Sample records for local linear stability

  1. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  2. Minimization of transmission cost in decentralized control systems

    NASA Technical Reports Server (NTRS)

    Wang, S.-H.; Davison, E. J.

    1978-01-01

    This paper considers the problem of stabilizing a linear time-invariant multivariable system by using local feedback controllers and some limited information exchange among local stations. The problem of achieving a given degree of stability with minimum transmission cost is solved.

  3. Decentralization, stabilization, and estimation of large-scale linear systems

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Vukcevic, M. B.

    1976-01-01

    In this short paper we consider three closely related aspects of large-scale systems: decentralization, stabilization, and estimation. A method is proposed to decompose a large linear system into a number of interconnected subsystems with decentralized (scalar) inputs or outputs. The procedure is preliminary to the hierarchic stabilization and estimation of linear systems and is performed on the subsystem level. A multilevel control scheme based upon the decomposition-aggregation method is developed for stabilization of input-decentralized linear systems Local linear feedback controllers are used to stabilize each decoupled subsystem, while global linear feedback controllers are utilized to minimize the coupling effect among the subsystems. Systems stabilized by the method have a tolerance to a wide class of nonlinearities in subsystem coupling and high reliability with respect to structural perturbations. The proposed output-decentralization and stabilization schemes can be used directly to construct asymptotic state estimators for large linear systems on the subsystem level. The problem of dimensionality is resolved by constructing a number of low-order estimators, thus avoiding a design of a single estimator for the overall system.

  4. Local projection stabilization for linearized Brinkman-Forchheimer-Darcy equation

    NASA Astrophysics Data System (ADS)

    Skrzypacz, Piotr

    2017-09-01

    The Local Projection Stabilization (LPS) is presented for the linearized Brinkman-Forchheimer-Darcy equation with high Reynolds numbers. The considered equation can be used to model porous medium flows in chemical reactors of packed bed type. The detailed finite element analysis is presented for the case of nonconstant porosity. The enriched variant of LPS is based on the equal order interpolation for the velocity and pressure. The optimal error bounds for the velocity and pressure errors are justified numerically.

  5. Local and global stability for Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks

    NASA Astrophysics Data System (ADS)

    Faria, Teresa; Oliveira, José J.

    This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.

  6. On the stabilization of decentralized control systems.

    NASA Technical Reports Server (NTRS)

    Wang, S.-H.; Davison, E. J.

    1973-01-01

    This paper considers the problem of stabilizing a linear time-variant multivariable system by using several local feedback control laws. Each local feedback control law depends only on partial system outputs. A necessary and sufficient condition for the existence of local control laws with dynamic compensation to stabilize a given system is derived. This condition is stated in terms of a new notion, called fixed modes, which is a natural generalization of the well-known concept of uncontrollable modes and unobservable modes that occur in centralized control system problems. A procedure that constructs a set of stabilizing feedback control laws is given.

  7. Linear morphological stability analysis of the solid-liquid interface in rapidsolidification of a binary system

    NASA Astrophysics Data System (ADS)

    Galenko, P. K.; Danilov, D. A.

    2004-05-01

    The interface stability against small perturbations of the planar solid-liquid interface is considered analytically in linear approximation. Following the analytical procedure of Trivedi and Kurz [

    R. Trivedi and W. Kurz, Acta Metall. 34, 1663 (1986)
    ], which is advancing the original treatment of morphological stability by Mullins and Sekerka [
    W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35, 444 (1964)
    ] to the case of rapid solidification, we extend the model by introducing the local nonequilibrium in the solute diffusion field around the interface. A solution to the heat- and mass-transport problem around the perturbed interface is given in the presence of the local nonequilibrium solute diffusion. Using the developing local nonequilibrium model of solidification, the self-consistent analysis of linear morphological stability is presented with the attribution to the marginal (neutral) and absolute morphological stability of a rapidly moving interface. Special consideration of the interface stability for the cases of solidification in negative and positive thermal gradients is given. A quantitative comparison of the model predictions for the absolute morphological stability is presented with regard to experimental results of Hoglund and Aziz [ D. E. Hoglund and M. J. Aziz, in Kinetics of Phase Transformations, edited by M.O. Thompson, M. J. Aziz, and G. B. Stephenson, MRS Symposia Proceedings No. 205 (Materials Research Society, Pittsburgh, 1991), p. 325 ] on critical solute concentration for the interface breakdown during rapid solidification of Si-Sn alloys.

  8. Localized states in a triangular set of linearly coupled complex Ginzburg-Landau equations.

    PubMed

    Sigler, Ariel; Malomed, Boris A; Skryabin, Dmitry V

    2006-12-01

    We introduce a pattern-formation model based on a symmetric system of three linearly coupled cubic-quintic complex Ginzburg-Landau equations, which form a triangular configuration. This is the simplest model of a multicore fiber laser. We identify stability regions for various types of localized patterns possible in this setting, which include stationary and breathing triangular vortices.

  9. Coexistence and local μ-stability of multiple equilibrium points for memristive neural networks with nonmonotonic piecewise linear activation functions and unbounded time-varying delays.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde

    2016-12-01

    In this paper, the coexistence and dynamical behaviors of multiple equilibrium points are discussed for a class of memristive neural networks (MNNs) with unbounded time-varying delays and nonmonotonic piecewise linear activation functions. By means of the fixed point theorem, nonsmooth analysis theory and rigorous mathematical analysis, it is proven that under some conditions, such n-neuron MNNs can have 5 n equilibrium points located in ℜ n , and 3 n of them are locally μ-stable. As a direct application, some criteria are also obtained on the multiple exponential stability, multiple power stability, multiple log-stability and multiple log-log-stability. All these results reveal that the addressed neural networks with activation functions introduced in this paper can generate greater storage capacity than the ones with Mexican-hat-type activation function. Numerical simulations are presented to substantiate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Spatial solitons and stability in the one-dimensional and the two-dimensional generalized nonlinear Schrödinger equation with fourth-order diffraction and parity-time-symmetric potentials

    NASA Astrophysics Data System (ADS)

    Tiofack, C. G. L.; Ndzana, F., II; Mohamadou, A.; Kofane, T. C.

    2018-03-01

    We investigate the existence and stability of solitons in parity-time (PT )-symmetric optical media characterized by a generic complex hyperbolic refractive index distribution and fourth-order diffraction (FOD). For the linear case, we demonstrate numerically that the FOD parameter can alter the PT -breaking points. For nonlinear cases, the exact analytical expressions of the localized modes are obtained both in one- and two-dimensional nonlinear Schrödinger equations with self-focusing and self-defocusing Kerr nonlinearity. The effect of FOD on the stability structure of these localized modes is discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. Examples of stable and unstable solutions are given. The transverse power flow density associated with these localized modes is also discussed. It is found that the relative strength of the FOD coefficient can utterly change the direction of the power flow, which may be used to control the energy exchange among gain or loss regions.

  11. Non Lyapunov stability of a constant spatially developing 2-D gas flow

    NASA Astrophysics Data System (ADS)

    Balint, Agneta M.; Balint, Stefan; Tanasie, Loredana

    2017-01-01

    Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 2-D gas flow are analyzed in a particular phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the plane. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].

  12. Impact of a large density gradient on linear and nonlinear edge-localized mode simulations

    DOE PAGES

    Xi, P. W.; Xu, X. Q.; Xia, T. Y.; ...

    2013-09-27

    Here, the impact of a large density gradient on edge-localized modes (ELMs) is studied linearly and nonlinearly by employing both two-fluid and gyro-fluid simulations. In two-fluid simulations, the ion diamagnetic stabilization on high-n modes disappears when the large density gradient is taken into account. But gyro-fluid simulations show that the finite Larmor radius (FLR) effect can effectively stabilize high-n modes, so the ion diamagnetic effect alone is not sufficient to represent the FLR stabilizing effect. We further demonstrate that additional gyroviscous terms must be kept in the two-fluid model to recover the linear results from the gyro-fluid model. Nonlinear simulations show that the density variation significantly weakens the E × B shearing at the top of the pedestal and thus leads to more energy loss during ELMs. The turbulence spectrum after an ELM crash is measured and has the relation ofmore » $$P(k_{z})\\propto k_{z}^{-3.3}$$ .« less

  13. Exponential stabilization of magnetoelastic waves in a Mindlin-Timoshenko plate by localized internal damping

    NASA Astrophysics Data System (ADS)

    Grobbelaar-Van Dalsen, Marié

    2015-08-01

    This article is a continuation of our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047-1065, 2012) on the polynomial stabilization of a linear model for the magnetoelastic interactions in a two-dimensional electrically conducting Mindlin-Timoshenko plate. We introduce nonlinear damping that is effective only in a small portion of the interior of the plate. It turns out that the model is uniformly exponentially stable when the function , that represents the locally distributed damping, behaves linearly near the origin. However, the use of Mindlin-Timoshenko plate theory in the model enforces a restriction on the region occupied by the plate.

  14. Nonlinearity measure and internal model control based linearization in anti-windup design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perev, Kamen

    2013-12-18

    This paper considers the problem of internal model control based linearization in anti-windup design. The nonlinearity measure concept is used for quantifying the control system degree of nonlinearity. The linearizing effect of a modified internal model control structure is presented by comparing the nonlinearity measures of the open-loop and closed-loop systems. It is shown that the linearization properties are improved by increasing the control system local feedback gain. However, it is emphasized that at the same time the stability of the system deteriorates. The conflicting goals of stability and linearization are resolved by solving the design problem in different frequencymore » ranges.« less

  15. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  16. Development and application of a local linearization algorithm for the integration of quaternion rate equations in real-time flight simulation problems

    NASA Technical Reports Server (NTRS)

    Barker, L. E., Jr.; Bowles, R. L.; Williams, L. H.

    1973-01-01

    High angular rates encountered in real-time flight simulation problems may require a more stable and accurate integration method than the classical methods normally used. A study was made to develop a general local linearization procedure of integrating dynamic system equations when using a digital computer in real-time. The procedure is specifically applied to the integration of the quaternion rate equations. For this application, results are compared to a classical second-order method. The local linearization approach is shown to have desirable stability characteristics and gives significant improvement in accuracy over the classical second-order integration methods.

  17. Backward semi-linear parabolic equations with time-dependent coefficients and local Lipschitz source

    NASA Astrophysics Data System (ADS)

    Nho Hào, Dinh; Van Duc, Nguyen; Van Thang, Nguyen

    2018-05-01

    Let H be a Hilbert space with the inner product and the norm , a positive self-adjoint unbounded time-dependent operator on H and . We establish stability estimates of Hölder type and propose a regularization method with error estimates of Hölder type for the ill-posed backward semi-linear parabolic equation with the source function f satisfying a local Lipschitz condition.

  18. Non Lyapunov stability of the constant spatially developing 1-D gas flow in presence of solutions having strictly positive exponential growth rate

    NASA Astrophysics Data System (ADS)

    Balint, Stefan; Balint, Agneta M.

    2017-01-01

    Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 1-D gas flow are analyzed in the phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the real axis. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].

  19. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE PAGES

    Steyer, Andrew J.; Van Vleck, Erik S.

    2018-04-13

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  20. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steyer, Andrew J.; Van Vleck, Erik S.

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  1. Influence of the local-spin-density correlation functional on the stability of bcc ferromagnetic iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, D.; Clougherty, D.P.; MacLaren, J.M.

    1991-10-01

    The influence of local-spin-dependent correlation effects on the predicted stable ground-state phase of iron is reexamined with use of general-potential linearized augmented-plane-wave calculations. Differences in the form of the Vosko-Wilk-Nusair (VWN) local-spin-density functional used in previous studies are noted, since in previous studies significant additional approximations were made with respect to those of Vosko, Wilk, and Nusan (Can. J. Phys. 58, 1200 (1980)) and of MacLaren, Clougherty, and Albers (Phys. Rev. B 42, 3205 (1990)). While the results of previous linear muffin-tin orbital calculations using the VWN functional predict a bcc ferromagnetic ground state, the present calculations show that themore » VWN spin-correlation effects fail to stabilize a bcc ground state. Considerable sensitivity to the form of the spin interpolation is found.« less

  2. Strongly localized dark modes in binary discrete media with cubic-quintic nonlinearity within the anti-continuum limit

    NASA Astrophysics Data System (ADS)

    Taib, L. Abdul; Hadi, M. S. Abdul; Umarov, B. A.

    2017-12-01

    The existence of dark strongly localized modes of binary discrete media with cubic-quintic nonlinearity is numerically demonstrated by solving the relevant discrete nonlinear Schrödinger equations. In the model, the coupling coefficients between adjacent sites are set to be relatively small representing the anti-continuum limit. In addition, approximated analytical solutions for vectorial solitons with various topologies are derived. Stability analysis of the localized states was performed using the standard linearized eigenfrequency problem. The prediction from the stability analysis are furthermore verified by direct numerical integrations.

  3. Cross Flow Effects on Glaze Ice Roughness Formation

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2004-01-01

    The present study examines the impact of large-scale cross flow on the creation of ice roughness elements on the leading edge of a swept wing under glaze icing conditions. A three-dimensional triple-deck structure is developed to describe the local interaction of a 3 D air boundary layer with ice sheets and liquid films. A linear stability analysis is presented here. It is found that, as the sweep angle increases, the local icing instabilities enhance and the most linearly unstable modes are strictly three dimensional.

  4. Stability analysis of the phytoplankton effect model on changes in nitrogen concentration on integrated multi-trophic aquaculture systems

    NASA Astrophysics Data System (ADS)

    Widowati; Putro, S. P.; Silfiana

    2018-05-01

    Integrated Multi-Trophic Aquaculture (IMTA) is a polyculture with several biotas maintained in it to optimize waste recycling as a food source. The interaction between phytoplankton and nitrogen as waste in fish cultivation including ammonia, nitrite, and nitrate studied in the form of mathematical models. The form model is non-linear systems of differential equations with the four variables. The analytical analysis was used to study the dynamic behavior of this model. Local stability analysis is performed at the equilibrium point with the first step linearized model by using Taylor series, then determined the Jacobian matrix. If all eigenvalues have negative real parts, then the equilibrium of the system is locally asymptotic stable. Some numerical simulations were also demonstrated to verify our analytical result.

  5. A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces

    NASA Astrophysics Data System (ADS)

    Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.

    2017-10-01

    We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.

  6. Localization in finite vibroimpact chains: Discrete breathers and multibreathers.

    PubMed

    Grinberg, Itay; Gendelman, Oleg V

    2016-09-01

    We explore the dynamics of strongly localized periodic solutions (discrete solitons or discrete breathers) in a finite one-dimensional chain of oscillators. Localization patterns with both single and multiple localization sites (breathers and multibreathers) are considered. The model involves parabolic on-site potential with rigid constraints (the displacement domain of each particle is finite) and a linear nearest-neighbor coupling. When the particle approaches the constraint, it undergoes an inelastic impact according to Newton's impact model. The rigid nonideal impact constraints are the only source of nonlinearity and damping in the system. We demonstrate that this vibro-impact model allows derivation of exact analytic solutions for the breathers and multibreathers with an arbitrary set of localization sites, both in conservative and in forced-damped settings. Periodic boundary conditions are considered; exact solutions for other types of boundary conditions are also available. Local character of the nonlinearity permits explicit derivation of a monodromy matrix for the breather solutions. Consequently, the stability of the derived breather and multibreather solutions can be efficiently studied in the framework of simple methods of linear algebra, and with rather moderate computational efforts. One reveals that that the finiteness of the chain fragment and possible proximity of the localization sites strongly affect both the existence and the stability patterns of these localized solutions.

  7. Multiple origins of linear dunes on Earth and Titan

    USGS Publications Warehouse

    Rubin, David M.; Hesp, Patrick A.

    2009-01-01

    Dunes with relatively long and parallel crests are classified as linear dunes. On Earth, they form in at least two environmental settings: where winds of bimodal direction blow across loose sand, and also where single-direction winds blow over sediment that is locally stabilized, be it through vegetation, sediment cohesion or topographic shelter from the winds. Linear dunes have also been identified on Titan, where they are thought to form in loose sand. Here we present evidence that in the Qaidam Basin, China, linear dunes are found downwind of transverse dunes owing to higher cohesiveness in the downwind sediments, which contain larger amounts of salt and mud. We also present a compilation of other settings where sediment stabilization has been reported to produce linear dunes. We suggest that in this dune-forming process, loose sediment accumulates on the dunes and is stabilized; the stable dune then functions as a topographic shelter, which induces the deposition of sediments downwind. We conclude that a model in which Titan's dunes formed similarly in cohesive sediments cannot be ruled out by the existing data.

  8. Experimental and numerical investigation of development of disturbances in the boundary layer on sharp and blunted cone

    NASA Astrophysics Data System (ADS)

    Borisov, S. P.; Bountin, D. A.; Gromyko, Yu. V.; Khotyanovsky, D. V.; Kudryavtsev, A. N.

    2016-10-01

    Development of disturbances in the supersonic boundary layer on sharp and blunted cones is studied both experimentally and theoretically. The experiments were conducted at the Transit-M hypersonic wind tunnel of the Institute of Theoretical and Applied Mechanics. Linear stability calculations use the basic flow profiles provided by the numerical simulations performed by solving the Navier-Stokes equations with the ANSYS Fluent and the in-house CFS3D code. Both the global pseudospectral Chebyshev method and the local iteration procedure are employed to solve the eigenvalue problem and determine linear stability characteristics. The calculated amplification factors for disturbances of various frequencies are compared with the experimentally measured pressure fluctuation spectra at different streamwise positions. It is shown that the linear stability calculations predict quite accurately the frequency of the most amplified disturbances and enable us to estimate reasonably well their relative amplitudes.

  9. SALLY LEVEL II- COMPUTE AND INTEGRATE DISTURBANCE AMPLIFICATION RATES ON SWEPT AND TAPERED LAMINAR FLOW CONTROL WINGS WITH SUCTION

    NASA Technical Reports Server (NTRS)

    Srokowski, A. J.

    1994-01-01

    The computer program SALLY was developed to compute the incompressible linear stability characteristics and integrate the amplification rates of boundary layer disturbances on swept and tapered wings. For some wing designs, boundary layer disturbance can significantly alter the wing performance characteristics. This is particularly true for swept and tapered laminar flow control wings which incorporate suction to prevent boundary layer separation. SALLY should prove to be a useful tool in the analysis of these wing performance characteristics. The first step in calculating the disturbance amplification rates is to numerically solve the compressible laminar boundary-layer equation with suction for the swept and tapered wing. A two-point finite-difference method is used to solve the governing continuity, momentum, and energy equations. A similarity transformation is used to remove the wall normal velocity as a boundary condition and place it into the governing equations as a parameter. Thus the awkward nonlinear boundary condition is avoided. The resulting compressible boundary layer data is used by SALLY to compute the incompressible linear stability characteristics. The local disturbance growth is obtained from temporal stability theory and converted into a local growth rate for integration. The direction of the local group velocity is taken as the direction of integration. The amplification rate, or logarithmic disturbance amplitude ratio, is obtained by integration of the local disturbance growth over distance. The amplification rate serves as a measure of the growth of linear disturbances within the boundary layer and can serve as a guide in transition prediction. This program is written in FORTRAN IV and ASSEMBLER for batch execution and has been implemented on a CDC CYBER 70 series computer with a central memory requirement of approximately 67K (octal) of 60 bit words. SALLY was developed in 1979.

  10. Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking

    PubMed Central

    2011-01-01

    Background Motorized treadmills are widely used in research or in clinical therapy. Small kinematics, kinetics and energetics changes induced by Treadmill Walking (TW) as compared to Overground Walking (OW) have been reported in literature. The purpose of the present study was to characterize the differences between OW and TW in terms of stride-to-stride variability. Classical (Standard Deviation, SD) and non-linear (fractal dynamics, local dynamic stability) methods were used. In addition, the correlations between the different variability indexes were analyzed. Methods Twenty healthy subjects performed 10 min TW and OW in a random sequence. A triaxial accelerometer recorded trunk accelerations. Kinematic variability was computed as the average SD (MeanSD) of acceleration patterns among standardized strides. Fractal dynamics (scaling exponent α) was assessed by Detrended Fluctuation Analysis (DFA) of stride intervals. Short-term and long-term dynamic stability were estimated by computing the maximal Lyapunov exponents of acceleration signals. Results TW did not modify kinematic gait variability as compared to OW (multivariate T2, p = 0.87). Conversely, TW significantly modified fractal dynamics (t-test, p = 0.01), and both short and long term local dynamic stability (T2 p = 0.0002). No relationship was observed between variability indexes with the exception of significant negative correlation between MeanSD and dynamic stability in TW (3 × 6 canonical correlation, r = 0.94). Conclusions Treadmill induced a less correlated pattern in the stride intervals and increased gait stability, but did not modify kinematic variability in healthy subjects. This could be due to changes in perceptual information induced by treadmill walking that would affect locomotor control of the gait and hence specifically alter non-linear dependencies among consecutive strides. Consequently, the type of walking (i.e. treadmill or overground) is important to consider in each protocol design. PMID:21345241

  11. Perturbative stability of SFT-based cosmological models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galli, Federico; Koshelev, Alexey S., E-mail: fgalli@tena4.vub.ac.be, E-mail: alexey.koshelev@vub.ac.be

    2011-05-01

    We review the appearance of multiple scalar fields in linearized SFT based cosmological models with a single non-local scalar field. Some of these local fields are canonical real scalar fields and some are complex fields with unusual coupling. These systems only admit numerical or approximate analysis. We introduce a modified potential for multiple scalar fields that makes the system exactly solvable in the cosmological context of Friedmann equations and at the same time preserves the asymptotic behavior expected from SFT. The main part of the paper consists of the analysis of inhomogeneous cosmological perturbations in this system. We show numericallymore » that perturbations corresponding to the new type of complex fields always vanish. As an example of application of this model we consider an explicit construction of the phantom divide crossing and prove the perturbative stability of this process at the linear order. The issue of ghosts and ways to resolve it are briefly discussed.« less

  12. Instabilities and finger formation in replacement fronts driven by an oversaturated solution

    NASA Astrophysics Data System (ADS)

    Kondratiuk, Paweł; Tredak, Hanna; Upadhyay, Virat; Ladd, Anthony J. C.; Szymczak, Piotr

    2017-08-01

    We consider a simple model of infiltration-driven mineral replacement, in which the chemical coupling between precipitation and dissolution leads to the appearance of a reaction front advancing into the system. Such fronts are usually accompanied by a local increase of porosity. We analyze the linear stability of the replacement front to establish whether such a localized porosity increase can lead to global instability and pattern formation in these systems. We find that for a wide range of control parameters such fronts are unstable. However, both short- and long-wavelength perturbations are stabilized, whereas in a purely dissolutional instability only short wavelengths are stable. We analyze the morphologies of the dissolution patterns emerging in the later stages of the evolution of the system, when the dynamics are beyond the linear regime. Implications of these results for the natural systems are discussed, particularly in the context of karst formation in terra rossa-covered carbonate bedrock.

  13. M3D-K Simulations of Beam-Driven Alfven Eigenmodes in ASDEX-U

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Fu, Guoyong; Lauber, Philipp; Schneller, Mirjam

    2013-10-01

    Core-localized Alfven eigenmodes are often observed in neutral beam-heated plasma in ASDEX-U tokamak. In this work, hybrid simulations with the global kinetic/MHD hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven Alfven eigenmodes using experimental parameters and profiles of an ASDEX-U discharge. The safety factor q profile is weakly reversed with minimum q value about qmin = 3.0. The simulation results show that the n = 3 mode transits from a reversed shear Alfven eigenmode (RSAE) to a core-localized toroidal Alfven eigenmode (TAE) as qmin drops from 3.0 to 2.79, consistent with results from the stability code NOVA as well as the experimental measurement. The M3D-K results are being compared with those of the linear gyrokinetic stability code LIGKA for benchmark. The simulation results will also be compared with the measured mode frequency and mode structure. This work was funded by the Max-Planck/Princeton Center for Plasma Physics.

  14. Nonlinear waves in repulsive media supported by spatially localized parity-time-symmetric potentials

    NASA Astrophysics Data System (ADS)

    Devassy, Lini; Jisha, Chandroth P.; Alberucci, Alessandro; Kuriakose, V. C.

    2017-06-01

    We study the existence, stability and dynamics of solitons in a PT-symmetric potential in the presence of a local defocusing nonlinearity. For the sake of concreteness, we refer to Bose-Einstein condensates, where defocusing nonlinearity stems from a repulsive inter-particle interaction. Two kinds of transverse profiles for the gain-loss mechanism, i.e., the imaginary part of the potential, are considered. Differently from the attractive inter-particle interaction, solitons exist only inside a narrow band of chemical potential and particle number. The existence region shrinks as the magnitude of the gain-loss is increased, with the soliton ceasing to exist above the linear exceptional point, that is, the point at which PT symmetry is broken. Using linear stability analysis together with full numerical simulations of the Gross-Pitaevskii equation, we show that solitons survive on temporal scales much longer than the diffusion time. For magnitude of gain-loss close to the exceptional point, stability depends on the transverse profile of the gain-loss mechanism and the magnitude of the nonlinear excitation.

  15. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals.

    PubMed

    Theocharis, G; Boechler, N; Kevrekidis, P G; Job, S; Porter, Mason A; Daraio, C

    2010-11-01

    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic Fermi-Pasta-Ulam (FPU)-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and note that the asymmetric nature of the tensionless interaction potential can lead to hybrid bulk-surface localized solutions.

  16. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals

    NASA Astrophysics Data System (ADS)

    Theocharis, G.; Boechler, N.; Kevrekidis, P. G.; Job, S.; Porter, Mason A.; Daraio, C.

    2010-11-01

    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic Fermi-Pasta-Ulam (FPU)-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and note that the asymmetric nature of the tensionless interaction potential can lead to hybrid bulk-surface localized solutions.

  17. Quantifying Stability in Complex Networks: From Linear to Basin Stability

    NASA Astrophysics Data System (ADS)

    Kurths, Jürgen

    The human brain, power grids, arrays of coupled lasers and the Amazon rainforest are all characterized by multistability. The likelihood that these systems will remain in the most desirable of their many stable states depends on their stability against significant perturbations, particularly in a state space populated by undesirable states. Here we claim that the traditional linearization-based approach to stability is in several cases too local to adequately assess how stable a state is. Instead, we quantify it in terms of basin stability, a new measure related to the volume of the basin of attraction. Basin stability is non-local, nonlinear and easily applicable, even to high-dimensional systems. It provides a long-sought-after explanation for the surprisingly regular topologies of neural networks and power grids, which have eluded theoretical description based solely on linear stability. Specifically, we employ a component-wise version of basin stability, a nonlinear inspection scheme, to investigate how a grid's degree of stability is influenced by certain patterns in the wiring topology. Various statistics from our ensemble simulations all support one main finding: The widespread and cheapest of all connection schemes, namely dead ends and dead trees, strongly diminish stability. For the Northern European power system we demonstrate that the inverse is also true: `Healing' dead ends by addition of transmission lines substantially enhances stability. This indicates a crucial smart-design principle for tomorrow's sustainable power grids: add just a few more lines to avoid dead ends. Further, we analyse the particular function of certain network motifs to promote the stability of the system. Here we uncover the impact of so-called detour motifs on the appearance of nodes with a poor stability score and discuss the implications for power grid design. Moreover, it will be shown that basin stability enables uncovering the mechanism for explosive synchronization and understanding of evolving networks. Reference: P. Menck, J. Heitzig, N. Marwan, and J. Kurths, Nature Physics 9, 89 (2013) P. Menck, J. Heitzig, J. Kurths, and H. Schellnhuber, Nature Communication 5, 3969 (2014) P. Schultz, J. Heitzig, and J. Kurths, New Journal Physics 16, 125001 (2014) V. Kohar, P. Ji, A. Choudhary, S. Sinha, and J. Kurths, Phys. Rev. E 90, 022812 (2014) Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Phys. Rev. Lett. 112, 114102 (2014)

  18. The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part I: Theory and linear stability analysis

    NASA Astrophysics Data System (ADS)

    Rattez, Hadrien; Stefanou, Ioannis; Sulem, Jean

    2018-06-01

    A Thermo-Hydro-Mechanical (THM) model for Cosserat continua is developed to explore the influence of frictional heating and thermal pore fluid pressurization on the strain localization phenomenon. A general framework is presented to conduct a bifurcation analysis for elasto-plastic Cosserat continua with THM couplings and predict the onset of instability. The presence of internal lengths in Cosserat continua enables to estimate the thickness of the localization zone. This is done by performing a linear stability analysis of the system and looking for the selected wavelength corresponding to the instability mode with fastest finite growth coefficient. These concepts are applied to the study of fault zones under fast shearing. For doing so, we consider a model of a sheared saturated infinite granular layer. The influence of THM couplings on the bifurcation state and the shear band width is investigated. Taking representative parameters for a centroidal fault gouge, the evolution of the thickness of the localized zone under continuous shear is studied. Furthermore, the effect of grain crushing inside the shear band is explored by varying the internal length of the constitutive law.

  19. Protein linear indices of the 'macromolecular pseudograph alpha-carbon atom adjacency matrix' in bioinformatics. Part 1: prediction of protein stability effects of a complete set of alanine substitutions in Arc repressor.

    PubMed

    Marrero-Ponce, Yovani; Medina-Marrero, Ricardo; Castillo-Garit, Juan A; Romero-Zaldivar, Vicente; Torrens, Francisco; Castro, Eduardo A

    2005-04-15

    A novel approach to bio-macromolecular design from a linear algebra point of view is introduced. A protein's total (whole protein) and local (one or more amino acid) linear indices are a new set of bio-macromolecular descriptors of relevance to protein QSAR/QSPR studies. These amino-acid level biochemical descriptors are based on the calculation of linear maps on Rn[f k(xmi):Rn-->Rn] in canonical basis. These bio-macromolecular indices are calculated from the kth power of the macromolecular pseudograph alpha-carbon atom adjacency matrix. Total linear indices are linear functional on Rn. That is, the kth total linear indices are linear maps from Rn to the scalar R[f k(xm):Rn-->R]. Thus, the kth total linear indices are calculated by summing the amino-acid linear indices of all amino acids in the protein molecule. A study of the protein stability effects for a complete set of alanine substitutions in the Arc repressor illustrates this approach. A quantitative model that discriminates near wild-type stability alanine mutants from the reduced-stability ones in a training series was obtained. This model permitted the correct classification of 97.56% (40/41) and 91.67% (11/12) of proteins in the training and test set, respectively. It shows a high Matthews correlation coefficient (MCC=0.952) for the training set and an MCC=0.837 for the external prediction set. Additionally, canonical regression analysis corroborated the statistical quality of the classification model (Rcanc=0.824). This analysis was also used to compute biological stability canonical scores for each Arc alanine mutant. On the other hand, the linear piecewise regression model compared favorably with respect to the linear regression one on predicting the melting temperature (tm) of the Arc alanine mutants. The linear model explains almost 81% of the variance of the experimental tm (R=0.90 and s=4.29) and the LOO press statistics evidenced its predictive ability (q2=0.72 and scv=4.79). Moreover, the TOMOCOMD-CAMPS method produced a linear piecewise regression (R=0.97) between protein backbone descriptors and tm values for alanine mutants of the Arc repressor. A break-point value of 51.87 degrees C characterized two mutant clusters and coincided perfectly with the experimental scale. For this reason, we can use the linear discriminant analysis and piecewise models in combination to classify and predict the stability of the mutant Arc homodimers. These models also permitted the interpretation of the driving forces of such folding process, indicating that topologic/topographic protein backbone interactions control the stability profile of wild-type Arc and its alanine mutants.

  20. The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part II: Numerical implementation and post-bifurcation analysis

    NASA Astrophysics Data System (ADS)

    Rattez, Hadrien; Stefanou, Ioannis; Sulem, Jean; Veveakis, Manolis; Poulet, Thomas

    2018-06-01

    In this paper we study the phenomenon of localization of deformation in fault gouges during seismic slip. This process is of key importance to understand frictional heating and energy budget during an earthquake. A infinite layer of fault gouge is modeled as a Cosserat continuum taking into account Thermo-Hydro-Mechanical (THM) couplings. The theoretical aspects of the problem are presented in the companion paper (Rattez et al., 2017a), together with a linear stability analysis to determine the conditions of localization and estimate the shear band thickness. In this Part II of the study, we investigate the post-bifurcation evolution of the system by integrating numerically the full system of non-linear equations using the method of Finite Elements. The problem is formulated in the framework of Cosserat theory. It enables to introduce information about the microstructure of the material in the constitutive equations and to regularize the mathematical problem in the post-localization regime. We emphasize the influence of the size of the microstructure and of the softening law on the material response and the strain localization process. The weakening effect of pore fluid thermal pressurization induced by shear heating is examined and quantified. It enhances the weakening process and contributes to the narrowing of shear band thickness. Moreover, due to THM couplings an apparent rate-dependency is observed, even for rate-independent material behavior. Finally, comparisons show that when the perturbed field of shear deformation dominates, the estimation of the shear band thickness obtained from linear stability analysis differs from the one obtained from the finite element computations, demonstrating the importance of post-localization numerical simulations.

  1. Stability of spanwise-modulated flows behind backward-facing steps

    NASA Astrophysics Data System (ADS)

    Boiko, A. V.; Dovgal, A. V.; Sorokin, A. M.

    2017-10-01

    An overview and synthesis of researches on development of local vortical disturbances in laminar separated flows downstream of backward-facing steps, in which the velocity field depends essentially on two variables are given. Peculiarities of transition to turbulence in such spatially inhomogeneous separated zones are discussed. The experimental data are supplemented by the linear stability characteristics of model velocity profiles of the separated flow computed using both the classical local formulation and the nonlocal approach based on the Floquet theory for partial differential equations with periodic coefficients. The results clarify the response of the local separated flows to their modulation with stationary geometrical and temperature inhomogeneities. The results can be useful for the development of new methods of laminar separation control.

  2. The Lyapunov-Krasovskii theorem and a sufficient criterion for local stability of isochronal synchronization in networks of delay-coupled oscillators

    NASA Astrophysics Data System (ADS)

    Grzybowski, J. M. V.; Macau, E. E. N.; Yoneyama, T.

    2017-05-01

    This paper presents a self-contained framework for the stability assessment of isochronal synchronization in networks of chaotic and limit-cycle oscillators. The results were based on the Lyapunov-Krasovskii theorem and they establish a sufficient condition for local synchronization stability of as a function of the system and network parameters. With this in mind, a network of mutually delay-coupled oscillators subject to direct self-coupling is considered and then the resulting error equations are block-diagonalized for the purpose of studying their stability. These error equations are evaluated by means of analytical stability results derived from the Lyapunov-Krasovskii theorem. The proposed approach is shown to be a feasible option for the investigation of local stability of isochronal synchronization for a variety of oscillators coupled through linear functions of the state variables under a given undirected graph structure. This ultimately permits the systematic identification of stability regions within the high-dimensionality of the network parameter space. Examples of applications of the results to a number of networks of delay-coupled chaotic and limit-cycle oscillators are provided, such as Lorenz, Rössler, Cubic Chua's circuit, Van der Pol oscillator and the Hindmarsh-Rose neuron.

  3. Dissipative stability analysis and control of two-dimensional Fornasini-Marchesini local state-space model

    NASA Astrophysics Data System (ADS)

    Wang, Lanning; Chen, Weimin; Li, Lizhen

    2017-06-01

    This paper is concerned with the problems of dissipative stability analysis and control of the two-dimensional (2-D) Fornasini-Marchesini local state-space (FM LSS) model. Based on the characteristics of the system model, a novel definition of 2-D FM LSS (Q, S, R)-α-dissipativity is given first, and then a sufficient condition in terms of linear matrix inequality (LMI) is proposed to guarantee the asymptotical stability and 2-D (Q, S, R)-α-dissipativity of the systems. As its special cases, 2-D passivity performance and 2-D H∞ performance are also discussed. Furthermore, by use of this dissipative stability condition and projection lemma technique, 2-D (Q, S, R)-α-dissipative state-feedback control problem is solved as well. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.

  4. When linear stability does not exclude nonlinear instability

    DOE PAGES

    Kevrekidis, P. G.; Pelinovsky, D. E.; Saxena, A.

    2015-05-29

    We describe a mechanism that results in the nonlinear instability of stationary states even in the case where the stationary states are linearly stable. In this study, this instability is due to the nonlinearity-induced coupling of the linearization’s internal modes of negative energy with the continuous spectrum. In a broad class of nonlinear Schrödinger equations considered, the presence of such internal modes guarantees the nonlinear instability of the stationary states in the evolution dynamics. To corroborate this idea, we explore three prototypical case examples: (a) an antisymmetric soliton in a double-well potential, (b) a twisted localized mode in a one-dimensionalmore » lattice with cubic nonlinearity, and (c) a discrete vortex in a two-dimensional saturable lattice. In all cases, we observe a weak nonlinear instability, despite the linear stability of the respective states.« less

  5. Self-stabilizing byzantine-fault-tolerant clock synchronization system and method

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2012-01-01

    Systems and methods for rapid Byzantine-fault-tolerant self-stabilizing clock synchronization are provided. The systems and methods are based on a protocol comprising a state machine and a set of monitors that execute once every local oscillator tick. The protocol is independent of specific application specific requirements. The faults are assumed to be arbitrary and/or malicious. All timing measures of variables are based on the node's local clock and thus no central clock or externally generated pulse is used. Instances of the protocol are shown to tolerate bursts of transient failures and deterministically converge with a linear convergence time with respect to the synchronization period as predicted.

  6. An automated mapping satellite system ( Mapsat).

    USGS Publications Warehouse

    Colvocoresses, A.P.

    1982-01-01

    The favorable environment of space permits a satellite to orbit the Earth with very high stability as long as no local perturbing forces are involved. Solid-state linear-array sensors have no moving parts and create no perturbing force on the satellite. Digital data from highly stabilized stereo linear arrays are amenable to simplified processing to produce both planimetric imagery and elevation data. A satellite imaging system, called Mapsat, including this concept has been proposed to produce data from which automated mapping in near real time can be accomplished. Image maps as large as 1:50 000 scale with contours as close as a 20-m interval may be produced from Mapsat data. -from Author

  7. Response of eddy activities to localized diabatic heating in Held-Suarez simulations

    NASA Astrophysics Data System (ADS)

    Lin, Yanluan; Zhang, Jishi; Li, Xingrui; Deng, Yi

    2018-01-01

    Widespread air pollutions, such as black carbon over East Asia in recent years, could induce a localized diabatic heating, and thus lead to localized static stability and meridional temperature gradient (MTG) changes. Although effect of static stability and MTG on eddies has been addressed by the linear baroclinic instability theory, impacts of a localized heating on mid-latitude eddy activities have not been well explored and quantified. Via a series of idealized global Held-Suarez simulations with different magnitudes of localized heating at different altitudes and latitudes, responses of mid-latitude eddy activity and circulation to these temperature perturbations are systematically investigated. Climatologically, the localized heating in the lower atmosphere induces a wave-like response of eddy activity near the mid-latitude jet stream. Over the heating region, eddy activity tends to be weakening due to the increased static stability. However, there are cyclonic anomalies over the upstream and downstream of the heating region. The zonal mean eddy activity weakens along the baroclinic zone due to reduced MTG and increased static stability. Furthermore, the response of eddy activity increased as the heating magnitude is increased and moved to higher altitudes. The influence of the heating decreases as the heating is prescribed further away from the climatological mid-latitude jet. This implies that the localized heating is most effective over the region with the maximum baroclinicity. Besides, enhanced storm track downstream of the localized heating area found here suggests that increased aerosols over East Asia might strengthen the North Pacific storm track.

  8. Streamline-curvature effect in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.; Lin, Ray-Sing; Petraglia, Media M.

    1992-01-01

    The effect of including wall and streamline curvature terms in swept-wing boundary-layer stability calculations is studied. The linear disturbance equations are cast on a fixed, body-intrinsic, curvilinear coordinate system. Those nonparallel terms which contribute mainly to the streamline-curvature effect are retained in this formulation and approximated by their local finite-difference values. Convex-wall curvature has a stabilizing effect, while streamline curvature is destabilizing if the curvature exceeds a critical value.

  9. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    NASA Astrophysics Data System (ADS)

    Szederkényi, Gábor; Hangos, Katalin M.

    2004-04-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  10. Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes

    NASA Astrophysics Data System (ADS)

    Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata

    2016-10-01

    Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.

  11. Modulation of localized solutions in a system of two coupled nonlinear Schrödinger equations.

    PubMed

    Cardoso, W B; Avelar, A T; Bazeia, D

    2012-08-01

    In this work we study localized solutions of a system of two coupled nonlinear Schrödinger equations, with the linear (potential) and nonlinear coefficients engendering spatial and temporal dependencies. Similarity transformations are used to convert the nonautonomous coupled equations into autonomous ones and we use the trial orbit method to help us solving them, presenting solutions in a general way. Numerical experiments are then used to verify the stability of the localized solutions.

  12. Development of Resistive Micromegas for Sampling Calorimetry

    NASA Astrophysics Data System (ADS)

    Geralis, T.; Fanourakis, G.; Kalamaris, A.; Nikas, D.; Psallidas, A.; Chefdeville, M.; Karyotakis, I.; Koletsou, I.; Titov, M.

    2018-02-01

    Resistive micromegas is proposed as an active element for sampling calorimetry. Future linear collider experiments or the HL-LHC experiments can profit from those developments for Particle Flow Calorimetry. Micromegas possesses remarkable properties concerning gain stability, reduced ion feedback, response linearity, adaptable sensitive element granularity, fast response and high rate capability. Recent developments on Micromegas with a protective resistive layer present excellent results, resolving the problem of discharges caused by local high charge deposition, thanks to its RC-slowed charge evacuation. Higher resistivity though, may cause loss of the response linearity at high rates. We have scanned a wide range of resistivities and performed laboratory tests with X-rays that demonstrate excellent response linearity up to rates of (a few) times 10MHz/cm2, with simultaneous mitigation of discharges. Beam test studies at SPS/CERN with hadrons have also shown a remarkable stability of the resistive Micromegas and low currents for rates up to 15MHz/cm2. We present results from the aforementioned studies confronted with MC simulation

  13. Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri

    2018-05-01

    The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.

  14. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    NASA Technical Reports Server (NTRS)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude cannot be asymptotically stabilized using continuous feedback, but a discontinuous stabilizing feedback control strategy is constructed. If the uncontrolled principal axis is an axis of symmetry, the complete spacecraft dynamics cannot be stabilized. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but again a discontinuous feedback control strategy is constructed.

  15. Stability and Hopf bifurcation in a simplified BAM neural network with two time delays.

    PubMed

    Cao, Jinde; Xiao, Min

    2007-03-01

    Various local periodic solutions may represent different classes of storage patterns or memory patterns, and arise from the different equilibrium points of neural networks (NNs) by applying Hopf bifurcation technique. In this paper, a bidirectional associative memory NN with four neurons and multiple delays is considered. By applying the normal form theory and the center manifold theorem, analysis of its linear stability and Hopf bifurcation is performed. An algorithm is worked out for determining the direction and stability of the bifurcated periodic solutions. Numerical simulation results supporting the theoretical analysis are also given.

  16. The influence of geometric imperfections on the stability of three-layer beams with foam core

    NASA Astrophysics Data System (ADS)

    Wstawska, Iwona

    2017-01-01

    The main objective of this work is the numerical analysis (FE analysis) of stability of three-layer beams with metal foam core (alumina foam core). The beams were subjected to pure bending. The analysis of the local buckling was performed. Furthermore, the influence of geometric parameters of the beam and material properties of the core (linear and non-linear model) on critical loads values and buckling shape were also investigated. The calculations were made on a family of beams with different mechanical properties of the core (elastic and elastic-plastic material). In addition, the influence of geometric imperfections on deflection and normal stress values of the core and the faces has been evaluated.

  17. Plasma shaping effects on tokamak scrape-off layer turbulence

    NASA Astrophysics Data System (ADS)

    Riva, Fabio; Lanti, Emmanuel; Jolliet, Sébastien; Ricci, Paolo

    2017-03-01

    The impact of plasma shaping on tokamak scrape-off layer (SOL) turbulence is investigated. The drift-reduced Braginskii equations are written for arbitrary magnetic geometries, and an analytical equilibrium model is used to introduce the dependence of turbulence equations on tokamak inverse aspect ratio (ε ), Shafranov’s shift (Δ), elongation (κ), and triangularity (δ). A linear study of plasma shaping effects on the growth rate of resistive ballooning modes (RBMs) and resistive drift waves (RDWs) reveals that RBMs are strongly stabilized by elongation and negative triangularity, while RDWs are only slightly stabilized in non-circular magnetic geometries. Assuming that the linear instabilities saturate due to nonlinear local flattening of the plasma gradient, the equilibrium gradient pressure length {L}p=-{p}e/{{\

  18. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts.

    PubMed

    Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M

    2016-03-08

    The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.

  19. Event detection and localization for small mobile robots using reservoir computing.

    PubMed

    Antonelo, E A; Schrauwen, B; Stroobandt, D

    2008-08-01

    Reservoir Computing (RC) techniques use a fixed (usually randomly created) recurrent neural network, or more generally any dynamic system, which operates at the edge of stability, where only a linear static readout output layer is trained by standard linear regression methods. In this work, RC is used for detecting complex events in autonomous robot navigation. This can be extended to robot localization tasks which are solely based on a few low-range, high-noise sensory data. The robot thus builds an implicit map of the environment (after learning) that is used for efficient localization by simply processing the input stream of distance sensors. These techniques are demonstrated in both a simple simulation environment and in the physically realistic Webots simulation of the commercially available e-puck robot, using several complex and even dynamic environments.

  20. Stability analysis of ELMs in long-pulse discharges with ELITE code on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Y. F.; Xu, G. S.; Wan, B. N.; Li, G. Q.; Yan, N.; Li, Y. L.; Wang, H. Q.; Peng, Y.-K. Martin; Xia, T. Y.; Ding, S. Y.; Chen, R.; Yang, Q. Q.; Liu, H. Q.; Zang, Q.; Zhang, T.; Lyu, B.; Xu, J. C.; Feng, W.; Wang, L.; Chen, Y. J.; Luo, Z. P.; Hu, G. H.; Zhang, W.; Shao, L. M.; Ye, Y.; Lan, H.; Chen, L.; Li, J.; Zhao, N.; Wang, Q.; Snyder, P. B.; Liang, Y.; Qian, J. P.; Gong, X. Z.; EAST team

    2018-05-01

    One challenge in long-pulse and high performance tokamak operation is to control the edge localized modes (ELMs) to reduce the transient heat load on plasma facing components. Minute-scale discharges in H-mode have been achieved repeatedly on Experimental Advanced Superconducting Tokamak (EAST) since the 2016 campaign and understanding the characteristics of the ELMs in these discharges can be helpful for effective ELM control in long-pulse discharges. The kinetic profile diagnostics recently developed on EAST make it possible to perform the pedestal stability analysis quantitatively. Pedestal stability calculation of a typical long-pulse discharge with ELITE code is presented. The ideal linear stability results show that the ELM is dominated by toroidal mode number n around 10–15 and the most unstable mode structure is mainly localized in the steep pressure gradient region, which is consistent with experimental results. Compared with a typical type-I ELM discharge with larger total plasma current (I p = 600 kA), pedestal in the long-pulse H-mode discharge (I p = 450 kA) is more stable in peeling-ballooning instability and its critical peak pressure gradient is evaluated to be 65% of the former. Two important features of EAST tokamak in the long-pulse discharge are presented by comparison with other tokamaks, including a wider pedestal correlated with the poloidal pedestal beta and a smaller inverse aspect ratio and their effects on the pedestal stability are discussed. The effects of uncertainties in measurements on the linear stability results are also analyzed, including the edge electron density profile position, the separatrix position and the line-averaged effective ion charge {Z}{{e}{{f}}{{f}}} value.

  1. Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. II. Global analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar, D.; Ahedo, E., E-mail: eduardo.ahedo@uc3m.es

    2015-10-15

    The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared againstmore » experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methods.« less

  2. A nonlinear optimal control approach for chaotic finance dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.

    2017-11-01

    A new nonlinear optimal control approach is proposed for stabilization of the dynamics of a chaotic finance model. The dynamic model of the financial system, which expresses interaction between the interest rate, the investment demand, the price exponent and the profit margin, undergoes approximate linearization round local operating points. These local equilibria are defined at each iteration of the control algorithm and consist of the present value of the systems state vector and the last value of the control inputs vector that was exerted on it. The approximate linearization makes use of Taylor series expansion and of the computation of the associated Jacobian matrices. The truncation of higher order terms in the Taylor series expansion is considered to be a modelling error that is compensated by the robustness of the control loop. As the control algorithm runs, the temporary equilibrium is shifted towards the reference trajectory and finally converges to it. The control method needs to compute an H-infinity feedback control law at each iteration, and requires the repetitive solution of an algebraic Riccati equation. Through Lyapunov stability analysis it is shown that an H-infinity tracking performance criterion holds for the control loop. This implies elevated robustness against model approximations and external perturbations. Moreover, under moderate conditions the global asymptotic stability of the control loop is proven.

  3. Instability of elliptic liquid jets: Temporal linear stability theory and experimental analysis

    NASA Astrophysics Data System (ADS)

    Amini, Ghobad; Lv, Yu; Dolatabadi, Ali; Ihme, Matthias

    2014-11-01

    The instability dynamics of inviscid liquid jets issuing from elliptical orifices is studied, and effects of the surrounding gas and the liquid surface tension on the stability behavior are investigated. A dispersion relation for the zeroth azimuthal (axisymmetric) instability mode is derived. Consistency of the analysis is confirmed by demonstrating that these equations reduce to the well-known dispersion equations for the limiting cases of round and planar jets. It is shown that the effect of the ellipticity is to increase the growth rate over a large range of wavenumbers in comparison to those of a circular jet. For higher Weber numbers, at which capillary forces have a stabilizing effect, the growth rate decreases with increasing ellipticity. Similar to circular and planar jets, increasing the density ratio between gas and liquid increases the growth of disturbances significantly. These theoretical investigations are complemented by experiments to validate the local linear stability results. Comparisons of predicted growth rates with measurements over a range of jet ellipticities confirm that the theoretical model provides a quantitatively accurate description of the instability dynamics in the Rayleigh and first wind-induced regimes.

  4. Direct numerical simulations of mack-mode damping on porous coated cones

    NASA Astrophysics Data System (ADS)

    Lüdeke, H.; Wartemann, V.

    2013-06-01

    The flow field over a 3 degree blunt cone is investigated with respect to a hypersonic stability analysis of the boundary-layer flow at Mach 6 with porous as well as smooth walls by comparing local direct numerical simulations (DNS) and linear stability theory (LST) data. The original boundary-layer profile is generated by a finite volume solver, using shock capturing techniques to generate an axisymmetric flow field. Local boundary-layer profiles are extracted from this flow field and hypersonic Mack-modes are superimposed for cone-walls with and without a porous surface used as a passive transition-reduction device. Special care is taken of curvature effects of the wall on the mode development over smooth and porous walls.

  5. An in-depth stability analysis of nonuniform FDTD combined with novel local implicitization techniques

    NASA Astrophysics Data System (ADS)

    Van Londersele, Arne; De Zutter, Daniël; Vande Ginste, Dries

    2017-08-01

    This work focuses on efficient full-wave solutions of multiscale electromagnetic problems in the time domain. Three local implicitization techniques are proposed and carefully analyzed in order to relax the traditional time step limit of the Finite-Difference Time-Domain (FDTD) method on a nonuniform, staggered, tensor product grid: Newmark, Crank-Nicolson (CN) and Alternating-Direction-Implicit (ADI) implicitization. All of them are applied in preferable directions, alike Hybrid Implicit-Explicit (HIE) methods, as to limit the rank of the sparse linear systems. Both exponential and linear stability are rigorously investigated for arbitrary grid spacings and arbitrary inhomogeneous, possibly lossy, isotropic media. Numerical examples confirm the conservation of energy inside a cavity for a million iterations if the time step is chosen below the proposed, relaxed limit. Apart from the theoretical contributions, new accomplishments such as the development of the leapfrog Alternating-Direction-Hybrid-Implicit-Explicit (ADHIE) FDTD method and a less stringent Courant-like time step limit for the conventional, fully explicit FDTD method on a nonuniform grid, have immediate practical applications.

  6. Stability and performance tradeoffs in bi-lateral telemanipulation

    NASA Technical Reports Server (NTRS)

    Hannaford, Blake

    1989-01-01

    Kinesthetic force feedback provides measurable increase in remote manipulation system performance. Intensive computation time requirements or operation under conditions of time delay can cause serious stability problems in control-system design. Here, a simplified linear analysis of this stability problem is presented for the forward-flow generalized architecture, applying the hybrid two-port representation to express the loop gain of the traditional master-slave architecture, which can be subjected to similar analysis. The hybrid two-port representation is also used to express the effects on the fidelity of manipulation or feel of one design approach used to stabilize the forward-flow architecture. The results suggest that, when local force feedback at the slave side is used to reduce manipulator stability problems, a price is paid in terms of telemanipulation fidelity.

  7. A stability theorem for energy-balance climate models

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; North, G. R.

    1979-01-01

    The paper treats the stability of steady-state solutions of some simple, latitude-dependent, energy-balance climate models. For north-south symmetric solutions of models with an ice-cap-type albedo feedback, and for the sum of horizontal transport and infrared radiation given by a linear operator, it is possible to prove a 'slope stability' theorem, i.e., if the local slope of the steady-state iceline latitude versus solar constant curve is positive (negative) the steady-state solution is stable (unstable). Certain rather weak restrictions on the albedo function and on the heat transport are required for the proof, and their physical basis is discussed.

