Science.gov

Sample records for local neural network

  1. Local Dynamics in Trained Recurrent Neural Networks

    NASA Astrophysics Data System (ADS)

    Rivkind, Alexander; Barak, Omri

    2017-06-01

    Learning a task induces connectivity changes in neural circuits, thereby changing their dynamics. To elucidate task-related neural dynamics, we study trained recurrent neural networks. We develop a mean field theory for reservoir computing networks trained to have multiple fixed point attractors. Our main result is that the dynamics of the network's output in the vicinity of attractors is governed by a low-order linear ordinary differential equation. The stability of the resulting equation can be assessed, predicting training success or failure. As a consequence, networks of rectified linear units and of sigmoidal nonlinearities are shown to have diametrically different properties when it comes to learning attractors. Furthermore, a characteristic time constant, which remains finite at the edge of chaos, offers an explanation of the network's output robustness in the presence of variability of the internal neural dynamics. Finally, the proposed theory predicts state-dependent frequency selectivity in the network response.

  2. Binaural sound localization using neural networks

    NASA Astrophysics Data System (ADS)

    Craig, Rushby C.

    1991-12-01

    The purpose of this study was to investigate the use of Artificial Neural Networks to localize sound sources from simulated, human binaural signals. Only sound sources originating from a circle on the horizontal plane were considered. Experiments were performed to examine the ability of the networks to localize using three-different feature sets. The feature sets used were: time-samples of the signals, Fast Fourier Transform magnitude and cross correlation data, and auto-correlation and cross correlation data. The two different types of sound source signals considered were tones and gaussian noise. The feature set which yielded the best results in terms of classification accuracy (over 91 percent) for both tones and noise was the auto-correlation and cross-correlation data. These results were achieved using 18 classes (20 per class). The other two feature sets did not produce accuracy results as high or as consistent between the two signal types. When using time-samples of the signals as features, it was observed that in order to accurately classify tones of random-frequency, it was necessary to train with random-frequency tones rather than with tones of one, or a few discrete frequencies.

  3. Localizing Tortoise Nests by Neural Networks.

    PubMed

    Barbuti, Roberto; Chessa, Stefano; Micheli, Alessio; Pucci, Rita

    2016-01-01

    The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating). Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS) which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN). We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours), the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.

  4. Localizing Tortoise Nests by Neural Networks

    PubMed Central

    2016-01-01

    The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating). Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS) which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN). We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours), the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition. PMID:26985660

  5. Binaural Sound Localization Using Neural Networks

    DTIC Science & Technology

    1991-12-12

    by Brennan, involved the implementation of a neural network to model the ability of a bat to discriminate between a mealworm and an inedible object...locate, identify and capture airborne prey (6:2). The sonar returns were collected from the mealworms , spheres and disks at various rotations (90 to...order to meet the criteria. If 75 out of 100 test vectors met the criteria, then P(HHN) = 0.75. P(FBE I E): The probability that a classification error

  6. Spontaneous Local Gamma Oscillation Selectively Enhances Neural Network Responsiveness

    PubMed Central

    Paik, Se-Bum; Kumar, Tribhawan; Glaser, Donald A.

    2009-01-01

    Synchronized oscillation is very commonly observed in many neuronal systems and might play an important role in the response properties of the system. We have studied how the spontaneous oscillatory activity affects the responsiveness of a neuronal network, using a neural network model of the visual cortex built from Hodgkin-Huxley type excitatory (E-) and inhibitory (I-) neurons. When the isotropic local E-I and I-E synaptic connections were sufficiently strong, the network commonly generated gamma frequency oscillatory firing patterns in response to random feed-forward (FF) input spikes. This spontaneous oscillatory network activity injects a periodic local current that could amplify a weak synaptic input and enhance the network's responsiveness. When E-E connections were added, we found that the strength of oscillation can be modulated by varying the FF input strength without any changes in single neuron properties or interneuron connectivity. The response modulation is proportional to the oscillation strength, which leads to self-regulation such that the cortical network selectively amplifies various FF inputs according to its strength, without requiring any adaptation mechanism. We show that this selective cortical amplification is controlled by E-E cell interactions. We also found that this response amplification is spatially localized, which suggests that the responsiveness modulation may also be spatially selective. This suggests a generalized mechanism by which neural oscillatory activity can enhance the selectivity of a neural network to FF inputs. PMID:19343222

  7. EEG dipole source localization using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Van Hoey, Gert; DeClercq, Jeremy; Vanrumste, Bart; Van de Walle, Rik; Lemahieu, Ignace; D'Havé, Michel; Boon, Paul

    2000-04-01

    Localization of focal electrical activity in the brain using dipole source analysis of the electroencephalogram (EEG), is usually performed by iteratively determining the location and orientation of the dipole source, until optimal correspondence is reached between the dipole source and the measured potential distribution on the head. In this paper, we investigate the use of feed-forward layered artificial neural networks (ANNs) to replace the iterative localization procedure, in order to decrease the calculation time. The localization accuracy of the ANN approach is studied within spherical and realistic head models. Additionally, we investigate the robustness of both the iterative and the ANN approach by observing the influence on the localization error of both noise in the scalp potentials and scalp electrode mislocalizations. Finally, after choosing the ANN structure and size that provides a good trade-off between low localization errors and short computation times, we compare the calculation times involved with both the iterative and ANN methods. An average localization error of about 3.5 mm is obtained for both spherical and realistic head models. Moreover, the ANN localization approach appears to be robust to noise and electrode mislocations. In comparison with the iterative localization, the ANN provides a major speed-up of dipole source localization. We conclude that an artificial neural network is a very suitable alternative for iterative dipole source localization in applications where large numbers of dipole localizations have to be performed, provided that an increase of the localization errors by a few millimetres is acceptable.

  8. Probing many-body localization with neural networks

    NASA Astrophysics Data System (ADS)

    Schindler, Frank; Regnault, Nicolas; Neupert, Titus

    2017-06-01

    We show that a simple artificial neural network trained on entanglement spectra of individual states of a many-body quantum system can be used to determine the transition between a many-body localized and a thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We employ a multilayer perceptron with a single hidden layer, which is trained on labeled entanglement spectra pertaining to the fully localized and fully thermal regimes. We then apply this network to classify spectra belonging to states in the transition region. For training, we use a cost function that contains, in addition to the usual error and regularization parts, a term that favors a confident classification of the transition region states. The resulting phase diagram is in good agreement with the one obtained by more conventional methods and can be computed for small systems. In particular, the neural network outperforms conventional methods in classifying individual eigenstates pertaining to a single disorder realization. It allows us to map out the structure of these eigenstates across the transition with spatial resolution. Furthermore, we analyze the network operation using the dreaming technique to show that the neural network correctly learns by itself the power-law structure of the entanglement spectra in the many-body localized regime.

  9. Automatic localization of vertebrae based on convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Yang, Feng; Mu, Wei; Yang, Caiyun; Yang, Xin; Tian, Jie

    2015-03-01

    Localization of the vertebrae is of importance in many medical applications. For example, the vertebrae can serve as the landmarks in image registration. They can also provide a reference coordinate system to facilitate the localization of other organs in the chest. In this paper, we propose a new vertebrae localization method using convolutional neural networks (CNN). The main advantage of the proposed method is the removal of hand-crafted features. We construct two training sets to train two CNNs that share the same architecture. One is used to distinguish the vertebrae from other tissues in the chest, and the other is aimed at detecting the centers of the vertebrae. The architecture contains two convolutional layers, both of which are followed by a max-pooling layer. Then the output feature vector from the maxpooling layer is fed into a multilayer perceptron (MLP) classifier which has one hidden layer. Experiments were performed on ten chest CT images. We used leave-one-out strategy to train and test the proposed method. Quantitative comparison between the predict centers and ground truth shows that our convolutional neural networks can achieve promising localization accuracy without hand-crafted features.

  10. Wlan-Based Indoor Localization Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Saleem, Fasiha; Wyne, Shurjeel

    2016-07-01

    Wireless indoor localization has generated recent research interest due to its numerous applications. This work investigates Wi-Fi based indoor localization using two variants of the fingerprinting approach. Specifically, we study the application of an artificial neural network (ANN) for implementing the fingerprinting approach and compare its localization performance with a probabilistic fingerprinting method that is based on maximum likelihood estimation (MLE) of the user location. We incorporate spatial correlation of fading into our investigations, which is often neglected in simulation studies and leads to erroneous location estimates. The localization performance is quantified in terms of accuracy, precision, robustness, and complexity. Multiple methods for handling the case of missing APs in online stage are investigated. Our results indicate that ANN-based fingerprinting outperforms the probabilistic approach for all performance metrics considered in this work.

  11. Locally supervised neural networks for approximating terramechanics models

    NASA Astrophysics Data System (ADS)

    Song, Xingguo; Gao, Haibo; Ding, Liang; Spanos, Pol D.; Deng, Zongquan; Li, Zhijun

    2016-06-01

    Neural networks (NNs) have been widely implemented for identifying nonlinear models, and predicting the distribution of targets, due to their ability to store and learn training samples. However, for highly complex systems, it is difficult to build a robust global network model, and efficiently managing the large amounts of experimental data is often required in real-time applications. In this paper, an effective method for building local models is proposed to enhance robustness and learning speed in globally supervised NNs. Unlike NNs, Gaussian processes (GP) produce predictions that capture the uncertainty inherent in actual systems, and typically provides superior results. Therefore, in this study, each local NN is learned in the same manner as a Gaussian process. A mixture of local model NNs is created and then augmented using weighted regression. This proposed method, referred to as locally supervised NN for weighted regression like GP, is abbreviated as ;LGPN;, is utilized for approximating a wheel-terrain interaction model under fixed soil parameters. The prediction results show that the proposed method yields significant robustness, modeling accuracy, and rapid learning speed.

  12. Neural networks for improved target differentiation and localization with sonar.

    PubMed

    Ayrulu, B; Barshan, B

    2001-04-01

    This study investigates the processing of sonar signals using neural networks for robust differentiation of commonly encountered features in indoor robot environments. Differentiation of such features is of interest for intelligent systems in a variety of applications. Different representations of amplitude and time-of-flight measurement patterns acquired from a real sonar system are processed. In most cases, best results are obtained with the low-frequency component of the discrete wavelet transform of these patterns. Modular and non-modular neural network structures trained with the back-propagation and generating-shrinking algorithms are used to incorporate learning in the identification of parameter relations for target primitives. Networks trained with the generating-shrinking algorithm demonstrate better generalization and interpolation capability and faster convergence rate. Neural networks can differentiate more targets employing only a single sensor node, with a higher correct differentiation percentage (99%) than achieved with previously reported methods (61-90%) employing multiple sensor nodes. A sensor node is a pair of transducers with fixed separation, that can rotate and scan the target to collect data. Had the number of sensing nodes been reduced in the other methods, their performance would have been even worse. The success of the neural network approach shows that the sonar signals do contain sufficient information to differentiate all target types, but the previously reported methods are unable to resolve this identifying information. This work can find application in areas where recognition of patterns hidden in sonar signals is required. Some examples are system control based on acoustic signal detection and identification, map building, navigation, obstacle avoidance, and target-tracking applications for mobile robots and other intelligent systems.

  13. Neural Networks

    DTIC Science & Technology

    1990-01-01

    FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO 11 TITLE (Include Security Classification) NEURAL NETWORKS 12. PERSONAL...SUB-GROUP Neural Networks Optical Architectures Nonlinear Optics Adaptation 19. ABSTRACT (Continue on reverse if necessary and identify by block number...341i Y C-odes , lo iii/(iv blank) 1. INTRODUCTION Neural networks are a type of distributed processing system [1

  14. Neural Networks

    SciTech Connect

    Smith, Patrick I.

    2003-09-23

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  15. Local synchronization of chaotic neural networks with sampled-data and saturating actuators.

    PubMed

    Wu, Zheng-Guang; Shi, Peng; Su, Hongye; Chu, Jian

    2014-12-01

    This paper investigates the problem of local synchronization of chaotic neural networks with sampled-data and actuator saturation. A new time-dependent Lyapunov functional is proposed for the synchronization error systems. The advantage of the constructed Lyapunov functional lies in the fact that it is positive definite at sampling times but not necessarily between sampling times, and makes full use of the available information about the actual sampling pattern. A local stability condition of the synchronization error systems is derived, based on which a sampled-data controller with respect to the actuator saturation is designed to ensure that the master neural networks and slave neural networks are locally asymptotically synchronous. Two optimization problems are provided to compute the desired sampled-data controller with the aim of enlarging the set of admissible initial conditions or the admissible sampling upper bound ensuring the local synchronization of the considered chaotic neural networks. A numerical example is used to demonstrate the effectiveness of the proposed design technique.

  16. Neural Networks

    NASA Astrophysics Data System (ADS)

    Schwindling, Jerome

    2010-04-01

    This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p.) corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  17. Protein Secondary Structure Prediction Using Local Adaptive Techniques in Training Neural Networks

    NASA Astrophysics Data System (ADS)

    Aik, Lim Eng; Zainuddin, Zarita; Joseph, Annie

    2008-01-01

    One of the most significant problems in computer molecular biology today is how to predict a protein's three-dimensional structure from its one-dimensional amino acid sequence or generally call the protein folding problem and difficult to determine the corresponding protein functions. Thus, this paper involves protein secondary structure prediction using neural network in order to solve the protein folding problem. The neural network used for protein secondary structure prediction is multilayer perceptron (MLP) of the feed-forward variety. The training set are taken from the protein data bank which are 120 proteins while 60 testing set is the proteins which were chosen randomly from the protein data bank. Multiple sequence alignment (MSA) is used to get the protein similar sequence and Position Specific Scoring matrix (PSSM) is used for network input. The training process of the neural network involves local adaptive techniques. Local adaptive techniques used in this paper comprises Learning rate by sign changes, SuperSAB, Quickprop and RPROP. From the simulation, the performance for learning rate by Rprop and Quickprop are superior to all other algorithms with respect to the convergence time. However, the best result was obtained using Rprop algorithm.

  18. Localization and identification of structural nonlinearities using cascaded optimization and neural networks

    NASA Astrophysics Data System (ADS)

    Koyuncu, A.; Cigeroglu, E.; Özgüven, H. N.

    2017-10-01

    In this study, a new approach is proposed for identification of structural nonlinearities by employing cascaded optimization and neural networks. Linear finite element model of the system and frequency response functions measured at arbitrary locations of the system are used in this approach. Using the finite element model, a training data set is created, which appropriately spans the possible nonlinear configurations space of the system. A classification neural network trained on these data sets then localizes and determines the types of all nonlinearities associated with the nonlinear degrees of freedom in the system. A new training data set spanning the parametric space associated with the determined nonlinearities is created to facilitate parametric identification. Utilizing this data set, initially, a feed forward regression neural network is trained, which parametrically identifies the classified nonlinearities. Then, the results obtained are further improved by carrying out an optimization which uses network identified values as starting points. Unlike identification methods available in literature, the proposed approach does not require data collection from the degrees of freedoms where nonlinear elements are attached, and furthermore, it is sufficiently accurate even in the presence of measurement noise. The application of the proposed approach is demonstrated on an example system with nonlinear elements and on a real life experimental setup with a local nonlinearity.

  19. A Self-Organizing Incremental Neural Network based on local distribution learning.

    PubMed

    Xing, Youlu; Shi, Xiaofeng; Shen, Furao; Zhou, Ke; Zhao, Jinxi

    2016-12-01

    In this paper, we propose an unsupervised incremental learning neural network based on local distribution learning, which is called Local Distribution Self-Organizing Incremental Neural Network (LD-SOINN). The LD-SOINN combines the advantages of incremental learning and matrix learning. It can automatically discover suitable nodes to fit the learning data in an incremental way without a priori knowledge such as the structure of the network. The nodes of the network store rich local information regarding the learning data. The adaptive vigilance parameter guarantees that LD-SOINN is able to add new nodes for new knowledge automatically and the number of nodes will not grow unlimitedly. While the learning process continues, nodes that are close to each other and have similar principal components are merged to obtain a concise local representation, which we call a relaxation data representation. A denoising process based on density is designed to reduce the influence of noise. Experiments show that the LD-SOINN performs well on both artificial and real-word data.

  20. Neural Network Function Classifier

    DTIC Science & Technology

    2003-02-07

    neural network sets. Each of the neural networks in a particular set is trained to recognize a particular data set type. The best function representation of the data set is determined from the neural network output. The system comprises sets of trained neural networks having neural networks trained to identify different types of data. The number of neural networks within each neural network set will depend on the number of function types that are represented. The system further comprises

  1. Chaotic Neural Networks and Beyond

    NASA Astrophysics Data System (ADS)

    Aihara, Kazuyuki; Yamada, Taiji; Oku, Makito

    2013-01-01

    A chaotic neuron model which is closely related to deterministic chaos observed experimentally with squid giant axons is explained, and used to construct a chaotic neural network model. Further, such a chaotic neural network is extended to different chaotic models such as a largescale memory relation network, a locally connected network, a vector-valued network, and a quaternionic-valued neuron.

  2. Local residue coupling strategies by neural network for InSAR phase unwrapping

    NASA Astrophysics Data System (ADS)

    Refice, Alberto; Satalino, Giuseppe; Chiaradia, Maria T.

    1997-12-01

    Phase unwrapping is one of the toughest problems in interferometric SAR processing. The main difficulties arise from the presence of point-like error sources, called residues, which occur mainly in close couples due to phase noise. We present an assessment of a local approach to the resolution of these problems by means of a neural network. Using a multi-layer perceptron, trained with the back- propagation scheme on a series of simulated phase images, fashion the best pairing strategies for close residue couples. Results show that god efficiencies and accuracies can have been obtained, provided a sufficient number of training examples are supplied. Results show that good efficiencies and accuracies can be obtained, provided a sufficient number of training examples are supplied. The technique is tested also on real SAR ERS-1/2 tandem interferometric images of the Matera test site, showing a good reduction of the residue density. The better results obtained by use of the neural network as far as local criteria are adopted appear justified given the probabilistic nature of the noise process on SAR interferometric phase fields and allows to outline a specifically tailored implementation of the neural network approach as a very fast pre-processing step intended to decrease the residue density and give sufficiently clean images to be processed further by more conventional techniques.

  3. Localization and function of Ih channels in a small neural network

    PubMed Central

    Ouyang, Qing; Harris-Warrick, Ronald M.

    2011-01-01

    Subthreshold ionic currents, which activate below the firing threshold and shape the cell's firing properties, play important roles in shaping neural network activity. We examined the distribution and synaptic roles of the hyperpolarization-activated inward current (Ih) in the pyloric network of the lobster stomatogastric ganglion (STG). Ih channels are expressed throughout the STG in a patchy distribution and are highly expressed in the fine neuropil, an area that is rich in synaptic contacts. We performed double labeling for Ih protein and for the presynaptic marker synaptotagmin. The large majority of labeling in the fine neuropil was adjacent but nonoverlapping, suggesting that Ih is localized in close proximity to synapses but not in the presynaptic terminals. We compared the pattern of Ih localization with Shal transient potassium channels, whose expression is coregulated with Ih in many STG neurons. Unlike Ih, we found significant levels of Shal protein in the soma membrane and the primary neurite. Both proteins were found in the synaptic fine neuropil, but with little evidence of colocalization in individual neurites. We performed electrophysiological experiments to study a potential role for Ih in regulating synaptic transmission. At a synapse between two identified pyloric neurons, the amplitude of inhibitory postsynaptic potentials (IPSPs) decreased with increasing postsynaptic activation of Ih. Pharmacological block of Ih restored IPSP amplitudes to levels seen when Ih was not activated. These experiments suggest that modulation of postsynaptic Ih might play an important role in the control of synaptic strength in this rhythmogenic neural network. PMID:21490285

  4. Neural Network Studies

    DTIC Science & Technology

    1993-07-01

    basic useful theorems and general rules which apply to neural networks (in ’Overview of Neural Network Theory’), studies of training time as the...The Neural Network , Bayes- Gaussian, and k-Nearest Neighbor Classifiers’), an analysis of fuzzy logic and its relationship to neural network (in ’Fuzzy

  5. Acoustic source localization using time-difference of arrival and neural-network analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Dong, Jiancheng; Ying, Ren D.

    2013-03-01

    The developing embedded technology requires revolutions in human-machine interaction. In this paper, we propose a novel method using localization of the taping sound on the table to replace the keyboard as manual input device. The method is applicable with a quad-channel-array collection of acoustic signals, from which the time-of-arrival differences and the position information could be estimated. In practice, as our table is in a limited size and the material properties are complex, the traditional localization algorithm based on time-of-arrival differences contains a sizable margin for error. Furthermore, we use neural-network analysis to improve recognition accuracy. Then experiments and simulations are carried out to verify this signal processing algorithm.

  6. Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1990-01-01

    Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.

  7. Downscaling large-scale circulation to local winter climate using neural network techniques

    NASA Astrophysics Data System (ADS)

    Cavazos Perez, Maria Tereza

    1998-12-01

    The severe impacts of climate variability on society reveal the increasing need for improving regional-scale climate diagnosis. A new downscaling approach for climate diagnosis is developed here. It is based on neural network techniques that derive transfer functions from the large-scale atmospheric controls to the local winter climate in northeastern Mexico and southeastern Texas during the 1985-93 period. A first neural network (NN) model employs time-lagged component scores from a rotated principal component analysis of SLP, 500-hPa heights, and 1000-500 hPa thickness as predictors of daily precipitation. The model is able to reproduce the phase and, to some decree, the amplitude of large rainfall events, reflecting the influence of the large-scale circulation. Large errors are found over the Sierra Madre, over the Gulf of Mexico, and during El Nino events, suggesting an increase in the importance of meso-scale rainfall processes. However, errors are also due to the lack of randomization of the input data and the absence of local atmospheric predictors such as moisture. Thus, a second NN model uses time-lagged specific humidity at the Earth's surface and at the 700 hPa level, SLP tendency, and 700-500 hPa thickness as input to a self-organizing map (SOM) that pre-classifies the atmospheric fields into different patterns. The results from the SOM classification document that negative (positive) anomalies of winter precipitation over the region are associated with: (1) weaker (stronger) Aleutian low; (2) stronger (weaker) North Pacific high; (3) negative (positive) phase of the Pacific North American pattern; and (4) La Nina (El Nino) events. The SOM atmospheric patterns are then used as input to a feed-forward NN that captures over 60% of the daily rainfall variance and 94% of the daily minimum temperature variance over the region. This demonstrates the ability of artificial neural network models to simulate realistic relationships on daily time scales. The

  8. Localization and Classification of Paddy Field Pests using a Saliency Map and Deep Convolutional Neural Network.

    PubMed

    Liu, Ziyi; Gao, Junfeng; Yang, Guoguo; Zhang, Huan; He, Yong

    2016-02-11

    We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to compute a saliency map for localizing pest insect objects. Bounding squares containing targets were then extracted, resized to a fixed size, and used to construct a large standard database called Pest ID. This database was then utilized for self-learning of local image features which were, in turn, used for classification by DCNN. DCNN learning optimized the critical parameters, including size, number and convolutional stride of local receptive fields, dropout ratio and the final loss function. To demonstrate the practical utility of using DCNN, we explored different architectures by shrinking depth and width, and found effective sizes that can act as alternatives for practical applications. On the test set of paddy field images, our architectures achieved a mean Accuracy Precision (mAP) of 0.951, a significant improvement over previous methods.

  9. Localization and Classification of Paddy Field Pests using a Saliency Map and Deep Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Liu, Ziyi; Gao, Junfeng; Yang, Guoguo; Zhang, Huan; He, Yong

    2016-02-01

    We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to compute a saliency map for localizing pest insect objects. Bounding squares containing targets were then extracted, resized to a fixed size, and used to construct a large standard database called Pest ID. This database was then utilized for self-learning of local image features which were, in turn, used for classification by DCNN. DCNN learning optimized the critical parameters, including size, number and convolutional stride of local receptive fields, dropout ratio and the final loss function. To demonstrate the practical utility of using DCNN, we explored different architectures by shrinking depth and width, and found effective sizes that can act as alternatives for practical applications. On the test set of paddy field images, our architectures achieved a mean Accuracy Precision (mAP) of 0.951, a significant improvement over previous methods.

  10. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  11. Neural networks in psychiatry.

    PubMed

    Hulshoff Pol, Hilleke; Bullmore, Edward

    2013-01-01

    Over the past three decades numerous imaging studies have revealed structural and functional brain abnormalities in patients with neuropsychiatric diseases. These structural and functional brain changes are frequently found in multiple, discrete brain areas and may include frontal, temporal, parietal and occipital cortices as well as subcortical brain areas. However, while the structural and functional brain changes in patients are found in anatomically separated areas, these are connected through (long distance) fibers, together forming networks. Thus, instead of representing separate (patho)-physiological entities, these local changes in the brains of patients with psychiatric disorders may in fact represent different parts of the same 'elephant', i.e., the (altered) brain network. Recent developments in quantitative analysis of complex networks, based largely on graph theory, have revealed that the brain's structure and functions have features of complex networks. Here we briefly introduce several recent developments in neural network studies relevant for psychiatry, including from the 2013 special issue on Neural Networks in Psychiatry in European Neuropsychopharmacology. We conclude that new insights will be revealed from the neural network approaches to brain imaging in psychiatry that hold the potential to find causes for psychiatric disorders and (preventive) treatments in the future.

  12. Recurrent fractal neural networks: a strategy for the exchange of local and global information processing in the brain.

    PubMed

    Bieberich, Erhard

    2002-01-01

    The regulation of biological networks relies significantly on convergent feedback signaling loops that render a global output locally accessible. Ideally, the recurrent connectivity within these systems is self-organized by a time-dependent phase-locking mechanism. This study analyzes recurrent fractal neural networks (RFNNs), which utilize a self-similar or fractal branching structure of dendrites and downstream networks for phase-locking of reciprocal feedback loops: output from outer branch nodes of the network tree enters inner branch nodes of the dendritic tree in single neurons. This structural organization enables RFNNs to amplify re-entrant input by over-the-threshold signal summation from feedback loops with equivalent signal traveling times. The columnar organization of pyramidal neurons in the neocortical layers V and III is discussed as the structural substrate for this network architecture. RFNNs self-organize spike trains and render the entire neural network output accessible to the dendritic tree of each neuron within this network. As the result of a contraction mapping operation, the local dendritic input pattern contains a downscaled version of the network output coding structure. RFNNs perform robust, fractal data compression, thus coping with a limited number of feedback loops for signal transport in convergent neural networks. This property is discussed as a significant step toward the solution of a fundamental problem in neuroscience: how is neuronal computation in separate neurons and remote brain areas unified as an instance of experience in consciousness? RFNNs are promising candidates for engaging neural networks into a coherent activity and provide a strategy for the exchange of global and local information processing in the human brain, thereby ensuring the completeness of a transformation from neuronal computation into conscious experience.

  13. Generalized classifier neural network.

    PubMed

    Ozyildirim, Buse Melis; Avci, Mutlu

    2013-03-01

    In this work a new radial basis function based classification neural network named as generalized classifier neural network, is proposed. The proposed generalized classifier neural network has five layers, unlike other radial basis function based neural networks such as generalized regression neural network and probabilistic neural network. They are input, pattern, summation, normalization and output layers. In addition to topological difference, the proposed neural network has gradient descent based optimization of smoothing parameter approach and diverge effect term added calculation improvements. Diverge effect term is an improvement on summation layer calculation to supply additional separation ability and flexibility. Performance of generalized classifier neural network is compared with that of the probabilistic neural network, multilayer perceptron algorithm and radial basis function neural network on 9 different data sets and with that of generalized regression neural network on 3 different data sets include only two classes in MATLAB environment. Better classification performance up to %89 is observed. Improved classification performances proved the effectivity of the proposed neural network.

  14. Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks.

    PubMed

    Chen, Hao; Ni, Dong; Qin, Jing; Li, Shengli; Yang, Xin; Wang, Tianfu; Heng, Pheng Ann

    2015-09-01

    Automatic localization of the standard plane containing complicated anatomical structures in ultrasound (US) videos remains a challenging problem. In this paper, we present a learning-based approach to locate the fetal abdominal standard plane (FASP) in US videos by constructing a domain transferred deep convolutional neural network (CNN). Compared with previous works based on low-level features, our approach is able to represent the complicated appearance of the FASP and hence achieve better classification performance. More importantly, in order to reduce the overfitting problem caused by the small amount of training samples, we propose a transfer learning strategy, which transfers the knowledge in the low layers of a base CNN trained from a large database of natural images to our task-specific CNN. Extensive experiments demonstrate that our approach outperforms the state-of-the-art method for the FASP localization as well as the CNN only trained on the limited US training samples. The proposed approach can be easily extended to other similar medical image computing problems, which often suffer from the insufficient training samples when exploiting the deep CNN to represent high-level features.

  15. Nonlinear Neural Network Oscillator.

    DTIC Science & Technology

    A nonlinear oscillator (10) includes a neural network (12) having at least one output (12a) for outputting a one dimensional vector. The neural ... neural network and the input of the input layer for modifying a magnitude and/or a polarity of the one dimensional output vector prior to the sample of...first or a second direction. Connection weights of the neural network are trained on a deterministic sequence of data from a chaotic source or may be a

  16. [Applying local neural network and visible/near-infrared spectroscopy to estimating available nitrogen, phosphorus and potassium in soil].

    PubMed

    Wu, Qian; Yang, Yu-hong; Xu, Zhao-li; Jin, Yan; Guo, Yan; Lao, Cai-lian

    2014-08-01

    To establish the quantitative relationship between soil spectrum and the concentration of available nitrogen, phosphorus and potassium in soil, the critical procedures of a new analysis method were examined, involving spectral preprocessing, wavebands selection and adoption of regression methods. As a result, a soil spectral analysis model was built using VIS/NIRS bands, with multiplicative scatter correction and first-derivative for spectral preprocessing, and local nonlinear regression method (Local regression method of BP neural network). The coefficients of correlation between the chemically determined and the modeled available nitrogen, phosphorus and potassium for predicted samples were 0.90, 0.82 and 0.94, respectively. It is proved that the prediction of local regression method of BP neural network has better accuracy and stability than that of global regression methods. In addition, the estimation accuracy of soil available nitrogen, phosphorus and potassium was increased by 40.63%, 28.64% and 28.64%, respectively. Thus, the quantitative analysis model established by the local regression method of BP neural network could be used to estimate the concentration of available nitrogen, phosphorus and potassium rapidly. It is innovative for using local nonlinear method to improve the stability and reliability of the soil spectrum model for nutrient diagnosis, which provides technical support for dynamic monitoring and process control for the soil nutrient under different growth stages of field-growing crops.

  17. Local community detection as pattern restoration by attractor dynamics of recurrent neural networks.

    PubMed

    Okamoto, Hiroshi

    2016-08-01

    Densely connected parts in networks are referred to as "communities". Community structure is a hallmark of a variety of real-world networks. Individual communities in networks form functional modules of complex systems described by networks. Therefore, finding communities in networks is essential to approaching and understanding complex systems described by networks. In fact, network science has made a great deal of effort to develop effective and efficient methods for detecting communities in networks. Here we put forward a type of community detection, which has been little examined so far but will be practically useful. Suppose that we are given a set of source nodes that includes some (but not all) of "true" members of a particular community; suppose also that the set includes some nodes that are not the members of this community (i.e., "false" members of the community). We propose to detect the community from this "imperfect" and "inaccurate" set of source nodes using attractor dynamics of recurrent neural networks. Community detection by the proposed method can be viewed as restoration of the original pattern from a deteriorated pattern, which is analogous to cue-triggered recall of short-term memory in the brain. We demonstrate the effectiveness of the proposed method using synthetic networks and real social networks for which correct communities are known.

