy. Continued migration to and within frontier areas is widely viewed as a driver of environmental decline and biodiversity loss. Recent scholarship advances our understanding of migration decision-making in the context of changing climate and environments, and in doing so it highlights the variation in migration responses to primarily economic and environmental factors. Building on these insights, this letter investigates past and future migration decisions in a frontier landscape of Tanzania, East Africa. Combining field observations and household data within a multilevel modeling framework, the letter analyzes the explicit importance of social factors relative to economic and environmental factors in driving decisions to migrate or remain. Results indeed suggest that local community ties and non-local social networks drive both immobility and anticipated migration, respectively. In addition, positive interactions with local protected natural resource areas promote longer-term residence. Findings shed new light on how frontier areas transition to human dominated landscapes. This highlights critical links between migration behavior and the conservation of biodiversity and management of natural resources, as well as how migrants evolve to become integrated into communities.
Rymer, Michael J.; Roth, Barry; Bradbury, J. Platt; Forester, Richard M.
1988-01-01
We describe the depositional environments of the Cache, Lower Lake, and Kelseyville Formations in light of habitat preferences of recovered mollusks, ostracodes, and diatoms. Our reconstruction of paleoenvironments for these late Cenozoic deposits provides a framework for an understanding of basin evolution and deposition in the Clear Lake region. The Pliocene and Pleistocene Cache Formation was deposited primarily in stream and debris flow environments; fossils from fine-grained deposits indicate shallow, fresh-water environments with locally abundant aquatic vegetation. The fine-grained sediments (mudstone and siltstone) were probably deposited in ponds in abandoned channels or shallow basins behind natural levees. The abandoned channels and shallow basins were associated with the fluvial systems responsible for deposition of the bulk of the technically controlled Cache Formation. The Pleistocene Lower Lake Formation was deposited in a water mass large enough to contain a variety of local environments and current regimes. The recovered fossils imply a lake with water depths of 1 to 5 m. However, there is strong support from habitat preferences of the recovered fossils for inferring a wide range of water depths during deposition of the Lower Lake Formation; they indicate a progressively shallowing system and the culmination of a desiccating lacustrine system. The Pleistocene Kelseyville Formation represents primarily lacustrine deposition with only minor fluvial deposits around the margins of the basin. Local conglomerate beds and fossil tree stumps in growth position within the basin indicate occasional widespread fluvial incursions and depositional hiatuses. The Kelseyville strata represent a large water mass with a muddy and especially fluid substrate having permanent or sporadic periods of anoxia. Central-lake anoxia, whether permanent or at irregular intervals, is the simplest way to account for the low numbers of benthic organisms recovered from the Kelseyville Formation. Similar low-oxygen conditions for benthic life are represented throughout the sedimentary history of Clear Lake. Water depths for the Kelseyville Formation of 10 to 30 m and 12 m near the margins of the basin are inferred both before and after fluvial incursions. These water-depth fluctuations cannot be correlated with major climatic changes as indicated by pollen and fossil leaves and cones; they may be due to faulting in this technically active region.
ROLE OF CARBOHYDRATE SUPPLY IN WHITE AND BROWN ROOT RESPIRATION OF PONDEROSA PINE
Respiratory responses of fine ponderosa pine (Pinus ponderosa Laws) roots of differing morphology were measured to evaluate response to excision and to changes in the shoot light environment. Ponderosa pine seedlings were subject to either a 15:9 h light/dark environment over 24...
Navarro-Barranco, Carlos; Hughes, Lauren Elizabeth
2015-05-15
Light pollution from coastal urban development is a widespread and increasing threat to biodiversity. Many amphipod species migrate between the benthos and the pelagic environment and light seems is a main ecological factor which regulates migration. We explore the effect of artificial lighting on amphipod assemblages using two kind of lights, LED and halogen, and control traps in shallow waters of the Great Barrier Reef. Both types of artificial light traps showed a significantly higher abundance of individuals for all species in comparison to control traps. LED lights showed a stronger effect over the amphipod assemblages, with these traps collecting a higher number of individuals and differing species composition, with some species showing a specific attraction to LED light. As emergent amphipods are a key ecological group in the shallow water environment, the impact of artificial light can affect the broader functioning of the ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.
Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations.
Peretz-Soroka, Hagit; Pevzner, Alexander; Davidi, Guy; Naddaka, Vladimir; Kwiat, Moria; Huppert, Dan; Patolsky, Fernando
2015-07-08
Significant research efforts have been dedicated to the integration of biological species with electronic elements to yield smart bioelectronic devices. The integration of DNA, proteins, and whole living cells and tissues with electronic devices has been developed into numerous intriguing applications. In particular, the quantitative detection of biological species and monitoring of biological processes are both critical to numerous areas of medical and life sciences. Nevertheless, most current approaches merely focus on the "monitoring" of chemical processes taking place on the sensing surfaces, and little efforts have been invested in the conception of sensitive devices that can simultaneously "control" and "monitor" chemical and biological reactions by the application of on-surface reversible stimuli. Here, we demonstrate the light-controlled fine modulation of surface pH by the use of photoactive molecularly modified nanomaterials. Through the use of nanowire-based FET devices, we showed the capability of modulating the on-surface pH, by intensity-controlled light stimulus. This allowed us simultaneously and locally to control and monitor pH-sensitive biological reactions on the nanodevices surfaces, such as the local activation and inhibition of proteolytic enzymatic processes, as well as dissociation of antigen-antibody binding interactions. The demonstrated capability of locally modulating the on-surface effective pH, by a light stimuli, may be further applied in the local control of on-surface DNA hybridization/dehybridization processes, activation or inhibition of living cells processes, local switching of cellular function, local photoactivation of neuronal networks with single cell resolution and so forth.
NASA Astrophysics Data System (ADS)
Dyar, M. D.; Nelms, M.; Breves, E. A.