  8. Linear calculations of edge current driven kink modes with BOUT++ code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y.; Lawrence Livermore National Laboratory, Livermore, California 94550

    This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linearmore » growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.« less

  9. [Spectral scatter correction of coal samples based on quasi-linear local weighted method].

    PubMed

    Lei, Meng; Li, Ming; Ma, Xiao-Ping; Miao, Yan-Zi; Wang, Jian-Sheng

    2014-07-01

    The present paper puts forth a new spectral correction method based on quasi-linear expression and local weighted function. The first stage of the method is to search 3 quasi-linear expressions to replace the original linear expression in MSC method, such as quadratic, cubic and growth curve expression. Then the local weighted function is constructed by introducing 4 kernel functions, such as Gaussian, Epanechnikov, Biweight and Triweight kernel function. After adding the function in the basic estimation equation, the dependency between the original and ideal spectra is described more accurately and meticulously at each wavelength point. Furthermore, two analytical models were established respectively based on PLS and PCA-BP neural network method, which can be used for estimating the accuracy of corrected spectra. At last, the optimal correction mode was determined by the analytical results with different combination of quasi-linear expression and local weighted function. The spectra of the same coal sample have different noise ratios while the coal sample was prepared under different particle sizes. To validate the effectiveness of this method, the experiment analyzed the correction results of 3 spectral data sets with the particle sizes of 0.2, 1 and 3 mm. The results show that the proposed method can eliminate the scattering influence, and also can enhance the information of spectral peaks. This paper proves a more efficient way to enhance the correlation between corrected spectra and coal qualities significantly, and improve the accuracy and stability of the analytical model substantially.

  10. Multidimensional equilibria and their stability in copolymer-solvent mixtures

    NASA Astrophysics Data System (ADS)

    Glasner, Karl; Orizaga, Saulo

    2018-06-01

    This paper discusses localized equilibria which arise in copolymer-solvent mixtures. A free boundary problem associated with the sharp-interface limit of a density functional model is used to identify both lamellar and concentric domain patterns composed of a finite number of layers. Stability of these morphologies is studied through explicit linearization of the free boundary evolution. For the multilayered lamellar configuration, transverse instability is observed for sufficiently small dimensionless interfacial energies. Additionally, a crossover between small and large wavelength instabilities is observed depending on whether solvent-polymer or monomer-monomer interfacial energy is dominant. Concentric domain patterns resembling multilayered micelles and vesicles exhibit bifurcations wherein they only exist for sufficiently small dimensionless interfacial energies. The bifurcation of large radii vesicle solutions is studied analytically, and a crossover from a supercritical case with only one solution branch to a subcritical case with two is observed. Linearized stability of these configurations shows that azimuthal perturbation may lead to instabilities as interfacial energy is decreased.

  11. Breathers in a locally resonant granular chain with precompression

    DOE PAGES

    Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; ...

    2016-09-01

    Here we study a locally resonant granular material in the form of a precompressed Hertzian chain with linear internal resonators. Using an asymptotic reduction, we derive an effective nonlinear Schrödinger (NLS) modulation equation. In turn, this leads us to provide analytical evidence, subsequently corroborated numerically, for the existence of two distinct types of discrete breathers related to acoustic or optical modes: (a) traveling bright breathers with a strain profile exponentially vanishing at infinity and (b) stationary and traveling dark breathers, exponentially localized, time-periodic states mounted on top of a non-vanishing background. Moreover, the stability and bifurcation structure of numerically computedmore » exact stationary dark breathers is also examined. Stationary bright breathers cannot be identified using the NLS equation, which is defocusing at the upper edges of the phonon bands and becomes linear at the lower edge of the optical band.« less

  12. Modeling lateral geniculate nucleus response with contrast gain control. Part 2: Analysis

    PubMed Central

    Cope, Davis; Blakeslee, Barbara; McCourt, Mark E.

    2014-01-01

    Cope, Blakeslee and McCourt (2013) proposed a class of models for LGN ON-cell behavior consisting of a linear response with divisive normalization by local stimulus contrast. Here we analyze a specific model with the linear response defined by a difference-of-Gaussians filter and a circular Gaussian for the gain pool weighting function. For sinusoidal grating stimuli, the parameter region for band-pass behavior of the linear response is determined, the gain control response is shown to act as a switch (changing from “off” to “on” with increasing spatial frequency), and it is shown that large gain pools stabilize the optimal spatial frequency of the total nonlinear response at a fixed value independent of contrast and stimulus magnitude. Under- and super-saturation as well as contrast saturation occur as typical effects of stimulus magnitude. For circular spot stimuli, it is shown that large gain pools stabilize the spot size that yields the maximum response. PMID:24562034

  13. Magnetorotational instability: nonmodal growth and the relationship of global modes to the shearing box

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squire, J.; Bhattacharjee, A.

    2014-12-10

    We study magnetorotational instability (MRI) using nonmodal stability techniques. Despite the spectral instability of many forms of MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very different from the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely different region ofmore » space. These ideas lead—for both axisymmetric and non-axisymmetric modes—to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary differential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using nonmodal analysis techniques, we conclude by analyzing local MRI growth over finite timescales using these methods. The strong growth over a wide range of wave-numbers suggests that nonmodal linear physics could be of fundamental importance in MRI turbulence.« less

  14. An analysis of the effect of defect structures on catalytic surfaces by the boundary element technique

    NASA Astrophysics Data System (ADS)

    Peirce, Anthony P.; Rabitz, Herschel

    1988-08-01

    The boundary element (BE) technique is used to analyze the effect of defects on one-dimensional chemically active surfaces. The standard BE algorithm for diffusion is modified to include the effects of bulk desorption by making use of an asymptotic expansion technique to evaluate influences near boundaries and defect sites. An explicit time evolution scheme is proposed to treat the non-linear equations associated with defect sites. The proposed BE algorithm is shown to provide an efficient and convergent algorithm for modelling localized non-linear behavior. Since it exploits the actual Green's function of the linear diffusion-desorption process that takes place on the surface, the BE algorithm is extremely stable. The BE algorithm is applied to a number of interesting physical problems in which non-linear reactions occur at localized defects. The Lotka-Volterra system is considered in which the source, sink and predator-prey interaction terms are distributed at different defect sites in the domain and in which the defects are coupled by diffusion. This example provides a stringent test of the stability of the numerical algorithm. Marginal stability oscillations are analyzed for the Prigogine-Lefever reaction that occurs on a lattice of defects. Dissipative effects are observed for large perturbations to the marginal stability state, and rapid spatial reorganization of uniformly distributed initial perturbations is seen to take place. In another series of examples the effect of defect locations on the balance between desorptive processes on chemically active surfaces is considered. The effect of dynamic pulsing at various time-scales is considered for a one species reactive trapping model. Similar competitive behavior between neighboring defects previously observed for static adsorption levels is shown to persist for dynamic loading of the surface. The analysis of a more complex three species reaction process also provides evidence of competitive behavior between neighboring defect sites. The proposed BE algorithm is shown to provide a useful technique for analyzing the effect of defect sites on chemically active surfaces.

  15. Long-wave instabilities of two interlaced helical vortices

    NASA Astrophysics Data System (ADS)

    Quaranta, H. U.; Brynjell-Rahkola, M.; Leweke, T.; Henningson, D. S.

    2016-09-01

    We present a comparison between experimental observations and theoretical predictions concerning long-wave displacement instabilities of the helical vortices in the wake of a two-bladed rotor. Experiments are performed with a small-scale rotor in a water channel, using a set-up that allows the individual triggering of various instability modes at different azimuthal wave numbers, leading to local or global pairing of successive vortex loops. The initial development of the instability and the measured growth rates are in good agreement with the predictions from linear stability theory, based on an approach where the helical vortex system is represented by filaments. At later times, local pairing develops into large-scale distortions of the vortices, whereas for global pairing the non-linear evolution returns the system almost to its initial geometry.

  16. Stability of matter-wave solitons in optical lattices

    NASA Astrophysics Data System (ADS)

    Ali, Sk. Golam; Roy, S. K.; Talukdar, B.

    2010-08-01

    We consider localized states of both single- and two-component Bose-Einstein condensates (BECs) confined in a potential resulting from the superposition of linear and nonlinear optical lattices and make use of Vakhitov-Kolokolov criterion to investigate the effect of nonlinear lattice on the stability of the soliton solutions in the linear optical lattice (LOL). For the single-component case we show that a weak nonlinear lattice has very little effect on the stability of such solitons while sufficiently strong nonlinear optical lattice (NOL) squeezes them to produce narrow bound states. For two-component condensates we find that when the strength of the NOL (γ1) is less than that of the LOL (V0) a relatively weak intra-atomic interaction (IAI) has little effect on the stability of the component solitons. This is true for both attractive and repulsive IAI. A strong attractive IAI, however, squeezes the BEC solitons while a similar repulsive IAI makes the component solitons wider. For γ1 > V0, only a strong attractive IAI squeezes the BEC solitons but the squeezing effect is less prominent than that found for γ1 < V0. We make useful checks on the results of our semianalytical stability analysis by solving the appropriate Gross-Pitaevskii equations numerically.

  17. Tangential acceleration feedback control of friction induced vibration

    NASA Astrophysics Data System (ADS)

    Nath, Jyayasi; Chatterjee, S.

    2016-09-01

    Tangential control action is studied on a phenomenological mass-on-belt model exhibiting friction-induced self-excited vibration attributed to the low-velocity drooping characteristics of friction which is also known as Stribeck effect. The friction phenomenon is modelled by the exponential model. Linear stability analysis is carried out near the equilibrium point and local stability boundary is delineated in the plane of control parameters. The system is observed to undergo a Hopf bifurcation as the eigenvalues determined from the linear stability analysis are found to cross the imaginary axis transversally from RHS s-plane to LHS s-plane or vice-versa as one varies the control parameters, namely non-dimensional belt velocity and the control gain. A nonlinear stability analysis by the method of Averaging reveals the subcritical nature of the Hopf bifurcation. Thus, a global stability boundary is constructed so that any choice of control parameters from the globally stable region leads to a stable equilibrium. Numerical simulations in a MATLAB SIMULINK model and bifurcation diagrams obtained in AUTO validate these analytically obtained results. Pole crossover design is implemented to optimize the filter parameters with an independent choice of belt velocity and control gain. The efficacy of this optimization (based on numerical results) in the delicate low velocity region is also enclosed.

  18. Variational approach to stability boundary for the Taylor-Goldstein equation

    NASA Astrophysics Data System (ADS)

    Hirota, Makoto; Morrison, Philip J.

    2015-11-01

    Linear stability of inviscid stratified shear flow is studied by developing an efficient method for finding neutral (i.e., marginally stable) solutions of the Taylor-Goldstein equation. The classical Miles-Howard criterion states that stratified shear flow is stable if the local Richardson number JR is greater than 1/4 everywhere. In this work, the case of JR > 0 everywhere is considered by assuming strictly monotonic and smooth profiles of the ambient shear flow and density. It is shown that singular neutral modes that are embedded in the continuous spectrum can be found by solving one-parameter families of self-adjoint eigenvalue problems. The unstable ranges of wavenumber are searched for accurately and efficiently by adopting this method in a numerical algorithm. Because the problems are self-adjoint, the variational method can be applied to ascertain the existence of singular neutral modes. For certain shear flow and density profiles, linear stability can be proven by showing the non-existence of a singular neutral mode. New sufficient conditions, extensions of the Rayleigh-Fjortoft stability criterion for unstratified shear flows, are derived in this manner. This work was supported by JSPS Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation # 55053270.

  19. Stability analysis on the flow and heat transfer of nanofluid past a stretching/shrinking cylinder with suction effect

    NASA Astrophysics Data System (ADS)

    Bakar, Nor Ashikin Abu; Bachok, Norfifah; Arifin, Norihan Md.; Pop, Ioan

    2018-06-01

    The steady boundary layer flow over a stretching/shrinking cylinder with suction effect is numerically studied. Using a similarity transformations, the governing partial differential equations are transformed into a set of nonlinear differential equations and have been solved numerically using a bvp4c code in Matlab software. The nanofluid model used is taking into account the effects of Brownian motion and thermophoresis. The influences of the governing parameters namely the curvature parameter γ, mass suction parameter S, Brownian motion parameter Nb and thermophoresis parameter Nt on the flow, heat and mass transfers characteristics are presented graphically. The numerical results obtained for the skin friction coefficient, local Nusselt number and local Sherwood number are thoroughly determined and presented graphically for several values of the governing parameters. From our investigation, it is found that the non-unique (dual) solutions exist for a certain range of mass suction parameter. It is observed that as curvature parameter increases, the skin friction coefficient and heat transfer rate decrease, meanwhile the mass transfer rates increase. Moreover, the stability analysis showed that the first solution is linearly stable, while the second solution is linearly unstable.

  20. Singlet fission in linear chains of molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrosio, Francesco, E-mail: F.Ambrosio@warwick.ac.uk, E-mail: A.Troisi@warwick.ac.uk; Troisi, Alessandro, E-mail: F.Ambrosio@warwick.ac.uk, E-mail: A.Troisi@warwick.ac.uk

    2014-11-28

    We develop a model configuration interaction Hamiltonian to study the electronic structure of a chain of molecules undergoing singlet fission. We first consider models for dimer and trimer and then we use a matrix partitioning technique to build models of arbitrary size able to describe the relevant electronic structure for singlet fission in linear aggregates. We find that the multi-excitonic state (ME) is stabilized at short inter-monomer distance and the extent of this stabilization depends upon the size of orbital coupling between neighboring monomers. We also find that the coupling between ME states located on different molecules is extremely smallmore » leading to bandwidths in the order of ∼10 meV. This observation suggests that multi-exciton states are extremely localized by electron-phonon coupling and that singlet fission involves the transition between a relatively delocalized Frenkel exciton and a strongly localized multi-exciton state. We adopt the methodology commonly used to study non-radiative transitions to describe the singlet fission dynamics in these aggregates and we discuss the limit of validity of the approach. The results indicate that the phenomenology of singlet fission in molecular crystals is different in many important ways from what is observed in isolated dimers.« less

  1. Local Bifurcations and Optimal Theory in a Delayed Predator-Prey Model with Threshold Prey Harvesting

    NASA Astrophysics Data System (ADS)

    Tankam, Israel; Tchinda Mouofo, Plaire; Mendy, Abdoulaye; Lam, Mountaga; Tewa, Jean Jules; Bowong, Samuel

    2015-06-01

    We investigate the effects of time delay and piecewise-linear threshold policy harvesting for a delayed predator-prey model. It is the first time that Holling response function of type III and the present threshold policy harvesting are associated with time delay. The trajectories of our delayed system are bounded; the stability of each equilibrium is analyzed with and without delay; there are local bifurcations as saddle-node bifurcation and Hopf bifurcation; optimal harvesting is also investigated. Numerical simulations are provided in order to illustrate each result.

  2. On decentralized control of large-scale systems

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1978-01-01

    A scheme is presented for decentralized control of large-scale linear systems which are composed of a number of interconnected subsystems. By ignoring the interconnections, local feedback controls are chosen to optimize each decoupled subsystem. Conditions are provided to establish compatibility of the individual local controllers and achieve stability of the overall system. Besides computational simplifications, the scheme is attractive because of its structural features and the fact that it produces a robust decentralized regulator for large dynamic systems, which can tolerate a wide range of nonlinearities and perturbations among the subsystems.

  3. Nonlinear time series analysis of normal and pathological human walking

    NASA Astrophysics Data System (ADS)

    Dingwell, Jonathan B.; Cusumano, Joseph P.

    2000-12-01

    Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the walking patterns of all three subject groups were clearly distinguishable from linearly autocorrelated Gaussian noise. As a collateral benefit of the methodological approach taken in this study, some of the first steps at characterizing the underlying structure of human locomotor dynamics have been taken. Implications for understanding the neuromuscular control of locomotion are discussed.

  4. Stochastic stability properties of jump linear systems

    NASA Technical Reports Server (NTRS)

    Feng, Xiangbo; Loparo, Kenneth A.; Ji, Yuandong; Chizeck, Howard J.

    1992-01-01

    Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relationship among various moment and sample path stability properties. It is shown that all second moment stability properties are equivalent and are sufficient for almost sure sample path stability, and a testable necessary and sufficient condition for second moment stability is derived. The Lyapunov exponent method for the study of almost sure sample stability is discussed, and a theorem which characterizes the Lyapunov exponents of jump linear systems is presented.

  5. Dynamic stability of passive dynamic walking on an irregular surface.

    PubMed

    Su, Jimmy Li-Shin; Dingwell, Jonathan B

    2007-12-01

    Falls that occur during walking are a significant health problem. One of the greatest impediments to solve this problem is that there is no single obviously "correct" way to quantify walking stability. While many people use variability as a proxy for stability, measures of variability do not quantify how the locomotor system responds to perturbations. The purpose of this study was to determine how changes in walking surface variability affect changes in both locomotor variability and stability. We modified an irreducibly simple model of walking to apply random perturbations that simulated walking over an irregular surface. Because the model's global basin of attraction remained fixed, increasing the amplitude of the applied perturbations directly increased the risk of falling in the model. We generated ten simulations of 300 consecutive strides of walking at each of six perturbation amplitudes ranging from zero (i.e., a smooth continuous surface) up to the maximum level the model could tolerate without falling over. Orbital stability defines how a system responds to small (i.e., "local") perturbations from one cycle to the next and was quantified by calculating the maximum Floquet multipliers for the model. Local stability defines how a system responds to similar perturbations in real time and was quantified by calculating short-term and long-term local exponential rates of divergence for the model. As perturbation amplitudes increased, no changes were seen in orbital stability (r(2)=2.43%; p=0.280) or long-term local instability (r(2)=1.0%; p=0.441). These measures essentially reflected the fact that the model never actually "fell" during any of our simulations. Conversely, the variability of the walker's kinematics increased exponentially (r(2)>or=99.6%; p<0.001) and short-term local instability increased linearly (r(2)=88.1%; p<0.001). These measures thus predicted the increased risk of falling exhibited by the model. For all simulated conditions, the walker remained orbitally stable, while exhibiting substantial local instability. This was because very small initial perturbations diverged away from the limit cycle, while larger initial perturbations converged toward the limit cycle. These results provide insight into how these different proposed measures of walking stability are related to each other and to risk of falling.

  6. Long-lived oscillons from asymmetric bubbles: Existence and stability

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.; Gleiser, Marcelo; Almeida, Carlos A.

    2002-10-01

    The possibility that extremely long-lived, time-dependent, and localized field configurations (``oscillons'') arise during the collapse of asymmetrical bubbles in (2+1)-dimensional φ4 models is investigated. It is found that oscillons can develop from a large spectrum of elliptically deformed bubbles. Moreover, we provide numerical evidence that such oscillons are (a) circularly symmetric and (b) linearly stable against small arbitrary radial and angular perturbations. The latter is based on a dynamical approach designed to investigate the stability of nonintegrable time-dependent configurations that is capable of probing slowly growing instabilities not seen through the usual ``spectral'' method.

  7. Towards Stability Analysis of Jump Linear Systems with State-Dependent and Stochastic Switching

    NASA Technical Reports Server (NTRS)

    Tejada, Arturo; Gonzalez, Oscar R.; Gray, W. Steven

    2004-01-01

    This paper analyzes the stability of hierarchical jump linear systems where the supervisor is driven by a Markovian stochastic process and by the values of the supervised jump linear system s states. The stability framework for this class of systems is developed over infinite and finite time horizons. The framework is then used to derive sufficient stability conditions for a specific class of hybrid jump linear systems with performance supervision. New sufficient stochastic stability conditions for discrete-time jump linear systems are also presented.

  8. Onset of Darrieus-Landau Instability in Expanding Flames

    NASA Astrophysics Data System (ADS)

    Mohan, Shikhar; Matalon, Moshe

    2017-11-01

    The effect of small amplitude perturbations on the propagation of circular flames in unconfined domains is investigated, computationally and analytically, within the context of the hydrodynamic theory. The flame, treated as a surface of density discontinuity separating fresh combustible mixture from the burnt gas, propagates at a speed dependent upon local curvature and hydrodynamic strain. For mixtures with Lewis numbers above criticality, thermodiffusive effects have stabilizing influences which largely affect the flame at small radii. The amplitude of these disturbances initially decay and only begin to grow once a critical radius is reached. This instability is hydrodynamic in nature and is a consequence of thermal expansion. Through linear stability analysis, predictions of critical flame radius at the onset of instability are obtained as functions of Markstein length and thermal expansion coefficients. The flame evolution is also examined numerically where the motion of the interface is tracked via a level-set method. Consistent with linear stability results, simulations show the flame initially remaining stable and the existence of a particular mode that will be first to grow and later determine the cellular structure observed experimentally at the onset of instability.

  9. Dependency of Tearing Mode Stability on Current and Pressure Profiles in DIII-D Hybrid Discharges

    NASA Astrophysics Data System (ADS)

    Kim, K.; Park, J. M.; Murakami, M.; La Haye, R. J.; Na, Y.-S.; SNU/ORAU; ORNL; Atomics, General; SNU; DIII-D Team

    2016-10-01

    Understanding the physics of the onset and evolution of tearing modes (TMs) in tokamak plasmas is important for high- β steady-state operation. Based on DIII-D steady-state hybrid experiments with accurate equilibrium reconstruction and well-measured plasma profiles, the 2/1 tearing mode can be more stable with increasing local current and pressure gradient at rational surface and with lower pressure peaking and plasma inductance. The tearing stability index Δ', estimated by the Rutherford equation with experimental mode growth rate was validated against Δ' calculated by linear eigenvalue solver (PEST3); preliminary comprehensive MHD modeling by NIMROD reproduced the TM onset reasonably well. We present a novel integrated modeling for the purpose of predicting TM onset in experiment by combining a model equilibrium reconstruction using IPS/FASTRAN, linear stability Δ' calculation using PEST3, and fitting formula for critical Δ' from NIMROD. Work supported in part by the US DoE under DE-AC05-06OR23100, DE-AC05-00OR22725, and DEFC02-04ER54698.

  10. The dynamics and control of large flexible space structures, 3. Part A: Shape and orientation control of a platform in orbit using point actuators

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Reddy, A. S. S. R.; Krishna, R.; James, P. K.

    1980-01-01

    The dynamics, attitude, and shape control of a large thin flexible square platform in orbit are studied. Attitude and shape control are assumed to result from actuators placed perpendicular to the main surface and one edge and their effect on the rigid body and elastic modes is modelled to first order. The equations of motion are linearized about three different nominal orientations: (1) the platform following the local vertical with its major surface perpendicular to the orbital plane; (2) the platform following the local horizontal with its major surface normal to the local vertical; and (3) the platform following the local vertical with its major surface perpendicular to the orbit normal. The stability of the uncontrolled system is investigated analytically. Once controllability is established for a set of actuator locations, control law development is based on decoupling, pole placement, and linear optimal control theory. Frequencies and elastic modal shape functions are obtained using a finite element computer algorithm, two different approximate analytical methods, and the results of the three methods compared.

  11. Linear gyrokinetic simulations of microinstabilities within the pedestal region of H-mode NSTX discharges in a highly shaped geometry

    DOE PAGES

    Coury, M.; Guttenfelder, W.; Mikkelsen, D. R.; ...

    2016-06-30

    Linear (local) gyrokinetic predictions of edge microinstabilities in highly shaped, lithiated and non-lithiated NSTX discharges are reported using the gyrokinetic code GS2. Microtearing modes dominate the non-lithiated pedestal top. The stabilization of these modes at the lithiated pedestal top enables the electron temperature pedestal to extend further inwards, as observed experimentally. Kinetic ballooning modes are found to be unstable mainly at the mid-pedestal of both types of discharges, with un- stable trapped electron modes nearer the separatrix region. At electron wavelengths, ETG modes are found to be unstable from mid-pedestal outwards for η e, exp ~2.2 with higher growth ratesmore » for the lithiated discharge. Near the separatrix, the critical temperature gradient for driving ETG modes is reduced in the presence of lithium, re ecting the reduction of the lithiated density gradients observed experimentally. A preliminary linear study in the edge of non-lithiated discharges shows that the equilibrium shaping alters the electrostatic modes stability, found more unstable at high plasma shaping.« less

  12. Output Containment Control of Linear Heterogeneous Multi-Agent Systems Using Internal Model Principle.

    PubMed

    Zuo, Shan; Song, Yongduan; Lewis, Frank L; Davoudi, Ali

    2017-01-04

    This paper studies the output containment control of linear heterogeneous multi-agent systems, where the system dynamics and even the state dimensions can generally be different. Since the states can have different dimensions, standard results from state containment control do not apply. Therefore, the control objective is to guarantee the convergence of the output of each follower to the dynamic convex hull spanned by the outputs of leaders. This can be achieved by making certain output containment errors go to zero asymptotically. Based on this formulation, two different control protocols, namely, full-state feedback and static output-feedback, are designed based on internal model principles. Sufficient local conditions for the existence of the proposed control protocols are developed in terms of stabilizing the local followers' dynamics and satisfying a certain H∞ criterion. Unified design procedures to solve the proposed two control protocols are presented by formulation and solution of certain local state-feedback and static output-feedback problems, respectively. Numerical simulations are given to validate the proposed control protocols.

  13. A direct comparison of spine rotational stiffness and dynamic spine stability during repetitive lifting tasks.

    PubMed

    Graham, Ryan B; Brown, Stephen H M

    2012-06-01

    Stability of the spinal column is critical to bear loads, allow movement, and at the same time avoid injury and pain. However, there has been a debate in recent years as to how best to define and quantify spine stability, with the outcome being that different methods are used without a clear understanding of how they relate to one another. Therefore, the goal of the present study was to directly compare lumbar spine rotational stiffness, calculated with an EMG-driven biomechanical model, to local dynamic spine stability calculated using Lyapunov analyses of kinematic data, during a series of continuous dynamic lifting challenges. Twelve healthy male subjects performed 30 repetitive lifts under three varying load and three varying rate conditions. With an increase in the load lifted (constant rate) there was a significant increase in mean, maximum, and minimum spine rotational stiffness (p<0.001) and a significant increase in local dynamic stability (p<0.05); both stability measures were moderately to strongly related to one another (r=-0.55 to -0.71). With an increase in lifting rate (constant load), there was also a significant increase in mean and maximum spine rotational stiffness (p<0.01); however, there was a non-significant decrease in the minimum rotational stiffness and a non-significant decrease in local dynamic stability (p>0.05). Weak linear relationships were found for the varying rate conditions (r=-0.02 to -0.27). The results suggest that spine rotational stiffness and local dynamic stability are closely related to one another, as they provided similar information when movement rate was controlled. However, based on the results from the changing lifting rate conditions, it is evident that both models provide unique information and that future research is required to completely understand the relationship between the two models. Using both techniques concurrently may provide the best information regarding the true effects of (in) stability under different loading and movement scenarios, and in comparing healthy and clinical populations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Adjustment of Adaptive Gain with Bounded Linear Stability Analysis to Improve Time-Delay Margin for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje Srinvas

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a linear damaged twin-engine generic transport model of aircraft. The analysis shows that the system with the adjusted adaptive gain becomes more robust to unmodeled dynamics or time delay.

  15. Chimera regimes in a ring of oscillators with local nonlinear interaction

    NASA Astrophysics Data System (ADS)

    Shepelev, Igor A.; Zakharova, Anna; Vadivasova, Tatiana E.

    2017-03-01

    One of important problems concerning chimera states is the conditions of their existence and stability. Until now, it was assumed that chimeras could arise only in ensembles with nonlocal character of interactions. However, this assumption is not exactly right. In some special cases chimeras can be realized for local type of coupling [1-3]. We propose a simple model of ensemble with local coupling when chimeras are realized. This model is a ring of linear oscillators with the local nonlinear unidirectional interaction. Chimera structures in the ring are found using computer simulations for wide area of values of parameters. Diagram of the regimes on plane of control parameters is plotted and scenario of chimera destruction are studied when the parameters are changed.

  16. Stability and dynamic analysis of a slender column with curved longitudinal stiffeners

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.

    1989-01-01

    The results of a stability design study are presented for a slender column with curved longitudinal stiffeners for large space structure applications. Linear stability analyses are performed using a link-plate representation of the stiffeners to determine stiffener local buckling stresses. Results from a set of parametric analyses are used to determine an approximate explicit expression for stiffener local buckling in terms of its geometric parameters. This expression along with other equations governing column stability and mass are assembled into a determinate system describing minimum mass stiffened column design. An iterative solution is determined to solve this system and a computer program incorporating this routine is presented. Example design problems are presented which verify the solution accuracy and illustrate the implementation of the solution routine. Also, observations are made which lead to a greatly simplified first iteration design equation relating the percent increase in column mass to the percent increase in column buckling load. From this, generalizations are drawn as to the mass savings offered by the stiffened column concept. Finally, the percent increase in fundamental column vibration frequency due to the addition of deployable stiffeners is studied.

  17. Nonlinear verification of a linear critical gradient model for energetic particle transport by Alfven eigenmodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bass, Eric M.; Waltz, R. E.

    Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less

  18. Nonlinear verification of a linear critical gradient model for energetic particle transport by Alfven eigenmodes

    DOE PAGES

    Bass, Eric M.; Waltz, R. E.

    2017-12-08

    Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less

  19. Generic pure quantum states as steady states of quasi-local dissipative dynamics

    NASA Astrophysics Data System (ADS)

    Karuvade, Salini; Johnson, Peter D.; Ticozzi, Francesco; Viola, Lorenza

    2018-04-01

    We investigate whether a generic pure state on a multipartite quantum system can be the unique asymptotic steady state of locality-constrained purely dissipative Markovian dynamics. In the tripartite setting, we show that the problem is equivalent to characterizing the solution space of a set of linear equations and establish that the set of pure states obeying the above property has either measure zero or measure one, solely depending on the subsystems’ dimension. A complete analytical characterization is given when the central subsystem is a qubit. In the N-partite case, we provide conditions on the subsystems’ size and the nature of the locality constraint, under which random pure states cannot be quasi-locally stabilized generically. Also, allowing for the possibility to approximately stabilize entangled pure states that cannot be exact steady states in settings where stabilizability is generic, our results offer insights into the extent to which random pure states may arise as unique ground states of frustration-free parent Hamiltonians. We further argue that, to a high probability, pure quantum states sampled from a t-design enjoy the same stabilizability properties of Haar-random ones as long as suitable dimension constraints are obeyed and t is sufficiently large. Lastly, we demonstrate a connection between the tasks of quasi-local state stabilization and unique state reconstruction from local tomographic information, and provide a constructive procedure for determining a generic N-partite pure state based only on knowledge of the support of any two of the reduced density matrices of about half the parties, improving over existing results.

  20. H-mode pedestal stability and ELMs in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Mossessian, Dmitri

    2002-11-01

    For steady state H-mode operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity accumulation. The major relaxation mechanism seen on most of the existing tokamaks - large type I ELMs - drive high particle and energy fluxes that present a significant power load on the divertor plates. On Alcator C-Mod, however, type I ELMs are not observed. Instead, more benign mechanisms - EDA and small grassy ELMs - appear to drive enhanced particle transport at the edge of H-mode plasmas. Both have good energy confinement, no impurity accumulation, and are steady state. In EDA the edge relaxation mechanism is provided by a quasicoherent electromagnetic mode localized in the outer part of the pedestal. Non-linear gyrofluid and linear gyrokinetic simulations, as well as real geometry fluctuation modeling based on fluid equations show the presence of a coherent mode. Based on those results the observed mode is tentatively identified as resistive ballooning. At higher edge pressure gradient the mode is replaced by broadband fluctuations and small irregular ELMs are observed. Based on ideal MHD calculations that include effects of bootstrap current, these ELMs are identified as medium n coupled ideal peeling/ballooning modes. The stability threshold and modes structure of these modes are studied with recently developed linear MHD stability code ELITE and the results are compared with the observed dependence of the ELMs' character on pedestal parameters and plasma shape.

  1. An H-infinity approach to optimal control of oxygen and carbon dioxide contents in blood

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Selisteanu, Dan; Precup, Radu

    2016-12-01

    Nonlinear H-infinity control is proposed for the regulation of the levels of oxygen and carbon dioxide in the blood of patients undergoing heart surgery and extracorporeal blood circulation. The levels of blood gases are administered through a membrane oxygenator and the control inputs are the externally supplied oxygen, the aggregate gas supply (oxygen plus nitrogen), and the blood flow which is regulated by a blood pump. The proposed control method is based on linearization of the oxygenator's dynamical model through Taylor series expansion and the computation of Jacobian matrices. The local linearization points are defined by the present value of the oxygenator's state vector and the last value of the control input that was exerted on this system. The modelling errors due to linearization are considered as disturbances which are compensated by the robustness of the control loop. Next, for the linearized model of the oxygenator an H-infinity control input is computed at each iteration of the control algorithm through the solution of an algebraic Riccati equation. With the use of Lyapunov stability analysis it is demonstrated that the control scheme satisfies the H-infinity tracking performance criterion, which signifies improved robustness against modelling uncertainty and external disturbances. Moreover, under moderate conditions the asymptotic stability of the control loop is also proven.

  2. Integrability and Linear Stability of Nonlinear Waves

    NASA Astrophysics Data System (ADS)

    Degasperis, Antonio; Lombardo, Sara; Sommacal, Matteo

    2018-03-01

    It is well known that the linear stability of solutions of 1+1 partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general N× N matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for N=3 for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.

  3. Revisiting the Stability of Spatially Heterogeneous Predator-Prey Systems Under Eutrophication.

    PubMed

    Farkas, J Z; Morozov, A Yu; Arashkevich, E G; Nikishina, A

    2015-10-01

    We employ partial integro-differential equations to model trophic interaction in a spatially extended heterogeneous environment. Compared to classical reaction-diffusion models, this framework allows us to more realistically describe the situation where movement of individuals occurs on a faster time scale than on the demographic (population) time scale, and we cannot determine population growth based on local density. However, most of the results reported so far for such systems have only been verified numerically and for a particular choice of model functions, which obviously casts doubts about these findings. In this paper, we analyse a class of integro-differential predator-prey models with a highly mobile predator in a heterogeneous environment, and we reveal the main factors stabilizing such systems. In particular, we explore an ecologically relevant case of interactions in a highly eutrophic environment, where the prey carrying capacity can be formally set to 'infinity'. We investigate two main scenarios: (1) the spatial gradient of the growth rate is due to abiotic factors only, and (2) the local growth rate depends on the global density distribution across the environment (e.g. due to non-local self-shading). For an arbitrary spatial gradient of the prey growth rate, we analytically investigate the possibility of the predator-prey equilibrium in such systems and we explore the conditions of stability of this equilibrium. In particular, we demonstrate that for a Holling type I (linear) functional response, the predator can stabilize the system at low prey density even for an 'unlimited' carrying capacity. We conclude that the interplay between spatial heterogeneity in the prey growth and fast displacement of the predator across the habitat works as an efficient stabilizing mechanism. These results highlight the generality of the stabilization mechanisms we find in spatially structured predator-prey ecological systems in a heterogeneous environment.

  4. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    NASA Astrophysics Data System (ADS)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  5. Weak variations of Lipschitz graphs and stability of phase boundaries

    NASA Astrophysics Data System (ADS)

    Grabovsky, Yury; Kucher, Vladislav A.; Truskinovsky, Lev

    2011-03-01

    In the case of Lipschitz extremals of vectorial variational problems, an important class of strong variations originates from smooth deformations of the corresponding non-smooth graphs. These seemingly singular variations, which can be viewed as combinations of weak inner and outer variations, produce directions of differentiability of the functional and lead to singularity-centered necessary conditions on strong local minima: an equality, arising from stationarity, and an inequality, implying configurational stability of the singularity set. To illustrate the underlying coupling between inner and outer variations, we study in detail the case of smooth surfaces of gradient discontinuity representing, for instance, martensitic phase boundaries in non-linear elasticity.

  6. Dynamic actuation of a novel laser-processed NiTi linear actuator

    NASA Astrophysics Data System (ADS)

    Pequegnat, A.; Daly, M.; Wang, J.; Zhou, Y.; Khan, M. I.

    2012-09-01

    A novel laser processing technique, capable of locally modifying the shape memory effect, was applied to enhance the functionality of a NiTi linear actuator. By altering local transformation temperatures, an additional memory was imparted into a monolithic NiTi wire to enable dynamic actuation via controlled resistive heating. Characterizations of the actuator load, displacement and cyclic properties were conducted using a custom-built spring-biased test set-up. Monotonic tensile testing was also implemented to characterize the deformation behaviour of the martensite phase. Observed differences in the deformation behaviour of laser-processed material were found to affect the magnitude of the active strain. Furthermore, residual strain during cyclic actuation testing was found to stabilize after 150 cycles while the recoverable strain remained constant. This laser-processed actuator will allow for the realization of new applications and improved control methods for shape memory alloys.

  7. Decentralized Feedback Controllers for Exponential Stabilization of Hybrid Periodic Orbits: Application to Robotic Walking.

    PubMed

    Hamed, Kaveh Akbari; Gregg, Robert D

    2016-07-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.

  8. Decentralized Feedback Controllers for Robust Stabilization of Periodic Orbits of Hybrid Systems: Application to Bipedal Walking.

    PubMed

    Hamed, Kaveh Akbari; Gregg, Robert D

    2017-07-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to coordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and [Formula: see text] robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3D autonomous bipedal robot with 9 degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.

  9. Standard representation and unified stability analysis for dynamic artificial neural network models.

    PubMed

    Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D

    2018-02-01

    An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.

  10. Decentralized Feedback Controllers for Exponential Stabilization of Hybrid Periodic Orbits: Application to Robotic Walking*

    PubMed Central

    Hamed, Kaveh Akbari; Gregg, Robert D.

    2016-01-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059

  11. Decentralized Feedback Controllers for Robust Stabilization of Periodic Orbits of Hybrid Systems: Application to Bipedal Walking

    PubMed Central

    Hamed, Kaveh Akbari; Gregg, Robert D.

    2016-01-01

    This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to coordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and H2 robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3D autonomous bipedal robot with 9 degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:28959117

  12. Non-linear coherent mode interactions and the control of shear layers

    NASA Technical Reports Server (NTRS)

    Nikitopoulos, D. E.; Liu, J. T. C.

    1990-01-01

    A nonlinear integral formulation, based on local linear stability considerations, is used to study the collective interactions between discrete wave-modes associated with large-scale structures and the mean flow in a developing shear layer. Aspects of shear layer control are examined in light of the sensitivity of these interactions to the initial frequency parameter, modal energy contents and modal phases. Manipulation of the large-scale structure is argued to be an effective means of controlling the flow, including the small-scale turbulence dominated region far downstream. Cases of fundamental, 1st and 2nd subharmonic forcing are discussed in conjunction with relevant experiments.

  13. An improved linear ion trap physics package

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.

    1993-01-01

    This article describes an improvement in the architecture of the physics package used in the Linear Ion Trap (LIT)-based frequency standard recently developed at JPL. This new design is based on the observation that ions can be moved along the axis of an LIT by applied dc voltages. The state selection and interrogation region can be separated from the more critical microwave resonance region where the multiplied local oscillator signal is compared with the stable atomic transition. This separation relaxes many of the design constraints of the present units. Improvements include increased frequency stability and a substantial reduction in size, mass, and cost of the final frequency standard.

  14. Application of Bounded Linear Stability Analysis Method for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics-driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a second order system that represents a pitch attitude control of a generic transport aircraft. The analysis shows that the system with the metrics-conforming variable adaptive gain becomes more robust to unmodeled dynamics or time delay. The effect of analysis time-window for BLSA is also evaluated in order to meet the stability margin criteria.

  15. Multi-Mode Estimation for Small Fixed Wing Unmanned Aerial Vehicle Localization Based on a Linear Matrix Inequality Approach

    PubMed Central

    Elzoghby, Mostafa; Li, Fu; Arafa, Ibrahim. I.; Arif, Usman

    2017-01-01

    Information fusion from multiple sensors ensures the accuracy and robustness of a navigation system, especially in the absence of global positioning system (GPS) data which gets degraded in many cases. A way to deal with multi-mode estimation for a small fixed wing unmanned aerial vehicle (UAV) localization framework is proposed, which depends on utilizing a Luenberger observer-based linear matrix inequality (LMI) approach. The proposed estimation technique relies on the interaction between multiple measurement modes and a continuous observer. The state estimation is performed in a switching environment between multiple active sensors to exploit the available information as much as possible, especially in GPS-denied environments. Luenberger observer-based projection is implemented as a continuous observer to optimize the estimation performance. The observer gain might be chosen by solving a Lyapunov equation by means of a LMI algorithm. Convergence is achieved by utilizing the linear matrix inequality (LMI), based on Lyapunov stability which keeps the dynamic estimation error bounded by selecting the observer gain matrix (L). Simulation results are presented for a small UAV fixed wing localization problem. The results obtained using the proposed approach are compared with a single mode Extended Kalman Filter (EKF). Simulation results are presented to demonstrate the viability of the proposed strategy. PMID:28420214

  16. Stable two-dimensional solitary pulses in linearly coupled dissipative Kadomtsev-Petviashvili equations.

    PubMed

    Feng, Bao-Feng; Malomed, Boris A; Kawahara, Takuji

    2002-11-01

    We present a two-dimensional (2D) generalization of the stabilized Kuramoto-Sivashinsky system, based on the Kadomtsev-Petviashvili (KP) equation including dissipation of the generic [Newell-Whitehead-Segel (NWS)] type and gain. The system directly applies to the description of gravity-capillary waves on the surface of a liquid layer flowing down an inclined plane, with a surfactant diffusing along the layer's surface. Actually, the model is quite general, offering a simple way to stabilize nonlinear media, combining the weakly 2D dispersion of the KP type with gain and NWS dissipation. Other applications are internal waves in multilayer fluids flowing down an inclined plane, double-front flames in gaseous mixtures, etc. Parallel to this weakly 2D model, we also introduce and study a semiphenomenological one, whose dissipative terms are isotropic, rather than of the NWS type, in order to check if qualitative results are sensitive to the exact form of the lossy terms. The models include an additional linear equation of the advection-diffusion type, linearly coupled to the main KP-NWS equation. The extra equation provides for stability of the zero background in the system, thus opening a way for the existence of stable localized pulses. We focus on the most interesting case, when the dispersive part of the system is of the KP-I type, which corresponds, e.g., to capillary waves, and makes the existence of completely localized 2D pulses possible. Treating the losses and gain as small perturbations and making use of the balance equation for the field momentum, we find that the equilibrium between the gain and losses may select two steady-state solitons from their continuous family existing in the absence of the dissipative terms (the latter family is found in an exact analytical form, and is numerically demonstrated to be stable). The selected soliton with the larger amplitude is expected to be stable. Direct simulations completely corroborate the analytical predictions, for both the physical and phenomenological models.

  17. Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, B. J.; Kruger, S. E.; Hegna, C. C.

    A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition tomore » instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10{sup 8} and 10{sup 3} for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10{sup 5}, which is much larger than experimentally measured values using T{sub e} values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.« less

  18. Bounded Linear Stability Margin Analysis of Nonlinear Hybrid Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Boskovic, Jovan D.

    2008-01-01

    This paper presents a bounded linear stability analysis for a hybrid adaptive control that blends both direct and indirect adaptive control. Stability and convergence of nonlinear adaptive control are analyzed using an approximate linear equivalent system. A stability margin analysis shows that a large adaptive gain can lead to a reduced phase margin. This method can enable metrics-driven adaptive control whereby the adaptive gain is adjusted to meet stability margin requirements.

  19. Stability and sensitivity analysis of hypersonic flow past a blunt cone

    NASA Astrophysics Data System (ADS)

    Nichols, Joseph W.; Cook, David; Brock, Joseph M.; Candler, Graham V.

    2017-11-01

    We investigate the effects of nosetip bluntness and low-level distributed roughness on instabilities leading to transition on a 7 degree half-angle blunt cone at Mach 10. To study the sensitivity of boundary layer instabilities to bluntness and roughness, we numerically extract Jacobian matrices directly from the unstructured hypersonic flow solver US3D. These matrices govern the dynamics of small perturbations about otherwise laminar base flows. We consider the frequency response of the resulting linearized dynamical system between different input and output locations along the cone, including close to the nosetip. Using adjoints, our method faithfully captures effects of complex geometry such as strong curvature and roughness that lead to flow acceleration and localized heating in this region. These effects violate the assumption of a slowly-varying base flow that underpins traditional linear stability analyses. We compare our results, which do not rely upon this assumption, to experimental measurements of a Mach 10 blunt cone taken at the AEDC Hypervelocity Ballistic Range G facility. In particular, we assess whether effects of complex geometry can explain discrepancies previously noted between traditional stability analysis and observations. This work is supported by the Office of Naval Research through Grant Number N00014-17-1-2496.

  20. Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation

    NASA Astrophysics Data System (ADS)

    Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua

    2018-06-01

    Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.

  1. Parameter-Space Survey of Linear G-mode and Interchange in Extended Magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, E. C.; Sovinec, C. R.

    The extended magnetohydrodynamic stability of interchange modes is studied in two configurations. In slab geometry, a local dispersion relation for the gravitational interchange mode (g-mode) with three different extensions of the MHD model [P. Zhu, et al., Phys. Rev. Lett. 101, 085005 (2008)] is analyzed. Our results delineate where drifts stablize the g-mode with gyroviscosity alone and with a two-fluid Ohm’s law alone. Including the two-fluid Ohm’s law produces an ion drift wave that interacts with the g-mode. This interaction then gives rise to a second instability at finite k y. A second instability is also observed in numerical extended MHD computations of linear interchange in cylindrical screw-pinch equilibria, the second configuration. Particularly with incomplete models, this mode limits the regions of stability for physically realistic conditions. But, applying a consistent two-temperature extended MHD model that includes the diamagnetic heat flux density (more » $$\\vec{q}$$ *) makes the onset of the second mode occur at larger Hall parameter. For conditions relevant to the SSPX experiment [E.B. Hooper, Plasma Phys. Controlled Fusion 54, 113001 (2012)], significant stabilization is observed for Suydam parameters as large as unity (D s≲1).« less

  2. Parameter-Space Survey of Linear G-mode and Interchange in Extended Magnetohydrodynamics

    DOE PAGES

    Howell, E. C.; Sovinec, C. R.

    2017-09-11

    The extended magnetohydrodynamic stability of interchange modes is studied in two configurations. In slab geometry, a local dispersion relation for the gravitational interchange mode (g-mode) with three different extensions of the MHD model [P. Zhu, et al., Phys. Rev. Lett. 101, 085005 (2008)] is analyzed. Our results delineate where drifts stablize the g-mode with gyroviscosity alone and with a two-fluid Ohm’s law alone. Including the two-fluid Ohm’s law produces an ion drift wave that interacts with the g-mode. This interaction then gives rise to a second instability at finite k y. A second instability is also observed in numerical extended MHD computations of linear interchange in cylindrical screw-pinch equilibria, the second configuration. Particularly with incomplete models, this mode limits the regions of stability for physically realistic conditions. But, applying a consistent two-temperature extended MHD model that includes the diamagnetic heat flux density (more » $$\\vec{q}$$ *) makes the onset of the second mode occur at larger Hall parameter. For conditions relevant to the SSPX experiment [E.B. Hooper, Plasma Phys. Controlled Fusion 54, 113001 (2012)], significant stabilization is observed for Suydam parameters as large as unity (D s≲1).« less

  3. Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements

    NASA Astrophysics Data System (ADS)

    Lohmann, Christoph; Kuzmin, Dmitri; Shadid, John N.; Mabuza, Sibusiso

    2017-09-01

    This work extends the flux-corrected transport (FCT) methodology to arbitrary order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the development of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low order approximations with compact stencils, (ii) high order variational stabilization based on the difference between two gradient approximations, and (iii) new localized limiting techniques for antidiffusive element contributions. The optional use of a smoothness indicator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is assessed in numerical studies for the linear transport equation in 1D and 2D.

  4. Magnetorotational Instability: Nonmodal Growth and the Relationship of Global Modes to the Shearing Box

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Squire, A Bhattacharjee

    We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using non-modal stability techniques.Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very diff erent to the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localizedmore » in a completely di fferent region of space. These ideas lead – for both axisymmetric and non-axisymmetric modes – to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary diff erential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using non-modal analysis techniques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong growth over a wide range of wave-numbers suggests that non-modal linear physics could be of fundamental importance in MRI turbulence (Squire & Bhattacharjee 2014).« less

  5. Sensor positioning and experimental constraints influence estimates of local dynamic stability during repetitive spine movements.

    PubMed

    Howarth, Samuel J; Graham, Ryan B

    2015-04-13

    Application of non-linear dynamics analyses to study human movement has increased recently, which necessitates an understanding of how dependent measures may be influenced by experimental design and setup. Quantifying local dynamic stability for a multi-articulated structure such as the spine presents the possibility for estimates to be influenced by positioning of kinematic sensors used to measure spine angular kinematics. Oftentimes researchers will also choose to constrain the spine's movement by physically restraining the pelvis and/or using targets to control movement endpoints. Ten healthy participants were recruited, and asked to perform separate trials of 35 consecutive cycles of spine flexion under both constrained and unconstrained conditions. Electromagnetic sensors that measure three-dimensional angular orientations were positioned over the pelvis and the spinous processes of L3, L1, and T11. Using the pelvic sensor as a reference, each sensor location on the spine was used to obtain a different representation of the three-dimensional spine angular kinematics. Local dynamic stability of each kinematic time-series was determined by calculating the maximum finite-time Lyapunov exponent (λmax). Estimates for λmax were significantly lower (i.e. dynamically more stable) for spine kinematic data obtained from the L3 sensor than those obtained from kinematic data using either the L1 or T11 sensors. Likewise, λmax was lower when the movement was constrained. These results emphasize the importance of proper placement of instrumentation for quantifying local dynamic stability of spine kinematics and are especially relevant for repeated measures designs where data are obtained from the same individual on multiple days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Transport and Dynamics in Toroidal Fusion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnack, Dalton D

    2006-05-16

    This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for themore » magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD result. Computations performed with a non-local kinetic closure for parallel electron thermal conduction that is valid over all collisionality regimes identify thermal diffusivity ratios of {chi}{sub ||}/{chi}{sub {perpendicular}} ~ 10{sup 7} - 10{sup 8} as appropriate when using collisional heat flux modeling for these modes. Adding significant parallel viscosity proves to have little effect. Nonlinear ELM computations solve the resistive MHD model with toroidal resolution 0{<=}n{<=}21, including anisotropic thermal conduction, temperature-dependent resistivity, and number density evolution. The computations are based on a realistic equilibrium with high pedestal temperature from the linear study. When the simulated ELM grows to appreciable amplitude, ribbon-like thermal structures extend from the separatrix to the wall as the spectrum broadens about a peak at n=13. Analysis of the results finds the heat flux on the wall to be very nonuniform with greatest intensity occurring in spots on the top and bottom of the chamber. Net thermal energy loss occurs on a time-scale of 100 {micro}s, and the instantaneous loss rate exceeds 1 GW.« less

  7. Non-modal linear stability analysis of thin film spreading by Marangoni stresses

    NASA Astrophysics Data System (ADS)

    Fischer, Benjamin John

    The spontaneous spreading and stability characteristics of a thin Newtonian liquid film partially coated by an insoluble surfactant monolayer are investigated in this thesis. Thin films sheared by Marangoni stresses ire characterized by film thinning in the upstream region near the terminating edge of the initial monolayer and an advancing ridge further downstream. For sufficiently thin films, experiments have shown there develops dendritic fingering patterns upstream of the ridge. To probe the mechanisms responsible for unstable flow, a non-modal linear stability analysis is required because the base-states describing these flows are space and time-dependent. A new measure of disturbance amplification is introduced, based on the relative kinetic energy of the perturbations to the base-states, to analyze surfactant monolayers spreading either from a finite or infinite source. These studies reveal that disturbance amplification is most significant in highly curved regions of the film characterized by a large: change in the shear stress, which can develop at the advancing ridge and at the edge of the initial monolayer. For spreading from both a finite and infinite source, disturbances that convect through the ridge undergo transient amplification but eventually decay to restore film stability. By contrast, disturbances that localize to the thinned region undergo sustained amplification when surfactant is continuously supplied to the liquid film thereby promoting film instability. By focusing on these susceptible regions, the relevant evolution equations are simplified to extract more information about the mechanism leading to instability. The length-scale controlling these "inner" regions represents the balance of viscous, capillary and Marangoni stresses. Simplification of these equations allows identification of steady travelling wave solutions whose linearized stability behavior shows that a flat film subject to a jump increase in shear stress is asymptotically unstable. This thesis concludes by comparing recent experiments in our laboratory of a droplet of low surface tension liquid (oleic acid) spreading on a thin Newtonian film (glycerol) before the onset of instability with numerical simulations. Similar power law behavior for the ridge advance and qualitatively similar film profiles shapes occur when the simulations utilize a non-linear equation of state for the surfactant monolayer.