  18. Modeling of local neural networks of the visual cortex and applications to image processing

    NASA Astrophysics Data System (ADS)

    Rybak, Ilya A.; Shevtsova, Natalia A.; Podladchikova, Lubov N.

    1991-08-01

    A model of an iso-orientation domain in the visual cortex is developed. The iso-orientation domain is represented as a neural network with retinotopically organized afferent inputs and anisotropic lateral inhibition formed by feedback connections via inhibitory interneurons. Temporal dynamics of neuron responses to oriented stimuli is studied. The results of computer simulations are compared with those of neurophysiological experiments. It is shown that the later phase of a neuron response has a more sharp orientation tuning than the initial one. It is suggested that the initial phase of a neuron response encodes intensity parameters of visual stimuli, whereas the later phase encodes its orientation. The design of the neural network preprocessor and the architecture of the system for visual information processing, based on the idea of parallel-sequential processing, are proposed. An example of a test image processing is presented.

  19. Intrinsic excitability state of local neuronal population modulates signal propagation in feed-forward neural networks

    NASA Astrophysics Data System (ADS)

    Han, Ruixue; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xilei; Qin, Yingmei; Wang, Haixu

    2015-04-01

    Reliable signal propagation across distributed brain areas is an essential requirement for cognitive function, and it has been investigated extensively in computational studies where feed-forward network (FFN) is taken as a generic model. But it is still unclear how distinct local network states, which are intrinsically generated by synaptic interactions within each layer, would affect the ability of FFN to transmit information. Here we investigate the impact of such network states on propagating transient synchrony (synfire) and firing rate by a combination of numerical simulations and analytical approach. Specifically, local network dynamics is attributed to the competition between excitatory and inhibitory neurons within each layer. Our results show that concomitant with different local network states, the performance of signal propagation differs dramatically. For both synfire propagation and firing rate propagation, there exists an optimal local excitability state, respectively, that optimizes the performance of signal propagation. Furthermore, we find that long-range connections strongly change the dependence of spiking activity propagation on local network state and propose that these two factors work jointly to determine information transmission across distributed networks. Finally, a simple mean field approach that bridges response properties of long-range connectivity and local subnetworks is utilized to reveal the underlying mechanism.

  20. Neural Network Hurricane Tracker

    DTIC Science & Technology

    1998-05-27

    data about the hurricane and supplying the data to a trained neural network for yielding a predicted path for the hurricane. The system further includes...a device for displaying the predicted path of the hurricane. A method for using and training the neural network in the system is described. In the...method, the neural network is trained using information about hurricanes in a specific geographical area maintained in a database. The training involves

  1. Exploring neural network technology

    SciTech Connect

    Naser, J.; Maulbetsch, J.

    1992-12-01

    EPRI is funding several projects to explore neural network technology, a form of artificial intelligence that some believe may mimic the way the human brain processes information. This research seeks to provide a better understanding of fundamental neural network characteristics and to identify promising utility industry applications. Results to date indicate that the unique attributes of neural networks could lead to improved monitoring, diagnostic, and control capabilities for a variety of complex utility operations. 2 figs.

  2. Optimized color decomposition of localized whole slide images and convolutional neural network for intermediate prostate cancer classification

    NASA Astrophysics Data System (ADS)

    Zhou, Naiyun; Gao, Yi

    2017-03-01

    This paper presents a fully automatic approach to grade intermediate prostate malignancy with hematoxylin and eosin-stained whole slide images. Deep learning architectures such as convolutional neural networks have been utilized in the domain of histopathology for automated carcinoma detection and classification. However, few work show its power in discriminating intermediate Gleason patterns, due to sporadic distribution of prostate glands on stained surgical section samples. We propose optimized hematoxylin decomposition on localized images, followed by convolutional neural network to classify Gleason patterns 3+4 and 4+3 without handcrafted features or gland segmentation. Crucial glands morphology and structural relationship of nuclei are extracted twice in different color space by the multi-scale strategy to mimic pathologists' visual examination. Our novel classification scheme evaluated on 169 whole slide images yielded a 70.41% accuracy and corresponding area under the receiver operating characteristic curve of 0.7247.

  3. Studies in Neural Networks

    DTIC Science & Technology

    1991-01-01

    N00014-87-K-0377 TITLE: "Studies in Neural Networks " fl.U Q l~~izie JUL 021991 "" " F.: L9’CO37 "I! c-1(.d Contract No.: N00014-87-K-0377 Final...34) have been very useful, both in understanding the dynamics of neural networks and in engineering networks to perform particular tasks. We have noted...understanding more complex network computation. Interest in applying ideas from biological neural networks to real problems of engineering raises the issues of

  4. Elimination of spiral waves in a locally connected chaotic neural network by a dynamic phase space constraint.

    PubMed

    Li, Yang; Oku, Makito; He, Guoguang; Aihara, Kazuyuki

    2017-04-01

    In this study, a method is proposed that eliminates spiral waves in a locally connected chaotic neural network (CNN) under some simplified conditions, using a dynamic phase space constraint (DPSC) as a control method. In this method, a control signal is constructed from the feedback internal states of the neurons to detect phase singularities based on their amplitude reduction, before modulating a threshold value to truncate the refractory internal states of the neurons and terminate the spirals. Simulations showed that with appropriate parameter settings, the network was directed from a spiral wave state into either a plane wave (PW) state or a synchronized oscillation (SO) state, where the control vanished automatically and left the original CNN model unaltered. Each type of state had a characteristic oscillation frequency, where spiral wave states had the highest, and the intra-control dynamics was dominated by low-frequency components, thereby indicating slow adjustments to the state variables. In addition, the PW-inducing and SO-inducing control processes were distinct, where the former generally had longer durations but smaller average proportions of affected neurons in the network. Furthermore, variations in the control parameter allowed partial selectivity of the control results, which were accompanied by modulation of the control processes. The results of this study broaden the applicability of DPSC to chaos control and they may also facilitate the utilization of locally connected CNNs in memory retrieval and the exploration of traveling wave dynamics in biological neural networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Finding fossils in new ways: an artificial neural network approach to predicting the location of productive fossil localities.

    PubMed

    Anemone, Robert; Emerson, Charles; Conroy, Glenn

    2011-01-01

    Chance and serendipity have long played a role in the location of productive fossil localities by vertebrate paleontologists and paleoanthropologists. We offer an alternative approach, informed by methods borrowed from the geographic information sciences and using recent advances in computer science, to more efficiently predict where fossil localities might be found. Our model uses an artificial neural network (ANN) that is trained to recognize the spectral characteristics of known productive localities and other land cover classes, such as forest, wetlands, and scrubland, within a study area based on the analysis of remotely sensed (RS) imagery. Using these spectral signatures, the model then classifies other pixels throughout the study area. The results of the neural network classification can be examined and further manipulated within a geographic information systems (GIS) software package. While we have developed and tested this model on fossil mammal localities in deposits of Paleocene and Eocene age in the Great Divide Basin of southwestern Wyoming, a similar analytical approach can be easily applied to fossil-bearing sedimentary deposits of any age in any part of the world. We suggest that new analytical tools and methods of the geographic sciences, including remote sensing and geographic information systems, are poised to greatly enrich paleoanthropological investigations, and that these new methods should be embraced by field workers in the search for, and geospatial analysis of, fossil primates and hominins. Copyright © 2011 Wiley-Liss, Inc.

  6. Supervised local error estimation for nonlinear image registration using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Eppenhof, Koen A. J.; Pluim, Josien P. W.

    2017-02-01

    Error estimation in medical image registration is valuable when validating, comparing, or combining registration methods. To validate a nonlinear image registration method, ideally the registration error should be known for the entire image domain. We propose a supervised method for the estimation of a registration error map for nonlinear image registration. The method is based on a convolutional neural network that estimates the norm of the residual deformation from patches around each pixel in two registered images. This norm is interpreted as the registration error, and is defined for every pixel in the image domain. The network is trained using a set of artificially deformed images. Each training example is a pair of images: the original image, and a random deformation of that image. No manually labeled ground truth error is required. At test time, only the two registered images are required as input. We train and validate the network on registrations in a set of 2D digital subtraction angiography sequences, such that errors up to eight pixels can be estimated. We show that for this range of errors the convolutional network is able to learn the registration error in pairs of 2D registered images at subpixel precision. Finally, we present a proof of principle for the extension to 3D registration problems in chest CTs, showing that the method has the potential to estimate errors in 3D registration problems.

  7. Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Tambue, Antoine; Ben-Bolie, Germain H.; Kofané, Timoléon C.

    2016-10-01

    We investigate localized wave solutions in a network of Hindmarsh-Rose neural model taking into account the long-range diffusive couplings. We show by a specific analytical technique that the model equations in the infrared limit (wave number k → 0) can be governed by the complex fractional Ginzburg-Landau (CFGL) equation. According to the stiffness of the system, we propose both the semi and the linearly implicit Riesz fractional finite-difference schemes to solve efficiently the CFGL equation. The obtained fractional numerical solutions for the nerve impulse reveal localized short impulse properties. We also show the equivalence between the continuous CFGL and the discrete Hindmarsh-Rose models for relatively large network.

  8. Probabilistic Analysis of Neural Networks

    DTIC Science & Technology

    1990-11-26

    provide an understanding of the basic mechanisms of learning and recognition in neural networks . The main areas of progress were analysis of neural ... networks models, study of network connectivity, and investigation of computer network theory.

  9. Neural networks for aircraft control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  10. Dynamics on Networks: The Role of Local Dynamics and Global Networks on the Emergence of Hypersynchronous Neural Activity

    PubMed Central

    Schmidt, Helmut; Petkov, George; Richardson, Mark P.; Terry, John R.

    2014-01-01

    Graph theory has evolved into a useful tool for studying complex brain networks inferred from a variety of measures of neural activity, including fMRI, DTI, MEG and EEG. In the study of neurological disorders, recent work has discovered differences in the structure of graphs inferred from patient and control cohorts. However, most of these studies pursue a purely observational approach; identifying correlations between properties of graphs and the cohort which they describe, without consideration of the underlying mechanisms. To move beyond this necessitates the development of computational modeling approaches to appropriately interpret network interactions and the alterations in brain dynamics they permit, which in the field of complexity sciences is known as dynamics on networks. In this study we describe the development and application of this framework using modular networks of Kuramoto oscillators. We use this framework to understand functional networks inferred from resting state EEG recordings of a cohort of 35 adults with heterogeneous idiopathic generalized epilepsies and 40 healthy adult controls. Taking emergent synchrony across the global network as a proxy for seizures, our study finds that the critical strength of coupling required to synchronize the global network is significantly decreased for the epilepsy cohort for functional networks inferred from both theta (3–6 Hz) and low-alpha (6–9 Hz) bands. We further identify left frontal regions as a potential driver of seizure activity within these networks. We also explore the ability of our method to identify individuals with epilepsy, observing up to 80 predictive power through use of receiver operating characteristic analysis. Collectively these findings demonstrate that a computer model based analysis of routine clinical EEG provides significant additional information beyond standard clinical interpretation, which should ultimately enable a more appropriate mechanistic stratification of people

  11. Critical Branching Neural Networks

    ERIC Educational Resources Information Center

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  12. Critical Branching Neural Networks

    ERIC Educational Resources Information Center

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  13. Neural Networks: A Primer

    DTIC Science & Technology

    1991-05-01

    capture underlying relationships directly from observed behavior is one of the primary capabilities of neural networks. 29 Back P’ropagation Approximailon...model complex behavior patterns. Particularly in areas traditionally addressed by regression and other functional based techniques, neural networks...to.be determined directly from the observed behavior of a system or sample of individuals. This ability should prove important in personnel analysis and

  14. An adaptive PID like controller using mix locally recurrent neural network for robotic manipulator with variable payload.

    PubMed

    Sharma, Richa; Kumar, Vikas; Gaur, Prerna; Mittal, A P

    2016-05-01

    Being complex, non-linear and coupled system, the robotic manipulator cannot be effectively controlled using classical proportional-integral-derivative (PID) controller. To enhance the effectiveness of the conventional PID controller for the nonlinear and uncertain systems, gains of the PID controller should be conservatively tuned and should adapt to the process parameter variations. In this work, a mix locally recurrent neural network (MLRNN) architecture is investigated to mimic a conventional PID controller which consists of at most three hidden nodes which act as proportional, integral and derivative node. The gains of the mix locally recurrent neural network based PID (MLRNNPID) controller scheme are initialized with a newly developed cuckoo search algorithm (CSA) based optimization method rather than assuming randomly. A sequential learning based least square algorithm is then investigated for the on-line adaptation of the gains of MLRNNPID controller. The performance of the proposed controller scheme is tested against the plant parameters uncertainties and external disturbances for both links of the two link robotic manipulator with variable payload (TL-RMWVP). The stability of the proposed controller is analyzed using Lyapunov stability criteria. A performance comparison is carried out among MLRNNPID controller, CSA optimized NNPID (OPTNNPID) controller and CSA optimized conventional PID (OPTPID) controller in order to establish the effectiveness of the MLRNNPID controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Deep-cascade: Cascading 3D Deep Neural Networks for Fast Anomaly Detection and Localization in Crowded Scenes.

    PubMed

    Sabokrou, Mohammad; Fayyaz, Mohsen; Fathy, Mahmood; Klette, Reinhard

    2017-02-17

    This paper proposes a fast and reliable method for anomaly detection and localization in video data showing crowded scenes. Time-efficient anomaly localization is an ongoing challenge and subject of this paper. We propose a cubicpatch- based method, characterised by a cascade of classifiers, which makes use of an advanced feature-learning approach. Our cascade of classifiers has two main stages. First, a light but deep 3D auto-encoder is used for early identification of "many" normal cubic patches. This deep network operates on small cubic patches as being the first stage, before carefully resizing remaining candidates of interest, and evaluating those at the second stage using a more complex and deeper 3D convolutional neural network (CNN). We divide the deep autoencoder and the CNN into multiple sub-stages which operate as cascaded classifiers. Shallow layers of the cascaded deep networks (designed as Gaussian classifiers, acting as weak single-class classifiers) detect "simple" normal patches such as background patches, and more complex normal patches are detected at deeper layers. It is shown that the proposed novel technique (a cascade of two cascaded classifiers) performs comparable to current top-performing detection and localization methods on standard benchmarks, but outperforms those in general with respect to required computation time.

  16. Programming neural networks

    SciTech Connect

    Anderson, J.A.; Markman, A.B.; Viscuso, S.R.; Wisniewski, E.J.

    1988-09-01

    Neural networks ''compute'' though not in the way that traditional computers do. One must accept their weaknesses to use their strengths. The authors present several applications of a particular non-linear network (the BSB model) to illustrate some of the peculiarities inherent in this architecture.

  17. Neural networks in seismic discrimination

    SciTech Connect

    Dowla, F.U.

    1995-01-01

    Neural networks are powerful and elegant computational tools that can be used in the analysis of geophysical signals. At Lawrence Livermore National Laboratory, we have developed neural networks to solve problems in seismic discrimination, event classification, and seismic and hydrodynamic yield estimation. Other researchers have used neural networks for seismic phase identification. We are currently developing neural networks to estimate depths of seismic events using regional seismograms. In this paper different types of network architecture and representation techniques are discussed. We address the important problem of designing neural networks with good generalization capabilities. Examples of neural networks for treaty verification applications are also described.

  18. Tomography using neural networks

    NASA Astrophysics Data System (ADS)

    Demeter, G.

    1997-03-01

    We have utilized neural networks for fast evaluation of tomographic data on the MT-1M tokamak. The networks have proven useful in providing the parameters of a nonlinear fit to experimental data, producing results in a fraction of the time required for performing the nonlinear fit. Time required for training the networks makes the method worth applying only if a substantial amount of data are to be evaluated.

  19. The Adaptive Kernel Neural Network

    DTIC Science & Technology

    1989-10-01

    A neural network architecture for clustering and classification is described. The Adaptive Kernel Neural Network (AKNN) is a density estimation...classification layer. The AKNN retains the inherent parallelism common in neural network models. Its relationship to the kernel estimator allows the network to

  20. Hyperbolic Hopfield neural networks.

    PubMed

    Kobayashi, M

    2013-02-01

    In recent years, several neural networks using Clifford algebra have been studied. Clifford algebra is also called geometric algebra. Complex-valued Hopfield neural networks (CHNNs) are the most popular neural networks using Clifford algebra. The aim of this brief is to construct hyperbolic HNNs (HHNNs) as an analog of CHNNs. Hyperbolic algebra is a Clifford algebra based on Lorentzian geometry. In this brief, a hyperbolic neuron is defined in a manner analogous to a phasor neuron, which is a typical complex-valued neuron model. HHNNs share common concepts with CHNNs, such as the angle and energy. However, HHNNs and CHNNs are different in several aspects. The states of hyperbolic neurons do not form a circle, and, therefore, the start and end states are not identical. In the quantized version, unlike complex-valued neurons, hyperbolic neurons have an infinite number of states.

  1. Nested neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1988-01-01

    Nested neural networks, consisting of small interconnected subnetworks, allow for the storage and retrieval of neural state patterns of different sizes. The subnetworks are naturally categorized by layers of corresponding to spatial frequencies in the pattern field. The storage capacity and the error correction capability of the subnetworks generally increase with the degree of connectivity between layers (the nesting degree). Storage of only few subpatterns in each subnetworks results in a vast storage capacity of patterns and subpatterns in the nested network, maintaining high stability and error correction capability.

  2. Input strategy analysis for an air quality data modelling procedure at a local scale based on neural network.

    PubMed

    Ragosta, M; D'Emilio, M; Giorgio, G A

    2015-05-01

    In recent years, a significant part of the studies on air pollutants has been devoted to improve statistical techniques for forecasting the values of their concentrations in the atmosphere. Reliable predictions of pollutant trends are essential not only for setting up preventive measures able to avoid risks for human health but also for helping stakeholders to take decision about traffic limitations. In this paper, we present an operating procedure, including both pollutant concentration measurements (CO, SO₂, NO₂, O₃, PM10) and meteorological parameters (hourly data of atmospheric pressure, relative humidity, wind speed), which improves the simple use of neural network for the prediction of pollutant concentration trends by means of the integration of multivariate statistical analysis. In particular, we used principal component analysis in order to define an unconstrained mix of variables able to improve the performance of the model. The developed procedure is particularly suitable for characterizing the investigated phenomena at a local scale.

  3. Predicting the errors of predicted local backbone angles and non-local solvent- accessibilities of proteins by deep neural networks.

    PubMed

    Gao, Jianzhao; Yang, Yuedong; Zhou, Yaoqi

    2016-12-15

    Backbone structures and solvent accessible surface area of proteins are benefited from continuous real value prediction because it removes the arbitrariness of defining boundary between different secondary-structure and solvent-accessibility states. However, lacking the confidence score for predicted values has limited their applications. Here we investigated whether or not we can make a reasonable prediction of absolute errors for predicted backbone torsion angles, Cα-atom-based angles and torsion angles, solvent accessibility, contact numbers and half-sphere exposures by employing deep neural networks. We found that angle-based errors can be predicted most accurately with Spearman correlation coefficient (SPC) between predicted and actual errors at about 0.6. This is followed by solvent accessibility (SPC∼0.5). The errors on contact-based structural properties are most difficult to predict (SPC between 0.2 and 0.3). We showed that predicted errors are significantly better error indicators than the average errors based on secondary-structure and amino-acid residue types. We further demonstrated the usefulness of predicted errors in model quality assessment. These error or confidence indictors are expected to be useful for prediction, assessment, and refinement of protein structures. The method is available at http://sparks-lab.org as a part of SPIDER2 package. yuedong.yang@griffith.edu.au or yaoqi.zhou@griffith.edu.auSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Neural networks counting chimes.

    PubMed Central

    Amit, D J

    1988-01-01

    It is shown that the ideas that led to neural networks capable of recalling associatively and asynchronously temporal sequences of patterns can be extended to produce a neural network that automatically counts the cardinal number in a sequence of identical external stimuli. The network is explicitly constructed, analyzed, and simulated. Such a network may account for the cognitive effect of the automatic counting of chimes to tell the hour. A more general implication is that different electrophysiological responses to identical stimuli, at certain stages of cortical processing, do not necessarily imply synaptic modification, a la Hebb. Such differences may arise from the fact that consecutive identical inputs find the network in different stages of an active temporal sequence of cognitive states. These types of networks are then situated within a program for the study of cognition, which assigns the detection of meaning as the primary role of attractor neural networks rather than computation, in contrast to the parallel distributed processing attitude to the connectionist project. This interpretation is free of homunculus, as well as from the criticism raised against the cognitive model of symbol manipulation. Computation is then identified as the syntax of temporal sequences of quasi-attractors. PMID:3353371

  5. Evolving Neural Network Pattern Classifiers

    DTIC Science & Technology

    1994-05-01

    This work investigates the application of evolutionary programming for automatically configuring neural network architectures for pattern...evaluating a multitude of neural network model hypotheses. The evolutionary programming search is augmented with the Solis & Wets random optimization

  6. Mathematical Theory of Neural Networks

    DTIC Science & Technology

    1994-08-31

    This report provides a summary of the grant work by the principal investigators in the area of neural networks . The topics covered deal with...properties) for nets; and the use of neural networks for the control of nonlinear systems.

  7. Neural Networks and Micromechanics

    NASA Astrophysics Data System (ADS)

    Kussul, Ernst; Baidyk, Tatiana; Wunsch, Donald C.

    The title of the book, "Neural Networks and Micromechanics," seems artificial. However, the scientific and technological developments in recent decades demonstrate a very close connection between the two different areas of neural networks and micromechanics. The purpose of this book is to demonstrate this connection. Some artificial intelligence (AI) methods, including neural networks, could be used to improve automation system performance in manufacturing processes. However, the implementation of these AI methods within industry is rather slow because of the high cost of conducting experiments using conventional manufacturing and AI systems. To lower the cost, we have developed special micromechanical equipment that is similar to conventional mechanical equipment but of much smaller size and therefore of lower cost. This equipment could be used to evaluate different AI methods in an easy and inexpensive way. The proved methods could be transferred to industry through appropriate scaling. In this book, we describe the prototypes of low cost microequipment for manufacturing processes and the implementation of some AI methods to increase precision, such as computer vision systems based on neural networks for microdevice assembly and genetic algorithms for microequipment characterization and the increase of microequipment precision.

  8. Improved Autoassociative Neural Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2003-01-01

    Improved autoassociative neural networks, denoted nexi, have been proposed for use in controlling autonomous robots, including mobile exploratory robots of the biomorphic type. In comparison with conventional autoassociative neural networks, nexi would be more complex but more capable in that they could be trained to do more complex tasks. A nexus would use bit weights and simple arithmetic in a manner that would enable training and operation without a central processing unit, programs, weight registers, or large amounts of memory. Only a relatively small amount of memory (to hold the bit weights) and a simple logic application- specific integrated circuit would be needed. A description of autoassociative neural networks is prerequisite to a meaningful description of a nexus. An autoassociative network is a set of neurons that are completely connected in the sense that each neuron receives input from, and sends output to, all the other neurons. (In some instantiations, a neuron could also send output back to its own input terminal.) The state of a neuron is completely determined by the inner product of its inputs with weights associated with its input channel. Setting the weights sets the behavior of the network. The neurons of an autoassociative network are usually regarded as comprising a row or vector. Time is a quantized phenomenon for most autoassociative networks in the sense that time proceeds in discrete steps. At each time step, the row of neurons forms a pattern: some neurons are firing, some are not. Hence, the current state of an autoassociative network can be described with a single binary vector. As time goes by, the network changes the vector. Autoassociative networks move vectors over hyperspace landscapes of possibilities.

  9. Generalized Adaptive Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  10. Neural Network Communications Signal Processing

    DTIC Science & Technology

    1994-08-01

    This final technical report describes the research and development- results of the Neural Network Communications Signal Processing (NNCSP) Program...The objectives of the NNCSP program are to: (1) develop and implement a neural network and communications signal processing simulation system for the...purpose of exploring the applicability of neural network technology to communications signal processing; (2) demonstrate several configurations of the

  11. Neural Networks for Speech Application.

    DTIC Science & Technology

    1987-11-01

    This is a general introduction to the reemerging technology called neural networks , and how these networks may provide an important alternative to...traditional forms of computing in speech applications. Neural networks , sometimes called Artificial Neural Systems (ANS), have shown promise for solving

  12. Generalized Adaptive Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  13. Neural network technologies

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.

    1991-01-01

    A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.

  14. Interval probabilistic neural network.

    PubMed

    Kowalski, Piotr A; Kulczycki, Piotr

    2017-01-01

    Automated classification systems have allowed for the rapid development of exploratory data analysis. Such systems increase the independence of human intervention in obtaining the analysis results, especially when inaccurate information is under consideration. The aim of this paper is to present a novel approach, a neural networking, for use in classifying interval information. As presented, neural methodology is a generalization of probabilistic neural network for interval data processing. The simple structure of this neural classification algorithm makes it applicable for research purposes. The procedure is based on the Bayes approach, ensuring minimal potential losses with regard to that which comes about through classification errors. In this article, the topological structure of the network and the learning process are described in detail. Of note, the correctness of the procedure proposed here has been verified by way of numerical tests. These tests include examples of both synthetic data, as well as benchmark instances. The results of numerical verification, carried out for different shapes of data sets, as well as a comparative analysis with other methods of similar conditioning, have validated both the concept presented here and its positive features.

  15. Rule generation from neural networks

    SciTech Connect

    Fu, L.

    1994-08-01

    The neural network approach has proven useful for the development of artificial intelligence systems. However, a disadvantage with this approach is that the knowledge embedded in the neural network is opaque. In this paper, we show how to interpret neural network knowledge in symbolic form. We lay down required definitions for this treatment, formulate the interpretation algorithm, and formally verify its soundness. The main result is a formalized relationship between a neural network and a rule-based system. In addition, it has been demonstrated that the neural network generates rules of better performance than the decision tree approach in noisy conditions. 7 refs.

  16. SCLpredT: Ab initio and homology-based prediction of subcellular localization by N-to-1 neural networks.

    PubMed

    Adelfio, Alessandro; Volpato, Viola; Pollastri, Gianluca

    2013-01-01

    The prediction of protein subcellular localization is a important step towards the prediction of protein function, and considerable effort has gone over the last decade into the development of computational predictors of protein localization. In this article we design a new predictor of protein subcellular localization, based on a Machine Learning model (N-to-1 Neural Networks) which we have recently developed. This system, in three versions specialised, respectively, on Plants, Fungi and Animals, has a rich output which incorporates the class "organelle" alongside cytoplasm, nucleus, mitochondria and extracellular, and, additionally, chloroplast in the case of Plants. We investigate the information gain of introducing additional inputs, including predicted secondary structure, and localization information from homologous sequences. To accommodate the latter we design a new algorithm which we present here for the first time. While we do not observe any improvement when including predicted secondary structure, we measure significant overall gains when adding homology information. The final predictor including homology information correctly predicts 74%, 79% and 60% of all proteins in the case of Fungi, Animals and Plants, respectively, and outperforms our previous, state-of-the-art predictor SCLpred, and the popular predictor BaCelLo. We also observe that the contribution of homology information becomes dominant over sequence information for sequence identity values exceeding 50% for Animals and Fungi, and 60% for Plants, confirming that subcellular localization is less conserved than structure. SCLpredT is publicly available at http://distillf.ucd.ie/sclpredt/. Sequence- or template-based predictions can be obtained, and up to 32kbytes of input can be processed in a single submission.

  17. Neural networks for triggering

    SciTech Connect

    Denby, B. ); Campbell, M. ); Bedeschi, F. ); Chriss, N.; Bowers, C. ); Nesti, F. )

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  18. ECG Identification System Using Neural Network with Global and Local Features

    ERIC Educational Resources Information Center

    Tseng, Kuo-Kun; Lee, Dachao; Chen, Charles

    2016-01-01

    This paper proposes a human identification system via extracted electrocardiogram (ECG) signals. Two hierarchical classification structures based on global shape feature and local statistical feature is used to extract ECG signals. Global shape feature represents the outline information of ECG signals and local statistical feature extracts the…

  19. Structured Pyramidal Neural Networks.

    PubMed

    Soares, Alessandra M; Fernandes, Bruno J T; Bastos-Filho, Carmelo J A

    2017-02-09

    The Pyramidal Neural Networks (PNN) are an example of a successful recently proposed model inspired by the human visual system and deep learning theory. PNNs are applied to computer vision and based on the concept of receptive fields. This paper proposes a variation of PNN, named here as Structured Pyramidal Neural Network (SPNN). SPNN has self-adaptive variable receptive fields, while the original PNNs rely on the same size for the fields of all neurons, which limits the model since it is not possible to put more computing resources in a particular region of the image. Another limitation of the original approach is the need to define values for a reasonable number of parameters, which can turn difficult the application of PNNs in contexts in which the user does not have experience. On the other hand, SPNN has a fewer number of parameters. Its structure is determined using a novel method with Delaunay Triangulation and k-means clustering. SPNN achieved better results than PNNs and similar performance when compared to Convolutional Neural Network (CNN) and Support Vector Machine (SVM), but using lower memory capacity and processing time.

  20. High-performance neural networks. [Neural computers

    SciTech Connect

    Dress, W.B.

    1987-06-01

    The new Forth hardware architectures offer an intermediate solution to high-performance neural networks while the theory and programming details of neural networks for synthetic intelligence are developed. This approach has been used successfully to determine the parameters and run the resulting network for a synthetic insect consisting of a 200-node ''brain'' with 1760 interconnections. Both the insect's environment and its sensor input have thus far been simulated. However, the frequency-coded nature of the Browning network allows easy replacement of the simulated sensors by real-world counterparts.

  1. Program Helps Simulate Neural Networks

    NASA Technical Reports Server (NTRS)

    Villarreal, James; Mcintire, Gary

    1993-01-01

    Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.

  2. Forecasting hourly PM(10) concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management.

    PubMed

    Paschalidou, Anastasia K; Karakitsios, Spyridon; Kleanthous, Savvas; Kassomenos, Pavlos A

    2011-02-01

    In the present work, two types of artificial neural network (NN) models using the multilayer perceptron (MLP) and the radial basis function (RBF) techniques, as well as a model based on principal component regression analysis (PCRA), are employed to forecast hourly PM(10) concentrations in four urban areas (Larnaca, Limassol, Nicosia and Paphos) in Cyprus. The model development is based on a variety of meteorological and pollutant parameters corresponding to the 2-year period between July 2006 and June 2008, and the model evaluation is achieved through the use of a series of well-established evaluation instruments and methodologies. The evaluation reveals that the MLP NN models display the best forecasting performance with R (2) values ranging between 0.65 and 0.76, whereas the RBF NNs and the PCRA models reveal a rather weak performance with R (2) values between 0.37-0.43 and 0.33-0.38, respectively. The derived MLP models are also used to forecast Saharan dust episodes with remarkable success (probability of detection ranging between 0.68 and 0.71). On the whole, the analysis shows that the models introduced here could provide local authorities with reliable and precise predictions and alarms about air quality if used on an operational basis.

  3. Space-Time Neural Networks

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.; Shelton, Robert O.

    1992-01-01

    Concept of space-time neural network affords distributed temporal memory enabling such network to model complicated dynamical systems mathematically and to recognize temporally varying spatial patterns. Digital filters replace synaptic-connection weights of conventional back-error-propagation neural network.