2012-12-01
Laser-induced breakdown spectrometer (LIBS), as implemented on the ChemCam instrument on Mars Science Lab and the proposed New Frontiers SAGE mission to Venus, can analyze elements from H to Pb from up to 7m standoff. This study examines the capabilities of LIBS to analyze H, O, B, Be, and Li under conditions simulating Earth, the Moon, and Mars. Of these, H is a major constituent of clay minerals and a key indicator of the presence of water. Its abundance in terrestrial materials ranges from 0 ppm up to 10's of wt.% H2O in hydrated sulfates and clays, with prominent emission lines occurring ca. 656.4 nm. O is an important indicator of atmospheric and magmatic coevolution, and has lines ca. 615.8, 656.2, 777.6, and 844.8 nm. Unfortunately there are very few geological samples from which O has been directly measured, but stoichiometry suggests that O varies from ca. 0 wt.% in sulfides to 21% in ferberite, 32% in ilmenite, 42% in amphiboles, 53% in quartz, 63% in melanterite, and 71% in epsomite. Li (lines at 413.3, 460.4, and 670.9 nm in vacuum), B (412.3 nm), and Be (313.1 nm) are highly mobile elements and key indicators of interaction with water. Local atmospheric composition and pressure significantly influence LIBS plasma intensity because the local atmosphere and the breakdown products from the atmospheric species interact with the ablated surface material in the plasma. Measurement of light elements with LIBS requires that spectra be acquired under conditions matching the remote environment. LIBS is critically dependent on the availability of well characterized, homogeneous reference materials that are closely matched in matrix (composition and structure) to the sample being studied. In modern geochemistry, analyses of most major, minor, and trace elements are routinely made. However, quantitative determination of light element concentrations in geological specimens still represents a major analytical challenge. Thus standards for which hydrogen, oxygen, and other light elements are directly measured are nearly nonexistent in the 1-2 g quantities needed for LIBS analyses. For this study, we have obtained two sample suites that provide calibrations needed for accurate analyses of H, O, B, Be, and Li in geological samples. The first suite of 11 samples was analyzed for oxygen by fast neutron activation analysis. The second suite includes 11 gem-quality minerals representing the major rock-forming species for B, Li, and Be-rich parageneses. Light elements were directly analyzed using a combination of EMPA, XRF, ion microprobe, uranium extraction, proton-induced gamma-ray emission (PIGE), and prompt gamma-ray neutron activation analysis (PGNAA). LIBS spectra were acquired at Mount Holyoke College under air, vacuum, and CO2 to simulate terrestrial, lunar, and martian environments. Spectra were then used to develop three separate calibration models (one for each environment), enabling LIBS characterization of light elements using multivariate analyses. Results show that when direct analyses of H, O, Li, B, and Be are used rather than LOI results, inferred, or indirectly calculated values, optimal root mean squared errors of prediction result. We are actively adding samples to these calibration suites, and we expect that prediction errors (accuracies) of <1wt% for these elements are possible.
Active Brownian motion tunable by light.
Buttinoni, Ivo; Volpe, Giovanni; Kümmel, Felix; Volpe, Giorgio; Bechinger, Clemens
2012-07-18
Active Brownian particles are capable of taking up energy from their environment and converting it into directed motion; examples range from chemotactic cells and bacteria to artificial micro-swimmers. We have recently demonstrated that Janus particles, i.e. gold-capped colloidal spheres, suspended in a critical binary liquid mixture perform active Brownian motion when illuminated by light. In this paper, we investigate in more detail their swimming mechanism, leading to active Brownian motion. We show that the illumination-borne heating induces a local asymmetric demixing of the binary mixture, generating a spatial chemical concentration gradient which is responsible for the particle's self-diffusiophoretic motion. We study this effect as a function of the functionalization of the gold cap, the particle size and the illumination intensity: the functionalization determines what component of the binary mixture is preferentially adsorbed at the cap and the swimming direction (towards or away from the cap); the particle size determines the rotational diffusion and, therefore, the random reorientation of the particle; and the intensity tunes the strength of the heating and, therefore, of the motion. Finally, we harness this dependence of the swimming strength on the illumination intensity to investigate the behavior of a micro-swimmer in a spatial light gradient, where its swimming properties are space-dependent.
Lefrancq, B; Lateur, M
2006-01-01
In 1988, the Department of Biological Control and Plant Genetic Resources at the Walloon Agricultural Research Centre started an apple-breeding programme using local genetic resources and modern varieties. Our objective is to create high quality commercial cultivars with durable resistance to scab (Venturia inaequalis), powdery mildew (Podosphaera leucotricha) and canker (Nectria galligena). The breeding strategy is based on crossing old apple cultivars and landraces selected as parents for low disease susceptibility and possessing other desirable horticultural characteristics. The programme aims to develop an early and efficient selection methodology adapted to partial disease resistance. One of the objectives is to define the optimal screening limit for discarding individuals after artificial scab inoculation tests. Working with large populations of seedlings entails spacing the seedling scab tests throughout the year. In order to work during winter, seedlings were grown in controlled cabinet conditions and in a glasshouse with supplementary lighting. To assess the bias introduced by these conditions, two trials were conducted: the first one to compare the influence of both environments on the results of scab inoculation tests, and the second one to assess the influence of the duration of supplementary lighting. The results enabled us to evaluate the limits of artificial cultural systems.
Environment assisted degradation mechanisms in advanced light metals
NASA Technical Reports Server (NTRS)
Gangloff, R. P.; Stoner, G. E.; Swanson, R. E.
1989-01-01
A multifaceted research program on the performance of advanced light metallic alloys in aggressive aerospace environments, and associated environmental failure mechanisms was initiated. The general goal is to characterize alloy behavior quantitatively and to develop predictive mechanisms for environmental failure modes. Successes in this regard will provide the basis for metallurgical optimization of alloy performance, for chemical control of aggressive environments, and for engineering life prediction with damage tolerance and long term reliability.
Assessing Planetary Habitability: Don't Forget Exotic Life!
NASA Astrophysics Data System (ADS)
Schulze-Makuch, Dirk
2012-05-01
With the confirmed detection of more than 700 exoplanets, the temptation looms large to constrain the search for extraterrestrial life to Earth-type planets, which have a similar distance to their star, a similar radius, mass and density. Yet, a look even within our Solar System points to a variety of localities to which life could have adapted to outside of the so-called Habitable Zone (HZ). Examples include the hydrocarbon lakes on Titan, the subsurface ocean environment of Europa, the near- surface environment of Mars, and the lower atmosphere of Venus. Recent Earth analog work and extremophile investigations support this notion, such as the discovery of a large microbial community in a liquid asphalt lake in Trinidad (as analog to Titan) or the discovery of a cryptoendolithic habitat in the Antarctic desert, which exists inside rocks, such as beneath sandstone surfaces and dolerite clasts, and supports a variety of eukaryotic algae, fungi, and cyanobacteria (as analog to Mars). We developed a Planetary Habitability Index (PHI, Schulze-Makuch et al., 2011), which was developed to prioritize exoplanets not based on their similarity to Earth, but whether the extraterrestrial environment could, in principle, be a suitable habitat for life. The index includes parameters that are considered to be essential for life such as the presence of a solid substrate, an atmosphere, energy sources, polymeric chemistry, and liquids on the planetary surface. However, the index does not require that this liquid is water or that the energy source is light (though the presence of light is a definite advantage). Applying the PHI to our Solar System, Earth comes in first, with Titan second, and Mars third.