  8. Mode localization in a class of multidegree-of-freedom nonlinear systems with cyclic symmetry

    NASA Astrophysics Data System (ADS)

    Vakakis, Alexander F.; Cetinkaya, Cetin

    1993-02-01

    The free oscillations of n-degree-of-freedom (DOF) nonlinear systems with cyclic symmetry and weak coupling between substructures are examined. An asymptotic methodology is used to detect localized nonsimilar normal modes, i.e., free periodic motions spatially confined to only a limited number of substructures of the cyclic system. It is shown that nonlinear mode localization occurs in the perfectly symmetric, weakly coupled structure, in contrast to linear mode localization, which exists only in the presence of substructure 'mistuning'. In addition to the localized modes, nonlocalized modes are also found in the weakly coupled system. The stability of the identified modes is investigated by means of an approximate two-timing averaging mothodology, and the general theory is applied to the case of a cyclic system with three-DOF. The theoretical results are then verified by direct numerical integrations of the equations of motion.

  9. Discontinuous Galerkin finite element method for the nonlinear hyperbolic problems with entropy-based artificial viscosity stabilization

    NASA Astrophysics Data System (ADS)

    Zingan, Valentin Nikolaevich

    This work develops a discontinuous Galerkin finite element discretization of non- linear hyperbolic conservation equations with efficient and robust high order stabilization built on an entropy-based artificial viscosity approximation. The solutions of equations are represented by elementwise polynomials of an arbitrary degree p > 0 which are continuous within each element but discontinuous on the boundaries. The discretization of equations in time is done by means of high order explicit Runge-Kutta methods identified with respective Butcher tableaux. To stabilize a numerical solution in the vicinity of shock waves and simultaneously preserve the smooth parts from smearing, we add some reasonable amount of artificial viscosity in accordance with the physical principle of entropy production in the interior of shock waves. The viscosity coefficient is proportional to the local size of the residual of an entropy equation and is bounded from above by the first-order artificial viscosity defined by a local wave speed. Since the residual of an entropy equation is supposed to be vanishingly small in smooth regions (of the order of the Local Truncation Error) and arbitrarily large in shocks, the entropy viscosity is almost zero everywhere except the shocks, where it reaches the first-order upper bound. One- and two-dimensional benchmark test cases are presented for nonlinear hyperbolic scalar conservation laws and the system of compressible Euler equations. These tests demonstrate the satisfactory stability properties of the method and optimal convergence rates as well. All numerical solutions to the test problems agree well with the reference solutions found in the literature. We conclude that the new method developed in the present work is a valuable alternative to currently existing techniques of viscous stabilization.

  10. Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths

    NASA Astrophysics Data System (ADS)

    Chu, Jixun; Coron, Jean-Michel; Shang, Peipei

    2015-10-01

    We study an initial-boundary-value problem of a nonlinear Korteweg-de Vries equation posed on the finite interval (0, 2 kπ) where k is a positive integer. The whole system has Dirichlet boundary condition at the left end-point, and both of Dirichlet and Neumann homogeneous boundary conditions at the right end-point. It is known that the origin is not asymptotically stable for the linearized system around the origin. We prove that the origin is (locally) asymptotically stable for the nonlinear system if the integer k is such that the kernel of the linear Korteweg-de Vries stationary equation is of dimension 1. This is for example the case if k = 1.

  11. Effects of radial electric fields on linear ITG instabilities in W7-X and LHD

    NASA Astrophysics Data System (ADS)

    Riemann, J.; Kleiber, R.; Borchardt, M.

    2016-07-01

    The impact of radial electric fields on the properties of linear ion-temperature-gradient (ITG) modes in stellarators is studied. Numerical simulations have been carried out with the global particle-in-cell (PIC) code EUTERPE, modelling the behaviour of ITG modes in Wendelstein 7-X and an LHD-like configuration. In general, radial electric fields seem to lead to a reduction of ITG instability growth, which can be related to the action of an induced E× B -drift. Focus is set on the modification of mode properties (frequencies, power spectrum, spatial structure and localization) to understand the observed growth rates as the result of competing stabilizing mechanisms.

  12. Linearization of digital derived rate algorithm for use in linear stability analysis

    NASA Technical Reports Server (NTRS)

    Graham, R. E.; Porada, T. W.

    1985-01-01

    The digital derived rate (DDR) algorithm is used to calculate the rate of rotation of the Centaur upper-stage rocket. The DDR is highly nonlinear algorithm, and classical linear stability analysis of the spacecraft cannot be performed without linearization. The performance of this rate algorithm is characterized by a gain and phase curve that drop off at the same frequency. This characteristic is desirable for many applications. A linearization technique for the DDR algorithm is investigated. The linearization method is described. Examples of the results of the linearization technique are illustrated, and the effects of linearization are described. A linear digital filter may be used as a substitute for performing classical linear stability analyses, while the DDR itself may be used in time response analysis.

  13. Ideal MHD Stability and Characteristics of Edge Localized Modes on CFETR

    NASA Astrophysics Data System (ADS)

    Li, Zeyu; Chan, Vincent; Xu, Xueqiao; Wang, Xiaogang; Cfetr Physics Team

    2017-10-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario derived from multi-code integrated modeling, with key parameters varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for engineering design. The linear stabilities of low-n and intermediate-n peeling-ballooning modes for CFETR baseline scenario are analyzed. Multi-code benchmarking, including GATO, ELITE, BOUT + + and NIMROD, demonstrated good agreement in predicting instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT + + . Instabilities are found both at the pedestal top and inside the pedestal region, which lead to a mix of grassy and type I ELMs. Pedestal structures extending inward beyond the pedestal top are also varied to study the influence on ELM characteristic. Preliminary results on the dependence of the Type-I ELM divertor heat load scaling on machine size and pedestal pressure will also be presented. Prepared by LLNL under Contract DE-AC52-07NA27344 and National Magnetic Confinement Fusion Research Program of China (Grant No. 2014GB110003 and 2014GB107004).

  14. Stability analysis and stabilization strategies for linear supply chains

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Helbing, Dirk

    2004-04-01

    Due to delays in the adaptation of production or delivery rates, supply chains can be dynamically unstable with respect to perturbations in the consumption rate, which is known as “bull-whip effect”. Here, we study several conceivable production strategies to stabilize supply chains, which is expressed by different specifications of the management function controlling the production speed in dependence of the stock levels. In particular, we will investigate, whether the reaction to stock levels of other producers or suppliers has a stabilizing effect. We will also demonstrate that the anticipation of future stock levels can stabilize the supply system, given the forecast horizon τ is long enough. To show this, we derive linear stability conditions and carry out simulations for different control strategies. The results indicate that the linear stability analysis is a helpful tool for the judgement of the stabilization effect, although unexpected deviations can occur in the non-linear regime. There are also signs of phase transitions and chaotic behavior, but this remains to be investigated more thoroughly in the future.

  15. Uncontrolled Stability in Freely Flying Insects

    NASA Astrophysics Data System (ADS)

    Melfi, James, Jr.; Wang, Z. Jane

    2015-11-01

    One of the key flight modes of a flying insect is longitudinal flight, traveling along a localized two-dimensional plane from one location to another. Past work on this topic has shown that flying insects, unless stabilized by some external stimulus, are typically unstable to a well studied pitching instability. In our work, we examine this instability in a computational study to understand whether it is possible for either evolution or an aero-vehicle designer to stabilize longitudinal flight through changes to insect morphology, kinematics, or aerodynamic quantities. A quasi-steady wingbeat averaged flapping flight model is used to describe the insect. From this model, a number of non-dimensional parameters are identified. The effect of these parameters was then quantified using linear stability analysis, applied to various translational states of the insect. Based on our understanding of these parameters, we demonstrate how to find an intrinsically stable flapping flight sequence for a dragonfly-like flapping flier in an instantaneous flapping flight model.

  16. Sufficient conditions for asymptotic stability and stabilization of autonomous fractional order systems

    NASA Astrophysics Data System (ADS)

    Lenka, Bichitra Kumar; Banerjee, Soumitro

    2018-03-01

    We discuss the asymptotic stability of autonomous linear and nonlinear fractional order systems where the state equations contain same or different fractional orders which lie between 0 and 2. First, we use the Laplace transform method to derive some sufficient conditions which ensure asymptotic stability of linear fractional order systems. Then by using the obtained results and linearization technique, a stability theorem is presented for autonomous nonlinear fractional order system. Finally, we design a control strategy for stabilization of autonomous nonlinear fractional order systems, and apply the results to the chaotic fractional order Lorenz system in order to verify its effectiveness.

  17. Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xinyang; Tian, Jie; Chen, Lijun

    Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less

  18. Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xinyang; Tian, Jie; Chen, Lijun

    Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less

  19. Bifurcations and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph

    NASA Astrophysics Data System (ADS)

    Noja, Diego; Pelinovsky, Dmitry; Shaikhova, Gaukhar

    2015-07-01

    We develop a detailed analysis of edge bifurcations of standing waves in the nonlinear Schrödinger (NLS) equation on a tadpole graph (a ring attached to a semi-infinite line subject to the Kirchhoff boundary conditions at the junction). It is shown in the recent work [7] by using explicit Jacobi elliptic functions that the cubic NLS equation on a tadpole graph admits a rich structure of standing waves. Among these, there are different branches of localized waves bifurcating from the edge of the essential spectrum of an associated Schrödinger operator. We show by using a modified Lyapunov-Schmidt reduction method that the bifurcation of localized standing waves occurs for every positive power nonlinearity. We distinguish a primary branch of never vanishing standing waves bifurcating from the trivial solution and an infinite sequence of higher branches with oscillating behavior in the ring. The higher branches bifurcate from the branches of degenerate standing waves with vanishing tail outside the ring. Moreover, we analyze stability of bifurcating standing waves. Namely, we show that the primary branch is composed by orbitally stable standing waves for subcritical power nonlinearities, while all nontrivial higher branches are linearly unstable near the bifurcation point. The stability character of the degenerate branches remains inconclusive at the analytical level, whereas heuristic arguments based on analysis of embedded eigenvalues of negative Krein signatures support the conjecture of their linear instability at least near the bifurcation point. Numerical results for the cubic NLS equation show that this conjecture is valid and that the degenerate branches become spectrally stable far away from the bifurcation point.

  20. A linear quadratic regulator approach to the stabilization of uncertain linear systems

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Wang, Y. J.

    1990-01-01

    This paper presents a linear quadratic regulator approach to the stabilization of uncertain linear systems. The uncertain systems under consideration are described by state equations with the presence of time-varying unknown-but-bounded uncertainty matrices. The method is based on linear quadratic regulator (LQR) theory and Liapunov stability theory. The robust stabilizing control law for a given uncertain system can be easily constructed from the symmetric positive-definite solution of the associated augmented Riccati equation. The proposed approach can be applied to matched and/or mismatched systems with uncertainty matrices in which only their matrix norms are bounded by some prescribed values and/or their entries are bounded by some prescribed constraint sets. Several numerical examples are presented to illustrate the results.

  1. Practical Methodology for the Inclusion of Nonlinear Slosh Damping in the Stability Analysis of Liquid-Propelled Space Vehicles

    NASA Technical Reports Server (NTRS)

    Ottander, John A.; Hall, Robert A.; Powers, J. F.

    2018-01-01

    A method is presented that allows for the prediction of the magnitude of limit cycles due to adverse control-slosh interaction in liquid propelled space vehicles using non-linear slosh damping. Such a method is an alternative to the industry practice of assuming linear damping and relying on: mechanical slosh baffles to achieve desired stability margins; accepting minimal slosh stability margins; or time domain non-linear analysis to accept time periods of poor stability. Sinusoidal input describing functional analysis is used to develop a relationship between the non-linear slosh damping and an equivalent linear damping at a given slosh amplitude. In addition, a more accurate analytical prediction of the danger zone for slosh mass locations in a vehicle under proportional and derivative attitude control is presented. This method is used in the control-slosh stability analysis of the NASA Space Launch System.

  2. Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields.

    PubMed

    Yousefi, Siamak; Balasubramanian, Madhusudhanan; Goldbaum, Michael H; Medeiros, Felipe A; Zangwill, Linda M; Weinreb, Robert N; Liebmann, Jeffrey M; Girkin, Christopher A; Bowd, Christopher

    2016-05-01

    To validate Gaussian mixture-model with expectation maximization (GEM) and variational Bayesian independent component analysis mixture-models (VIM) for detecting glaucomatous progression along visual field (VF) defect patterns (GEM-progression of patterns (POP) and VIM-POP). To compare GEM-POP and VIM-POP with other methods. GEM and VIM models separated cross-sectional abnormal VFs from 859 eyes and normal VFs from 1117 eyes into abnormal and normal clusters. Clusters were decomposed into independent axes. The confidence limit (CL) of stability was established for each axis with a set of 84 stable eyes. Sensitivity for detecting progression was assessed in a sample of 83 eyes with known progressive glaucomatous optic neuropathy (PGON). Eyes were classified as progressed if any defect pattern progressed beyond the CL of stability. Performance of GEM-POP and VIM-POP was compared to point-wise linear regression (PLR), permutation analysis of PLR (PoPLR), and linear regression (LR) of mean deviation (MD), and visual field index (VFI). Sensitivity and specificity for detecting glaucomatous VFs were 89.9% and 93.8%, respectively, for GEM and 93.0% and 97.0%, respectively, for VIM. Receiver operating characteristic (ROC) curve areas for classifying progressed eyes were 0.82 for VIM-POP, 0.86 for GEM-POP, 0.81 for PoPLR, 0.69 for LR of MD, and 0.76 for LR of VFI. GEM-POP was significantly more sensitive to PGON than PoPLR and linear regression of MD and VFI in our sample, while providing localized progression information. Detection of glaucomatous progression can be improved by assessing longitudinal changes in localized patterns of glaucomatous defect identified by unsupervised machine learning.

  3. Boundary-Layer Receptivity and Integrated Transition Prediction

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan

    2005-01-01

    The adjoint parabold stability equations (PSE) formulation is used to calculate the boundary layer receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Green's function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for an integrated transition prediction tool. Eventually, such physics-based, high fidelity prediction methods could simulate the transition process from the disturbance generation through the nonlinear breakdown in a holistic manner.

  4. Perturbation and Stability Analysis of the Multi-Anticipative Intelligent Driver Model

    NASA Astrophysics Data System (ADS)

    Chen, Xi-Qun; Xie, Wei-Jun; Shi, Jing; Shi, Qi-Xin

    This paper discusses three kinds of IDM car-following models that consider both the multi-anticipative behaviors and the reaction delays of drivers. Here, the multi-anticipation comes from two ways: (1) the driver is capable of evaluating the dynamics of several preceding vehicles, and (2) the autonomous vehicles can obtain the velocity and distance information of several preceding vehicles via inter-vehicle communications. In this paper, we study the stability of homogeneous traffic flow. The linear stability analysis indicates that the stable region will generally be enlarged by the multi-anticipative behaviors and reduced by the reaction delays. The temporal amplification and the spatial divergence of velocities for local perturbation are also studied, where the results further prove this conclusion. Simulation results also show that the multi-anticipative behaviors near the bottleneck will lead to a quicker backwards propagation of oscillations.

  5. Waves on radial film flows

    NASA Astrophysics Data System (ADS)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2005-08-01

    We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.

  6. Stability and Optimal Harvesting of Modified Leslie-Gower Predator-Prey Model

    NASA Astrophysics Data System (ADS)

    Toaha, S.; Azis, M. I.

    2018-03-01

    This paper studies a modified of dynamics of Leslie-Gower predator-prey population model. The model is stated as a system of first order differential equations. The model consists of one predator and one prey. The Holling type II as a predation function is considered in this model. The predator and prey populations are assumed to be beneficial and then the two populations are harvested with constant efforts. Existence and stability of the interior equilibrium point are analysed. Linearization method is used to get the linearized model and the eigenvalue is used to justify the stability of the interior equilibrium point. From the analyses, we show that under a certain condition the interior equilibrium point exists and is locally asymptotically stable. For the model with constant efforts of harvesting, cost function, revenue function, and profit function are considered. The stable interior equilibrium point is then related to the maximum profit problem as well as net present value of revenues problem. We show that there exists a certain value of the efforts that maximizes the profit function and net present value of revenues while the interior equilibrium point remains stable. This means that the populations can live in coexistence for a long time and also maximize the benefit even though the populations are harvested with constant efforts.

  7. Computerized dynamic posturography: the influence of platform stability on postural control.

    PubMed

    Palm, Hans-Georg; Lang, Patricia; Strobel, Johannes; Riesner, Hans-Joachim; Friemert, Benedikt

    2014-01-01

    Postural stability can be quantified using posturography systems, which allow different foot platform stability settings to be selected. It is unclear, however, how platform stability and postural control are mathematically correlated. Twenty subjects performed tests on the Biodex Stability System at all 13 stability levels. Overall stability index, medial-lateral stability index, and anterior-posterior stability index scores were calculated, and data were analyzed using analysis of variance and linear regression analysis. A decrease in platform stability from the static level to the second least stable level was associated with a linear decrease in postural control. The overall stability index scores were 1.5 ± 0.8 degrees (static), 2.2 ± 0.9 degrees (level 8), and 3.6 ± 1.7 degrees (level 2). The slope of the regression lines was 0.17 for the men and 0.10 for the women. A linear correlation was demonstrated between platform stability and postural control. The influence of stability levels seems to be almost twice as high in men as in women.

  8. A nonlinear approach to transition in subcritical plasmas with sheared flow

    NASA Astrophysics Data System (ADS)

    Pringle, Chris C. T.; McMillan, Ben F.; Teaca, Bogdan

    2017-12-01

    In many plasma systems, introducing a small background shear flow is enough to stabilize the system linearly. The nonlinear dynamics are much less sensitive to sheared flows than the average linear growth rates, and very small amplitude perturbations can lead to sustained turbulence. We explore the general problem of characterizing how and when the transition from near-laminar states to sustained turbulence occurs, with a model of the interchange instability being used as a concrete example. These questions are fundamentally nonlinear, and the answers must go beyond the linear transient amplification of small perturbations. Two methods that account for nonlinear interactions are therefore explored here. The first method explored is edge tracking, which identifies the boundary between the basins of attraction of the laminar and turbulent states. Here, the edge is found to be structured around an exact, localized, traveling wave solution that is qualitatively similar to avalanche-like bursts seen in the turbulent regime. The second method is an application of nonlinear, non-modal stability theory which allows us to identify the smallest disturbances which can trigger turbulence (the minimal seed for the problem) and hence to quantify how stable the laminar regime is. The results obtained from these fully nonlinear methods provide confidence in the derivation of a semi-analytic approximation for the minimal seed.

  9. Linear and nonlinear stability of the Blasius boundary layer

    NASA Technical Reports Server (NTRS)

    Bertolotti, F. P.; Herbert, TH.; Spalart, P. R.

    1992-01-01

    Two new techniques for the study of the linear and nonlinear instability in growing boundary layers are presented. The first technique employs partial differential equations of parabolic type exploiting the slow change of the mean flow, disturbance velocity profiles, wavelengths, and growth rates in the streamwise direction. The second technique solves the Navier-Stokes equation for spatially evolving disturbances using buffer zones adjacent to the inflow and outflow boundaries. Results of both techniques are in excellent agreement. The linear and nonlinear development of Tollmien-Schlichting (TS) waves in the Blasius boundary layer is investigated with both techniques and with a local procedure based on a system of ordinary differential equations. The results are compared with previous work and the effects of non-parallelism and nonlinearity are clarified. The effect of nonparallelism is confirmed to be weak and, consequently, not responsible for the discrepancies between measurements and theoretical results for parallel flow.

  10. Collapse for the higher-order nonlinear Schrödinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achilleos, V.; Diamantidis, S.; Frantzeskakis, D. J.

    We examine conditions for finite-time collapse of the solutions of the higher-order nonlinear Schr odinger (NLS) equation incorporating third-order dispersion, self-steepening, linear and nonlinear gain and loss, and Raman scattering; this is a system that appears in many physical contexts as a more realistic generalization of the integrable NLS. By using energy arguments, it is found that the collapse dynamics is chiefly controlled by the linear/nonlinear gain/loss strengths. We identify a critical value of the linear gain, separating the possible decay of solutions to the trivial zero-state, from collapse. The numerical simulations, performed for a wide class of initial data,more » are found to be in very good agreement with the analytical results, and reveal long-time stability properties of localized solutions. The role of the higher-order effects to the transient dynamics is also revealed in these simulations.« less

  11. Collapse for the higher-order nonlinear Schrödinger equation

    DOE PAGES

    Achilleos, V.; Diamantidis, S.; Frantzeskakis, D. J.; ...

    2016-02-01

    We examine conditions for finite-time collapse of the solutions of the higher-order nonlinear Schr odinger (NLS) equation incorporating third-order dispersion, self-steepening, linear and nonlinear gain and loss, and Raman scattering; this is a system that appears in many physical contexts as a more realistic generalization of the integrable NLS. By using energy arguments, it is found that the collapse dynamics is chiefly controlled by the linear/nonlinear gain/loss strengths. We identify a critical value of the linear gain, separating the possible decay of solutions to the trivial zero-state, from collapse. The numerical simulations, performed for a wide class of initial data,more » are found to be in very good agreement with the analytical results, and reveal long-time stability properties of localized solutions. The role of the higher-order effects to the transient dynamics is also revealed in these simulations.« less

  12. Pattern dynamics of the reaction-diffusion immune system.

    PubMed

    Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie

    2018-01-01

    In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.

  13. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    NASA Astrophysics Data System (ADS)

    Chelaru, Teodor-Viorel; Chelaru, Adrian

    2014-12-01

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelaru, Teodor-Viorel, E-mail: teodor.chelaru@upb.ro; Chelaru, Adrian, E-mail: achelaru@incas.ro

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system,more » based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.« less

  15. Electron Localization in Molecular Fragmentation of H{sub 2} by Carrier-Envelope Phase Stabilized Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kremer, Manuel; Fischer, Bettina; Feuerstein, Bernold

    2009-11-20

    Fully differential data for H{sub 2} dissociation in ultrashort (6 fs, 760 nm), linearly polarized, intense (0.44 PW/cm{sup 2}) laser pulses with a stabilized carrier-envelope phase (CEP) were recorded with a reaction microscope. Depending on the CEP, the molecular orientation, and the kinetic energy release (KER), we find asymmetric proton emission at low KERs (0-3 eV), basically predicted by Roudnev and Esry, and much stronger than reported by Kling et al. Wave packet propagation calculations reproduce the salient features and discard, together with the observed KER-independent electron asymmetry, the first ionization step to be the reason for the asymmetric protonmore » emission.« less

  16. Mineral Nutritional Yield and Nutrient Density of Locally Adapted Wheat Genotypes under Organic Production

    PubMed Central

    Moreira-Ascarrunz, Sergio Daniel; Larsson, Hans; Prieto-Linde, Maria Luisa; Johansson, Eva

    2016-01-01

    The aim of the present investigation was to investigate the nutritional yield, nutrient density, stability, and adaptability of organically produced wheat for sustainable and nutritional high value food production. This study evaluated the nutritional yield of four minerals (Fe, Zn, Cu, and Mg) in 19 wheat genotypes, selected as being locally adapted under organic agriculture conditions. The new metric of nutritional yield was calculated for each genotype and they were evaluated for stability using the Additive Main effects and Multiplicative Interaction (AMMI) stability analysis and for genotypic value, stability, and adaptability using the Best Linear Unbiased Prediction (BLUP procedure). The results indicated that there were genotypes suitable for production under organic agriculture conditions with satisfactory yields (>4000 kg·ha−1). Furthermore, these genotypes showed high nutritional yield and nutrient density for the four minerals studied. Additionally, since these genotypes were stable and adaptable over three environmentally different years, they were designated “balanced genotypes” for the four minerals and for the aforementioned characteristics. Selection and breeding of such “balanced genotypes” may offer an alternative to producing nutritious food under low-input agriculture conditions. Furthermore, the type of evaluation presented here may also be of interest for implementation in research conducted in developing countries, following the objectives of producing enough nutrients for a growing population. PMID:28231184

  17. Toroidal Geometry Stabilizing a Latitudinal Ring of Point Vortices on a Torus

    NASA Astrophysics Data System (ADS)

    Sakajo, Takashi; Shimizu, Yuuki

    2018-06-01

    We carry out the linear stability analysis of a polygonal ring configuration of N point vortices, called an N-ring, along the line of latitude θ _0 on a torus with the aspect ratio α . Deriving a criterion for the stability depending on the parameters N, θ _0 and α , we reveal how the aspect ratio α contributes to the stability of the N-ring. While the N-ring necessarily becomes unstable when N is sufficiently large for fixed α , the stability is closely associated with the geometric property of the torus for variable α ; for low aspect ratio α ˜ 1, N=7 is a critical number determining the stability of the N-ring when it is located along a certain range of latitudes, which is an analogous result to those in a plane and on a sphere. On the other hand, the stability is determined by the sign of curvature for high aspect ratio α ≫ 1. That is to say, the N-ring is neutrally stable if it is located on the inner side of the toroidal surface with a negative curvature, while the N-ring on its outer side with a positive curvature is unstable. Furthermore, based on the linear stability analysis, we describe nonlinear evolution of the N-ring when it becomes unstable. It is difficult to deal with this problem, since the evolution equation of the N point vortices is formulated as a Hamiltonian system with N degrees of freedom, which is in general non-integrable. Thus, we reduce the Hamiltonian system to a simple integrable system by introducing a cyclic symmetry. Owing to this reduction, we successfully find some periodic orbits in the reduced system, whose local bifurcations and global transitions for variable α are characterized in terms of the fundamental group of the torus.

  18. Local coexistence of VO 2 phases revealed by deep data analysis

    DOE PAGES

    Strelcov, Evgheni; Ievlev, Anton; Tselev, Alexander; ...

    2016-07-07

    We report a synergistic approach of micro-Raman spectroscopic mapping and deep data analysis to study the distribution of crystallographic phases and ferroelastic domains in a defected Al-doped VO 2 microcrystal. Bayesian linear unmixing revealed an uneven distribution of the T phase, which is stabilized by the surface defects and uneven local doping that went undetectable by other classical analysis techniques such as PCA and SIMPLISMA. This work demonstrates the impact of information recovery via statistical analysis and full mapping in spectroscopic studies of vanadium dioxide systems, which is commonly substituted by averaging or single point-probing approaches, both of which suffermore » from information misinterpretation due to low resolving power.« less

  19. Quasi-Linear Parameter Varying Representation of General Aircraft Dynamics Over Non-Trim Region

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob

    2007-01-01

    For applying linear parameter varying (LPV) control synthesis and analysis to a nonlinear system, it is required that a nonlinear system be represented in the form of an LPV model. In this paper, a new representation method is developed to construct an LPV model from a nonlinear mathematical model without the restriction that an operating point must be in the neighborhood of equilibrium points. An LPV model constructed by the new method preserves local stabilities of the original nonlinear system at "frozen" scheduling parameters and also represents the original nonlinear dynamics of a system over a non-trim region. An LPV model of the motion of FASER (Free-flying Aircraft for Subscale Experimental Research) is constructed by the new method.

  20. Cellular Spacing Selection During the Directional Solidification of Binary Alloys. A Numerical Approach

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, S.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The evolution of cellular solid/liquid interfaces from an initially unstable planar front was studied by means of a two-dimensional computer simulation. The developed numerical model makes use of an interface tracking procedure and has the capability to describe the dynamics of the interface morphology based on local changes of the thermodynamic conditions. The fundamental physics of this formulation was validated against experimental microgravity results and the predictions of the analytical linear stability theory. The performed simulations revealed that in certain conditions, based on a competitive growth mechanism, an interface could become unstable to random perturbations of infinitesimal amplitude even at wavelengths smaller than the neutral wavelength, lambda(sub c), predicted by the linear stability theory. Furthermore, two main stages of spacing selection have been identified. In the first stage, at low perturbations amplitude, the selection mechanism is driven by the maximum growth rate of instabilities while in the second stage the selection is influenced by nonlinear phenomena caused by the interactions between the neighboring cells. Comparison of these predictions with other existing theories of pattern formation and experimental results will be discussed.

  1. Stability of multiloop LQ regulators with nonlinearities. I - Regions of attraction. II - Regions of ultimate boundedness

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1986-01-01

    An investigation is conducted for the closed loop stability of linear time-invariant systems controlled by linear quadratic (LQ) regulators, in cases where nonlinearities exist in the control channels lying outside the stability sector in regions away from the origin. The estimate of the region of attraction thus obtained furnishes methods for the selection of performance function weights for more robust LQ designs. Attention is then given to the closed loop stability of linear time-invariant systems controlled by the LQ regulators when the nonlinearities in the loops escape the stability sector in a bounded region containing the origin.

  2. Applied Time Domain Stability Margin Assessment for Nonlinear Time-Varying Systems

    NASA Technical Reports Server (NTRS)

    Kiefer, J. M.; Johnson, M. D.; Wall, J. H.; Dominguez, A.

    2016-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation. This technique was implemented by using the Stability Aerospace Vehicle Analysis Tool (SAVANT) computer simulation to evaluate the stability of the SLS system with the Adaptive Augmenting Control (AAC) active and inactive along its ascent trajectory. The gains for which the vehicle maintains apparent time-domain stability defines the gain margins, and the time delay similarly defines the phase margin. This method of extracting the control stability margins from the time-domain simulation is relatively straightforward and the resultant margins can be compared to the linearized system results. The sections herein describe the techniques employed to extract the time-domain margins, compare the results between these nonlinear and the linear methods, and provide explanations for observed discrepancies. The SLS ascent trajectory was simulated with SAVANT and the classical linear stability margins were evaluated at one second intervals. The linear analysis was performed with the AAC algorithm disabled to attain baseline stability margins. At each time point, the system was linearized about the current operating point using Simulink's built-in solver. Each linearized system in time was evaluated for its rigid-body gain margin (high frequency gain margin), rigid-body phase margin, and aero gain margin (low frequency gain margin) for each control axis. Using the stability margins derived from the baseline linearization approach, the time domain derived stability margins were determined by executing time domain simulations in which axis-specific incremental gain and phase adjustments were made to the nominal system about the expected neutral stability point at specific flight times. The baseline stability margin time histories were used to shift the system gain to various values around the zero margin point such that a precise amount of expected gain margin was maintained throughout flight. When assessing the gain margins, the gain was applied starting at the time point under consideration, thereafter following the variation in the margin found in the linear analysis. When assessing the rigid-body phase margin, a constant time delay was applied to the system starting at the time point under consideration. If the baseline stability margins were correctly determined via the linear analysis, the time domain simulation results should contain unstable behavior at certain gain and phase values. Examples will be shown from repeated simulations with variable added gain and phase lag. Faithfulness of margins calculated from the linear analysis to the nonlinear system will be demonstrated.

  3. Microsegregation during directional solidification

    NASA Technical Reports Server (NTRS)

    Coriell, S. R.; Mcfadden, G. B.

    1984-01-01

    During the directional solidification of alloys, solute inhomogeneities transverse to the growth direction arise due to morphological instabilities (leading to cellular or dendritic growth) and/or due to convection in the melt. In the absence of convection, the conditions for the onset of morphological instability are given by the linear stability analysis of Mullins and Sekerka. For ordinary solidification rates, the predictions of linear stability analysis are similar to the constitutional supercooling criterion. However, at very rapid solidification rates, linear stability analysis predicts a vast increase in stabilization in comparison to constitutional supercooling.

  4. Robust stability of bidirectional associative memory neural networks with time delays

    NASA Astrophysics Data System (ADS)

    Park, Ju H.

    2006-01-01

    Based on the Lyapunov Krasovskii functionals combined with linear matrix inequality approach, a novel stability criterion is proposed for asymptotic stability of bidirectional associative memory neural networks with time delays. A novel delay-dependent stability criterion is given in terms of linear matrix inequalities, which can be solved easily by various optimization algorithms.

  5. Modulational Instability and Quantum Discrete Breather States of Cold Bosonic Atoms in a Zig-Zag Optical Lattice

    NASA Astrophysics Data System (ADS)

    Chang, Xia; Xie, Jiayu; Wu, Tianle; Tang, Bing

    2018-07-01

    A theoretical study on modulational instability and quantum discrete breather states in a system of cold bosonic atoms in zig-zag optical lattices is presented in this work. The time-dependent Hartree approximation is employed to deal with the multiple body problem. By means of a linear stability analysis, we analytically study the modulational instability, and estimate existence conditions of the bright stationary localized solutions for different values of the second-neighbor hopping constant. On the other hand, we get analytical bright stationary localized solutions, and analyze the influence of the second-neighbor hopping on their existence conditions. The predictions of the modulational instability analysis are shown to be reliable. Using these stationary localized single-boson wave functions, the quantum breather states corresponding to the system with different types of nonlinearities are constructed.

  6. ULF waves and plasma stability in different regions of the magnetosheath

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Escoubet, C. Philippe; Grison, Benjamin

    2016-04-01

    We present a statistical study of the occurrence and properties of ultra low frequency waves in the magnetosheath and interpret the results in terms of the competition of mirror and Alfvén-ion-cyclotron (AIC) instabilities. Both mirror and AIC waves are generated in high beta plasma of the magnetosheath when ion temperature anisotropy exceeds the threshold of the respective instabilities. These waves are frequently observed in the terrestrial and planetary magnetosheaths, but their distribution within the magnetosheath is inhomogeneous and their character varies as a function of location, local and upstream plasma parameters. We studied the spatial distribution of the two wave modes in the magnetosheath together with the local plasma parameters important for the stability of ULF waves. This analysis was performed on a dataset of all magnetosheath crossings observed by Cluster spacecraft over two years. For each observation we used bow shock, magnetopause and magnetosheath flow models to identify the relative position of the spacecraft with respect to magnetosheath boundaries and local properties of the upstream shock crossing. A strong dependence of parameters characterizing plasma stability and mirror/AIC wave occurrence on upstream ΘBn and MA is identified. The occurrence of mirror and AIC modes was compared against the respective instability thresholds and it was observed that AIC waves occurred nearly exclusively under mirror stable conditions. This is interpreted in terms of the different character of non-linear saturation of the two modes.

  7. Analysis of quality control data of eight modern radiotherapy linear accelerators: the short- and long-term behaviours of the outputs and the reproducibility of quality control measurements

    NASA Astrophysics Data System (ADS)

    Kapanen, Mika; Tenhunen, Mikko; Hämäläinen, Tuomo; Sipilä, Petri; Parkkinen, Ritva; Järvinen, Hannu

    2006-07-01

    Quality control (QC) data of radiotherapy linear accelerators, collected by Helsinki University Central Hospital between the years 2000 and 2004, were analysed. The goal was to provide information for the evaluation and elaboration of QC of accelerator outputs and to propose a method for QC data analysis. Short- and long-term drifts in outputs were quantified by fitting empirical mathematical models to the QC measurements. Normally, long-term drifts were well (<=1%) modelled by either a straight line or a single-exponential function. A drift of 2% occurred in 18 ± 12 months. The shortest drift times of only 2-3 months were observed for some new accelerators just after the commissioning but they stabilized during the first 2-3 years. The short-term reproducibility and the long-term stability of local constancy checks, carried out with a sealed plane parallel ion chamber, were also estimated by fitting empirical models to the QC measurements. The reproducibility was 0.2-0.5% depending on the positioning practice of a device. Long-term instabilities of about 0.3%/month were observed for some checking devices. The reproducibility of local absorbed dose measurements was estimated to be about 0.5%. The proposed empirical model fitting of QC data facilitates the recognition of erroneous QC measurements and abnormal output behaviour, caused by malfunctions, offering a tool to improve dose control.

  8. Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller.

    PubMed

    Niamul Islam, Naz; Hannan, M A; Mohamed, Azah; Shareef, Hussain

    2016-01-01

    Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.

  9. Stability analysis of the onset of vortex shedding for wakes behind flat plates

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Liu, Li; Zhang, Shi-Bo; Wen, Feng-Bo; Zhou, Xun

    2018-04-01

    Above a critical Reynolds number, wake flows behind flat plates become globally unstable, the leading modal instability in this case is known as Kelvin-Helmholtz mechanism. In this article, both local and BiGlobal linear instability analyses are performed numerically to study the onset of the shedding process. Flat plates with different base shapes are considered to assess geometry effects, and the relation between the critical shedding Reynolds number, Re_cr , and the boundary layer thickness is studied. Three types of base shapes are used: square, triangular and elliptic. It is found that the base shape has a great impact on the growth rate of least stable disturbance mode, thus would influence Re_cr greatly, but it has little effect on the vortex shedding frequency. The shedding frequency is determined mainly by boundary layer thickness and has little dependence on the Reynolds number and base shape. We find that for a fixed Reynolds number, increasing boundary layer thickness acted in two ways to modify the global stability characteristics: It increases the length of the absolute unstable region and it makes the flow less locally absolutely unstable in the near-wake region, and these two effects work against each other to destabilize or stabilize the flow.

  10. Local dynamic stability and gait variability during attentional tasks in young adults.

    PubMed

    Magnani, Rina Márcia; Lehnen, Georgia Cristina; Rodrigues, Fábio Barbosa; de Sá E Souza, Gustavo Souto; de Oliveira Andrade, Adriano; Vieira, Marcus Fraga

    2017-06-01

    Cell phone use while walking may be a cognitive distraction and reduce visual and motor attention. Thus, the aim of this study was to verify the effects of attentional dual-tasks while using a cell phone in different conditions. Stability, regularity, and linear variability of trunk kinematics, and gait spatiotemporal parameters in young adults were measured. Twenty young subjects of both genders were asked to walk on a treadmill for 4min under the following conditions: (a) looking forward at a fixed target 2.5m away (walking); (b) talking on a cell phone with unilateral handling (talking); (c) texting messages on a cell phone with unilateral handling (texting); and (d) looking forward at the aforementioned target while listening to music without handling the phone (listening). Local dynamic stability measured in terms of the largest Lyapunov exponent decreased while handling a cell phone (talking and texting). Gait variability and regularity increased when talking on a cell phone, but no variable changed in the listening condition. Under all dual-task conditions, there were significant increases in stride width and its variability. We conclude that young adults who use a cell phone when walking adapt their gait pattern conservatively, which can be because of increased attentional demand during cell phone use. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Polynomial elimination theory and non-linear stability analysis for the Euler equations

    NASA Technical Reports Server (NTRS)

    Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.

    1986-01-01

    Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.

  12. The stability cycle—A universal pathway for the stability of films over topography

    NASA Astrophysics Data System (ADS)

    Schörner, Mario; Aksel, Nuri

    2018-01-01

    In the present study on the linear stability of gravity-driven Newtonian films flowing over inclined topographies, we consider a fundamental question: Is there a universal principle, being valid to describe the parametric evolution of the flow's stability chart for variations of different system parameters? For this sake, we first screened all experimental and numerical stability charts available in the literature. In a second step, we performed experiments to fill the gaps which remained. Variations of the fluid's viscosity and the topography's specific shape, amplitude, wavelength, tip width, and inclination were considered. That way, we identified a set of six characteristic patterns of stability charts to be sufficient to describe and unify all results on the linear stability of Newtonian films flowing over undulated inclines. We unveiled a universal pathway—the stability cycle—along which the linear stability charts of all considered Newtonian films flowing down periodically corrugated inclines evolved when the system parameters were changed.

  13. Review of LFTs, LMIs, and mu. [Linear Fractional Transformations, Linear Matrix Inequalities

    NASA Technical Reports Server (NTRS)

    Doyle, John; Packard, Andy; Zhou, Kemin

    1991-01-01

    The authors present a tutorial overview of linear fractional transformations (LFTs) and the role of the structured singular value, mu, and linear matrix inequalities (LMIs) in solving LFT problems. The authors first introduce the notation for LFTs and briefly discuss some of their properties. They then describe mu and its connections with LFTs. They focus on two standard notions of robust stability and performance, mu stability and performance and Q stability and performance, and their relationship is discussed. Comparisons with the L1 theory of robust performance with structured uncertainty are considered.

  14. Photoinduced intramolecular charge transfer (ICT) reaction in trans-methyl p-(dimethylamino) cinnamate: A combined fluorescence measurement and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Chakraborty, Amrita; Kar, Samiran; Guchhait, Nikhil

    2006-01-01

    The photophysical behaviour of trans-methyl p-(dimethylamino) cinnamate ( t-MDMAC) donor-acceptor system has been investigated by steady-state absorption and emission spectroscopy and quantum chemical calculations. The molecule t-MDMAC shows an emission from the locally excited state in non-polar solvents. In addition to weak local emission, a strong solvent dependent red shifted fluorescence in polar aprotic solvents is attributed to highly polar intramolecular charge transfer state. However, the formation of hydrogen-bonded clusters with polar protic solvents has been suggested from a linear correlation between the observed red shifted fluorescence band maxima with hydrogen bonding parameters ( α). Calculations by ab initio and density functional theory show that the lone pair electron at nitrogen center is out of plane of the benzene ring in the global minimum ground state structure. In the gas phase, a potential energy surface along the twist coordinate at the donor (-NMe 2) and acceptor (-CH = CHCOOMe) sites shows stabilization of S 1 state and destabilization S 2 and S 0 states. A similar potential energy calculation along the twist coordinate in acetonitrile solvent using non-equilibrium polarized continuum model also shows more stabilization of S 1 state relative to other states and supports solvent dependent red shifted emission properties. In all types of calculations it is found that the nitrogen lone pair is delocalized over the benzene ring in the global minimum ground state and is localized on the nitrogen centre at the 90° twisted configuration. The S 1 energy state stabilization along the twist coordinate at the donor site and localized nitrogen lone pair at the perpendicular configuration support well the observed dual fluorescence in terms of proposed twisted intramolecular charge transfer (TICT) model.

  15. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: TOROIDAL ROTATION AND 3D NONLINEAR DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SNYDER,P.B; WILSON,H.R; XU,X.Q

    2004-06-01

    Understanding the physics of the H-Mode pedestal and edge localized modes (ELMs) is very important to next-step fusion devices for two primary reasons: (1) The pressure at the top of the edge barrier (''pedestal height'') strongly impacts global confinement and fusion performance, and (2) large ELMs lead to localized transient heat loads on material surfaces that may constrain component lifetimes. The development of the peeling-ballooning model has shed light on these issues by positing a mechanism for ELM onset and constraints on the pedestal height. The mechanism involves instability of ideal coupled ''peeling-ballooning'' modes driven by the sharp pressure gradientmore » and consequent large bootstrap current in the H-mode edge. It was first investigated in the local, high-n limit [1], and later quantified for non-local, finite-n modes in general toroidal geometry [2,3]. Important aspects are that a range of wavelengths may potentially be unstable, with intermediate n's (n {approx} 3-30) generally limiting in high performance regimes, and that stability bounds are strongly sensitive to shape [Fig l(a)], and to collisionality (i.e. temperature and density) [4] through the bootstrap current. The development of efficient MHD stability codes such as ELITE [3,2] and MISHKA [5] has allowed detailed quantification of peeling-ballooning stability bounds (e.g. [6]) and extensive and largely successful comparisons with observation (e.g. [2,6-9]). These previous calculations are ideal, static, and linear. Here we extend this work to incorporate the impact of sheared toroidal rotation, and the non-ideal, nonlinear dynamics which must be studied to quantify ELM size and heat deposition on material surfaces.« less

  16. An approach to the development of numerical algorithms for first order linear hyperbolic systems in multiple space dimensions: The constant coefficient case

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1995-01-01

    Two methods for developing high order single step explicit algorithms on symmetric stencils with data on only one time level are presented. Examples are given for the convection and linearized Euler equations with up to the eighth order accuracy in both space and time in one space dimension, and up to the sixth in two space dimensions. The method of characteristics is generalized to nondiagonalizable hyperbolic systems by using exact local polynominal solutions of the system, and the resulting exact propagator methods automatically incorporate the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space dimensions. Cross derivatives are included in the local approximations used to develop the algorithms in this paper in order to obtain high order accuracy, and improved isotropy and stability. Efficiency in meeting global error bounds is an important criterion for evaluating algorithms, and the higher order algorithms are shown to be up to several orders of magnitude more efficient even though they are more complex. Stable high order boundary conditions for the linearized Euler equations are developed in one space dimension, and demonstrated in two space dimensions.

  17. Effect of turbulent eddy viscosity on the unstable surface mode above an acoustic liner

    NASA Astrophysics Data System (ADS)

    Marx, David; Aurégan, Yves

    2013-07-01

    Lined ducts are used to reduce noise radiation from ducts in turbofan engines. In certain conditions they may sustain hydrodynamic instabilities. A local linear stability analysis of the flow in a 2D lined channel is performed using a numerical integration of the governing equations. Several model equations are used, one of them taking into account turbulent eddy viscosity, and a realistic turbulent mean flow profile is used that vanishes at the wall. The stability analysis results are compared to published experimental results. Both the model and the experiments show the existence of an unstable mode, and the importance of taking into account eddy viscosity in the model is shown. When this is done, quantities such as the growth rate and the velocity eigenfunctions are shown to agree correctly.

  18. Crossflow Stability and Transition Experiments in Swept-Wing Flow

    NASA Technical Reports Server (NTRS)

    Dagenhart, J. Ray; Saric, William S.

    1999-01-01

    An experimental examination of crossflow instability and transition on a 45deg swept wing was conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized by using both sublimating chemical and liquid-crystal coatings. Extensive hot-wire measurements were obtained at several measurement stations across a single vortex track. The mean and travelling wave disturbances were measured simultaneously. Stationary crossflow disturbance profiles were determined by subtracting either a reference or a span-averaged velocity profile from the mean velocity data. Mean, stationary crossflow, and traveling wave velocity data were presented as local boundary layer profiles and contour plots across a single stationary crossflow vortex track. Disturbance mode profiles and growth rates were determined. The experimental data are compared with predictions from linear stability theory.

  19. Kinematic measures for assessing gait stability in elderly individuals: a systematic review

    PubMed Central

    Hamacher, D.; Singh, N.B.; Van Dieën, J.H.; Heller, M.O.; Taylor, W.R.

    2011-01-01

    Falls not only present a considerable health threat, but the resulting treatment and loss of working days also place a heavy economic burden on society. Gait instability is a major fall risk factor, particularly in geriatric patients, and walking is one of the most frequent dynamic activities of daily living. To allow preventive strategies to become effective, it is therefore imperative to identify individuals with an unstable gait. Assessment of dynamic stability and gait variability via biomechanical measures of foot kinematics provides a viable option for quantitative evaluation of gait stability, but the ability of these methods to predict falls has generally not been assessed. Although various methods for assessing gait stability exist, their sensitivity and applicability in a clinical setting, as well as their cost-effectiveness, need verification. The objective of this systematic review was therefore to evaluate the sensitivity of biomechanical measures that quantify gait stability among elderly individuals and to evaluate the cost of measurement instrumentation required for application in a clinical setting. To assess gait stability, a comparative effect size (Cohen's d) analysis of variability and dynamic stability of foot trajectories during level walking was performed on 29 of an initial yield of 9889 articles from four electronic databases. The results of this survey demonstrate that linear variability of temporal measures of swing and stance was most capable of distinguishing between fallers and non-fallers, whereas step width and stride velocity prove more capable of discriminating between old versus young (OY) adults. In addition, while orbital stability measures (Floquet multipliers) applied to gait have been shown to distinguish between both elderly fallers and non-fallers as well as between young and old adults, local stability measures (λs) have been able to distinguish between young and old adults. Both linear and nonlinear measures of foot time series during gait seem to hold predictive ability in distinguishing healthy from fall-prone elderly adults. In conclusion, biomechanical measurements offer promise for identifying individuals at risk of falling and can be obtained with relatively low-cost tools. Incorporation of the most promising measures in combined retrospective and prospective studies for understanding fall risk and designing preventive strategies is warranted. PMID:21880615

  20. Kinematic measures for assessing gait stability in elderly individuals: a systematic review.

    PubMed

    Hamacher, D; Singh, N B; Van Dieën, J H; Heller, M O; Taylor, W R

    2011-12-07

    Falls not only present a considerable health threat, but the resulting treatment and loss of working days also place a heavy economic burden on society. Gait instability is a major fall risk factor, particularly in geriatric patients, and walking is one of the most frequent dynamic activities of daily living. To allow preventive strategies to become effective, it is therefore imperative to identify individuals with an unstable gait. Assessment of dynamic stability and gait variability via biomechanical measures of foot kinematics provides a viable option for quantitative evaluation of gait stability, but the ability of these methods to predict falls has generally not been assessed. Although various methods for assessing gait stability exist, their sensitivity and applicability in a clinical setting, as well as their cost-effectiveness, need verification. The objective of this systematic review was therefore to evaluate the sensitivity of biomechanical measures that quantify gait stability among elderly individuals and to evaluate the cost of measurement instrumentation required for application in a clinical setting. To assess gait stability, a comparative effect size (Cohen's d) analysis of variability and dynamic stability of foot trajectories during level walking was performed on 29 of an initial yield of 9889 articles from four electronic databases. The results of this survey demonstrate that linear variability of temporal measures of swing and stance was most capable of distinguishing between fallers and non-fallers, whereas step width and stride velocity prove more capable of discriminating between old versus young (OY) adults. In addition, while orbital stability measures (Floquet multipliers) applied to gait have been shown to distinguish between both elderly fallers and non-fallers as well as between young and old adults, local stability measures (λs) have been able to distinguish between young and old adults. Both linear and nonlinear measures of foot time series during gait seem to hold predictive ability in distinguishing healthy from fall-prone elderly adults. In conclusion, biomechanical measurements offer promise for identifying individuals at risk of falling and can be obtained with relatively low-cost tools. Incorporation of the most promising measures in combined retrospective and prospective studies for understanding fall risk and designing preventive strategies is warranted.

  1. Numerical simulations and linear stability analysis of a boundary layer developed on wavy surfaces

    NASA Astrophysics Data System (ADS)

    Siconolfi, Lorenzo; Camarri, Simone; Fransson, Jens H. M.

    2015-11-01

    The development of passive methods leading to a laminar to turbulent transition delay in a boundary layer (BL) is a topic of great interest both for applications and academic research. In literature it has been shown that a proper and stable spanwise velocity modulation can reduce the growth rate of Tollmien-Schlichting (TS) waves and delay transition. In this study, we investigate numerically the possibility of obtaining a stabilizing effect of the TS waves through the use of a spanwise sinusoidal modulation of a flat plate. This type of control has been already successfully investigated experimentally. An extensive set of direct numerical simulations is carried out to study the evolution of a BL flow developed on wavy surfaces with different geometric characteristics, and the results will be presented here. Moreover, since this configuration is characterized by a slowly-varying flow field in streamwise direction, a local stability analysis is applied to define the neutral stability curves for the BL flow controlled by this type of wall modifications. These results give the possibility of investigating this control strategy and understanding the effect of the free parameters on the stabilization mechanism.

  2. On the influence of the local maxima of total pressure on the current sheet stability to the kink-like (flapping) mode

    NASA Astrophysics Data System (ADS)

    Korovinskiy, D. B.; Erkaev, N. V.; Semenov, V. S.; Ivanov, I. B.; Kiehas, S. A.; Ryzhkov, I. I.

    2018-02-01

    The stability of the Fadeev-like current sheet with respect to transversally propagating kink-like perturbations (flapping mode) is considered in terms of two-dimensional linear magnetohydrodynamic numerical simulations. It is found that the current sheet is stable when the total pressure minimum is located in the sheet center and unstable when the maximum value is reached there. It is shown that an unstable spot of any size enforces the whole sheet to be unstable, though the increment of instability decreases with the reduction of the unstable domain. In unstable sheets, the dispersion curve of instability shows a good match with the double-gradient (DG) model prediction. Here, the typical growth rate (short-wavelength limit) is close to the DG estimate averaged over the unstable region. In stable configurations, the typical frequency matches the maximum DG estimate. The dispersion curve of oscillations demonstrates a local maximum at wavelength ˜0.7 sheet half-width, which is a new feature that is absent in simplified analytical solutions.

  3. Stability of Local Quantum Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Cubitt, Toby S.; Lucia, Angelo; Michalakis, Spyridon; Perez-Garcia, David

    2015-08-01

    Open quantum systems weakly coupled to the environment are modeled by completely positive, trace preserving semigroups of linear maps. The generators of such evolutions are called Lindbladians. In the setting of quantum many-body systems on a lattice it is natural to consider Lindbladians that decompose into a sum of local interactions with decreasing strength with respect to the size of their support. For both practical and theoretical reasons, it is crucial to estimate the impact that perturbations in the generating Lindbladian, arising as noise or errors, can have on the evolution. These local perturbations are potentially unbounded, but constrained to respect the underlying lattice structure. We show that even for polynomially decaying errors in the Lindbladian, local observables and correlation functions are stable if the unperturbed Lindbladian has a unique fixed point and a mixing time that scales logarithmically with the system size. The proof relies on Lieb-Robinson bounds, which describe a finite group velocity for propagation of information in local systems. As a main example, we prove that classical Glauber dynamics is stable under local perturbations, including perturbations in the transition rates, which may not preserve detailed balance.

  4. Existence and Stability of Compressible Current-Vortex Sheets in Three-Dimensional Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang; Wang, Ya-Guang

    2008-03-01

    Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash Moser Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.

  5. An efficient method for model refinement in diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zirak, A. R.; Khademi, M.

    2007-11-01

    Diffuse optical tomography (DOT) is a non-linear, ill-posed, boundary value and optimization problem which necessitates regularization. Also, Bayesian methods are suitable owing to measurements data are sparse and correlated. In such problems which are solved with iterative methods, for stabilization and better convergence, the solution space must be small. These constraints subject to extensive and overdetermined system of equations which model retrieving criteria specially total least squares (TLS) must to refine model error. Using TLS is limited to linear systems which is not achievable when applying traditional Bayesian methods. This paper presents an efficient method for model refinement using regularized total least squares (RTLS) for treating on linearized DOT problem, having maximum a posteriori (MAP) estimator and Tikhonov regulator. This is done with combination Bayesian and regularization tools as preconditioner matrices, applying them to equations and then using RTLS to the resulting linear equations. The preconditioning matrixes are guided by patient specific information as well as a priori knowledge gained from the training set. Simulation results illustrate that proposed method improves the image reconstruction performance and localize the abnormally well.