  4. Stimulated Photorefractive Optical Neural Networks

    DTIC Science & Technology

    1992-12-15

    This final report describes research in optical neural networks performed under DARPA sponsorship at Hughes Aircraft Company during the period 1989...in photorefractive crystals. This approach reduces crosstalk and improves the utilization of the optical input device. Successfully implemented neural ... networks include the Perceptron, Bidirectional Associative Memory, and multi-layer backpropagation networks. Up to 104 neurons, 2xl0(7) weights, and

  5. Trimaran Resistance Artificial Neural Network

    DTIC Science & Technology

    2011-01-01

    11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to

  6. Optical Neural Network Classifier Architectures

    DTIC Science & Technology

    1998-04-01

    We present an adaptive opto-electronic neural network hardware architecture capable of exploiting parallel optics to realize real-time processing and...function neural network based on a previously demonstrated binary-input version. The greyscale-input capability broadens the range of applications for...a reduced feature set of multiwavelet images to improve training times and discrimination capability of the neural network . The design uses a joint

  7. Analysis of Simple Neural Networks

    DTIC Science & Technology

    1988-12-20

    ANALYSIS OF SThlPLE NEURAL NETWORKS Chedsada Chinrungrueng Master’s Report Under the Supervision of Prof. Carlo H. Sequin Department of... Neural Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...and guidJ.nce. I have learned a great deal from his teaching, knowledge, and criti- cism. 1. MOTIVATION ANALYSIS OF SIMPLE NEURAL NETWORKS Chedsada

  8. Neural Networks For Robot Control

    DTIC Science & Technology

    2001-04-17

    following: (a) Application of artificial neural networks (multi-layer perceptrons, MLPs) for 2D planar robot arm by using the dynamic backpropagation...methods for the adjustment of parameters; and optimization of the architecture; (b) Application of artificial neural networks in controlling closed...studies in controlling dynamic robot arms by using neural networks in real-time process; (2) Research of optimal architectures used in closed-loop systems in order to compare with adaptive and robust control.

  9. Accelerating Learning By Neural Networks

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad; Barhen, Jacob

    1992-01-01

    Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.

  10. Accelerating Learning By Neural Networks

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad; Barhen, Jacob

    1992-01-01

    Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.

  11. [Artificial neural networks in Neurosciences].

    PubMed

    Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María

    2011-11-01

    This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.

  12. Neural Networks, Reliability and Data Analysis

    DTIC Science & Technology

    1993-01-01

    Neural network technology has been surveyed with the intent of determining the feasibility and impact neural networks may have in the area of...automated reliability tools. Data analysis capabilities of neural networks appear to be very applicable to reliability science due to similar mathematical...tendencies in data.... Neural networks , Reliability, Data analysis, Automated reliability tools, Automated intelligent information processing, Statistical neural network.

  13. Interacting neural networks

    NASA Astrophysics Data System (ADS)

    Metzler, R.; Kinzel, W.; Kanter, I.

    2000-08-01

    Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random.

  14. Vehicle Study with Neural Networks

    NASA Astrophysics Data System (ADS)

    Ruan, Xiaogang; Dai, Lizhen

    The biology is characteristic of biologic phototaxis and negative phototaxis. Can a machine be endowed with such a characteristic? This is the question we study in this paper, so a method of realizing vehicle's phototaxis and negative phototaxis through a neural network is presented. A randomly generated network is used as the main computational unit. Only the weights of the output units of this network are changed during training. It will be shown that this simple type of a biological realistic neural network is able to simulate robot controllers like that incorporated in Braitenberg vehicles. Two experiments are presented illustrating the stage-like study emerging with this neural network.

  15. Detection and Localization of Robotic Tools in Robot-Assisted Surgery Videos Using Deep Neural Networks for Region Proposal and Detection.

    PubMed

    Sarikaya, Duygu; Corso, Jason J; Guru, Khurshid A

    2017-07-01

    Video understanding of robot-assisted surgery (RAS) videos is an active research area. Modeling the gestures and skill level of surgeons presents an interesting problem. The insights drawn may be applied in effective skill acquisition, objective skill assessment, real-time feedback, and human-robot collaborative surgeries. We propose a solution to the tool detection and localization open problem in RAS video understanding, using a strictly computer vision approach and the recent advances of deep learning. We propose an architecture using multimodal convolutional neural networks for fast detection and localization of tools in RAS videos. To the best of our knowledge, this approach will be the first to incorporate deep neural networks for tool detection and localization in RAS videos. Our architecture applies a region proposal network (RPN) and a multimodal two stream convolutional network for object detection to jointly predict objectness and localization on a fusion of image and temporal motion cues. Our results with an average precision of 91% and a mean computation time of 0.1 s per test frame detection indicate that our study is superior to conventionally used methods for medical imaging while also emphasizing the benefits of using RPN for precision and efficiency. We also introduce a new data set, ATLAS Dione, for RAS video understanding. Our data set provides video data of ten surgeons from Roswell Park Cancer Institute, Buffalo, NY, USA, performing six different surgical tasks on the daVinci Surgical System (dVSS) with annotations of robotic tools per frame.

  16. Sound Source Localization through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network

    PubMed Central

    Beck, Christoph; Garreau, Guillaume; Georgiou, Julius

    2016-01-01

    Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature. PMID:27833526

  17. Dynamic interactions in neural networks

    SciTech Connect

    Arbib, M.A. ); Amari, S. )

    1989-01-01

    The study of neural networks is enjoying a great renaissance, both in computational neuroscience, the development of information processing models of living brains, and in neural computing, the use of neurally inspired concepts in the construction of intelligent machines. This volume presents models and data on the dynamic interactions occurring in the brain, and exhibits the dynamic interactions between research in computational neuroscience and in neural computing. The authors present current research, future trends and open problems.

  18. Neural Networks for the Beginner.

    ERIC Educational Resources Information Center

    Snyder, Robin M.

    Motivated by the brain, neural networks are a right-brained approach to artificial intelligence that is used to recognize patterns based on previous training. In practice, one would not program an expert system to recognize a pattern and one would not train a neural network to make decisions from rules; but one could combine the best features of…

  19. Neural network applications in telecommunications

    NASA Technical Reports Server (NTRS)

    Alspector, Joshua

    1994-01-01

    Neural network capabilities include automatic and organized handling of complex information, quick adaptation to continuously changing environments, nonlinear modeling, and parallel implementation. This viewgraph presentation presents Bellcore work on applications, learning chip computational function, learning system block diagram, neural network equalization, broadband access control, calling-card fraud detection, software reliability prediction, and conclusions.

  20. Technology Assessment of Neural Networks

    DTIC Science & Technology

    1989-02-13

    Unlike a Von Neumann type of computer which needs to be programmed to carry out an information-processing function, neural networks are promised as...trainable through a series of trials to learn how to process information. An assessment of the current, near-term (1995), and long-term (2010) trends in Neural Networks is given.

  1. Phase Detection Using Neural Networks.

    DTIC Science & Technology

    1997-03-10

    A likelihood of detecting a reflected signal characterized by phase discontinuities and background noise is enhanced by utilizing neural networks to...identify coherency intervals. The received signal is processed into a predetermined format such as a digital time series. Neural networks perform

  2. Hybrid Neural Network for Pattern Recognition.

    DTIC Science & Technology

    1997-02-03

    two one-layer neural networks and the second stage comprises a feedforward two-layer neural network . A method for recognizing patterns is also...topological representations of the input patterns using the first and second neural networks. The method further comprises providing a third neural network for...classifying and recognizing the inputted patterns and training the third neural network with a back-propagation algorithm so that the third neural network recognizes at least one interested pattern.

  3. Neural Network Development Tool (NETS)

    NASA Technical Reports Server (NTRS)

    Baffes, Paul T.

    1990-01-01

    Artificial neural networks formed from hundreds or thousands of simulated neurons, connected in manner similar to that in human brain. Such network models learning behavior. Using NETS involves translating problem to be solved into input/output pairs, designing network configuration, and training network. Written in C.

  4. Neural networks in astronomy.

    PubMed

    Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo

    2003-01-01

    In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).

  5. Coexistence and local μ-stability of multiple equilibrium points for memristive neural networks with nonmonotonic piecewise linear activation functions and unbounded time-varying delays.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde

    2016-12-01

    In this paper, the coexistence and dynamical behaviors of multiple equilibrium points are discussed for a class of memristive neural networks (MNNs) with unbounded time-varying delays and nonmonotonic piecewise linear activation functions. By means of the fixed point theorem, nonsmooth analysis theory and rigorous mathematical analysis, it is proven that under some conditions, such n-neuron MNNs can have 5(n) equilibrium points located in ℜ(n), and 3(n) of them are locally μ-stable. As a direct application, some criteria are also obtained on the multiple exponential stability, multiple power stability, multiple log-stability and multiple log-log-stability. All these results reveal that the addressed neural networks with activation functions introduced in this paper can generate greater storage capacity than the ones with Mexican-hat-type activation function. Numerical simulations are presented to substantiate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Livermore Big Artificial Neural Network Toolkit

    SciTech Connect

    Essen, Brian Van; Jacobs, Sam; Kim, Hyojin; Dryden, Nikoli; Moon, Tim

    2016-07-01

    LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.

  7. Neural networks for calibration tomography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur

    1993-01-01

    Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data.

  8. Diabetic retinopathy screening using deep neural network.

    PubMed

    Ramachandran, Nishanthan; Hong, Sheng Chiong; Sime, Mary J; Wilson, Graham A

    2017-09-07

    There is a burgeoning interest in the use of deep neural network in diabetic retinal screening. To determine whether a deep neural network could satisfactorily detect diabetic retinopathy that requires referral to an ophthalmologist from a local diabetic retinal screening programme and an international database. Retrospective audit. Diabetic retinal photos from Otago database photographed during October 2016 (485 photos), and 1200 photos from Messidor international database. Receiver operating characteristic curve to illustrate the ability of a deep neural network to identify referable diabetic retinopathy (moderate or worse diabetic retinopathy or exudates within one disc diameter of the fovea). Area under the receiver operating characteristic curve, sensitivity and specificity. For detecting referable diabetic retinopathy, the deep neural network had an area under receiver operating characteristic curve of 0.901 (95% confidence interval 0.807-0.995), with 84.6% sensitivity and 79.7% specificity for Otago and 0.980 (95% confidence interval 0.973-0.986), with 96.0% sensitivity and 90.0% specificity for Messidor. This study has shown that a deep neural network can detect referable diabetic retinopathy with sensitivities and specificities close to or better than 80% from both an international and a domestic (New Zealand) database. We believe that deep neural networks can be integrated into community screening once they can successfully detect both diabetic retinopathy and diabetic macular oedema. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  9. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  10. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  11. Neural Networks for Readability Analysis.

    ERIC Educational Resources Information Center

    McEneaney, John E.

    This paper describes and reports on the performance of six related artificial neural networks that have been developed for the purpose of readability analysis. Two networks employ counts of linguistic variables that simulate a traditional regression-based approach to readability. The remaining networks determine readability from "visual…

  12. A Complexity Theory of Neural Networks

    DTIC Science & Technology

    1990-04-14

    Significant results have been obtained on the computation complexity of analog neural networks , and distribute voting. The computing power and...learning algorithms for limited precision analog neural networks have been investigated. Lower bounds for constant depth, polynomial size analog neural ... networks , and a limited version of discrete neural networks have been obtained. The work on distributed voting has important applications for distributed

  13. Collective Computation of Neural Network

    DTIC Science & Technology

    1990-03-15

    Sciences, Beijing ABSTRACT Computational neuroscience is a new branch of neuroscience originating from current research on the theory of computer...scientists working in artificial intelligence engineering and neuroscience . The paper introduces the collective computational properties of model neural...vision research. On this basis, the authors analyzed the significance of the Hopfield model. Key phrases: Computational Neuroscience , Neural Network, Model

  14. Artificial Neural Network Analysis System

    DTIC Science & Technology

    2007-11-02

    Target detection, multi-target tracking and threat identification of ICBM and its warheads by sensor fusion and data fusion of sensors in a fuzzy neural network system based on the compound eye of a fly.

  15. The holographic neural network: Performance comparison with other neural networks

    NASA Astrophysics Data System (ADS)

    Klepko, Robert

    1991-10-01

    The artificial neural network shows promise for use in recognition of high resolution radar images of ships. The holographic neural network (HNN) promises a very large data storage capacity and excellent generalization capability, both of which can be achieved with only a few learning trials, unlike most neural networks which require on the order of thousands of learning trials. The HNN is specially designed for pattern association storage, and mathematically realizes the storage and retrieval mechanisms of holograms. The pattern recognition capability of the HNN was studied, and its performance was compared with five other commonly used neural networks: the Adaline, Hamming, bidirectional associative memory, recirculation, and back propagation networks. The patterns used for testing represented artificial high resolution radar images of ships, and appear as a two dimensional topology of peaks with various amplitudes. The performance comparisons showed that the HNN does not perform as well as the other neural networks when using the same test data. However, modification of the data to make it appear more Gaussian distributed, improved the performance of the network. The HNN performs best if the data is completely Gaussian distributed.

  16. Interval neural networks

    SciTech Connect

    Patil, R.B.

    1995-05-01

    Traditional neural networks like multi-layered perceptrons (MLP) use example patterns, i.e., pairs of real-valued observation vectors, ({rvec x},{rvec y}), to approximate function {cflx f}({rvec x}) = {rvec y}. To determine the parameters of the approximation, a special version of the gradient descent method called back-propagation is widely used. In many situations, observations of the input and output variables are not precise; instead, we usually have intervals of possible values. The imprecision could be due to the limited accuracy of the measuring instrument or could reflect genuine uncertainty in the observed variables. In such situation input and output data consist of mixed data types; intervals and precise numbers. Function approximation in interval domains is considered in this paper. We discuss a modification of the classical backpropagation learning algorithm to interval domains. Results are presented with simple examples demonstrating few properties of nonlinear interval mapping as noise resistance and finding set of solutions to the function approximation problem.

  17. Neural-Network-Development Program

    NASA Technical Reports Server (NTRS)

    Phillips, Todd A.

    1993-01-01

    NETS, software tool for development and evaluation of neural networks, provides simulation of neural-network algorithms plus computing environment for development of such algorithms. Uses back-propagation learning method for all of networks it creates. Enables user to customize patterns of connections between layers of network. Also provides features for saving, during learning process, values of weights, providing more-precise control over learning process. Written in ANSI standard C language. Machine-independent version (MSC-21588) includes only code for command-line-interface version of NETS 3.0.

  18. VLSI implementation of neural networks.

    PubMed

    Wilamowski, B M; Binfet, J; Kaynak, M O

    2000-06-01

    Currently, fuzzy controllers are the most popular choice for hardware implementation of complex control surfaces because they are easy to design. Neural controllers are more complex and hard to train, but provide an outstanding control surface with much less error than that of a fuzzy controller. There are also some problems that have to be solved before the networks can be implemented on VLSI chips. First, an approximation function needs to be developed because CMOS neural networks have an activation function different than any function used in neural network software. Next, this function has to be used to train the network. Finally, the last problem for VLSI designers is the quantization effect caused by discrete values of the channel length (L) and width (W) of MOS transistor geometries. Two neural networks were designed in 1.5 microm technology. Using adequate approximation functions solved the problem of activation function. With this approach, trained networks were characterized by very small errors. Unfortunately, when the weights were quantized, errors were increased by an order of magnitude. However, even though the errors were enlarged, the results obtained from neural network hardware implementations were superior to the results obtained with fuzzy system approach.

  19. Training product unit neural networks with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  20. Auto-associative nanoelectronic neural network

    SciTech Connect

    Nogueira, C. P. S. M.; Guimarães, J. G.

    2014-05-15

    In this paper, an auto-associative neural network using single-electron tunneling (SET) devices is proposed and simulated at low temperature. The nanoelectronic auto-associative network is able to converge to a stable state, previously stored during training. The recognition of the pattern involves decreasing the energy of the input state until it achieves a point of local minimum energy, which corresponds to one of the stored patterns.

  1. Antenna analysis using neural networks

    NASA Technical Reports Server (NTRS)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  2. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    PubMed

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2017-10-01

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  3. Representations in neural network based empirical potentials

    NASA Astrophysics Data System (ADS)

    Cubuk, Ekin D.; Malone, Brad D.; Onat, Berk; Waterland, Amos; Kaxiras, Efthimios

    2017-07-01

    Many structural and mechanical properties of crystals, glasses, and biological macromolecules can be modeled from the local interactions between atoms. These interactions ultimately derive from the quantum nature of electrons, which can be prohibitively expensive to simulate. Machine learning has the potential to revolutionize materials modeling due to its ability to efficiently approximate complex functions. For example, neural networks can be trained to reproduce results of density functional theory calculations at a much lower cost. However, how neural networks reach their predictions is not well understood, which has led to them being used as a "black box" tool. This lack of understanding is not desirable especially for applications of neural networks in scientific inquiry. We argue that machine learning models trained on physical systems can be used as more than just approximations since they had to "learn" physical concepts in order to reproduce the labels they were trained on. We use dimensionality reduction techniques to study in detail the representation of silicon atoms at different stages in a neural network, which provides insight into how a neural network learns to model atomic interactions.

  4. Nonlinear system identification and control based on modular neural networks.

    PubMed

    Puscasu, Gheorghe; Codres, Bogdan

    2011-08-01

    A new approach for nonlinear system identification and control based on modular neural networks (MNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This is obtained using a partitioning algorithm. Each local nonlinear model is associated with a nonlinear controller. These are also implemented by neural networks. The switching between the neural controllers is done by a dynamical switcher, also implemented by neural networks, that tracks the different operating points. The proposed multiple modelling and control strategy has been successfully tested on simulated laboratory scale liquid-level system.

  5. Stimulated photorefractive optical neural networks

    NASA Astrophysics Data System (ADS)

    Owechko, Y.; Dunning, G.; Nordin, G.; Soffer, B. H.

    1992-12-01

    This final report describes research in optical neural networks performed under DARPA sponsorship at Hughes Aircraft Company during the period 1989-1992. The objective of demonstrating a programmable optical computer for flexible implementation of multi-layer neural network models was successfully achieved. The advantages of optics for neural network implementations include large storage capacity, high connectivity, and massive parallelism which result in high computation rates. The optical neurocomputer developed on this program is based on a new type of holography, cascaded grating holography (CGH), in which the neural network weights are distributed among angularly- and spatially-multiplexed gratings generated by stimulated processes in photorefractive crystals. This approach reduces crosstalk and improves the utilization of the optical input device. Successfully implemented neural networks include the Perceptron, Bidirectional Associative Memory, and multi-layer backpropagation networks. Up to 104 neurons, 2x10(7) weights, and processing rates of 2x10(7) connection updates per second were achieved. Packaging concepts for future versions of the neurocomputer were also studied.

  6. Optical disk based neural network

    NASA Astrophysics Data System (ADS)

    Lu, Taiwei; Choi, Kyusun; Wu, Shudong; Xu, Xin; Yu, Francis T. S.

    1989-11-01

    An optical disk (OD)-based optical neural network architecture for high-speed and large-capacity associative processing is proposed. The information storage by the OD is described, and an optical neural network using an OD for large-capacity storage of interconnection weight matrices (IWMs) is shown and discussed. The ways that optical interconnections are established between the IWM and the input pattern is shown, as is the way that the loop is closed. The operation of the OD in the network is examined.

  7. Multi-Stepped Optogenetics: A Novel Strategy to Analyze Neural Network Formation and Animal Behaviors by Photo-Regulation of Local Gene Expression, Fluorescent Color and Neural Excitation

    NASA Astrophysics Data System (ADS)

    Hatta, Kohei; Nakajima, Yohei; Isoda, Erika; Itoh, Mariko; Yamamoto, Tamami

    The brain is one of the most complicated structures in nature. Zebrafish is a useful model to study development of vertebrate brain, because it is transparent at early embryonic stage and it develops rapidly outside of the body. We made a series of transgenic zebrafish expressing green-fluorescent protein related molecules, for example, Kaede and KikGR, whose green fluorescence can be irreversibly converted to red upon irradiation with ultra-violet (UV) or violet light, and Dronpa, whose green fluorescence is eliminated with strong blue light but can be reactivated upon irradiation with UV or violet-light. We have recently shown that infrared laser evoked gene operator (IR-LEGO) which causes a focused heat shock could locally induce these fluorescent proteins and the other genes. Neural cell migration and axonal pattern formation in living brain could be visualized by this technique. We also can express channel rhodopsine 2 (ChR2), a photoactivatable cation channel, or Natronomonas pharaonis halorhodopsin (NpHR), a photoactivatable chloride ion pump, locally in the nervous system by IR. Then, behaviors of these animals can be controlled by activating or silencing the local neurons by light. This novel strategy is useful in discovering neurons and circuits responsible for a wide variety of animal behaviors. We proposed to call this method ‘multi-stepped optogenetics’.

  8. Artificial neural network assisted kinetic spectrophotometric technique for simultaneous determination of paracetamol and p-aminophenol in pharmaceutical samples using localized surface plasmon resonance band of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Khodaveisi, Javad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Rohani Moghadam, Masoud; Hormozi-Nezhad, Mohammad Reza

    2015-03-01

    Spectrophotometric analysis method based on the combination of the principal component analysis (PCA) with the feed-forward neural network (FFNN) and the radial basis function network (RBFN) was proposed for the simultaneous determination of paracetamol (PAC) and p-aminophenol (PAP). This technique relies on the difference between the kinetic rates of the reactions between analytes and silver nitrate as the oxidizing agent in the presence of polyvinylpyrrolidone (PVP) which is the stabilizer. The reactions are monitored at the analytical wavelength of 420 nm of the localized surface plasmon resonance (LSPR) band of the formed silver nanoparticles (Ag-NPs). Under the optimized conditions, the linear calibration graphs were obtained in the concentration range of 0.122-2.425 μg mL-1 for PAC and 0.021-5.245 μg mL-1 for PAP. The limit of detection in terms of standard approach (LODSA) and upper limit approach (LODULA) were calculated to be 0.027 and 0.032 μg mL-1 for PAC and 0.006 and 0.009 μg mL-1 for PAP. The important parameters were optimized for the artificial neural network (ANN) models. Statistical parameters indicated that the ability of the both methods is comparable. The proposed method was successfully applied to the simultaneous determination of PAC and PAP in pharmaceutical preparations.

  9. An introduction to bio-inspired artificial neural network architectures.

    PubMed

    Fasel, B

    2003-03-01

    In this introduction to artificial neural networks we attempt to give an overview of the most important types of neural networks employed in engineering and explain shortly how they operate and also how they relate to biological neural networks. The focus will mainly be on bio-inspired artificial neural network architectures and specifically to neo-perceptions. The latter belong to the family of convolutional neural networks. Their topology is somewhat similar to the one of the human visual cortex and they are based on receptive fields that allow, in combination with sub-sampling layers, for an improved robustness with regard to local spatial distortions. We demonstrate the application of artificial neural networks to face analysis--a domain we human beings are particularly good at, yet which poses great difficulties for digital computers running deterministic software programs.

  10. Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor

    SciTech Connect

    Gentili, Pier Luigi; Gotoda, Hiroshi; Dolnik, Milos; Epstein, Irving R.

    2015-01-15

    Forecasting of aperiodic time series is a compelling challenge for science. In this work, we analyze aperiodic spectrophotometric data, proportional to the concentrations of two forms of a thermoreversible photochromic spiro-oxazine, that are generated when a cuvette containing a solution of the spiro-oxazine undergoes photoreaction and convection due to localized ultraviolet illumination. We construct the phase space for the system using Takens' theorem and we calculate the Lyapunov exponents and the correlation dimensions to ascertain the chaotic character of the time series. Finally, we predict the time series using three distinct methods: a feed-forward neural network, fuzzy logic, and a local nonlinear predictor. We compare the performances of these three methods.

  11. Multiprocessor Neural Network in Healthcare.

    PubMed

    Godó, Zoltán Attila; Kiss, Gábor; Kocsis, Dénes

    2015-01-01

    A possible way of creating a multiprocessor artificial neural network is by the use of microcontrollers. The RISC processors' high performance and the large number of I/O ports mean they are greatly suitable for creating such a system. During our research, we wanted to see if it is possible to efficiently create interaction between the artifical neural network and the natural nervous system. To achieve as much analogy to the living nervous system as possible, we created a frequency-modulated analog connection between the units. Our system is connected to the living nervous system through 128 microelectrodes. Two-way communication is provided through A/D transformation, which is even capable of testing psychopharmacons. The microcontroller-based analog artificial neural network can play a great role in medical singal processing, such as ECG, EEG etc.

  12. Implementing Signature Neural Networks with Spiking Neurons

    PubMed Central

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the

  13. Implementing Signature Neural Networks with Spiking Neurons.

    PubMed

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence

  14. Plant Growth Models Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  15. Signal Approximation with a Wavelet Neural Network

    DTIC Science & Technology

    1992-12-01

    specialized electronic devices like the Intel Electronically Trainable Analog Neural Network (ETANN) chip. The WNN representation allows the...accurately approximated with a WNN trained with irregularly sampled data. Signal approximation, Wavelet neural network .

  16. A Neural Network Based Speech Recognition System

    DTIC Science & Technology

    1990-02-01

    encoder and identifies individual words. This use of neural networks offers two advantages over conventional algorithmic detectors: the detection...environment. Keywords: Artificial intelligence; Neural networks : Back propagation; Speech recognition.

  17. Plant Growth Models Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  18. Neural Networks for Flight Control

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  19. Neural networks and applications tutorial

    NASA Astrophysics Data System (ADS)

    Guyon, I.

    1991-09-01

    The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.

  20. Fault Tolerance of Neural Networks

    DTIC Science & Technology

    1994-07-01

    Systematic Ap - proach, Proc. Government Microcircuit Application Conf. (GOMAC), San Diego, Nov. 1986. [10] D.E.Goldberg, Genetic Algorithms in Search...s l m n ttempt to develop fault tolerant neural networks. The lows. Given a well-trained network, we first eliminate temp todevlopfaut tlernt eurl ...both ap - proaches, and this resulted in very slight improve- ments over the addition/deletion procedure. 103 Fisher’s Iris data in average case Fisher’s

  1. Analysis and Design of Neural Networks

    DTIC Science & Technology

    1992-01-01

    The training problem for feedforward neural networks is nonlinear parameter estimation that can be solved by a variety of optimization techniques...Much of the literature of neural networks has focused on variants of gradient descent. The training of neural networks using such techniques is known to...be a slow process with more sophisticated techniques not always performing significantly better. It is shown that feedforward neural networks can

  2. Radar System Classification Using Neural Networks

    DTIC Science & Technology

    1991-12-01

    This study investigated methods of improving the accuracy of neural networks in the classification of large numbers of classes. A literature search...revealed that neural networks have been successful in the radar classification problem, and that many complex problems have been solved using systems...of multiple neural networks . The experiments conducted were based on 32 classes of radar system data. The neural networks were modelled using a program

  3. Artificial neural networks in medicine

    SciTech Connect

    Keller, P.E.

    1994-07-01

    This Technology Brief provides an overview of artificial neural networks (ANN). A definition and explanation of an ANN is given and situations in which an ANN is used are described. ANN applications to medicine specifically are then explored and the areas in which it is currently being used are discussed. Included are medical diagnostic aides, biochemical analysis, medical image analysis and drug development.

  4. Scalable photonic neural networks for real-time pattern classification

    NASA Astrophysics Data System (ADS)

    Goldstein, Adam Arthur

    1997-11-01

    With the rapid advancement of photonic technology in recent years, the potential exists for the incorporation of photonic neural-network research into the development of opto-electronic real-time pattern classification systems. In this dissertation we present three classes of photonic neural-network models that were designed to be compatible with this emerging technology: (1) photonic neural networks based upon probability density estimation, (2) photorefractive neural-network models, and (3) vertically stacked photonic neural networks that utilize hybridized CMOS/GaAs chips and diffractive optical elements. In each case, we show how previously developed neural-network learning algorithms and/or architectures must be adapted in order to allow an efficient photonic implementation. For class (1), we show that conventional 'k-Nearest Neighbors' (k-NN) probability density estimation is not suitable for an analog photonic neural-network hardware implementation, and we introduce a new probability density estimation algorithm called 'Continuous k-Nearest Neighbors' (C-kNN) that is suitable. For class (2), we show that the diffraction-efficiency decay inherent to photorefractive grating formation adversely affects outer-product neural-network learning algorithms, and we introduce a gain and exposure scheduling technique that resolves the incompatibility. For class (3), the use of compact diffractive optical interconnections constrains the corresponding neural-network weights to be fixed and locally connected. We introduce a 3-D Photonic Multichip- Module (3-D PMCM) neural-network architecture that utilizes a fixed diffractive optical layer in conjunction with a programmable electronic layer, to obtain a multi- layer neural network capable of real-time pattern recognition tasks. The design and fabrication of key components of the 3-D PMCM neural-network architecture are presented, together with simulation results for the application of detecting and locating the eyes in an

  5. How Neural Networks Learn from Experience.

    ERIC Educational Resources Information Center

    Hinton, Geoffrey E.

    1992-01-01

    Discusses computational studies of learning in artificial neural networks and findings that may provide insights into the learning abilities of the human brain. Describes efforts to test theories about brain information processing, using artificial neural networks. Vignettes include information concerning how a neural network represents…

  6. How Neural Networks Learn from Experience.

    ERIC Educational Resources Information Center

    Hinton, Geoffrey E.

    1992-01-01

    Discusses computational studies of learning in artificial neural networks and findings that may provide insights into the learning abilities of the human brain. Describes efforts to test theories about brain information processing, using artificial neural networks. Vignettes include information concerning how a neural network represents…

  7. Model Of Neural Network With Creative Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Barhen, Jacob

    1993-01-01

    Paper presents analysis of mathematical model of one-neuron/one-synapse neural network featuring coupled activation and learning dynamics and parametrical periodic excitation. Demonstrates self-programming, partly random behavior of suitable designed neural network; believed to be related to spontaneity and creativity of biological neural networks.

  8. Semantic Interpretation of An Artificial Neural Network

    DTIC Science & Technology

    1995-12-01

    success for stock market analysis/prediction is artificial neural networks. However, knowledge embedded in the neural network is not easily translated...interpret neural network knowledge. The first, called Knowledge Math, extends the use of connection weights, generating rules for general (i.e. non-binary

  9. Model Of Neural Network With Creative Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Barhen, Jacob

    1993-01-01

    Paper presents analysis of mathematical model of one-neuron/one-synapse neural network featuring coupled activation and learning dynamics and parametrical periodic excitation. Demonstrates self-programming, partly random behavior of suitable designed neural network; believed to be related to spontaneity and creativity of biological neural networks.

  10. Are artificial neural networks white boxes?

    PubMed

    Kolman, Eyal; Margaliot, Michael

    2005-07-01

    In this paper, we introduce a novel Mamdani-type fuzzy model, referred to as the all-permutations fuzzy rule base (APFRB), and show that it is mathematically equivalent to a standard feedforward neural network. We describe several applications of this equivalence between a neural network and our fuzzy rule base (FRB), including knowledge extraction from and knowledge insertion into neural networks.

  11. A Topological Perspective of Neural Network Structure

    NASA Astrophysics Data System (ADS)

    Sizemore, Ann; Giusti, Chad; Cieslak, Matthew; Grafton, Scott; Bassett, Danielle

    The wiring patterns of white matter tracts between brain regions inform functional capabilities of the neural network. Indeed, densely connected and cyclically arranged cognitive systems may communicate and thus perform distinctly. However, previously employed graph theoretical statistics are local in nature and thus insensitive to such global structure. Here we present an investigation of the structural neural network in eight healthy individuals using persistent homology. An extension of homology to weighted networks, persistent homology records both circuits and cliques (all-to-all connected subgraphs) through a repetitive thresholding process, thus perceiving structural motifs. We report structural features found across patients and discuss brain regions responsible for these patterns, finally considering the implications of such motifs in relation to cognitive function.