Sundar, Bhuvanesh; Hamilton, Alasdair C; Courtial, Johannes
2009-02-01
We derive a formal description of local light-ray rotation in terms of complex refractive indices. We show that Fermat's principle holds, and we derive an extended Snell's law. The change in the angle of a light ray with respect to the normal of a refractive index interface is described by the modulus of the refractive index ratio; the rotation around the interface normal is described by the argument of the refractive index ratio.
Pilot-aided feedforward data recovery in optical coherent communications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Bing
2017-09-19
A method and a system for pilot-aided feedforward data recovery are provided. The method and system include a receiver including a strong local oscillator operating in a free running mode independent of a signal light source. The phase relation between the signal light source and the local oscillator source is determined based on quadrature measurements on pilot pulses from the signal light source. Using the above phase relation, information encoded in an incoming signal can be recovered, optionally for use in communication with classical coherent communication protocols and quantum communication protocols.
Circadian Entrainment to the Natural Light-Dark Cycle Across Seasons and the Weekend
Stothard, Ellen R.; McHill, Andrew W.; Depner, Christopher M.; Birks, Brian R.; Moehlman, Thomas M.; Ritchie, Hannah K.; Guzzetti, Jacob R.; Chinoy, Evan D.; LeBourgeois, Monique K.; Axelsson, John; Wright, Kenneth P.
2017-01-01
Summary Reduced exposure to daytime sunlight and increased exposure to electrical lighting at night leads to late circadian and sleep timing [1–3]. We have previously shown that exposure to a natural summer 14 hr 40 min:9 hr 20 min light-dark cycle entrains the human circadian clock to solar time, such that the internal biological night begins near sunset and ends near sunrise [1]. Here we show the beginning of the biological night and sleep occur earlier after a week exposure to a natural winter 9 hr 20 min:14 hr 40 min light-dark cycle as compared to the modern electrical lighting environment. Further, we find the human circadian clock is sensitive to seasonal changes in the natural light-dark cycle showing an expansion of the biological night in winter compared to summer—akin to that seen in non-humans [4–8]. We also show circadian and sleep timing occur earlier after spending a weekend camping in a summer 14 hr 39 min:9 hr 21 min natural light-dark cycle compared to a typical weekend in the modern environment. Weekend exposure to natural light was sufficient to achieve ~69% of the shift in circadian timing we previously reported after one week exposure to natural light [1]. These findings provide evidence that the human circadian clock adapts to seasonal changes in the natural light-dark cycle and is timed later in the modern environment in both winter and summer. Further, we demonstrate earlier circadian timing can be rapidly achieved through natural light exposure during a weekend spent camping. PMID:28162893
NASA Technical Reports Server (NTRS)
Fletcher, Lauren E.; Aldridge, Ann M.; Wheelwright, Charles; Maida, James
1997-01-01
Task illumination has a major impact on human performance: What a person can perceive in his environment significantly affects his ability to perform tasks, especially in space's harsh environment. Training for lighting conditions in space has long depended on physical models and simulations to emulate the effect of lighting, but such tests are expensive and time-consuming. To evaluate lighting conditions not easily simulated on Earth, personnel at NASA Johnson Space Center's (JSC) Graphics Research and Analysis Facility (GRAF) have been developing computerized simulations of various illumination conditions using the ray-tracing program, Radiance, developed by Greg Ward at Lawrence Berkeley Laboratory. Because these computer simulations are only as accurate as the data used, accurate information about the reflectance properties of materials and light distributions is needed. JSC's Lighting Environment Test Facility (LETF) personnel gathered material reflectance properties for a large number of paints, metals, and cloths used in the Space Shuttle and Space Station programs, and processed these data into reflectance parameters needed for the computer simulations. They also gathered lamp distribution data for most of the light sources used, and validated the ability to accurately simulate lighting levels by comparing predictions with measurements for several ground-based tests. The result of this study is a database of material reflectance properties for a wide variety of materials, and lighting information for most of the standard light sources used in the Shuttle/Station programs. The combination of the Radiance program and GRAF's graphics capability form a validated computerized lighting simulation capability for NASA.
Rietveld, Emma; Maan, Martine E.
2018-01-01
Background Efficient communication requires that signals are well transmitted and perceived in a given environment. Natural selection therefore drives the evolution of different signals in different environments. In addition, environmental heterogeneity at small spatial or temporal scales may favour phenotypic plasticity in signaling traits, as plasticity may allow rapid adjustment of signal expression to optimize transmission. In this study, we explore signal plasticity in the nuptial coloration of Lake Victoria cichlids, Pundamilia pundamilia and Pundamilia nyererei. These two species differ in male coloration, which mediates species-assortative mating. They occur in adjacent depth ranges with different light environments. Given the close proximity of their habitats, overlapping at some locations, plasticity in male coloration could contribute to male reproductive success but interfere with reproductive isolation. Methods We reared P. pundamilia, P. nyererei, and their hybrids under light conditions mimicking the two depth ranges in Lake Victoria. From photographs, we quantified the nuptial coloration of males, spanning the entire visible spectrum. In experiment 1, we examined developmental colour plasticity by comparing sibling males reared in each light condition. In experiment 2, we assessed colour plasticity in adulthood, by switching adult males between conditions and tracking coloration for 100 days. Results We found that nuptial colour in Pundamilia did respond plastically to our light manipulations, but only in a limited hue range. Fish that were reared in light conditions mimicking the deeper habitat were significantly greener than those in conditions mimicking shallow waters. The species-specific nuptial colours (blue and red) did not change. When moved to the opposing light condition as adults, males did not change colour. Discussion Our results show that species-specific nuptial colours, which are subject to strong divergent selection by female choice, are not plastic. We do find plasticity in green coloration, a response that may contribute to visual conspicuousness in darker, red-shifted light environments. These results suggest that light-environment-induced plasticity in male nuptial coloration in P. pundamilia and P. nyererei is limited and does not interfere with reproductive isolation. PMID:29312830
Arsenic in the environment: Biology and chemistry
Bhattacharya, Prosun; Welch, Alan H.; Stollenwerk, Kenneth G.; McLaughlin , Mike J.; Bundschuh, Jochen; Panaullah, G.