  6. A nonlinear H-infinity approach to optimal control of the depth of anaesthesia

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Rigatou, Efthymia; Zervos, Nikolaos

    2016-12-01

    Controlling the level of anaesthesia is important for improving the success rate of surgeries and for reducing the risks to which operated patients are exposed. This paper proposes a nonlinear H-infinity approach to optimal control of the level of anaesthesia. The dynamic model of the anaesthesia, which describes the concentration of the anaesthetic drug in different parts of the body, is subjected to linearization at local operating points. These are defined at each iteration of the control algorithm and consist of the present value of the system's state vector and of the last control input that was exerted on it. For this linearization Taylor series expansion is performed and the system's Jacobian matrices are computed. For the linearized model an H-infinity controller is designed. The feedback control gains are found by solving at each iteration of the control algorithm an algebraic Riccati equation. The modelling errors due to this approximate linearization are considered as disturbances which are compensated by the robustness of the control loop. The stability of the control loop is confirmed through Lyapunov analysis.

  7. Numerical solution of the general coupled nonlinear Schrödinger equations on unbounded domains.

    PubMed

    Li, Hongwei; Guo, Yue

    2017-12-01

    The numerical solution of the general coupled nonlinear Schrödinger equations on unbounded domains is considered by applying the artificial boundary method in this paper. In order to design the local absorbing boundary conditions for the coupled nonlinear Schrödinger equations, we generalize the unified approach previously proposed [J. Zhang et al., Phys. Rev. E 78, 026709 (2008)PLEEE81539-375510.1103/PhysRevE.78.026709]. Based on the methodology underlying the unified approach, the original problem is split into two parts, linear and nonlinear terms, and we then achieve a one-way operator to approximate the linear term to make the wave out-going, and finally we combine the one-way operator with the nonlinear term to derive the local absorbing boundary conditions. Then we reduce the original problem into an initial boundary value problem on the bounded domain, which can be solved by the finite difference method. The stability of the reduced problem is also analyzed by introducing some auxiliary variables. Ample numerical examples are presented to verify the accuracy and effectiveness of our proposed method.

  8. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  9. Conformational Asymmetry and Quasicrystal Approximants in Linear Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Schulze, Morgan W.; Lewis, Ronald M.; Lettow, James H.; Hickey, Robert J.; Gillard, Timothy M.; Hillmyer, Marc A.; Bates, Frank S.

    2017-05-01

    Small angle x-ray scattering experiments on three model low molar mass diblock copolymer systems containing minority polylactide and majority hydrocarbon blocks demonstrate that conformational asymmetry stabilizes the Frank-Kasper σ phase. Differences in block flexibility compete with space filling at constant density inducing the formation of polyhedral shaped particles that assemble into this low symmetry ordered state with local tetrahedral coordination. These results confirm predictions from self-consistent field theory that establish the origins of symmetry breaking in the ordering of block polymer melts subjected to compositional and conformational asymmetry.

  10. Byzantine-fault tolerant self-stabilizing protocol for distributed clock synchronization systems

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2010-01-01

    A rapid Byzantine self-stabilizing clock synchronization protocol that self-stabilizes from any state, tolerates bursts of transient failures, and deterministically converges within a linear convergence time with respect to the self-stabilization period. Upon self-stabilization, all good clocks proceed synchronously. The Byzantine self-stabilizing clock synchronization protocol does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period.

  11. Stability analysis of piecewise non-linear systems and its application to chaotic synchronisation with intermittent control

    NASA Astrophysics Data System (ADS)

    Wang, Qingzhi; Tan, Guanzheng; He, Yong; Wu, Min

    2017-10-01

    This paper considers a stability analysis issue of piecewise non-linear systems and applies it to intermittent synchronisation of chaotic systems. First, based on piecewise Lyapunov function methods, more general and less conservative stability criteria of piecewise non-linear systems in periodic and aperiodic cases are presented, respectively. Next, intermittent synchronisation conditions of chaotic systems are derived which extend existing results. Finally, Chua's circuit is taken as an example to verify the validity of our methods.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechant, Lawrence J.

    Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler,more » closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.« less

  13. Nearly metastable rhombohedral phases of bcc metals

    NASA Astrophysics Data System (ADS)

    Mehl, Michael J.; Finkenstadt, Daniel

    2008-02-01

    The energy E(c/a) for a bcc element stretched along its [001] axis (the Bain path) has a minimum at c/a=1 , a maximum at c/a=2 , and an elastically unstable local minimum at c/a>2 . An alternative path connecting the bcc and fcc structures is the rhombohedral lattice. The primitive lattice has R3¯m symmetry, with the angle α changing from 109.4° (bcc), to 90° (simple cubic), to 60 ° (fcc). We study this path for the non-magnetic bcc transition metals (V, Nb, Mo, Ta, and W) using both all-electron linearized augmented plane wave and projector augmented wave VASP codes. Except for Ta, the energy E(α) has a local maximum at α=60° , with local minima near 55° and 70° , the latter having lower energy, suggesting the possibility of a metastable rhombohedral state for these materials. We first examine the elastic stability of the 70° minimum structure, and determine that only W is elastically stable in this structure, with the smallest eigenvalue of the elastic tensor at 4GPa . We then consider the possibility that tungsten is actually metastable in this structure by looking at its vibrational and third-order elastic stability.

  14. Incompressible boundary-layer stability analysis of LFC experimental data for sub-critical Mach numbers. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Berry, S. A.

    1986-01-01

    An incompressible boundary-layer stability analysis of Laminar Flow Control (LFC) experimental data was completed and the results are presented. This analysis was undertaken for three reasons: to study laminar boundary-layer stability on a modern swept LFC airfoil; to calculate incompressible design limits of linear stability theory as applied to a modern airfoil at high subsonic speeds; and to verify the use of linear stability theory as a design tool. The experimental data were taken from the slotted LFC experiment recently completed in the NASA Langley 8-Foot Transonic Pressure Tunnel. Linear stability theory was applied and the results were compared with transition data to arrive at correlated n-factors. Results of the analysis showed that for the configuration and cases studied, Tollmien-Schlichting (TS) amplification was the dominating disturbance influencing transition. For these cases, incompressible linear stability theory correlated with an n-factor for TS waves of approximately 10 at transition. The n-factor method correlated rather consistently to this value despite a number of non-ideal conditions which indicates the method is useful as a design tool for advanced laminar flow airfoils.

  15. Network-Cognizant Voltage Droop Control for Distribution Grids

    DOE PAGES

    Baker, Kyri; Bernstein, Andrey; Dall'Anese, Emiliano; ...

    2017-08-07

    Our paper examines distribution systems with a high integration of distributed energy resources (DERs) and addresses the design of local control methods for real-time voltage regulation. Particularly, the paper focuses on proportional control strategies where the active and reactive output-powers of DERs are adjusted in response to (and proportionally to) local changes in voltage levels. The design of the voltage-active power and voltage-reactive power characteristics leverages suitable linear approximation of the AC power-flow equations and is network-cognizant; that is, the coefficients of the controllers embed information on the location of the DERs and forecasted non-controllable loads/injections and, consequently, on themore » effect of DER power adjustments on the overall voltage profile. We pursued a robust approach to cope with uncertainty in the forecasted non-controllable loads/power injections. Stability of the proposed local controllers is analytically assessed and numerically corroborated.« less

  16. Network-Cognizant Voltage Droop Control for Distribution Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri; Bernstein, Andrey; Dall'Anese, Emiliano

    Our paper examines distribution systems with a high integration of distributed energy resources (DERs) and addresses the design of local control methods for real-time voltage regulation. Particularly, the paper focuses on proportional control strategies where the active and reactive output-powers of DERs are adjusted in response to (and proportionally to) local changes in voltage levels. The design of the voltage-active power and voltage-reactive power characteristics leverages suitable linear approximation of the AC power-flow equations and is network-cognizant; that is, the coefficients of the controllers embed information on the location of the DERs and forecasted non-controllable loads/injections and, consequently, on themore » effect of DER power adjustments on the overall voltage profile. We pursued a robust approach to cope with uncertainty in the forecasted non-controllable loads/power injections. Stability of the proposed local controllers is analytically assessed and numerically corroborated.« less

  17. Mathematical modelling and linear stability analysis of laser fusion cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermanns, Torsten; Schulz, Wolfgang; Vossen, Georg

    A model for laser fusion cutting is presented and investigated by linear stability analysis in order to study the tendency for dynamic behavior and subsequent ripple formation. The result is a so called stability function that describes the correlation of the setting values of the process and the process’ amount of dynamic behavior.

  18. Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus

    PubMed Central

    2005-01-01

    Extreme thermophiles produce two types of unusual polyamine: long linear polyamines such as caldopentamine and caldohexamine, and branched polyamines such as quaternary ammonium compounds [e.g. tetrakis(3-aminopropyl)ammonium]. To clarify the physiological roles of long linear and branched polyamines in thermophiles, we synthesized them chemically and tested their effects on the stability of ds (double-stranded) and ss (single-stranded) DNAs and tRNA in response to thermal denaturation, as measured by differential scanning calorimetry. Linear polyamines stabilized dsDNA in proportion to the number of amino nitrogen atoms within their molecular structure. We used the empirical results to derive formulae that estimate the melting temperature of dsDNA in the presence of polyamines of a particular molecular composition. ssDNA and tRNA were stabilized more effectively by tetrakis(3-aminopropyl)ammonium than any of the other polyamines tested. We propose that long linear polyamines are effective to stabilize DNA, and tetrakis(3-aminopropyl)ammonium plays important roles in stabilizing RNAs in thermophile cells. PMID:15673283

  19. Control method for physical systems and devices

    DOEpatents

    Guckenheimer, John

    1997-01-01

    A control method for stabilizing systems or devices that are outside the control domain of a linear controller is provided. When applied to nonlinear systems, the effectiveness of this method depends upon the size of the domain of stability that is produced for the stabilized equilibrium. If this domain is small compared to the accuracy of measurements or the size of disturbances within the system, then the linear controller is likely to fail within a short period. Failure of the system or device can be catastrophic: the system or device can wander far from the desired equilibrium. The method of the invention presents a general procedure to recapture the stability of a linear controller, when the trajectory of a system or device leaves its region of stability. By using a hybrid strategy based upon discrete switching events within the state space of the system or device, the system or device will return from a much larger domain to the region of stability utilized by the linear controller. The control procedure is robust and remains effective under large classes of perturbations of a given underlying system or device.

  20. The algebraic criteria for the stability of control systems

    NASA Technical Reports Server (NTRS)

    Cremer, H.; Effertz, F. H.

    1986-01-01

    This paper critically examines the standard algebraic criteria for the stability of linear control systems and their proofs, reveals important previously unnoticed connections, and presents new representations. Algebraic stability criteria have also acquired significance for stability studies of non-linear differential equation systems by the Krylov-Bogoljubov-Magnus Method, and allow realization conditions to be determined for classes of broken rational functions as frequency characteristics of electrical network.

  1. Failure analysis of thick composite cylinders under external pressure

    NASA Technical Reports Server (NTRS)

    Caiazzo, A.; Rosen, B. W.

    1992-01-01

    Failure of thick section composites due to local compression strength and overall structural instability is treated. Effects of material nonlinearity, imperfect fiber architecture, and structural imperfections upon anticipated failure stresses are determined. Comparisons with experimental data for a series of test cylinders are described. Predicting the failure strength of composite structures requires consideration of stability and material strength modes of failure using linear and nonlinear analysis techniques. Material strength prediction requires the accurate definition of the local multiaxial stress state in the material. An elasticity solution for the linear static analysis of thick anisotropic cylinders and rings is used herein to predict the axisymmetric stress state in the cylinders. Asymmetric nonlinear behavior due to initial cylinder out of roundness and the effects of end closure structure are treated using finite element methods. It is assumed that local fiber or ply waviness is an important factor in the initiation of material failure. An analytical model for the prediction of compression failure of fiber composites, which includes the effects of fiber misalignments, matrix inelasticity, and multiaxial applied stresses is used for material strength calculations. Analytical results are compared to experimental data for a series of glass and carbon fiber reinforced epoxy cylinders subjected to external pressure. Recommendations for pretest characterization and other experimental issues are presented. Implications for material and structural design are discussed.

  2. Stability Analysis of Finite Difference Schemes for Hyperbolic Systems, and Problems in Applied and Computational Linear Algebra.

    DTIC Science & Technology

    FINITE DIFFERENCE THEORY, * LINEAR ALGEBRA , APPLIED MATHEMATICS, APPROXIMATION(MATHEMATICS), BOUNDARY VALUE PROBLEMS, COMPUTATIONS, HYPERBOLAS, MATHEMATICAL MODELS, NUMERICAL ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, STABILITY.

  3. Slope stabilization guide for Minnesota local government engineers.

    DOT National Transportation Integrated Search

    2017-06-01

    This user guide provides simple, costeffective methods for stabilizing locally maintained slopes along roadways in Minnesota. Eight slope stabilization techniques are presented that local government engineers can undertake using locally available ...

  4. Acoustic wave propagation in a temporal evolving shear-layer for low-Mach number perturbations

    NASA Astrophysics Data System (ADS)

    Hau, Jan-Niklas; Müller, Björn

    2018-01-01

    We study wave packets with the small perturbation/gradient Mach number interacting with a smooth shear-layer in the linear regime of small amplitude perturbations. In particular, we investigate the temporal evolution of wave packets in shear-layers with locally curved regions of variable size using non-modal linear analysis and direct numerical simulations of the two-dimensional gas-dynamical equations. Depending on the wavenumber of the initially imposed wave packet, three different types of behavior are observed: (i) The wave packet passes through the shear-layer and constantly transfers energy back to the mean flow. (ii) It is turned around (or reflected) within the sheared region and extracts energy from the base flow. (iii) It is split into two oppositely propagating packages when reaching the upper boundary of the linearly sheared region. The conducted direct numerical simulations confirm that non-modal linear stability analysis is able to predict the wave packet dynamics, even in the presence of non-linearly sheared regions. In the light of existing studies in this area, we conclude that the sheared regions are responsible for the highly directed propagation of linearly generated acoustic waves when there is a dominating source, as it is the case for jet flows.

  5. Three-dimensional instabilities of natural convection between two differentially heated vertical plates: Linear and nonlinear complementary approaches

    NASA Astrophysics Data System (ADS)

    Gao, Zhenlan; Podvin, Berengere; Sergent, Anne; Xin, Shihe; Chergui, Jalel

    2018-05-01

    The transition to the chaos of the air flow between two vertical plates maintained at different temperatures is studied in the Boussinesq approximation. After the first bifurcation at critical Rayleigh number Rac, the flow consists of two-dimensional (2D) corotating rolls. The stability of the 2D rolls is examined, confronting linear predictions with nonlinear integration. In all cases the 2D rolls are destabilized in the spanwise direction. Efficient linear stability analysis based on an Arnoldi method shows competition between two eigenmodes, corresponding to different spanwise wavelengths and different types of roll distortion. Nonlinear integration shows that the lower-wave-number mode is always dominant. A partial route to chaos is established through the nonlinear simulations. The flow becomes temporally chaotic for Ra =1.05 Rac , but remains characterized by the spatial patterns identified by linear stability analysis. This highlights the complementary role of linear stability analysis and nonlinear simulation.

  6. Stochastic Stability of Nonlinear Sampled Data Systems with a Jump Linear Controller

    NASA Technical Reports Server (NTRS)

    Gonzalez, Oscar R.; Herencia-Zapana, Heber; Gray, W. Steven

    2004-01-01

    This paper analyzes the stability of a sampled- data system consisting of a deterministic, nonlinear, time- invariant, continuous-time plant and a stochastic, discrete- time, jump linear controller. The jump linear controller mod- els, for example, computer systems and communication net- works that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. To analyze stability, appropriate topologies are introduced for the signal spaces of the sampled- data system. With these topologies, the ideal sampling and zero-order-hold operators are shown to be measurable maps. This paper shows that the known equivalence between the stability of a deterministic, linear sampled-data system and its associated discrete-time representation as well as between a nonlinear sampled-data system and a linearized representation holds even in a stochastic framework.

  7. Ab initio calculations of the elastic and thermodynamic properties of gold under pressure

    NASA Astrophysics Data System (ADS)

    Smirnov, N. A.

    2017-03-01

    The paper presents first-principles FP-LMTO calculations on the relative stability of fcc, bcc, hcp and dhcp gold under pressure. They were done in local density approximation (LDA), as well as in generalized gradient approximation (GGA) with and without spin-orbit interaction. Phonon spectra for the considered gold structures were obtained from LDA calculations within linear response theory and the contribution of lattice vibrations to the free energy of the system was determined in quasiharmonic approximation. Our thorough adjustment of FP-LMTO internal parameters (linearization and tail energies, the MT-sphere radius) helped us to obtain results that agree well with the available experimental phase relation Dubrovinsky et al (2007 Phys. Rev. Lett. 98 045503) between fcc and hcp structures of gold under pressure. The calculations suggest that gold compressed at room temperature successively undergoes the following structural changes: fcc\\to hcp\\to bcc . The paper also presents the calculated elastic constants of fcc, bcc and hcp Au, the principal Hugoniot and the melting curve. Calculated results were used to construct the PT-diagram which describes the relative stability of the gold structures under study up to 500 GPa.

  8. Graphene oxide bonded fused-silica fiber for solid-phase microextraction-gas chromatography of polycyclic aromatic hydrocarbons in water.

    PubMed

    Xu, Lili; Feng, Juanjuan; Li, Jubai; Liu, Xia; Jiang, Shengxiang

    2012-01-01

    A novel chemically bonded graphene oxide/fused-silica fiber was prepared and applied in solid-phase microextraction of six polycyclic aromatic hydrocarbons from water samples coupled with gas chromatography. It exhibited high extraction efficiency and excellent stability. Effects of extraction time, extraction temperature, ionic strength, stirring rate and desorption conditions were investigated and optimized in our work. Detection limits to the six polycyclic aromatic hydrocarbons were less than 0.08 μg/L, and their calibration curves were all linear (R(2)≥0.9954) in the range from 0.05 to 200 μg/L. Single fiber repeatability and fiber-to-fiber reproducibility were less than 6.13 and 15.87%, respectively. This novel fiber was then utilized to analyze two real water samples from the Yellow River and local waterworks, and the recoveries of samples spiked at 1 and 10 μg/L ranged from 84.48 to 118.24%. Compared with other coating materials, this graphene oxide-coated fiber showed many advantages: wide linear range, low detection limit, and good stability in acid, alkali, organic solutions and at high temperature. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ab initio calculations of the elastic and thermodynamic properties of gold under pressure.

    PubMed

    Smirnov, N A

    2017-03-15

    The paper presents first-principles FP-LMTO calculations on the relative stability of fcc, bcc, hcp and dhcp gold under pressure. They were done in local density approximation (LDA), as well as in generalized gradient approximation (GGA) with and without spin-orbit interaction. Phonon spectra for the considered gold structures were obtained from LDA calculations within linear response theory and the contribution of lattice vibrations to the free energy of the system was determined in quasiharmonic approximation. Our thorough adjustment of FP-LMTO internal parameters (linearization and tail energies, the MT-sphere radius) helped us to obtain results that agree well with the available experimental phase relation Dubrovinsky et al (2007 Phys. Rev. Lett. 98 045503) between fcc and hcp structures of gold under pressure. The calculations suggest that gold compressed at room temperature successively undergoes the following structural changes: [Formula: see text]. The paper also presents the calculated elastic constants of fcc, bcc and hcp Au, the principal Hugoniot and the melting curve. Calculated results were used to construct the PT-diagram which describes the relative stability of the gold structures under study up to 500 GPa.

  10. Comprehensive evaluation of the linear stability of Alfvén eigenmodes driven by alpha particles in an ITER baseline scenario

    NASA Astrophysics Data System (ADS)

    Figueiredo, A. C. A.; Rodrigues, P.; Borba, D.; Coelho, R.; Fazendeiro, L.; Ferreira, J.; Loureiro, N. F.; Nabais, F.; Pinches, S. D.; Polevoi, A. R.; Sharapov, S. E.

    2016-07-01

    The linear stability of Alfvén eigenmodes in the presence of fusion-born alpha particles is thoroughly assessed for two variants of an ITER baseline scenario, which differ significantly in their core and pedestal temperatures. A systematic approach based on CASTOR-K (Borba and Kerner 1999 J. Comput. Phys. 153 101; Nabais et al 2015 Plasma Sci. Technol. 17 89) is used that considers all possible eigenmodes for a given magnetic equilibrium and determines their growth rates due to alpha-particle drive and Landau damping on fuel ions, helium ashes and electrons. It is found that the fastest growing instabilities in the aforementioned ITER scenario are core-localized, low-shear toroidal Alfvén eigenmodes. The largest growth-rates occur in the scenario variant with higher core temperatures, which has the highest alpha-particle density and density gradient, for eigenmodes with toroidal mode numbers n≈ 30 . Although these eigenmodes suffer significant radiative damping, which is also evaluated, their growth rates remain larger than those of the most unstable eigenmodes found in the variant of the ITER baseline scenario with lower core temperatures, which have n≈ 15 and are not affected by radiative damping.

  11. Three-dimensional modelling of slope stability using the Local Factor of Safety concept

    NASA Astrophysics Data System (ADS)

    Moradi, Shirin; Huisman, Sander; Beck, Martin; Vereecken, Harry; Class, Holger

    2017-04-01

    Slope stability is governed by coupled hydrological and mechanical processes. The slope stability depends on the effective stress, which in turn depends on the weight of the soil and the matrix potential. Therefore, changes in water content and matrix potential associated with infiltration will affect slope stability. Most available models describing these coupled hydro-mechanical processes either rely on a one- or two-dimensional representation of hydrological and mechanical properties and processes, which obviously is a strong simplification in many applications. Therefore, the aim of this work is to develop a three-dimensional hydro-mechanical model that is able to capture the effect of spatial and temporal variability of both mechanical and hydrological parameters on slope stability. For this, we rely on DuMux, which is a free and open-source simulator for flow and transport processes in porous media that facilitates coupling of different model approaches and offers flexibility for model development. We use the Richards equation to model unsaturated water flow. The simulated water content and matrix potential distribution is used to calculate the effective stress. We only consider linear elasticity and solve for statically admissible fields of stress and displacement without invoking failure or the redistribution of post-failure stress or displacement. The Local Factor of Safety concept is used to evaluate slope stability in order to overcome some of the main limitations of commonly used methods based on limit equilibrium considerations. In a first step, we compared our model implementation with a 2D benchmark model that was implemented in COMSOL Multiphysics. In a second step, we present in-silico experiments with the newly developed 3D model to show the effect of slope morphology, spatial variability in hydraulic and mechanical material properties, and spatially variable soil depth on simulated slope stability. It is expected that this improved physically-based three-dimensional hydro-mechanical model is able to provide more reliable slope instability predictions in more complex situations.

  12. Stability of local anesthetics in the dental cartridge.

    PubMed

    Hondrum, S O; Seng, G F; Rebert, N W

    1993-01-01

    Recent manufacturer recalls of local anesthetics have emphasized the problems with storage stability. This article reviews the principles of drug stability, mechanisms of degradation of commonly used vasoconstrictors, research on the stability of commercially produced local anesthetic preparations, and possible effects of the container-closure system. The review concludes with a list of practical and clinical suggestions on how to minimize storage stability problems with dental local anesthetics.

  13. Combined influence of inertia, gravity, and surface tension on the linear stability of Newtonian fiber spinning

    NASA Astrophysics Data System (ADS)

    Bechert, M.; Scheid, B.

    2017-11-01

    The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.

  14. Stochastic Stability of Sampled Data Systems with a Jump Linear Controller

    NASA Technical Reports Server (NTRS)

    Gonzalez, Oscar R.; Herencia-Zapana, Heber; Gray, W. Steven

    2004-01-01

    In this paper an equivalence between the stochastic stability of a sampled-data system and its associated discrete-time representation is established. The sampled-data system consists of a deterministic, linear, time-invariant, continuous-time plant and a stochastic, linear, time-invariant, discrete-time, jump linear controller. The jump linear controller models computer systems and communication networks that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. This paper shows that the known equivalence between the stability of a deterministic sampled-data system and the associated discrete-time representation holds even in a stochastic framework.

  15. Switched periodic systems in discrete time: stability and input-output norms

    NASA Astrophysics Data System (ADS)

    Bolzern, Paolo; Colaneri, Patrizio

    2013-07-01

    This paper deals with the analysis of stability and the characterisation of input-output norms for discrete-time periodic switched linear systems. Such systems consist of a network of time-periodic linear subsystems sharing the same state vector and an exogenous switching signal that triggers the jumps between the subsystems. The overall system exhibits a complex dynamic behaviour due to the interplay between the time periodicity of the subsystem parameters and the switching signal. Both arbitrary switching signals and signals satisfying a dwell-time constraint are considered. Linear matrix inequality conditions for stability and guaranteed H2 and H∞ performances are provided. The results heavily rely on the merge of the theory of linear periodic systems and recent developments on switched linear time-invariant systems.

  16. Explicit asymmetric bounds for robust stability of continuous and discrete-time systems

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang; Antsaklis, Panos J.

    1993-01-01

    The problem of robust stability in linear systems with parametric uncertainties is considered. Explicit stability bounds on uncertain parameters are derived and expressed in terms of linear inequalities for continuous systems, and inequalities with quadratic terms for discrete-times systems. Cases where system parameters are nonlinear functions of an uncertainty are also examined.

  17. Linear and nonlinear stability characteristics of whistlers

    NASA Technical Reports Server (NTRS)

    Brinca, A. L.

    1972-01-01

    Linear and nonlinear propagating characteristics of right-hand polarized, slow electromagnetic, magnetoplasma waves (whistlers) are discussed in terms of stability and dispersion. An analysis of the stability of whistlers propagating at an angle to the static magnetic field is presented. A new mechanism is derived for the onset of stimulated emissions, and modulational instability for nonlinear whistlers are discussed.

  18. A Crank–Nicolson Leapfrog stabilization: Unconditional stability and two applications

    DOE PAGES

    Jiang, Nan; Kubacki, Michaela; Layton, William; ...

    2014-12-09

    We propose and analyze a linear stabilization of the Crank-Nicolson Leapfrog (CNLF) method that removes all time step/CFL conditions for stability and controls the unstable mode. It also increases the SPD part of the linear system to be solved at each time step while increasing solution accuracy. We give a proof of unconditional stability of the method as well as a proof of unconditional, asymptotic stability of both the stable and unstable modes. As a result, we illustrate two applications of the method: uncoupling groundwater-surface water flows and Stokes flow plus a Coriolis term.

  19. Algorithms for spacecraft formation flying navigation based on wireless positioning system measurements

    NASA Astrophysics Data System (ADS)

    Goh, Shu Ting

    Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due to the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft's range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better estimation accuracy as compared with the extended Kalman filter. A Weighted Measurement Fusion Kalman Filter (WMFKF) is proposed in this dissertation. In wireless localizing sensors, a measurement error is proportional to the distance of the signal travels and sensor noise. In this proposed Weighted Measurement Fusion Kalman Filter, the signal traveling time delay is not modeled; however, each measurement is weighted based on the measured signal travel distance. The obtained estimation performance is compared to the standard Kalman filter in two scenarios. The first scenario assumes using a wireless local positioning system in a GPS denied environment. The second scenario assumes the availability of both the wireless local positioning system and GPS measurements. The simulation results show that the WMFKF has similar accuracy performance as the standard Kalman Filter (KF) in the GPS denied environment. However, the WMFKF maintains the position estimation error within its expected error boundary when the WLPS detection range limit is above 30km. In addition, the WMFKF has a better accuracy and stability performance when GPS is available. Also, the computational cost analysis shows that the WMFKF has less computational cost than the standard KF, and the WMFKF has higher ellipsoid error probable percentage than the standard Measurement Fusion method. A method to determine the relative attitudes between three spacecraft is developed. The method requires four direction measurements between the three spacecraft. The simulation results and covariance analysis show that the method's error falls within a three sigma boundary without exhibiting any singularity issues. A study of the accuracy of the proposed method with respect to the shape of the spacecraft formation is also presented.

  20. Non-linear dynamics of human locomotion: effects of rhythmic auditory cueing on local dynamic stability.

    PubMed

    Terrier, Philippe; Dériaz, Olivier

    2013-01-01

    It has been observed that times series of gait parameters [stride length (SL), stride time (ST), and stride speed (SS)], exhibit long-term persistence and fractal-like properties. Synchronizing steps with rhythmic auditory stimuli modifies the persistent fluctuation pattern to anti-persistence. Another non-linear method estimates the degree of resilience of gait control to small perturbations, i.e., the local dynamic stability (LDS). The method makes use of the maximal Lyapunov exponent, which estimates how fast a non-linear system embedded in a reconstructed state space (attractor) diverges after an infinitesimal perturbation. We propose to use an instrumented treadmill to simultaneously measure basic gait parameters (time series of SL, ST, and SS from which the statistical persistence among consecutive strides can be assessed), and the trajectory of the center of pressure (from which the LDS can be estimated). In 20 healthy participants, the response to rhythmic auditory cueing (RAC) of LDS and of statistical persistence [assessed with detrended fluctuation analysis (DFA)] was compared. By analyzing the divergence curves, we observed that long-term LDS (computed as the reverse of the average logarithmic rate of divergence between the 4th and the 10th strides downstream from nearest neighbors in the reconstructed attractor) was strongly enhanced (relative change +73%). That is likely the indication of a more dampened dynamics. The change in short-term LDS (divergence over one step) was smaller (+3%). DFA results (scaling exponents) confirmed an anti-persistent pattern in ST, SL, and SS. Long-term LDS (but not short-term LDS) and scaling exponents exhibited a significant correlation between them (r = 0.7). Both phenomena probably result from the more conscious/voluntary gait control that is required by RAC. We suggest that LDS and statistical persistence should be used to evaluate the efficiency of cueing therapy in patients with neurological gait disorders.

  1. Robust Stabilization of Uncertain Systems Based on Energy Dissipation Concepts

    NASA Technical Reports Server (NTRS)

    Gupta, Sandeep

    1996-01-01

    Robust stability conditions obtained through generalization of the notion of energy dissipation in physical systems are discussed in this report. Linear time-invariant (LTI) systems which dissipate energy corresponding to quadratic power functions are characterized in the time-domain and the frequency-domain, in terms of linear matrix inequalities (LMls) and algebraic Riccati equations (ARE's). A novel characterization of strictly dissipative LTI systems is introduced in this report. Sufficient conditions in terms of dissipativity and strict dissipativity are presented for (1) stability of the feedback interconnection of dissipative LTI systems, (2) stability of dissipative LTI systems with memoryless feedback nonlinearities, and (3) quadratic stability of uncertain linear systems. It is demonstrated that the framework of dissipative LTI systems investigated in this report unifies and extends small gain, passivity, and sector conditions for stability. Techniques for selecting power functions for characterization of uncertain plants and robust controller synthesis based on these stability results are introduced. A spring-mass-damper example is used to illustrate the application of these methods for robust controller synthesis.

  2. Relevance of Linear Stability Results to Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Ding, Xueru; Daripa, Prabir

    2012-11-01

    How relevant can the results based on linear stability theory for any problem for that matter be to full scale simulation results? Put it differently, is the optimal design of a system based on linear stability results is optimal or even near optimal for the complex nonlinear system with certain objectives of interest in mind? We will address these issues in the context of enhanced oil recovery by chemical flooding. This will be based on an ongoing work. Supported by Qatar National Research Fund (a member of the Qatar Foundation).

  3. Crossflow Stability and Transition Experiments in a Swept-Wing Flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Dagenhart, John Ray

    1992-01-01

    An experimental examination of crossflow instability and transition on a 45 degree swept wing is conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized using both sublimating-chemical and liquid-crystal coatings. Extensive hot-wire measurements are conducted at several measurement stations across a single vortex track. The mean and travelling-wave disturbances are measured simultaneously. Stationary-crossflow disturbance profiles are determined by subtracting either a reference or a span-averaged velocity profile from the mean-velocity data. Mean, stationary-crossflow, and travelling-wave velocity data are presented as local boundary-layer profiles and as contour plots across a single stationary-crossflow vortex track. Disturbance-mode profiles and growth rates are determined. The experimental data are compared to predictions from linear stability theory.

  4. Influence of driven current on resistive tearing mode in Tokamaks

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Wang, Sheng; Zhang, Wei

    2016-10-01

    Influence of driven current on the m / n = 2 / 1 resistive tearing mode is studied systematically using a three-dimensional toroidal MHD code (CLT). A uniform driven current with Gaussian distribution in the radial direction is imposed around the unperturbed rational surface. It is found that the driven current can locally modify the profiles of the current and safety factor, such that the tearing mode becomes linearly stable. The stabilizing effect increases with increase of the driven current Icd or decrease of its width δcd, unless an excessively large driven current reverses the magnetic shear near the rational surface and drives other instabilities such as double or triple tearing modes. The stabilizing effect can be negligible or becomes reversed if the maximum driven current density is not at the unperturbed rational surface. ITER-CN Program.

  5. Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives

    NASA Technical Reports Server (NTRS)

    Yan, Jue; Shu, Chi-Wang; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    In this paper we review the existing and develop new continuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L(exp 2) stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh.

  6. Many-body localization proximity effects in platforms of coupled spins and bosons

    NASA Astrophysics Data System (ADS)

    Marino, J.; Nandkishore, R. M.

    2018-02-01

    We discuss the onset of many-body localization in a one-dimensional system composed of a XXZ quantum spin chain and a Bose-Hubbard model linearly coupled together. We consider two complementary setups, depending whether spatial disorder is initially imprinted on spins or on bosons; in both cases, we explore the conditions for the disordered portion of the system to localize by proximity of the other clean half. Assuming that the dynamics of one of the two parts develops on shorter time scales than the other, we can adiabatically eliminate the fast degrees of freedom, and derive an effective Hamiltonian for the system's remainder using projection operator techniques. Performing a locator expansion on the strength of the many-body interaction term or on the hopping amplitude of the effective Hamiltonian thus derived, we present results on the stability of the many-body localized phases induced by proximity effect. We also briefly comment on the feasibility of the proposed model through modern quantum optics architectures, with the long-term perspective to realize experimentally, in composite open systems, Anderson or many-body localization proximity effects.

  7. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    PubMed

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-02

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

  8. Effect of curvature on stationary crossflow instability of a three-dimensional boundary layer

    NASA Technical Reports Server (NTRS)

    Lin, Ray-Sing; Reed, Helen L.

    1993-01-01

    An incompressible three-dimensional laminar boundary-layer flow over a swept wing is used as a model to study both the wall-curvature and streamline-curvature effects on the stationary crossflow instability. The basic state is obtained by solving the full Navier-Stokes (N-S) equations numerically. The linear disturbance equations are cast on a fixed, body-intrinsic, curvilinear coordinate system. Those nonparallel terms which contribute mainly to the streamline-curvature effect are retained in the formulation of the disturbance equations and approximated by their local finite difference values. The resulting eigenvalue problem is solved by a Chebyshev collocation method. The present results indicate that the convex wall curvature has a stabilizing effect, whereas the streamline curvature has a destabilizing effect. A validation of these effects with an N-S solution for the linear disturbance flow is provided.

  9. Synchronization control in multiplex networks of nonlinear multi-agent systems

    NASA Astrophysics Data System (ADS)

    He, Wangli; Xu, Zhiwei; Du, Wenli; Chen, Guanrong; Kubota, Naoyuki; Qian, Feng

    2017-12-01

    This paper is concerned with synchronization control of a multiplex network, in which two different kinds of relationships among agents coexist. Hybrid coupling, including continuous linear coupling and impulsive coupling, is proposed to model the coexisting distinguishable interactions. First, by adding impulsive controllers on a small portion of agents, local synchronization is analyzed by linearizing the error system at the desired trajectory. Then, global synchronization is studied based on the Lyapunov stability theory, where a time-varying coupling strength is involved. To further deal with the time-varying coupling strength, an adaptive updating law is introduced and a corresponding sufficient condition is obtained to ensure synchronization of the multiplex network towards the desired trajectory. Networks of Chua's circuits and other chaotic systems with double layers of interactions are simulated to verify the proposed method.

  10. Boundary-layer stability and airfoil design

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.

    1986-01-01

    Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.

  11. A diffuse interface model of grain boundary faceting

    NASA Astrophysics Data System (ADS)

    Abdeljawad, F.; Medlin, D. L.; Zimmerman, J. A.; Hattar, K.; Foiles, S. M.

    2016-06-01

    Interfaces, free or internal, greatly influence the physical properties and stability of materials microstructures. Of particular interest are the processes that occur due to anisotropic interfacial properties. In the case of grain boundaries (GBs) in metals, several experimental observations revealed that an initially flat GB may facet into hill-and-valley structures with well defined planes and corners/edges connecting them. Herein, we present a diffuse interface model that is capable of accounting for strongly anisotropic GB properties and capturing the formation of hill-and-valley morphologies. The hallmark of our approach is the ability to independently examine the various factors affecting GB faceting and subsequent facet coarsening. More specifically, our formulation incorporates higher order expansions to account for the excess energy due to facet junctions and their non-local interactions. As a demonstration of the modeling capability, we consider the Σ5 <001 > tilt GB in body-centered-cubic iron, where faceting along the {210} and {310} planes was experimentally observed. Atomistic calculations were utilized to determine the inclination-dependent GB energy, which was then used as an input in our model. Linear stability analysis and simulation results highlight the role of junction energy and associated non-local interactions on the resulting facet length scales. Broadly speaking, our modeling approach provides a general framework to examine the microstructural stability of polycrystalline systems with highly anisotropic GBs.

  12. Feasibility study of basic characterization of MAGAT polymer gel using CBCT attached in linear accelerator: Preliminary study

    NASA Astrophysics Data System (ADS)

    Sathiyaraj, P.; Samuel, E. James jebaseelan

    2018-01-01

    The aim of this study is to evaluate the methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride gel (MAGAT) by cone beam computed tomography (CBCT) attached with modern linear accelerator. To compare the results of standard diagnostic computed tomography (CT) with CBCT, different parameters such as linearity, sensitivity and temporal stability were checked. MAGAT gel showed good linearity for both diagnostic CT and CBCT measurements. Sensitivity and temporal stability were also comparable with diagnostic CT measurements. In both the modalities, the sensitivity of the MAGAT increased to 4 days and decreased till the 10th day of post irradiation. Since all measurements (linearity, sensitivity and temporal stability) from diagnostic CT and CBCT were comparable, CBCT could be a potential tool for dose analysis study for polymer gel dosimeter.

  13. Stability analysis and future singularity of the m{sup 2} R □{sup -2} R model of non-local gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirian, Yves; Mitsou, Ermis, E-mail: yves.dirian@unige.ch, E-mail: ermis.mitsou@unige.ch

    2014-10-01

    We analyse the classical stability of the model proposed by Maggiore and Mancarella, where gravity is modified by a term ∼ m{sup 2} R □{sup -2} R to produce the late-time acceleration of the expansion of the universe. Our study takes into account all excitations of the metric that can potentially drive an instability. There are some subtleties in identifying these modes, as a non-local field theory contains dynamical fields which yet do not correspond to degrees of freedom. Since some of them are ghost-like, we clarify the impact of such modes on the stability of the solutions of interest that are the flatmore » space-time and cosmological solutions. We then find that flat space-time is unstable under scalar perturbations, but the instability manifests itself only at cosmological scales, i.e. out of the region of validity of this solution. It is therefore the stability of the FLRW solution which is relevant there, in which case the scalar perturbations are known to be well-behaved by numerical studies. By finding the analytic solution for the late-time behaviour of the scale factor, which leads to a big rip singularity, we argue that the linear perturbations are bounded in the future because of the domination of Hubble friction. In particular, this effect damps the scalar ghost perturbations which were responsible for destabilizing Minkowski space-time. Thus, the model remains phenomenologically viable.« less

  14. Hg(+) Frequency Standards

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2000-01-01

    In this paper we review the development of Hg(+) microwave frequency standards for use in high reliability and continuous operation applications. In recent work we have demonstrated short-term frequency stability of 3 x 10(exp -14)/nu(sub tau) when a cryogenic oscillator of stability 2-3 x 10(exp 15) was used a the local oscillator. The trapped ion frequency standard employs a Hg-202 discharge lamp to optically pump the trapped Hg(+)-199 clock ions and a helium buffer gas to cool the ions to near room temperature. We describe a small Hg(+) ion trap based frequency standard with an extended linear ion trap (LITE) architecture which separates the optical state selection region from the clock resonance region. This separation allows the use of novel trap configurations in the resonance region since no optical pumping is carried out there. A method for measuring the size of an ion cloud inside a linear trap with a 12-rod trap is currently being investigated. At approx. 10(exp -12), the 2nd order Doppler shift for trapped mercury ion frequency standards is one of the largest frequency offsets and its measurement to the 1% level would represent an advance in insuring the very long-term stability of these standards to the 10(exp -14) or better level. Finally, we describe atomic clock comparison experiments that can probe for a time variation of the fine structure constant, alpha = e(exp 2)/2(pi)hc, at the level of 10(exp -20)/year as predicted in some Grand Unified String Theories.

  15. A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Krank, Benjamin; Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin

    2017-11-01

    We present an efficient discontinuous Galerkin scheme for simulation of the incompressible Navier-Stokes equations including laminar and turbulent flow. We consider a semi-explicit high-order velocity-correction method for time integration as well as nodal equal-order discretizations for velocity and pressure. The non-linear convective term is treated explicitly while a linear system is solved for the pressure Poisson equation and the viscous term. The key feature of our solver is a consistent penalty term reducing the local divergence error in order to overcome recently reported instabilities in spatially under-resolved high-Reynolds-number flows as well as small time steps. This penalty method is similar to the grad-div stabilization widely used in continuous finite elements. We further review and compare our method to several other techniques recently proposed in literature to stabilize the method for such flow configurations. The solver is specifically designed for large-scale computations through matrix-free linear solvers including efficient preconditioning strategies and tensor-product elements, which have allowed us to scale this code up to 34.4 billion degrees of freedom and 147,456 CPU cores. We validate our code and demonstrate optimal convergence rates with laminar flows present in a vortex problem and flow past a cylinder and show applicability of our solver to direct numerical simulation as well as implicit large-eddy simulation of turbulent channel flow at Reτ = 180 as well as 590.

  16. Bifurcations and Chaos of AN Immersed Cantilever Beam in a Fluid and Carrying AN Intermediate Mass

    NASA Astrophysics Data System (ADS)

    AL-QAISIA, A. A.; HAMDAN, M. N.

    2002-06-01

    The concern of this work is the local stability and period-doubling bifurcations of the response to a transverse harmonic excitation of a slender cantilever beam partially immersed in a fluid and carrying an intermediate lumped mass. The unimodal form of the non-linear dynamic model describing the beam-mass in-plane large-amplitude flexural vibration, which accounts for axial inertia, non-linear curvature and inextensibility condition, developed in Al-Qaisia et al. (2000Shock and Vibration7 , 179-194), is analyzed and studied for the resonance responses of the first three modes of vibration, using two-term harmonic balance method. Then a consistent second order stability analysis of the associated linearized variational equation is carried out using approximate methods to predict the zones of symmetry breaking leading to period-doubling bifurcation and chaos on the resonance response curves. The results of the present work are verified for selected physical system parameters by numerical simulations using methods of the qualitative theory, and good agreement was obtained between the analytical and numerical results. Also, analytical prediction of the period-doubling bifurcation and chaos boundaries obtained using a period-doubling bifurcation criterion proposed in Al-Qaisia and Hamdan (2001 Journal of Sound and Vibration244, 453-479) are compared with those of computer simulations. In addition, results of the effect of fluid density, fluid depth, mass ratio, mass position and damping on the period-doubling bifurcation diagrams are studies and presented.

  17. Investigation of ODE integrators using interactive graphics. [Ordinary Differential Equations

    NASA Technical Reports Server (NTRS)

    Brown, R. L.

    1978-01-01

    Two FORTRAN programs using an interactive graphic terminal to generate accuracy and stability plots for given multistep ordinary differential equation (ODE) integrators are described. The first treats the fixed stepsize linear case with complex variable solutions, and generates plots to show accuracy and error response to step driving function of a numerical solution, as well as the linear stability region. The second generates an analog to the stability region for classes of non-linear ODE's as well as accuracy plots. Both systems can compute method coefficients from a simple specification of the method. Example plots are given.

  18. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Kabanov, Dmitry I.; Kasimov, Aslan R.

    2018-03-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  19. Stability of Electrons in the Virtual Cathode Region of an IEC

    NASA Astrophysics Data System (ADS)

    Kim, Hyng-Jin; Miley, George; Momota, Hiromu

    2003-04-01

    In the Inertial Electrostatic Confinement (IEC) device, electrons are confined inside a virtual anode that in turn confines ions. Prior stability studies [1, 2] have considered systems in which one species is electrostatically confined by the other, and either or both species are out of local thermal equilibrium. In the present research, electron stability in the virtual cathode region of an ion injected IEC is being studied. The ion density in an IEC is non-uniform due to the radial electrostatic potential, and increases toward the center region. The potential near the virtual cathode is assumed to have a parabolic shape and is determined assuming that the net space charge density is constant in that region. The corresponding ion distribution function is assumed to have the form f = C [sigma] (H W) /L^0.5 and the electron response is taken to be diabatic. Then using a variational principle after linearizing the hydrodynamic equations, stability properties of the electron layer are determined. Results will be presented as a function of injected ion/electron current ratios. 1. L. Chacon and D. C. Barnes, Phys. Plasma 7, 4774 (2000). 2. D. C. Barnes, L. Chacon, and J. M. Finn, Phys. Plasmas 9, 4448 (2002).

  20. Convective and global stability analysis of a Mach 5.8 boundary layer grazing a compliant surface

    NASA Astrophysics Data System (ADS)

    Dettenrieder, Fabian; Bodony, Daniel

    2016-11-01

    Boundary layer transition on high-speed vehicles is expected to be affected by unsteady surface compliance. The stability properties of a Mach 5.8 zero-pressure-gradient laminar boundary layer grazing a nominally-flat thermo-mechanically compliant panel is considered. The linearized compressible Navier-Stokes equations describe small amplitude disturbances in the fluid while the panel deformations are described by the Kirchhoff-Love plate equation and its thermal state by the transient heat equation. Compatibility conditions that couple disturbances in the fluid to those in the solid yield simple algebraic and robin boundary conditions for the velocity and thermal states, respectively. A local convective stability analysis shows that the panel can modify both the first and second Mack modes when, for metallic-like panels, the panel thickness exceeds the lengthscale δ99 Rex- 0 . 5 . A global stability analysis, which permits finite panel lengths with clamped-clamped boundary conditions, shows a rich eigenvalue spectrum with several branches. Unstable modes are found with streamwise-growing panel deformations leading to Mach wave-type radiation. Stable global modes are also found and have distinctly different panel modes but similar radiation patterns. Air Force Office of Scientific Research.

  1. On The Stability Of Model Flows For Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Miller, Robert

    2016-11-01

    The flow in a chemical vapour deposition (CVD) reactor is assessed. The reactor is modelled as a flow over an infinite-radius rotating disk, where the mean flow and convective instability of the disk boundary layer are measured. Temperature-dependent viscosity and enforced axial flow are used to model the steep temperature gradients present in CVD reactors and the pumping of the gas towards the disk, respectively. Increasing the temperature-dependence parameter of the fluid viscosity (ɛ) results in an overall narrowing of the fluid boundary layer. Increasing the axial flow strength parameter (Ts) accelerates the fluid both radially and axially, while also narrowing the thermal boundary layer. It is seen that when both effects are imposed, the effects of axial flow generally dominate those of the viscosity temperature dependence. A local stability analysis is performed and the linearized stability equations are solved using a Galerkin projection in terms of Chebyshev polynomials. The neutral stability curves are then plotted for a range of ɛ and Ts values. Preliminary results suggest that increasing Ts has a stabilising effect on both type I and type II stationary instabilities, while small increases in ɛ results in a significant reduction to the critical Reynolds number.

  2. Prediction of trivalent actinide amino(poly)carboxylate complex stability constants using linear free energy relationships with the lanthanide series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhnak, Nic E.

    Prediction of Trivalent Actinide Amino(poly)carboxylate Complex Stability Constants Using Linear Free Energy Relationships with the Lanthanide Series Alternative title: LFER Based Prediction of An(III) APC Stability Constants There is a gap in the literature regarding the complexation of amino(poly)carboxylate (APC) ligands with trivalent actinides (An(III))). The chemistry of the An(III) is nearly identical to that of the trivalent lanthanides Lns, but the An(III) express a slight enhancement when binding APC ligands. Presented in this report is a simple method of predicting the stability constants of the An(III), Pu, Am, Cm, Bk and Cf by using linear free energy relationships (LFER)more » of the An and the lanthanide (Ln) series for 91 APCs. This method produced An stability constants within uncertainty to available literature values for most ligands.« less

  3. Mode instability in one-dimensional anharmonic lattices: Variational equation approach

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.

    1999-03-01

    The stability of normal mode oscillations has been studied in detail under the single-mode excitation condition for the Fermi-Pasta-Ulam-β lattice. Numerical experiments indicate that the mode stability depends strongly on k/N, where k is the wave number of the initially excited mode and N is the number of degrees of freedom in the system. It has been found that this feature does not change when N increases. We propose an average variational equation - approximate version of the variational equation - as a theoretical tool to facilitate a linear stability analysis. It is shown that this strong k/N dependence of the mode stability can be explained from the view point of the linear stability of the relevant orbits. We introduce a low-dimensional approximation of the average variational equation, which approximately describes the time evolution of variations in four normal mode amplitudes. The linear stability analysis based on this four-mode approximation demonstrates that the parametric instability mechanism plays a crucial role in the strong k/N dependence of the mode stability.

  4. Flow-induced conformational changes in gelatin structure and colloidal stabilization.

    PubMed

    Akbulut, Mustafa; Reddy, Naveen K; Bechtloff, Bernd; Koltzenburg, Sebastian; Vermant, Jan; Prud'homme, Robert K

    2008-09-02

    Flow can change the rate at which solutes adsorb on surfaces by changing mass transfer to the surface, but moreover, flow can induce changes in the conformation of macromolecules in solution by providing sufficient stresses to perturb the segmental distribution function. However, there are few studies where the effect of flow on macromolecules has been shown to alter the structure of macromolecules adsorbed on surfaces. We have studied how the local energy dissipation alters the adsorption of gelatin onto polystyrene nanoparticles ( r = 85 nm). The change in the nature of the adsorbed layer is manifest in the change in the ability of the nanoparticles to resist aggregation. Circular dichroism spectroscopy was used to assess conformational changes in gelatin, and dynamic light scattering was used to assess the colloid stability. Experiments were conducted in a vortex jet mixer where energy density and mixing times have been quantified; mixing of the gelatin and unstable nanoparticles occurs on the order of milliseconds. The adsorption of the gelatin provides steric stabilization to the nanoparticles. We found that the stability of the gelatin-adsorbed nanoparticles increased with increasing mixing velocities: when the mixing velocities were changed from 0.9 to 550 m/s, the radius of the nanoclusters (aggregates) formed 12 h after the mixing decreased from 2620 to 600 nm. Increasing temperature also gave rise to similar trends in the stability behavior with increasing temperature, leading to increasing colloid stability. Linear flow birefringence studies also suggested that the velocity fields in the mixer are sufficiently strong to produce conformational changes in the gelatin. These results suggest that the energy dissipation produced by mixing can activate conformational changes in gelatin to alter its adsorption on the surfaces of nanoparticles. Understanding how such conformational changes in gelatin can be driven by local fluid mechanics and how these changes are related to the adsorption behavior of gelatin is very important both industrially and scientifically.

  5. Control design for robust stability in linear regulators: Application to aerospace flight control

    NASA Technical Reports Server (NTRS)

    Yedavalli, R. K.

    1986-01-01

    Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.

  6. Stability analysis of the Peregrine solution via squared eigenfunctions

    NASA Astrophysics Data System (ADS)

    Schober, C. M.; Strawn, M.

    2017-10-01

    A preliminary numerical investigation involving ensembles of perturbed initial data for the Peregrine soliton (the lowest order rational solution of the nonlinear Schrödinger equation) indicates that it is unstable [16]. In this paper we analytically investigate the linear stability of the Peregrine soliton, appealing to the fact that the Peregrine solution can be viewed as the singular limit of a single mode spatially periodic breathers (SPB). The "squared eigenfunction" connection between the Zakharov-Shabat (Z-S) system and the linearized NLS equation is employed in the stability analysis. Specifically, we determine the eigenfunctions of the Z-S system associated with the Peregrine soliton and construct a family of solutions of the associated linearized NLS (about the Peregrine) in terms of quadratic products of components of the eigenfunctions (i.e., the squared eigenfunction). We find there exist solutions of the linearization that grow exponentially in time, thus showing the Peregrine soliton is linearly unstable.

  7. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: A dynamic variational multiscale approach [A simple, stable, and accurate tetrahedral finite element for transient, nearly incompressible, linear and nonlinear elasticity: A dynamic variational multiscale approach

    DOE PAGES

    Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...