  12. Neural networks for atmospheric retrievals

    NASA Technical Reports Server (NTRS)

    Motteler, Howard E.; Gualtieri, J. A.; Strow, L. Larrabee; Mcmillin, Larry

    1993-01-01

    We use neural networks to perform retrievals of temperature and water fractions from simulated clear air radiances for the Atmospheric Infrared Sounder (AIRS). Neural networks allow us to make effective use of the large AIRS channel set, and give good performance with noisy input. We retrieve surface temperature, air temperature at 64 distinct pressure levels, and water fractions at 50 distinct pressure levels. Using 728 temperature and surface sensitive channels, the RMS error for temperature retrievals with 0.2K input noise is 1.2K. Using 586 water and temperature sensitive channels, the mean error with 0.2K input noise is 16 percent. Our implementation of backpropagation training for neural networks on the 16,000-processor MasPar MP-1 runs at a rate of 90 million weight updates per second, and allows us to train large networks in a reasonable amount of time. Once trained, the network can be used to perform retrievals quickly on a workstation of moderate power.

  13. Neural network explanation using inversion.

    PubMed

    Saad, Emad W; Wunsch, Donald C

    2007-01-01

    An important drawback of many artificial neural networks (ANN) is their lack of explanation capability [Andrews, R., Diederich, J., & Tickle, A. B. (1996). A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8, 373-389]. This paper starts with a survey of algorithms which attempt to explain the ANN output. We then present HYPINV, a new explanation algorithm which relies on network inversion; i.e. calculating the ANN input which produces a desired output. HYPINV is a pedagogical algorithm, that extracts rules, in the form of hyperplanes. It is able to generate rules with arbitrarily desired fidelity, maintaining a fidelity-complexity tradeoff. To our knowledge, HYPINV is the only pedagogical rule extraction method, which extracts hyperplane rules from continuous or binary attribute neural networks. Different network inversion techniques, involving gradient descent as well as an evolutionary algorithm, are presented. An information theoretic treatment of rule extraction is presented. HYPINV is applied to example synthetic problems, to a real aerospace problem, and compared with similar algorithms using benchmark problems.

  14. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.

    PubMed

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2017-01-01

    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm(3) density. In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Local Area Networks.

    ERIC Educational Resources Information Center

    Bullard, David

    1983-01-01

    The proliferation of word processors, micro- and minicomputer systems, and other digital office equipment is causing major design changes in existing networks. Local Area Networks (LANs) which have adequately served terminal users in the past must now be redesigned. Implementation at Clemson is described. (MLW)

  16. Local Area Networks.

    ERIC Educational Resources Information Center

    Marks, Kenneth E.; Nielsen, Steven

    1991-01-01

    Discusses cabling that is needed in local area networks (LANs). Types of cables that may be selected are described, including twisted pair, coaxial cables (or ethernet), and fiber optics; network topologies, the manner in which the cables are laid out, are considered; and cable installation issues are discussed. (LRW)

  17. Local Area Networks.

    ERIC Educational Resources Information Center

    Marks, Kenneth E.; Nielsen, Steven

    1991-01-01

    Discusses cabling that is needed in local area networks (LANs). Types of cables that may be selected are described, including twisted pair, coaxial cables (or ethernet), and fiber optics; network topologies, the manner in which the cables are laid out, are considered; and cable installation issues are discussed. (LRW)

  18. Hybrid neural networks--combining abstract and realistic neural units.

    PubMed

    Lytton, William W; Hines, Michael

    2004-01-01

    There is a trade-off in neural network simulation between simulations that embody the details of neuronal biology and those that omit these details in favor of abstractions. The former approach appeals to physiologists and pharmacologists who can directly relate their experimental manipulations to parameter changes in the model. The latter approach appeals to physicists and mathematicians who seek analytic understanding of the behavior of large numbers of coupled simple units. This simplified approach is also valuable for practical reasons a highly simplified unit will run several orders of magnitude faster than a complex, biologically realistic unit. In order to have our cake and eat it, we have developed hybrid networks in the Neuron simulator package. These make use of Neuron's local variable timestep method to permit simplified integrate-and-fire units to move ahead quickly while realistic neurons in the same network are integrated slowly.

  19. Efficient DV-HOP Localization for Wireless Cyber-Physical Social Sensing System: A Correntropy-Based Neural Network Learning Scheme

    PubMed Central

    Xu, Yang; Luo, Xiong; Wang, Weiping; Zhao, Wenbing

    2017-01-01

    Integrating wireless sensor network (WSN) into the emerging computing paradigm, e.g., cyber-physical social sensing (CPSS), has witnessed a growing interest, and WSN can serve as a social network while receiving more attention from the social computing research field. Then, the localization of sensor nodes has become an essential requirement for many applications over WSN. Meanwhile, the localization information of unknown nodes has strongly affected the performance of WSN. The received signal strength indication (RSSI) as a typical range-based algorithm for positioning sensor nodes in WSN could achieve accurate location with hardware saving, but is sensitive to environmental noises. Moreover, the original distance vector hop (DV-HOP) as an important range-free localization algorithm is simple, inexpensive and not related to the environment factors, but performs poorly when lacking anchor nodes. Motivated by these, various improved DV-HOP schemes with RSSI have been introduced, and we present a new neural network (NN)-based node localization scheme, named RHOP-ELM-RCC, through the use of DV-HOP, RSSI and a regularized correntropy criterion (RCC)-based extreme learning machine (ELM) algorithm (ELM-RCC). Firstly, the proposed scheme employs both RSSI and DV-HOP to evaluate the distances between nodes to enhance the accuracy of distance estimation at a reasonable cost. Then, with the help of ELM featured with a fast learning speed with a good generalization performance and minimal human intervention, a single hidden layer feedforward network (SLFN) on the basis of ELM-RCC is used to implement the optimization task for obtaining the location of unknown nodes. Since the RSSI may be influenced by the environmental noises and may bring estimation error, the RCC instead of the mean square error (MSE) estimation, which is sensitive to noises, is exploited in ELM. Hence, it may make the estimation more robust against outliers. Additionally, the least square estimation (LSE

  20. Efficient DV-HOP Localization for Wireless Cyber-Physical Social Sensing System: A Correntropy-Based Neural Network Learning Scheme.

    PubMed

    Xu, Yang; Luo, Xiong; Wang, Weiping; Zhao, Wenbing

    2017-01-12

    Integrating wireless sensor network (WSN) into the emerging computing paradigm, e.g., cyber-physical social sensing (CPSS), has witnessed a growing interest, and WSN can serve as a social network while receiving more attention from the social computing research field. Then, the localization of sensor nodes has become an essential requirement for many applications over WSN. Meanwhile, the localization information of unknown nodes has strongly affected the performance of WSN. The received signal strength indication (RSSI) as a typical range-based algorithm for positioning sensor nodes in WSN could achieve accurate location with hardware saving, but is sensitive to environmental noises. Moreover, the original distance vector hop (DV-HOP) as an important range-free localization algorithm is simple, inexpensive and not related to the environment factors, but performs poorly when lacking anchor nodes. Motivated by these, various improved DV-HOP schemes with RSSI have been introduced, and we present a new neural network (NN)-based node localization scheme, named RHOP-ELM-RCC, through the use of DV-HOP, RSSI and a regularized correntropy criterion (RCC)-based extreme learning machine (ELM) algorithm (ELM-RCC). Firstly, the proposed scheme employs both RSSI and DV-HOP to evaluate the distances between nodes to enhance the accuracy of distance estimation at a reasonable cost. Then, with the help of ELM featured with a fast learning speed with a good generalization performance and minimal human intervention, a single hidden layer feedforward network (SLFN) on the basis of ELM-RCC is used to implement the optimization task for obtaining the location of unknown nodes. Since the RSSI may be influenced by the environmental noises and may bring estimation error, the RCC instead of the mean square error (MSE) estimation, which is sensitive to noises, is exploited in ELM. Hence, it may make the estimation more robust against outliers. Additionally, the least square estimation (LSE

  1. Discontinuities in recurrent neural networks.

    PubMed

    Gavaldá, R; Siegelmann, H T

    1999-04-01

    This article studies the computational power of various discontinuous real computational models that are based on the classical analog recurrent neural network (ARNN). This ARNN consists of finite number of neurons; each neuron computes a polynomial net function and a sigmoid-like continuous activation function. We introduce arithmetic networks as ARNN augmented with a few simple discontinuous (e.g., threshold or zero test) neurons. We argue that even with weights restricted to polynomial time computable reals, arithmetic networks are able to compute arbitrarily complex recursive functions. We identify many types of neural networks that are at least as powerful as arithmetic nets, some of which are not in fact discontinuous, but they boost other arithmetic operations in the net function (e.g., neurons that can use divisions and polynomial net functions inside sigmoid-like continuous activation functions). These arithmetic networks are equivalent to the Blum-Shub-Smale model, when the latter is restricted to a bounded number of registers. With respect to implementation on digital computers, we show that arithmetic networks with rational weights can be simulated with exponential precision, but even with polynomial-time computable real weights, arithmetic networks are not subject to any fixed precision bounds. This is in contrast with the ARNN that are known to demand precision that is linear in the computation time. When nontrivial periodic functions (e.g., fractional part, sine, tangent) are added to arithmetic networks, the resulting networks are computationally equivalent to a massively parallel machine. Thus, these highly discontinuous networks can solve the presumably intractable class of PSPACE-complete problems in polynomial time.

  2. Training Neural Networks with Weight Constraints

    DTIC Science & Technology

    1993-03-01

    Hardware implementation of artificial neural networks imposes a variety of constraints. Finite weight magnitudes exist in both digital and analog...optimizing a network with weight constraints. Comparisons are made to the backpropagation training algorithm for networks with both unconstrained and hard-limited weight magnitudes. Neural networks , Analog, Digital, Stochastic

  3. Peri-tumoral inflammatory cell infiltration in OSCC: a reliable marker of local recurrence and prognosis? An investigation using artificial neural networks.

    PubMed

    Campisi, G; Calvino, F; Carinci, F; Matranga, D; Carella, M; Mazzotta, M; Rubini, C; Panzarella, V; Santarelli, A; Fedele, S; Lo Muzio, L

    2011-01-01

    The presence of inflammatory reaction in peri-tumoural connective tissue is generally considered as a defense mechanism against cancer, but inflammation tissue in malignant transformation and early steps of oncogenesis has been recently proven to play a supporting and aggravating role in some carcinomas. Aims of this retrospective study were to evaluate in OSCCs the independent association of peri-tumoral inflammatory infiltrate (PTI) with local recurrence (LR) or survival outcome, and to verify whether PTI can be considered a marker of prognosis. Data from 211 cases of OSCC, only surgically treated between 1990 and 2000, were collected and retrospectively analyzed for PTI and the event LR (5 yrs follow-up at least) by means of univariate-multivariate and neural networks analyses. Patients (mean age 65.3 ± 12.4 yrs, M/F = 2.98) showed presence of PTI in 68.2% (144/211): (+) in 27.0%, (++) in 25.6%, (+++) 15.6%; PTI was found reduced in 24.7% of cases and absent in 7.1%. In overall PTI+ve group (n=144), 66 were TNM Stage I, 33 Stage II, 45 Stage III, none Stage IV. LR (mean 6 ± 4 months) was present in 87/211 (41.2%) patients, of which 43/144 (29.8%) in OSCCs with PTI [23 (+), 13 (++) and 7 (+++)] vs. 44/67 (65.7%) in OSCC with PTI -/+ or PTI-ve ones. By univariate analysis, PTI+ve cases showed a significant lower risk to have LR (p <0.0001; OR= 0.2297; CI= 0.1277:0.4134) vs PTI -/+ or -ve ones, especially among cases with higher PTI value (+++) (OR= 0.1718; CI= 0.0749:0.3939). Multivariate analyses (Logit model and neural networks) confirmed the same datum: presence of PTI was an independent predictive variable accounting for a better tumoural outcome without LR (Logit and neural networks values: OR' 0.226; CI= 0.113:0.454; ROC Area = 0.66, respectively). In terms of prognostic significance, elevated PTI was found to have an independent association with the poorest overall survival rate (P = 0.056). Our findings strongly suggest the importance to investigate

  4. Terminal attractors in neural networks

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1989-01-01

    A new type of attractor (terminal attractors) for content-addressable memory, associative memory, and pattern recognition in artificial neural networks operating in continuous time is introduced. The idea of a terminal attractor is based upon a violation of the Lipschitz condition at a fixed point. As a result, the fixed point becomes a singular solution which envelopes the family of regular solutions, while each regular solution approaches such an attractor in finite time. It will be shown that terminal attractors can be incorporated into neural networks such that any desired set of these attractors with prescribed basins is provided by an appropriate selection of the synaptic weights. The applications of terminal attractors for content-addressable and associative memories, pattern recognition, self-organization, and for dynamical training are illustrated.

  5. Terminal attractors in neural networks

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1989-01-01

    A new type of attractor (terminal attractors) for content-addressable memory, associative memory, and pattern recognition in artificial neural networks operating in continuous time is introduced. The idea of a terminal attractor is based upon a violation of the Lipschitz condition at a fixed point. As a result, the fixed point becomes a singular solution which envelopes the family of regular solutions, while each regular solution approaches such an attractor in finite time. It will be shown that terminal attractors can be incorporated into neural networks such that any desired set of these attractors with prescribed basins is provided by an appropriate selection of the synaptic weights. The applications of terminal attractors for content-addressable and associative memories, pattern recognition, self-organization, and for dynamical training are illustrated.

  6. Fiber optic Adaline neural networks

    NASA Astrophysics Data System (ADS)

    Ghosh, Anjan K.; Trepka, Jim; Paparao, Palacharla

    1993-02-01

    Optoelectronic realization of adaptive filters and equalizers using fiber optic tapped delay lines and spatial light modulators has been discussed recently. We describe the design of a single layer fiber optic Adaline neural network which can be used as a bit pattern classifier. In our realization we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in processing speed, parallelism, and interconnection. The new optical neural network described in this paper is designed for optical processing of guided lightwave signals, not electronic signals. We analyzed the convergence or learning characteristics of the optically implemented Adaline in the presence of errors in the hardware, and we studied methods for improving the convergence rate of the Adaline.

  7. Prototype neural network pattern recognition testbed

    NASA Astrophysics Data System (ADS)

    Worrell, Steven W.; Robertson, James A.; Varner, Thomas L.; Garvin, Charles G.

    1991-02-01

    Recent successes ofneural networks has led to an optimistic outlook for neural network applications to image processing(IP). This paperpresents a general architecture for performing comparative studies of neural processing and more conventional IF techniques as well as hybrid pattern recognition (PR) systems. Two hybrid PR systems have been simulated each of which incorporate both conventional and neural processing techniques.

  8. The LILARTI neural network system

    SciTech Connect

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  9. Neural Network for Visual Search Classification

    DTIC Science & Technology

    2007-11-02

    neural network used to perform visual search classification. The neural network consists of a Learning vector quantization network (LVQ) and a single layer perceptron. The objective of this neural network is to classify the various human visual search patterns into predetermined classes. The classes signify the different search strategies used by individuals to scan the same target pattern. The input search patterns are quantified with respect to an ideal search pattern, determined by the user. A supervised learning rule,

  10. Neural Network-Based Hyperspectral Algorithms

    DTIC Science & Technology

    2016-06-07

    Neural Network -Based Hyperspectral Algorithms Walter F. Smith, Jr. and Juanita Sandidge Naval Research Laboratory Code 7340, Bldg 1105 Stennis Space...combination of in-situ and model data of water column variables (IOP’s, depth, bottom type, upwelling radiance, etc.) a neural network non-linear... network (Lippman, 1987). Neural network -based algorithms have been demonstrated by the investigators for retrieval of water depth from Airborne Visible

  11. Neural network subtyping of depression.

    PubMed

    Florio, T M; Parker, G; Austin, M P; Hickie, I; Mitchell, P; Wilhelm, K

    1998-10-01

    To examine the applicability of a neural network classification strategy to examine the independent contribution of psychomotor disturbance (PMD) and endogeneity symptoms to the DSM-III-R definition of melancholia. We studied 407 depressed patients with the clinical dataset comprising 17 endogeneity symptoms and the 18-item CORE measure of behaviourally rated PMD. A multilayer perception neural network was used to fit non-linear models of varying complexity. A linear discriminant function analysis was also used to generate a model for comparison with the non-linear models. Models (linear and non-linear) using PMD items only and endogeneity symptoms only had similar rates of successful classification, while non-linear models combining both PMD and symptoms scores achieved the best classifications. Our current non-linear model was superior to a linear analysis, a finding which may have wider application to psychiatric classification. Our non-linear analysis of depressive subtypes supports the binary view that melancholic and non-melancholic depression are separate clinical disorders rather than different forms of the same entity. This study illustrates how non-linear modelling with neural networks is a potentially fruitful approach to the study of the diagnostic taxonomy of psychiatric disorders and to clinical decision-making.

  12. Dynamic Neural Networks Supporting Memory Retrieval

    PubMed Central

    St. Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.

    2011-01-01

    How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) Medial Prefrontal Cortex (PFC) Network, associated with self-referential processes, 2) Medial Temporal Lobe (MTL) Network, associated with memory, 3) Frontoparietal Network, associated with strategic search, and 4) Cingulooperculum Network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior. PMID:21550407

  13. Visual grammars and their neural networks

    NASA Astrophysics Data System (ADS)

    Mjolsness, Eric

    1992-07-01

    We exhibit a systematic way to derive neural nets for vision problems. It involves formulating a vision problem as Bayesian inference or decision on a comprehensive model of the visual domain given by a probabilistic grammar. A key feature of this grammar is the way in which it eliminates model information, such as object labels, as it produces an image; correspondence problems and other noise removal tasks result. The neural nets that arise most directly are generalized assignment networks. Also there are transformations which naturally yield improved algorithms such as correlation matching in scale space and the Frameville neural nets for high-level vision. Networks derived this way generally have objective functions with spurious local minima; such minima may commonly be avoided by dynamics that include deterministic annealing, for example recent improvements to Mean Field Theory dynamics. The grammatical method of neural net design allows domain knowledge to enter from all levels of the grammar, including `abstract' levels remote from the final image data, and may permit new kinds of learning as well.

  14. Neural network modeling of emotion

    NASA Astrophysics Data System (ADS)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  15. Constructive neural network learning algorithms

    SciTech Connect

    Parekh, R.; Yang, Jihoon; Honavar, V.

    1996-12-31

    Constructive Algorithms offer an approach for incremental construction of potentially minimal neural network architectures for pattern classification tasks. These algorithms obviate the need for an ad-hoc a-priori choice of the network topology. The constructive algorithm design involves alternately augmenting the existing network topology by adding one or more threshold logic units and training the newly added threshold neuron(s) using a stable variant of the perception learning algorithm (e.g., pocket algorithm, thermal perception, and barycentric correction procedure). Several constructive algorithms including tower, pyramid, tiling, upstart, and perception cascade have been proposed for 2-category pattern classification. These algorithms differ in terms of their topological and connectivity constraints as well as the training strategies used for individual neurons.

  16. Neural-Network Computer Transforms Coordinates

    NASA Technical Reports Server (NTRS)

    Josin, Gary M.

    1990-01-01

    Numerical simulation demonstrated ability of conceptual neural-network computer to generalize what it has "learned" from few examples. Ability to generalize achieved with even simple neural network (relatively few neurons) and after exposure of network to only few "training" examples. Ability to obtain fairly accurate mappings after only few training examples used to provide solutions to otherwise intractable mapping problems.

  17. Neural-Network Computer Transforms Coordinates

    NASA Technical Reports Server (NTRS)

    Josin, Gary M.

    1990-01-01

    Numerical simulation demonstrated ability of conceptual neural-network computer to generalize what it has "learned" from few examples. Ability to generalize achieved with even simple neural network (relatively few neurons) and after exposure of network to only few "training" examples. Ability to obtain fairly accurate mappings after only few training examples used to provide solutions to otherwise intractable mapping problems.

  18. Feature Extraction Using an Unsupervised Neural Network

    DTIC Science & Technology

    1991-05-03

    A novel unsupervised neural network for dimensionality reduction which seeks directions emphasizing distinguishing features in the data is presented. A statistical framework for the parameter estimation problem associated with this neural network is given and its connection to exploratory projection pursuit methods is established. The network is shown to minimize a loss function (projection index) over a

  19. Neural Networks in Nonlinear Aircraft Control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis J.

    1990-01-01

    Recent research indicates that artificial neural networks offer interesting learning or adaptive capabilities. The current research focuses on the potential for application of neural networks in a nonlinear aircraft control law. The current work has been to determine which networks are suitable for such an application and how they will fit into a nonlinear control law.

  20. Neural networks and MIMD-multiprocessors

    NASA Technical Reports Server (NTRS)

    Vanhala, Jukka; Kaski, Kimmo

    1990-01-01

    Two artificial neural network models are compared. They are the Hopfield Neural Network Model and the Sparse Distributed Memory model. Distributed algorithms for both of them are designed and implemented. The run time characteristics of the algorithms are analyzed theoretically and tested in practice. The storage capacities of the networks are compared. Implementations are done using a distributed multiprocessor system.

  1. Satellite image analysis using neural networks

    NASA Technical Reports Server (NTRS)

    Sheldon, Roger A.

    1990-01-01

    The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.

  2. Adaptive optimization and control using neural networks

    SciTech Connect

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  3. Neural Network Retinal Model Real Time Implementation

    DTIC Science & Technology

    1992-09-02

    addresses the specific needs of vision processing. The goal of this SBIR Phase I project has been to take a significant neural network vision...application and to map it onto dedicated hardware for real time implementation. The neural network was already demonstrated using software simulation on a...general purpose computer. During Phase 1, HNC took a neural network model of the retina and, using HNC’s Vision Processor (ViP) prototype hardware

  4. Neural Network False Alarm Filter. Volume 1.

    DTIC Science & Technology

    1994-12-01

    This effort identified, developed and demonstrated a set of approaches for applying neural network learning techniques to the development of a real... neural network models, 9 fault report causes and 12 common groups of BIT techniques was identified. From this space, 4 unique, high-potential...of their strengths and weaknesses were performed along with cost/ benefit analyses. This study concluded that the best candidates for neural network insert

  5. A Neural Network Object Recognition System

    DTIC Science & Technology

    1990-07-01

    useful for exploring different neural network configurations. There are three main computation phases of a model based object recognition system...segmentation, feature extraction, and object classification. This report focuses on the object classification stage. For segmentation, a neural network based...are available with the current system. Neural network based feature extraction may be added at a later date. The classification stage consists of a

  6. A Complexity Theory of Neural Networks

    DTIC Science & Technology

    1991-08-09

    Significant progress has been made in laying the foundations of a complexity theory of neural networks . The fundamental complexity classes have been...identified and studied. The class of problems solvable by small, shallow neural networks has been found to be the same class even if (1) probabilistic...behaviour (2)Multi-valued logic, and (3)analog behaviour, are allowed (subject to certain resonable technical assumptions). Neural networks can be

  7. Oil reservoir properties estimation using neural networks

    SciTech Connect

    Toomarian, N.B.; Barhen, J.; Glover, C.W.; Aminzadeh, F.

    1997-02-01

    This paper investigates the applicability as well as the accuracy of artificial neural networks for estimating specific parameters that describe reservoir properties based on seismic data. This approach relies on JPL`s adjoint operators general purpose neural network code to determine the best suited architecture. The authors believe that results presented in this work demonstrate that artificial neural networks produce surprisingly accurate estimates of the reservoir parameters.

  8. Local Area Networks.

    ERIC Educational Resources Information Center

    Nasatir, Marilyn; And Others

    1990-01-01

    Four papers discuss LANs (local area networks) and library applications: (1) "Institute for Electrical and Electronic Engineers Standards..." (Charles D. Brown); (2) "Facilities Planning for LANs..." (Gail Persky); (3) "Growing up with the Alumni Library: LAN..." (Russell Buchanan); and (4) "Implementing a LAN...at the Health Sciences Library"…

  9. Local Area Networks.

    ERIC Educational Resources Information Center

    Nasatir, Marilyn; And Others

    1990-01-01

    Four papers discuss LANs (local area networks) and library applications: (1) "Institute for Electrical and Electronic Engineers Standards..." (Charles D. Brown); (2) "Facilities Planning for LANs..." (Gail Persky); (3) "Growing up with the Alumni Library: LAN..." (Russell Buchanan); and (4) "Implementing a LAN...at the Health Sciences Library"…

  10. Neural network based system for equipment surveillance

    DOEpatents

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  11. Neural network based system for equipment surveillance

    DOEpatents

    Vilim, Richard B.; Gross, Kenneth C.; Wegerich, Stephan W.

    1998-01-01

    A method and system for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process.

  12. Electronic neural networks for global optimization

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Moopenn, A. W.; Eberhardt, S.

    1990-01-01

    An electronic neural network with feedback architecture, implemented in analog custom VLSI is described. Its application to problems of global optimization for dynamic assignment is discussed. The convergence properties of the neural network hardware are compared with computer simulation results. The neural network's ability to provide optimal or near optimal solutions within only a few neuron time constants, a speed enhancement of several orders of magnitude over conventional search methods, is demonstrated. The effect of noise on the circuit dynamics and the convergence behavior of the neural network hardware is also examined.

  13. Neural network architecture for crossbar switch control

    NASA Technical Reports Server (NTRS)

    Troudet, Terry P.; Walters, Stephen M.

    1991-01-01

    A Hopfield neural network architecture for the real-time control of a crossbar switch for switching packets at maximum throughput is proposed. The network performance and processing time are derived from a numerical simulation of the transitions of the neural network. A method is proposed to optimize electronic component parameters and synaptic connections, and it is fully illustrated by the computer simulation of a VLSI implementation of 4 x 4 neural net controller. The extension to larger size crossbars is demonstrated through the simulation of an 8 x 8 crossbar switch controller, where the performance of the neural computation is discussed in relation to electronic noise and inhomogeneities of network components.

  14. Advances in neural networks research: an introduction.

    PubMed

    Kozma, Robert; Bressler, Steven; Perlovsky, Leonid; Venayagamoorthy, Ganesh Kumar

    2009-01-01

    The present Special Issue "Advances in Neural Networks Research: IJCNN2009" provides a state-of-art overview of the field of neural networks. It includes 39 papers from selected areas of the 2009 International Joint Conference on Neural Networks (IJCNN2009). IJCNN2009 took place on June 14-19, 2009 in Atlanta, Georgia, USA, and it represents an exemplary collaboration between the International Neural Networks Society and the IEEE Computational Intelligence Society. Topics in this issue include neuroscience and cognitive science, computational intelligence and machine learning, hybrid techniques, nonlinear dynamics and chaos, various soft computing technologies, intelligent signal processing and pattern recognition, bioinformatics and biomedicine, and engineering applications.

  15. Neural network architecture for crossbar switch control

    NASA Technical Reports Server (NTRS)

    Troudet, Terry P.; Walters, Stephen M.

    1991-01-01

    A Hopfield neural network architecture for the real-time control of a crossbar switch for switching packets at maximum throughput is proposed. The network performance and processing time are derived from a numerical simulation of the transitions of the neural network. A method is proposed to optimize electronic component parameters and synaptic connections, and it is fully illustrated by the computer simulation of a VLSI implementation of 4 x 4 neural net controller. The extension to larger size crossbars is demonstrated through the simulation of an 8 x 8 crossbar switch controller, where the performance of the neural computation is discussed in relation to electronic noise and inhomogeneities of network components.

  16. Aerodynamic Design Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.

    2003-01-01

    The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.

  17. Neural networks for nuclear spectroscopy

    SciTech Connect

    Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T.

    1995-12-31

    In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.

  18. Neural Networks for Rapid Design and Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Maghami, Peiman G.

    1998-01-01

    Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.

  19. Neural Network Classifies Teleoperation Data

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Giancaspro, Antonio; Losito, Sergio; Pasquariello, Guido

    1994-01-01

    Prototype artificial neural network, implemented in software, identifies phases of telemanipulator tasks in real time by analyzing feedback signals from force sensors on manipulator hand. Prototype is early, subsystem-level product of continuing effort to develop automated system that assists in training and supervising human control operator: provides symbolic feedback (e.g., warnings of impending collisions or evaluations of performance) to operator in real time during successive executions of same task. Also simplifies transition between teleoperation and autonomous modes of telerobotic system.

  20. Flow Control Using Neural Networks

    DTIC Science & Technology

    2007-11-02

    FEB 93 - 31 DEC 96 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS FLOW CONTROL USING NEURAL NETWORKS F49620-93-1-0135 61102F 6. AUTHOR(S) 2307/BS THORWALD...OFFICE OF SCIENTIFIC RESEARCH (AFOSRO AGENCY REPORT NUMBER 110 DUNCAN AVENUE, ROOM B115 BOLLING AFB DC 20332- 8050 11. SUPPLEMENTARY NOTES 12a...signals. Figure 5 shows a time series for an actuator that performs a ramp motion in the streamwise direction over about 1 % of the TS period and remains

  1. Neural Network Classifies Teleoperation Data

    NASA Technical Reports Server (NTRS)

    Fiorini, Paolo; Giancaspro, Antonio; Losito, Sergio; Pasquariello, Guido

    1994-01-01

    Prototype artificial neural network, implemented in software, identifies phases of telemanipulator tasks in real time by analyzing feedback signals from force sensors on manipulator hand. Prototype is early, subsystem-level product of continuing effort to develop automated system that assists in training and supervising human control operator: provides symbolic feedback (e.g., warnings of impending collisions or evaluations of performance) to operator in real time during successive executions of same task. Also simplifies transition between teleoperation and autonomous modes of telerobotic system.

  2. Signature neural networks: definition and application to multidimensional sorting problems.

    PubMed

    Latorre, Roberto; de Borja Rodriguez, Francisco; Varona, Pablo

    2011-01-01

    In this paper we present a self-organizing neural network paradigm that is able to discriminate information locally using a strategy for information coding and processing inspired in recent findings in living neural systems. The proposed neural network uses: 1) neural signatures to identify each unit in the network; 2) local discrimination of input information during the processing; and 3) a multicoding mechanism for information propagation regarding the who and the what of the information. The local discrimination implies a distinct processing as a function of the neural signature recognition and a local transient memory. In the context of artificial neural networks none of these mechanisms has been analyzed in detail, and our goal is to demonstrate that they can be used to efficiently solve some specific problems. To illustrate the proposed paradigm, we apply it to the problem of multidimensional sorting, which can take advantage of the local information discrimination. In particular, we compare the results of this new approach with traditional methods to solve jigsaw puzzles and we analyze the situations where the new paradigm improves the performance.

  3. Correlated neural variability in persistent state networks.

    PubMed

    Polk, Amber; Litwin-Kumar, Ashok; Doiron, Brent

    2012-04-17

    Neural activity that persists long after stimulus presentation is a biological correlate of short-term memory. Variability in spiking activity causes persistent states to drift over time, ultimately degrading memory. Models of short-term memory often assume that the input fluctuations to neural populations are independent across cells, a feature that attenuates population-level variability and stabilizes persistent activity. However, this assumption is at odds with experimental recordings from pairs of cortical neurons showing that both the input currents and output spike trains are correlated. It remains unclear how correlated variability affects the stability of persistent activity and the performance of cognitive tasks that it supports. We consider the stochastic long-timescale attractor dynamics of pairs of mutually inhibitory populations of spiking neurons. In these networks, persistent activity was less variable when correlated variability was globally distributed across both populations compared with the case when correlations were locally distributed only within each population. Using a reduced firing rate model with a continuum of persistent states, we show that, when input fluctuations are correlated across both populations, they drive firing rate fluctuations orthogonal to the persistent state attractor, thereby causing minimal stochastic drift. Using these insights, we establish that distributing correlated fluctuations globally as opposed to locally improves network's performance on a two-interval, delayed response discrimination task. Our work shows that the correlation structure of input fluctuations to a network is an important factor when determining long-timescale, persistent population spiking activity.

  4. The Laplacian spectrum of neural networks.

    PubMed

    de Lange, Siemon C; de Reus, Marcel A; van den Heuvel, Martijn P

    2014-01-13

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these "conventional" graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks.