2007-01-01
Arsenic (As) distribution and toxicology in the environment is a serious issue, with millions of individuals worldwide being affected by As toxicosis. Sources of As contamination are both natural and anthropogenic and the scale of contamination ranges from local to regional. There are many areas of research that are being actively pursued to address the As contamination problem. These include new methods of screening for As in the field, determining the epidemiology of As in humans, and identifying the risk of As uptake in agriculture. Remediation of As-affected water supplies is important and research includes assessing natural remediation potential as well as phytoremediation. Another area of active research is on the microbially mediated biogeochemical interactions of As in the environment.In 2005, a conference was convened to bring together scientists involved in many of the different areas of As research. In this paper, we present a synthesis of the As issues in the light of long-standing research and with regards to the new findings presented at this conference. This contribution provides a backdrop to the issues raised at the conference together with an overview of contemporary and historical issues of As contamination and health impacts.
Late Miocene sedimentary environments in south-western Amazonia (Solimões Formation; Brazil)
Gross, Martin; Piller, Werner E.; Ramos, Maria Ines; Douglas da Silva Paz, Jackson
2011-01-01
In Miocene times a vast wetland existed in Western Amazonia. Whereas the general development of this amazing ecosystem is well established, many questions remain open on sedimentary environments, stratigraphical correlations as well as its palaeogeographical configuration. Several outcrops located in a barely studied region around Eirunepé (SW Amazonas state, Brazil) were investigated to obtain basic sedimentological data. The observed deposits belong to the upper part of the Solimões Formation and are biostratigraphically dated to the Late Miocene. Vertically as well as laterally highly variable fine-grained clastic successions were recorded. Based on the lithofacies assemblages, these sediments represent fluvial deposits, possibly of an anastomosing river system. Sand bodies formed within active channels and dominant overbank fines are described (levees, crevasse splays/channels/deltas, abandoned channels, backswamps, floodplain paleosols). Lacustrine environments are restricted to local floodplain ponds/lakes. The mollusc and ostracod content as well as very light δ18O and δ13C values, measured on ostracod valves, refer to exclusively freshwater conditions. Based on palaeontological and geological results the existence of a long-lived lake (“Lake Pebas”) or any influx of marine waters can be excluded for that region during the Late Miocene. PMID:26523089
Late Miocene sedimentary environments in south-western Amazonia (Solimões Formation; Brazil).
Gross, Martin; Piller, Werner E; Ramos, Maria Ines; Douglas da Silva Paz, Jackson
2011-08-01
In Miocene times a vast wetland existed in Western Amazonia. Whereas the general development of this amazing ecosystem is well established, many questions remain open on sedimentary environments, stratigraphical correlations as well as its palaeogeographical configuration. Several outcrops located in a barely studied region around Eirunepé (SW Amazonas state, Brazil) were investigated to obtain basic sedimentological data. The observed deposits belong to the upper part of the Solimões Formation and are biostratigraphically dated to the Late Miocene. Vertically as well as laterally highly variable fine-grained clastic successions were recorded. Based on the lithofacies assemblages, these sediments represent fluvial deposits, possibly of an anastomosing river system. Sand bodies formed within active channels and dominant overbank fines are described (levees, crevasse splays/channels/deltas, abandoned channels, backswamps, floodplain paleosols). Lacustrine environments are restricted to local floodplain ponds/lakes. The mollusc and ostracod content as well as very light δ 18 O and δ 13 C values, measured on ostracod valves, refer to exclusively freshwater conditions. Based on palaeontological and geological results the existence of a long-lived lake ("Lake Pebas") or any influx of marine waters can be excluded for that region during the Late Miocene.
Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring.
Trasviña-Moreno, Carlos A; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando
2017-02-24
Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario.
Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring
Trasviña-Moreno, Carlos A.; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando
2017-01-01
Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario. PMID:28245587
Phytochrome-Mediated Detection of Changes in Reflected Light
Mancinelli, Alberto L.
1991-01-01
Measurements of phytochrome photoequilibria and photoconversion rates in vivo, in seedlings of Cucurbita pepo L. exposed to light in growth chambers, indicate that significant changes in the state of phytochrome can be brought about by changes in the quality and quantity of the light reflected from the walls of the growth chambers. The changes in reflected light, although large, were small in terms of the total radiation (direct light from the lamps plus wall-reflected light) to which the seedlings were exposed. The conditions used were approximate simulations of direct and reflected sunlight conditions in the natural environment. Keeping in mind the limitations imposed by the approximation of the simulations, the results from this study are consistent with the hypothesis that, in the natural environment, a plant might be capable of detecting the presence of nearby plants, before being shaded by them, through the phytochrome-mediated perception of changes in reflected light. PMID:16667942
Color Choice is Everything - Impacts Color makes to the Lighting Environment
NASA Technical Reports Server (NTRS)
Clark, Toni A.
2012-01-01
When contracts are let out to design multiple systems in a vehicle, it is a challenge to maintain integration between system leads. Designers on niche systems, like lighting and control panel design, often get caught up in the challenge of designing the light source or visual interface and fail to include time in their schedule to work with system architects on how their lighting system will be integrated. Additionally, behavioral scientists, industrial designers, and materials engineers get caught up with the materials and look of the system, but often fail to consider how the selection of their materials could affect the certification or performance of electronic devices like lighting systems. Additionally, computer modeling of the system architecture often assumes a perfect environment without the clutter of actual human use (dirt, stowage, crowding). As a result, lighting systems, and backlit displays run the risk of being overdesigned or under designed. Engineers making the assumption that because they have no input or there is no requirement on work surface reflectance, make the assumption that they can t count on good material choices and thus may install more lighting than is necessary. While having more lights may seem better, for a vehicle that is trying to conserve power, more lights may not be a good option. On the other hand, designers who made the opposite assumption and designed a lighting system that only produced just enough light, often wind up with a system that did conserve power, but didn t produce enough light. These situations are exasperated when the system starts to be used and the models are not perfect anymore. The lack of coordination and iterative design not only can impact lighting levels within an environment, but also can affect color perception. This is because, if materials do not represent a gradation of white or black, the material unevenly absorbs and reflects light at different wavelengths of the visual spectrum. The lighting designer may have built a light that meets light spectra requirements, but the eventual light reaching the human user may not be the spectra of light architects intended, if materials near the light source change the spectrum just by how much color is absorbed or reflected. With the recent findings concerning Circadian rhythm, where the spectra of light is extremely important for addressing crew sleep and wake cycles, system architects should pay considerable attention on the impact material choices have in changing the light spectrum in an environment. This presentation will show examples of how material choices impact the resulting illuminance, color spectrum, and power usage of an illuminated space. Its goal is to encourage system designers and planners to use more care in development of requirements and the verification of systems intended for the human visual interface.