    2015-11-12

    Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less

  8. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: A dynamic variational multiscale approach [A simple, stable, and accurate tetrahedral finite element for transient, nearly incompressible, linear and nonlinear elasticity: A dynamic variational multiscale approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi

    Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less

  9. Linearized mathematical models for De Havilland Canada "Buffalo & Twin Otter" STOL transports.

    DOT National Transportation Integrated Search

    1971-06-01

    Linearized six degree of freedom rigid body aircraft equations of motion are presented in a stability axes system. Values of stability derivatives are estimated for two representative STOL aircraft - the DeHavilland of Canada 'Buffalo' and 'Twin Otte...

  10. Drifts and Environmental Disturbances in Atomic Clock Subsystems: Quantifying Local Oscillator, Control Loop, and Ion Resonance Interactions.

    PubMed

    Enzer, Daphna G; Diener, William A; Murphy, David W; Rao, Shanti R; Tjoelker, Robert L

    2017-03-01

    Linear ion trap frequency standards are among the most stable continuously operating frequency references and clocks. Depending on the application, they have been operated with a variety of local oscillators (LOs), including quartz ultrastable oscillators, hydrogen-masers, and cryogenic sapphire oscillators. The short-, intermediate-, and long-term stability of the frequency output is a complicated function of the fundamental performances, the time dependence of environmental disturbances, the atomic interrogation algorithm, the implemented control loop, and the environmental sensitivity of the LO and the atomic system components. For applications that require moving these references out of controlled lab spaces and into less stable environments, such as fieldwork or spaceflight, a deeper understanding is needed of how disturbances at different timescales impact the various subsystems of the clock and ultimately the output stability. In this paper, we analyze which perturbations have an impact and to what degree. We also report on a computational model of a control loop, which keeps the microwave source locked to the ion resonance. This model is shown to agree with laboratory measurements of how well the feedback removes various disturbances and also with a useful analytic approach we developed for predicting these impacts.

  11. The Absolute Stability Analysis in Fuzzy Control Systems with Parametric Uncertainties and Reference Inputs

    NASA Astrophysics Data System (ADS)

    Wu, Bing-Fei; Ma, Li-Shan; Perng, Jau-Woei

    This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.

  12. An adaptive PID like controller using mix locally recurrent neural network for robotic manipulator with variable payload.

    PubMed

    Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P

    2016-05-01

    Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Local Dynamic Stability Associated with Load Carrying

    PubMed Central

    Lockhart, Thurmon E

    2013-01-01

    Objectives Load carrying tasks are recognized as one of the primary occupational factors leading to slip and fall injuries. Nevertheless, the mechanisms associated with load carrying and walking stability remain illusive. The objective of the current study was to apply local dynamic stability measure in walking while carrying a load, and to investigate the possible adaptive gait stability changes. Methods Current study involved 25 young adults in a biomechanics research laboratory. One tri-axial accelerometer was used to measure three-dimensional low back acceleration during continuous treadmill walking. Local dynamic stability was quantified by the maximum Lyapunov exponent (maxLE) from a nonlinear dynamics approach. Results Long term maxLE was found to be significant higher under load condition than no-load condition in all three reference axes, indicating the declined local dynamic stability associated with load carrying. Conclusion Current study confirmed the sensitivity of local dynamic stability measure in load carrying situation. It was concluded that load carrying tasks were associated with declined local dynamic stability, which may result in increased risk of fall accident. This finding has implications in preventing fall accidents associated with occupational load carrying. PMID:23515183

  14. Nonlinear defect localized modes and composite gray and anti-gray solitons in one-dimensional waveguide arrays with dual-flip defects

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Guan, Yefeng; Li, Hai; Luo, Zhihuan; Mai, Zhijie

    2017-08-01

    We study families of stationary nonlinear localized modes and composite gray and anti-gray solitons in a one-dimensional linear waveguide array with dual phase-flip nonlinear point defects. Unstaggered fundamental and dipole bright modes are studied when the defect nonlinearity is self-focusing. For the fundamental modes, symmetric and asymmetric nonlinear modes are found. Their stable areas are studied using different defect coefficients and their total power. For the nonlinear dipole modes, the stability conditions of this type of mode are also identified by different defect coefficients and the total power. When the defect nonlinearity is replaced by the self-defocusing one, staggered fundamental and dipole bright modes are created. Finally, if we replace the linear waveguide with a full nonlinear waveguide, a new type of gray and anti-gray solitons, which are constructed by a kink and anti-kink pair, can be supported by such dual phase-flip defects. In contrast to the usual gray and anti-gray solitons formed by a single kink, their backgrounds on either side of the gray hole or bright hump have the same phase.

  15. Attitude stability of spinning satellites

    NASA Technical Reports Server (NTRS)

    Caughey, T. K.

    1980-01-01

    Some problems of attitude stability of spinning satellites are treated in a rigorous manner. With certain restrictions, linearized stability analysis correctly predicts the attitude stability of spinning satellites, even in the critical cases of the Liapunov-Poincare stability theory.

  16. A Study on a Centralized Under-Voltage Load Shedding Scheme Considering the Load Characteristics

    NASA Astrophysics Data System (ADS)

    Deng, Jiyu; Liu, Junyong

    Under-voltage load shedding is an important measure for maintaining voltage stability.Aiming at the optimal load shedding problem considering the load characteristics,firstly,the traditional under-voltage load shedding scheme based on a static load model may cause the analysis inaccurate is pointed out on the equivalent Thevenin circuit.Then,the dynamic voltage stability margin indicator is derived through local measurement.The derived indicator can reflect the voltage change of the key area in a myopia linear way.Dimensions of the optimal problem will be greatly simplified using this indicator.In the end,mathematical model of the centralized load shedding scheme is built with the indicator considering load characteristics.HSPPSO is introduced to slove the optimal problem.Simulation results on IEEE-39 system show that the proposed scheme display a good adaptability in solving the under-voltage load shedding considering dynamic load characteristics.

  17. Reynolds stress closure in jet flows using wave models

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.

    1990-01-01

    A collection of papers is presented. The outline of this report is as follows. Chapter three contains a description of a weakly nonlinear turbulence model that was developed. An essential part of the application of such a closure scheme to general geometry jets is the solution of the local hydrodynamic stability equation for a given jet cross-section. Chapter four describes the conformal mapping schemes used to map such geometries onto a simple computational domain. Chapter five describes a solution of a stability problem for circular, elliptic, and rectangular geometries. In chapter six linear models for the shock shell structure in non-circular jets is given. The appendices contain reprints of papers also published during this study including the following topics: (1) instability of elliptic jets; (2) a technique for predicting the shock cell structure in non-circular jets using a vortex sheet model; and (3) the resonant interaction between twin supersonic jets.

  18. A priori Estimates for 3D Incompressible Current-Vortex Sheets

    NASA Astrophysics Data System (ADS)

    Coulombel, J.-F.; Morando, A.; Secchi, P.; Trebeschi, P.

    2012-04-01

    We consider the free boundary problem for current-vortex sheets in ideal incompressible magneto-hydrodynamics. It is known that current-vortex sheets may be at most weakly (neutrally) stable due to the existence of surface waves solutions to the linearized equations. The existence of such waves may yield a loss of derivatives in the energy estimate of the solution with respect to the source terms. However, under a suitable stability condition satisfied at each point of the initial discontinuity and a flatness condition on the initial front, we prove an a priori estimate in Sobolev spaces for smooth solutions with no loss of derivatives. The result of this paper gives some hope for proving the local existence of smooth current-vortex sheets without resorting to a Nash-Moser iteration. Such result would be a rigorous confirmation of the stabilizing effect of the magnetic field on Kelvin-Helmholtz instabilities, which is well known in astrophysics.

  19. Lyapunov function-based control laws for revolute robot arms - Tracking control, robustness, and adaptive control

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz-Delgado, Kenneth; Bayard, David S.

    1992-01-01

    A new class of joint level control laws for all-revolute robot arms is introduced. The analysis is similar to a recently proposed energy-like Liapunov function approach, except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. This approach gives way to a much simpler analysis and leads to a new class of control designs which guarantee both global asymptotic stability and local exponential stability. When Coulomb and viscous friction and parameter uncertainty are present as model perturbations, a sliding mode-like modification of the control law results in a robustness-enhancing outer loop. Adaptive control is formulated within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by simply replacing unknown model parameters by their estimates (i.e., certainty equivalence adaptation).

  20. A new class of energy based control laws for revolute robot arms - Tracking control, robustness enhancement and adaptive control

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Kreutz, Kenneth; Bayard, David S.

    1988-01-01

    A class of joint-level control laws for all-revolute robot arms is introduced. The analysis is similar to the recently proposed energy Liapunov function approach except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. By using energy Liapunov functions with the modified potential energy, a much simpler analysis can be used to show closed-loop global asymptotic stability and local exponential stability. When Coulomb and viscous friction and model parameter errors are present, a sliding-mode-like modification of the control law is proposed to add a robustness-enhancing outer loop. Adaptive control is also addressed within the same framework. A linear-in-the-parameters formulation is adopted, and globally asymptotically stable adaptive control laws are derived by replacing the model parameters in the nonadaptive control laws by their estimates.

  1. A new theory for multistep discretizations of stiff ordinary differential equations: Stability with large step sizes

    NASA Technical Reports Server (NTRS)

    Majda, G.

    1985-01-01

    A large set of variable coefficient linear systems of ordinary differential equations which possess two different time scales, a slow one and a fast one is considered. A small parameter epsilon characterizes the stiffness of these systems. A system of o.d.e.s. in this set is approximated by a general class of multistep discretizations which includes both one-leg and linear multistep methods. Sufficient conditions are determined under which each solution of a multistep method is uniformly bounded, with a bound which is independent of the stiffness of the system of o.d.e.s., when the step size resolves the slow time scale, but not the fast one. This property is called stability with large step sizes. The theory presented lets one compare properties of one-leg methods and linear multistep methods when they approximate variable coefficient systems of stiff o.d.e.s. In particular, it is shown that one-leg methods have better stability properties with large step sizes than their linear multistep counter parts. The theory also allows one to relate the concept of D-stability to the usual notions of stability and stability domains and to the propagation of errors for multistep methods which use large step sizes.

  2. Stability of elastic bending and torsion of uniform cantilever rotor blades in hover with variable structural coupling

    NASA Technical Reports Server (NTRS)

    Hodges, D. H., Roberta.

    1976-01-01

    The stability of elastic flap bending, lead-lag bending, and torsion of uniform, untwisted, cantilever rotor blades without chordwise offsets between the elastic, mass, tension, and areodynamic center axes is investigated for the hovering flight condition. The equations of motion are obtained by simplifying the general, nonlinear, partial differential equations of motion of an elastic rotating cantilever blade. The equations are adapted for a linearized stability analysis in the hovering flight condition by prescribing aerodynamic forces, applying Galerkin's method, and linearizing the resulting ordinary differential equations about the equilibrium operating condition. The aerodynamic forces are obtained from strip theory based on a quasi-steady approximation of two-dimensional unsteady airfoil theory. Six coupled mode shapes, calculated from free vibration about the equilibrium operating condition, are used in the linearized stability analysis. The study emphasizes the effects of two types of structural coupling that strongly influence the stability of hingeless rotor blades. The first structural coupling is the linear coupling between flap and lead-lag bending of the rotor blade. The second structural coupling is a nonlinear coupling between flap bending, lead-lag bending, and torsion deflections. Results are obtained for a wide variety of hingeless rotor configurations and operating conditions in order to provide a reasonably complete picture of hingeless rotor blade stability characteristics.

  3. Linearized blade row compression component model. Stability and frequency response analysis of a J85-3 compressor

    NASA Technical Reports Server (NTRS)

    Tesch, W. A.; Moszee, R. H.; Steenken, W. G.

    1976-01-01

    NASA developed stability and frequency response analysis techniques were applied to a dynamic blade row compression component stability model to provide a more economic approach to surge line and frequency response determination than that provided by time-dependent methods. This blade row model was linearized and the Jacobian matrix was formed. The clean-inlet-flow stability characteristics of the compressors of two J85-13 engines were predicted by applying the alternate Routh-Hurwitz stability criterion to the Jacobian matrix. The predicted surge line agreed with the clean-inlet-flow surge line predicted by the time-dependent method to a high degree except for one engine at 94% corrected speed. No satisfactory explanation of this discrepancy was found. The frequency response of the linearized system was determined by evaluating its Laplace transfer function. The results of the linearized-frequency-response analysis agree with the time-dependent results when the time-dependent inlet total-pressure and exit-flow function amplitude boundary conditions are less than 1 percent and 3 percent, respectively. The stability analysis technique was extended to a two-sector parallel compressor model with and without interstage crossflow and predictions were carried out for total-pressure distortion extents of 180 deg, 90 deg, 60 deg, and 30 deg.

  4. General methods for determining the linear stability of coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Craig, I. J. D.; Sneyd, A. D.; Mcclymont, A. N.

    1988-01-01

    A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak.

  5. General methods for determining the linear stability of coronal magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, I.J.D.; Sneyd, A.D.; McClymont, A.N.

    1988-12-01

    A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak. 19 references.

  6. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  7. The Langley Stability and Transition Analysis Code (LASTRAC) : LST, Linear and Nonlinear PSE for 2-D, Axisymmetric, and Infinite Swept Wing Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2003-01-01

    During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Subsonic Technology (AST). Experimental, theoretical, as well as computational efforts on various issues such as receptivity and linear and nonlinear evolution of instability waves take part in broadening our knowledge base for this intricate flow phenomenon. Despite all these advances, transition prediction remains a nontrivial task for engineers due to the lack of a widely available, robust, and efficient prediction tool. The design and development of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the state-of-the-art numerical methods for stability analysis and modem software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory (LST) or linear parabolized stability equations (LPSE) method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance environment based on first principles. This paper describes the governing equations, numerical methods, code development, and case studies for the current release of LASTRAC. Practical applications of LASTRAC are demonstrated for linear stability calculations, N-factor transition correlation, non-linear breakdown simulations, and controls of stationary crossflow instability in supersonic swept wing boundary layers.

  8. Qualitative analysis of certain generalized classes of quadratic oscillator systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagchi, Bijan, E-mail: bbagchi123@gmail.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Pal, Barnali, E-mail: barrna.roo@gmail.com

    2016-02-15

    We carry out a systematic qualitative analysis of the two quadratic schemes of generalized oscillators recently proposed by Quesne [J. Math. Phys. 56, 012903 (2015)]. By performing a local analysis of the governing potentials, we demonstrate that while the first potential admits a pair of equilibrium points one of which is typically a center for both signs of the coupling strength λ, the other points to a centre for λ < 0 but a saddle λ > 0. On the other hand, the second potential reveals only a center for both the signs of λ from a linear stability analysis.more » We carry out our study by extending Quesne’s scheme to include the effects of a linear dissipative term. An important outcome is that we run into a remarkable transition to chaos in the presence of a periodic force term fcosωt.« less

  9. Multi-water-bag models of ion temperature gradient instability in cylindrical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulette, David; Besse, Nicolas

    2013-05-15

    Ion temperature gradient instabilities play a major role in the understanding of anomalous transport in core fusion plasmas. In the considered cylindrical geometry, ion dynamics is described using a drift-kinetic multi-water-bag model for the parallel velocity dependency of the ion distribution function. In a first stage, global linear stability analysis is performed. From the obtained normal modes, parametric dependencies of the main spectral characteristics of the instability are then examined. Comparison of the multi-water-bag results with a reference continuous Maxwellian case allows us to evaluate the effects of discrete parallel velocity sampling induced by the Multi-Water-Bag model. Differences between themore » global model and local models considered in previous works are discussed. Using results from linear, quasilinear, and nonlinear numerical simulations, an analysis of the first stage saturation dynamics of the instability is proposed, where the divergence between the three models is examined.« less

  10. Pediatric morphea (localized scleroderma): review of 136 patients.

    PubMed

    Christen-Zaech, Stéphanie; Hakim, Miriam D; Afsar, F Sule; Paller, Amy S

    2008-09-01

    Morphea is an autoimmune inflammatory sclerosing disorder that may cause permanent functional disability and disfigurement. We sought to determine the clinical features of morphea in a large pediatric cohort. We conducted a retrospective chart review of 136 pediatric patients with morphea from one center, 1989 to 2006. Most children showed linear morphea, with a disproportionately high number of Caucasian and female patients. Two patients with rapidly progressing generalized or extensive linear morphea and arthralgias developed restrictive pulmonary disease. Initial oral corticosteroid treatment and long-term methotrexate administration stabilized and/or led to disease improvement in most patients with aggressive disease. Retrospective analysis, relatively small sample size, and risk of a selected referral population to the single site are limitations. These data suggest an increased prevalence of morphea in Caucasian girls, and support methotrexate as treatment for problematic forms. Visceral manifestations rarely occur; the presence of progressive problematic cutaneous disease and arthralgias should trigger closer patient monitoring.

  11. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu; Angus, J. R.

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionlessmore » and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.« less

  12. A dimensionally split Cartesian cut cell method for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Gokhale, Nandan; Nikiforakis, Nikos; Klein, Rupert

    2018-07-01

    We present a dimensionally split method for solving hyperbolic conservation laws on Cartesian cut cell meshes. The approach combines local geometric and wave speed information to determine a novel stabilised cut cell flux, and we provide a full description of its three-dimensional implementation in the dimensionally split framework of Klein et al. [1]. The convergence and stability of the method are proved for the one-dimensional linear advection equation, while its multi-dimensional numerical performance is investigated through the computation of solutions to a number of test problems for the linear advection and Euler equations. When compared to the cut cell flux of Klein et al., it was found that the new flux alleviates the problem of oscillatory boundary solutions produced by the former at higher Courant numbers, and also enables the computation of more accurate solutions near stagnation points. Being dimensionally split, the method is simple to implement and extends readily to multiple dimensions.

  13. Dynamics of thin-shell wormholes with different cosmological models

    NASA Astrophysics Data System (ADS)

    Sharif, Muhammad; Mumtaz, Saadia

    This work is devoted to investigate the stability of thin-shell wormholes in Einstein-Hoffmann-Born-Infeld electrodynamics. We also study the attractive and repulsive characteristics of these configurations. A general equation-of-state is considered in the form of linear perturbation which explores the stability of the respective wormhole solutions. We assume Chaplygin, linear and logarithmic gas models to study exotic matter at thin-shell and evaluate stability regions for different values of the involved parameters. It is concluded that the Hoffmann-Born-Infeld parameter and electric charge enhance the stability regions.

  14. Statespace geometry of puff formation in pipe flow

    NASA Astrophysics Data System (ADS)

    Budanur, Nazmi Burak; Hof, Bjoern

    2017-11-01

    Localized patches of chaotically moving fluid known as puffs play a central role in the transition to turbulence in pipe flow. Puffs coexist with the laminar flow and their large-scale dynamics sets the critical Reynolds number: When the rate of puff splitting exceeds that of decaying, turbulence in a long pipe becomes sustained in a statistical sense. Since puffs appear despite the linear stability of the Hagen-Poiseuille flow, one expects them to emerge from the bifurcations of finite-amplitude solutions of Navier-Stokes equations. In numerical simulations of pipe flow, Avila et al., discovered a pair of streamwise localized relative periodic orbits, which are time-periodic solutions with spatial drifts. We combine symmetry reduction and Poincaré section methods to compute the unstable manifolds of these orbits, revealing statespace structures associated with different stages of puff formation.

  15. Surface code quantum communication.

    PubMed

    Fowler, Austin G; Wang, David S; Hill, Charles D; Ladd, Thaddeus D; Van Meter, Rodney; Hollenberg, Lloyd C L

    2010-05-07

    Quantum communication typically involves a linear chain of repeater stations, each capable of reliable local quantum computation and connected to their nearest neighbors by unreliable communication links. The communication rate of existing protocols is low as two-way classical communication is used. By using a surface code across the repeater chain and generating Bell pairs between neighboring stations with probability of heralded success greater than 0.65 and fidelity greater than 0.96, we show that two-way communication can be avoided and quantum information can be sent over arbitrary distances with arbitrarily low error at a rate limited only by the local gate speed. This is achieved by using the unreliable Bell pairs to measure nonlocal stabilizers and feeding heralded failure information into post-transmission error correction. Our scheme also applies when the probability of heralded success is arbitrarily low.

  16. Local Laplacian Coding From Theoretical Analysis of Local Coding Schemes for Locally Linear Classification.

    PubMed

    Pang, Junbiao; Qin, Lei; Zhang, Chunjie; Zhang, Weigang; Huang, Qingming; Yin, Baocai

    2015-12-01

    Local coordinate coding (LCC) is a framework to approximate a Lipschitz smooth function by combining linear functions into a nonlinear one. For locally linear classification, LCC requires a coding scheme that heavily determines the nonlinear approximation ability, posing two main challenges: 1) the locality making faraway anchors have smaller influences on current data and 2) the flexibility balancing well between the reconstruction of current data and the locality. In this paper, we address the problem from the theoretical analysis of the simplest local coding schemes, i.e., local Gaussian coding and local student coding, and propose local Laplacian coding (LPC) to achieve the locality and the flexibility. We apply LPC into locally linear classifiers to solve diverse classification tasks. The comparable or exceeded performances of state-of-the-art methods demonstrate the effectiveness of the proposed method.

  17. Nonlinear Diamagnetic Stabilization of Double Tearing Modes in Cylindrical MHD Simulations

    NASA Astrophysics Data System (ADS)

    Abbott, Stephen; Germaschewski, Kai

    2014-10-01

    Double tearing modes (DTMs) may occur in reversed-shear tokamak configurations if two nearby rational surfaces couple and begin reconnecting. During the DTM's nonlinear evolution it can enter an ``explosive'' growth phase leading to complete reconnection, making it a possible driver for off-axis sawtooth crashes. Motivated by similarities between this behavior and that of the m = 1 kink-tearing mode in conventional tokamaks we investigate diamagnetic drifts as a possible DTM stabilization mechanism. We extend our previous linear studies of an m = 2 , n = 1 DTM in cylindrical geometry to the fully nonlinear regime using the MHD code MRC-3D. A pressure gradient similar to observed ITB profiles is used, together with Hall physics, to introduce ω* effects. We find the diamagnetic drifts can have a stabilizing effect on the nonlinear DTM through a combination of large scale differential rotation and mechanisms local to the reconnection layer. MRC-3D is an extended MHD code based on the libMRC computational framework. It supports nonuniform grids in curvilinear coordinates with parallel implicit and explicit time integration.

  18. A Self-Stabilizing Byzantine-Fault-Tolerant Clock Synchronization Protocol

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2009-01-01

    This report presents a rapid Byzantine-fault-tolerant self-stabilizing clock synchronization protocol that is independent of application-specific requirements. It is focused on clock synchronization of a system in the presence of Byzantine faults after the cause of any transient faults has dissipated. A model of this protocol is mechanically verified using the Symbolic Model Verifier (SMV) [SMV] where the entire state space is examined and proven to self-stabilize in the presence of one arbitrary faulty node. Instances of the protocol are proven to tolerate bursts of transient failures and deterministically converge with a linear convergence time with respect to the synchronization period. This protocol does not rely on assumptions about the initial state of the system other than the presence of sufficient number of good nodes. All timing measures of variables are based on the node s local clock, and no central clock or externally generated pulse is used. The Byzantine faulty behavior modeled here is a node with arbitrarily malicious behavior that is allowed to influence other nodes at every clock tick. The only constraint is that the interactions are restricted to defined interfaces.

  19. Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2

    NASA Technical Reports Server (NTRS)

    Mohler, R. R.

    1992-01-01

    Research leading to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle of attack aircraft such as the F-18 is discussed. The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis, and simulation were studied in some detail as well. Studies indicated that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in angle of attack. Included here are studies on nonlinear model algorithmic controller design and an analysis of nonlinear system stability using robust stability analysis for linear systems.

  20. The Hagen-Poiseuille, Plane Couette and Poiseuille Flows Linear Instability and Rogue Waves Excitation Mechanism

    NASA Astrophysics Data System (ADS)

    Chefranov, Sergey; Chefranov, Alexander

    2016-04-01

    Linear hydrodynamic stability theory for the Hagen-Poiseuille (HP) flow yields a conclusion of infinitely large threshold Reynolds number, Re, value. This contradiction to the observation data is bypassed using assumption of the HP flow instability having hard type and possible for sufficiently high-amplitude disturbances. HP flow disturbance evolution is considered by nonlinear hydrodynamic stability theory. Similar is the case of the plane Couette (PC) flow. For the plane Poiseuille (PP) flow, linear theory just quantitatively does not agree with experimental data defining the threshold Reynolds number Re= 5772 ( S. A. Orszag, 1971), more than five-fold exceeding however the value observed, Re=1080 (S. J. Davies, C. M. White, 1928). In the present work, we show that the linear stability theory conclusions for the HP and PC on stability for any Reynolds number and evidently too high threshold Reynolds number estimate for the PP flow are related with the traditional use of the disturbance representation assuming the possibility of separation of the longitudinal (along the flow direction) variable from the other spatial variables. We show that if to refuse from this traditional form, conclusions on the linear instability for the HP and PC flows may be obtained for finite Reynolds numbers (for the HP flow, for Re>704, and for the PC flow, for Re>139). Also, we fit the linear stability theory conclusion on the PP flow to the experimental data by getting an estimate of the minimal threshold Reynolds number as Re=1040. We also get agreement of the minimal threshold Reynolds number estimate for PC with the experimental data of S. Bottin, et.al., 1997, where the laminar PC flow stability threshold is Re = 150. Rogue waves excitation mechanism in oppositely directed currents due to the PC flow linear instability is discussed. Results of the new linear hydrodynamic stability theory for the HP, PP, and PC flows are published in the following papers: 1. S.G. Chefranov, A.G. Chefranov, JETP, v.119, No.2, 331, 2014 2. S.G. Chefranov, A.G. Chefranov, Doklady Physics, vol.60, No.7, 327-332, 2015 3. S.G. Chefranov, A. G. Chefranov, arXiv: 1509.08910v1 [physics.flu-dyn] 29 Sep 2015 (accepted to JETP)

  1. Wavelength selection beyond turing

    NASA Astrophysics Data System (ADS)

    Zelnik, Yuval R.; Tzuk, Omer

    2017-06-01

    Spatial patterns arising spontaneously due to internal processes are ubiquitous in nature, varying from periodic patterns of dryland vegetation to complex structures of bacterial colonies. Many of these patterns can be explained in the context of a Turing instability, where patterns emerge due to two locally interacting components that diffuse with different speeds in the medium. Turing patterns are multistable, meaning that many different patterns with different wavelengths are possible for the same set of parameters. Nevertheless, in a given region typically only one such wavelength is dominant. In the Turing instability region, random initial conditions will mostly lead to a wavelength that is similar to that of the leading eigenvector that arises from the linear stability analysis, but when venturing beyond, little is known about the pattern that will emerge. Using dryland vegetation as a case study, we use different models of drylands ecosystems to study the wavelength pattern that is selected in various scenarios beyond the Turing instability region, focusing on the phenomena of localized states and repeated local disturbances.

  2. A biomechanical testing system to determine micromotion between hip implant and femur accounting for deformation of the hip implant: Assessment of the influence of rigid body assumptions on micromotions measurements.

    PubMed

    Leuridan, Steven; Goossens, Quentin; Roosen, Jorg; Pastrav, Leonard; Denis, Kathleen; Mulier, Michiel; Desmet, Wim; Vander Sloten, Jos

    2017-02-01

    Accurate pre-clinical evaluation of the initial stability of new cementless hip stems using in vitro micromotion measurements is an important step in the design process to assess the new stem's potential. Several measuring systems, linear variable displacement transducer-based and other, require assuming bone or implant to be rigid to obtain micromotion values or to calculate derived quantities such as relative implant tilting. An alternative linear variable displacement transducer-based measuring system not requiring a rigid body assumption was developed in this study. The system combined advantages of local unidirectional and frame-and-bracket micromotion measuring concepts. The influence and possible errors that would be made by adopting a rigid body assumption were quantified. Furthermore, as the system allowed emulating local unidirectional and frame-and-bracket systems, the influence of adopting rigid body assumptions were also analyzed for both concepts. Synthetic and embalmed bone models were tested in combination with primary and revision implants. Single-legged stance phase loading was applied to the implant - bone constructs. Adopting a rigid body assumption resulted in an overestimation of mediolateral micromotion of up to 49.7μm at more distal measuring locations. Maximal average relative rotational motion was overestimated by 0.12° around the anteroposterior axis. Frontal and sagittal tilting calculations based on a unidirectional measuring concept underestimated the true tilting by an order of magnitude. Non-rigid behavior is a factor that should not be dismissed in micromotion stability evaluations of primary and revision femoral implants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Stability with large step sizes for multistep discretizations of stiff ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Majda, George

    1986-01-01

    One-leg and multistep discretizations of variable-coefficient linear systems of ODEs having both slow and fast time scales are investigated analytically. The stability properties of these discretizations are obtained independent of ODE stiffness and compared. The results of numerical computations are presented in tables, and it is shown that for large step sizes the stability of one-leg methods is better than that of the corresponding linear multistep methods.

  4. A study of fluid-structure problems

    NASA Astrophysics Data System (ADS)

    Lam, Dennis Kang-Por

    The stability of structures with and without fluid load is investigated. A method is developed for determining the fluid load in terms of added structural mass. Finite element methods are employed to study the buckling of a cylindrical shell under axial compression and liquid storage tanks under hydrodynamic load. Both linear and nonlinear analyses are performed. Diamond modes are found to be the possible postbuckling shapes of the cylindrical shell. Local buckling including elephant-foot buckle and diamond buckle are found for the liquid storage tank models. Comparison between the linear and nonlinear results indicates a substantial difference in buckling mode shapes, though the buckling loads are close to each other. The method for determining the hydrodynamic mass is applied to the impeller stage of a centrifugal pump. The method is based on a linear perturbation technique which assumes that the disturbance in the flow boundaries and velocities caused by the motion of the structure is small. A potential method is used to estimate the velocity flow field. The hydrodynamic mass is then obtained by calculating the total force which results from the pressure induced by a perturbation of the structure.

  5. Conditions for Stabilizability of Linear Switched Systems

    NASA Astrophysics Data System (ADS)

    Minh, Vu Trieu

    2011-06-01

    This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence.

  6. Reaction-Infiltration Instabilities in Fractured and Porous Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladd, Anthony

    In this project we are developing a multiscale analysis of the evolution of fracture permeability, using numerical simulations and linear stability analysis. Our simulations include fully three-dimensional simulations of the fracture topography, fluid flow, and reactant transport, two-dimensional simulations based on aperture models, and linear stability analysis.

  7. A small-scale hyperacute compound eye featuring active eye tremor: application to visual stabilization, target tracking, and short-range odometry.

    PubMed

    Colonnier, Fabien; Manecy, Augustin; Juston, Raphaël; Mallot, Hanspeter; Leitel, Robert; Floreano, Dario; Viollet, Stéphane

    2015-02-25

    In this study, a miniature artificial compound eye (15 mm in diameter) called the curved artificial compound eye (CurvACE) was endowed for the first time with hyperacuity, using similar micro-movements to those occurring in the fly's compound eye. A periodic micro-scanning movement of only a few degrees enables the vibrating compound eye to locate contrasting objects with a 40-fold greater resolution than that imposed by the interommatidial angle. In this study, we developed a new algorithm merging the output of 35 local processing units consisting of adjacent pairs of artificial ommatidia. The local measurements performed by each pair are processed in parallel with very few computational resources, which makes it possible to reach a high refresh rate of 500 Hz. An aerial robotic platform with two degrees of freedom equipped with the active CurvACE placed over naturally textured panels was able to assess its linear position accurately with respect to the environment thanks to its efficient gaze stabilization system. The algorithm was found to perform robustly at different light conditions as well as distance variations relative to the ground and featured small closed-loop positioning errors of the robot in the range of 45 mm. In addition, three tasks of interest were performed without having to change the algorithm: short-range odometry, visual stabilization, and tracking contrasting objects (hands) moving over a textured background.

  8. Effects of alcohols on the stability and low-frequency local motions that control the slow changes in structural dynamics of ferrocytochrome c.

    PubMed

    Jain, Rishu; Sharma, Deepak; Kumar, Rajesh

    2013-10-01

    To determine the effects of alcohols on the low-frequency local motions that control slow changes in structural dynamics of native-like compact states of proteins, we have studied the effects of alcohols on structural fluctuation of M80-containing Ω-loop by measuring the rate of thermally driven CO dissociation from a natively folded carbonmonoxycytochrome c under varying concentrations of alcohols (methanol, ethanol, 1-propanol, 2-propanol, 3°-butanol, 2,2,2-trifluoroethanol). As alcohol is increased, the rate coefficient of CO dissociation (k(diss)) first decreases in subdenaturing region and then increases on going from subdenaturing to denaturing milieu. This decrease in k(diss) is more for 2,2,2-trifluroethanol and 1-propanol and least for methanol, indicating that the first phase of motional constraint is due to the hydrophobicity of alcohols and intramolecular protein cross-linking effect of alcohols, which results in conformational entropy loss of protein. The thermal denaturation midpoint for ferrocytochrome c decreases with increase in alcohol, indicating that alcohol decrease the global stability of protein. The stabilization free energy (ΔΔG) in alcohols' solution was calculated from the slope of the Wyman-Tanford plot and water activity. The m-values obtained from the slope of ΔΔG versus alcohols plot were found to be more negative for longer and linear chain alcohols, indicating destabilization of proteins by alcohols through disturbance of hydrophobic interactions and hydrogen bonding.

  9. An extended car-following model to describe connected traffic dynamics under cyberattacks

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Yu, Guizhen; Wu, Xinkai; Qin, Hongmao; Wang, Yunpeng

    2018-04-01

    In this paper, the impacts of the potential cyberattacks on vehicles are modeled through an extended car-following model. To better understand the mechanism of traffic disturbance under cyberattacks, the linear and nonlinear stability analysis are conducted respectively. Particularly, linear stability analysis is performed to obtain different neutral stability conditions with various parameters; and nonlinear stability analysis is carried out by using reductive perturbation method to derive the soliton solution of the modified Korteweg de Vries equation (mKdV) near the critical point, which is used to draw coexisting stability lines. Furthermore, by applying linear and nonlinear stability analysis, traffic flow state can be divided into three states, i.e., stable, metastable and unstable states which are useful to describe shockwave dynamics and driving behaviors under cyberattacks. The theoretical results show that the proposed car-following model is capable of successfully describing the car-following behavior of connected vehicles with cyberattacks. Finally, numerical simulation using real values has confirmed the validity of theoretical analysis. The results further demonstrate our model can be used to help avoid collisions and relieve traffic congestion with cybersecurity threats.

  10. Elastic robot control - Nonlinear inversion and linear stabilization

    NASA Technical Reports Server (NTRS)

    Singh, S. N.; Schy, A. A.

    1986-01-01

    An approach to the control of elastic robot systems for space applications using inversion, servocompensation, and feedback stabilization is presented. For simplicity, a robot arm (PUMA type) with three rotational joints is considered. The third link is assumed to be elastic. Using an inversion algorithm, a nonlinear decoupling control law u(d) is derived such that in the closed-loop system independent control of joint angles by the three joint torquers is accomplished. For the stabilization of elastic oscillations, a linear feedback torquer control law u(s) is obtained applying linear quadratic optimization to the linearized arm model augmented with a servocompensator about the terminal state. Simulation results show that in spite of uncertainties in the payload and vehicle angular velocity, good joint angle control and damping of elastic oscillations are obtained with the torquer control law u = u(d) + u(s).

  11. Local study of helical magnetorotational instability in viscous Keplerian disks

    NASA Astrophysics Data System (ADS)

    MahdaviGharavi, M.; Hajisharifi, K.; Mehidan, H.

    2018-03-01

    In this paper, regarding the recent detection of significant azimuthal magnetic field in some accretion disks such as protostellar (Donati et al. in Nature 438:466, 2005), the multi-fluid model has been employed to analysis the stability of Keplerian rotational viscous dusty plasma system in a current-free helical magnetic field structure. Using the fluid-Maxwell equations, the general dispersion relation of the excited modes in the system has been obtained by applying the local approximation method in the linear perturbation theory. The typical numerical analysis of the obtained dispersion relation in the high-frequency regime shows that the presence of azimuthal magnetic field component in Keplerian flow has a considerable role in the stability conditions of the system. It also shows that the magnetic field helicity has a stabilization role against the magnetorotational instability (MRI) in the system due to contraction of the unstable wavelength region and decreasing the maximum growth rate of the instability. In this sense, the stabilization role of the viscosity term is more considerable for HMRI (instability in the presence of azimuthal magnetic field component) than the corresponding MRI (instability in the absence of azimuthal magnetic field component). Moreover, considering the discovered azimuthal magnetic field in these systems, the MRI can be arisen in the over-all range of dust grains construction values in contract with traditional MRI. This investigation can greatly contribute to better understanding the physics of some astrophysical phenomena, such as the main source of turbulence and angular momentum transport in protostellar and the other sufficiently ionized astrophysical disks, where the azimuthal magnetic field component in these systems can play a significant role.

  12. Asynchrony among local communities stabilises ecosystem function of metacommunities.

    PubMed

    Wilcox, Kevin R; Tredennick, Andrew T; Koerner, Sally E; Grman, Emily; Hallett, Lauren M; Avolio, Meghan L; La Pierre, Kimberly J; Houseman, Gregory R; Isbell, Forest; Johnson, David Samuel; Alatalo, Juha M; Baldwin, Andrew H; Bork, Edward W; Boughton, Elizabeth H; Bowman, William D; Britton, Andrea J; Cahill, James F; Collins, Scott L; Du, Guozhen; Eskelinen, Anu; Gough, Laura; Jentsch, Anke; Kern, Christel; Klanderud, Kari; Knapp, Alan K; Kreyling, Juergen; Luo, Yiqi; McLaren, Jennie R; Megonigal, Patrick; Onipchenko, Vladimir; Prevéy, Janet; Price, Jodi N; Robinson, Clare H; Sala, Osvaldo E; Smith, Melinda D; Soudzilovskaia, Nadejda A; Souza, Lara; Tilman, David; White, Shannon R; Xu, Zhuwen; Yahdjian, Laura; Yu, Qiang; Zhang, Pengfei; Zhang, Yunhai

    2017-12-01

    Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  13. Stability of soliton families in nonlinear Schrödinger equations with non-parity-time-symmetric complex potentials

    NASA Astrophysics Data System (ADS)

    Yang, Jianke; Nixon, Sean

    2016-11-01

    Stability of soliton families in one-dimensional nonlinear Schrödinger equations with non-parity-time (PT)-symmetric complex potentials is investigated numerically. It is shown that these solitons can be linearly stable in a wide range of parameter values both below and above phase transition. In addition, a pseudo-Hamiltonian-Hopf bifurcation is revealed, where pairs of purely-imaginary eigenvalues in the linear-stability spectra of solitons collide and bifurcate off the imaginary axis, creating oscillatory instability, which resembles Hamiltonian-Hopf bifurcations of solitons in Hamiltonian systems even though the present system is dissipative and non-Hamiltonian. The most important numerical finding is that, eigenvalues of linear-stability operators of these solitons appear in quartets (λ , - λ ,λ* , -λ*), similar to conservative systems and PT-symmetric systems. This quartet eigenvalue symmetry is very surprising for non- PT-symmetric systems, and it has far-reaching consequences on the stability behaviors of solitons.

  14. Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    LASTRAC is a general-purposed, physics-based transition prediction code released by NASA for Laminar Flow Control studies and transition research. The design and development of the LASTRAC code is aimed at providing an engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. It was written from scratch based on the state-of-the-art numerical methods for stability analysis and modern software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory or linear parabolized stability equations method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. This document describes the governing equations, numerical methods, code development, detailed description of input/output parameters, and case studies for the current release of LASTRAC.

  15. Theoretical considerations of some nonlinear aspects of hypersonic panel flutter

    NASA Technical Reports Server (NTRS)

    Mcintosh, S. C., Jr.

    1974-01-01

    A research project to analyze the effects of hypersonic nonlinear aerodynamic loading on panel flutter is reported. The test equipment and procedures for conducting the tests are explained. The effects of aerodynamic linearities on stability were evaluated by determining constant-initial-energy amplitude-sensitive stability boundaries and comparing them with the corresponding linear stability boundaries. An attempt to develop an alternative method of analysis for systems where amplitude-sensitive instability is possible is presented.

  16. Role of stereotactic radiosurgery with a linear accelerator in treatment of intracranial arteriovenous malformations and tumors in children.

    PubMed

    Loeffler, J S; Rossitch, E; Siddon, R; Moore, M R; Rockoff, M A; Alexander, E

    1990-05-01

    Between 1986 and 1988, 16 children were treated for 10 arteriovenous malformations and 6 recurrent intracranial tumors with stereotactic radiation therapy using a modified Clinac 6/100 linear accelerator. The median age of our patients was 10.5 years. For the group with arteriovenous malformation, follow-up ranged from 6 months to 37 months (median was 20 months). No patient bled during the follow-up period. Five of eight patients with follow-up longer than 12 months have achieved complete obliteration of their arteriovenous malformation by angiogram. The four remaining patients who have not achieved a complete obliteration are awaiting their 2-year posttreatment angiogram. The other patient has been treated within the year and have not yet been studied. Five of the six recurrent tumor patients are alive with a median follow-up of 8 months. The remaining patient was controlled locally, but he died of recurrent disease outside the area treated with radiosurgery. The radiographic responses of these patients have included three complete responses, two substantial reductions in tumor volume (greater than 50%) and one stabilization. Despite previous radiotherapy, there have been no significant complications in these patients. We conclude that stereotactic radiation therapy using a standard linear accelerator is an effective and safe technique in the treatment of selected intracranial arteriovenous malformations and tumors in children. In addition, stereotactic radiosurgery may have unique applications in the treatment of localized primary and recurrent pediatric brain tumors.

  17. Analytic theory for the determination of velocity and stability of bubbles in a Hele-Shaw cell. I - Velocity selection. II - Stability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1989-01-01

    An asymptotic theory is presented for the determination of velocity and linear stability of a steady symmetric bubble in a Hele-Shaw cell for small surface tension. First the bubble velocity relative to the fluid velocity at infinity is determined for small surface tension by means of a transcendentally small correction to the asymptotic series solution. In addition, a linear stability analysis shows that only the solution branch corresponding to the largest possible bubble velocity for given surface tension is stable, while all the others are unstable.

  18. Orbital stability of periodic traveling-wave solutions for the log-KdV equation

    NASA Astrophysics Data System (ADS)

    Natali, Fábio; Pastor, Ademir; Cristófani, Fabrício

    2017-09-01

    In this paper we establish the orbital stability of periodic waves related to the logarithmic Korteweg-de Vries equation. Our motivation is inspired in the recent work [3], in which the authors established the well-posedness and the linear stability of Gaussian solitary waves. By using the approach put forward recently in [20] to construct a smooth branch of periodic waves as well as to get the spectral properties of the associated linearized operator, we apply the abstract theories in [13] and [25] to deduce the orbital stability of the periodic traveling waves in the energy space.

  19. R-parametrization and its role in classification of linear multivariable feedback systems

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.

    1988-01-01

    A classification of all the compensators that stabilize a given general plant in a linear, time-invariant multi-input, multi-output feedback system is developed. This classification, along with the associated necessary and sufficient conditions for stability of the feedback system, is achieved through the introduction of a new parameterization, referred to as R-Parameterization, which is a dual of the familiar Q-Parameterization. The classification is made to the stability conditions of the compensators and the plant by themselves; and necessary and sufficient conditions are based on the stability of Q and R themselves.

  20. Stability of linear systems in second-order form based on structure preserving similarity transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoustrup, Jakob; Pommer, Christian; Kliem, Wolfhard

    2015-10-31

    This paper deals with two stability aspects of linear systems of the form I ¨ x +B˙ x +Cx = 0 given by the triple (I;B;C). A general transformation scheme is given for a structure and Jordan form preserving transformation of the triple. We investigate how a system can be transformed by suitable choices of the transformation parameters into a new system (I;B1;C1) with a symmetrizable matrix C1. This procedure facilitates stability investigations. We also consider systems with a Hamiltonian spectrum which discloses marginal stability after a Jordan form preserving transformation.

  1. A conformal approach for the analysis of the non-linear stability of radiation cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luebbe, Christian, E-mail: c.luebbe@ucl.ac.uk; Department of Mathematics, University of Leicester, University Road, LE1 8RH; Valiente Kroon, Juan Antonio, E-mail: j.a.valiente-kroon@qmul.ac.uk

    2013-01-15

    The conformal Einstein equations for a trace-free (radiation) perfect fluid are derived in terms of the Levi-Civita connection of a conformally rescaled metric. These equations are used to provide a non-linear stability result for de Sitter-like trace-free (radiation) perfect fluid Friedman-Lemaitre-Robertson-Walker cosmological models. The solutions thus obtained exist globally towards the future and are future geodesically complete. - Highlights: Black-Right-Pointing-Pointer We study the Einstein-Euler system in General Relativity using conformal methods. Black-Right-Pointing-Pointer We analyze the structural properties of the associated evolution equations. Black-Right-Pointing-Pointer We establish the non-linear stability of pure radiation cosmological models.

  2. Solving Fluid Structure Interaction Problems with an Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.

    2016-01-01

    An immersed boundary method for the compressible Navier-Stokes equations can be used for moving boundary problems as well as fully coupled fluid-structure interaction is presented. The underlying Cartesian immersed boundary method of the Launch Ascent and Vehicle Aerodynamics (LAVA) framework, based on the locally stabilized immersed boundary method previously presented by the authors, is extended to account for unsteady boundary motion and coupled to linear and geometrically nonlinear structural finite element solvers. The approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems. Keywords: Immersed Boundary Method, Higher-Order Finite Difference Method, Fluid Structure Interaction.

  3. Metal pad instabilities in liquid metal batteries.

    PubMed

    Zikanov, Oleg

    2015-12-01

    A mechanical analogy is used to analyze the interaction between the magnetic field, electric current, and deformation of interfaces in liquid metal batteries. In the framework of a low-mode, nondissipative, linear stability model, it is found that, during charging or discharging, a sufficiently large battery is prone to instabilities of two types. One is similar to the metal pad instability known to exist in the aluminum reduction cells. Another type is new. It is related to the destabilizing effect of the Lorentz force formed by the azimuthal magnetic field induced by the base current, and the current perturbations caused by the local variations of the thickness of the electrolyte layer.

  4. Stability of Nonlinear Principal Components Analysis: An Empirical Study Using the Balanced Bootstrap

    ERIC Educational Resources Information Center

    Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Kooij, Anita J.

    2007-01-01

    Principal components analysis (PCA) is used to explore the structure of data sets containing linearly related numeric variables. Alternatively, nonlinear PCA can handle possibly nonlinearly related numeric as well as nonnumeric variables. For linear PCA, the stability of its solution can be established under the assumption of multivariate…

  5. Development and validation of a stability-indicating high performance liquid chromatographic assay for benoxinate.

    PubMed

    Chorny, Michael; Levy, Daniel; Schumacher, Ilana; Lichaa, Chaim; Gruzman, Boris; Livshits, Oleg; Lomnicky, Yossi

    2003-04-24

    Benoxinate is a local anaesthetic used for ophthalmic applications. The aim of this study was to develop a rapid and simple stability-indicating method for the determination of benoxinate formulated for ophthalmic use, evaluate its long-term stability and identify its major degradation product. Benoxinate was eluted on a 10 microm Spherisorb phenyl column, 250 x 3.2 mm, with a mobile phase consisting of acetonitrile-buffer (pH 3.5) (35:65, v/v), pumped at 0.8 ml min(-1) flow rate. The buffer was composed of sodium dihydrogen phosphate (50 mM), sodium hydrogen sulfate (2.5 mM) and 1-heptanesulfonic acid sodium salt (5 mM). The analyte was quantified spectrophotometrically at 308 nm. The chromatograms of benoxinate formulations obtained by this method showed benoxinate (t = 4.5 min) well resolved from its degradation product (t = 2.3 min), which was separately identified by means of HPLC-MS as 4-amino-3-butoxybenzoic acid. The assay was demonstrated to have high accuracy, precision and linearity. The method was implemented in investigating the long-term stability of benoxinate 0.4% ophthalmic solutions. The method was found to be simple, quick and selective in determining benoxinate concentrations in fresh and aged preparations.

  6. Geometry of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  7. Local structure preserving sparse coding for infrared target recognition

    PubMed Central

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa

    2017-01-01

    Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824

  8. On the Stability of Jump-Linear Systems Driven by Finite-State Machines with Markovian Inputs

    NASA Technical Reports Server (NTRS)

    Patilkulkarni, Sudarshan; Herencia-Zapana, Heber; Gray, W. Steven; Gonzalez, Oscar R.

    2004-01-01

    This paper presents two mean-square stability tests for a jump-linear system driven by a finite-state machine with a first-order Markovian input process. The first test is based on conventional Markov jump-linear theory and avoids the use of any higher-order statistics. The second test is developed directly using the higher-order statistics of the machine s output process. The two approaches are illustrated with a simple model for a recoverable computer control system.

  9. Asymptotic Linearity of Optimal Control Modification Adaptive Law with Analytical Stability Margins

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Optimal control modification has been developed to improve robustness to model-reference adaptive control. For systems with linear matched uncertainty, optimal control modification adaptive law can be shown by a singular perturbation argument to possess an outer solution that exhibits a linear asymptotic property. Analytical expressions of phase and time delay margins for the outer solution can be obtained. Using the gradient projection operator, a free design parameter of the adaptive law can be selected to satisfy stability margins.

  10. On the linear stability of blood flow through model capillary networks.

    PubMed

    Davis, Jeffrey M

    2014-12-01

    Under the approximation that blood behaves as a continuum, a numerical implementation is presented to analyze the linear stability of capillary blood flow through model tree and honeycomb networks that are based on the microvascular structures of biological tissues. The tree network is comprised of a cascade of diverging bifurcations, in which a parent vessel bifurcates into two descendent vessels, while the honeycomb network also contains converging bifurcations, in which two parent vessels merge into one descendent vessel. At diverging bifurcations, a cell partitioning law is required to account for the nonuniform distribution of red blood cells as a function of the flow rate of blood into each descendent vessel. A linearization of the governing equations produces a system of delay differential equations involving the discharge hematocrit entering each network vessel and leads to a nonlinear eigenvalue problem. All eigenvalues in a specified region of the complex plane are captured using a transformation based on contour integrals to construct a linear eigenvalue problem with identical eigenvalues, which are then determined using a standard QR algorithm. The predicted value of the dimensionless exponent in the cell partitioning law at the instability threshold corresponds to a supercritical Hopf bifurcation in numerical simulations of the equations governing unsteady blood flow. Excellent agreement is found between the predictions of the linear stability analysis and nonlinear simulations. The relaxation of the assumption of plug flow made in previous stability analyses typically has a small, quantitative effect on the stability results that depends on the specific network structure. This implementation of the stability analysis can be applied to large networks with arbitrary structure provided only that the connectivity among the network segments is known.

  11. Topological entanglement entropy of fracton stabilizer codes

    NASA Astrophysics Data System (ADS)

    Ma, Han; Schmitz, A. T.; Parameswaran, S. A.; Hermele, Michael; Nandkishore, Rahul M.

    2018-03-01

    Entanglement entropy provides a powerful characterization of two-dimensional gapped topological phases of quantum matter, intimately tied to their description by topological quantum field theories (TQFTs). Fracton topological orders are three-dimensional gapped topologically ordered states of matter that lack a TQFT description. We show that three-dimensional fracton phases are nevertheless characterized, at least partially, by universal structure in the entanglement entropy of their ground-state wave functions. We explicitly compute the entanglement entropy for two archetypal fracton models, the "X-cube model" and "Haah's code," and demonstrate the existence of a nonlocal contribution that scales linearly in subsystem size. We show via Schrieffer-Wolff transformations that this piece of the entanglement entropy of fracton models is robust against arbitrary local perturbations of the Hamiltonian. Finally, we argue that these results may be extended to characterize localization-protected fracton topological order in excited states of disordered fracton models.

  12. Itinerancy enhanced quantum fluctuation of magnetic moments in iron-based superconductors

    DOE PAGES

    Tam, Yu -T.; Ku, W.; Yao, D. -X.

    2015-09-10

    We investigate the influence of itinerant carriers on dynamics and fluctuation of local moments in Fe-based superconductors, via linear spin-wave analysis of a spin-fermion model containing both itinerant and local degrees of freedom. Surprisingly against the common lore, instead of enhancing the (π,0) order, itinerant carriers with well nested Fermi surfaces is found to induce significant amount of spatial and temporal quantum fluctuation that leads to the observed small ordered moment. Interestingly, the underlying mechanism is shown to be intra-pocket nesting-associated long-range coupling, rather than the previously believed ferromagnetic double-exchange effect. This challenges the validity of ferromagnetically compensated first-neighbor couplingmore » reported from short-range fitting to the experimental dispersion, which turns out to result instead from the ferro-orbital order that is also found instrumental in stabilizing the magnetic order.« less

  13. Simulation of magnetic holes formation in the magnetosheath

    NASA Astrophysics Data System (ADS)

    Ahmadi, Narges; Germaschewski, Kai; Raeder, Joachim

    2017-12-01

    Magnetic holes have been frequently observed in the Earth's magnetosheath and are believed to be the consequence of the nonlinear evolution of the mirror instability. Mirror mode perturbations mainly form as magnetic holes in regions where the plasma is marginally mirror stable with respect to the linear instability criterion. We present an expanding box particle-in-cell simulation to mimic the changing conditions in the magnetosheath as the plasma is convected through it that produces mirror mode magnetic holes. We show that in the initial nonlinear evolution, where the plasma conditions are mirror unstable, the magnetic peaks are dominant, while later, as the plasma relaxes toward marginal stability, the fluctuations evolve into deep magnetic holes. While the averaged plasma parameters in the simulation remain close to the mirror instability threshold, the local plasma in the magnetic holes is highly unstable to mirror instability and locally mirror stable in the magnetic peaks.