  5. The Laplacian spectrum of neural networks

    PubMed Central

    de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.

    2014-01-01

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286

  6. Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network

    PubMed Central

    Zhang, Kai; Long, Erping; Cui, Jiangtao; Zhu, Mingmin; An, Yingying; Zhang, Jia; Liu, Zhenzhen; Lin, Zhuoling; Li, Xiaoyan; Chen, Jingjing; Cao, Qianzhong; Li, Jing; Wu, Xiaohang; Wang, Dongni

    2017-01-01

    Slit-lamp images play an essential role for diagnosis of pediatric cataracts. We present a computer vision-based framework for the automatic localization and diagnosis of slit-lamp images by identifying the lens region of interest (ROI) and employing a deep learning convolutional neural network (CNN). First, three grading degrees for slit-lamp images are proposed in conjunction with three leading ophthalmologists. The lens ROI is located in an automated manner in the original image using two successive applications of Candy detection and the Hough transform, which are cropped, resized to a fixed size and used to form pediatric cataract datasets. These datasets are fed into the CNN to extract high-level features and implement automatic classification and grading. To demonstrate the performance and effectiveness of the deep features extracted in the CNN, we investigate the features combined with support vector machine (SVM) and softmax classifier and compare these with the traditional representative methods. The qualitative and quantitative experimental results demonstrate that our proposed method offers exceptional mean accuracy, sensitivity and specificity: classification (97.07%, 97.28%, and 96.83%) and a three-degree grading area (89.02%, 86.63%, and 90.75%), density (92.68%, 91.05%, and 93.94%) and location (89.28%, 82.70%, and 93.08%). Finally, we developed and deployed a potential automatic diagnostic software for ophthalmologists and patients in clinical applications to implement the validated model. PMID:28306716

  7. Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network.

    PubMed

    Liu, Xiyang; Jiang, Jiewei; Zhang, Kai; Long, Erping; Cui, Jiangtao; Zhu, Mingmin; An, Yingying; Zhang, Jia; Liu, Zhenzhen; Lin, Zhuoling; Li, Xiaoyan; Chen, Jingjing; Cao, Qianzhong; Li, Jing; Wu, Xiaohang; Wang, Dongni; Lin, Haotian

    2017-01-01

    Slit-lamp images play an essential role for diagnosis of pediatric cataracts. We present a computer vision-based framework for the automatic localization and diagnosis of slit-lamp images by identifying the lens region of interest (ROI) and employing a deep learning convolutional neural network (CNN). First, three grading degrees for slit-lamp images are proposed in conjunction with three leading ophthalmologists. The lens ROI is located in an automated manner in the original image using two successive applications of Candy detection and the Hough transform, which are cropped, resized to a fixed size and used to form pediatric cataract datasets. These datasets are fed into the CNN to extract high-level features and implement automatic classification and grading. To demonstrate the performance and effectiveness of the deep features extracted in the CNN, we investigate the features combined with support vector machine (SVM) and softmax classifier and compare these with the traditional representative methods. The qualitative and quantitative experimental results demonstrate that our proposed method offers exceptional mean accuracy, sensitivity and specificity: classification (97.07%, 97.28%, and 96.83%) and a three-degree grading area (89.02%, 86.63%, and 90.75%), density (92.68%, 91.05%, and 93.94%) and location (89.28%, 82.70%, and 93.08%). Finally, we developed and deployed a potential automatic diagnostic software for ophthalmologists and patients in clinical applications to implement the validated model.

  8. Three dimensional living neural networks

    NASA Astrophysics Data System (ADS)

    Linnenberger, Anna; McLeod, Robert R.; Basta, Tamara; Stowell, Michael H. B.

    2015-08-01

    We investigate holographic optical tweezing combined with step-and-repeat maskless projection micro-stereolithography for fine control of 3D positioning of living cells within a 3D microstructured hydrogel grid. Samples were fabricated using three different cell lines; PC12, NT2/D1 and iPSC. PC12 cells are a rat cell line capable of differentiation into neuron-like cells NT2/D1 cells are a human cell line that exhibit biochemical and developmental properties similar to that of an early embryo and when exposed to retinoic acid the cells differentiate into human neurons useful for studies of human neurological disease. Finally induced pluripotent stem cells (iPSC) were utilized with the goal of future studies of neural networks fabricated from human iPSC derived neurons. Cells are positioned in the monomer solution with holographic optical tweezers at 1064 nm and then are encapsulated by photopolymerization of polyethylene glycol (PEG) hydrogels formed by thiol-ene photo-click chemistry via projection of a 512x512 spatial light modulator (SLM) illuminated at 405 nm. Fabricated samples are incubated in differentiation media such that cells cease to divide and begin to form axons or axon-like structures. By controlling the position of the cells within the encapsulating hydrogel structure the formation of the neural circuits is controlled. The samples fabricated with this system are a useful model for future studies of neural circuit formation, neurological disease, cellular communication, plasticity, and repair mechanisms.

  9. Neural Network Controlled Visual Saccades

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey D.; Grogan, Timothy A.

    1989-03-01

    The paper to be presented will discuss research on a computer vision system controlled by a neural network capable of learning through classical (Pavlovian) conditioning. Through the use of unconditional stimuli (reward and punishment) the system will develop scan patterns of eye saccades necessary to differentiate and recognize members of an input set. By foveating only those portions of the input image that the system has found to be necessary for recognition the drawback of computational explosion as the size of the input image grows is avoided. The model incorporates many features found in animal vision systems, and is governed by understandable and modifiable behavior patterns similar to those reported by Pavlov in his classic study. These behavioral patterns are a result of a neuronal model, used in the network, explicitly designed to reproduce this behavior.

  10. Hand Gesture Recognition Using Neural Networks.

    DTIC Science & Technology

    1996-05-01

    inherent in the model. The high gesture recognition rates and quick network retraining times found in the present study suggest that a neural network approach to gesture recognition be further evaluated.

  11. A new formulation for feedforward neural networks.

    PubMed

    Razavi, Saman; Tolson, Bryan A

    2011-10-01

    Feedforward neural network is one of the most commonly used function approximation techniques and has been applied to a wide variety of problems arising from various disciplines. However, neural networks are black-box models having multiple challenges/difficulties associated with training and generalization. This paper initially looks into the internal behavior of neural networks and develops a detailed interpretation of the neural network functional geometry. Based on this geometrical interpretation, a new set of variables describing neural networks is proposed as a more effective and geometrically interpretable alternative to the traditional set of network weights and biases. Then, this paper develops a new formulation for neural networks with respect to the newly defined variables; this reformulated neural network (ReNN) is equivalent to the common feedforward neural network but has a less complex error response surface. To demonstrate the learning ability of ReNN, in this paper, two training methods involving a derivative-based (a variation of backpropagation) and a derivative-free optimization algorithms are employed. Moreover, a new measure of regularization on the basis of the developed geometrical interpretation is proposed to evaluate and improve the generalization ability of neural networks. The value of the proposed geometrical interpretation, the ReNN approach, and the new regularization measure are demonstrated across multiple test problems. Results show that ReNN can be trained more effectively and efficiently compared to the common neural networks and the proposed regularization measure is an effective indicator of how a network would perform in terms of generalization.

  12. Problem Specific applications for Neural Networks

    DTIC Science & Technology

    1988-12-01

    97 iv List Of Figures Figure Page 1. Neural Network Models ...... ............. 2 2. A Single - Layer Perceptron ..... ........... 4...the network is in use. Three of the most well-known neural networks are the single - layer perceptron , the multi-layer perceptron, and the Kohonen self...three of these networks can accept discrete (binary) or continuous inputs (5:6). 3 Single-Laver Perceptron. The single - layer perceptron (shown in Figure 2

  13. Drift chamber tracking with neural networks

    SciTech Connect

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  14. Extrapolation limitations of multilayer feedforward neural networks

    NASA Technical Reports Server (NTRS)

    Haley, Pamela J.; Soloway, Donald

    1992-01-01

    The limitations of backpropagation used as a function extrapolator were investigated. Four common functions were used to investigate the network's extrapolation capability. The purpose of the experiment was to determine whether neural networks are capable of extrapolation and, if so, to determine the range for which networks can extrapolate. The authors show that neural networks cannot extrapolate and offer an explanation to support this result.

  15. Extrapolation limitations of multilayer feedforward neural networks

    NASA Technical Reports Server (NTRS)

    Haley, Pamela J.; Soloway, Donald

    1992-01-01

    The limitations of backpropagation used as a function extrapolator were investigated. Four common functions were used to investigate the network's extrapolation capability. The purpose of the experiment was to determine whether neural networks are capable of extrapolation and, if so, to determine the range for which networks can extrapolate. The authors show that neural networks cannot extrapolate and offer an explanation to support this result.

  16. Coherence resonance in bursting neural networks.

    PubMed

    Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J

    2015-10-01

    Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal-a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.

  17. Wind power prediction based on genetic neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Suhan

    2017-04-01

    The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.

  18. Acoustics Local Area Network

    DTIC Science & Technology

    2013-01-31

    contract was to provide a shared computing i : resource - the acou tics local area network (ALAN) - to support ocean acoustic and related oceanographic...SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT OF REPORT: THIS PAGE OF ABSTRACT Unclassified I I ONRCtI COMPUTER V 10 11/94 STANDARD FORM 233 (REV 241) oo 0 90 " VLNV1LV HNO Og6OuLtOI, CT:tT 96/OT/0

  19. Creativity in design and artificial neural networks

    SciTech Connect

    Neocleous, C.C.; Esat, I.I.; Schizas, C.N.

    1996-12-31

    The creativity phase is identified as an integral part of the design phase. The characteristics of creative persons which are relevant to designing artificial neural networks manifesting aspects of creativity, are identified. Based on these identifications, a general framework of artificial neural network characteristics to implement such a goal are proposed.

  20. Applications of Neural Networks in Finance.

    ERIC Educational Resources Information Center

    Crockett, Henry; Morrison, Ronald

    1994-01-01

    Discusses research with neural networks in the area of finance. Highlights include bond pricing, theoretical exposition of primary bond pricing, bond pricing regression model, and an example that created networks with corporate bonds and NeuralWare Neuralworks Professional H software using the back-propagation technique. (LRW)

  1. Neural Network Algorithm for Particle Loading

    SciTech Connect

    J. L. V. Lewandowski

    2003-04-25

    An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given.

  2. Neural Networks for Handwritten English Alphabet Recognition

    NASA Astrophysics Data System (ADS)

    Perwej, Yusuf; Chaturvedi, Ashish

    2011-04-01

    This paper demonstrates the use of neural networks for developing a system that can recognize hand-written English alphabets. In this system, each English alphabet is represented by binary values that are used as input to a simple feature extraction system, whose output is fed to our neural network system.

  3. Radiation Behavior of Analog Neural Network Chip

    NASA Technical Reports Server (NTRS)

    Langenbacher, H.; Zee, F.; Daud, T.; Thakoor, A.

    1996-01-01

    A neural network experiment conducted for the Space Technology Research Vehicle (STRV-1) 1-b launched in June 1994. Identical sets of analog feed-forward neural network chips was used to study and compare the effects of space and ground radiation on the chips. Three failure mechanisms are noted.

  4. Neural network classification - A Bayesian interpretation

    NASA Technical Reports Server (NTRS)

    Wan, Eric A.

    1990-01-01

    The relationship between minimizing a mean squared error and finding the optimal Bayesian classifier is reviewed. This provides a theoretical interpretation for the process by which neural networks are used in classification. A number of confidence measures are proposed to evaluate the performance of the neural network classifier within a statistical framework.

  5. Advanced telerobotic control using neural networks

    NASA Technical Reports Server (NTRS)

    Pap, Robert M.; Atkins, Mark; Cox, Chadwick; Glover, Charles; Kissel, Ralph; Saeks, Richard

    1993-01-01

    Accurate Automation is designing and developing adaptive decentralized joint controllers using neural networks. We are then implementing these in hardware for the Marshall Space Flight Center PFMA as well as to be usable for the Remote Manipulator System (RMS) robot arm. Our design is being realized in hardware after completion of the software simulation. This is implemented using a Functional-Link neural network.

  6. Isolated Speech Recognition Using Artificial Neural Networks

    DTIC Science & Technology

    2007-11-02

    In this project Artificial Neural Networks are used as research tool to accomplish Automated Speech Recognition of normal speech. A small size...the first stage of this work are satisfactory and thus the application of artificial neural networks in conjunction with cepstral analysis in isolated word recognition holds promise.

  7. Online guidance updates using neural networks

    NASA Astrophysics Data System (ADS)

    Filici, Cristian; Sánchez Peña, Ricardo S.

    2010-02-01

    The aim of this article is to present a method for the online guidance update for a launcher ascent trajectory that is based on the utilization of a neural network approximator. Generation of training patterns and selection of the input and output spaces of the neural network are presented, and implementation issues are discussed. The method is illustrated by a 2-dimensional launcher simulation.

  8. Neural network based architectures for aerospace applications

    NASA Technical Reports Server (NTRS)

    Ricart, Richard

    1987-01-01

    A brief history of the field of neural networks research is given and some simple concepts are described. In addition, some neural network based avionics research and development programs are reviewed. The need for the United States Air Force and NASA to assume a leadership role in supporting this technology is stressed.

  9. Neural Network Classification of Cerebral Embolic Signals

    DTIC Science & Technology

    2007-11-02

    application of new signal processing techniques to the analysis and classification of embolic signals. We applied a Wavelet Neural Network algorithm...to approximate the embolic signals, with the parameters of the wavelet nodes being used to train a Neural Network to classify these signals as resulting from normal flow, or from gaseous or solid emboli.

  10. Neural Network Research: A Personal Perspective,

    DTIC Science & Technology

    1988-03-01

    These vision preprocessor and ART autonomous classifier examples are just two of the many neural network architectures now being developed by...computational theories with natural realizations as real-time adaptive neural network architectures with promising properties for tackling some of the

  11. Neural Network Based Helicopter Low Airspeed Indicator

    DTIC Science & Technology

    1996-10-24

    This invention relates generally to virtual sensors and, more particularly, to a means and method utilizing a neural network for estimating...helicopter airspeed at speeds below about 50 knots using only fixed system parameters (i.e., parameters measured or determined in a reference frame fixed relative to the helicopter fuselage) as inputs to the neural network .

  12. Evolving Neural Networks for Nonlinear Control.

    DTIC Science & Technology

    1996-09-30

    An approach to creating Amorphous Recurrent Neural Networks (ARNN) using Genetic Algorithms (GA) called 2pGA has been developed and shown to be...effective in evolving neural networks for the control and stabilization of both linear and nonlinear plants, the optimal control for a nonlinear regulator

  13. Advanced telerobotic control using neural networks

    NASA Technical Reports Server (NTRS)

    Pap, Robert M.; Atkins, Mark; Cox, Chadwick; Glover, Charles; Kissel, Ralph; Saeks, Richard

    1993-01-01

    Accurate Automation is designing and developing adaptive decentralized joint controllers using neural networks. We are then implementing these in hardware for the Marshall Space Flight Center PFMA as well as to be usable for the Remote Manipulator System (RMS) robot arm. Our design is being realized in hardware after completion of the software simulation. This is implemented using a Functional-Link neural network.

  14. Neural networks applications to control and computations

    NASA Technical Reports Server (NTRS)

    Luxemburg, Leon A.

    1994-01-01

    Several interrelated problems in the area of neural network computations are described. First an interpolation problem is considered, then a control problem is reduced to a problem of interpolation by a neural network via Lyapunov function approach, and finally a new, faster method of learning as compared with the gradient descent method, was introduced.

  15. Self-organization of neural networks

    NASA Astrophysics Data System (ADS)

    Clark, John W.; Winston, Jeffrey V.; Rafelski, Johann

    1984-05-01

    The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (“brainwashing”) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conductive to the simulation of memory and learning phenomena.

  16. The neural network approach to parton fitting

    SciTech Connect

    Rojo, Joan; Latorre, Jose I.; Del Debbio, Luigi; Forte, Stefano; Piccione, Andrea

    2005-10-06

    We introduce the neural network approach to global fits of parton distribution functions. First we review previous work on unbiased parametrizations of deep-inelastic structure functions with faithful estimation of their uncertainties, and then we summarize the current status of neural network parton distribution fits.

  17. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Adaptive Neurons For Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  19. A Survey of Neural Network Publications.

    ERIC Educational Resources Information Center

    Vijayaraman, Bindiganavale S.; Osyk, Barbara

    This paper is a survey of publications on artificial neural networks published in business journals for the period ending July 1996. Its purpose is to identify and analyze trends in neural network research during that period. This paper shows which topics have been heavily researched, when these topics were researched, and how that research has…

  20. Introduction to Concepts in Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  1. Introduction to Concepts in Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  2. Forecasting Jet Fuel Prices Using Artificial Neural Networks.

    DTIC Science & Technology

    1995-03-01

    Artificial neural networks provide a new approach to commodity forecasting that does not require algorithm or rule development. Neural networks have...NeuralWare, more people can take advantage of the power of artificial neural networks . This thesis provides an introduction to neural networks, and reviews

  3. Pruning artificial neural networks using neural complexity measures.

    PubMed

    Jorgensen, Thomas D; Haynes, Barry P; Norlund, Charlotte C F

    2008-10-01

    This paper describes a new method for pruning artificial neural networks, using a measure of the neural complexity of the neural network. This measure is used to determine the connections that should be pruned. The measure computes the information-theoretic complexity of a neural network, which is similar to, yet different from previous research on pruning. The method proposed here shows how overly large and complex networks can be reduced in size, whilst retaining learnt behaviour and fitness. The technique proposed here helps to discover a network topology that matches the complexity of the problem it is meant to solve. This novel pruning technique is tested in a robot control domain, simulating a racecar. It is shown, that the proposed pruning method is a significant improvement over the most commonly used pruning method Magnitude Based Pruning. Furthermore, some of the pruned networks prove to be faster learners than the benchmark network that they originate from. This means that this pruning method can also help to unleash hidden potential in a network, because the learning time decreases substantially for a pruned a network, due to the reduction of dimensionality of the network.

  4. Enhancing neural-network performance via assortativity.

    PubMed

    de Franciscis, Sebastiano; Johnson, Samuel; Torres, Joaquín J

    2011-03-01

    The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations--assortativity--on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information.

  5. Enhancing neural-network performance via assortativity

    SciTech Connect

    Franciscis, Sebastiano de; Johnson, Samuel; Torres, Joaquin J.

    2011-03-15

    The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations - assortativity - on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information.

  6. Feedback neural networks for ARTIST ionogram processing

    NASA Astrophysics Data System (ADS)

    Galkin, Ivan A.; Reinisch, Bodo W.; Ososkov, Gennadii A.; Zaznobina, Elena G.; Neshyba, Steven P.

    1996-09-01

    Modern pattern recognition techniques are applied to achieve high quality automatic processing of Digisonde ionograms. An artificial neural network (ANN) was found to be a promising technique for ionospheric echo tracing. A modified rotor model was tested to construct the Hopfield ANN with the mean field theory updating scheme. Tests of the models against various ionospheric data showed that the modified rotor model gives good results where conventional tracing techniques have difficulties. Use of the ANN made it possible to implement a robust scheme of trace interpretation that considers local trace inclination angles available after ANN completes tracing. The interpretation scheme features a new algorithm for ƒ0F1 identification that estimates an α angle for the trace segments in the vicinity of the critical frequency ƒ0F1. First results from off-line tests suggest the potential of implementing new operational autoscaling software in the worldwide Digisonde network.

  7. Wavelet differential neural network observer.

    PubMed

    Chairez, Isaac

    2009-09-01

    State estimation for uncertain systems affected by external noises is an important problem in control theory. This paper deals with a state observation problem when the dynamic model of a plant contains uncertainties or it is completely unknown. Differential neural network (NN) approach is applied in this uninformative situation but with activation functions described by wavelets. A new learning law, containing an adaptive adjustment rate, is suggested to imply the stability condition for the free parameters of the observer. Nominal weights are adjusted during the preliminary training process using the least mean square (LMS) method. Lyapunov theory is used to obtain the upper bounds for the weights dynamics as well as for the mean squared estimation error. Two numeric examples illustrate this approach: first, a nonlinear electric system, governed by the Chua's equation and second the Lorentz oscillator. Both systems are assumed to be affected by external perturbations and their parameters are unknown.

  8. Sunspot prediction using neural networks

    NASA Technical Reports Server (NTRS)

    Villarreal, James; Baffes, Paul

    1990-01-01

    The earliest systematic observance of sunspot activity is known to have been discovered by the Chinese in 1382 during the Ming Dynasty (1368 to 1644) when spots on the sun were noticed by looking at the sun through thick, forest fire smoke. Not until after the 18th century did sunspot levels become more than a source of wonderment and curiosity. Since 1834 reliable sunspot data has been collected by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Naval Observatory. Recently, considerable effort has been placed upon the study of the effects of sunspots on the ecosystem and the space environment. The efforts of the Artificial Intelligence Section of the Mission Planning and Analysis Division of the Johnson Space Center involving the prediction of sunspot activity using neural network technologies are described.

  9. Tampa Electric Neural Network Sootblowing

    SciTech Connect

    Mark A. Rhode

    2004-09-30

    Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate around

  10. Tampa Electric Neural Network Sootblowing

    SciTech Connect

    Mark A. Rhode

    2004-03-31

    Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing co-funding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate around

  11. Tampa Electric Neural Network Sootblowing

    SciTech Connect

    Mark A. Rhode

    2003-12-31

    Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NO{sub x} formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent soot-blowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate

  12. Artificial neural networks in neurosurgery.

    PubMed

    Azimi, Parisa; Mohammadi, Hasan Reza; Benzel, Edward C; Shahzadi, Sohrab; Azhari, Shirzad; Montazeri, Ali

    2015-03-01

    Artificial neural networks (ANNs) effectively analyze non-linear data sets. The aimed was A review of the relevant published articles that focused on the application of ANNs as a tool for assisting clinical decision-making in neurosurgery. A literature review of all full publications in English biomedical journals (1993-2013) was undertaken. The strategy included a combination of key words 'artificial neural networks', 'prognostic', 'brain', 'tumor tracking', 'head', 'tumor', 'spine', 'classification' and 'back pain' in the title and abstract of the manuscripts using the PubMed search engine. The major findings are summarized, with a focus on the application of ANNs for diagnostic and prognostic purposes. Finally, the future of ANNs in neurosurgery is explored. A total of 1093 citations were identified and screened. In all, 57 citations were found to be relevant. Of these, 50 articles were eligible for inclusion in this review. The synthesis of the data showed several applications of ANN in neurosurgery, including: (1) diagnosis and assessment of disease progression in low back pain, brain tumours and primary epilepsy; (2) enhancing clinically relevant information extraction from radiographic images, intracranial pressure processing, low back pain and real-time tumour tracking; (3) outcome prediction in epilepsy, brain metastases, lumbar spinal stenosis, lumbar disc herniation, childhood hydrocephalus, trauma mortality, and the occurrence of symptomatic cerebral vasospasm in patients with aneurysmal subarachnoid haemorrhage; (4) the use in the biomechanical assessments of spinal disease. ANNs can be effectively employed for diagnosis, prognosis and outcome prediction in neurosurgery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Neural networks for damage identification

    SciTech Connect

    Paez, T.L.; Klenke, S.E.

    1997-11-01

    Efforts to optimize the design of mechanical systems for preestablished use environments and to extend the durations of use cycles establish a need for in-service health monitoring. Numerous studies have proposed measures of structural response for the identification of structural damage, but few have suggested systematic techniques to guide the decision as to whether or not damage has occurred based on real data. Such techniques are necessary because in field applications the environments in which systems operate and the measurements that characterize system behavior are random. This paper investigates the use of artificial neural networks (ANNs) to identify damage in mechanical systems. Two probabilistic neural networks (PNNs) are developed and used to judge whether or not damage has occurred in a specific mechanical system, based on experimental measurements. The first PNN is a classical type that casts Bayesian decision analysis into an ANN framework; it uses exemplars measured from the undamaged and damaged system to establish whether system response measurements of unknown origin come from the former class (undamaged) or the latter class (damaged). The second PNN establishes the character of the undamaged system in terms of a kernel density estimator of measures of system response; when presented with system response measures of unknown origin, it makes a probabilistic judgment whether or not the data come from the undamaged population. The physical system used to carry out the experiments is an aerospace system component, and the environment used to excite the system is a stationary random vibration. The results of damage identification experiments are presented along with conclusions rating the effectiveness of the approaches.

  14. Tampa Electric Neural Network Sootblowing

    SciTech Connect

    Mark A. Rhode

    2002-09-30

    Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NO{sub x} formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent soot-blowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, online, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce {sub x} emissions and improve heat rate

  15. Ideomotor feedback control in a recurrent neural network.

    PubMed

    Galtier, Mathieu

    2015-06-01

    The architecture of a neural network controlling an unknown environment is presented. It is based on a randomly connected recurrent neural network from which both perception and action are simultaneously read and fed back. There are two concurrent learning rules implementing a sort of ideomotor control: (i) perception is learned along the principle that the network should predict reliably its incoming stimuli; (ii) action is learned along the principle that the prediction of the network should match a target time series. The coherent behavior of the neural network in its environment is a consequence of the interaction between the two principles. Numerical simulations show a promising performance of the approach, which can be turned into a local and better "biologically plausible" algorithm.

  16. Nonlinear programming with feedforward neural networks.

    SciTech Connect

    Reifman, J.

    1999-06-02

    We provide a practical and effective method for solving constrained optimization problems by successively training a multilayer feedforward neural network in a coupled neural-network/objective-function representation. Nonlinear programming problems are easily mapped into this representation which has a simpler and more transparent method of solution than optimization performed with Hopfield-like networks and poses very mild requirements on the functions appearing in the problem. Simulation results are illustrated and compared with an off-the-shelf optimization tool.

  17. VLSI Cells Placement Using the Neural Networks

    SciTech Connect

    Azizi, Hacene; Zouaoui, Lamri; Mokhnache, Salah

    2008-06-12

    The artificial neural networks have been studied for several years. Their effectiveness makes it possible to expect high performances. The privileged fields of these techniques remain the recognition and classification. Various applications of optimization are also studied under the angle of the artificial neural networks. They make it possible to apply distributed heuristic algorithms. In this article, a solution to placement problem of the various cells at the time of the realization of an integrated circuit is proposed by using the KOHONEN network.

  18. Electronic implementation of associative memory based on neural network models

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Lambe, John; Thakoor, A. P.

    1987-01-01

    An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.

  19. Electronic implementation of associative memory based on neural network models

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Lambe, John; Thakoor, A. P.

    1987-01-01

    An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.

  20. Precipitation Nowcast using Deep Recurrent Neural Network

    NASA Astrophysics Data System (ADS)

    Akbari Asanjan, A.; Yang, T.; Gao, X.; Hsu, K. L.; Sorooshian, S.

    2016-12-01

    An accurate precipitation nowcast (0-6 hours) with a fine temporal and spatial resolution has always been an important prerequisite for flood warning, streamflow prediction and risk management. Most of the popular approaches used for forecasting precipitation can be categorized into two groups. One type of precipitation forecast relies on numerical modeling of the physical dynamics of atmosphere and another is based on empirical and statistical regression models derived by local hydrologists or meteorologists. Given the recent advances in artificial intelligence, in this study a powerful Deep Recurrent Neural Network, termed as Long Short-Term Memory (LSTM) model, is creatively used to extract the patterns and forecast the spatial and temporal variability of Cloud Top Brightness Temperature (CTBT) observed from GOES satellite. Then, a 0-6 hours precipitation nowcast is produced using a Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) algorithm, in which the CTBT nowcast is used as the PERSIANN algorithm's raw inputs. Two case studies over the continental U.S. have been conducted that demonstrate the improvement of proposed approach as compared to a classical Feed Forward Neural Network and a couple simple regression models. The advantages and disadvantages of the proposed method are summarized with regard to its capability of pattern recognition through time, handling of vanishing gradient during model learning, and working with sparse data. The studies show that the LSTM model performs better than other methods, and it is able to learn the temporal evolution of the precipitation events through over 1000 time lags. The uniqueness of PERSIANN's algorithm enables an alternative precipitation nowcast approach as demonstrated in this study, in which the CTBT prediction is produced and used as the inputs for generating precipitation nowcast.

  1. Coronary Artery Diagnosis Aided by Neural Network

    NASA Astrophysics Data System (ADS)

    Stefko, Kamil

    2007-01-01

    Coronary artery disease is due to atheromatous narrowing and subsequent occlusion of the coronary vessel. Application of optimised feed forward multi-layer back propagation neural network (MLBP) for detection of narrowing in coronary artery vessels is presented in this paper. The research was performed using 580 data records from traditional ECG exercise test confirmed by coronary arteriography results. Each record of training database included description of the state of a patient providing input data for the neural network. Level and slope of ST segment of a 12 lead ECG signal recorded at rest and after effort (48 floating point values) was the main component of input data for neural network was. Coronary arteriography results (verified the existence or absence of more than 50% stenosis of the particular coronary vessels) were used as a correct neural network training output pattern. More than 96% of cases were correctly recognised by especially optimised and a thoroughly verified neural network. Leave one out method was used for neural network verification so 580 data records could be used for training as well as for verification of neural network.

  2. Acute appendicitis diagnosis using artificial neural networks.

    PubMed

    Park, Sung Yun; Kim, Sung Min

    2015-01-01

    Artificial neural networks is one of pattern analyzer method which are rapidly applied on a bio-medical field. The aim of this research was to propose an appendicitis diagnosis system using artificial neural networks (ANNs). Data from 801 patients of the university hospital in Dongguk were used to construct artificial neural networks for diagnosing appendicitis and acute appendicitis. A radial basis function neural network structure (RBF), a multilayer neural network structure (MLNN), and a probabilistic neural network structure (PNN) were used for artificial neural network models. The Alvarado clinical scoring system was used for comparison with the ANNs. The accuracy of the RBF, PNN, MLNN, and Alvarado was 99.80%, 99.41%, 97.84%, and 72.19%, respectively. The area under ROC (receiver operating characteristic) curve of RBF, PNN, MLNN, and Alvarado was 0.998, 0.993, 0.985, and 0.633, respectively. The proposed models using ANNs for diagnosing appendicitis showed good performances, and were significantly better than the Alvarado clinical scoring system (p < 0.001). With cooperation among facilities, the accuracy for diagnosing this serious health condition can be improved.

  3. Local Area Networks: Part II.

    ERIC Educational Resources Information Center

    Dessy, Raymond E., Ed.

    1982-01-01

    Discusses five approaches used by industry/colleges to provide local area network (LAN) capabilities in the analytical laboratory: (1) mixed baseband bus network coupled to a star net; (2) broadband bus network; (3) ring network; (4) star network coupled to broadband net; and (5) simple multiprocessor center. Part I (September issue) focused on…

  4. Straight Talk About Local Networks.

    ERIC Educational Resources Information Center

    Green, John O.

    1984-01-01

    Networks confined to one classroom or several classrooms in one building are called local networks. The nature and uses of these networks, software needed to run a network, software problems, and potential problems are discussed. Information on commercially available networks (including source, cost, hardware/software provided, features, and…

  5. Neural network regulation driven by autonomous neural firings

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Won

    2016-07-01

    Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.

  6. Object detection using pulse coupled neural networks.

    PubMed

    Ranganath, H S; Kuntimad, G

    1999-01-01

    This paper describes an object detection system based on pulse coupled neural networks. The system is designed and implemented to illustrate the power, flexibility and potential the pulse coupled neural networks have in real-time image processing. In the preprocessing stage, a pulse coupled neural network suppresses noise by smoothing the input image. In the segmentation stage, a second pulse coupled neural-network iteratively segments the input image. During each iteration, with the help of a control module, the segmentation network deletes regions that do not satisfy the retention criteria from further processing and produces an improved segmentation of the retained image. In the final stage each group of connected regions that satisfies the detection criteria is identified as an instance of the object of interest.