Gillham, Michael; Howells, Gareth; Spurgeon, Sarah; McElroy, Ben
2013-01-01
Assistive robotic applications require systems capable of interaction in the human world, a workspace which is highly dynamic and not always predictable. Mobile assistive devices face the additional and complex problem of when and if intervention should occur; therefore before any trajectory assistance is given, the robotic device must know where it is in real-time, without unnecessary disruption or delay to the user requirements. In this paper, we demonstrate a novel robust method for determining room identification from floor features in a real-time computational frame for autonomous and assistive robotics in the human environment. We utilize two inexpensive sensors: an optical mouse sensor for straightforward and rapid, texture or pattern sampling, and a four color photodiode light sensor for fast color determination. We show how data relating floor texture and color obtained from typical dynamic human environments, using these two sensors, compares favorably with data obtained from a standard webcam. We show that suitable data can be extracted from these two sensors at a rate 16 times faster than a standard webcam, and that these data are in a form which can be rapidly processed using readily available classification techniques, suitable for real-time system application. We achieved a 95% correct classification accuracy identifying 133 rooms' flooring from 35 classes, suitable for fast coarse global room localization application, boundary crossing detection, and additionally some degree of surface type identification. PMID:24351647
Gillham, Michael; Howells, Gareth; Spurgeon, Sarah; McElroy, Ben
2013-12-17
Assistive robotic applications require systems capable of interaction in the human world, a workspace which is highly dynamic and not always predictable. Mobile assistive devices face the additional and complex problem of when and if intervention should occur; therefore before any trajectory assistance is given, the robotic device must know where it is in real-time, without unnecessary disruption or delay to the user requirements. In this paper, we demonstrate a novel robust method for determining room identification from floor features in a real-time computational frame for autonomous and assistive robotics in the human environment. We utilize two inexpensive sensors: an optical mouse sensor for straightforward and rapid, texture or pattern sampling, and a four color photodiode light sensor for fast color determination. We show how data relating floor texture and color obtained from typical dynamic human environments, using these two sensors, compares favorably with data obtained from a standard webcam. We show that suitable data can be extracted from these two sensors at a rate 16 times faster than a standard webcam, and that these data are in a form which can be rapidly processed using readily available classification techniques, suitable for real-time system application. We achieved a 95% correct classification accuracy identifying 133 rooms' flooring from 35 classes, suitable for fast coarse global room localization application, boundary crossing detection, and additionally some degree of surface type identification.
Lattice instability and elastic response of metastable Mo1-xSix thin films
NASA Astrophysics Data System (ADS)
Fillon, A.; Jaouen, C.; Michel, A.; Abadias, G.; Tromas, C.; Belliard, L.; Perrin, B.; Djemia, Ph.
2013-11-01
We present a detailed experimental study on Mo1-xSix thin films, an archetypal alloy system combining metallic and semiconductor materials. The correlations between structure and elastic response are comprehensively investigated. We focus on assessing trends for understanding the evolution of elastic properties upon Si alloying in relation to the structural state (crystalline vs amorphous), bonding character (metallic vs covalent), and local atomic environment. By combining picosecond ultrasonics and Brillouin light scattering techniques, a complete set of effective elastic constants and mechanical moduli (B, G, E) is provided in the whole compositional range, covering bcc solid solutions (x < 0.20) and the amorphous phase (0.20 < x < 1.0). A softening of the shear and Young moduli and a concomitant decrease of the Debye temperature is revealed for crystalline alloys, with a significant drop being observed at x ˜ 0.2 corresponding to the limit of crystal lattice stability. Amorphous alloys exhibit a more complex elastic response, related to variations in coordination number, atomic volume, and bonding state, depending on Si content. Finally, distinct evolutions of the G/B ratio as a function of Cauchy pressure are reported for crystalline and amorphous alloys, enabling us to identify signatures of ductility vs brittleness in the features of the local atomic environment. This work paves the way to design materials with improved mechanical properties by appropriate chemical substitution or impurity incorporation during thin-film growth.
NASA Astrophysics Data System (ADS)
Lu, Chieh Han; Chen, Peilin; Chen, Bi-Chang
2017-02-01
Optical imaging techniques provide much important information in understanding life science especially cellular structure and morphology because "seeing is believing". However, the resolution of optical imaging is limited by the diffraction limit, which is discovered by Ernst Abbe, i.e. λ/2(NA) (NA is the numerical aperture of the objective lens). Fluorescence super-resolution microscopic techniques such as Stimulated emission depletion microscopy (STED), Photoactivated localization microscopy (PALM), and Stochastic optical reconstruction microscopy (STORM) are invented to have the capability of seeing biological entities down to molecular level that are smaller than the diffraction limit (around 200-nm in lateral resolution). These techniques do not physically violate the Abbe limit of resolution but exploit the photoluminescence properties and labelling specificity of fluorescence molecules to achieve super-resolution imaging. However, these super-resolution techniques limit most of their applications to the 2D imaging of fixed or dead samples due to the high laser power needed or slow speed for the localization process. Extended from 2D imaging, light sheet microscopy has been proven to have a lot of applications on 3D imaging at much better spatiotemporal resolutions due to its intrinsic optical sectioning and high imaging speed. Herein, we combine the advantage of localization microscopy and light-sheet microscopy to have super-resolved cellular imaging in 3D across large field of view. With high-density labeled spontaneous blinking fluorophore and wide-field detection of light-sheet microscopy, these allow us to construct 3D super-resolution multi-cellular imaging at high speed ( minutes) by light-sheet single-molecule localization microscopy.
Analytical description of the transverse Anderson localization of light
NASA Astrophysics Data System (ADS)
Schirmacher, Walter; Leonetti, Marco; Ruocco, Giancarlo
2017-04-01
We develop an analytical theory for describing the transverse localization properties of light beams in optical fibers with lateral disorder. This theory, which starts from the widely used paraxial approximation for the Helmholtz equation of the electric field, is a combination of an effective-medium theory for transverse disorder with the self-consistent localization theory of Vollhardt and Wölfle. We obtain explicit expressions for the dependence of the transverse localization length on the direction along the fiber. These results are in agreement with simulational data published recently by Karbasi et al. In particular we explain the focussing mechanism leading to the establishment of narrow transparent channels along the sample.