  14. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  15. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integro-differential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified Large-Eddy-Diffusivity-type closure. Additionally, we introduce the generalized local linearization (LL) approximation for deriving a computable PDF equation in the form of the second-order partial differential equation (PDE). We demonstrate the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary auto-correlation time.more » We apply the proposed PDF method to the analysis of a set of Kramers equations driven by exponentially auto-correlated Gaussian colored noise to study the dynamics and stability of a power grid.« less

  16. Absence of metastable states in strained monoatomic cubic crystals.

    NASA Astrophysics Data System (ADS)

    Aguayo, Aarón; Mehl, Michael L.; de Coss, Romeo

    2005-03-01

    The Bain path distortion of a metal with an fcc (bcc) ground state toward the bcc (fcc) structure initially requires an increase in energy, but at some point along the Bain path the energy will again decrease until a local minimum is reached. We have studied the tetragonal distortion (Bain path) of monoatomic cubic crystals, using a combination of parametrized tight-binding and first-principles linearized augmented plane wave calculations. We show that this local minimum is unstable with respect to an elastic distortion, except in the rare case that the minimum is at the bcc (fcc) point on the Bain path. This shows that body-centered-tetragonal phases of these materials, which have been seen in epitaxially grown thin films, must be stabilized by the substrate and cannot be freestanding films. This work was partially supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant No. 43830-F.

  17. Dissipative discrete breathers: periodic, quasiperiodic, chaotic, and mobile.

    PubMed

    Martínez, P J; Meister, M; Floría, L M; Falo, F

    2003-06-01

    The properties of discrete breathers in dissipative one-dimensional lattices of nonlinear oscillators subject to periodic driving forces are reviewed. We focus on oscillobreathers in the Frenkel-Kontorova chain and rotobreathers in a ladder of Josephson junctions. Both types of exponentially localized solutions are easily obtained numerically using adiabatic continuation from the anticontinuous limit. Linear stability (Floquet) analysis allows the characterization of different types of bifurcations experienced by periodic discrete breathers. Some of these bifurcations produce nonperiodic localized solutions, namely, quasiperiodic and chaotic discrete breathers, which are generally impossible as exact solutions in Hamiltonian systems. Within a certain range of parameters, propagating breathers occur as attractors of the dissipative dynamics. General features of these excitations are discussed and the Peierls-Nabarro barrier is addressed. Numerical scattering experiments with mobile breathers reveal the existence of two-breather bound states and allow a first glimpse at the intricate phenomenology of these special multibreather configurations. (c) 2003 American Institute of Physics.

  18. Assessment of Walking Stability of Elderly by Means of Nonlinear Time-Series Analysis and Simple Accelerometry

    NASA Astrophysics Data System (ADS)

    Ohtaki, Yasuaki; Arif, Muhammad; Suzuki, Akihiro; Fujita, Kazuki; Inooka, Hikaru; Nagatomi, Ryoichi; Tsuji, Ichiro

    This study presents an assessment of walking stability in elderly people, focusing on local dynamic stability of walking. Its main objectives were to propose a technique to quantify local dynamic stability using nonlinear time-series analyses and a portable instrument, and to investigate their reliability in revealing the efficacy of an exercise training intervention for elderly people for improvement of walking stability. The method measured three-dimensional acceleration of the upper body, and computation of Lyapunov exponents, thereby directly quantifying the local stability of the dynamic system. Straight level walking of young and elderly subjects was investigated in the experimental study. We compared Lyapunov exponents of young and the elderly subjects, and of groups before and after the exercise intervention. Experimental results demonstrated that the exercise intervention improved local dynamic stability of walking. The proposed method was useful in revealing effects and efficacies of the exercise intervention for elderly people.

  19. dAdd1 and dXNP prevent genome instability by maintaining HP1a localization at Drosophila telomeres.

    PubMed

    Chavez, Joselyn; Murillo-Maldonado, Juan Manuel; Bahena, Vanessa; Cruz, Ana Karina; Castañeda-Sortibrán, América; Rodriguez-Arnaiz, Rosario; Zurita, Mario; Valadez-Graham, Viviana

    2017-12-01

    Telomeres are important contributors to genome stability, as they prevent linear chromosome end degradation and contribute to the avoidance of telomeric fusions. An important component of the telomeres is the heterochromatin protein 1a (HP1a). Mutations in Su(var)205, the gene encoding HP1a in Drosophila, result in telomeric fusions, retrotransposon regulation loss and larger telomeres, leading to chromosome instability. Previously, it was found that several proteins physically interact with HP1a, including dXNP and dAdd1 (orthologues to the mammalian ATRX gene). In this study, we found that mutations in the genes encoding the dXNP and dAdd1 proteins affect chromosome stability, causing chromosomal aberrations, including telomeric defects, similar to those observed in Su(var)205 mutants. In somatic cells, we observed that dXNP and dAdd1 participate in the silencing of the telomeric HTT array of retrotransposons, preventing anomalous retrotransposon transcription and integration. Furthermore, the lack of dAdd1 results in the loss of HP1a from the telomeric regions without affecting other chromosomal HP1a binding sites; mutations in dxnp also affected HP1a localization but not at all telomeres, suggesting a specialized role for dAdd1 and dXNP proteins in locating HP1a at the tips of the chromosomes. These results place dAdd1 as an essential regulator of HP1a localization and function in the telomere heterochromatic domain.

  20. Does competition improve financial stability of the banking sector in ASEAN countries? An empirical analysis.

    PubMed

    Noman, Abu Hanifa Md; Gee, Chan Sok; Isa, Che Ruhana

    2017-01-01

    This study examines the influence of competition on the financial stability of the commercial banks of Association of Southeast Asian Nation (ASEAN) over the 1990 to 2014 period. Panzar-Rosse H-statistic, Lerner index and Herfindahl-Hirschman Index (HHI) are used as measures of competition, while Z-score, non-performing loan (NPL) ratio and equity ratio are used as measures of financial stability. Two-step system Generalized Method of Moments (GMM) estimates demonstrate that competition measured by H-statistic is positively related to Z-score and equity ratio, and negatively related to non-performing loan ratio. Conversely, market power measured by Lerner index is negatively related to Z-score and equity ratio and positively related to NPL ratio. These results strongly support the competition-stability view for ASEAN banks. We also capture the non-linear relationship between competition and financial stability by incorporating a quadratic term of competition in our models. The results show that the coefficient of the quadratic term of H-statistic is negative for the Z-score model given a positive coefficient of the linear term in the same model. These results support the non-linear relationship between competition and financial stability of the banking sector. The study contains significant policy implications for improving the financial stability of the commercial banks.

  1. Does competition improve financial stability of the banking sector in ASEAN countries? An empirical analysis

    PubMed Central

    Gee, Chan Sok; Isa, Che Ruhana

    2017-01-01

    This study examines the influence of competition on the financial stability of the commercial banks of Association of Southeast Asian Nation (ASEAN) over the 1990 to 2014 period. Panzar-Rosse H-statistic, Lerner index and Herfindahl-Hirschman Index (HHI) are used as measures of competition, while Z-score, non-performing loan (NPL) ratio and equity ratio are used as measures of financial stability. Two-step system Generalized Method of Moments (GMM) estimates demonstrate that competition measured by H-statistic is positively related to Z-score and equity ratio, and negatively related to non-performing loan ratio. Conversely, market power measured by Lerner index is negatively related to Z-score and equity ratio and positively related to NPL ratio. These results strongly support the competition-stability view for ASEAN banks. We also capture the non-linear relationship between competition and financial stability by incorporating a quadratic term of competition in our models. The results show that the coefficient of the quadratic term of H-statistic is negative for the Z-score model given a positive coefficient of the linear term in the same model. These results support the non-linear relationship between competition and financial stability of the banking sector. The study contains significant policy implications for improving the financial stability of the commercial banks. PMID:28486548

  2. Evans function computation for the stability of travelling waves

    NASA Astrophysics Data System (ADS)

    Barker, B.; Humpherys, J.; Lyng, G.; Lytle, J.

    2018-04-01

    In recent years, the Evans function has become an important tool for the determination of stability of travelling waves. This function, a Wronskian of decaying solutions of the eigenvalue equation, is useful both analytically and computationally for the spectral analysis of the linearized operator about the wave. In particular, Evans-function computation allows one to locate any unstable eigenvalues of the linear operator (if they exist); this allows one to establish spectral stability of a given wave and identify bifurcation points (loss of stability) as model parameters vary. In this paper, we review computational aspects of the Evans function and apply it to multidimensional detonation waves. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.

  3. Localized tearing modes in the magnetotail driven by curvature effects

    NASA Technical Reports Server (NTRS)

    Sundaram, A. K.; Fairfield, D. H.

    1995-01-01

    The stability of collisionless tearing modes is examined in the presence of curvature drift resonances and the trapped particle effects. A kinetic description for both electrons and ions is employed to investigate the stability of a two-dimensional equilibrium model. The main features of the study are to treat the ion dynamics properly by incorporating effects associated with particle trajectories in the tail fields and to include the linear coupling of trapped particle modes. Generalized dispersion relations are derived in several parameter regimes by considering two important sublayers of the reconnecting region. For a typical choice of parameters appropriate to the current sheet region, we demonstrate that localized tearing modes driven by ion curvature drift resonance effects are excited in the current sheet region with growth time of the order of a few seconds. Also, we examine nonlocal characteristics of tearing modes driven by curvature effects and show that modes growing in a fraction of a second arise when mode widths are larger than the current sheet width. Further, we show that trapped particle effects, in an interesting frequency regime, significantly enhance the growth rate of the tearing mode. The relevance of this theory for substorm onset phase and other features of the substorms is briefly discussed.

  4. Aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty

    1991-01-01

    Recent developments in the field of nonequilibrium thermodynamics associated with viscous flows are examined and related to developments to the understanding of specific phenomena in aerodynamics and aeroacoustics. A key element of the nonequilibrium theory is the principle of minimum entropy production rate for steady dissipative processes near equilibrium, and variational calculus is used to apply this principle to several examples of viscous flow. A review of nonequilibrium thermodynamics and its role in fluid motion are presented. Several formulations are presented of the local entropy production rate and the local energy dissipation rate, two quantities that are of central importance to the theory. These expressions and the principle of minimum entropy production rate for steady viscous flows are used to identify parallel-wall channel flow and irrotational flow as having minimally dissipative velocity distributions. Features of irrotational, steady, viscous flow near an airfoil, such as the effect of trailing-edge radius on circulation, are also found to be compatible with the minimum principle. Finally, the minimum principle is used to interpret the stability of infinitesimal and finite amplitude disturbances in an initially laminar, parallel shear flow, with results that are consistent with experiment and linearized hydrodynamic stability theory. These results suggest that a thermodynamic approach may be useful in unifying the understanding of many diverse phenomena in aerodynamics and aeroacoustics.

  5. The local stability of the magnetized advection-dominated discs with the radial viscous force

    NASA Astrophysics Data System (ADS)

    Ghoreyshi, S. M.; Shadmehri, M.

    2018-06-01

    We study local stability of the advection-dominated optically thick (slim) and optically thin discs with purely toroidal magnetic field and the radial viscous force using a linear perturbation analysis. Our dispersion relation indicates that the presence of magnetic fields and radial viscous force cannot give rise to any new mode of the instability. We find, however, that growth rate of the thermal mode in the slim discs and that of the acoustic modes in the slim and optically thin discs are dramatically affected by the radial viscous force. This force tends to strongly decrease the growth rate of the outward-propagating acoustic mode (O-mode) in the short-wavelength limit, but it causes a slim disc to become thermally more unstable. This means that growth rate of the thermal mode increases in the presence of radial viscous force. This enhancement is more significant when the viscosity parameter is large. The growth rates of the thermal and acoustic modes depend on the magnetic field. Although the instability of O-mode for a stronger magnetic field case has a higher growth rate, the thermal mode of the slim discs can be suppressed when the magnetic field is strong. The inertial-acoustic instability of a magnetized disc may explain the quasi-periodic oscillations (QPOs) from the black holes.

  6. Geometric stabilization of the electrostatic ion-temperature-gradient driven instability. I. Nearly axisymmetric systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zocco, A.; Plunk, G. G.; Xanthopoulos, P.

    The effects of a non-axisymmetric (3D) equilibrium magnetic field on the linear ion-temperature-gradient (ITG) driven mode are investigated. We consider the strongly driven, toroidal branch of the instability in a global (on the magnetic surface) setting. Previous studies have focused on particular features of non-axisymmetric systems, such as strong local shear or magnetic ripple, that introduce inhomogeneity in the coordinate along the magnetic field. In contrast, here we include non-axisymmetry explicitly via the dependence of the magnetic drift on the field line label α, i.e., across the magnetic field, but within the magnetic flux surface. We consider the limit wheremore » this variation occurs on a scale much larger than that of the ITG mode, and also the case where these scales are similar. Close to axisymmetry, we find that an averaging effect of the magnetic drift on the flux surface causes global (on the surface) stabilization, as compared to the most unstable local mode. In the absence of scale separation, we find destabilization is also possible, but only if a particular resonance occurs between the magnetic drift and the mode, and finite Larmor radius effects are neglected. We discuss the relative importance of surface global effects and known radially global effects.« less

  7. Competitions between Rayleigh-Taylor instability and Kelvin-Helmholtz instability with continuous density and velocity profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, W. H.; He, X. T.; CAPT, Peking University, Beijing 100871

    2011-02-15

    In this research, competitions between Rayleigh-Taylor instability (RTI) and Kelvin-Helmholtz instability (KHI) in two-dimensional incompressible fluids within a linear growth regime are investigated analytically. Normalized linear growth rate formulas for both the RTI, suitable for arbitrary density ratio with continuous density profile, and the KHI, suitable for arbitrary density ratio with continuous density and velocity profiles, are obtained. The linear growth rates of pure RTI ({gamma}{sub RT}), pure KHI ({gamma}{sub KH}), and combined RTI and KHI ({gamma}{sub total}) are investigated, respectively. In the pure RTI, it is found that the effect of the finite thickness of the density transition layermore » (L{sub {rho}}) reduces the linear growth of the RTI (stabilizes the RTI). In the pure KHI, it is found that conversely, the effect of the finite thickness of the density transition layer increases the linear growth of the KHI (destabilizes the KHI). It is found that the effect of the finite thickness of the density transition layer decreases the ''effective'' or ''local'' Atwood number (A) for both the RTI and the KHI. However, based on the properties of {gamma}{sub RT}{proportional_to}{radical}(A) and {gamma}{sub KH}{proportional_to}{radical}(1-A{sup 2}), the effect of the finite thickness of the density transition layer therefore has a completely opposite role on the RTI and the KHI noted above. In addition, it is found that the effect of the finite thickness of the velocity shear layer (L{sub u}) stabilizes the KHI, and for the most cases, the combined effects of the finite thickness of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}) also stabilize the KHI. Regarding the combined RTI and KHI, it is found that there is a competition between the RTI and the KHI because of the completely opposite effect of the finite thickness of the density transition layer on these two kinds of instability. It is found that the competitions between the RTI and the KHI depend, respectively, on the Froude number, the density ratio of the light fluid to the heavy one, and the finite thicknesses of the density transition layer and the velocity shear layer. Furthermore, for the fixed Froude number, the linear growth rate ratio of the RTI to the KHI decreases with both the density ratio and the finite thickness of the density transition layer, but increases with the finite thickness of the velocity shear layer and the combined finite thicknesses of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}). In summary, our analytical results show that the effect of the finite thickness of the density transition layer stabilizes the RTI and the overall combined effects of the finite thickness of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}) also stabilize the KHI. Thus, it should be included in applications where the transition layer effect plays an important role, such as the formation of large-scale structures (jets) in high energy density physics and astrophysics and turbulent mixing.« less

  8. Synchronization of cyclic power grids: Equilibria and stability of the synchronous state

    NASA Astrophysics Data System (ADS)

    Xi, Kaihua; Dubbeldam, Johan L. A.; Lin, Hai Xiang

    2017-01-01

    Synchronization is essential for the proper functioning of power grids; we investigate the synchronous states and their stability for cyclic power grids. We calculate the number of stable equilibria and investigate both the linear and nonlinear stabilities of the synchronous state. The linear stability analysis shows that the stability of the state, determined by the smallest nonzero eigenvalue, is inversely proportional to the size of the network. We use the energy barrier to measure the nonlinear stability and calculate it by comparing the potential energy of the type-1 saddles with that of the stable synchronous state. We find that the energy barrier depends on the network size (N) in a more complicated fashion compared to the linear stability. In particular, when the generators and consumers are evenly distributed in an alternating way, the energy barrier decreases to a constant when N approaches infinity. For a heterogeneous distribution of generators and consumers, the energy barrier decreases with N. The more heterogeneous the distribution is, the stronger the energy barrier depends on N. Finally, we find that by comparing situations with equal line loads in cyclic and tree networks, tree networks exhibit reduced stability. This difference disappears in the limit of N →∞ . This finding corroborates previous results reported in the literature and suggests that cyclic (sub)networks may be applied to enhance power transfer while maintaining stable synchronous operation.

  9. Linear instability in the wake of an elliptic wing

    NASA Astrophysics Data System (ADS)

    He, Wei; Tendero, Juan Ángel; Paredes, Pedro; Theofilis, Vassilis

    2017-12-01

    Linear global instability analysis has been performed in the wake of a low aspect ratio three-dimensional wing of elliptic cross section, constructed with appropriately scaled Eppler E387 airfoils. The flow field over the airfoil and in its wake has been computed by full three-dimensional direct numerical simulation at a chord Reynolds number of Rec=1750 and two angles of attack, {AoA}=0° and 5°. Point-vortex methods have been employed to predict the inviscid counterpart of this flow. The spatial BiGlobal eigenvalue problem governing linear small-amplitude perturbations superposed upon the viscous three-dimensional wake has been solved at several axial locations, and results were used to initialize linear PSE-3D analyses without any simplifying assumptions regarding the form of the trailing vortex system, other than weak dependence of all flow quantities on the axial spatial direction. Two classes of linearly unstable perturbations were identified, namely stronger-amplified symmetric modes and weaker-amplified antisymmetric disturbances, both peaking at the vortex sheet which connects the trailing vortices. The amplitude functions of both classes of modes were documented, and their characteristics were compared with those delivered by local linear stability analysis in the wake near the symmetry plane and in the vicinity of the vortex core. While all linear instability analysis approaches employed have delivered qualitatively consistent predictions, only PSE-3D is free from assumptions regarding the underlying base flow and should thus be employed to obtain quantitative information on amplification rates and amplitude functions in this class of configurations.

  10. Evaluation of design flood estimates with respect to sample size

    NASA Astrophysics Data System (ADS)

    Kobierska, Florian; Engeland, Kolbjorn

    2016-04-01

    Estimation of design floods forms the basis for hazard management related to flood risk and is a legal obligation when building infrastructure such as dams, bridges and roads close to water bodies. Flood inundation maps used for land use planning are also produced based on design flood estimates. In Norway, the current guidelines for design flood estimates give recommendations on which data, probability distribution, and method to use dependent on length of the local record. If less than 30 years of local data is available, an index flood approach is recommended where the local observations are used for estimating the index flood and regional data are used for estimating the growth curve. For 30-50 years of data, a 2 parameter distribution is recommended, and for more than 50 years of data, a 3 parameter distribution should be used. Many countries have national guidelines for flood frequency estimation, and recommended distributions include the log Pearson II, generalized logistic and generalized extreme value distributions. For estimating distribution parameters, ordinary and linear moments, maximum likelihood and Bayesian methods are used. The aim of this study is to r-evaluate the guidelines for local flood frequency estimation. In particular, we wanted to answer the following questions: (i) Which distribution gives the best fit to the data? (ii) Which estimation method provides the best fit to the data? (iii) Does the answer to (i) and (ii) depend on local data availability? To answer these questions we set up a test bench for local flood frequency analysis using data based cross-validation methods. The criteria were based on indices describing stability and reliability of design flood estimates. Stability is used as a criterion since design flood estimates should not excessively depend on the data sample. The reliability indices describe to which degree design flood predictions can be trusted.

  11. Stability Analysis for Rotating Stall Dynamics in Axial Flow Compressors

    DTIC Science & Technology

    1999-01-01

    modes determines collectively local stability of the compressor model. Explicit conditions are obtained for local stability of rotating stall which...critical modes determines the stability for rotating stall collectively . We point out that although in a special case our stability condition for...strict crossing assumption implies that the zero solution changes its stability as ~, crosses ~’c. For instance, odk (yc ) > 0 implies that the zero

  12. Investigating homology between proteins using energetic profiles.

    PubMed

    Wrabl, James O; Hilser, Vincent J

    2010-03-26

    Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may provide guidance for a future thermodynamically informed classification of protein homology.

  13. Unifying dynamical and structural stability of equilibria

    NASA Astrophysics Data System (ADS)

    Arnoldi, Jean-François; Haegeman, Bart

    2016-09-01

    We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.

  14. Unifying dynamical and structural stability of equilibria.

    PubMed

    Arnoldi, Jean-François; Haegeman, Bart

    2016-09-01

    We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.

  15. Species dispersal rates alter diversity and ecosystem stability in pond metacommunities.

    PubMed

    Howeth, Jennifer G; Leibold, Mathew A

    2010-09-01

    Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem stability at multiple spatial scales in metacommunities.

  16. Effects of Density and Impurity on Edge Localized Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Zhu, Ping

    2017-10-01

    Plasma density and impurity concentration are believed to be two of the key elements governing the edge tokamak plasma conditions. Optimal levels of plasma density and impurity concentration in the edge region have been searched for in order to achieve the desired fusion gain and divertor heat/particle load mitigation. However, how plasma density or impurity would affect the edge pedestal stability may have not been well known. Our recent MHD theory modeling and simulations using the NIMROD code have found novel effects of density and impurity on the dynamics of edge-localized modes (ELMs) in tokamaks. First, previous MHD analyses often predict merely a weak stabilizing effect of toroidal flow on ELMs in experimentally relevant regimes. We find that the stabilizing effects on the high- n ELMs from toroidal flow can be significantly enhanced with the increased edge plasma density. Here n denotes the toroidal mode number. Second, the stabilizing effects of the enhanced edge resistivity due to lithium-conditioning on the low- n ELMs in the high confinement (H-mode) discharges in NSTX have been identified. Linear stability analysis of the experimentally constrained equilibrium suggests that the change in the equilibrium plasma density and pressure profiles alone due to lithium-conditioning may not be sufficient for a complete suppression of the low- n ELMs. The enhanced resistivity due to the increased effective electric charge number Zeff after lithium-conditioning provides additional stabilization of the low- n ELMs. These new effects revealed in our theory analyses may help further understand recent ELM experiments and suggest new control schemes for ELM suppression and mitigation in future experiments. They may also pose additional constraints on the optimal levels of plasma density and impurity concentration in the edge region for H-mode tokamak operation. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.

  17. Nonlinear Stability and Saturation of Ballooning Modes in Tokamaks*

    NASA Astrophysics Data System (ADS)

    Ham, C. J.; Cowley, S. C.; Brochard, G.; Wilson, H. R.

    2016-06-01

    The theory of tokamak stability to nonlinear "ballooning" displacements of elliptical magnetic flux tubes is presented. Above a critical pressure profile the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure profile, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The predicted saturated flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from these displaced flux tubes may explain the rapid loss of confinement in some experiments.

  18. Stability analysis of gyroscopic systems with delay via decomposition

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. Yu.; Zhabko, A. P.; Chen, Y.

    2018-05-01

    A mechanical system describing by the second order linear differential equations with a positive parameter at the velocity forces and with time delay in the positional forces is studied. Using the decomposition method and Lyapunov-Krasovskii functionals, conditions are obtained under which from the asymptotic stability of two auxiliary first order subsystems it follows that, for sufficiently large values of the parameter, the original system is also asymptotically stable. Moreover, it is shown that the proposed approach can be applied to the stability investigation of linear gyroscopic systems with switched positional forces.

  19. On exponential stability of linear Levin-Nohel integro-differential equations

    NASA Astrophysics Data System (ADS)

    Tien Dung, Nguyen

    2015-02-01

    The aim of this paper is to investigate the exponential stability for linear Levin-Nohel integro-differential equations with time-varying delays. To the best of our knowledge, the exponential stability for such equations has not yet been discussed. In addition, since we do not require that the kernel and delay are continuous, our results improve those obtained in Becker and Burton [Proc. R. Soc. Edinburgh, Sect. A: Math. 136, 245-275 (2006)]; Dung [J. Math. Phys. 54, 082705 (2013)]; and Jin and Luo [Comput. Math. Appl. 57(7), 1080-1088 (2009)].

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffries, H. P.

    Distributions of organic constituents in marine communities should yield a worldwide classification scheme within which any localized phenomena would be immediately apparent. This idea was tested on the zooplankton along an environmental gradient extending from Rhode Island Sound, through Narragansett Bay and into its polluted tributary, the Providence River. On the basis of fatty acid composition, both the macro- and microzooplankton could be precisely classified to the habitat of origin. Biochemically the microzooplankton changed uniformly with respect to linear distance though the riverine, estuarine and offshore habitats. In macrozooplankton, the relation between biochemical change and linear distance from the rivermore » seaward was a power curve: sharply changing at first, becoming more nearly constant offshore. Particulate pollution in the river merely reinforced natural fatty acid sources in the zooplankton's food - part of a pattern in which environmentally induced effects were expressed inshore, genetic influences offshore. In each habitat species diversity was inversely related to the community's stability of fatty acid composition. These estimates revealed greatest dynamical robustness in the prolific yet simple riverine zooplankton, suggesting that the stable domain of parameter space was likewise greater here than offshore. Despite its diversity, microzooplankton was more dynamically fragile than the macrozooplankton, in agreement with current theory on the stability of communities. We conclude that monomeric composition offers a basic rationale for characterizing the sensitivities of natural communities to environmental change.« less

  1. Linear Temporal Stability Analysis of a Low-Density Round Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony L.; Parthasarathy, Ramkumar N.

    2002-01-01

    It has been observed in previous experimental studies that round helium jets injected into air display a repetitive structure for a long distance, somewhat similar to the buoyancy-induced flickering observed in diffusion flames. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis of a round helium jet injected into air was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. The temporal growth rates of the disturbances increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity.

  2. Structural and spectroscopic study of Al(III)-3-hydroxyflavone complex: determination of the stability constants in water-methanol mixtures.

    PubMed

    Davila, Y A; Sancho, M I; Almandoz, M C; Blanco, S E

    2012-09-01

    Stoichiometry and apparent stability constant (K(C)) of the complex formed between Al(III) and 3-hydroxyflavone were determined in methanol and water-methanol mixtures (% water w/w: 3.11; 6.15; 10.4; 15.2; 19.9 and 25.3) by UV-vis spectroscopy at 25.0°C and constant ionic strength (0.05 M, sodium chloride). Stoichiometry of the complex (1:2, metal:ligand) is not modified with an increase in water percentage in the analyzed interval. The value of K(C) in methanol is greater than in the binary solutions. The effects of changing solvent composition on K(C) data were explained by linear solvation free energy relationships using the solvatochromic parameter of Kamlet and Taft (α, β and π(*)). Multiple linear regression analysis indicates that the hydrogen bond donating ability (α) of the solvent and non-specific interactions (π(*)) play an important role in the degree of occurrence of the reaction. The effect of temperature on K(C) was also analyzed by assessing standard entropy and enthalpy variations of the reaction in methanol. Finally, the structure of the complex was investigated using FTIR spectroscopy and DFT calculations. The ligand exhibits small structural changes upon complexation, localized on the chelating site. The calculated vibrational frequencies of the complex were successfully compared against the experimental values. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Optimization-Based Robust Nonlinear Control

    DTIC Science & Technology

    2006-08-01

    ABSTRACT New control algorithms were developed for robust stabilization of nonlinear dynamical systems . Novel, linear matrix inequality-based synthesis...was to further advance optimization-based robust nonlinear control design, for general nonlinear systems (especially in discrete time ), for linear...Teel, IEEE Transactions on Control Systems Technology, vol. 14, no. 3, p. 398-407, May 2006. 3. "A unified framework for input-to-state stability in

  4. Nonparallel linear stability analysis of unconfined vortices

    NASA Astrophysics Data System (ADS)

    Herrada, M. A.; Barrero, A.

    2004-10-01

    Parabolized stability equations [F. P. Bertolotti, Th. Herbert, and P. R. Spalart, J. Fluid. Mech. 242, 441 (1992)] have been used to study the stability of a family of swirling jets at high Reynolds numbers whose velocity and pressure fields decay far from the axis as rm-2 and r2(m-2), respectively [M. Pérez-Saborid, M. A. Herrada, A. Gómez-Barea, and A. Barrero, J. Fluid. Mech. 471, 51 (2002)]; r is the radial distance and m is a real number in the interval 0

  5. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  6. Thrusting maneuver control of a small spacecraft via only gimbaled-thruster scheme

    NASA Astrophysics Data System (ADS)

    Kabganian, Mansour; Kouhi, Hamed; Shahravi, Morteza; Fani Saberi, Farhad

    2018-05-01

    The thrust vector control (TVC) scheme is a powerful method in spacecraft attitude control. Since the control of a small spacecraft is being studied here, a solid rocket motor (SRM) should be used instead of a liquid propellant motor. Among the TVC methods, gimbaled-TVC as an efficient method is employed in this paper. The spacecraft structure is composed of a body and a gimbaled-SRM where common attitude control systems such as reaction control system (RCS) and spin-stabilization are not presented. A nonlinear two-body model is considered for the characterization of the gimbaled-thruster spacecraft where, the only control input is provided by a gimbal actuator. The attitude of the spacecraft is affected by a large exogenous disturbance torque which is generated by a thrust vector misalignment from the center of mass (C.M). A linear control law is designed to stabilize the spacecraft attitude while rejecting the mentioned disturbance torque. A semi-analytical formulation of the region of attraction (RoA) is developed to ensure the local stability and fast convergence of the nonlinear closed-loop system. Simulation results of the 3D maneuvers are included to show the applicability of this method for use in a small spacecraft.

  7. See Also:Mechanics of Cohesive-frictional MaterialsCopyright © 2004 John Wiley & Sons, Ltd.Get Sample Copy

  8. Recommend to Your Librarian
  9. E-MailPrint
  1. Controller Synthesis for Periodically Forced Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Basso, Michele; Genesio, Roberto; Giovanardi, Lorenzo

    Delayed feedback controllers are an appealing tool for stabilization of periodic orbits in chaotic systems. Despite their conceptual simplicity, specific and reliable design procedures are difficult to obtain, partly also because of their inherent infinite-dimensional structure. This chapter considers the use of finite dimensional linear time invariant controllers for stabilization of periodic solutions in a general class of sinusoidally forced nonlinear systems. For such controllers — which can be interpreted as rational approximations of the delayed ones — we provide a computationally attractive synthesis technique based on Linear Matrix Inequalities (LMIs), by mixing results concerning absolute stability of nonlinear systems and robustness of uncertain linear systems. The resulting controllers prove to be effective for chaos suppression in electronic circuits and systems, as shown by two different application examples.

  2. Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence

    NASA Astrophysics Data System (ADS)

    Belli, Emily Ann

    Advanced numerical algorithms for gyrokinetic simulations are explored for more effective studies of plasma turbulent transport. The gyrokinetic equations describe the dynamics of particles in 5-dimensional phase space, averaging over the fast gyromotion, and provide a foundation for studying plasma microturbulence in fusion devices and in astrophysical plasmas. Several algorithms for Eulerian/continuum gyrokinetic solvers are compared. An iterative implicit scheme based on numerical approximations of the plasma response is developed. This method reduces the long time needed to set-up implicit arrays, yet still has larger time step advantages similar to a fully implicit method. Various model preconditioners and iteration schemes, including Krylov-based solvers, are explored. An Alternating Direction Implicit algorithm is also studied and is surprisingly found to yield a severe stability restriction on the time step. Overall, an iterative Krylov algorithm might be the best approach for extensions of core tokamak gyrokinetic simulations to edge kinetic formulations and may be particularly useful for studies of large-scale ExB shear effects. The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the nonlinear GS2 gyrokinetic code with analytic equilibria based on interpolations of representative JET-like shapes. High shaping is found to be a stabilizing influence on both the linear ITG instability and nonlinear ITG turbulence. A scaling of the heat flux with elongation of chi ˜ kappa-1.5 or kappa-2 (depending on the triangularity) is observed, which is consistent with previous gyrofluid simulations. Thus, the GS2 turbulence simulations are explaining a significant fraction, but not all, of the empirical elongation scaling. The remainder of the scaling may come from (1) the edge boundary conditions for core turbulence, and (2) the larger Dimits nonlinear critical temperature gradient shift due to the enhancement of zonal flows with shaping, which is observed with the GS2 simulations. Finally, a local linear trial function-based gyrokinetic code is developed to aid in fast scoping studies of gyrokinetic linear stability. This code is successfully benchmarked with the full GS2 code in the collisionless, electrostatic limit, as well as in the more general electromagnetic description with higher-order Hermite basis functions.

  3. Squeezing resulting from a fourth-order interaction in a degenerate parametric amplifier with absorption losses

    NASA Astrophysics Data System (ADS)

    Garca Fernández, P.; Colet, P.; Toral, R.; San Miguel, M.; Bermejo, F. J.

    1991-05-01

    The squeezing properties of a model of a degenerate parametric amplifier with absorption losses and an added fourth-order nonlinearity have been analyzed. The approach used consists of obtaining the Langevin equation for the optical field from the Heisenberg equation provided that a linearization procedure is valid. The steady states of the deterministic equations have been obtained and their local stability has been analyzed. The stationary covariance matrix has been calculated below and above threshold. Below threshold, a squeezed vacuum state is obtained and the nonlinear effects in the fluctuations have been taken into account by a Gaussian decoupling. In the case above threshold, a phase-squeezed coherent state is obtained and numerical simulations allowed to compute the time interval, depending on the loss parameter, on which the system jumps from one stable state to the other. Finally, the variances numerically determined have been compared with those obtained from the linearized theory and the limits of validity of the linear theory have been analyzed. It has become clear that the nonlinear contribution may perhaps be profitably used for the construction of above-threshold squeezing devices.

  4. Evolutionary pulsational mode dynamics in nonthermal turbulent viscous astrofluids

    NASA Astrophysics Data System (ADS)

    Karmakar, Pralay Kumar; Dutta, Pranamika

    2017-11-01

    The pulsational mode of gravitational collapse in a partially ionized self-gravitating inhomogeneous viscous nonthermal nonextensive astrofluid in the presence of turbulence pressure is illustratively analyzed. The constitutive thermal species, lighter electrons and ions, are thermostatistically treated with the nonthermal κ-distribution laws. The inertial species, such as identical heavier neutral and charged dust microspheres, are modelled in the turbulent fluid framework. All the possible linear processes responsible for dust-dust collisions are accounted. The Larson logatropic equations of state relating the dust thermal (linear) and turbulence (nonlinear) pressures with dust densities are included. A regular linear normal perturbation analysis (local) over the complex astrocloud ensues in a generalized quartic dispersion relation with unique nature of plasma-dependent multi-parametric coefficients. A numerical standpoint is provided to showcase the basic mode features in a judicious astronomical paradigm. It is shown that both the kinematic viscosity of the dust fluids and nonthermality parameter (kappa, the power-law tail index) of the thermal species act as stabilizing (damping) agent against the gravity; and so forth. The underlying evolutionary microphysics is explored. The significance of redistributing astrofluid material via waveinduced accretion in dynamic nonhomologic structureless cloud collapse leading to hierarchical astrostructure formation is actualized.

  5. Mirror instability near the threshold: Hybrid simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, P.; Trávníček, P.; Passot, T.; Sulem, P.; Kuznetsov, E. A.; Califano, F.

    2007-12-01

    Nonlinear behavior of the mirror instability near the threshold is investigated using 1-D hybrid simulations. The simulations demonstrate the presence of an early phase where quasi-linear effects dominate [ Shapiro and Shevchenko, 1964]. The quasi-linear diffusion is however not the main saturation mechanism. A second phase is observed where the mirror mode is linearly stable (the stability is evaluated using the instantaneous ion distribution function) but where the instability nevertheless continues to develop, leading to nonlinear coherent structures in the form of magnetic humps. This regime is well modeled by a nonlinear equation for the magnetic field evolution, derived from a reductive perturbative expansion of the Vlasov-Maxwell equations [ Kuznetsov et al., 2007] with a phenomenological term which represents local variations of the ion Larmor radius. In contrast with previous models where saturation is due to the cooling of a population of trapped particles, the resulting equation correctly reproduces the development of magnetic humps from an initial noise. References Kuznetsov, E., T. Passot and P. L. Sulem (2007), Dynamical model for nonlinear mirror modes near threshold, Phys. Rev. Lett., 98, 235003. Shapiro, V. D., and V. I. Shevchenko (1964), Sov. JETP, 18, 1109.

  6. Comparative ELM study between the observation by ECEI and linear/nonlinear simulation in the KSTAR plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Minwoo; Park, Hyeon K.; Yun, Gunsu; Lee, Jaehyun; Lee, Jieun; Lee, Woochang; Jardin, Stephen; Xu, X. Q.; Kstar Team

    2015-11-01

    The modeling of the Edge-localized-mode (ELM) should be rigorously pursued for reliable and robust ELM control for steady-state long-pulse H-mode operation in ITER as well as DEMO. In the KSTAR discharge #7328, a linear stability of the ELMs is investigated using M3D-C1 and BOUT + + codes. This is achieved by linear simulation for the n = 8 mode structure of the ELM observed by the KSTAR electron cyclotron emission imaging (ECEI) systems. In the process of analysis, variations due to the plasma equilibrium profiles and transport coefficients on the ELM growth rate are investigated and simulation results with the two codes are compared. The numerical simulations are extended to nonlinear phase of the ELM dynamics, which includes saturation and crash of the modes. Preliminary results of the nonlinear simulations are compared with the measured images especially from the saturation to the crash. This work is supported by NRF of Korea under contract no. NRF-2014M1A7A1A03029865, US DoE by LLNL under contract DE-AC52-07NA27344 and US DoE by PPPL under contract DE-AC02-09CH11466.

  7. Local control of globally competing patterns in coupled Swift-Hohenberg equations

    NASA Astrophysics Data System (ADS)

    Becker, Maximilian; Frenzel, Thomas; Niedermayer, Thomas; Reichelt, Sina; Mielke, Alexander; Bär, Markus

    2018-04-01

    We present analytical and numerical investigations of two anti-symmetrically coupled 1D Swift-Hohenberg equations (SHEs) with cubic nonlinearities. The SHE provides a generic formulation for pattern formation at a characteristic length scale. A linear stability analysis of the homogeneous state reveals a wave instability in addition to the usual Turing instability of uncoupled SHEs. We performed weakly nonlinear analysis in the vicinity of the codimension-two point of the Turing-wave instability, resulting in a set of coupled amplitude equations for the Turing pattern as well as left- and right-traveling waves. In particular, these complex Ginzburg-Landau-type equations predict two major things: there exists a parameter regime where multiple different patterns are stable with respect to each other and that the amplitudes of different patterns interact by local mutual suppression. In consequence, different patterns can coexist in distinct spatial regions, separated by localized interfaces. We identified specific mechanisms for controlling the position of these interfaces, which distinguish what kinds of patterns the interface connects and thus allow for global pattern selection. Extensive simulations of the original SHEs confirm our results.

  8. Effects of a PID Control System on Electromagnetic Fields in an nEDM Experiment

    NASA Astrophysics Data System (ADS)

    Molina, Daniel

    2017-09-01

    The Kellogg Radiation Laboratory is currently testing a prototype for an experiment that hopes to identify the electric dipole moment of the neutron. As part of this testing, we have developed a PID (proportional, integral, derivative) feedback system that uses large coils to fix the value of local external magnetic fields, up to linear gradients. PID algorithms compare the current value to a set-point and use the integral and derivative of the field with respect to the set-point to maintain constant fields. We have also developed a method for zeroing linear gradients within the experimental apparatus. In order to determine the performance of the PID algorithm, measurements of both the internal and external fields were obtained with and without the algorithm running, and these results were compared for noise and time stability. We have seen that the PID algorithm can reduce the effect of disturbance to the field by a factor of 10.

  9. Langmuir wave turbulence transition in a model of stimulated Raman scatter

    NASA Astrophysics Data System (ADS)

    Rose, Harvey A.

    2000-06-01

    In a one-dimensional stationary slab model, it is found that once the stimulated Raman scatter (SRS) homogeneous growth rate, γ0, exceeds a threshold value, γT, there exists a local, finite amplitude instability, which leads to Langmuir wave turbulence (LWT). Given energetic enough initial conditions, this allows forward SRS, a linearly convective instability, to be nonlinearly self-sustaining for γ0>γT. Levels of forward scatter, much larger than predicted by the linear amplification of thermal fluctuations, are then accessible. The Stochastic quasilinear Markovian (SQM) model of SRS interacting with LWT predicts a jump in the value of <ɛ>, the mean energy injection rate from the laser to the plasma, across this threshold, while one-dimensional plasma slab simulations reveal large fluctuations in ɛ, and a smooth variation of <ɛ> with γ0. Away from γT, <ɛ> is well predicted by the SQM. If a background density ramp is imposed, LWT may lead to loss of SRS gradient stabilization for γ0≪γT.

  10. Full-field measurement of micromotion around a cementless femoral stem using micro-CT imaging and radiopaque markers.

    PubMed

    Malfroy Camine, V; Rüdiger, H A; Pioletti, D P; Terrier, A

    2016-12-08

    A good primary stability of cementless femoral stems is essential for the long-term success of total hip arthroplasty. Experimental measurement of implant micromotion with linear variable differential transformers is commonly used to assess implant primary stability in pre-clinical testing. But these measurements are often limited to a few distinct points at the interface. New techniques based on micro-computed tomography (micro-CT) have recently been introduced, such as Digital Volume Correlation (DVC) or markers-based approaches. DVC is however limited to measurement around non-metallic implants due to metal-induced imaging artifacts, and markers-based techniques are confined to a small portion of the implant. In this paper, we present a technique based on micro-CT imaging and radiopaque markers to provide the first full-field micromotion measurement at the entire bone-implant interface of a cementless femoral stem implanted in a cadaveric femur. Micromotion was measured during compression and torsion. Over 300 simultaneous measurement points were obtained. Micromotion amplitude ranged from 0 to 24µm in compression and from 0 to 49µm in torsion. Peak micromotion was distal in compression and proximal in torsion. The technique bias was 5.1µm and its repeatability standard deviation was 4µm. The method was thus highly reliable and compared well with results obtained with linear variable differential transformers (LVDTs) reported in the literature. These results indicate that this micro-CT based technique is perfectly relevant to observe local variations in primary stability around metallic implants. Possible applications include pre-clinical testing of implants and validation of patient-specific models for pre-operative planning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Electronic circuit delivers pulse of high interval stability

    NASA Technical Reports Server (NTRS)

    Fisher, B.

    1966-01-01

    Circuit generates a pulse of high interval stability with a complexity level considerably below systems of comparable stability. This circuit is being used as a linear frequency discriminator in the signal conditioner of the Apollo command module.

  12. Linear stability analysis of a levitated nanomagnet in a static magnetic field: Quantum spin stabilized magnetic levitation

    NASA Astrophysics Data System (ADS)

    Rusconi, C. C.; Pöchhacker, V.; Cirac, J. I.; Romero-Isart, O.

    2017-10-01

    We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that, apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the system. Despite the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation. For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes the system via the Einstein-de Haas effect. These results are obtained with a linear stability analysis of a single magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.

  13. Stabilization of Inviscid Vortex Sheets

    NASA Astrophysics Data System (ADS)

    Protas, Bartosz; Sakajo, Takashi

    2017-11-01

    In this study we investigate the problem of stabilizing inviscid vortex sheets via feedback control. Such models, expressed in terms of the Birkhoff-Rott equation, are often used to describe the Kevin-Helmholtz instability of shear layers and are known to be strongly unstable to small-scale perturbations. First, we consider the linear stability of a straight vortex sheet in the periodic setting with actuation in the form of an array of point vortices or sources located a certain distance away from the sheet. We establish conditions under which this system is controllable and observable. Next, using methods of the linear control theory, we synthesize a feedback control strategy which stabilizes a straight vortex sheet in the linear regime. Given the poor conditioning of the discretized problem, reliable solution of the resulting algebraic Riccati equation requires the use of high-precision arithmetic. Finally, we demonstrate that this control approach also succeeds in the nonlinear regime, provided the magnitude of the initial perturbation is sufficiently small.

  14. Analytical Studies on the Synchronization of a Network of Linearly-Coupled Simple Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Sivaganesh, G.; Arulgnanam, A.; Seethalakshmi, A. N.; Selvaraj, S.

    2018-05-01

    We present explicit generalized analytical solutions for a network of linearly-coupled simple chaotic systems. Analytical solutions are obtained for the normalized state equations of a network of linearly-coupled systems driven by a common chaotic drive system. Two parameter bifurcation diagrams revealing the various hidden synchronization regions, such as complete, phase and phase-lag synchronization are identified using the analytical results. The synchronization dynamics and their stability are studied using phase portraits and the master stability function, respectively. Further, experimental results for linearly-coupled simple chaotic systems are presented to confirm the analytical results. The synchronization dynamics of a network of chaotic systems studied analytically is reported for the first time.

  15. Use of satellite data and modeling to assess the influence of stratospheric processes on the troposphere

    NASA Astrophysics Data System (ADS)

    Nathan, Terrence

    1991-09-01

    Over the past forty years, numerous linear stability studies have been performed in order to explain the origin and structure of observed waves in the atmosphere. Of these studies, only a small fraction have considered the stability of time-dependent, zonally varying flow or the influence of radiative-photochemical feedbacks on the stability of zonally uniform flow. The stability of such flows is described, and these flows may yield important information concerning the origin, structure, and transient time scales of free waves in the atmosphere. During the period 1990 to 1991, a beta-plane model that couples radiative transfer, ozone advection, and ozone photochemistry with the quasigeostrophic dynamical circulation was developed in order to study the diabatic effects of Newtonian cooling and ozone-dynamics interaction on the linear stability of free planetary waves in the atmosphere. The stability of a basic state consisting of a westward-moving wave and a zonal mean jet was examined using a linearized, nondivergent barotropic model on sphere. The sensitivity of the stability of the flow to the strength and structure of the zonal jet was emphasized. The current research is focused on the following problems: (1) examination of the finite amplitude interactions among radiation, ozone, and dynamics; and (2) examination of the role of seasonal forcing in short-term climate variability. The plans for next year are presented.

  16. Resistive edge mode instability in stellarator and tokamak geometries

    NASA Astrophysics Data System (ADS)

    Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.

    2008-09-01

    Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.

  17. Stabilization of the Rayleigh-Taylor instability in quantum magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L. F.; Ye, W. H.; He, X. T.

    2012-07-15

    In this research, stabilization of the Rayleigh-Taylor instability (RTI) due to density gradients, magnetic fields, and quantum effects, in an ideal incompressible plasma, is studied analytically and numerically. A second-order ordinary differential equation (ODE) for the RTI including quantum corrections, with a continuous density profile, in a uniform external magnetic field, is obtained. Analytic expressions of the linear growth rate of the RTI, considering modifications of density gradients, magnetic fields, and quantum effects, are presented. Numerical approaches are performed to solve the second-order ODE. The analytical model proposed here agrees with the numerical calculation. It is found that the densitymore » gradients, the magnetic fields, and the quantum effects, respectively, have a stabilizing effect on the RTI (reduce the linear growth of the RTI). The RTI can be completely quenched by the magnetic field stabilization and/or the quantum effect stabilization in proper circumstances leading to a cutoff wavelength. The quantum effect stabilization plays a central role in systems with large Atwood number and small normalized density gradient scale length. The presence of external transverse magnetic fields beside the quantum effects will bring about more stability on the RTI. The stabilization of the linear growth of the RTI, for parameters closely related to inertial confinement fusion and white dwarfs, is discussed. Results could potentially be valuable for the RTI treatment to analyze the mixing in supernovas and other RTI-driven objects.« less

  18. Localization in Naturally Deformed Systems - the Default State?

    NASA Astrophysics Data System (ADS)

    Clancy White, Joseph

    2017-04-01

    Based on the extensive literature on localized rock deformation, conventional wisdom would interpret it to be a special behaviour within an anticipated background of otherwise uniform deformation. The latter notwithstanding, the rock record is so rife with transient (cyclic), heterogeneous deformation, notably shear localization, as to characterize localization as the anticipated 'normal' behaviour. The corollary is that steady, homogeneous deformation is significantly less common, and if achieved must reflect some special set of conditions that are not representative of the general case. An issue central to natural deformation is then not the existance of localized strain, but rather how the extant deformation processes scale across tectonic phenomena and in turn organize to enable a coherent(?) descripion of Earth deformation. Deformation is fundamentally quantized, discrete (diffusion, glide, crack propagation) and reliant on the defect state of rock-forming minerals. The strain energy distribution that drives thermo-mechanical responses is in the first instance established at the grain-scale where the non-linear interaction of defect-mediated micromechanical processes introduces heterogeneous behaviour described by various gradient theories, and evidenced by the defect microstructures of deformed rocks. Hence, the potential for non-uniform response is embedded within even quasi-uniform, monomineralic materials, seen, for example, in the spatially discrete evolution of dynamic recrystallization. What passes as homogeneous or uniform deformation at various scales is the aggregation of responses at some characteristic dimension at which heterogeneity is not registered or measured. Nevertheless, the aggregate response and associated normalized parameters (strain, strain rate) do not correspond to any condition actually experienced by the deforming material. The more common types of macroscopic heterogeneity promoting localization comprise mechanically contrasting materials typical of most rocks. Such perturbations are of themselves only larger examples of variation in the fundamental defect distribution and response; that is the boundary conditions that induce heterogeneous response are reflections of the microphysical behaviour seen in aggregate as strain accommodating softening or stabilization processes such as grain size reduction and independent grain displacements. Additionally, cyclic interplay between inelastic rupture and subsequent plastic material softening resulting from the concomitant introduction of exogenous material in the form of igneous melts, deformation-induced melts and fluid precipitates (veins). This two-stage process determines the siting and temporary stabilization of the shear phenomena, and indicates that material hardening and non-associated flow over some characteristic time are precursors to any particular instability, with stabilization of localized shear correlated with system softening tied to redistribution of strain energy dissipation within what is effectively a reconstituted material.

  19. Multi-model predictive control based on LMI: from the adaptation of the state-space model to the analytic description of the control law

    NASA Astrophysics Data System (ADS)

    Falugi, P.; Olaru, S.; Dumur, D.

    2010-08-01

    This article proposes an explicit robust predictive control solution based on linear matrix inequalities (LMIs). The considered predictive control strategy uses different local descriptions of the system dynamics and uncertainties and thus allows the handling of less conservative input constraints. The computed control law guarantees constraint satisfaction and asymptotic stability. The technique is effective for a class of nonlinear systems embedded into polytopic models. A detailed discussion of the procedures which adapt the partition of the state space is presented. For the practical implementation the construction of suitable (explicit) descriptions of the control law are described upon concrete algorithms.

  20. The STAGS computer code

    NASA Technical Reports Server (NTRS)

    Almroth, B. O.; Brogan, F. A.

    1978-01-01

    Basic information about the computer code STAGS (Structural Analysis of General Shells) is presented to describe to potential users the scope of the code and the solution procedures that are incorporated. Primarily, STAGS is intended for analysis of shell structures, although it has been extended to more complex shell configurations through the inclusion of springs and beam elements. The formulation is based on a variational approach in combination with local two dimensional power series representations of the displacement components. The computer code includes options for analysis of linear or nonlinear static stress, stability, vibrations, and transient response. Material as well as geometric nonlinearities are included. A few examples of applications of the code are presented for further illustration of its scope.

  1. Stabilization and localization of Xist RNA are controlled by separate mechanisms and are not sufficient for X inactivation.

    PubMed

    Clemson, C M; Chow, J C; Brown, C J; Lawrence, J B

    1998-07-13

    These studies address whether XIST RNA is properly localized to the X chromosome in somatic cells where human XIST expression is reactivated, but fails to result in X inactivation (Tinker, A.V., and C.J. Brown. 1998. Nucl. Acids Res. 26:2935-2940). Despite a nuclear RNA accumulation of normal abundance and stability, XIST RNA does not localize in reactivants or in naturally inactive human X chromosomes in mouse/ human hybrid cells. The XIST transcripts are fully stabilized despite their inability to localize, and hence XIST RNA localization can be uncoupled from stabilization, indicating that these are separate steps controlled by distinct mechanisms. Mouse Xist RNA tightly localized to an active X chromosome, demonstrating for the first time that the active X chromosome in somatic cells is competent to associate with Xist RNA. These results imply that species-specific factors, present even in mature, somatic cells that do not normally express Xist, are necessary for localization. When Xist RNA is properly localized to an active mouse X chromosome, X inactivation does not result. Therefore, there is not a strict correlation between Xist localization and chromatin inactivation. Moreover, expression, stabilization, and localization of Xist RNA are not sufficient for X inactivation. We hypothesize that chromosomal association of XIST RNA may initiate subsequent developmental events required to enact transcriptional silencing.