  7. Learning and coding in biological neural networks

    NASA Astrophysics Data System (ADS)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and

  8. A neural network prototyping package within IRAF

    NASA Technical Reports Server (NTRS)

    Bazell, D.; Bankman, I.

    1992-01-01

    We outline our plans for incorporating a Neural Network Prototyping Package into the IRAF environment. The package we are developing will allow the user to choose between different types of networks and to specify the details of the particular architecture chosen. Neural networks consist of a highly interconnected set of simple processing units. The strengths of the connections between units are determined by weights which are adaptively set as the network 'learns'. In some cases, learning can be a separate phase of the user cycle of the network while in other cases the network learns continuously. Neural networks have been found to be very useful in pattern recognition and image processing applications. They can form very general 'decision boundaries' to differentiate between objects in pattern space and they can be used for associative recall of patterns based on partial cures and for adaptive filtering. We discuss the different architectures we plan to use and give examples of what they can do.

  9. Deep Neural Networks for Identifying Cough Sounds.

    PubMed

    Amoh, Justice; Odame, Kofi

    2016-10-01

    In this paper, we consider two different approaches of using deep neural networks for cough detection. The cough detection task is cast as a visual recognition problem and as a sequence-to-sequence labeling problem. A convolutional neural network and a recurrent neural network are implemented to address these problems, respectively. We evaluate the performance of the two networks and compare them to other conventional approaches for identifying cough sounds. In addition, we also explore the effect of the network size parameters and the impact of long-term signal dependencies in cough classifier performance. Experimental results show both network architectures outperform traditional methods. Between the two, our convolutional network yields a higher specificity 92.7% whereas the recurrent attains a higher sensitivity of 87.7%.

  10. Multispectral image fusion using neural networks

    NASA Technical Reports Server (NTRS)

    Kagel, J. H.; Platt, C. A.; Donaven, T. W.; Samstad, E. A.

    1990-01-01

    A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard, a circuit card assembly, and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations, results, and a description of the prototype system are presented.

  11. Multispectral-image fusion using neural networks

    NASA Astrophysics Data System (ADS)

    Kagel, Joseph H.; Platt, C. A.; Donaven, T. W.; Samstad, Eric A.

    1990-08-01

    A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard a circuit card assembly and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations results and a description of the prototype system are presented. 1.

  12. Genetic algorithm for neural networks optimization

    NASA Astrophysics Data System (ADS)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  13. Pricing financial derivatives with neural networks

    NASA Astrophysics Data System (ADS)

    Morelli, Marco J.; Montagna, Guido; Nicrosini, Oreste; Treccani, Michele; Farina, Marco; Amato, Paolo

    2004-07-01

    Neural network algorithms are applied to the problem of option pricing and adopted to simulate the nonlinear behavior of such financial derivatives. Two different kinds of neural networks, i.e. multi-layer perceptrons and radial basis functions, are used and their performances compared in detail. The analysis is carried out both for standard European options and American ones, including evaluation of the Greek letters, necessary for hedging purposes. Detailed numerical investigation show that, after a careful phase of training, neural networks are able to predict the value of options and Greek letters with high accuracy and competitive computational time.

  14. Attitude control of spacecraft using neural networks

    NASA Technical Reports Server (NTRS)

    Vadali, Srinivas R.; Krishnan, S.; Singh, T.

    1993-01-01

    This paper investigates the use of radial basis function neural networks for adaptive attitude control and momentum management of spacecraft. In the first part of the paper, neural networks are trained to learn from a family of open-loop optimal controls parameterized by the initial states and times-to-go. The trained is then used for closed-loop control. In the second part of the paper, neural networks are used for direct adaptive control in the presence of unmodeled effects and parameter uncertainty. The control and learning laws are derived using the method of Lyapunov.

  15. Description of interatomic interactions with neural networks

    NASA Astrophysics Data System (ADS)

    Hajinazar, Samad; Shao, Junping; Kolmogorov, Aleksey N.

    Neural networks are a promising alternative to traditional classical potentials for describing interatomic interactions. Recent research in the field has demonstrated how arbitrary atomic environments can be represented with sets of general functions which serve as an input for the machine learning tool. We have implemented a neural network formalism in the MAISE package and developed a protocol for automated generation of accurate models for multi-component systems. Our tests illustrate the performance of neural networks and known classical potentials for a range of chemical compositions and atomic configurations. Supported by NSF Grant DMR-1410514.

  16. Neural networks in auroral data assimilation

    NASA Astrophysics Data System (ADS)

    Härter, Fabrício P.; de Campos Velho, Haroldo F.; Rempel, Erico L.; Chian, Abraham C.-L.

    2008-07-01

    Data assimilation is an essential step for improving space weather forecasting by means of a weighted combination between observational data and data from a mathematical model. In the present work data assimilation methods based on Kalman filter (KF) and artificial neural networks are applied to a three-wave model of auroral radio emissions. A novel data assimilation method is presented, whereby a multilayer perceptron neural network is trained to emulate a KF for data assimilation by using cross-validation. The results obtained render support for the use of neural networks as an assimilation technique for space weather prediction.

  17. Noise cancellation of memristive neural networks.

    PubMed

    Wen, Shiping; Zeng, Zhigang; Huang, Tingwen; Yu, Xinghuo

    2014-12-01

    This paper investigates noise cancellation problem of memristive neural networks. Based on the reproducible gradual resistance tuning in bipolar mode, a first-order voltage-controlled memristive model is employed with asymmetric voltage thresholds. Since memristive devices are especially tiny to be densely packed in crossbar-like structures and possess long time memory needed by neuromorphic synapses, this paper shows how to approximate the behavior of synapses in neural networks using this memristive device. Also certain templates of memristive neural networks are established to implement the noise cancellation.

  18. Stock market index prediction using neural networks

    NASA Astrophysics Data System (ADS)

    Komo, Darmadi; Chang, Chein-I.; Ko, Hanseok

    1994-03-01

    A neural network approach to stock market index prediction is presented. Actual data of the Wall Street Journal's Dow Jones Industrial Index has been used for a benchmark in our experiments where Radial Basis Function based neural networks have been designed to model these indices over the period from January 1988 to Dec 1992. A notable success has been achieved with the proposed model producing over 90% prediction accuracies observed based on monthly Dow Jones Industrial Index predictions. The model has also captured both moderate and heavy index fluctuations. The experiments conducted in this study demonstrated that the Radial Basis Function neural network represents an excellent candidate to predict stock market index.

  19. Neural networks techniques applied to reservoir engineering

    SciTech Connect

    Flores, M.; Barragan, C.

    1995-12-31

    Neural Networks are considered the greatest technological advance since the transistor. They are expected to be a common household item by the year 2000. An attempt to apply Neural Networks to an important geothermal problem has been made, predictions on the well production and well completion during drilling in a geothermal field. This was done in Los Humeros geothermal field, using two common types of Neural Network models, available in commercial software. Results show the learning capacity of the developed model, and its precision in the predictions that were made.

  20. Neural network with formed dynamics of activity

    SciTech Connect

    Dunin-Barkovskii, V.L.; Osovets, N.B.

    1995-03-01

    The problem of developing a neural network with a given pattern of the state sequence is considered. A neural network structure and an algorithm, of forming its bond matrix which lead to an approximate but robust solution of the problem are proposed and discussed. Limiting characteristics of the serviceability of the proposed structure are studied. Various methods of visualizing dynamic processes in a neural network are compared. Possible applications of the results obtained for interpretation of neurophysiological data and in neuroinformatics systems are discussed.

  1. Threshold control of chaotic neural network.

    PubMed

    He, Guoguang; Shrimali, Manish Dev; Aihara, Kazuyuki

    2008-01-01

    The chaotic neural network constructed with chaotic neurons exhibits rich dynamic behaviour with a nonperiodic associative memory. In the chaotic neural network, however, it is difficult to distinguish the stored patterns in the output patterns because of the chaotic state of the network. In order to apply the nonperiodic associative memory into information search, pattern recognition etc. it is necessary to control chaos in the chaotic neural network. We have studied the chaotic neural network with threshold activated coupling, which provides a controlled network with associative memory dynamics. The network converges to one of its stored patterns or/and reverse patterns which has the smallest Hamming distance from the initial state of the network. The range of the threshold applied to control the neurons in the network depends on the noise level in the initial pattern and decreases with the increase of noise. The chaos control in the chaotic neural network by threshold activated coupling at varying time interval provides controlled output patterns with different temporal periods which depend upon the control parameters.

  2. Local-Area-Network Simulator

    NASA Technical Reports Server (NTRS)

    Gibson, Jim; Jordan, Joe; Grant, Terry

    1990-01-01

    Local Area Network Extensible Simulator (LANES) computer program provides method for simulating performance of high-speed local-area-network (LAN) technology. Developed as design and analysis software tool for networking computers on board proposed Space Station. Load, network, link, and physical layers of layered network architecture all modeled. Mathematically models according to different lower-layer protocols: Fiber Distributed Data Interface (FDDI) and Star*Bus. Written in FORTRAN 77.

  3. Nonequilibrium landscape theory of neural networks.

    PubMed

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-11-05

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.

  4. Nonequilibrium landscape theory of neural networks

    PubMed Central

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-01-01

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451

  5. Brain tumor segmentation with Deep Neural Networks.

    PubMed

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Results of the neural network investigation

    NASA Astrophysics Data System (ADS)

    Uvanni, Lee A.

    1992-04-01

    Rome Laboratory has designed and implemented a neural network based automatic target recognition (ATR) system under contract F30602-89-C-0079 with Booz, Allen & Hamilton (BAH), Inc., of Arlington, Virginia. The system utilizes a combination of neural network paradigms and conventional image processing techniques in a parallel environment on the IE- 2000 SUN 4 workstation at Rome Laboratory. The IE-2000 workstation was designed to assist the Air Force and Department of Defense to derive the needs for image exploitation and image exploitation support for the late 1990s - year 2000 time frame. The IE-2000 consists of a developmental testbed and an applications testbed, both with the goal of solving real world problems on real-world facilities for image exploitation. To fully exploit the parallel nature of neural networks, 18 Inmos T800 transputers were utilized, in an attempt to provide a near- linear speed-up for each subsystem component implemented on them. The initial design contained three well-known neural network paradigms, each modified by BAH to some extent: the Selective Attention Neocognitron (SAN), the Binary Contour System/Feature Contour System (BCS/FCS), and Adaptive Resonance Theory 2 (ART-2), and one neural network designed by BAH called the Image Variance Exploitation Network (IVEN). Through rapid prototyping, the initial system evolved into a completely different final design, called the Neural Network Image Exploitation System (NNIES), where the final system consists of two basic components: the Double Variance (DV) layer and the Multiple Object Detection And Location System (MODALS). A rapid prototyping neural network CAD Tool, designed by Booz, Allen & Hamilton, was used to rapidly build and emulate the neural network paradigms. Evaluation of the completed ATR system included probability of detections and probability of false alarms among other measures.

  7. Recognition of Telugu characters using neural networks.

    PubMed

    Sukhaswami, M B; Seetharamulu, P; Pujari, A K

    1995-09-01

    The aim of the present work is to recognize printed and handwritten Telugu characters using artificial neural networks (ANNs). Earlier work on recognition of Telugu characters has been done using conventional pattern recognition techniques. We make an initial attempt here of using neural networks for recognition with the aim of improving upon earlier methods which do not perform effectively in the presence of noise and distortion in the characters. The Hopfield model of neural network working as an associative memory is chosen for recognition purposes initially. Due to limitation in the capacity of the Hopfield neural network, we propose a new scheme named here as the Multiple Neural Network Associative Memory (MNNAM). The limitation in storage capacity has been overcome by combining multiple neural networks which work in parallel. It is also demonstrated that the Hopfield network is suitable for recognizing noisy printed characters as well as handwritten characters written by different "hands" in a variety of styles. Detailed experiments have been carried out using several learning strategies and results are reported. It is shown here that satisfactory recognition is possible using the proposed strategy. A detailed preprocessing scheme of the Telugu characters from digitized documents is also described.

  8. An Introduction to Neural Networks for Hearing Aid Noise Recognition.

    ERIC Educational Resources Information Center

    Kim, Jun W.; Tyler, Richard S.

    1995-01-01

    This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…

  9. An Introduction to Neural Networks for Hearing Aid Noise Recognition.

    ERIC Educational Resources Information Center

    Kim, Jun W.; Tyler, Richard S.

    1995-01-01

    This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…

  10. Neural Networks for Dynamic Flight Control

    DTIC Science & Technology

    1993-12-01

    uses the Adaline (22) model for development of the neural networks. Neural Graphics and other AFIT applications use a slightly different model. The...primary difference in the Nguyen application is that the Adaline uses the nonlinear function .f(a) = tanh(a) where standard backprop uses the sigmoid

  11. Radar signal categorization using a neural network

    NASA Technical Reports Server (NTRS)

    Anderson, James A.; Gately, Michael T.; Penz, P. Andrew; Collins, Dean R.

    1991-01-01

    Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications.

  12. Control of autonomous robot using neural networks

    NASA Astrophysics Data System (ADS)

    Barton, Adam; Volna, Eva

    2017-07-01

    The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.

  13. Imbibition well stimulation via neural network design

    DOEpatents

    Weiss, William

    2007-08-14

    A method for stimulation of hydrocarbon production via imbibition by utilization of surfactants. The method includes use of fuzzy logic and neural network architecture constructs to determine surfactant use.

  14. Neural Network Solutions to Optical Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Rosenbrock, Conrad

    2012-10-01

    Artificial neural networks have been effective in reducing computation time while achieving remarkable accuracy for a variety of difficult physics problems. Neural networks are trained iteratively by adjusting the size and shape of sums of non-linear functions by varying the function parameters to fit results for complex non-linear systems. For smaller structures, ab initio simulation methods can be used to determine absorption spectra under field perturbations. However, these methods are impractical for larger structures. Designing and training an artificial neural network with simulated data from time-dependent density functional theory may allow time-dependent perturbation effects to be calculated more efficiently. I investigate the design considerations and results of neural network implementations for calculating perturbation-coupled electron oscillations in small molecules.

  15. Temporal Coding in Realistic Neural Networks

    NASA Astrophysics Data System (ADS)

    Gerasyuta, S. M.; Ivanov, D. V.

    1995-10-01

    The modification of realistic neural network model have been proposed. The model differs from the Hopfield model because of the two characteristic contributions to synaptic efficacious: the short-time contribution which is determined by the chemical reactions in the synapses and the long-time contribution corresponding to the structural changes of synaptic contacts. The approximation solution of the realistic neural network model equations is obtained. This solution allows us to calculate the postsynaptic potential as function of input. Using the approximate solution of realistic neural network model equations the behaviour of postsynaptic potential of realistic neural network as function of time for the different temporal sequences of stimuli is described. The various outputs are obtained for the different temporal sequences of the given stimuli. These properties of the temporal coding can be exploited as a recognition element capable of being selectively tuned to different inputs.

  16. A neural network for bounded linear programming

    SciTech Connect

    Culioli, J.C.; Protopopescu, V.; Britton, C.; Ericson, N. )

    1989-01-01

    The purpose of this paper is to describe a neural network implementation of an algorithm recently designed at ORNL to solve the Transportation and the Assignment Problems, and, more generally, any explicitly bounded linear program. 9 refs.

  17. A neural network architecture for data classification.

    PubMed

    Lezoray, O

    2001-02-01

    This article aims at showing an architecture of neural networks designed for the classification of data distributed among a high number of classes. A significant gain in the global classification rate can be obtained by using our architecture. This latter is based on a set of several little neural networks, each one discriminating only two classes. The specialization of each neural network simplifies their structure and improves the classification. Moreover, the learning step automatically determines the number of hidden neurons. The discussion is illustrated by tests on databases from the UCI machine learning database repository. The experimental results show that this architecture can achieve a faster learning, simpler neural networks and an improved performance in classification.

  18. Using Neural Networks for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William

    1998-01-01

    This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.

  19. Blood glucose prediction using neural network

    NASA Astrophysics Data System (ADS)

    Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock

    2008-02-01

    We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.

  20. Constructive Autoassociative Neural Network for Facial Recognition

    PubMed Central

    Fernandes, Bruno J. T.; Cavalcanti, George D. C.; Ren, Tsang I.

    2014-01-01

    Autoassociative artificial neural networks have been used in many different computer vision applications. However, it is difficult to define the most suitable neural network architecture because this definition is based on previous knowledge and depends on the problem domain. To address this problem, we propose a constructive autoassociative neural network called CANet (Constructive Autoassociative Neural Network). CANet integrates the concepts of receptive fields and autoassociative memory in a dynamic architecture that changes the configuration of the receptive fields by adding new neurons in the hidden layer, while a pruning algorithm removes neurons from the output layer. Neurons in the CANet output layer present lateral inhibitory connections that improve the recognition rate. Experiments in face recognition and facial expression recognition show that the CANet outperforms other methods presented in the literature. PMID:25542018

  1. An Adaptive-PSO-Based Self-Organizing RBF Neural Network.

    PubMed

    Han, Hong-Gui; Lu, Wei; Hou, Ying; Qiao, Jun-Fei

    2016-10-24

    In this paper, a self-organizing radial basis function (SORBF) neural network is designed to improve both accuracy and parsimony with the aid of adaptive particle swarm optimization (APSO). In the proposed APSO algorithm, to avoid being trapped into local optimal values, a nonlinear regressive function is developed to adjust the inertia weight. Furthermore, the APSO algorithm can optimize both the network size and the parameters of an RBF neural network simultaneously. As a result, the proposed APSO-SORBF neural network can effectively generate a network model with a compact structure and high accuracy. Moreover, the analysis of convergence is given to guarantee the successful application of the APSO-SORBF neural network. Finally, multiple numerical examples are presented to illustrate the effectiveness of the proposed APSO-SORBF neural network. The results demonstrate that the proposed method is more competitive in solving nonlinear problems than some other existing SORBF neural networks.

  2. Neural network for image segmentation

    NASA Astrophysics Data System (ADS)

    Skourikhine, Alexei N.; Prasad, Lakshman; Schlei, Bernd R.

    2000-10-01

    Image analysis is an important requirement of many artificial intelligence systems. Though great effort has been devoted to inventing efficient algorithms for image analysis, there is still much work to be done. It is natural to turn to mammalian vision systems for guidance because they are the best known performers of visual tasks. The pulse- coupled neural network (PCNN) model of the cat visual cortex has proven to have interesting properties for image processing. This article describes the PCNN application to the processing of images of heterogeneous materials; specifically PCNN is applied to image denoising and image segmentation. Our results show that PCNNs do well at segmentation if we perform image smoothing prior to segmentation. We use PCNN for obth smoothing and segmentation. Combining smoothing and segmentation enable us to eliminate PCNN sensitivity to the setting of the various PCNN parameters whose optimal selection can be difficult and can vary even for the same problem. This approach makes image processing based on PCNN more automatic in our application and also results in better segmentation.

  3. Tensor-Factorized Neural Networks.

    PubMed

    Chien, Jen-Tzung; Bao, Yi-Ting

    2017-04-17

    The growing interests in multiway data analysis and deep learning have drawn tensor factorization (TF) and neural network (NN) as the crucial topics. Conventionally, the NN model is estimated from a set of one-way observations. Such a vectorized NN is not generalized for learning the representation from multiway observations. The classification performance using vectorized NN is constrained, because the temporal or spatial information in neighboring ways is disregarded. More parameters are required to learn the complicated data structure. This paper presents a new tensor-factorized NN (TFNN), which tightly integrates TF and NN for multiway feature extraction and classification under a unified discriminative objective. This TFNN is seen as a generalized NN, where the affine transformation in an NN is replaced by the multilinear and multiway factorization for tensor-based NN. The multiway information is preserved through layerwise factorization. Tucker decomposition and nonlinear activation are performed in each hidden layer. The tensor-factorized error backpropagation is developed to train TFNN with the limited parameter size and computation time. This TFNN can be further extended to realize the convolutional TFNN (CTFNN) by looking at small subtensors through the factorized convolution. Experiments on real-world classification tasks demonstrate that TFNN and CTFNN attain substantial improvement when compared with an NN and a convolutional NN, respectively.

  4. Artificial neural network and medicine.

    PubMed

    Khan, Z H; Mohapatra, S K; Khodiar, P K; Ragu Kumar, S N

    1998-07-01

    The introduction of human brain functions such as perception and cognition into the computer has been made possible by the use of Artificial Neural Network (ANN). ANN are computer models inspired by the structure and behavior of neurons. Like the brain, ANN can recognize patterns, manage data and most significantly, learn. This learning ability, not seen in other computer models simulating human intelligence, constantly improves its functional accuracy as it keeps on performing. Experience is as important for an ANN as it is for man. It is being increasingly used to supplement and even (may be) replace experts, in medicine. However, there is still scope for improvement in some areas. Its ability to classify and interpret various forms of medical data comes as a helping hand to clinical decision making in both diagnosis and treatment. Treatment planning in medicine, radiotherapy, rehabilitation, etc. is being done using ANN. Morbidity and mortality prediction by ANN in different medical situations can be very helpful for hospital management. ANN has a promising future in fundamental research, medical education and surgical robotics.

  5. Limitations of opto-electronic neural networks

    NASA Technical Reports Server (NTRS)

    Yu, Jeffrey; Johnston, Alan; Psaltis, Demetri; Brady, David

    1989-01-01

    Consideration is given to the limitations of implementing neurons, weights, and connections in neural networks for electronics and optics. It is shown that the advantages of each technology are utilized when electronically fabricated neurons are included and a combination of optics and electronics are employed for the weights and connections. The relationship between the types of neural networks being constructed and the choice of technologies to implement the weights and connections is examined.

  6. Using neural networks in software repositories

    NASA Technical Reports Server (NTRS)

    Eichmann, David (Editor); Srinivas, Kankanahalli; Boetticher, G.

    1992-01-01

    The first topic is an exploration of the use of neural network techniques to improve the effectiveness of retrieval in software repositories. The second topic relates to a series of experiments conducted to evaluate the feasibility of using adaptive neural networks as a means of deriving (or more specifically, learning) measures on software. Taken together, these two efforts illuminate a very promising mechanism supporting software infrastructures - one based upon a flexible and responsive technology.

  7. Application of artificial neural networks to gaming

    NASA Astrophysics Data System (ADS)

    Baba, Norio; Kita, Tomio; Oda, Kazuhiro

    1995-04-01

    Recently, neural network technology has been applied to various actual problems. It has succeeded in producing a large number of intelligent systems. In this article, we suggest that it could be applied to the field of gaming. In particular, we suggest that the neural network model could be used to mimic players' characters. Several computer simulation results using a computer gaming system which is a modified version of the COMMONS GAME confirm our idea.

  8. Predicting Car Production using a Neural Network

    DTIC Science & Technology

    2003-04-24

    World Almanac Education Group, 2003 [8] E. Petroutsos, Mastering Visual Basic .NET, SYBEX Inc., 2002 [9] D. E. Rumelhart, J. L. McClelland, Parallel...In this example, 100,000 cycles (epochs) were used to train it. The initial weights were randomly selected from values between 1 and -1. Visual ... basic .NET was used to program the neural network [8]. The neural network algorithm followed the steps outlined in [9]. As stated above, a 3 layer

  9. Cellular neuron and large wireless neural network

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Ambrose, Barry; Kazantzidis, Matheos; Lin, Freddie

    2006-05-01

    A new approach to neural networks is proposed, based on wireless interconnects (synapses) and cellular neurons, both software and hardware; with the capacity of 10 10 neurons, almost fully connected. The core of the system is Spatio-Temporal-Variant (STV) kernel and cellular axon with synaptic plasticity variable in time and space. The novel large neural network hardware is based on two established wireless technologies: RF-cellular and IR-wireless.

  10. 3-D components of a biological neural network visualized in computer generated imagery. II - Macular neural network organization

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Meyer, Glenn; Lam, Tony; Cutler, Lynn; Vaziri, Parshaw

    1990-01-01

    Computer-assisted reconstructions of small parts of the macular neural network show how the nerve terminals and receptive fields are organized in 3-dimensional space. This biological neural network is anatomically organized for parallel distributed processing of information. Processing appears to be more complex than in computer-based neural network, because spatiotemporal factors figure into synaptic weighting. Serial reconstruction data show anatomical arrangements which suggest that (1) assemblies of cells analyze and distribute information with inbuilt redundancy, to improve reliability; (2) feedforward/feedback loops provide the capacity for presynaptic modulation of output during processing; (3) constrained randomness in connectivities contributes to adaptability; and (4) local variations in network complexity permit differing analyses of incoming signals to take place simultaneously. The last inference suggests that there may be segregation of information flow to central stations subserving particular functions.

  11. 3-D components of a biological neural network visualized in computer generated imagery. II - Macular neural network organization

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Meyer, Glenn; Lam, Tony; Cutler, Lynn; Vaziri, Parshaw

    1990-01-01

    Computer-assisted reconstructions of small parts of the macular neural network show how the nerve terminals and receptive fields are organized in 3-dimensional space. This biological neural network is anatomically organized for parallel distributed processing of information. Processing appears to be more complex than in computer-based neural network, because spatiotemporal factors figure into synaptic weighting. Serial reconstruction data show anatomical arrangements which suggest that (1) assemblies of cells analyze and distribute information with inbuilt redundancy, to improve reliability; (2) feedforward/feedback loops provide the capacity for presynaptic modulation of output during processing; (3) constrained randomness in connectivities contributes to adaptability; and (4) local variations in network complexity permit differing analyses of incoming signals to take place simultaneously. The last inference suggests that there may be segregation of information flow to central stations subserving particular functions.

  12. A neural network simulation package in CLIPS

    NASA Technical Reports Server (NTRS)

    Bhatnagar, Himanshu; Krolak, Patrick D.; Mcgee, Brenda J.; Coleman, John

    1990-01-01

    The intrinsic similarity between the firing of a rule and the firing of a neuron has been captured in this research to provide a neural network development system within an existing production system (CLIPS). A very important by-product of this research has been the emergence of an integrated technique of using rule based systems in conjunction with the neural networks to solve complex problems. The systems provides a tool kit for an integrated use of the two techniques and is also extendible to accommodate other AI techniques like the semantic networks, connectionist networks, and even the petri nets. This integrated technique can be very useful in solving complex AI problems.

  13. Application of neural network in medical images

    NASA Astrophysics Data System (ADS)

    Li, Xinxin; Sethi, Ishwar K.

    2000-04-01

    In this paper, we do some pre-processing on the input data to remove some noise before putting them into the network and some post-processing before outputting the results. Different neural networks such as back-propagation, radias basis network with different architecture are tested. We choose the one with the best performance among them. From the experiments we can see that the results of the neural network are similar to those given by the experienced doctors and better than those of previous research, indicating that this approach is very practical and beneficial to doctors comparing with some other methods currently existing.

  14. Neural networks for segmentation, tracking, and identification

    NASA Astrophysics Data System (ADS)

    Rogers, Steven K.; Ruck, Dennis W.; Priddy, Kevin L.; Tarr, Gregory L.

    1992-09-01

    The main thrust of this paper is to encourage the use of neural networks to process raw data for subsequent classification. This article addresses neural network techniques for processing raw pixel information. For this paper the definition of neural networks includes the conventional artificial neural networks such as the multilayer perceptrons and also biologically inspired processing techniques. Previously, we have successfully used the biologically inspired Gabor transform to process raw pixel information and segment images. In this paper we extend those ideas to both segment and track objects in multiframe sequences. It is also desirable for the neural network processing data to learn features for subsequent recognition. A common first step for processing raw data is to transform the data and use the transform coefficients as features for recognition. For example, handwritten English characters become linearly separable in the feature space of the low frequency Fourier coefficients. Much of human visual perception can be modelled by assuming low frequency Fourier as the feature space used by the human visual system. The optimum linear transform, with respect to reconstruction, is the Karhunen-Loeve transform (KLT). It has been shown that some neural network architectures can compute approximations to the KLT. The KLT coefficients can be used for recognition as well as for compression. We tested the use of the KLT on the problem of interfacing a nonverbal patient to a computer. The KLT uses an optimal basis set for object reconstruction. For object recognition, the KLT may not be optimal.

  15. Logarithmic learning for generalized classifier neural network.

    PubMed

    Ozyildirim, Buse Melis; Avci, Mutlu

    2014-12-01

    Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network.

  16. Robust smile detection using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Celona, Luigi; Schettini, Raimondo

    2016-11-01

    We present a fully automated approach for smile detection. Faces are detected using a multiview face detector and aligned and scaled using automatically detected eye locations. Then, we use a convolutional neural network (CNN) to determine whether it is a smiling face or not. To this end, we investigate different shallow CNN architectures that can be trained even when the amount of learning data is limited. We evaluate our complete processing pipeline on the largest publicly available image database for smile detection in an uncontrolled scenario. We investigate the robustness of the method to different kinds of geometric transformations (rotation, translation, and scaling) due to imprecise face localization, and to several kinds of distortions (compression, noise, and blur). To the best of our knowledge, this is the first time that this type of investigation has been performed for smile detection. Experimental results show that our proposal outperforms state-of-the-art methods on both high- and low-quality images.

  17. Convolutional neural network for pottery retrieval

    NASA Astrophysics Data System (ADS)

    Benhabiles, Halim; Tabia, Hedi

    2017-01-01

    The effectiveness of the convolutional neural network (CNN) has already been demonstrated in many challenging tasks of computer vision, such as image retrieval, action recognition, and object classification. This paper specifically exploits CNN to design local descriptors for content-based retrieval of complete or nearly complete three-dimensional (3-D) vessel replicas. Based on vector quantization, the designed descriptors are clustered to form a shape vocabulary. Then, each 3-D object is associated to a set of clusters (words) in that vocabulary. Finally, a weighted vector counting the occurrences of every word is computed. The reported experimental results on the 3-D pottery benchmark show the superior performance of the proposed method.

  18. Local Area Networks (The Printout).

    ERIC Educational Resources Information Center

    Aron, Helen; Balajthy, Ernest

    1989-01-01

    Describes the Local Area Network (LAN), a project in which students used LAN-based word processing and electronic mail software as the center of a writing process approach. Discusses the advantages and disadvantages of networking. (MM)

  19. Neural-Network Object-Recognition Program

    NASA Technical Reports Server (NTRS)

    Spirkovska, L.; Reid, M. B.

    1993-01-01

    HONTIOR computer program implements third-order neural network exhibiting invariance under translation, change of scale, and in-plane rotation. Invariance incorporated directly into architecture of network. Only one view of each object needed to train network for two-dimensional-translation-invariant recognition of object. Also used for three-dimensional-transformation-invariant recognition by training network on only set of out-of-plane rotated views. Written in C language.

  20. Human Parsing with Contextualized Convolutional Neural Network.

    PubMed

    Liang, Xiaodan; Xu, Chunyan; Shen, Xiaohui; Yang, Jianchao; Tang, Jinhui; Lin, Liang; Yan, Shuicheng

    2016-03-02

    In this work, we address the human parsing task with a novel Contextualized Convolutional Neural Network (Co-CNN) architecture, which well integrates the cross-layer context, global image-level context, semantic edge context, within-super-pixel context and cross-super-pixel neighborhood context into a unified network. Given an input human image, Co-CNN produces the pixel-wise categorization in an end-to-end way. First, the cross-layer context is captured by our basic local-to-global-to-local structure, which hierarchically combines the global semantic information and the local fine details across different convolutional layers. Second, the global image-level label prediction is used as an auxiliary objective in the intermediate layer of the Co-CNN, and its outputs are further used for guiding the feature learning in subsequent convolutional layers to leverage the global imagelevel context. Third, semantic edge context is further incorporated into Co-CNN, where the high-level semantic boundaries are leveraged to guide pixel-wise labeling. Finally, to further utilize the local super-pixel contexts, the within-super-pixel smoothing and cross-super-pixel neighbourhood voting are formulated as natural sub-components of the Co-CNN to achieve the local label consistency in both training and testing process. Comprehensive evaluations on two public datasets well demonstrate the significant superiority of our Co-CNN over other state-of-the-arts for human parsing. In particular, the F-1 score on the large dataset [1] reaches 81:72% by Co-CNN, significantly higher than 62:81% and 64:38% by the state-of-the-art algorithms, MCNN [2] and ATR [1], respectively. By utilizing our newly collected large dataset for training, our Co-CNN can achieve 85:36% in F-1 score.