NASA Astrophysics Data System (ADS)
Lorenz, Ralph
Unlike most solar system surface environments, Titan has an atmosphere that is both cold and dense. This means heat transfer to and from a vehicle is determined by convection, rather than by radiation which dominates on Earth and Mars. With surface temperatures near 94K, batteries and systems require heating to operate. Solar power is impractical, so a spacecraft intended to operate for longer than a few hours on Titan must have a radioisotope power source (RPS). Such sources convert heat from Plutonium decay into electricity, with an efficiency that varies from about 5% for thermoelectric systems to 20% for engine cycles such as Stirling. For vehicles with 100-200W electrical power, the 500-4000 W ‘waste’ heat in the Titan environment can be valuable in that it can be exploited to maintain thermal conditions inside the vehicle. The generally benign Titan environment, and the outstanding scientific and popular interest in its exploration, has attracted a number of mission concepts including a lander for Titan’s equatorial dunefields, light gas and hot air (‘Montgolfière’) balloons, airplanes, and capsules that float on its polar seas (e.g. the proposed Titan Mare Explorer.) However, the choice of conversion technology is key to the success of these different platforms. Waste heat can perturb meteorological measurements in several ways. First by creating a warm air plume (an effect observed on Viking and Curiosity.) Second, rain or seaspray falling onto hot radiator surfaces can evaporate causing a local enhancement of methane humidity. Third, sufficiently strong heating could perturb local winds. Similar effects, and the potential generation of effervescence or even fog, may result for capsules floating in liquid hydrocarbons. For landers and drifting buoys, these perturbations may significantly degrade environmental measurements, or at least demand tall meteorology masts, for the higher waste heat output of thermoelectric systems, and a Stirling system therefore has considerable appeal. For airplanes, the superior power:weight ratio of Stirling systems is virtually essential, and for light gas balloons, the lower thermal perturbation of a Stirling system is certainly preferable. On the other hand, the lifting capacity of a Montgolfière balloon is directly proportional to the heat flux, and a thermoelectric system is more practical. Similarly, if magnetic fields or seismic measurements on a lander are of higher priority than meteorology, the lack of moving parts in a thermoelectric system is preferable. I review the Titan surface environment and the thermal interactions of the Huygens probe with it, and discuss the implications of RPS waste heat for different science mission concepts.
Demonstration of a Fiber Optic Regression Probe in a High-Temperature Flow
NASA Technical Reports Server (NTRS)
Korman, Valentin; Polzin, Kurt
2011-01-01
The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over an operating envelope could also be useful in the modeling detailed physical processes. The sensor has been embedded in many regressing media to demonstrate the capabilities in a number of regressing environments. In the present work, sensors were installed in the eroding/regressing throat region of a converging-diverging flow, with the working gas heated to high temperatures by means of a high-pressure arc discharge at steady-state discharge power levels up to 500 kW. The amount of regression observed in each material sample was quantified using a later profilometer, which was compared to the in-situ erosion measurements to demonstrate the efficacy of the measurement technique in very harsh, high-temperature environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunder, Andrea; Chaboyer, Brian; Layden, Andrew
New R-band observations of 21 local field RR Lyrae variable stars are used to explore the reliability of minimum light (V - R) colors as a tool for measuring interstellar reddening. For each star, R-band intensity mean magnitudes and light amplitudes are presented. Corresponding V-band light curves from the literature are supplemented with the new photometry, and (V - R) colors at minimum light are determined for a subset of these stars as well as for other stars in the literature. Two different definitions of minimum light color are examined, one which uses a Fourier decomposition to the V andmore » R light curves to find (V - R) at minimum V-band light, (V - R) {sup F} {sub min}, and the other which uses the average color between the phase interval 0.5-0.8, (V - R){sup {phi}}{sup (0.5-0.8)} {sub min}. From 31 stars with a wide range of metallicities and pulsation periods, the mean dereddened RR Lyrae color at minimum light is (V - R) {sup F} {sub min,0} = 0.28 {+-} 0.02 mag and (V - R){sup {phi}}{sup (0.5-0.8)} {sub min,0} = 0.27 {+-} 0.02 mag. As was found by Guldenschuh et al. using (V - I) colors, any dependence of the star's minimum light color on metallicity or pulsation amplitude is too weak to be formally detected. We find that the intrinsic (V - R) of Galactic bulge RR Lyrae stars are similar to those found by their local counterparts and hence that bulge RR0 Lyrae stars do not have anomalous colors as compared to the local RR Lyrae stars.« less
Basic quantitative assessment of visual performance in patients with very low vision.
Bach, Michael; Wilke, Michaela; Wilhelm, Barbara; Zrenner, Eberhart; Wilke, Robert
2010-02-01
A variety of approaches to developing visual prostheses are being pursued: subretinal, epiretinal, via the optic nerve, or via the visual cortex. This report presents a method of comparing their efficacy at genuinely improving visual function, starting at no light perception (NLP). A test battery (a computer program, Basic Assessment of Light and Motion [BaLM]) was developed in four basic visual dimensions: (1) light perception (light/no light), with an unstructured large-field stimulus; (2) temporal resolution, with single versus double flash discrimination; (3) localization of light, where a wedge extends from the center into four possible directions; and (4) motion, with a coarse pattern moving in one of four directions. Two- or four-alternative, forced-choice paradigms were used. The participants' responses were self-paced and delivered with a keypad. The feasibility of the BaLM was tested in 73 eyes of 51 patients with low vision. The light and time test modules discriminated between NLP and light perception (LP). The localization and motion modules showed no significant response for NLP but discriminated between LP and hand movement (HM). All four modules reached their ceilings in the acuity categories higher than HM. BaLM results systematically differed between the very-low-acuity categories NLP, LP, and HM. Light and time yielded similar results, as did localization and motion; still, for assessing the visual prostheses with differing temporal characteristics, they are not redundant. The results suggest that this simple test battery provides a quantitative assessment of visual function in the very-low-vision range from NLP to HM.
Surface dynamics and mechanics in liquid crystal polymer coatings
NASA Astrophysics Data System (ADS)
Liu, Danqing; Broer, Dirk J.