  2. A class of stabilizing controllers for flexible multibody systems

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M.; Kelkar, Atul G.; Maghami, Peiman G.

    1995-01-01

    The problem of controlling a class of nonlinear multibody flexible space systems consisting of a flexible central body to which a number of articulated appendages are attached is considered. Collocated actuators and sensors are assumed, and global asymptotic stability of such systems is established under a nonlinear dissipative control law. The stability is shown to be robust to unmodeled dynamics and parametric uncertainties. For a special case in which the attitude motion of the central body is small, the system, although still nonlinear, is shown to be stabilized by linear dissipative control laws. Two types of linear controllers are considered: static dissipative (constant gain) and dynamic dissipative. The static dissipative control law is also shown to provide robust stability in the presence of certain classes of actuator and sensor nonlinearities and actuator dynamics. The results obtained for this special case can also be readily applied for controlling single-body linear flexible space structures. For this case, a synthesis technique for the design of a suboptimal dynamic dissipative controller is also presented. The results obtained in this paper are applicable to a broad class of multibody and single-body systems such as flexible multilink manipulators, multipayload space platforms, and space antennas. The stability proofs use the Lyapunov approach and exploit the inherent passivity of such systems.

  3. Lyapunov stability and its application to systems of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Kennedy, E. W.

    1979-01-01

    An outline and a brief introduction to some of the concepts and implications of Lyapunov stability theory are presented. Various aspects of the theory are illustrated by the inclusion of eight examples, including the Cartesian coordinate equations of the two-body problem, linear and nonlinear (Van der Pol's equation) oscillatory systems, and the linearized Kustaanheimo-Stiefel element equations for the unperturbed two-body problem.

  4. Stable Spheromaks Sustained by Neutral Beam Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T K; Jayakumar, R; McLean, H S

    It is shown that spheromak equilibria, stable at zero-beta but departing from the Taylor state, could be sustained by non-inductive current drive at acceptable power levels. Stability to both ideal MHD and tearing modes is verified using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive and pressure effects could point the way to improved fusion reactors.

  5. Multiscale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve

    USGS Publications Warehouse

    Beever, E.A.; Huso, M.; Pyke, D.A.

    2006-01-01

    Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations - metrics of longer-term and recent grazing intensity, respectively, - as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance-response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1-2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems. ?? 2006 Blackwell Publishing Ltd.

  6. Multi-scale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve

    USGS Publications Warehouse

    Beever, Erik A.; Huso, Manuela M. P.; Pyke, David A.

    2006-01-01

    Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations — metrics of longer-term and recent grazing intensity, respectively, — as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance–response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1–2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems.

  7. Oxidatively-Stable Linear Poly(propylenimine)-Containing Adsorbents for CO2 Capture from Ultra-Dilute Streams.

    PubMed

    Pang, Simon H; Lively, Ryan P; Jones, Christopher W

    2018-05-29

    Aminopolymer-based solid sorbents have been widely investigated for CO2 capture from dilute streams such as flue gas or ambient air. However, the oxidative stability of the most well-studied aminopolymer, poly(ethylenimine) (PEI), is limited, causing it to lose its CO2 capture capacity after exposure to oxygen at elevated temperatures. Here we demonstrate the use of linear poly(propylenimine) (PPI), synthesized via a simple cationic ring-opening polymerization, as a more oxidatively-stable alternative to PEI with high CO2 capacity and amine efficiency. The performance of linear PPI/SBA-15 composites is investigated over a range of CO2 capture conditions (CO2 partial pressure, adsorption temperature) to examine the trade-off between adsorption capacity and sorption site accessibility, which may be expected to be more limited in linear polymers relative to the prototypical hyperbranched PEI. Linear PPI/SBA-15 composites are more efficient at CO2 capture and retain 65-83% of their CO2 capacity after exposure to a harsh oxidative treatment, compared to 20-40% retention for linear PEI. Additionally, we demonstrate long-term stability of linear PPI sorbents over 50 adsorption/desorption cycles with no loss in performance. Combined with other strategies for improving oxidative stability and adsorption kinetics, linear PPI may play a role as a component of stable, solid adsorbents in commercial applications for CO2 capture. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks.

    PubMed

    Chen, Wu-Hua; Lu, Xiaomei; Zheng, Wei Xing

    2015-04-01

    This paper investigates the problems of impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks (DDNNs). Two types of DDNNs with stabilizing impulses are studied. By introducing the time-varying Lyapunov functional to capture the dynamical characteristics of discrete-time impulsive delayed neural networks (DIDNNs) and by using a convex combination technique, new exponential stability criteria are derived in terms of linear matrix inequalities. The stability criteria for DIDNNs are independent of the size of time delay but rely on the lengths of impulsive intervals. With the newly obtained stability results, sufficient conditions on the existence of linear-state feedback impulsive controllers are derived. Moreover, a novel impulsive synchronization scheme for two identical DDNNs is proposed. The novel impulsive synchronization scheme allows synchronizing two identical DDNNs with unknown delays. Simulation results are given to validate the effectiveness of the proposed criteria of impulsive stabilization and impulsive synchronization of DDNNs. Finally, an application of the obtained impulsive synchronization result for two identical chaotic DDNNs to a secure communication scheme is presented.

  9. The Researches on I-beam of different web’s shapes

    NASA Astrophysics Data System (ADS)

    Shuang, Chao; Zhou, Dong Hua

    2018-05-01

    When the ratio of height to thickness of girder web is relatively high, generally the local stability of web is enhanced by setting up stiffeners. But setting up stiffeners not only increase the use of material, but also increases the welding work. Therefore, the web can be processed into trapezoid, curve, triangles and rectangle to improve its stability. In order to study the mechanical behavior of the web with different shapes and its local stable bearing capacity, the finite element analysis software ANSYS was used to analyze the six I-beam, and the stress characteristics under different web forms were obtained. The results show that the local stability bearing capacity of the I-beam is improved, especially the shape of the trapezoidal web and the shape of the curved web have a significant effect on the local stability of the I-beam. Finally, based on the study of the local stability of the trapezoidal web and the curved web, the influence of their geometrical dimensions on the local stable bearing capacity is also studied.

  10. Transient stability enhancement of modern power grid using predictive Wide-Area Monitoring and Control

    NASA Astrophysics Data System (ADS)

    Yousefian, Reza

    This dissertation presents a real-time Wide-Area Control (WAC) designed based on artificial intelligence for large scale modern power systems transient stability enhancement. The WAC using the measurements available from Phasor Measurement Units (PMUs) at generator buses, monitors the global oscillations in the system and optimally augments the local excitation system of the synchronous generators. The complexity of the power system stability problem along with uncertainties and nonlinearities makes the conventional modeling non-practical or inaccurate. In this work Reinforcement Learning (RL) algorithm on the benchmark of Neural Networks (NNs) is used to map the nonlinearities of the system in real-time. This method different from both the centralized and the decentralized control schemes, employs a number of semi-autonomous agents to collaborate with each other to perform optimal control theory well-suited for WAC applications. Also, to handle the delays in Wide-Area Monitoring (WAM) and adapt the RL toward the robust control design, Temporal Difference (TD) is proposed as a solver for RL problem or optimal cost function. However, the main drawback of such WAC design is that it is challenging to determine if an offline trained network is valid to assess the stability of the power system once the system is evolved to a different operating state or network topology. In order to address the generality issue of NNs, a value priority scheme is proposed in this work to design a hybrid linear and nonlinear controllers. The algorithm so-called supervised RL is based on mixture of experts, where it is initialized by linear controller and as the performance and identification of the RL controller improves in real-time switches to the other controller. This work also focuses on transient stability and develops Lyapunov energy functions for synchronous generators to monitor the stability stress of the system. Using such energies as a cost function guarantees the convergence toward optimal post-fault solutions. These energy functions are developed on inter-area oscillations of the system identified online with Prony analysis. Finally, this work investigates the impacts of renewable energy resources, in specific Doubly Fed Induction Generator (DFIG)-based wind turbines, on power system transient stability and control. As the penetration of such resources is increased in transmission power system, neglecting the impacts of them will make the WAC design non-realistic. An energy function is proposed for DFIGs based on their dynamic performance in transient disturbances. Further, this energy is augmented to synchronous generators' energy as a global cost function, which is minimized by the WAC signals. We discuss the relative advantages and bottlenecks of each architecture and methodology using dynamic simulations of several test systems including a 2-area 8 bus system, IEEE 39 bus system, and IEEE 68 bus system in EMTP and real-time simulators. Being nonlinear-based, fast, accurate, and non-model based design, the proposed WAC system shows better transient and damping response when compared to conventional control schemes and local PSSs.

  11. Role of delay and screening in controlling AIDS

    NASA Astrophysics Data System (ADS)

    Chauhan, Sudipa; Bhatia, Sumit Kaur; Gupta, Surbhi

    2016-06-01

    We propose a non-linear HIV/ AIDS model to analyse the spread and control of HIV/AIDS. The population is divided into three classes, susceptible, infective and AIDS patients. The model is developed under the assumptions of vertical transmission and time delay in infective class. Time delay is also included to show sexual maturity period of infected newborns. We study dynamics of the model and obtain the reproduction number. Now to control the epidemic, we study the model where aware infective class is also added, i.e., people are made aware of their medical status by way of screening. To make the model more realistic, we consider the situation where aware infective class also interacts with other people. The model is analysed qualitatively by stability theory of ODE. Stability analysis of both disease-free and endemic equilibrium is studied based on reproduction number. Also, it is proved that if (R0)1, R1 ≤ 1 then, disease free equilibrium point is locally asymptotically stable and if (R0)1, R1 > 1 then, disease free equilibrium is unstable. Also, the stability analysis of endemic equilibrium point has been done and it is shown that for (R0)1 > 1 endemic equilibrium point is stable. Global stability analysis of endemic equilibrium point has also been done. At last, it is shown numerically that the delay in sexual maturity of infected individuals result in less number of AIDS patients.

  12. Large dimensions and small curvatures from supersymmetric brane back-reaction

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; van Nierop, L.

    2011-04-01

    We compute the back-reaction of pairs of codimension-two branes within an explicit flux-stabilized compactification, to trace how its properties depend on the parameters that define the brane-bulk couplings. Both brane tension and magnetic couplings to the stabilizing flux play an important role in the resulting dynamics, with the magnetic coupling allowing some of the flux to be localized on the branes (thus changing the flux-quantization conditions). We find that back-reaction lifts the classical flat directions of the bulk supergravity, and we calculate both the scalar potential and changes to the extra-dimensional and on-brane geometries that result, as functions of the assumed brane couplings. When linearized about simple rugby-ball geometries the resulting solutions allow a systematic exploration of the system's response. Several of the systems we explore have remarkable properties. Among these are a propensity for the extra dimensions to stabilize at exponentially large sizes, providing a mechanism for generating extremely large volumes. In some circumstances the brane-dilaton coupling allows the bulk dilaton to adjust to suppress the on-brane curvature parametrically below the change in brane tension, potentially providing a mechanism for reducing the vacuum energy. We explore the stability of this suppression to quantum effects in the case where their strength is controlled by the value of the field along the classical flat direction, and find it can (but need not) be stable.

  13. An extended continuum model accounting for the driver's timid and aggressive attributions

    NASA Astrophysics Data System (ADS)

    Cheng, Rongjun; Ge, Hongxia; Wang, Jufeng

    2017-04-01

    Considering the driver's timid and aggressive behaviors simultaneously, a new continuum model is put forwarded in this paper. By applying the linear stability theory, we presented the analysis of new model's linear stability. Through nonlinear analysis, the KdV-Burgers equation is derived to describe density wave near the neutral stability line. Numerical results verify that aggressive driving is better than timid act because the aggressive driver will adjust his speed timely according to the leading car's speed. The key improvement of this new model is that the timid driving deteriorates traffic stability while the aggressive driving will enhance traffic stability. The relationship of energy consumption between the aggressive and timid driving is also studied. Numerical results show that aggressive driver behavior can not only suppress the traffic congestion but also reduce the energy consumption.

  14. Dynamic stability and bifurcation analysis in fractional thermodynamics

    NASA Astrophysics Data System (ADS)

    Béda, Péter B.

    2018-02-01

    In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity conditions are presented for constitutive relations under consideration.

  15. Flight Stability and Control and Performance Results from the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Cobleigh, Brent R.; Cox, Timothy H.; Conners, Timothy R.; Iliff, Kenneth W.; Powers, Bruce G.

    1998-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) is presently being conducted to test a 20-percent-scale version of the Linear Aerospike rocket engine. This rocket engine has been chosen to power the X-33 Single Stage to Orbit Technology Demonstrator Vehicle. The rocket engine was integrated into a lifting body configuration and mounted to the upper surface of an SR-71 aircraft. This paper presents stability and control results and performance results from the envelope expansion flight tests of the LASRE configuration up to Mach 1.8 and compares the results with wind tunnel predictions. Longitudinal stability and elevator control effectiveness were well-predicted from wind tunnel tests. Zero-lift pitching moment was mispredicted transonically. Directional stability, dihedral stability, and rudder effectiveness were overpredicted. The SR-71 handling qualities were never significantly impacted as a result of the missed predictions. Performance results confirmed the large amount of wind-tunnel-predicted transonic drag for the LASRE configuration. This drag increase made the performance of the vehicle so poor that acceleration through transonic Mach numbers could not be achieved on a hot day without depleting the available fuel.

  16. Marginal Stability of Sweet–Parker Type Current Sheets at Low Lundquist Numbers

    NASA Astrophysics Data System (ADS)

    Shi, Chen; Velli, Marco; Tenerani, Anna

    2018-06-01

    Magnetohydrodynamic simulations have shown that a nonunique critical Lundquist number S c exists, hovering around S c ∼ 104, above which threshold Sweet–Parker type stationary reconnecting configurations become unstable to a fast tearing mode dominated by plasmoid generation. It is known that the flow along the sheet plays a stabilizing role, though a satisfactory explanation of the nonuniversality and variable critical Lundquist numbers observed is still lacking. Here we discuss this question using 2D linear MHD simulations and linear stability analyses of Sweet–Parker type current sheets in the presence of background stationary inflows and outflows at low Lundquist numbers (S ≤ 104). Simulations show that the inhomogeneous outflow stabilizes the current sheet by stretching the growing magnetic islands and at the same time evacuating the magnetic islands out of the current sheet. This limits the time during which fluctuations that begin at any given wavelength can remain unstable, rendering the instability nonexponential. We find that the linear theory based on the expanding-wavelength assumption works well for S larger than ∼1000. However, we also find that the inflow and location of the initial perturbation also affect the stability threshold.

  17. Dynamic Stability Analysis of Linear Time-varying Systems via an Extended Modal Identification Approach

    NASA Astrophysics Data System (ADS)

    Ma, Zhisai; Liu, Li; Zhou, Sida; Naets, Frank; Heylen, Ward; Desmet, Wim

    2017-03-01

    The problem of linear time-varying(LTV) system modal analysis is considered based on time-dependent state space representations, as classical modal analysis of linear time-invariant systems and current LTV system modal analysis under the "frozen-time" assumption are not able to determine the dynamic stability of LTV systems. Time-dependent state space representations of LTV systems are first introduced, and the corresponding modal analysis theories are subsequently presented via a stability-preserving state transformation. The time-varying modes of LTV systems are extended in terms of uniqueness, and are further interpreted to determine the system's stability. An extended modal identification is proposed to estimate the time-varying modes, consisting of the estimation of the state transition matrix via a subspace-based method and the extraction of the time-varying modes by the QR decomposition. The proposed approach is numerically validated by three numerical cases, and is experimentally validated by a coupled moving-mass simply supported beam experimental case. The proposed approach is capable of accurately estimating the time-varying modes, and provides a new way to determine the dynamic stability of LTV systems by using the estimated time-varying modes.

  18. Kelvin-Helmholtz instability for flow in porous media under the influence of oblique magnetic fields: A viscous potential flow analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moatimid, Galal M.; Obied Allah, M. H.; Hassan, Mohamed A.

    2013-10-15

    In this paper, the Kelvin-Helmholtz instability of viscous incompressible magnetic fluid fully saturated porous media is achieved through the viscous potential theory. The flow is considered to be through semi-permeable boundaries above and below the fluids through which the fluid may either be blown in or sucked out, in a direction normal to the main streaming direction of the fluid flow. An oblique magnetic field, mass, heat transfer, and surface tension are present across the interface. Through the linear stability analysis, a general dispersion relation is derived and the natural curves are plotted. Therefore, the linear stability condition is discussedmore » in some depth. In view of the multiple time scale technique, the Ginzburg–Landau equation, which describes the behavior of the system in the nonlinear approach, is obtained. The effects of the orientation of the magnetic fields on the stability configuration in linear, as well as nonlinear approaches, are discussed. It is found that the Darcy's coefficient for the porous layers plays a stabilizing role. The injection of the fluids at both boundaries has a stabilizing effect, in contrast with the suction at both boundaries.« less

  19. Stability and error estimation for Component Adaptive Grid methods

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph; Zhu, Xiaolei

    1994-01-01

    Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.

  20. A Lie algebraic condition for exponential stability of discrete hybrid systems and application to hybrid synchronization.

    PubMed

    Zhao, Shouwei

    2011-06-01

    A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.

  1. Classical linear-control analysis applied to business-cycle dynamics and stability

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1983-01-01

    Linear control analysis is applied as an aid in understanding the fluctuations of business cycles in the past, and to examine monetary policies that might improve stabilization. The analysis shows how different policies change the frequency and damping of the economic system dynamics, and how they modify the amplitude of the fluctuations that are caused by random disturbances. Examples are used to show how policy feedbacks and policy lags can be incorporated, and how different monetary strategies for stabilization can be analytically compared. Representative numerical results are used to illustrate the main points.

  2. On the monoaxial stabilization of a rigid body under vanishing restoring torque

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. Yu.; Aleksandrova, E. B.; Tikhonov, A. A.

    2018-05-01

    The problem of monoaxial stabilization of a rigid body is studied. It is assumed that a linear time-invariant dissipative torque and a time-varying restoring torque vanishing as time increases act on the body. Both the case of linear restoring torque and that of essentially nonlinear one are considered. With the aid of the decomposition method, conditions are obtained under which we can guarantee the asymptotic stability of an equilibrium position of the body despite the vanishing of the restoring torque. A numerical simulation is provided to demonstrate the effectiveness of our theoretical results.

  3. Stabilizing skateboard speed-wobble with reflex delay.

    PubMed

    Varszegi, Balazs; Takacs, Denes; Stepan, Gabor; Hogan, S John

    2016-08-01

    A simple mechanical model of the skateboard-skater system is analysed, in which the effect of human control is considered by means of a linear proportional-derivative (PD) controller with delay. The equations of motion of this non-holonomic system are neutral delay-differential equations. A linear stability analysis of the rectilinear motion is carried out analytically. It is shown how to vary the control gains with respect to the speed of the skateboard to stabilize the uniform motion. The critical reflex delay of the skater is determined as the function of the speed. Based on this analysis, we present an explanation for the linear instability of the skateboard-skater system at high speed. Moreover, the advantages of standing ahead of the centre of the board are demonstrated from the viewpoint of reflex delay and control gain sensitivity. © 2016 The Author(s).

  4. Analysis on nonlinear optical properties of Cd (Zn) Se quantum dots synthesized using three different stabilizing agents

    NASA Astrophysics Data System (ADS)

    J, Joy Sebastian Prakash; G, Vinitha; Ramachandran, Murugesan; Rajamanickam, Karunanithi

    2017-10-01

    Three different stabilizing agents, namely, L-cysteine, Thioglycolic acid and cysteamine hydrochloride were used to synthesize Cd(Zn)Se quantum dots (QDs). It was characterized using UV-vis spectroscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). The non-linear optical properties (non-linear absorption and non-linear refraction) of synthesized Cd(Zn)Se quantum dots were studied with z-scan technique using diode pumped continuous wavelaser system at a wavelength of 532 nm. Our (organic) synthesized quantum dots showed optical properties similar to the inorganic materials reported elsewhere.

  5. The Discriminant Value of Phase-Dependent Local Dynamic Stability of Daily Life Walking in Older Adult Community-Dwelling Fallers and Nonfallers

    PubMed Central

    Ihlen, Espen A. F.; Weiss, Aner; Helbostad, Jorunn L.; Hausdorff, Jeffrey M.

    2015-01-01

    The present study compares phase-dependent measures of local dynamic stability of daily life walking with 35 conventional gait features in their ability to discriminate between community-dwelling older fallers and nonfallers. The study reanalyzes 3D-acceleration data of 3-day daily life activity from 39 older people who reported less than 2 falls during one year and 31 who reported two or more falls. Phase-dependent local dynamic stability was defined for initial perturbation at 0%, 20%, 40%, 60%, and 80% of the step cycle. A partial least square discriminant analysis (PLS-DA) was used to compare the discriminant abilities of phase-dependent local dynamic stability with the discriminant abilities of 35 conventional gait features. The phase-dependent local dynamic stability λ at 0% and 60% of the step cycle discriminated well between fallers and nonfallers (AUC = 0.83) and was significantly larger (p < 0.01) for the nonfallers. Furthermore, phase-dependent λ discriminated as well between fallers and nonfallers as all other gait features combined. The present result suggests that phase-dependent measures of local dynamic stability of daily life walking might be of importance for further development in early fall risk screening tools. PMID:26491669

  6. Platelet-Derived Growth Factor Promotes Periodontal Regeneration in Localized Osseous Defects: 36-Month Extension Results From a Randomized, Controlled, Double-Masked Clinical Trial

    PubMed Central

    Nevins, Myron; Kao, Richard T.; McGuire, Michael K.; McClain, Pamela K.; Hinrichs, James E.; McAllister, Bradley S.; Reddy, Michael S.; Nevins, Marc L.; Genco, Robert J.; Lynch, Samuel E.; Giannobile, William V.

    2017-01-01

    Background Recombinant human platelet-derived growth factor (rhPDGF) is safe and effective for the treatment of periodontal defects in short-term studies up to 6 months in duration. We now provide results from a 36-month extension study of a multicenter, randomized, controlled clinical trial evaluating the effect and long-term stability of PDGF-BB treatment in patients with localized severe periodontal osseous defects. Methods A total of 135 participants were enrolled fromsix clinical centers for an extension trial. Eighty-three individuals completed the study at 36 months and were included in the analysis. The study investigated the local application of β-tricalcium phosphate scaffold matrix with or without two different dose levels of PDGF (0.3 or 1.0 mg/mL PDGF-BB) in patients possessing one localized periodontal osseous defect. Composite analysis for clinical and radiographic evidence of treatment success was defined as percentage of cases with clinical attachment level (CAL) ≥2.7mmand linear bone growth (LBG) ≥1.1 mm. Results The participants exceeding this composite outcome benchmark in the 0.3 mg/mL rhPDGF-BB group went from 62.2% at 12 months, 75.9% at 24 months, to 87.0% at 36 months compared with 39.5%, 48.3%, and 53.8%, respectively, in the scaffold control group at these same time points (P <0.05). Although there were no significant increases in CAL and LBG at 36 months among all groups, there were continued increases in CAL gain, LBG, and percentage bone fill over time, suggesting overall stability of the regenerative response. Conclusion PDGF-BB in a synthetic scaffold matrix promotes long-term stable clinical and radiographic improvements as measured by composite outcomes for CAL gain and LBG for patients possessing localized periodontal defects (ClinicalTrials.gov no. CT01530126). PMID:22612364

  7. Stability Analysis of an Encapsulated Microbubble against Gas Diffusion

    PubMed Central

    Katiyar, Amit; Sarkar, Kausik

    2009-01-01

    Linear stability analysis is performed for a mathematical model of diffusion of gases from an encapsulated microbubble. It is an Epstein-Plesset model modified to account for encapsulation elasticity and finite gas permeability. Although, bubbles, containing gases other than air is considered, the final stable bubble, if any, contains only air, and stability is achieved only when the surrounding medium is saturated or oversaturated with air. In absence of encapsulation elasticity, only a neutral stability is achieved for zero surface tension, the other solution being unstable. For an elastic encapsulation, different equilibrium solutions are obtained depending on the saturation level and whether the surface tension is smaller or higher than the elasticity. For an elastic encapsulation, elasticity can stabilize the bubble. However, imposing a non-negativity condition on the effective surface tension (consisting of reference surface tension and the elastic stress) leads to an equilibrium radius which is only neutrally stable. If the encapsulation can support net compressive stress, it achieves actual stability. The linear stability results are consistent with our recent numerical findings. Physical mechanisms for the stability or instability of various equilibriums are provided. PMID:20005522

  8. Linear stability theory and three-dimensional boundary layer transition

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Malik, Mujeeb R.

    1992-01-01

    The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.

  9. The initial instability and finite-amplitude stability of alternate bars in straight channels

    USGS Publications Warehouse

    Nelson, J.M.

    1990-01-01

    The initial instability and fully developed stability of alternate bars in straight channels are investigated using linearized and nonlinear analyses. The fundamental instability leading to these features is identified through a linear stability analysis of the equations governing the flow and sediment transport fields. This instability is explained in terms of topographically induced steering of the flow and the associated pattern of erosion and deposition on the bed. While the linear theory is useful for examining the instability mechanism, this approach is shown to yield relatively little information about well-developed alternate bars and, specifically, the linear analysis is shown to yield poor predictions of the fully developed bar wavelength. A fully nonlinear approach is presented that permits computation of the evolution of these bed features from an initial perturbation to their fully developed morphology. This analysis indicates that there is typically substantial elongation of the bar wavelength during the evolution process, a result that is consistent with observations of bar development in flumes and natural channels. The nonlinear approach demonstrates that the eventual stability of these features is a result of the interplay between topographic steering effects, secondary flow production as a result of streamline curvature, and gravitationally induced modifications of sediment fluxes over a sloping bed. ?? 1990.

  10. Investigation of cellular detonation structure formation via linear stability theory and 2D and 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Borisov, S. P.; Kudryavtsev, A. N.

    2017-10-01

    Linear and nonlinear stages of the instability of a plane detonation wave (DW) and the subsequent process of formation of cellular detonation structure are investigated. A simple model with one-step irreversible chemical reaction is used. The linear analysis is employed to predict the DW front structure at the early stages of its formation. An emerging eigenvalue problem is solved with a global method using a Chebyshev pseudospectral method and the LAPACK software library. A local iterative shooting procedure is used for eigenvalue refinement. Numerical simulations of a propagation of a DW in plane and rectangular channels are performed with a shock capturing WENO scheme of 5th order. A special method of a computational domain shift is implemented in order to maintain the DW in the domain. It is shown that the linear analysis gives certain predictions about the DW structure that are in agreement with the numerical simulations of early stages of DW propagation. However, at later stages, a merger of detonation cells occurs so that their number is approximately halved. Computations of DW propagation in a square channel reveal two different types of spatial structure of the DW front, "rectangular" and "diagonal" types. A spontaneous transition from the rectangular to diagonal type of structure is observed during propagation of the DW.

  11. Graph-cut based discrete-valued image reconstruction.

    PubMed

    Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim

    2015-05-01

    Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.

  12. Linear enhancement after radio-frequency ablation for hepatocellular carcinoma: is it a sign of recurrence?

    PubMed

    Takahashi, Masanori; Maruyama, Hitoshi; Shimada, Taro; Kamezaki, Hidehiro; Okabe, Shinichiro; Kanai, Fumihiko; Yoshikawa, Masaharu; Yokosuka, Osamu

    2012-11-01

    This prospective study was performed in 179 hepatocellular carcinoma (HCC) lesions treated by radio-frequency ablation (RFA) to explore the clinical outcome of "linear enhancement" on contrast-enhanced sonogram. Thirty-three lesions (18.4%) showed linear enhancement, a linear-shaped positive enhancement in the RFA-treated area. Seventeen of them were followed up with no treatment (remaining 16; dropout in eight, additional RFA in six and ineffective treatment in two) and three lesions (3/17, 17.6%) showed local tumor progression corresponding to linear enhancement at 7, 14, 19 months after RFA. Although there was no significant difference in local recurrence rate between the lesions with (3/17) and without linear enhancement (10/35), local tumor progression inside the ablation zone occurred only in the lesions with linear enhancement. In conclusion, linear enhancement inside the RFA-treated area should be followed up within 7 months because it has a risk of local tumor progression. Histology of linear enhancement and its influence on distant recurrence remain to be solved. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Stability of Linear Equations--Algebraic Approach

    ERIC Educational Resources Information Center

    Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.

    2012-01-01

    This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…

  14. On the stability of lumps and wave collapse in water waves.

    PubMed

    Akylas, T R; Cho, Yeunwoo

    2008-08-13

    In the classical water-wave problem, fully localized nonlinear waves of permanent form, commonly referred to as lumps, are possible only if both gravity and surface tension are present. While much attention has been paid to shallow-water lumps, which are generalizations of Korteweg-de Vries solitary waves, the present study is concerned with a distinct class of gravity-capillary lumps recently found on water of finite or infinite depth. In the near linear limit, these lumps resemble locally confined wave packets with envelope and wave crests moving at the same speed, and they can be approximated in terms of a particular steady solution (ground state) of an elliptic equation system of the Benney-Roskes-Davey-Stewartson (BRDS) type, which governs the coupled evolution of the envelope along with the induced mean flow. According to the BRDS equations, however, initial conditions above a certain threshold develop a singularity in finite time, known as wave collapse, due to nonlinear focusing; the ground state, in fact, being exactly at the threshold for collapse suggests that the newly discovered lumps are unstable. In an effort to understand the role of this singularity in the dynamics of lumps, here we consider the fifth-order Kadomtsev-Petviashvili equation, a model for weakly nonlinear gravity-capillary waves on water of finite depth when the Bond number is close to one-third, which also admits lumps of the wave packet type. It is found that an exchange of stability occurs at a certain finite wave steepness, lumps being unstable below but stable above this critical value. As a result, a small-amplitude lump, which is linearly unstable and according to the BRDS equations would be prone to wave collapse, depending on the perturbation, either decays into dispersive waves or evolves into an oscillatory state near a finite-amplitude stable lump.

  15. Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow.

    NASA Technical Reports Server (NTRS)

    Johnston, J. P.; Halleen, R. M.; Lezius, D. K.

    1972-01-01

    Experiments on fully developed turbulent flow in a channel which is rotating at a steady rate about a spanwise axis are described. The Coriolis force components in the region of two-dimensional mean flow affect both local and global stability. Three stability-related phenomena were observed or inferred: (1) the reduction (increase) of the rate of wall-layer streak bursting in locally stabilized (destabilized) wall layers; (2) the total suppression of transition to turbulence in a stabilized layer; (3) the development of large-scale roll cells on the destabilized side of the channel by growth of a Taylor-Gortler vortex instability. Local effects of rotational stabilization, such as reduction of the turbulent stress in wall layers, can be related to the local Richardson number in a simple way. This paper not only investigates this effect, but also, by methods of flow visualization, exposes some of the underlying structure changes caused by rotation.-

  16. Field-Line Localized Destabilization of Ballooning Modes in Three-Dimensional Tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willensdorfer, M.; Cote, T. B.; Hegna, C. C.

    2017-08-25

    Field-line localized ballooning modes have been observed at the edge of high confinement mode plasmas in ASDEX Upgrade with rotating 3D perturbations induced by an externally applied n ¼ 2 error field and during a moderate level of edge localized mode mitigation. The observed ballooning modes are localized to the field lines which experience one of the two zero crossings of the radial flux surface displacement during one rotation period. The localization of the ballooning modes agrees very well with the localization of the largest growth rates from infinite-n ideal ballooning stability calculations using a realistic 3D ideal magnetohydrodynamic equilibrium.more » This analysis predicts a lower stability with respect to the axisymmetric case. The primary mechanism for the local lower stability is the 3D distortion of the local magnetic shear.« less

  17. Stability issues of black hole in non-local gravity

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo; Park, Young-Jai

    2018-04-01

    We discuss stability issues of Schwarzschild black hole in non-local gravity. It is shown that the stability analysis of black hole for the unitary and renormalizable non-local gravity with γ2 = - 2γ0 cannot be performed in the Lichnerowicz operator approach. On the other hand, for the unitary and non-renormalizable case with γ2 = 0, the black hole is stable against the metric perturbations. For non-unitary and renormalizable local gravity with γ2 = - 2γ0 = const (fourth-order gravity), the small black holes are unstable against the metric perturbations. This implies that what makes the problem difficult in stability analysis of black hole is the simultaneous requirement of unitarity and renormalizability around the Minkowski spacetime.

  18. Extending the Stabilized Supralinear Network model for binocular image processing.

    PubMed

    Selby, Ben; Tripp, Bryan

    2017-06-01

    The visual cortex is both extensive and intricate. Computational models are needed to clarify the relationships between its local mechanisms and high-level functions. The Stabilized Supralinear Network (SSN) model was recently shown to account for many receptive field phenomena in V1, and also to predict subtle receptive field properties that were subsequently confirmed in vivo. In this study, we performed a preliminary exploration of whether the SSN is suitable for incorporation into large, functional models of the visual cortex, considering both its extensibility and computational tractability. First, whereas the SSN receives abstract orientation signals as input, we extended it to receive images (through a linear-nonlinear stage), and found that the extended version behaved similarly. Secondly, whereas the SSN had previously been studied in a monocular context, we found that it could also reproduce data on interocular transfer of surround suppression. Finally, we reformulated the SSN as a convolutional neural network, and found that it scaled well on parallel hardware. These results provide additional support for the plausibility of the SSN as a model of lateral interactions in V1, and suggest that the SSN is well suited as a component of complex vision models. Future work will use the SSN to explore relationships between local network interactions and sophisticated vision processes in large networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. On the use of a Euclidean norm function for the estimation of local dynamic stability from 3D kinematics using time-delayed Lyapunov analyses.

    PubMed

    Beaudette, Shawn M; Howarth, Samuel J; Graham, Ryan B; Brown, Stephen H M

    2016-10-01

    Several different state-space reconstruction methods have been employed to assess the local dynamic stability (LDS) of a 3D kinematic system. One common method is to use a Euclidean norm (N) transformation of three orthogonal x, y, and z time-series' followed by the calculation of the maximum finite-time Lyapunov exponent (λmax) from the resultant N waveform (using a time-delayed state space reconstruction technique). By essentially acting as a weighted average, N has been suggested to account for simultaneous expansion and contraction along separate degrees of freedom within a 3D system (e.g. the coupling of dynamic movements between orthogonal planes). However, when estimating LDS using N, non-linear transformations inherent within the calculation of N should be accounted for. Results demonstrate that the use of N on 3D time-series data with arbitrary magnitudes of relative bias and zero-crossings cause the introduction of error in estimates of λmax obtained through N. To develop a standard for the analysis of 3D dynamic kinematic waveforms, we suggest that all dimensions of a 3D signal be independently shifted to avoid the incidence of zero-crossings prior to the calculation of N and subsequent estimation of LDS through the use of λmax. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Modeling of 3D magnetic equilibrium effects on edge turbulence stability during RMP ELM suppression in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, R. S.; Wingen, Andreas; Cianciosa, Mark R.

    Some recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. Here, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak.more » These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. Furthermore, the redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.« less

  1. Modeling of 3D magnetic equilibrium effects on edge turbulence stability during RMP ELM suppression in tokamaks

    DOE PAGES

    Wilcox, R. S.; Wingen, Andreas; Cianciosa, Mark R.; ...

    2017-07-28

    Some recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. Here, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak.more » These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. Furthermore, the redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.« less

  2. Deletion of internal structured repeats increases the stability of a leucine-rich repeat protein, YopM

    PubMed Central

    Barrick, Doug

    2011-01-01

    Mapping the stability distributions of proteins in their native folded states provides a critical link between structure, thermodynamics, and function. Linear repeat proteins have proven more amenable to this kind of mapping than globular proteins. C-terminal deletion studies of YopM, a large, linear leucine-rich repeat (LRR) protein, show that stability is distributed quite heterogeneously, yet a high level of cooperativity is maintained [1]. Key components of this distribution are three interfaces that strongly stabilize adjacent sequences, thereby maintaining structural integrity and promoting cooperativity. To better understand the distribution of interaction energy around these critical interfaces, we studied internal (rather than terminal) deletions of three LRRs in this region, including one of these stabilizing interfaces. Contrary to our expectation that deletion of structured repeats should be destabilizing, we find that internal deletion of folded repeats can actually stabilize the native state, suggesting that these repeats are destabilizing, although paradoxically, they are folded in the native state. We identified two residues within this destabilizing segment that deviate from the consensus sequence at a position that normally forms a stacked leucine ladder in the hydrophobic core. Replacement of these nonconsensus residues with leucine is stabilizing. This stability enhancement can be reproduced in the context of nonnative interfaces, but it requires an extended hydrophobic core. Our results demonstrate that different LRRs vary widely in their contribution to stability, and that this variation is context-dependent. These two factors are likely to determine the types of rearrangements that lead to folded, functional proteins, and in turn, are likely to restrict the pathways available for the evolution of linear repeat proteins. PMID:21764506

  3. Linear signal noise summer accurately determines and controls S/N ratio

    NASA Technical Reports Server (NTRS)

    Sundry, J. L.

    1966-01-01

    Linear signal noise summer precisely controls the relative power levels of signal and noise, and mixes them linearly in accurately known ratios. The S/N ratio accuracy and stability are greatly improved by this technique and are attained simultaneously.

  4. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    DOE PAGES

    Xu, X. Q.; Ma, J. F.; Li, G. Q.

    2014-12-29

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode(ELM) crashes and the consistent collisionality scaling of ELMenergy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELMenergy losses vs collisionality via a density scan. Moreover, the linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lowermore » n. For nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELMenergy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. Finally, the critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.« less

  5. Discrete breathers for a discrete nonlinear Schrödinger ring coupled to a central site.

    PubMed

    Jason, Peter; Johansson, Magnus

    2016-01-01

    We examine the existence and properties of certain discrete breathers for a discrete nonlinear Schrödinger model where all but one site are placed in a ring and coupled to the additional central site. The discrete breathers we focus on are stationary solutions mainly localized on one or a few of the ring sites and possibly also the central site. By numerical methods, we trace out and study the continuous families the discrete breathers belong to. Our main result is the discovery of a split bifurcation at a critical value of the coupling between neighboring ring sites. Below this critical value, families form closed loops in a certain parameter space, implying that discrete breathers with and without central-site occupation belong to the same family. Above the split bifurcation the families split up into several separate ones, which bifurcate with solutions with constant ring amplitudes. For symmetry reasons, the families have different properties below the split bifurcation for even and odd numbers of sites. It is also determined under which conditions the discrete breathers are linearly stable. The dynamics of some simpler initial conditions that approximate the discrete breathers are also studied and the parameter regimes where the dynamics remain localized close to the initially excited ring site are related to the linear stability of the exact discrete breathers.

  6. Elucidation of the binding sites of sodium dodecyl sulfate to β-lactoglobulin using hydrogen/deuterium exchange mass spectrometry combined with docking simulation.

    PubMed

    Hu, Wenbing; Liu, Jianan; Luo, Qun; Han, Yumiao; Wu, Kui; Lv, Shuang; Xiong, Shaoxiang; Wang, Fuyi

    2011-05-30

    Hydrogen/deuterium exchange mass spectrometry (H/DX MS) has become a powerful tool to investigate protein-protein and protein-ligand interactions, but it is still challenging to localize the interaction regions/sites of ligands with pepsin-resistant proteins such as lipocalins. β-Lactoglobulin (BLG), a member of the lipocalin family, can bind a variety of small hydrophobic molecules including retinols, retinoic acids, and long linear fatty acids. However, whether the binding site of linear molecules locates in the external groove or internal cavity of BLG is controversial. In this study we used H/DX MS combined with docking simulation to localize the interaction sites of a tested ligand, sodium dodecyl sulfate (SDS), binding to BLG. H/DX MS results indicated that SDS can bind to both the external and the internal sites in BLG. However, neither of the sites is saturated with SDS, allowing a dynamic ligand exchange to occur between the sites at equilibrium state. Docking studies revealed that SDS forms H-bonds with Lys69 in the internal site and Lys138 and Lys141 in the external site in BLG via the sulfate group, and interacts with the hydrophobic residues valine, leucine, isoleucine and methionine within both of the sites via its hydrocarbon tail, stabilizing the BLG-SDS complex. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Extended-MHD Studies of Flow-Profile Effects on Edge Harmonic Oscillations in QH-mode Discharges

    NASA Astrophysics Data System (ADS)

    King, J. R.; Burrell, K. H.; Garofalo, A. M.; Jenkins, T. G.; Kruger, S. E.; Snyder, P. B.

    2012-10-01

    It is desirable to have an ITER H-mode regime that is quiescent to edge-localized modes (ELMs). ELMs deposit large, localized, impulsive, surface heat loads that can damage the divertor. One such quiescent regime with edge harmonic oscillations (EHO) is observed on DIII-D, JET, JT-60U, and ASDEX-U [1]. The physical mechanisms of EHO are not fully understood, but linear MHD calculations suggest EHO may be a saturated kink-peeling mode partially driven by flow-profile shear [2]. We present preliminary EHO computations using the extended-MHD NIMROD code. The model incorporates first-order FLR effects and parallel heat flows. Using reconstructed DIII-D profiles from discharges with EHO, we scan the ExB and polodial flow profiles and compute linear stability. The aim is to ascertain the role of the ExB flow shear, as motivated by experimental results [3], and to compare with theoretical predictions where the growth rate is enhanced at intermediate wavenumbers and cut-off at large wavenumbers by diamagnetic effects [4]. Initial nonlinear computations exploring the EHO saturation mechanism are presented.[4pt] [1] Phys. Plasmas, v19, p056117, 2012 (and refs. within).[0pt] [2] Nucl. Fusion, v47, p961, 2007.[0pt] [3] Nucl. Fusion, v51, p083018, 2011.[0pt] [4] Phys. Plasmas v10, p4405, 2003.

  8. Squeeze-film dampers for turbomachinery stabilization

    NASA Technical Reports Server (NTRS)

    Mclean, L. J.; Hahn, E. J.

    1984-01-01

    A technique for investigating the stability and damping present in centrally preloaded radially symmetric multi-mass flexible rotor bearing systems is presented. In general, one needs to find the eigenvalues of the linearized perturbation equations, though zero frequency stability maps may be found by solving as many simultaneous non-linear equations as there are dampers; and in the case of a single damper, such maps may be found directly, regardless of the number of degrees of freedom. The technique is illustrated for a simple symmetric four degree of freedom flexible rotor with an unpressurized damper. This example shows that whereas zero frequency stability maps are likely to prove to be a simple way to delineate multiple solution possibilities, they do not provide full stability information. Further, particularly for low bearing parameters, the introduction of an unpressurized squeeze film damper may promote instability in an otherwise stable system.

  9. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators.

    PubMed

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi; Minoshima, Kaoru

    2013-09-01

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailed description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.

  10. Tuneable enhancement of the salt and thermal stability of polymeric micelles by cyclized amphiphiles

    PubMed Central

    Honda, Satoshi; Yamamoto, Takuya; Tezuka, Yasuyuki

    2013-01-01

    Cyclic molecules provide better stability for their aggregates. Typically in nature, the unique cyclic cell membrane lipids allow thermophilic archaea to inhabit extreme conditions. By mimicking the biological design, the robustness of self-assembled synthetic nanostructures is expected to be improved. Here we report topology effects by cyclized polymeric amphiphiles against their linear counterparts, demonstrating a drastic enhancement in the thermal, as well as salt stability of self-assembled micelles. Furthermore, through coassembly of the linear and cyclic amphiphiles, the stability was successfully tuned for a wide range of temperatures and salt concentrations. The enhanced thermal/salt stability was exploited in a halogen exchange reaction to stimulate the catalytic activity. The mechanism for the enhancement was also investigated. These topology effects by the cyclic amphiphiles offer unprecedented opportunities in polymer materials design unattainable by traditional means. PMID:23481382

  11. Propagation and stability characteristics of a 500-m-long laser-based fiducial line for high-precision alignment of long-distance linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suwada, Tsuyoshi; Satoh, Masanori; Telada, Souichi

    2013-09-15

    A laser-based alignment system with a He-Ne laser has been newly developed in order to precisely align accelerator units at the KEKB injector linac. The laser beam was first implemented as a 500-m-long fiducial straight line for alignment measurements. We experimentally investigated the propagation and stability characteristics of the laser beam passing through laser pipes in vacuum. The pointing stability at the last fiducial point was successfully obtained with the transverse displacements of ±40 μm level in one standard deviation by applying a feedback control. This pointing stability corresponds to an angle of ±0.08 μrad. This report contains a detailedmore » description of the experimental investigation for the propagation and stability characteristics of the laser beam in the laser-based alignment system for long-distance linear accelerators.« less

  12. Analyses of a heterogeneous lattice hydrodynamic model with low and high-sensitivity vehicles

    NASA Astrophysics Data System (ADS)

    Kaur, Ramanpreet; Sharma, Sapna

    2018-06-01

    Basic lattice model is extended to study the heterogeneous traffic by considering the optimal current difference effect on a unidirectional single lane highway. Heterogeneous traffic consisting of low- and high-sensitivity vehicles is modeled and their impact on stability of mixed traffic flow has been examined through linear stability analysis. The stability of flow is investigated in five distinct regions of the neutral stability diagram corresponding to the amount of higher sensitivity vehicles present on road. In order to investigate the propagating behavior of density waves non linear analysis is performed and near the critical point, the kink antikink soliton is obtained by driving mKdV equation. The effect of fraction parameter corresponding to high sensitivity vehicles is investigated and the results indicates that the stability rise up due to the fraction parameter. The theoretical findings are verified via direct numerical simulation.

  13. The influence of adhesive on fiber Bragg grating strain sensor

    NASA Astrophysics Data System (ADS)

    Chen, Jixuan; Gong, Huaping; Jin, Shangzhong; Li, Shuhua

    2009-08-01

    A fiber Bragg grating (FBG) sensor was fixed on the uniform strength beam with three adhesives, which were modified acrylate, glass glue and epoxy resin. The influence of adhesive on FBG strain sensor was investigated. The strain of FBG sensor was varied by loading weight to the uniform strength beam. The wavelength shift of the FBG sensor fixed by the three kinds of adhesive were measured with different weight at the temperatures 0°C, 10°C, 20°C, 30°C, 40°C. The linearity, sensitivity and their stability at different temperature of FBG sensor which fixed by every kind of adhesives were analyzed. The results show that, the FBG sensor fixed by the modified acrylate has a high linearity, and the linear correlation coefficient is 0.9996. It also has a high sensitivity which is 0.251nm/kg. The linearity and the sensitivity of the FBG sensor have a high stability at different temperatures. The FBG sensor fixed by the glass glue also has a high linearity, and the linear correlation coefficient is 0.9986, but it has a low sensitivity which is only 0.041nm/kg. The linearity and the sensitivity of the FBG sensor fixed by the glass glue have a high stability at different temperatures. When the FBG sensor is fixed by epoxy resin, the sensitivity and linearity is affected significantly by the temperature. When the temperature changes from 0°C to 40°C, the sensitivity decreases from 0.302nm/kg to 0.058nm/kg, and the linear correlation coefficient decreases from 0.9999 to 0.9961.

  14. Stabilization Approaches for Linear and Nonlinear Reduced Order Models

    NASA Astrophysics Data System (ADS)

    Rezaian, Elnaz; Wei, Mingjun

    2017-11-01

    It has been a major concern to establish reduced order models (ROMs) as reliable representatives of the dynamics inherent in high fidelity simulations, while fast computation is achieved. In practice it comes to stability and accuracy of ROMs. Given the inviscid nature of Euler equations it becomes more challenging to achieve stability, especially where moving discontinuities exist. Originally unstable linear and nonlinear ROMs are stabilized here by two approaches. First, a hybrid method is developed by integrating two different stabilization algorithms. At the same time, symmetry inner product is introduced in the generation of ROMs for its known robust behavior for compressible flows. Results have shown a notable improvement in computational efficiency and robustness compared to similar approaches. Second, a new stabilization algorithm is developed specifically for nonlinear ROMs. This method adopts Particle Swarm Optimization to enforce a bounded ROM response for minimum discrepancy between the high fidelity simulation and the ROM outputs. Promising results are obtained in its application on the nonlinear ROM of an inviscid fluid flow with discontinuities. Supported by ARL.

  15. Influence of age on the correlations of hematological and biochemical variables with the stability of erythrocyte membrane in relation to sodium dodecyl sulfate.

    PubMed

    de Freitas, Mariana V; Marquez-Bernardes, Liandra F; de Arvelos, Letícia R; Paraíso, Lara F; Gonçalves E Oliveira, Ana Flávia M; Mascarenhas Netto, Rita de C; Neto, Morun Bernardino; Garrote-Filho, Mario S; de Souza, Paulo César A; Penha-Silva, Nilson

    2014-10-01

    To evaluate the influence of age on the relationships between biochemical and hematological variables and stability of erythrocyte membrane in relation to the sodium dodecyl sulfate (SDS) in population of 105 female volunteers between 20 and 90 years. The stability of RBC membrane was determined by non-linear regression of the dependency of the absorbance of hemoglobin released as a function of SDS concentration, represented by the half-transition point of the curve (D50) and the variation in the concentration of the detergent to promote lysis (dD). There was an age-dependent increase in the membrane stability in relation to SDS. Analyses by multiple linear regression showed that this stability increase is significantly related to the hematological variable red cell distribution width (RDW) and the biochemical variables blood albumin and cholesterol. The positive association between erythrocyte stability and RDW may reflect one possible mechanism involved in the clinical meaning of this hematological index.

  16. Stability analysis of an equilibrium position in the photogravitational Sitnikov problem

    NASA Astrophysics Data System (ADS)

    Bardin, B. S.; Avdushkin, A. N.

    2018-05-01

    We deal with the so-called photogravitational Sitnikov problem, that is we consider rectilinear motion of a body of infinitesimal mass in a field of two graviting and radiating primaries, which have equal masses and act on the body with equal repulsive forces of radiation pressure. The body has equilibrium position in the barycenter of the system. In this paper the stability of the equilibrium position is investigated in detail. In particular, by the study of the linearized system we have found in the plane of parameter values the regions of instability. It appears that the instability regions alternate with stability regions and become very narrower when the eccentricity of the primaries orbits approaches to 1. Outside the instability regions we have performed non-linear stability analysis and shown that the stability of the equilibrium position in the sense of Lyapunov takes place both in resonant and non-resonant cases. The results of the study are represented in a form of stability diagram.

  17. Fractional representation theory - Robustness results with applications to finite dimensional control of a class of linear distributed systems

    NASA Technical Reports Server (NTRS)

    Nett, C. N.; Jacobson, C. A.; Balas, M. J.

    1983-01-01

    This paper reviews and extends the fractional representation theory. In particular, new and powerful robustness results are presented. This new theory is utilized to develop a preliminary design methodology for finite dimensional control of a class of linear evolution equations on a Banach space. The design is for stability in an input-output sense, but particular attention is paid to internal stability as well.

  18. Dynamical theory of stability for elastic rods with nonlinear curvature and twist

    NASA Technical Reports Server (NTRS)

    Wauer, J.

    1977-01-01

    Considering non-linear terms in the curvature as well as in the twist, the governing boundary value problem for lateral bending of elastic, transverse loaded rods is formulated by means of Hamilton's principle. Using the method of small vibrations, the associated linearized equations of stability are derived, which complete the currently accepted relations. The example of the simplest lateral bending problem illustrates the improved effect of the proposed equations.

  19. Inviscid linear stability analysis of two vertical columns of different densities in a gravitational acceleration field

    DOE PAGES

    Prathama, Aditya Heru; Pantano, Carlos

    2017-08-09

    Here, we study the inviscid linear stability of a vertical interface separating two fluids of different densities and subject to a gravitational acceleration field parallel to the interface. In this arrangement, the two free streams are constantly accelerated, which means that the linear stability analysis is not amenable to Fourier or Laplace solution in time. Instead, we derive the equations analytically by the initial-value problem method and express the solution in terms of the well-known parabolic cylinder function. The results, which can be classified as an accelerating Kelvin–Helmholtz configuration, show that even in the presence of surface tension, the interfacemore » is unconditionally unstable at all wavemodes. This is a consequence of the ever increasing momentum of the free streams, as gravity accelerates them indefinitely. The instability can be shown to grow as the exponential of a quadratic function of time.« less

  20. Linear Stability of Binary Alloy Solidification for Unsteady Growth Rates

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    2010-01-01

    An extension of the Mullins and Sekerka (MS) linear stability analysis to the unsteady growth rate case is considered for dilute binary alloys. In particular, the stability of the planar interface during the initial solidification transient is studied in detail numerically. The rapid solidification case, when the system is traversing through the unstable region defined by the MS criterion, has also been treated. It has been observed that the onset of instability is quite accurately defined by the "quasi-stationary MS criterion", when the growth rate and other process parameters are taken as constants at a particular time of the growth process. A singular behavior of the governing equations for the perturbed quantities at the constitutional supercooling demarcation line has been observed. However, when the solidification process, during its transient, crosses this demarcation line, a planar interface is stable according to the linear analysis performed.

  1. Flatness-based control and Kalman filtering for a continuous-time macroeconomic model

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Ghosh, T.; Busawon, K.; Binns, R.