  1. Fast curve fitting using neural networks

    NASA Astrophysics Data System (ADS)

    Bishop, C. M.; Roach, C. M.

    1992-10-01

    Neural networks provide a new tool for the fast solution of repetitive nonlinear curve fitting problems. In this article we introduce the concept of a neural network, and we show how such networks can be used for fitting functional forms to experimental data. The neural network algorithm is typically much faster than conventional iterative approaches. In addition, further substantial improvements in speed can be obtained by using special purpose hardware implementations of the network, thus making the technique suitable for use in fast real-time applications. The basic concepts are illustrated using a simple example from fusion research, involving the determination of spectral line parameters from measurements of B iv impurity radiation in the COMPASS-C tokamak.

  2. A neural network for visual pattern recognition

    SciTech Connect

    Fukushima, K.

    1988-03-01

    A modeling approach, which is a synthetic approach using neural network models, continues to gain importance. In the modeling approach, the authors study how to interconnect neurons to synthesize a brain model, which is a network with the same functions and abilities as the brain. The relationship between modeling neutral networks and neurophysiology resembles that between theoretical physics and experimental physics. Modeling takes synthetic approach, while neurophysiology or psychology takes an analytical approach. Modeling neural networks is useful in explaining the brain and also in engineering applications. It brings the results of neurophysiological and psychological research to engineering applications in the most direct way possible. This article discusses a neural network model thus obtained, a model with selective attention in visual pattern recognition.

  3. Adaptive evolutionary artificial neural networks for pattern classification.

    PubMed

    Oong, Tatt Hee; Isa, Nor Ashidi Mat

    2011-11-01

    This paper presents a new evolutionary approach called the hybrid evolutionary artificial neural network (HEANN) for simultaneously evolving an artificial neural networks (ANNs) topology and weights. Evolutionary algorithms (EAs) with strong global search capabilities are likely to provide the most promising region. However, they are less efficient in fine-tuning the search space locally. HEANN emphasizes the balancing of the global search and local search for the evolutionary process by adapting the mutation probability and the step size of the weight perturbation. This is distinguishable from most previous studies that incorporate EA to search for network topology and gradient learning for weight updating. Four benchmark functions were used to test the evolutionary framework of HEANN. In addition, HEANN was tested on seven classification benchmark problems from the UCI machine learning repository. Experimental results show the superior performance of HEANN in fine-tuning the network complexity within a small number of generations while preserving the generalization capability compared with other algorithms.

  4. Neural mechanisms for sound localization.

    PubMed

    Masterton, R B; Imig, T J

    1984-01-01

    Although the efforts to find a place map of sound direction within the auditory system of mammals has been reinspired by the recent discoveries in owl, progress to date has not been encouraging. Neither the inferior colliculus nor auditory cortex has yielded immediate evidence of such a map, despite ingenious and persistent efforts to find it. Thus, at present, the evidence suggests that a head-referenced map of auditory space is more likely to be found in structures more motor than sensory in function--in the deep layers of the superior colliculus or brainstem tegmentum, for example. Insofar as these structures have been implicated in eye, ear, and head orientation toward a sound source, one might expect that premotor units for orienting would be sensitive to sound direction and thus, collectively, constitute a map of auditory azimuth isomorphic to the map of motor azimuth. However, even for these structures, the possibility for significant variation among mammalian species exists. Because many candidate motor structures (such as the deep superior colliculus) receive input from the cerebral cortex, and because the role of auditory cortex in sound localization seems to vary widely among mammals (38, 51) an equal amount of variation in auditory-motor maps may also exist.

  5. Artificial Astrocytes Improve Neural Network Performance

    PubMed Central

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  6. Artificial astrocytes improve neural network performance.

    PubMed

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  7. Linear programming for learning in neural networks

    NASA Astrophysics Data System (ADS)

    Raghavan, Raghu

    1991-08-01

    The authors have previously proposed a network of probabilistic cellular automata (PCAs) as part of an image recognition system designed to integrate model-based and data-driven approaches in a connectionist framework. The PCA arises from some natural requirements on the system which include incorporation of prior knowledge such as in inference rules, locality of inferences, and full parallelism. This network has been applied to recognize objects in both synthetic and in real data. This approach achieves recognition through the short-, rather than the long-time behavior of the dynamics of the PCA. In this paper, some methods are developed for learning the connection strengths by solving linear inequalities: the figures of merit are tendencies or directions of movement of the dynamical system. These 'dynamical' figures of merit result in inequality constraints on the connection strengths which are solved by linear (LP) or quadratic programs (QP). An algorithm is described for processing a large number of samples to determine weights for the PCA. The work may be regarded as either pointing out another application for constrained optimization, or as pointing out the need to extend the perceptron and similar methods for learning. The extension is needed because the neural network operates on a different principle from that for which the perceptron method was devised.

  8. The H1 neural network trigger project

    NASA Astrophysics Data System (ADS)

    Kiesling, C.; Denby, B.; Fent, J.; Fröchtenicht, W.; Garda, P.; Granado, B.; Grindhammer, G.; Haberer, W.; Janauschek, L.; Kobler, T.; Koblitz, B.; Nellen, G.; Prevotet, J.-C.; Schmidt, S.; Tzamariudaki, E.; Udluft, S.

    2001-08-01

    We present a short overview of neuromorphic hardware and some of the physics projects making use of such devices. As a concrete example we describe an innovative project within the H1-Experiment at the electron-proton collider HERA, instrumenting hardwired neural networks as pattern recognition machines to discriminate between wanted physics and uninteresting background at the trigger level. The decision time of the system is less than 20 microseconds, typical for a modern second level trigger. The neural trigger has been successfully running for the past four years and has turned out new physics results from H1 unobtainable so far with other triggering schemes. We describe the concepts and the technical realization of the neural network trigger system, present the most important physics results, and motivate an upgrade of the system for the future high luminosity running at HERA. The upgrade concentrates on "intelligent preprocessing" of the neural inputs which help to strongly improve the networks' discrimination power.

  9. Hardware implementation of stochastic spiking neural networks.

    PubMed

    Rosselló, Josep L; Canals, Vincent; Morro, Antoni; Oliver, Antoni

    2012-08-01

    Spiking Neural Networks, the last generation of Artificial Neural Networks, are characterized by its bio-inspired nature and by a higher computational capacity with respect to other neural models. In real biological neurons, stochastic processes represent an important mechanism of neural behavior and are responsible of its special arithmetic capabilities. In this work we present a simple hardware implementation of spiking neurons that considers this probabilistic nature. The advantage of the proposed implementation is that it is fully digital and therefore can be massively implemented in Field Programmable Gate Arrays. The high computational capabilities of the proposed model are demonstrated by the study of both feed-forward and recurrent networks that are able to implement high-speed signal filtering and to solve complex systems of linear equations.

  10. Time series prediction using artificial neural network for power stabilization

    SciTech Connect

    Puranik, G.; Philip, T.; Nail, B.

    1996-12-31

    Time series prediction has been applied to many business and scientific applications. Prominent among them are stock market prediction, weather forecasting, etc. Here, this technique has been applied to forecast plasma torch voltages to stabilize power using a backpropagation, a model of artificial neural network. The Extended-Delta-Bar-Delta algorithm is used to improve the convergence rate of the network and also to avoid local minima. Results from off-line data was quite promising to use in on-line.

  11. Sequential state generation by model neural networks.

    PubMed Central

    Kleinfeld, D

    1986-01-01

    Sequential patterns of neural output activity form the basis of many biological processes, such as the cyclic pattern of outputs that control locomotion. I show how such sequences can be generated by a class of model neural networks that make defined sets of transitions between selected memory states. Sequence-generating networks depend upon the interplay between two sets of synaptic connections. One set acts to stabilize the network in its current memory state, while the second set, whose action is delayed in time, causes the network to make specified transitions between the memories. The dynamic properties of these networks are described in terms of motion along an energy surface. The performance of the networks, both with intact connections and with noisy or missing connections, is illustrated by numerical examples. In addition, I present a scheme for the recognition of externally generated sequences by these networks. PMID:3467316

  12. Fuzzy logic and neural networks

    SciTech Connect

    Loos, J.R.

    1994-11-01

    Combine fuzzy logic`s fuzzy sets, fuzzy operators, fuzzy inference, and fuzzy rules - like defuzzification - with neural networks and you can arrive at very unfuzzy real-time control. Fuzzy logic, cursed with a very whimsical title, simply means multivalued logic, which includes not only the conventional two-valued (true/false) crisp logic, but also the logic of three or more values. This means one can assign logic values of true, false, and somewhere in between. This is where fuzziness comes in. Multi-valued logic avoids the black-and-white, all-or-nothing assignment of true or false to an assertion. Instead, it permits the assignment of shades of gray. When assigning a value of true or false to an assertion, the numbers typically used are {open_quotes}1{close_quotes} or {open_quotes}0{close_quotes}. This is the case for programmed systems. If {open_quotes}0{close_quotes} means {open_quotes}false{close_quotes} and {open_quotes}1{close_quotes} means {open_quotes}true,{close_quotes} then {open_quotes}shades of gray{close_quotes} are any numbers between 0 and 1. Therefore, {open_quotes}nearly true{close_quotes} may be represented by 0.8 or 0.9, {open_quotes}nearly false{close_quotes} may be represented by 0.1 or 0.2, and {close_quotes}your guess is as good as mine{close_quotes} may be represented by 0.5. The flexibility available to one is limitless. One can associate any meaning, such as {open_quotes}nearly true{close_quotes}, to any value of any granularity, such as 0.9999. 2 figs.

  13. Optical neural stimulation modeling on degenerative neocortical neural networks

    NASA Astrophysics Data System (ADS)

    Zverev, M.; Fanjul-Vélez, F.; Salas-García, I.; Arce-Diego, J. L.

    2015-07-01

    Neurodegenerative diseases usually appear at advanced age. Medical advances make people live longer and as a consequence, the number of neurodegenerative diseases continuously grows. There is still no cure for these diseases, but several brain stimulation techniques have been proposed to improve patients' condition. One of them is Optical Neural Stimulation (ONS), which is based on the application of optical radiation over specific brain regions. The outer cerebral zones can be noninvasively stimulated, without the common drawbacks associated to surgical procedures. This work focuses on the analysis of ONS effects in stimulated neurons to determine their influence in neuronal activity. For this purpose a neural network model has been employed. The results show the neural network behavior when the stimulation is provided by means of different optical radiation sources and constitute a first approach to adjust the optical light source parameters to stimulate specific neocortical areas.

  14. Neural network definitions of highly predictable protein secondary structure classes

    SciTech Connect

    Lapedes, A. |; Steeg, E.; Farber, R.

    1994-02-01

    We use two co-evolving neural networks to determine new classes of protein secondary structure which are significantly more predictable from local amino sequence than the conventional secondary structure classification. Accurate prediction of the conventional secondary structure classes: alpha helix, beta strand, and coil, from primary sequence has long been an important problem in computational molecular biology. Neural networks have been a popular method to attempt to predict these conventional secondary structure classes. Accuracy has been disappointingly low. The algorithm presented here uses neural networks to similtaneously examine both sequence and structure data, and to evolve new classes of secondary structure that can be predicted from sequence with significantly higher accuracy than the conventional classes. These new classes have both similarities to, and differences with the conventional alpha helix, beta strand and coil.

  15. A neural network approach to complete coverage path planning.

    PubMed

    Yang, Simon X; Luo, Chaomin

    2004-02-01

    Complete coverage path planning requires the robot path to cover every part of the workspace, which is an essential issue in cleaning robots and many other robotic applications such as vacuum robots, painter robots, land mine detectors, lawn mowers, automated harvesters, and window cleaners. In this paper, a novel neural network approach is proposed for complete coverage path planning with obstacle avoidance of cleaning robots in nonstationary environments. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation derived from Hodgkin and Huxley's (1952) membrane equation. There are only local lateral connections among neurons. The robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot location. The proposed model algorithm is computationally simple. Simulation results show that the proposed model is capable of planning collision-free complete coverage robot paths.

  16. Robust Large Margin Deep Neural Networks

    NASA Astrophysics Data System (ADS)

    Sokolic, Jure; Giryes, Raja; Sapiro, Guillermo; Rodrigues, Miguel R. D.

    2017-08-01

    The generalization error of deep neural networks via their classification margin is studied in this work. Our approach is based on the Jacobian matrix of a deep neural network and can be applied to networks with arbitrary non-linearities and pooling layers, and to networks with different architectures such as feed forward networks and residual networks. Our analysis leads to the conclusion that a bounded spectral norm of the network's Jacobian matrix in the neighbourhood of the training samples is crucial for a deep neural network of arbitrary depth and width to generalize well. This is a significant improvement over the current bounds in the literature, which imply that the generalization error grows with either the width or the depth of the network. Moreover, it shows that the recently proposed batch normalization and weight normalization re-parametrizations enjoy good generalization properties, and leads to a novel network regularizer based on the network's Jacobian matrix. The analysis is supported with experimental results on the MNIST, CIFAR-10, LaRED and ImageNet datasets.

  17. Existence and uniqueness results for neural network approximations.

    PubMed

    Williamson, R C; Helmke, U

    1995-01-01

    Some approximation theoretic questions concerning a certain class of neural networks are considered. The networks considered are single input, single output, single hidden layer, feedforward neural networks with continuous sigmoidal activation functions, no input weights but with hidden layer thresholds and output layer weights. Specifically, questions of existence and uniqueness of best approximations on a closed interval of the real line under mean-square and uniform approximation error measures are studied. A by-product of this study is a reparametrization of the class of networks considered in terms of rational functions of a single variable. This rational reparametrization is used to apply the theory of Pade approximation to the class of networks considered. In addition, a question related to the number of local minima arising in gradient algorithms for learning is examined.

  18. Neural network approaches to dynamic collision-free trajectory generation.

    PubMed

    Yang, S X; Meng, M

    2001-01-01

    In this paper, dynamic collision-free trajectory generation in a nonstationary environment is studied using biologically inspired neural network approaches. The proposed neural network is topologically organized, where the dynamics of each neuron is characterized by a shunting equation or an additive equation. The state space of the neural network can be either the Cartesian workspace or the joint space of multi-joint robot manipulators. There are only local lateral connections among neurons. The real-time optimal trajectory is generated through the dynamic activity landscape of the neural network without explicitly searching over the free space nor the collision paths, without explicitly optimizing any global cost functions, without any prior knowledge of the dynamic environment, and without any learning procedures. Therefore the model algorithm is computationally efficient. The stability of the neural network system is guaranteed by the existence of a Lyapunov function candidate. In addition, this model is not very sensitive to the model parameters. Several model variations are presented and the differences are discussed. As examples, the proposed models are applied to generate collision-free trajectories for a mobile robot to solve a maze-type of problem, to avoid concave U-shaped obstacles, to track a moving target and at the same to avoid varying obstacles, and to generate a trajectory for a two-link planar robot with two targets. The effectiveness and efficiency of the proposed approaches are demonstrated through simulation and comparison studies.

  19. An annealed chaotic maximum neural network for bipartite subgraph problem.

    PubMed

    Wang, Jiahai; Tang, Zheng; Wang, Ronglong

    2004-04-01

    In this paper, based on maximum neural network, we propose a new parallel algorithm that can help the maximum neural network escape from local minima by including a transient chaotic neurodynamics for bipartite subgraph problem. The goal of the bipartite subgraph problem, which is an NP- complete problem, is to remove the minimum number of edges in a given graph such that the remaining graph is a bipartite graph. Lee et al. presented a parallel algorithm using the maximum neural model (winner-take-all neuron model) for this NP- complete problem. The maximum neural model always guarantees a valid solution and greatly reduces the search space without a burden on the parameter-tuning. However, the model has a tendency to converge to a local minimum easily because it is based on the steepest descent method. By adding a negative self-feedback to the maximum neural network, we proposed a new parallel algorithm that introduces richer and more flexible chaotic dynamics and can prevent the network from getting stuck at local minima. After the chaotic dynamics vanishes, the proposed algorithm is then fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. The proposed algorithm has the advantages of both the maximum neural network and the chaotic neurodynamics. A large number of instances have been simulated to verify the proposed algorithm. The simulation results show that our algorithm finds the optimum or near-optimum solution for the bipartite subgraph problem superior to that of the best existing parallel algorithms.

  20. Artificial neural network intelligent method for prediction

    NASA Astrophysics Data System (ADS)

    Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi

    2017-09-01

    Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.

  1. Computational inference of neural information flow networks.

    PubMed

    Smith, V Anne; Yu, Jing; Smulders, Tom V; Hartemink, Alexander J; Jarvis, Erich D

    2006-11-24

    Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.

  2. On sparsely connected optimal neural networks

    SciTech Connect

    Beiu, V.; Draghici, S.

    1997-10-01

    This paper uses two different approaches to show that VLSI- and size-optimal discrete neural networks are obtained for small fan-in values. These have applications to hardware implementations of neural networks, but also reveal an intrinsic limitation of digital VLSI technology: its inability to cope with highly connected structures. The first approach is based on implementing F{sub n,m} functions. The authors show that this class of functions can be implemented in VLSI-optimal (i.e., minimizing AT{sup 2}) neural networks of small constant fan-ins. In order to estimate the area (A) and the delay (T) of such networks, the following cost functions will be used: (i) the connectivity and the number-of-bits for representing the weights and thresholds--for good estimates of the area; and (ii) the fan-ins and the length of the wires--for good approximates of the delay. The second approach is based on implementing Boolean functions for which the classical Shannon`s decomposition can be used. Such a solution has already been used to prove bounds on the size of fan-in 2 neural networks. They will generalize the result presented there to arbitrary fan-in, and prove that the size is minimized by small fan-in values. Finally, a size-optimal neural network of small constant fan-ins will be suggested for F{sub n,m} functions.

  3. Neural networks as perpetual information generators

    NASA Astrophysics Data System (ADS)

    Englisch, Harald; Xiao, Yegao; Yao, Kailun

    1991-07-01

    The information gain in a neural network cannot be larger than the bit capacity of the synapses. It is shown that the equation derived by Engel et al. [Phys. Rev. A 42, 4998 (1990)] for the strongly diluted network with persistent stimuli contradicts this condition. Furthermore, for any time step the correct equation is derived by taking the correlation between random variables into account.

  4. Higher-Order Neural Networks Recognize Patterns

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Spirkovska, Lilly; Ochoa, Ellen

    1996-01-01

    Networks of higher order have enhanced capabilities to distinguish between different two-dimensional patterns and to recognize those patterns. Also enhanced capabilities to "learn" patterns to be recognized: "trained" with far fewer examples and, therefore, in less time than necessary to train comparable first-order neural networks.

  5. Orthogonal Patterns In A Binary Neural Network

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1991-01-01

    Report presents some recent developments in theory of binary neural networks. Subject matter relevant to associate (content-addressable) memories and to recognition of patterns - both of considerable importance in advancement of robotics and artificial intelligence. When probed by any pattern, network converges to one of stored patterns.

  6. An Evolutionary Approach to Designing Neural Networks

    DTIC Science & Technology

    1991-10-01

    Feature-Map Networks .. .. .. .. ... ... .... ... ... ... .... 42 4.5 Evolution of Learning: A Population Genetics Approach. .. .. .. .. ... .... .. 44...principles of biological evolution and population genetics provide the basis for such behavior. The processes of variation and selection, operating at...better understanding of the relationship among neural network theory, evolutionary and population genetics , and some aspects of dynamical systems

  7. Artificial Neural Networks and Instructional Technology.

    ERIC Educational Resources Information Center

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  8. Artificial Neural Networks and Instructional Technology.

    ERIC Educational Resources Information Center

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  9. Neural-Network Modeling Of Arc Welding

    NASA Technical Reports Server (NTRS)

    Anderson, Kristinn; Barnett, Robert J.; Springfield, James F.; Cook, George E.; Strauss, Alvin M.; Bjorgvinsson, Jon B.

    1994-01-01

    Artificial neural networks considered for use in monitoring and controlling gas/tungsten arc-welding processes. Relatively simple network, using 4 welding equipment parameters as inputs, estimates 2 critical weld-bead paramaters within 5 percent. Advantage is computational efficiency.

  10. Transcontinental local area network

    NASA Astrophysics Data System (ADS)

    Hunt, Gareth

    2000-06-01

    The National Radio Astronomy Observatory (NRAO) has facilities at 17 different locations scattered throughout the USA. These vary in size from the major laboratories occupied by research and support staff to the ten individual antennas of the Very Long Baseline Array. As is typical in astronomy, many sites are in remote locations, which are not well served with modern communication capabilities. Until 1996, the NRAO's internal network was achieved via the Internet; most sites simply had a local port to the Internet and the traffic was routed tortuously to the other locations. The burgeoning demand for Internet bandwidth was (and still is) growing faster than the services could be enhanced, and this led to intolerably slow response times and unacceptably low achieved data rates. To solve this problem, the NRAO acquired a frame relay intranet from AT&T to connect ten of its locations. The operating cost is approximately the same as the multiple Internet connections, but with vastly improved throughput and reliability. Recently, the access to the four major sites has been upgraded to support video conferencing.

  11. Some neural networks compute, others don't.

    PubMed

    Piccinini, Gualtiero

    2008-01-01

    I address whether neural networks perform computations in the sense of computability theory and computer science. I explicate and defend the following theses. (1) Many neural networks compute--they perform computations. (2) Some neural networks compute in a classical way. Ordinary digital computers, which are very large networks of logic gates, belong in this class of neural networks. (3) Other neural networks compute in a non-classical way. (4) Yet other neural networks do not perform computations. Brains may well fall into this last class.

  12. Design of Neural Networks for Fast Convergence and Accuracy

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1998-01-01

    A novel procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed to provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component spacecraft design changes and measures of its performance. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The design algorithm attempts to avoid the local minima phenomenon that hampers the traditional network training. A numerical example is performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  13. Hybrid multiobjective evolutionary design for artificial neural networks.

    PubMed

    Goh, Chi-Keong; Teoh, Eu-Jin; Tan, Kay Chen

    2008-09-01

    Evolutionary algorithms are a class of stochastic search methods that attempts to emulate the biological process of evolution, incorporating concepts of selection, reproduction, and mutation. In recent years, there has been an increase in the use of evolutionary approaches in the training of artificial neural networks (ANNs). While evolutionary techniques for neural networks have shown to provide superior performance over conventional training approaches, the simultaneous optimization of network performance and architecture will almost always result in a slow training process due to the added algorithmic complexity. In this paper, we present a geometrical measure based on the singular value decomposition (SVD) to estimate the necessary number of neurons to be used in training a single-hidden-layer feedforward neural network (SLFN). In addition, we develop a new hybrid multiobjective evolutionary approach that includes the features of a variable length representation that allow for easy adaptation of neural networks structures, an architectural recombination procedure based on the geometrical measure that adapts the number of necessary hidden neurons and facilitates the exchange of neuronal information between candidate designs, and a microhybrid genetic algorithm ( microHGA) with an adaptive local search intensity scheme for local fine-tuning. In addition, the performances of well-known algorithms as well as the effectiveness and contributions of the proposed approach are analyzed and validated through a variety of data set types.

  14. Disruption forecasting at JET using neural networks

    NASA Astrophysics Data System (ADS)

    Cannas, B.; Fanni, A.; Marongiu, E.; Sonato, P.

    2004-01-01

    Neural networks are trained to evaluate the risk of plasma disruptions in a tokamak experiment using several diagnostic signals as inputs. A saliency analysis confirms the goodness of the chosen inputs, all of which contribute to the network performance. Tests that were carried out refer to data collected from succesfully terminated and disruption terminated pulses performed during two years of JET tokamak experiments. Results show the possibility of developing a neural network predictor that intervenes well in advance in order to avoid plasma disruption or mitigate its effects.

  15. Electronic device aspects of neural network memories

    NASA Technical Reports Server (NTRS)

    Lambe, J.; Moopenn, A.; Thakoor, A. P.

    1985-01-01

    The basic issues related to the electronic implementation of the neural network model (NNM) for content addressable memories are examined. A brief introduction to the principles of the NNM is followed by an analysis of the information storage of the neural network in the form of a binary connection matrix and the recall capability of such matrix memories based on a hardware simulation study. In addition, materials and device architecture issues involved in the future realization of such networks in VLSI-compatible ultrahigh-density memories are considered. A possible space application of such devices would be in the area of large-scale information storage without mechanical devices.

  16. Electronic device aspects of neural network memories

    NASA Technical Reports Server (NTRS)

    Lambe, J.; Moopenn, A.; Thakoor, A. P.

    1985-01-01

    The basic issues related to the electronic implementation of the neural network model (NNM) for content addressable memories are examined. A brief introduction to the principles of the NNM is followed by an analysis of the information storage of the neural network in the form of a binary connection matrix and the recall capability of such matrix memories based on a hardware simulation study. In addition, materials and device architecture issues involved in the future realization of such networks in VLSI-compatible ultrahigh-density memories are considered. A possible space application of such devices would be in the area of large-scale information storage without mechanical devices.

  17. Attractor dynamics in local neuronal networks

    PubMed Central

    Thivierge, Jean-Philippe; Comas, Rosa; Longtin, André

    2014-01-01

    Patterns of synaptic connectivity in various regions of the brain are characterized by the presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts that follow a particular configuration and link together small groups of neurons. Recent computational work proposes that a relay network (two populations communicating via a third, relay population of neurons) can generate precise patterns of neural synchronization. Here, we employ two distinct models of neuronal dynamics and show that simulated neural circuits designed in this way are caught in a global attractor of activity that prevents neurons from modulating their response on the basis of incoming stimuli. To circumvent the emergence of a fixed global attractor, we propose a mechanism of selective gain inhibition that promotes flexible responses to external stimuli. We suggest that local neuronal circuits may employ this mechanism to generate precise patterns of neural synchronization whose transient nature delimits the occurrence of a brief stimulus. PMID:24688457

  18. Improving neural network performance on SIMD architectures

    NASA Astrophysics Data System (ADS)

    Limonova, Elena; Ilin, Dmitry; Nikolaev, Dmitry

    2015-12-01

    Neural network calculations for the image recognition problems can be very time consuming. In this paper we propose three methods of increasing neural network performance on SIMD architectures. The usage of SIMD extensions is a way to speed up neural network processing available for a number of modern CPUs. In our experiments, we use ARM NEON as SIMD architecture example. The first method deals with half float data type for matrix computations. The second method describes fixed-point data type for the same purpose. The third method considers vectorized activation functions implementation. For each method we set up a series of experiments for convolutional and fully connected networks designed for image recognition task.

  19. A quantum-implementable neural network model

    NASA Astrophysics Data System (ADS)

    Chen, Jialin; Wang, Lingli; Charbon, Edoardo

    2017-10-01

    A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.

  20. Artificial neural networks for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Daniell, Cindy E.; Kemsley, David; Lincoln, William P.; Tackett, Walter A.; Baraghimian, Gregory A.

    1992-12-01

    The Self Adaptive Hierarchical Target Identification and Recognition Neural Network (SAHTIRNTM), is a unique and powerful combination of state-of-the-art neural network models for automatic target recognition applications. It is a combination of three models: (1) an early vision segmentor based on the Canny edge detector, (2) a hierarchical feature extraction and pattern recognition system based on a modified Neocognitron architecture, and (3) a pattern classifier based on the back-propagation network. Hughes has extensively tested SAHTIRNTM with several ground vehicular targets using terrain board modeled IR imagery under a current neural network program sponsored by the Defense Advanced Research Projects Agency. In addition, extensive testing was conducted using several real IR and handwritten character databases. Hughes has demonstrated successful performance with 91 to 100% probability of correct classification over this wide variety of data. End-to-end system results from these experiments are provided and interim results from each stage of the SAHTIRNTM system are discussed.

  1. Multiwavelet neural network and its approximation properties.

    PubMed

    Jiao, L; Pan, J; Fang, Y

    2001-01-01

    A model of multiwavelet-based neural networks is proposed. Its universal and L(2) approximation properties, together with its consistency are proved, and the convergence rates associated with these properties are estimated. The structure of this network is similar to that of the wavelet network, except that the orthonormal scaling functions are replaced by orthonormal multiscaling functions. The theoretical analyses show that the multiwavelet network converges more rapidly than the wavelet network, especially for smooth functions. To make a comparison between both networks, experiments are carried out with the Lemarie-Meyer wavelet network, the Daubechies2 wavelet network and the GHM multiwavelet network, and the results support the theoretical analysis well. In addition, the results also illustrate that at the jump discontinuities, the approximation performance of the two networks are about the same.

  2. Generalized neural networks for spectral analysis: dynamics and Liapunov functions.

    PubMed

    Vegas, José M; Zufiria, Pedro J

    2004-03-01

    This paper analyzes local and global behavior of several dynamical systems which generalize some artificial neural network (ANN) semilinear models originally designed for principal component analysis (PCA) in the characterization of random vectors. These systems implicitly performed the spectral analysis of correlation (i.e. symmetric positive definite) matrices. Here, the proposed generalizations cover both nonsymmetric matrices as well as fully nonlinear models. Local stability analysis is performed via linearization and global behavior is analyzed by constructing several Liapunov functions.

  3. High level cognitive information processing in neural networks

    NASA Technical Reports Server (NTRS)

    Barnden, John A.; Fields, Christopher A.

    1992-01-01

    Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field.

  4. Applications of Neural Networks to Adaptive Control

    DTIC Science & Technology

    1989-12-01

    DTIC ;- E py 00 NAVAL POSTGRADUATE SCHOOL Monterey, California I.$ RDTIC IELECTE fl THESIS BEG7V°U APPLICATIONS OF NEURAL NETWORKS TO ADAPTIVE CONTROL...Second keader E . Robert Wood, Chairman, Department of Aeronautics and Astronautics Gordoii E . Schacher, Dean of Faculty and Graduate Education ii ABSTRACT...23: Network Dynamic Stability for q(t) . ............................. 55 ix Figure 24: Network Dynamic Stability for e (t

  5. Neural network technologies for image classification

    NASA Astrophysics Data System (ADS)

    Korikov, A. M.; Tungusova, A. V.

    2015-11-01

    We analyze the classes of problems with an objective necessity to use neural network technologies, i.e. representation and resolution problems in the neural network logical basis. Among these problems, image recognition takes an important place, in particular the classification of multi-dimensional data based on information about textural characteristics. These problems occur in aerospace and seismic monitoring, materials science, medicine and other. We reviewed different approaches for the texture description: statistical, structural, and spectral. We developed a neural network technology for resolving a practical problem of cloud image classification for satellite snapshots from the spectroradiometer MODIS. The cloud texture is described by the statistical characteristics of the GLCM (Gray Level Co- Occurrence Matrix) method. From the range of neural network models that might be applied for image classification, we chose the probabilistic neural network model (PNN) and developed an implementation which performs the classification of the main types and subtypes of clouds. Also, we chose experimentally the optimal architecture and parameters for the PNN model which is used for image classification.

  6. Using Neural Networks to Describe Tracer Correlations

    NASA Technical Reports Server (NTRS)

    Lary, D. J.; Mueller, M. D.; Mussa, H. Y.