2015-03-01
Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borer, Elizabeth T.; et al, et al
Human alterations to nutrient cycles1,2 and herbivore communities3–7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems8,9. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces tomore » control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.« less
Hyun, Hoon; Park, Min Ho; Lim, Wonbong; Kim, So Yeon; Jo, Danbi; Jung, Jin Seok; Jo, Gayoung; Um, Sewook; Lee, Deok-Won; Yang, Dae Hyeok
2018-05-11
Currently available chemotherapy is associated with serious side effects, and therefore novel drug delivery systems (DDSs) are required to specifically deliver anticancer drugs to targeted sites. In this study, we evaluated the feasibility of visible light-cured glycol chitosan (GC) hydrogels with controlled release of doxorubicin⋅hydrochloride (DOX⋅HCl) as local DDSs for effective cancer therapy in vivo. The storage modulus of the hydrogel precursor solutions was increased as a function of visible light irradiation time. In addition, the swelling ratio of the hydrogel irradiated for 10 s (GC 10 /DOX) was greater than in 60 s (GC 60 /DOX). In vitro release test showed that DOX was rapidly released in GC 10 /DOX compared with GC 60 /DOX due to the density of cross-linking. In vitro and in vivo tests including cell viability and measurement of tumor volume showed that the local treatment of GC 10 /DOX yielded substantially greater antitumor effect compared with that of GC 60 /DOX. Therefore, the visible light-cured GC hydrogel system may exhibit clinical potential as a local DDS of anticancer drugs with controlled release, by modulating cross-linking density.
Community-Based Outdoor Education Using a Local Approach to Conservation
ERIC Educational Resources Information Center
Maeda, Kazushi
2005-01-01
Local people of a community interact with nature in a way that is mediated by their local cultures and shape their own environment. We need a local approach to conservation for the local environment adding to the political or technological approaches for global environmental problems such as the destruction of the ozone layer or global warming.…
RED or READ: the built environment is colored
NASA Astrophysics Data System (ADS)
Smith, Dianne
2002-06-01
How important is color in the design of our built environment? Prototypes and massing models for designs are often presented in white or monochromatic combinations, irrespective of the materials incorporated and the colors that may be applied in the final constructed building, interior or object. Therefore, it is of interest to identify the way color is positioned by designers in how they go about the business of making environments. The built environment is understood by the designers and design researchers generally in one of four fields - as object, as product, as communicator, or as social domain. In addition, Franz identified four conceptions of designing held by designers - the experiential conception, the structural conception, the production conception and the retail conception. Fashion and style are often associated with color in a local context and may simply be applied to the physical environment because it is in fashion, rather than because of what it communicates more broadly. It is assumed that the integration of color in the built environment is influenced by these understandings. In order to address color's position in the design process and the importance of color in relation to space, form, and the experience of place, a selection of Queensland architects and interior designers were surveyed. The study is not conclusive, however, it does identify differences and commonalities between the participants that are of interest in light of the above issues. Explorations into environmental meaning, in addition to color theory and decorative applications, are hypothesized to be important sources of information for designers involved in the coloration of the built environment.
Inflammatory cytokines in the brain: does the CNS shape immune responses?
Owens, T; Renno, T; Taupin, V; Krakowski, M
1994-12-01
Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far from being an immunologically privileged organ, T lymphocytes may be regular and frequent visitors to the CNS, for purposes of immune surveillance. Here, Trevor Owens and colleagues propose that the brain itself can regulate or shape immune responses therein. Furthermore, given that the immune cells may be subverted to autoimmunity, they suggest that the study of inflammatory autoimmune disease in the brain may shed light on the ability of the local environment to regulate immune responses.
Black Hole Safari: Tracking Populations and Hunting Big Game
NASA Astrophysics Data System (ADS)
McConnell, N. J.
2013-10-01
Understanding the physical connection, or lack thereof, between the growth of galaxies and supermassive black holes is a key challenge in extragalactic astronomy. Dynamical studies of nearby galaxies are building a census of black hole masses across a broad range of galaxy types and uncovering statistical correlations between galaxy bulge properties and black hole masses. These local correlations provide a baseline for studying galaxies and black holes at higher redshifts. Recent measurements have probed the extremes of the supermassive black hole population and introduced surprises that challenge simple models of black hole and galaxy co-evolution. Future advances in the quality and quantity of dynamical black hole mass measurements will shed light upon the growth of massive galaxies and black holes in different cosmic environments.
Atmospheric photochemistry at a fatty acid-coated air-water interface
NASA Astrophysics Data System (ADS)
Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D. James; George, Christian
2016-08-01
Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.
Ultraconfined Plasmonic Hotspots Inside Graphene Nanobubbles.
Fei, Z; Foley, J J; Gannett, W; Liu, M K; Dai, S; Ni, G X; Zettl, A; Fogler, M M; Wiederrecht, G P; Gray, S K; Basov, D N
2016-12-14
We report on a nanoinfrared (IR) imaging study of ultraconfined plasmonic hotspots inside graphene nanobubbles formed in graphene/hexagonal boron nitride (hBN) heterostructures. The volume of these plasmonic hotspots is more than one-million-times smaller than what could be achieved by free-space IR photons, and their real-space distributions are controlled by the sizes and shapes of the nanobubbles. Theoretical analysis indicates that the observed plasmonic hotspots are formed due to a significant increase of the local plasmon wavelength in the nanobubble regions. Such an increase is attributed to the high sensitivity of graphene plasmons to its dielectric environment. Our work presents a novel scheme for plasmonic hotspot formation and sheds light on future applications of graphene nanobubbles for plasmon-enhanced IR spectroscopy.
NASA Technical Reports Server (NTRS)
1982-01-01
Currently based on ground and aerial surveys, the land cover data base of the Pennsylvania Power and Light Company is routinely used for modelling the effects of alternative generating plant and transmission line sites on the local and regional environment. The development of a satellite-based geographic information system would facilitate both the preparation of environmental impact statements by power companies and assessment of the data by the Nuclear Regulatory Commission. A cooperative project is planned to demonstrate the methodology for integrating satellite data into an existing geographic information system, d to further evaluate the ability of satellite data in modeling environmental conditions that would be applied in the preparation and assessment of environmental impact statements.
Emergent sensing of complex environments by mobile animal groups.