    2017-11-01

    The article proposes flatness-based control for a nonlinear macro-economic model of the UK economy. The differential flatness properties of the model are proven. This enables to introduce a transformation (diffeomorphism) of the system's state variables and to express the state-space description of the model in the linear canonical (Brunowsky) form in which both the feedback control and the state estimation problem can be solved. For the linearized equivalent model of the macroeconomic system, stabilizing feedback control can be achieved using pole placement methods. Moreover, to implement stabilizing feedback control of the system by measuring only a subset of its state vector elements the Derivative-free nonlinear Kalman Filter is used. This consists of the Kalman Filter recursion applied on the linearized equivalent model of the financial system and of an inverse transformation that is based again on differential flatness theory. The asymptotic stability properties of the control scheme are confirmed.

  2. Synchronizing noisy nonidentical oscillators by transient uncoupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, Aditya, E-mail: adityat@iitk.ac.in; Mannattil, Manu, E-mail: mmanu@iitk.ac.in; Schröder, Malte, E-mail: malte@nld.ds.mpg.de

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the unitsmore » stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.« less

  3. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation.

    PubMed

    Zargar, Behrooz; Hatamie, Amir

    2013-04-01

    Isoniazid is an important antibiotic, which is widely used to treat tuberculosis. This study presents a colorimetric method for the determination of Isoniazid based on localized surface plasmon resonance (LSPR) property of gold nanoparticles. An LSPR band is produced by reducing gold ions in solution using Isoniazid as the reducing agent. Influences of the following relevant variables were examined and optimized in the experiment, formation time of gold nanoparticles, pH, buffer and stabilizer. These tests demonstrated that under optimum conditions the absorbance of Au nanoparticles at 530 nm related linearly to the concentration of Isoniazid in the range of 1.0-8.0 μg mL(-1) with a detection limit of 0.98 μg mL(-1). This colorimetric method has been successfully applied to the determine Isoniazid in tablets and spiked serum samples. The proposed colorimetric assay exhibits good reproducibility and accuracy, providing a simple and rapid method for analysis of Isoniazid. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation

    NASA Astrophysics Data System (ADS)

    Zargar, Behrooz; Hatamie, Amir

    2013-04-01

    Isoniazid is an important antibiotic, which is widely used to treat tuberculosis. This study presents a colorimetric method for the determination of Isoniazid based on localized surface plasmon resonance (LSPR) property of gold nanoparticles. An LSPR band is produced by reducing gold ions in solution using Isoniazid as the reducing agent. Influences of the following relevant variables were examined and optimized in the experiment, formation time of gold nanoparticles, pH, buffer and stabilizer. These tests demonstrated that under optimum conditions the absorbance of Au nanoparticles at 530 nm related linearly to the concentration of Isoniazid in the range of 1.0-8.0 μg mL-1 with a detection limit of 0.98 μg mL-1. This colorimetric method has been successfully applied to the determine Isoniazid in tablets and spiked serum samples. The proposed colorimetric assay exhibits good reproducibility and accuracy, providing a simple and rapid method for analysis of Isoniazid.

  5. Unconditionally marginal stability of harmonic electron hole equilibria in current-driven plasmas

    NASA Astrophysics Data System (ADS)

    Schamel, Hans

    2018-06-01

    Two forms of the linearized eigenvalue problem with respect to linear perturbations of a privileged cnoidal electron hole as a structural nonlinear equilibrium element are established. Whereas its integral form involves integrations along the characteristics or unperturbed particle orbits, the differential form has to cope with a differential operator of infinite order. Both are hence faced with difficulties to obtain a solution. A first successful attempt is, however, made by addressing a single harmonic wave as a nonlinear equilibrium structure. By this microscopic nonlinear approach, its marginal stability against linear perturbations in both linear stability regimes, the sub- and super-critical one, is shown independent of the mobility of ions and in favor with recent observations. Responsible for vanishing damping (growth) is the microscopic distortion of the resonant distribution function. The macroscopic form of the trapping nonlinearity—the 3/2 power term of the electrostatic potential in the density—which disappears in the monochromatic harmonic wave limit is consequently necessary for the occurrence of a nonlinear plasma instability in the sub-critical regime.

  6. Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2015-10-01

    In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.

  7. Asymptotic aspect of derivations in Banach algebras.

    PubMed

    Roh, Jaiok; Chang, Ick-Soon

    2017-01-01

    We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.

  8. Is the local linearity of space-time inherited from the linearity of probabilities?

    NASA Astrophysics Data System (ADS)

    Müller, Markus P.; Carrozza, Sylvain; Höhn, Philipp A.

    2017-02-01

    The appearance of linear spaces, describing physical quantities by vectors and tensors, is ubiquitous in all of physics, from classical mechanics to the modern notion of local Lorentz invariance. However, as natural as this seems to the physicist, most computer scientists would argue that something like a ‘local linear tangent space’ is not very typical and in fact a quite surprising property of any conceivable world or algorithm. In this paper, we take the perspective of the computer scientist seriously, and ask whether there could be any inherently information-theoretic reason to expect this notion of linearity to appear in physics. We give a series of simple arguments, spanning quantum information theory, group representation theory, and renormalization in quantum gravity, that supports a surprising thesis: namely, that the local linearity of space-time might ultimately be a consequence of the linearity of probabilities. While our arguments involve a fair amount of speculation, they have the virtue of being independent of any detailed assumptions on quantum gravity, and they are in harmony with several independent recent ideas on emergent space-time in high-energy physics.

  9. Stability and stabilisation of a class of networked dynamic systems

    NASA Astrophysics Data System (ADS)

    Liu, H. B.; Wang, D. Q.

    2018-04-01

    We investigate the stability and stabilisation of a linear time invariant networked heterogeneous system with arbitrarily connected subsystems. A new linear matrix inequality based sufficient and necessary condition for the stability is derived, based on which the stabilisation is provided. The obtained conditions efficiently utilise the block-diagonal characteristic of system parameter matrices and the sparseness of subsystem connection matrix. Moreover, a sufficient condition only dependent on each individual subsystem is also presented for the stabilisation of the networked systems with a large scale. Numerical simulations show that these conditions are computationally valid in the analysis and synthesis of a large-scale networked system.

  10. Stability analysis and wave dynamics of an extended hybrid traffic flow model

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Qing; Zhou, Chao-Fan; Li, Wei-Kang; Yan, Bo-Wen; Jia, Bin; Wang, Ji-Xin

    2018-02-01

    The stability analysis and wave dynamic properties of an extended hybrid traffic flow model, WZY model, are intensively studied in this paper. The linear stable condition obtained by the linear stability analysis is presented. Besides, by means of analyzing Korteweg-de Vries equation, we present soliton waves in the metastable region. Moreover, the multiscale perturbation technique is applied to derive the traveling wave solution of the model. Furthermore, by means of performing Darboux transformation, the first-order and second-order doubly-periodic solutions and rational solutions are presented. It can be found that analytical solutions match well with numerical simulations.

  11. Linear instability of plane Couette and Poiseuille flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chefranov, S. G., E-mail: schefranov@mail.ru; Chefranov, A. G., E-mail: Alexander.chefranov@emu.edu.tr

    2016-05-15

    It is shown that linear instability of plane Couette flow can take place even at finite Reynolds numbers Re > Re{sub th} ≈ 139, which agrees with the experimental value of Re{sub th} ≈ 150 ± 5 [16, 17]. This new result of the linear theory of hydrodynamic stability is obtained by abandoning traditional assumption of the longitudinal periodicity of disturbances in the flow direction. It is established that previous notions about linear stability of this flow at arbitrarily large Reynolds numbers relied directly upon the assumed separation of spatial variables of the field of disturbances and their longitudinal periodicitymore » in the linear theory. By also abandoning these assumptions for plane Poiseuille flow, a new threshold Reynolds number Re{sub th} ≈ 1035 is obtained, which agrees to within 4% with experiment—in contrast to 500% discrepancy for the previous estimate of Re{sub th} ≈ 5772 obtained in the framework of the linear theory under assumption of the “normal” shape of disturbances [2].« less

  12. Theoretical study of structure and stability of small gadolinium carboxylate complexes in liquid scintillator solvents.

    PubMed

    Huang, Pin-Wen

    2014-09-01

    The structural properties of three small gadolinium carboxylate complexes in three liquid scintillator solvents (pseudocumene, linear alkylbenzene, and phenyl xylylethane) were theoretically investigated using density functional theory (B3LYP/LC-RECP) and polarizable continuum model (PCM). The average interaction energy between gadolinium atom and carboxylate ligand (E(int)) and the energy difference of the highest singly occupied molecular orbital and lowest unoccupied molecular orbital (Δ(SL)) were calculated to evaluate and compare the relative stability of these complexes in solvents. The calculation results show that the larger (with a longer alkyl chain) gadolinium carboxylate complex has greater stability than the smaller one, while these gadolinium carboxylates in linear alkylbenzene were found to have greater stability than those in the other two solvents.

  13. Some Properties and Stability Results for Sector-Bounded LTI Systems

    NASA Technical Reports Server (NTRS)

    Gupta, Sandeep; Joshi, Suresh M.

    1994-01-01

    This paper presents necessary and sufficient conditions for a linear, time-invariant (LTI) system to be inside sector (n, b) in terms of linear matrix inequalities in its state-space realization matrices, which represents a generalization of similar conditions for bounded H(sub infinity)-norm systems. Further, a weaker definition of LTI systems strictly inside closed sector (a, b) is proposed, and state-space characterization of such systems is presented. Sector conditions for stability of the negative feedback interconnection of two LTI systems and for stability of LTI systems with feedback nonlinearities are investigated using the Lyapunov function approach. It is shown that the proposed weaker conditions for an LTI system to be strictly inside a sector are sufficient to establish closed-loop stability of these systems.

  14. Linear stability analysis of the three-dimensional thermally-driven ocean circulation: application to interdecadal oscillations

    NASA Astrophysics Data System (ADS)

    Huck, Thierry; Vallis, Geoffrey K.

    2001-08-01

    What can we learn from performing a linear stability analysis of the large-scale ocean circulation? Can we predict from the basic state the occurrence of interdecadal oscillations, such as might be found in a forward integration of the full equations of motion? If so, do the structure and period of the linearly unstable modes resemble those found in a forward integration? We pursue here a preliminary study of these questions for a case in idealized geometry, in which the full nonlinear behavior can also be explored through forward integrations. Specifically, we perform a three-dimensional linear stability analysis of the thermally-driven circulation of the planetary geostrophic equations. We examine the resulting eigenvalues and eigenfunctions, comparing them with the structure of the interdecadal oscillations found in the fully nonlinear model in various parameter regimes. We obtain a steady state by running the time-dependent, nonlinear model to equilibrium using restoring boundary conditions on surface temperature. If the surface heat fluxes are then diagnosed, and these values applied as constant flux boundary conditions, the nonlinear model switches into a state of perpetual, finite amplitude, interdecadal oscillations. We construct a linearized version of the model by empirically evaluating the tangent linear matrix at the steady state, under both restoring and constant-flux boundary conditions. An eigen-analysis shows there are no unstable eigenmodes of the linearized model with restoring conditions. In contrast, under constant flux conditions, we find a single unstable eigenmode that shows a striking resemblance to the fully-developed oscillations in terms of three-dimensional structure, period and growth rate. The mode may be damped through either surface restoring boundary conditions or sufficiently large horizontal tracer diffusion. The success of this simple numerical method in idealized geometry suggests applications in the study of the stability of the ocean circulation in more realistic configurations, and the possibility of predicting potential oceanic modes, even weakly damped, that might be excited by stochastic atmospheric forcing or mesoscale ocean eddies.

  15. Coherent Transport in a Linear Triple Quantum Dot Made from a Pure-Phase InAs Nanowire.

    PubMed

    Wang, Ji-Yin; Huang, Shaoyun; Huang, Guang-Yao; Pan, Dong; Zhao, Jianhua; Xu, H Q

    2017-07-12

    A highly tunable linear triple quantum dot (TQD) device is realized in a single-crystalline pure-phase InAs nanowire using a local finger gate technique. The electrical measurements show that the charge stability diagram of the TQD can be represented by three kinds of current lines of different slopes and a simulation performed based on a capacitance matrix model confirms the experiment. We show that each current line observable in the charge stability diagram is associated with a case where a QD is on resonance with the Fermi level of the source and drain reservoirs. At a triple point where two current lines of different slopes move together but show anticrossing, two QDs are on resonance with the Fermi level of the reservoirs. We demonstrate that an energetically degenerated quadruple point at which all three QDs are on resonance with the Fermi level of the reservoirs can be built by moving two separated triple points together via sophistically tuning of energy levels in the three QDs. We also demonstrate the achievement of direct coherent electron transfer between the two remote QDs in the TQD, realizing a long-distance coherent quantum bus operation. Such a long-distance coherent coupling could be used to investigate coherent spin teleportation and superexchange effects and to construct a spin qubit with an improved long coherent time and with spin state detection solely by sensing the charge states.

  16. Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity

    NASA Technical Reports Server (NTRS)

    Takahashi, F.; Katta, V. R.

    2001-01-01

    Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.

  17. Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System

    NASA Astrophysics Data System (ADS)

    Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying

    2018-04-01

    The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.

  18. Chemical networks with inflows and outflows: a positive linear differential inclusions approach.

    PubMed

    Angeli, David; De Leenheer, Patrick; Sontag, Eduardo D

    2009-01-01

    Certain mass-action kinetics models of biochemical reaction networks, although described by nonlinear differential equations, may be partially viewed as state-dependent linear time-varying systems, which in turn may be modeled by convex compact valued positive linear differential inclusions. A result is provided on asymptotic stability of such inclusions, and applied to a ubiquitous biochemical reaction network with inflows and outflows, known as the futile cycle. We also provide a characterization of exponential stability of general homogeneous switched systems which is not only of interest in itself, but also plays a role in the analysis of the futile cycle. 2009 American Institute of Chemical Engineers

  19. Stability margin of linear systems with parameters described by fuzzy numbers.

    PubMed

    Husek, Petr

    2011-10-01

    This paper deals with the linear systems with uncertain parameters described by fuzzy numbers. The problem of determining the stability margin of those systems with linear affine dependence of the coefficients of a characteristic polynomial on system parameters is studied. Fuzzy numbers describing the system parameters are allowed to be characterized by arbitrary nonsymmetric membership functions. An elegant solution, graphical in nature, based on generalization of the Tsypkin-Polyak plot is presented. The advantage of the presented approach over the classical robust concept is demonstrated on a control of the Fiat Dedra engine model and a control of the quarter car suspension model.

  20. Applications of potential theory computations to transonic aeroelasticity

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1986-01-01

    Unsteady aerodynamic and aeroelastic stability calculations based upon transonic small disturbance (TSD) potential theory are presented. Results from the two-dimensional XTRAN2L code and the three-dimensional XTRAN3S code are compared with experiment to demonstrate the ability of TSD codes to treat transonic effects. The necessity of nonisentropic corrections to transonic potential theory is demonstrated. Dynamic computational effects resulting from the choice of grid and boundary conditions are illustrated. Unsteady airloads for a number of parameter variations including airfoil shape and thickness, Mach number, frequency, and amplitude are given. Finally, samples of transonic aeroelastic calculations are given. A key observation is the extent to which unsteady transonic airloads calculated by inviscid potential theory may be treated in a locally linear manner.

  1. Susceptible-infected-recovered epidemics in random networks with population awareness

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Chen, Shufang

    2017-10-01

    The influence of epidemic information-based awareness on the spread of infectious diseases on networks cannot be ignored. Within the effective degree modeling framework, we discuss the susceptible-infected-recovered model in complex networks with general awareness and general degree distribution. By performing the linear stability analysis, the conditions of epidemic outbreak can be deduced and the results of the previous research can be further expanded. Results show that the local awareness can suppress significantly the epidemic spreading on complex networks via raising the epidemic threshold and such effects are closely related to the formulation of awareness functions. In addition, our results suggest that the recovered information-based awareness has no effect on the critical condition of epidemic outbreak.

  2. Cross-flow vortex structure and transition measurements using multi-element hot films

    NASA Technical Reports Server (NTRS)

    Agarwal, Naval K.; Mangalam, Siva M.; Maddalon, Dal V.; Collier, Fayette S., Jr.

    1991-01-01

    An experiment on a 45-degree swept wing was conducted to study three-dimensional boundary-layer characteristics using surface-mounted, micro-thin, multi-element hot-film sensors. Cross-flow vortex structure and boundary-layer transition were measured from the simultaneously acquired signals of the hot films. Spanwise variation of the root-mean-square (RMS) hot-film signal show a local minima and maxima. The distance between two minima corresponds to the stationary cross-flow vortex wavelength and agrees with naphthalene flow-visualization results. The chordwise and spanwise variation of amplified traveling (nonstationary) cross-flow disturbance characteristics were measured as Reynolds number was varied. The frequency of the most amplified cross-flow disturbances agrees with linear stability theory.

  3. Nonlinear analogue of the May−Wigner instability transition

    PubMed Central

    Fyodorov, Yan V.; Khoruzhenko, Boris A.

    2016-01-01

    We study a system of N≫1 degrees of freedom coupled via a smooth homogeneous Gaussian vector field with both gradient and divergence-free components. In the absence of coupling, the system is exponentially relaxing to an equilibrium with rate μ. We show that, while increasing the ratio of the coupling strength to the relaxation rate, the system experiences an abrupt transition from a topologically trivial phase portrait with a single equilibrium into a topologically nontrivial regime characterized by an exponential number of equilibria, the vast majority of which are expected to be unstable. It is suggested that this picture provides a global view on the nature of the May−Wigner instability transition originally discovered by local linear stability analysis. PMID:27274077

  4. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  5. Blended-Wing-Body Structural Technology Study

    NASA Technical Reports Server (NTRS)

    Starnes, James H.

    1998-01-01

    In most studies of stability of plates, the axial stress has been taken as uniform compression throughout flat rectangular plates. Buckling of isotropic plates under a compressive stress that varies linearly from one loaded edge to the other has been studied by Libove et al. Cases of practical interest exist, however, in which the axial stress is not uniform but varies from tension at both loaded edges to compression in the middle. An example is the stability of the crown of the hat stiffened panel, a candidate configuration of the upper and lower skin of the Blended Wing Body (BWB) Aircraft. The BWB Aircraft is an advanced long-range ultra-high-capacity airliner with the principal feature being the pressurized wide double-deck body which is blended into the wing. In the present research, analytical methods are used to investigate the local stability of the crown in order to minimize its weight while optimizing its buckling strength. The crown is modeled as a rectangular laminated composite plate subjected to a second degree parabolic variation of axial stresses in the longitudinal direction. A varying tension-compression- tension axial stresses are induced in the crown of the stiffeners due to bending. The change in axial stresses is equilibrated by nonuniform shear stresses along the plate edges and transverse normal stresses.

  6. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE PAGES

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-05-12

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  7. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    PubMed

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Linear Dimensional Stability of Irreversible Hydrocolloid Materials Over Time.

    PubMed

    Garrofé, Analía B; Ferrari, Beatriz A; Picca, Mariana; Kaplan, Andrea E

    2015-12-01

    The aim of this study was to evaluate the linear dimensional stability of different irreversible hydrocolloid materials over time. A metal mold was designed with custom trays made of thermoplastic sheets (Sabilex, sheets 0.125 mm thick). Perforations were made in order to improve retention of the material. Five impressions were taken with each of the following: Kromopan 100 (LASCOD) [AlKr], which has dimensional stability of 100 hours, and Phase Plus (ZHERMACK) [AlPh], which has dimensional stability of 48 hours. Standardized digital photographs were taken at different time intervals (0, 15, 30, 45, 60, 120 minutes; 12, 24 and 96 hours), using an "ad-hoc" device. The images were analyzed with software (UTHSCSA Image Tool) by measuring the distance between intersection of the lines previously made at the top of the mold. The results were analyzed by ANOVA for repeated measures. Initial and final values were (mean and standard deviation): AlKr: 16.44 (0.22) and 16.34 (0.11), AlPh: 16.40 (0.06) and 16.18 (0.06). Statistical evaluation showed significant effect of material and time factors. Under the conditions in this study, time significantly affects the linear dimensional stability of irreversible hydrocolloid materials. Sociedad Argentina de Investigación Odontológica.

  9. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.

    PubMed

    Maxfield, Lynn; Palaparthi, Anil; Titze, Ingo

    2017-03-01

    The traditional source-filter theory of voice production describes a linear relationship between the source (glottal flow pulse) and the filter (vocal tract). Such a linear relationship does not allow for nor explain how changes in the filter may impact the stability and regularity of the source. The objective of this experiment was to examine what effect unpredictable changes to vocal tract dimensions could have on fo stability and individual harmonic intensities in situations in which low frequency harmonics cross formants in a fundamental frequency glide. To determine these effects, eight human subjects (five male, three female) were recorded producing fo glides while their vocal tracts were artificially lengthened by a section of vinyl tubing inserted into the mouth. It was hypothesized that if the source and filter operated as a purely linear system, harmonic intensities would increase and decrease at nearly the same rates as they passed through a formant bandwidth, resulting in a relatively symmetric peak on an intensity-time contour. Additionally, fo stability should not be predictably perturbed by formant/harmonic crossings in a linear system. Acoustic analysis of these recordings, however, revealed that harmonic intensity peaks were asymmetric in 76% of cases, and that 85% of fo instabilities aligned with a crossing of one of the first four harmonics with the first three formants. These results provide further evidence that nonlinear dynamics in the source-filter relationship can impact fo stability as well as harmonic intensities as harmonics cross through formant bandwidths. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification

    PubMed Central

    Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC2), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible. PMID:29666661

  11. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification.

    PubMed

    Xu, Jiucheng; Mu, Huiyu; Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC 2 ), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible.

  12. Feedback control of combustion instabilities from within limit cycle oscillations using H∞ loop-shaping and the ν-gap metric

    PubMed Central

    Morgans, Aimee S.

    2016-01-01

    Combustion instabilities arise owing to a two-way coupling between acoustic waves and unsteady heat release. Oscillation amplitudes successively grow, until nonlinear effects cause saturation into limit cycle oscillations. Feedback control, in which an actuator modifies some combustor input in response to a sensor measurement, can suppress combustion instabilities. Linear feedback controllers are typically designed, using linear combustor models. However, when activated from within limit cycle, the linear model is invalid, and such controllers are not guaranteed to stabilize. This work develops a feedback control strategy guaranteed to stabilize from within limit cycle oscillations. A low-order model of a simple combustor, exhibiting the essential features of more complex systems, is presented. Linear plane acoustic wave modelling is combined with a weakly nonlinear describing function for the flame. The latter is determined numerically using a level set approach. Its implication is that the open-loop transfer function (OLTF) needed for controller design varies with oscillation level. The difference between the mean and the rest of the OLTFs is characterized using the ν-gap metric, providing the minimum required ‘robustness margin’ for an H∞ loop-shaping controller. Such controllers are designed and achieve stability both for linear fluctuations and from within limit cycle oscillations. PMID:27493558

  13. An h-p Taylor-Galerkin finite element method for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Demkowicz, L.; Oden, J. T.; Rachowicz, W.; Hardy, O.

    1991-01-01

    An extension of the familiar Taylor-Galerkin method to arbitrary h-p spatial approximations is proposed. Boundary conditions are analyzed, and a linear stability result for arbitrary meshes is given, showing the unconditional stability for the parameter of implicitness alpha not less than 0.5. The wedge and blunt body problems are solved with both linear, quadratic, and cubic elements and h-adaptivity, showing the feasibility of higher orders of approximation for problems with shocks.

  14. Flight control application of new stability robustness bounds for linear uncertain systems

    NASA Technical Reports Server (NTRS)

    Yedavalli, Rama K.

    1993-01-01

    This paper addresses the issue of obtaining bounds on the real parameter perturbations of a linear state-space model for robust stability. Based on Kronecker algebra, new, easily computable sufficient bounds are derived that are much less conservative than the existing bounds since the technique is meant for only real parameter perturbations (in contrast to specializing complex variation case to real parameter case). The proposed theory is illustrated with application to several flight control examples.

  15. Dewetting Kinetics in Polymer Grafted Nanoparticle Thin Films: Impact of Architecture and Viscosity on Thermal Stability

    NASA Astrophysics Data System (ADS)

    Che, Justin; Jawaid, Ali; Grabowski, Christopher; Yi, Yoon-Jae; Vaia, Richard; AFRL Collaboration

    Rapid formation of ordered monolayers of polymer grafted nanoparticles (PGN) directly onto solid surfaces has spurred interest in using these materials for additive manufacturing of optical devices and energy storage. Herein, we discuss dewetting of polystyrene grafted Au nanoparticles (PS@Au) with an increased thermal (10-25oC) and energetic (5-15 mN/m) stability relative to linear polymer films of comparable thickness. Analogous to star macromolecules, the enhanced stability is related to the conformations of chains in the grafted canopy. Mechanistically, dewetting of PS@Au is similar to linear PS, however, the thickness transition from spinodal to heterogeneous nucleation is at least 5-6x larger. Time resolved optical microscopy during dewetting at 160oC revealed that the zero shear viscosity for linear PS scaled as η0 Mn3. 3 , consistent with reptation of entangled polymers. In contrast, PS@Au showed η0 Mn2. 2 where Mn reflects the molecular weight of the grafted chains. Overall, PS@Au exhibited significantly slower dewetting rates, consistent with a 100x increase in viscosity relative to the linear chain analogues. Quantification of the relationship between PGN architecture (e.g. nanoparticle size, graft density, polymer molecular weight) and dewetting processes is crucial to optimize the order of these assemblies via post-processing, as well as design the PGN canopy to maximize stability for devices.

  16. Quantitative local analysis of nonlinear systems

    NASA Astrophysics Data System (ADS)

    Topcu, Ufuk

    This thesis investigates quantitative methods for local robustness and performance analysis of nonlinear dynamical systems with polynomial vector fields. We propose measures to quantify systems' robustness against uncertainties in initial conditions (regions-of-attraction) and external disturbances (local reachability/gain analysis). S-procedure and sum-of-squares relaxations are used to translate Lyapunov-type characterizations to sum-of-squares optimization problems. These problems are typically bilinear/nonconvex (due to local analysis rather than global) and their size grows rapidly with state/uncertainty space dimension. Our approach is based on exploiting system theoretic interpretations of these optimization problems to reduce their complexity. We propose a methodology incorporating simulation data in formal proof construction enabling more reliable and efficient search for robustness and performance certificates compared to the direct use of general purpose solvers. This technique is adapted both to region-of-attraction and reachability analysis. We extend the analysis to uncertain systems by taking an intentionally simplistic and potentially conservative route, namely employing parameter-independent rather than parameter-dependent certificates. The conservatism is simply reduced by a branch-and-hound type refinement procedure. The main thrust of these methods is their suitability for parallel computing achieved by decomposing otherwise challenging problems into relatively tractable smaller ones. We demonstrate proposed methods on several small/medium size examples in each chapter and apply each method to a benchmark example with an uncertain short period pitch axis model of an aircraft. Additional practical issues leading to a more rigorous basis for the proposed methodology as well as promising further research topics are also addressed. We show that stability of linearized dynamics is not only necessary but also sufficient for the feasibility of the formulations in region-of-attraction analysis. Furthermore, we generalize an upper bound refinement procedure in local reachability/gain analysis which effectively generates non-polynomial certificates from polynomial ones. Finally, broader applicability of optimization-based tools stringently depends on the availability of scalable/hierarchial algorithms. As an initial step toward this direction, we propose a local small-gain theorem and apply to stability region analysis in the presence of unmodeled dynamics.

  17. The dynamics and control of large flexible space structures, 2. Part A: Shape and orientation control using point actuators

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Reddy, A. S. S. R.

    1979-01-01

    The equations of planar motion for a flexible beam in orbit which includes the effects of gravity gradient torques and control torques from point actuators located along the beam was developed. Two classes of theorems are applied to the linearized form of these equations to establish necessary conditions for controlability for preselected actuator configurations. The feedback gains are selected: (1) based on the decoupling of the original coordinates and to obtain proper damping, and (2) by applying the linear regulator problem to the individual model coordinates separately. The linear control laws obtained using both techniques were evaluated by numerical integration of the nonlinear system equations. Numerical examples considering pitch and various number of modes with different combination of actuator numbers and locations are presented. The independent model control concept used earlier with a discretized model of the thin beam in orbit was reviewed for the case where the number of actuators is less than the number of modes. Results indicate that although the system is controllable it is not stable about the nominal (local vertical) orientation when the control is based on modal decoupling. An alternate control law not based on modal decoupling ensures stability of all the modes.

  18. New insights into transcription fidelity: thermal stability of non-canonical structures in template DNA regulates transcriptional arrest, pause, and slippage.

    PubMed

    Tateishi-Karimata, Hisae; Isono, Noburu; Sugimoto, Naoki

    2014-01-01

    The thermal stability and topology of non-canonical structures of G-quadruplexes and hairpins in template DNA were investigated, and the effect of non-canonical structures on transcription fidelity was evaluated quantitatively. We designed ten template DNAs: A linear sequence that does not have significant higher-order structure, three sequences that form hairpin structures, and six sequences that form G-quadruplex structures with different stabilities. Templates with non-canonical structures induced the production of an arrested, a slipped, and a full-length transcript, whereas the linear sequence produced only a full-length transcript. The efficiency of production for run-off transcripts (full-length and slipped transcripts) from templates that formed the non-canonical structures was lower than that from the linear. G-quadruplex structures were more effective inhibitors of full-length product formation than were hairpin structure even when the stability of the G-quadruplex in an aqueous solution was the same as that of the hairpin. We considered that intra-polymerase conditions may differentially affect the stability of non-canonical structures. The values of transcription efficiencies of run-off or arrest transcripts were correlated with stabilities of non-canonical structures in the intra-polymerase condition mimicked by 20 wt% polyethylene glycol (PEG). Transcriptional arrest was induced when the stability of the G-quadruplex structure (-ΔG°37) in the presence of 20 wt% PEG was more than 8.2 kcal mol(-1). Thus, values of stability in the presence of 20 wt% PEG are an important indicator of transcription perturbation. Our results further our understanding of the impact of template structure on the transcription process and may guide logical design of transcription-regulating drugs.

  19. New Insights into Transcription Fidelity: Thermal Stability of Non-Canonical Structures in Template DNA Regulates Transcriptional Arrest, Pause, and Slippage

    PubMed Central

    Tateishi-Karimata, Hisae; Isono, Noburu; Sugimoto, Naoki

    2014-01-01

    The thermal stability and topology of non-canonical structures of G-quadruplexes and hairpins in template DNA were investigated, and the effect of non-canonical structures on transcription fidelity was evaluated quantitatively. We designed ten template DNAs: A linear sequence that does not have significant higher-order structure, three sequences that form hairpin structures, and six sequences that form G-quadruplex structures with different stabilities. Templates with non-canonical structures induced the production of an arrested, a slipped, and a full-length transcript, whereas the linear sequence produced only a full-length transcript. The efficiency of production for run-off transcripts (full-length and slipped transcripts) from templates that formed the non-canonical structures was lower than that from the linear. G-quadruplex structures were more effective inhibitors of full-length product formation than were hairpin structure even when the stability of the G-quadruplex in an aqueous solution was the same as that of the hairpin. We considered that intra-polymerase conditions may differentially affect the stability of non-canonical structures. The values of transcription efficiencies of run-off or arrest transcripts were correlated with stabilities of non-canonical structures in the intra-polymerase condition mimicked by 20 wt% polyethylene glycol (PEG). Transcriptional arrest was induced when the stability of the G-quadruplex structure (−ΔGo 37) in the presence of 20 wt% PEG was more than 8.2 kcal mol−1. Thus, values of stability in the presence of 20 wt% PEG are an important indicator of transcription perturbation. Our results further our understanding of the impact of template structure on the transcription process and may guide logical design of transcription-regulating drugs. PMID:24594642

  20. Towards a unified solution of localization failure with mixed finite elements

    NASA Astrophysics Data System (ADS)

    Benedetti, Lorenzo; Cervera, Miguel; Chiumenti, Michele; Zeidler, Antonia; Fischer, Jan-Thomas

    2015-04-01

    Notwithstanding computational scientists made significant steps in the numerical simulation of failure in last three decades, the strain localization problem is still an open question. Especially in a geotechnical setting, when dealing with stability analysis of slopes, it is necessary to provide correct distribution of displacements, to evaluate the stresses in the ground and, therefore, to be able to identify the slip lines that brings to progressive collapse of the slope. Finite elements are an attractive method of solution thanks to profound mathematical foundations and the possibility of describing generic geometries. In order to account for the onset of localization band, the smeared crack approach [1] is introduced, that is the strain localization is assumed to occur in a band of finite width where the displacements are continuous and the strains are discontinuous but bounded. It is well known that this kind of approach poses some challenges. The standard irreducible formulation of FEM is known to be heavily affected by spurious mesh dependence when softening behavior occurs and, consequently, slip lines evolution is biased by the orientation of the mesh. Moreover, in the case of isochoric behavior, unbounded pressure oscillations arise and the consequent locking of the stresses pollutes the numerical solution. Both problems can be shown not to be related to the mathematical statement of the continuous problem but instead to its discrete (FEM) counterpart. Mixed finite element formulations represent a suitable alternative to mitigate these drawbacks. As it has been shown in previous works by Cervera [2], a mixed formulation in terms of displacements and pressure not only provides a propitious solution to the problem of incompressibility, but also it was found to possess the needed robustness in case of strain concentration. This presentation introduces a (stabilized) mixed finite element formulation with continuous linear strain and displacement interpolations. As a fundamental enhancement of the displacement-pressure formulation above mentioned, this kind of formulation benefits of the following advantages: it provides enhanced rate of convergence for the strain (and stress) and it is able to deal with incompressible situations. The method is completed with constitutive laws from Von Mises and Drucker-Prager local plasticity models with nonlinear strain softening. Moreover, global and local error norms are discussed to support the advantages of the proposed method. Then, numerical examples of stability analysis of slopes are presented to demonstrate the capability of the method. It will be shown that not only soil slopes can be modeled but also snow avalanche release and their weak layer fracture can be similarly treated. Consequently, this formulation appears to be a general and accurate tool for the solution of mechanical problem involving failure with localization bands [3,4]. References [1] Y.R. Rashid, 'Ultimate strength analysis of prestressed concrete pressure vessels', Nuclear Engineering and Design, Volume 7, Issue 4, April, Pages 334-344, 1968. [2] M. Cervera, M. Chiumenti, D. Di Capua. 'Benchmarking on bifurcation and localization in J 2 plasticity for plane stress and plane strain conditions.' Computer Methods in Applied Mechanics and Engineering, Vol. 241-244, Pages 206-224, 2012. [3] L. Benedetti, M. Cervera, M. Chiumenti. 'Stress-accurate mixed FEM for soil failure under shallow foundations involving strain localization in plasticity' Computers and Geotechnics, Vol. 64, pp. 32-47, 2015. [4] Cervera, M., Chiumenti, M., Benedetti, L., Codina, R. 'Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: Compressible and incompressible plasticity' Computer Methods in Applied Mechanics and Engineering, to appear, 2015.

  1. Associations among state and local organizational contexts: Use of evidence-based practices in the criminal justice system.

    PubMed

    Henderson, Craig E; Young, Douglas W; Farrell, Jill; Taxman, Faye S

    2009-08-01

    This study used hierarchical linear modeling (HLM) to examine the extent to which the organizational characteristics of state corrections agencies and local criminal justice facilities interacted in their associations with the extent to which local facilities are using evidence-based substance abuse treatment practices (EBPs). The study used data collected from two nationally representative surveys - one of state executives and the other of local prison wardens, justice administrators, and treatment directors - which were conducted as part of the National Criminal Justice Treatment Practices survey [NCJTP; Taxman, F.S., Young, D., Wiersema, B., Mitchell, S., Rhodes, A.G., 2007. The National Criminal Justice Treatment Practices Survey: Multi-level survey methods and procedures. J. Subst. Abuse Treat. 32, 225-238], and includes both adult criminal and juvenile justice samples. Results indicated that several state organizational characteristics were either associated with more EBP use or interacted with local organizational characteristics in associations with EBP use, including: (1) systems integration at the state level was associated with greater EBP use; (2) state staffing adequacy and stability accentuated the association between local training and resources for new programs and EBP use (i.e., in states with better staffing, the relationship between training/resources and EBP use in local facilities was stronger); and (3) state executives' attitudes regarding the missions and goals of corrections tended to diminish the extent to which corresponding local administrator attitudes were associated with EBP use. The study has implications for future research focused on EBP diffusion and implementation in correctional environments, particularly attempts to influence EBP use by working through state agencies.

  2. Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Cabra, Ricardo

    2004-01-01

    Examined is the vitiated coflow flame, an experimental condition that decouples the combustion processes of flows found in practical combustors from the associated recirculating fluid mechanics. The configuration consists of a 4.57 mm diameter fuel jet into a coaxial flow of hot combustion products from a lean premixed flame. The 210 mm diameter coflow isolates the jet flame from the cool ambient, providing a hot environment similar to the operating conditions of advanced combustors; this important high temperature element is lacking in the traditional laboratory experiments of jet flames into cool (room) air. A family of flows of increasing complexity is presented: 1) nonreacting flow, 2) all hydrogen flame (fuel jet and premixed coflow), and 3) set of methane flames. This sequence of experiments provides a convenient ordering of validation data for combustion models. Laser Raman-Rayleigh-LIF diagnostics at the Turbulent Diffusion Flame laboratory of Sandia National Laboratories produced instantaneous multiscalar point measurements. These results attest to the attractive features of the vitiated coflow burner and the well-defined boundary conditions provided by the coflow. The coflow is uniform and steady, isolating the jet flame from the laboratory air for a downstream distance ranging from z/d = 50-70. The statistical results show that differential diffusion effects in this highly turbulent flow are negligible. Complementing the comprehensive set of multiscalar measurements is a parametric study of lifted methane flames that was conducted to analyze flame sensitivity to jet and coflow velocity, as well as coflow temperature. The linear relationship found between the lift-off height and the jet velocity is consistent with previous experiments. New linear sensitivities were found correlating the lift-off height to coflow velocity and temperature. A blow-off study revealed that the methane flame blows off at a common coflow temperature (1260 K), regardless of coflow or jet velocity. An explanation for this phenomenon is that entrainment of ambient air at the high lift-off heights prevents autoignition. Analysis of the results suggests that flame stabilization occurs through a combination of flame propagation, autoignition, and localized extinction processes. Proposed is an expanded view of distributed reaction combustion based on analysis of the distributions of probe volume conditions at the stabilization region of the lifted hydrogen and methane flames. Turbulent eddies the size of the flame thickness mix fuel and hot coflow across the flame front, thereby enhancing the reaction zone with autoignition of reactants at elevated temperatures; this is the reverse effect of turbulent flames in ambient air, where intense turbulence in cool mixtures result in localized extinction. Each of the three processes (i.e., flame propagation, autoignition and localized extinction) contributes to flame stabilization in varying degrees, depending on flow conditions.

  3. A highly miniaturized vacuum package for a trapped ion atomic clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather

    2016-05-15

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it wasmore » sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.« less

  4. Switching control of an R/C hovercraft: stabilization and smooth switching.

    PubMed

    Tanaka, K; Iwasaki, M; Wang, H O

    2001-01-01

    This paper presents stable switching control of an radio-controlled (R/C) hovercraft that is a nonholonomic (nonlinear) system. To exactly represent its nonlinear dynamics, more importantly, to maintain controllability of the system, we newly propose a switching fuzzy model that has locally Takagi-Sugeno (T-S) fuzzy models and switches them according to states, external variables, and/or time. A switching fuzzy controller is constructed by mirroring the rule structure of the switching fuzzy model of an R/C hovercraft. We derive linear matrix inequality (LMI) conditions for ensuring the stability of the closed-loop system consisting of a switching fuzzy model and controller. Furthermore, to guarantee smooth switching of control input at switching boundaries, we also derive a smooth switching condition represented in terms of LMIs. A stable switching fuzzy controller satisfying the smooth switching condition is designed by simultaneously solving both of the LMIs. The simulation and experimental results for the trajectory control of an R/C hovercraft show the validity of the switching fuzzy model and controller design, particularly, the smooth switching condition.

  5. Optical and electrical stability of viral-templated copper sulfide (Cu{sub 1.8}S) films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahriar Zaman, Mohammed; Bernard Grajeda, Gabriel; Haberer, Elaine D., E-mail: haberer@ucr.edu

    The optical and electrical stabilities of viral-templated non-stoichiometric copper sulfide, digenite (Cu{sub 1.8}S) films were investigated. The films were composed of large agglomerates of randomly aligned Cu{sub 1.8}S-coated M13 filamentous phage. Free carrier optical absorption associated with localized surface plasmon resonance (LSPR) was observed in the near infrared spectral region, and the films were electrically active, displaying a linear current-voltage relationship. Under ambient conditions, the magnitude of the LSPR absorption increased, following a power law relationship with time, and the electrical resistance of viral-templated films decreased significantly. In contrast, the resistance of films stored under low oxygen, low humidity conditionsmore » experienced a smaller reduction in electrical resistance. Changes in optical and electrical film properties under ambient conditions were associated with an increase in free carrier concentration within the copper chalcogenide material due to oxygen exposure. X-ray photoelectron spectroscopy was used to relate this increase in free carrier concentration to compositional changes on the viral-templated material surface.« less

  6. Sunitinib efficacy in the treatment of metastatic skin adnexal carcinomas: report of two patients with hidradenocarcinoma and trichoblastic carcinoma.

    PubMed

    Battistella, M; Mateus, C; Lassau, N; Chami, L; Boukoucha, M; Duvillard, P; Cribier, B; Robert, C

    2010-02-01

    Adnexal carcinomas are rare and diverse cutaneous tumours. They are locally aggressive and have the potential for distant metastasis. Metastatic adnexal carcinomas are very resistant to conventional chemotherapies. Sunitinib, an oral tyrosine kinase inhibitor, is reportedly effective for the treatment of various solid cancers. Its use in adnexal carcinomas has never been reported. The first patient had metastatic clear cell hidradenocarcinoma and was stabilized over 8 months with sunitinib, before she relapsed. The second patient had a metastatic malignant hair follicle tumour (trichoblastic carcinoma) and achieved a partial remission with sunitinib, and disease stabilized after 10 months. Dynamic contrast-enhanced ultrasound (DCE-US) performed to evaluate tumour vascularization during treatment depicted a dramatic and early decrease in the tumour blood volume. Sunitinib was effective in controlling the disease in our two patients. DCE-US using linear raw data may have an early predictive value for tumour response to sunitinib. Further studies involving larger cohorts of patients are warranted in order to confirm the efficacy of sunitinib in these rare tumours.

  7. A New Approach for Constructing Highly Stable High Order CESE Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    2010-01-01

    A new approach is devised to construct high order CESE schemes which would avoid the common shortcomings of traditional high order schemes including: (a) susceptibility to computational instabilities; (b) computational inefficiency due to their local implicit nature (i.e., at each mesh points, need to solve a system of linear/nonlinear equations involving all the mesh variables associated with this mesh point); (c) use of large and elaborate stencils which complicates boundary treatments and also makes efficient parallel computing much harder; (d) difficulties in applications involving complex geometries; and (e) use of problem-specific techniques which are needed to overcome stability problems but often cause undesirable side effects. In fact it will be shown that, with the aid of a conceptual leap, one can build from a given 2nd-order CESE scheme its 4th-, 6th-, 8th-,... order versions which have the same stencil and same stability conditions of the 2nd-order scheme, and also retain all other advantages of the latter scheme. A sketch of multidimensional extensions will also be provided.

  8. Impact self-excited vibrations of linear motor

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. Ph.

    2010-08-01

    Impact self-exciting vibration modes in a linear motor of a monorail car are studied. Existence and stability conditions of self-exciting vibrations are found. Ways of avoiding the vibrations are discussed.

  9. Enhancement of spin polarization induced by Coulomb on-site repulsion between localized pz electrons in graphene embedded with line defects.

    PubMed

    Ren, Ji-Chang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Zejun; Van Hove, Michel A

    2015-11-11

    It is well known that the effect of Coulomb on-site repulsion can significantly alter the physical properties of the systems that contain localized d and/or f electrons. However, little attention has been paid to the Coulomb on-site repulsion between localized p electrons. In this study, we demonstrated that Coulomb on-site repulsion between localized pz electrons also plays an important role in graphene embedded with line defects. It is shown that the magnetism of the system largely depends on the choice of the effective Coulomb on-site parameter Ueff. Ueff at the edges of the defect enhances the exchange splitting, which increases the magnetic moment and stabilizes a ferromagnetic state of the system. In contrast, Ueff at the center of the defect weakens the spin polarization of the system. The behavior of the magnetism is explained with the Stoner criterion and the charge accumulation at the edges of the defect. Based on the linear response approach, we estimate reasonable values of Ueff to be 2.55 eV (2.3 eV) at the center (edges) of the defects. More importantly, using a DFT+U+J method, we find that exchange interactions between localized p electrons also play an important role in the spin polarization of the system. These results imply that Coulomb on-site repulsion is necessary to describe the strong interaction between localized pz electrons of carbon related materials.

  10. Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor.

    PubMed

    Prakash, J; Srinivasan, K

    2009-07-01

    In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.

  11. NL(q) Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.

    PubMed

    Vandewalle, Joos; De Moor, Bart L.R.; Suykens, Johan A.K.

    1997-06-01

    In this paper a framework for model-based neural control design is presented, consisting of nonlinear state space models and controllers, parametrized by multilayer feedforward neural networks. The models and closed-loop systems are transformed into so-called NL(q) system form. NL(q) systems represent a large class of nonlinear dynamical systems consisting of q layers with alternating linear and static nonlinear operators that satisfy a sector condition. For such NL(q)s sufficient conditions for global asymptotic stability, input/output stability (dissipativity with finite L(2)-gain) and robust stability and performance are presented. The stability criteria are expressed as linear matrix inequalities. In the analysis problem it is shown how stability of a given controller can be checked. In the synthesis problem two methods for neural control design are discussed. In the first method Narendra's dynamic backpropagation for tracking on a set of specific reference inputs is modified with an NL(q) stability constraint in order to ensure, e.g., closed-loop stability. In a second method control design is done without tracking on specific reference inputs, but based on the input/output stability criteria itself, within a standard plant framework as this is done, for example, in H( infinity ) control theory and &mgr; theory. Copyright 1997 Elsevier Science Ltd.

  12. Imaging synthetic aperture radar

    DOEpatents

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  13. Dynamical localization of coupled relativistic kicked rotors

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Efim B.; Galitski, Victor

    2017-02-01

    A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.

  14. Protein substitution affects glass transition temperature and thermal stability.

    PubMed

    Budhavaram, Naresh K; Miller, Jonathan A; Shen, Ying; Barone, Justin R

    2010-09-08

    When proteins are removed from their native state they suffer from two deficiencies: (1) glassy behavior with glass transition temperatures (Tg) well above room temperature and (2) thermal instability. The glassy behavior originates in multiple hydrogen bonds between amino acids on adjacent protein molecules. Proteins, like most biopolymers, are thermally unstable. Substituting ovalbumin with linear and cyclic substituents using a facile nucleophilic addition reaction can affect Tg and thermal stability. More hydrophobic linear substituents lowered Tg by interrupting intermolecular interactions and increasing free volume. More hydrophilic and cyclic substituents increased thermal stability by increasing intermolecular interactions. In some cases, substituents instituted cross-linking between protein chains that enhanced thermal stability. Internal plasticization using covalent substitution and external plasticization using low molecular weight polar liquids show the same protein structural changes and a signature of plasticization is identified.

  15. Stability Analysis of Continuous-Time and Discrete-Time Quaternion-Valued Neural Networks With Linear Threshold Neurons.

    PubMed

    Chen, Xiaofeng; Song, Qiankun; Li, Zhongshan; Zhao, Zhenjiang; Liu, Yurong

    2018-07-01

    This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.

  16. Optimal Transient Growth of Submesoscale Baroclinic Instabilities

    NASA Astrophysics Data System (ADS)

    White, Brian; Zemskova, Varvara; Passaggia, Pierre-Yves

    2016-11-01

    Submesoscale instabilities are analyzed using a transient growth approach to determine the optimal perturbation for a rotating Boussinesq fluid subject to baroclinic instabilities. We consider a base flow with uniform shear and stratification and consider the non-normal evolution over finite-time horizons of linear perturbations in an ageostrophic, non-hydrostatic regime. Stone (1966, 1971) showed that the stability of the base flow to normal modes depends on the Rossby and Richardson numbers, with instabilities ranging from geostrophic (Ro -> 0) and ageostrophic (finite Ro) baroclinic modes to symmetric (Ri < 1 , Ro > 1) and Kelvin-Helmholtz (Ri < 1 / 4) modes. Non-normal transient growth, initiated by localized optimal wave packets, represents a faster mechanism for the growth of perturbations and may provide an energetic link between large-scale flows in geostrophic balance and dissipation scales via submesoscale instabilities. Here we consider two- and three-dimensional optimal perturbations by means of direct-adjoint iterations of the linearized Boussinesq Navier-Stokes equations to determine the form of the optimal perturbation, the optimal energy gain, and the characteristics of the most unstable perturbation.

  17. Comparison of Quasi-Conservative Pressure-Based and Fully-Conservative Formulations for the Simulation of Transcritical Flows

    NASA Astrophysics Data System (ADS)

    Lacaze, Guilhem; Oefelein, Joseph

    2016-11-01

    High-pressure flows are known to be challenging to simulate due to thermodynamic non-linearities occurring in the vicinity of the pseudo-boiling line. This study investigates the origin of this issue by analyzing the behavior of thermodynamic processes at elevated pressure and low temperature. We show that under transcritical conditions, non-linearities significantly amplify numerical errors associated with construction of fluxes. These errors affect the local density and energy balances, which in turn creates pressure oscillations. For that reason, solvers based on a conservative system of equations that transport density and total energy are subject to unphysical pressure variations in gradient regions. These perturbations hinder numerical stability and degrade the accuracy of predictions. To circumvent this problem, the governing system can be reformulated to a pressure-based treatment of energy. We present comparisons between the pressure-based and fully conservative formulations using a progressive set of canonical cases, including a cryogenic turbulent mixing layer at rocket engine conditions. Department of Energy, Office of Science, Basic Energy Sciences Program.

  18. Stabilizing Effect of Sweep on Low-Frequency STBLI Unsteadiness

    NASA Astrophysics Data System (ADS)

    Adler, Michael; Gaitonde, Datta

    2017-11-01

    A Large-Eddy Simulation database is generated to examine unsteady shock/turbulent boundary-layer-interaction (STBLI) mechanisms in a Mach 2 swept-compression-corner. Such interactions exhibit open separation, with separation relief from the sweep, and lack the closed mean recirculation found in spanwise-homogeneous STBLIs. We find that the swept interaction lacks the low-frequency coherent shock unsteadiness, two-decades below incoming turbulent boundary layer scales, that is a principal feature of comparable closed separation STBLIs. Rather, the prominent unsteady content is a mid-frequency regime that develops in the separated shear layer and scales weakly with the local separation length. Additionally, a linear perturbation analysis of the unsteady flow indicates that the feedback pathway (associated with an absolute instability in spanwise-homogeneous interactions) is absent in swept-compression-corner interactions. This suggests that 1) the linear oscillator is an essential component of low-frequency unsteadiness in interactions with closed separation. 2) Low-frequency control efforts should be focused on disrupting this oscillator. 3) Introduction of 3D effects constitute one mechanism to disrupt the oscillator.

  19. Graph partitions and cluster synchronization in networks of oscillators

    PubMed Central

    Schaub, Michael T.; O’Clery, Neave; Billeh, Yazan N.; Delvenne, Jean-Charles; Lambiotte, Renaud; Barahona, Mauricio

    2017-01-01

    Synchronization over networks depends strongly on the structure of the coupling between the oscillators. When the coupling presents certain regularities, the dynamics can be coarse-grained into clusters by means of External Equitable Partitions of the network graph and their associated quotient graphs. We exploit this graph-theoretical concept to study the phenomenon of cluster synchronization, in which different groups of nodes converge to distinct behaviors. We derive conditions and properties of networks in which such clustered behavior emerges, and show that the ensuing dynamics is the result of the localization of the eigenvectors of the associated graph Laplacians linked to the existence of invariant subspaces. The framework is applied to both linear and non-linear models, first for the standard case of networks with positive edges, before being generalized to the case of signed networks with both positive and negative interactions. We illustrate our results with examples of both signed and unsigned graphs for consensus dynamics and for partial synchronization of oscillator networks under the master stability function as well as Kuramoto oscillators. PMID:27781454

  20. Nanoscale linear permittivity imaging based on scanning nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Hiranaga, Yoshiomi; Chinone, Norimichi; Cho, Yasuo

    2018-05-01

    A nanoscale linear permittivity imaging method based on scanning nonlinear dielectric microscopy (SNDM) was developed. The ∂C/∂z-mode SNDM (∂C/∂z-SNDM) technique described herein employs probe-height modulation to suppress disturbances originating from stray capacitance and to improve measurement stability. This method allows local permittivity distributions to be examined with extremely low noise levels (approximately 0.01 aF) by virtue of the highly sensitive probe. A cross-section of a multilayer oxide film was visualized using ∂C/∂z-SNDM as a demonstration, and numerical simulations of the response signals were conducted to gain additional insights. The experimental signal intensities were found to be in a good agreement with the theoretical values, with the exception of the background components, demonstrating that absolute sample permittivity values could be determined. The signal profiles near the boundaries between different dielectrics were calculated using various vibration amplitudes and the boundary transition widths were obtained. The beneficial aspects of higher-harmonic response imaging are discussed herein, taking into account assessments of spatial resolution and quantitation.

Top