Berdahl, Andrew; Torney, Colin J; Ioannou, Christos C; Faria, Jolyon J; Couzin, Iain D
2013-02-01
The capacity for groups to exhibit collective intelligence is an often-cited advantage of group living. Previous studies have shown that social organisms frequently benefit from pooling imperfect individual estimates. However, in principle, collective intelligence may also emerge from interactions between individuals, rather than from the enhancement of personal estimates. Here, we reveal that this emergent problem solving is the predominant mechanism by which a mobile animal group responds to complex environmental gradients. Robust collective sensing arises at the group level from individuals modulating their speed in response to local, scalar, measurements of light and through social interaction with others. This distributed sensing requires only rudimentary cognition and thus could be widespread across biological taxa, in addition to being appropriate and cost-effective for robotic agents.
Allergic effects of the residual monomer used in denture base acrylic resins
Rashid, Haroon; Sheikh, Zeeshan; Vohra, Fahim
2015-01-01
Denture base resins are extensively used in dentistry for a variety of purposes. These materials can be classified as chemical, heat, light, and microwave polymerization materials depending upon the factor which starts the polymerization reaction. Their applications include use during denture base construction, relining existing dentures, and for fabrication of orthodontic removable appliances. There have been increased concerns regarding the safe clinical application of these materials as their biodegradation in the oral environment leads to harmful effects. Along with local side effects, the materials have certain occupational hazards, and numerous studies can be found in the literature mentioning those. The purpose of this article is to outline the cytotoxic consequences of denture base acrylic resins and clinical recommendations for their use. PMID:26929705
NASA Astrophysics Data System (ADS)
Mitchell, B.; Lee, D.; Lee, D.; Fujiwara, Y.; Dierolf, V.
2013-12-01
Europium doped gallium nitride (GaN:Eu) is a promising candidate as a material for red light emitting diodes. When Mg was co-doped into GaN:Eu, additional incorporation environments were discovered that show high excitation efficiency at room temperature and have been attributed to the coupling of Mg-H complexes to the majority Eu site. Electron beam irradiation, indirect and resonant (direct) laser excitation were found to modify these complexes, indicating that vibrational energy alone can trigger the migration of the H while the presence of additional charges and excess energy controls the type of reconfiguration and the activation of non-radiative decay channels.
USDA-ARS?s Scientific Manuscript database
Adoption of alternative lighting systems to replace traditional incandescent light sources offers the opportunity to tailor lighting systems according to spectral sensitivity needs of different species. Providing a lighting environment that accounts for poultry vision may improve bird welfare and p...
Inquiry Learning: Students' Perception of Light Wave Phenomena in an Informal Environment
ERIC Educational Resources Information Center
Ford, Ken
2011-01-01
This study involved identifying students' perception of light phenomena and determined if they learned the scientific concepts of light that were presented to them by an interactive science exhibit. The participants in this study made scientific inquiry about light by using a powerful white light source, a prism, converging lenses, diverging…
Lavoie-Cardinal, Flavie; Salesse, Charleen; Bergeron, Éric; Meunier, Michel; De Koninck, Paul
2016-01-01
Light-assisted manipulation of cells to control membrane activity or intracellular signaling has become a major avenue in life sciences. However, the ability to perform subcellular light stimulation to investigate localized signaling has been limited. Here, we introduce an all optical method for the stimulation and the monitoring of localized Ca2+ signaling in neurons that takes advantage of plasmonic excitation of gold nanoparticles (AuNPs). We show with confocal microscopy that 800 nm laser pulse application onto a neuron decorated with a few AuNPs triggers a transient increase in free Ca2+, measured optically with GCaMP6s. We show that action potentials, measured electrophysiologically, can be induced with this approach. We demonstrate activation of local Ca2+ transients and Ca2+ signaling via CaMKII in dendritic domains, by illuminating a single or few functionalized AuNPs specifically targeting genetically-modified neurons. This NP-Assisted Localized Optical Stimulation (NALOS) provides a new complement to light-dependent methods for controlling neuronal activity and cell signaling. PMID:26857748
NASA Astrophysics Data System (ADS)
Navvab, Mojtaba; Bisegna, Fabio; Gugliermetti, Franco
2013-05-01
Saint Rocco Museum, a historical building in Venice, Italy is used as a case study to explore the performance of its' lighting system and visible light impact on viewing the large size art works. The transition from threedimensional architectural rendering to the three-dimensional virtual luminance mapping and visualization within a virtual environment is described as an integrated optical method for its application toward preservation of the cultural heritage of the space. Lighting simulation programs represent color as RGB triplets in a devicedependent color space such as ITU-R BT709. Prerequisite for this is a 3D-model which can be created within this computer aided virtual environment. The onsite measured surface luminance, chromaticity and spectral data were used as input to an established real-time indirect illumination and a physically based algorithms to produce the best approximation for RGB to be used as an input to generate the image of the objects. Conversion of RGB to and from spectra has been a major undertaking in order to match the infinite number of spectra to create the same colors that were defined by RGB in the program. The ability to simulate light intensity, candle power and spectral power distributions provide opportunity to examine the impact of color inter-reflections on historical paintings. VR offers an effective technique to quantify the visible light impact on human visual performance under precisely controlled representation of light spectrum that could be experienced in 3D format in a virtual environment as well as historical visual archives. The system can easily be expanded to include other measurements and stimuli.
Is countershading camouflage robust to lighting change due to weather?
2018-01-01
Countershading is a pattern of coloration thought to have evolved in order to implement camouflage. By adopting a pattern of coloration that makes the surface facing towards the sun darker and the surface facing away from the sun lighter, the overall amount of light reflected off an animal can be made more uniformly bright. Countershading could hence contribute to visual camouflage by increasing background matching or reducing cues to shape. However, the usefulness of countershading is constrained by a particular pattern delivering ‘optimal’ camouflage only for very specific lighting conditions. In this study, we test the robustness of countershading camouflage to lighting change due to weather, using human participants as a ‘generic’ predator. In a simulated three-dimensional environment, we constructed an array of simple leaf-shaped items and a single ellipsoidal target ‘prey’. We set these items in two light environments: strongly directional ‘sunny’ and more diffuse ‘cloudy’. The target object was given the optimal pattern of countershading for one of these two environment types or displayed a uniform pattern. By measuring detection time and accuracy, we explored whether and how target detection depended on the match between the pattern of coloration on the target object and scene lighting. Detection times were longest when the countershading was appropriate to the illumination; incorrectly camouflaged targets were detected with a similar pattern of speed and accuracy to uniformly coloured targets. We conclude that structural changes in light environment, such as caused by differences in weather, do change the effectiveness of countershading camouflage. PMID:29515822