    2003-01-01

    Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation co- efficient of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE) which has continuously observed CH4, (but not N2O) from 1991 till the present. The neural network Fortran code used is available for download.

  7. Learning and diagnosing faults using neural networks

    NASA Technical Reports Server (NTRS)

    Whitehead, Bruce A.; Kiech, Earl L.; Ali, Moonis

    1990-01-01

    Neural networks have been employed for learning fault behavior from rocket engine simulator parameters and for diagnosing faults on the basis of the learned behavior. Two problems in applying neural networks to learning and diagnosing faults are (1) the complexity of the sensor data to fault mapping to be modeled by the neural network, which implies difficult and lengthy training procedures; and (2) the lack of sufficient training data to adequately represent the very large number of different types of faults which might occur. Methods are derived and tested in an architecture which addresses these two problems. First, the sensor data to fault mapping is decomposed into three simpler mappings which perform sensor data compression, hypothesis generation, and sensor fusion. Efficient training is performed for each mapping separately. Secondly, the neural network which performs sensor fusion is structured to detect new unknown faults for which training examples were not presented during training. These methods were tested on a task of fault diagnosis by employing rocket engine simulator data. Results indicate that the decomposed neural network architecture can be trained efficiently, can identify faults for which it has been trained, and can detect the occurrence of faults for which it has not been trained.

  8. A neural network approach to cloud classification

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan; Weger, Ronald C.; Sengupta, Sailes K.; Welch, Ronald M.

    1990-01-01

    It is shown that, using high-spatial-resolution data, very high cloud classification accuracies can be obtained with a neural network approach. A texture-based neural network classifier using only single-channel visible Landsat MSS imagery achieves an overall cloud identification accuracy of 93 percent. Cirrus can be distinguished from boundary layer cloudiness with an accuracy of 96 percent, without the use of an infrared channel. Stratocumulus is retrieved with an accuracy of 92 percent, cumulus at 90 percent. The use of the neural network does not improve cirrus classification accuracy. Rather, its main effect is in the improved separation between stratocumulus and cumulus cloudiness. While most cloud classification algorithms rely on linear parametric schemes, the present study is based on a nonlinear, nonparametric four-layer neural network approach. A three-layer neural network architecture, the nonparametric K-nearest neighbor approach, and the linear stepwise discriminant analysis procedure are compared. A significant finding is that significantly higher accuracies are attained with the nonparametric approaches using only 20 percent of the database as training data, compared to 67 percent of the database in the linear approach.

  9. Estimates on compressed neural networks regression.

    PubMed

    Zhang, Yongquan; Li, Youmei; Sun, Jianyong; Ji, Jiabing

    2015-03-01

    When the neural element number n of neural networks is larger than the sample size m, the overfitting problem arises since there are more parameters than actual data (more variable than constraints). In order to overcome the overfitting problem, we propose to reduce the number of neural elements by using compressed projection A which does not need to satisfy the condition of Restricted Isometric Property (RIP). By applying probability inequalities and approximation properties of the feedforward neural networks (FNNs), we prove that solving the FNNs regression learning algorithm in the compressed domain instead of the original domain reduces the sample error at the price of an increased (but controlled) approximation error, where the covering number theory is used to estimate the excess error, and an upper bound of the excess error is given. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Community structure of complex networks based on continuous neural network

    NASA Astrophysics Data System (ADS)

    Dai, Ting-ting; Shan, Chang-ji; Dong, Yan-shou

    2017-09-01

    As a new subject, the research of complex networks has attracted the attention of researchers from different disciplines. Community structure is one of the key structures of complex networks, so it is a very important task to analyze the community structure of complex networks accurately. In this paper, we study the problem of extracting the community structure of complex networks, and propose a continuous neural network (CNN) algorithm. It is proved that for any given initial value, the continuous neural network algorithm converges to the eigenvector of the maximum eigenvalue of the network modularity matrix. Therefore, according to the stability of the evolution of the network symbol will be able to get two community structure.

  11. An adaptive Hinfinity controller design for bank-to-turn missiles using ridge Gaussian neural networks.

    PubMed

    Lin, Chuan-Kai; Wang, Sheng-De

    2004-11-01

    A new autopilot design for bank-to-turn (BTT) missiles is presented. In the design of autopilot, a ridge Gaussian neural network with local learning capability and fewer tuning parameters than Gaussian neural networks is proposed to model the controlled nonlinear systems. We prove that the proposed ridge Gaussian neural network, which can be a universal approximator, equals the expansions of rotated and scaled Gaussian functions. Although ridge Gaussian neural networks can approximate the nonlinear and complex systems accurately, the small approximation errors may affect the tracking performance significantly. Therefore, by employing the Hinfinity control theory, it is easy to attenuate the effects of the approximation errors of the ridge Gaussian neural networks to a prescribed level. Computer simulation results confirm the effectiveness of the proposed ridge Gaussian neural networks-based autopilot with Hinfinity stabilization.

  12. Flexible body control using neural networks

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  13. Dynamic stability conditions for Lotka-Volterra recurrent neural networks with delays.

    PubMed

    Yi, Zhang; Tan, K K

    2002-07-01

    The Lotka-Volterra model of neural networks, derived from the membrane dynamics of competing neurons, have found successful applications in many "winner-take-all" types of problems. This paper studies the dynamic stability properties of general Lotka-Volterra recurrent neural networks with delays. Conditions for nondivergence of the neural networks are derived. These conditions are based on local inhibition of networks, thereby allowing these networks to possess a multistability property. Multistability is a necessary property of a network that will enable important neural computations such as those governing the decision making process. Under these nondivergence conditions, a compact set that globally attracts all the trajectories of a network can be computed explicitly. If the connection weight matrix of a network is symmetric in some sense, and the delays of the network are in L2 space, we can prove that the network will have the property of complete stability.

  14. Conditional Simulation Using an Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Besaw, L.

    2005-12-01

    Uncertainty in site characterization, due to sparsely distributed samples and incomplete site knowledge, is of major concern in resource mining and environmental engineering. Scientists are able to model the spatial continuity and quantify uncertainty of phenomena of interest (i.e. ore grade, subsurface contamination) through the generation and analysis of many equiprobable stochastic simulations (realizations) using concepts of probability theory. We have developed a method of generating equiprobable simulations by combining the traditional frame work of spatial dependencies witnessed in geostatistics with an artificial neural network (ANN) algorithm know as counterpropagation. This new method allows for the generation of simulations that respect the observed sample data as well as the data's underlying spatial structure. Conditional simulation is a natural product of the counterpropagation network using random initial weights while its architecture has computational advantages over other simulation generators due to its parallel information passing topology. Computational speedup, due to the implementation of the algorithm on a local cluster of off-the-shelf computational nodes and software, is another factor that will be discussed. The results of this research illustrate the potential applicability and utility of using the counterpropagation algorithm to conduct a probabilistic assessment while increasing interpretational value of site characterization data.

  15. Analysis of optical neural stimulation effects on neural networks affected by neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Zverev, M.; Fanjul-Vélez, F.; Salas-García, I.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2016-03-01

    The number of people in risk of developing a neurodegenerative disease increases as the life expectancy grows due to medical advances. Multiple techniques have been developed to improve patient's condition, from pharmacological to invasive electrodes approaches, but no definite cure has yet been discovered. In this work Optical Neural Stimulation (ONS) has been studied. ONS stimulates noninvasively the outer regions of the brain, mainly the neocortex. The relationship between the stimulation parameters and the therapeutic response is not totally clear. In order to find optimal ONS parameters to treat a particular neurodegenerative disease, mathematical modeling is necessary. Neural networks models have been employed to study the neural spiking activity change induced by ONS. Healthy and pathological neocortical networks have been considered to study the required stimulation to restore the normal activity. The network consisted of a group of interconnected neurons, which were assigned 2D spatial coordinates. The optical stimulation spatial profile was assumed to be Gaussian. The stimulation effects were modeled as synaptic current increases in the affected neurons, proportional to the stimulation fluence. Pathological networks were defined as the healthy ones with some neurons being inactivated, which presented no synaptic conductance. Neurons' electrical activity was also studied in the frequency domain, focusing specially on the changes of the spectral bands corresponding to brain waves. The complete model could be used to determine the optimal ONS parameters in order to achieve the specific neural spiking patterns or the required local neural activity increase to treat particular neurodegenerative pathologies.

  16. Training Deep Spiking Neural Networks Using Backpropagation

    PubMed Central

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael

    2016-01-01

    Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations. PMID:27877107

  17. Foreign currency rate forecasting using neural networks

    NASA Astrophysics Data System (ADS)

    Pandya, Abhijit S.; Kondo, Tadashi; Talati, Amit; Jayadevappa, Suryaprasad

    2000-03-01

    Neural networks are increasingly being used as a forecasting tool in many forecasting problems. This paper discusses the application of neural networks in predicting daily foreign exchange rates between the USD, GBP as well as DEM. We approach the problem from a time-series analysis framework - where future exchange rates are forecasted solely using past exchange rates. This relies on the belief that the past prices and future prices are very close related, and interdependent. We present the result of training a neural network with historical USD-GBP data. The methodology used in explained, as well as the training process. We discuss the selection of inputs to the network, and present a comparison of using the actual exchange rates and the exchange rate differences as inputs. Price and rate differences are the preferred way of training neural network in financial applications. Results of both approaches are present together for comparison. We show that the network is able to learn the trends in the exchange rate movements correctly, and present the results of the prediction over several periods of time.

  18. Training Deep Spiking Neural Networks Using Backpropagation.

    PubMed

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael

    2016-01-01

    Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.

  19. Kannada character recognition system using neural network

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh D. S.; Kamalapuram, Srinivasa K.; Kumar, Ajay B. R.

    2013-03-01

    Handwriting recognition has been one of the active and challenging research areas in the field of pattern recognition. It has numerous applications which include, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. As there is no sufficient number of works on Indian language character recognition especially Kannada script among 15 major scripts in India. In this paper an attempt is made to recognize handwritten Kannada characters using Feed Forward neural networks. A handwritten Kannada character is resized into 20x30 Pixel. The resized character is used for training the neural network. Once the training process is completed the same character is given as input to the neural network with different set of neurons in hidden layer and their recognition accuracy rate for different Kannada characters has been calculated and compared. The results show that the proposed system yields good recognition accuracy rates comparable to that of other handwritten character recognition systems.

  20. Parallel analog neural networks for tree searching

    NASA Astrophysics Data System (ADS)

    Saylor, Janet; Stork, David G.

    1986-08-01

    We have modeled parallel analog neural networks designed such that their evolution toward final states is equivalent to finding optimal (or nearly optimal) paths through decision trees. This work extends that done on the Traveling Salesman Problem (TSP)[1] and sheds light on the conditions under which analog neural networks can and cannot find solutions to discrete optimization problems. Neural networks show considerable specificity in finding optimal solutions for tree searches; in the cases when a final state does represent a syntactically correct path, that path will be the best path 70-90% of the time—even for trees with up to two thousand nodes. However, it appears that except for trivial networks lacking the ability to ``think globally,'' there exists no general network architecture that can strictly insure the convergence a state that represents a single, continuous, unambiguous path. In fact, we find that for roughly 15% of trees with six generations, 40% of trees with eight generations, and 70% of trees with ten generations, networks evolve to ``broken paths,'' i.e., combinations of the beginning of one and the end of another path through a tree. Tree searches illustrate well neural dynamics because tree structures make the effects of competition and positive feedback apparent. We have found that 1) convergence times for networks with up to 2000 neurons are very rapid, depend on the gain of neurons and magnitude of neural connections but not on the number of generations or branching factor of a tree, 2) all neurons along a ``winning'' path turn on exponentially with the same exponent, and 3) the general computational mechanism of these networks appears to be the pruning of a tree from the outer branches inward, as chain reactions of neurons being quenched tend to propagate along possible paths.

  1. Unsupervised neural networks for solving Troesch's problem

    NASA Astrophysics Data System (ADS)

    Muhammad, Asif Zahoor Raja

    2014-01-01

    In this study, stochastic computational intelligence techniques are presented for the solution of Troesch's boundary value problem. The proposed stochastic solvers use the competency of a feed-forward artificial neural network for mathematical modeling of the problem in an unsupervised manner, whereas the learning of unknown parameters is made with local and global optimization methods as well as their combinations. Genetic algorithm (GA) and pattern search (PS) techniques are used as the global search methods and the interior point method (IPM) is used for an efficient local search. The combination of techniques like GA hybridized with IPM (GA-IPM) and PS hybridized with IPM (PS-IPM) are also applied to solve different forms of the equation. A comparison of the proposed results obtained from GA, PS, IPM, PS-IPM and GA-IPM has been made with the standard solutions including well known analytic techniques of the Adomian decomposition method, the variational iterational method and the homotopy perturbation method. The reliability and effectiveness of the proposed schemes, in term of accuracy and convergence, are evaluated from the results of statistical analysis based on sufficiently large independent runs.

  2. Neural network approaches for noisy language modeling.

    PubMed

    Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid

    2013-11-01

    Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.

  3. Cotton genotypes selection through artificial neural networks.

    PubMed

    Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B

    2017-09-27

    Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.

  4. Neural Network Prototyping Package Within IRAF

    NASA Technical Reports Server (NTRS)

    Bazell, David

    1997-01-01

    The purpose of this contract was to develop a neural network package within the IRAF environment to allow users to easily understand and use different neural network algorithms the analysis of astronomical data. The package was developed for use within IRAF to allow portability to different computing environments and to provide a familiar and easy to use interface with the routines. In addition to developing the software and supporting documentation, we planned to use the system for the analysis of several sample problems to prove its viability and usefulness.

  5. Implementation aspects of Graph Neural Networks

    NASA Astrophysics Data System (ADS)

    Barcz, A.; Szymański, Z.; Jankowski, S.

    2013-10-01

    This article summarises the results of implementation of a Graph Neural Network classi er. The Graph Neural Network model is a connectionist model, capable of processing various types of structured data, including non- positional and cyclic graphs. In order to operate correctly, the GNN model must implement a transition function being a contraction map, which is assured by imposing a penalty on model weights. This article presents research results concerning the impact of the penalty parameter on the model training process and the practical decisions that were made during the GNN implementation process.

  6. Signal dispersion within a hippocampal neural network

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Mates, J. W. B.

    1975-01-01

    A model network is described, representing two neural populations coupled so that one population is inhibited by activity it excites in the other. Parameters and operations within the model represent EPSPs, IPSPs, neural thresholds, conduction delays, background activity and spatial and temporal dispersion of signals passing from one population to the other. Simulations of single-shock and pulse-train driving of the network are presented for various parameter values. Neuronal events from 100 to 300 msec following stimulation are given special consideration in model calculations.

  7. Automatic identification of species with neural networks.

    PubMed

    Hernández-Serna, Andrés; Jiménez-Segura, Luz Fernanda

    2014-01-01

    A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.

  8. Simulation of photosynthetic production using neural network

    NASA Astrophysics Data System (ADS)

    Kmet, Tibor; Kmetova, Maria

    2013-10-01

    This paper deals with neural network based optimal control synthesis for solving optimal control problems with control and state constraints and discrete time delay. The optimal control problem is transcribed into nonlinear programming problem which is implemented with adaptive critic neural network. This approach is applicable to a wide class of nonlinear systems. The proposed simulation methods is illustrated by the optimal control problem of photosynthetic production described by discrete time delay differential equations. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.

  9. Automatic identification of species with neural networks

    PubMed Central

    Jiménez-Segura, Luz Fernanda

    2014-01-01

    A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification. PMID:25392749

  10. Intelligent neural network classifier for automatic testing

    NASA Astrophysics Data System (ADS)

    Bai, Baoxing; Yu, Heping

    1996-10-01

    This paper is concerned with an application of a multilayer feedforward neural network for the vision detection of industrial pictures, and introduces a high characteristics image processing and recognizing system which can be used for real-time testing blemishes, streaks and cracks, etc. on the inner walls of high-accuracy pipes. To take full advantage of the functions of the artificial neural network, such as the information distributed memory, large scale self-adapting parallel processing, high fault-tolerance ability, this system uses a multilayer perceptron as a regular detector to extract features of the images to be inspected and classify them.

  11. Advanced local area network concepts

    NASA Technical Reports Server (NTRS)

    Grant, Terry

    1985-01-01

    Development of a good model of the data traffic requirements for Local Area Networks (LANs) onboard the Space Station is the driving problem in this work. A parameterized workload model is under development. An analysis contract has been started specifically to capture the distributed processing requirements for the Space Station and then to develop a top level model to simulate how various processing scenarios can handle the workload and what data communication patterns result. A summary of the Local Area Network Extendsible Simulator 2 Requirements Specification and excerpts from a grant report on the topological design of fiber optic local area networks with application to Expressnet are given.

  12. Neural Network Approach To Sensory Fusion

    NASA Astrophysics Data System (ADS)

    Pearson, John C.; Gelfand, Jack J.; Sullivan, W. E.; Peterson, Richard M.; Spence, Clay D.

    1988-08-01

    We present a neural network model for sensory fusion based on the design of the visual/acoustic target localiza-tion system of the barn owl. This system adaptively fuses its separate visual and acoustic representations of object position into a single joint representation used for head orientation. The building block in this system, as in much of the brain, is the neuronal map. Neuronal maps are large arrays of locally interconnected neurons that represent information in a map-like form, that is, parameter values are systematically encoded by the position of neural activation in the array. The computational load is distributed to a hierarchy of maps, and the computation is performed in stages by transforming the representation from map to map via the geometry of the projections between the maps and the local interactions within the maps. For example, azimuthal position is computed from the frequency and binaural phase information encoded in the signals of the acoustic sensors, while elevation is computed in a separate stream using binaural intensity information. These separate streams are merged in their joint projection onto the external nucleus of the inferior colliculus, a two dimensional array of cells which contains a map of acoustic space. This acoustic map, and the visual map of the retina, jointly project onto the optic tectum, creating a fused visual/acoustic representation of position in space that is used for object localization. In this paper we describe our mathematical model of the stage of visual/acoustic fusion in the optic tectum. The model assumes that the acoustic projection from the external nucleus onto the tectum is roughly topographic and one-to-many, while the visual projection from the retina onto the tectum is topographic and one-to-one. A simple process of self-organization alters the strengths of the acoustic connections, effectively forming a focused beam of strong acoustic connections whose inputs are coincident with the visual inputs

  13. Autonomous robot behavior based on neural networks

    NASA Astrophysics Data System (ADS)

    Grolinger, Katarina; Jerbic, Bojan; Vranjes, Bozo

    1997-04-01

    The purpose of autonomous robot is to solve various tasks while adapting its behavior to the variable environment, expecting it is able to navigate much like a human would, including handling uncertain and unexpected obstacles. To achieve this the robot has to be able to find solution to unknown situations, to learn experienced knowledge, that means action procedure together with corresponding knowledge on the work space structure, and to recognize working environment. The planning of the intelligent robot behavior presented in this paper implements the reinforcement learning based on strategic and random attempts for finding solution and neural network approach for memorizing and recognizing work space structure (structural assignment problem). Some of the well known neural networks based on unsupervised learning are considered with regard to the structural assignment problem. The adaptive fuzzy shadowed neural network is developed. It has the additional shadowed hidden layer, specific learning rule and initialization phase. The developed neural network combines advantages of networks based on the Adaptive Resonance Theory and using shadowed hidden layer provides ability to recognize lightly translated or rotated obstacles in any direction.

  14. Porosity Log Prediction Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Dwi Saputro, Oki; Lazuardi Maulana, Zulfikar; Dzar Eljabbar Latief, Fourier

    2016-08-01

    Well logging is important in oil and gas exploration. Many physical parameters of reservoir is derived from well logging measurement. Geophysicists often use well logging to obtain reservoir properties such as porosity, water saturation and permeability. Most of the time, the measurement of the reservoir properties are considered expensive. One of method to substitute the measurement is by conducting a prediction using artificial neural network. In this paper, artificial neural network is performed to predict porosity log data from other log data. Three well from ‘yy’ field are used to conduct the prediction experiment. The log data are sonic, gamma ray, and porosity log. One of three well is used as training data for the artificial neural network which employ the Levenberg-Marquardt Backpropagation algorithm. Through several trials, we devise that the most optimal input training is sonic log data and gamma ray log data with 10 hidden layer. The prediction result in well 1 has correlation of 0.92 and mean squared error of 5.67 x10-4. Trained network apply to other well data. The result show that correlation in well 2 and well 3 is 0.872 and 0.9077 respectively. Mean squared error in well 2 and well 3 is 11 x 10-4 and 9.539 x 10-4. From the result we can conclude that sonic log and gamma ray log could be good combination for predicting porosity with neural network.

  15. Experimental fault characterization of a neural network

    NASA Technical Reports Server (NTRS)

    Tan, Chang-Huong

    1990-01-01

    The effects of a variety of faults on a neural network is quantified via simulation. The neural network consists of a single-layered clustering network and a three-layered classification network. The percentage of vectors mistagged by the clustering network, the percentage of vectors misclassified by the classification network, the time taken for the network to stabilize, and the output values are all measured. The results show that both transient and permanent faults have a significant impact on the performance of the measured network. The corresponding mistag and misclassification percentages are typically within 5 to 10 percent of each other. The average mistag percentage and the average misclassification percentage are both about 25 percent. After relearning, the percentage of misclassifications is reduced to 9 percent. In addition, transient faults are found to cause the network to be increasingly unstable as the duration of a transient is increased. The impact of link faults is relatively insignificant in comparison with node faults (1 versus 19 percent misclassified after relearning). There is a linear increase in the mistag and misclassification percentages with decreasing hardware redundancy. In addition, the mistag and misclassification percentages linearly decrease with increasing network size.

  16. Payload Invariant Control via Neural Networks: Development and Experimental Evaluation

    DTIC Science & Technology

    1989-12-01

    control is proposed and experimentally evaluated. An Adaptive Model-Based Neural Network Controller (AMBNNC) uses multilayer perceptron artificial neural ... networks to estimate the payload during high speed manipulator motion. The payload estimate adapts the feedforward compensator to unmodeled system

  17. Neural localization of addicsin in mouse brain.

    PubMed

    Akiduki, Saori; Ochiishi, Tomoyo; Ikemoto, Mitsushi J

    2007-10-22

    Addicsin is a member of the prenylated Rab acceptor (PRA) 1 domain family and a murine homolog of the rat glutamate-transporter-associated protein 3-18 (GTRAP3-18). This protein is considered to function as a modulator of the neural glutamate transporter excitatory amino acid carrier 1 (EAAC1). However, its molecular functions remain largely unknown. Here, we examined the regional and cellular localization of addicsin in the central nervous system (CNS) by using a newly generated antibody specific for the protein. Distribution analysis by Western blot and immunohistochemistry demonstrated that the protein was widely distributed in various regions of the mature CNS, including the olfactory bulbs, cerebral cortex, amygdala, hippocampus CA1-3 fields, dentate gyrus, and cerebellum. Double immunofluorescence analysis revealed that addicsin was expressed in the somata of principal neurons in the CNS such as the pyramidal cells and gamma-aminobutyric acid (GABA)-ergic interneurons scattered in the hippocampal formation. Furthermore, the protein showed pre-synaptic localization in the stratum lucidum of the CA3 field of the hippocampal formation. Subcellular localization analysis of highly purified synaptic fractions prepared from mouse forebrain supported the cytoplasmic and pre-synaptic distribution of addicsin. These results suggest that addicsin has neural expression and may play crucial roles in the basic physiological functions of the mature CNS.

  18. Development of programmable artificial neural networks

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J.

    1993-01-01

    Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed to mate the adaptability of the ANN with the speed and precision of the digital computer. This method was successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.

  19. Computational chaos in massively parallel neural networks

    NASA Technical Reports Server (NTRS)

    Barhen, Jacob; Gulati, Sandeep

    1989-01-01

    A fundamental issue which directly impacts the scalability of current theoretical neural network models to massively parallel embodiments, in both software as well as hardware, is the inherent and unavoidable concurrent asynchronicity of emerging fine-grained computational ensembles and the possible emergence of chaotic manifestations. Previous analyses attributed dynamical instability to the topology of the interconnection matrix, to parasitic components or to propagation delays. However, researchers have observed the existence of emergent computational chaos in a concurrently asynchronous framework, independent of the network topology. Researcher present a methodology enabling the effective asynchronous operation of large-scale neural networks. Necessary and sufficient conditions guaranteeing concurrent asynchronous convergence are established in terms of contracting operators. Lyapunov exponents are computed formally to characterize the underlying nonlinear dynamics. Simulation results are presented to illustrate network convergence to the correct results, even in the presence of large delays.

  20. The labeled systems of multiple neural networks.

    PubMed

    Nemissi, M; Seridi, H; Akdag, H

    2008-08-01

    This paper proposes an implementation scheme of K-class classification problem using systems of multiple neural networks. Usually, a multi-class problem is decomposed into simple sub-problems solved independently using similar single neural networks. For the reason that these sub-problems are not equivalent in their complexity, we propose a system that includes reinforced networks destined to solve complicated parts of the entire problem. Our approach is inspired from principles of the multi-classifiers systems and the labeled classification, which aims to improve performances of the networks trained by the Back-Propagation algorithm. We propose two implementation schemes based on both OAO (one-against-all) and OAA (one-against-one). The proposed models are evaluated using iris and human thigh databases.

  1. A neural network based speech recognition system

    NASA Astrophysics Data System (ADS)

    Carroll, Edward J.; Coleman, Norman P., Jr.; Reddy, G. N.

    1990-02-01

    An overview is presented of the development of a neural network based speech recognition system. The two primary tasks involved were the development of a time invariant speech encoder and a pattern recognizer or detector. The speech encoder uses amplitude normalization and a Fast Fourier Transform to eliminate amplitude and frequency shifts of acoustic clues. The detector consists of a back-propagation network which accepts data from the encoder and identifies individual words. This use of neural networks offers two advantages over conventional algorithmic detectors: the detection time is no more than a few network time constants, and its recognition speed is independent of the number of the words in the vocabulary. The completed system has functioned as expected with high tolerance to input variation and with error rates comparable to a commercial system when used in a noisy environment.

  2. A neural network with modular hierarchical learning

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)

    1994-01-01

    This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.

  3. Knowledge learning on fuzzy expert neural networks

    NASA Astrophysics Data System (ADS)

    Fu, Hsin-Chia; Shann, J.-J.; Pao, Hsiao-Tien

    1994-03-01

    The proposed fuzzy expert network is an event-driven, acyclic neural network designed for knowledge learning on a fuzzy expert system. Initially, the network is constructed according to a primitive (rough) expert rules including the input and output linguistic variables and values of the system. For each inference rule, it corresponds to an inference network, which contains five types of nodes: Input, Membership-Function, AND, OR, and Defuzzification Nodes. We propose a two-phase learning procedure for the inference network. The first phase is the competitive backpropagation (CBP) training phase, and the second phase is the rule- pruning phase. The CBP learning algorithm in the training phase enables the network to learn the fuzzy rules as precisely as backpropagation-type learning algorithms and yet as quickly as competitive-type learning algorithms. After the CBP training, the rule-pruning process is performed to delete redundant weight connections for simple network structures and yet compatible retrieving performance.

  4. Neural Networks Applied to Signal Processing

    DTIC Science & Technology

    1989-09-01

    identify by block number) FIELD GROUP SUB-GROUP Neural network, backpropagation, conjugato grad- ient method, Fibonacci line search, nonlinear signal...of the First Layer Gradients ............ 31 e. Calculation of the Input Layer Gradient-. ........... 33 i%" 5. Fibonacci Line Search Parameters...conjugate gradient optimization method is presented and then applied to the neu- ral network model. The Fibonacci line search method used in conjunction

  5. Simplified Learning Scheme For Analog Neural Network

    NASA Technical Reports Server (NTRS)

    Eberhardt, Silvio P.

    1991-01-01

    Synaptic connections adjusted one at a time in small increments. Simplified gradient-descent learning scheme for electronic neural-network processor less efficient than better-known back-propagation scheme, but offers two advantages: easily implemented in circuitry because data-access circuitry separated from learning circuitry; and independence of data-access circuitry makes possible to implement feedforward as well as feedback networks, including those of multiple-attractor type. Important in such applications as recognition of patterns.

  6. Using neural networks to model chaos

    SciTech Connect

    Upadhyay, M.D.

    1996-12-31

    Two types of neural networks -- backpropagation and radial basis function -- are presented for modeling dynamical systems. They were trained to model the Henon, Ikeda and Tinkerbell dynamical systems by providing a set of points randomly chosen from orbits under the functions. After training, the networks were used to simulate the functions to determine the extent to which they could generate the chaotic attractors associated with these systems.

  7. Analysis of Wideband Beamformers Designed with Artificial Neural Networks

    DTIC Science & Technology

    1990-12-01

    TECHNICAL REPORT 0-90-1 ANALYSIS OF WIDEBAND BEAMFORMERS DESIGNED WITH ARTIFICIAL NEURAL NETWORKS by Cary Cox Instrumentation Services Division...included. A briel tutorial on beamformers and neural networks is also provided. 14. SUBJECT TERMS 15, NUMBER OF PAGES Artificial neural networks Fecdforwa:,l...Beamformers Designed with Artificial Neural Networks ". The study was conducted under the general supervision of Messrs. George P. Bonner, Chief

  8. Neural Network Noise Anomaly Recognition System and Method

    DTIC Science & Technology

    2000-10-04

    determine when an input waveform deviates from learned noise characteristics. A plurality of neural networks is preferably provided, which each receives a...plurality of samples of intervals or windows of the input waveform. Each of the neural networks produces an output based on whether an anomaly is...detected with respect to the noise, which the neural network is trained to detect. The plurality of outputs of the neural networks is preferably applied to

  9. Local Area Network Implementation Plan.

    DTIC Science & Technology

    1985-11-01

    vendor support. The introduction of Ethernets should be taken into account during the procurement of new computing equipment (minicomputers. personal ...eventual connection of the IPD mainframes and two additional types of minicomputers as well as some personal computers. word processing systems, and...connection of personal computers to -" the network. and (6) the connection of facsimile devices to the network. 10 2. LOCAL NETWORKING In this section we

  10. Digital Neural Networks for New Media

    NASA Astrophysics Data System (ADS)

    Spaanenburg, Lambert; Malki, Suleyman

    Neural Networks perform computationally intensive tasks offering smart solutions for many new media applications. A number of analog and mixed digital/analog implementations have been proposed to smooth the algorithmic gap. But gradually, the digital implementation has become feasible, and the dedicated neural processor is on the horizon. A notable example is the Cellular Neural Network (CNN). The analog direction has matured for low-power, smart vision sensors; the digital direction is gradually being shaped into an IP-core for algorithm acceleration, especially for use in FPGA-based high-performance systems. The chapter discusses the next step towards a flexible and scalable multi-core engine using Application-Specific Integrated Processors (ASIP). This topographic engine can serve many new media tasks, as illustrated by novel applications in Homeland Security. We conclude with a view on the CNN kaleidoscope for the year 2020.

  11. Are artificial neural networks black boxes?

    PubMed

    Benitez, J M; Castro, J L; Requena, I

    1997-01-01

    Artificial neural networks are efficient computing models which have shown their strengths in solving hard problems in artificial intelligence. They have also been shown to be universal approximators. Notwithstanding, one of the major criticisms is their being black boxes, since no satisfactory explanation of their behavior has been offered. In this paper, we provide such an interpretation of neural networks so that they will no longer be seen as black boxes. This is stated after establishing the equality between a certain class of neural nets and fuzzy rule-based systems. This interpretation is built with fuzzy rules using a new fuzzy logic operator which is defined after introducing the concept of f-duality. In addition, this interpretation offers an automated knowledge acquisition procedure.

  12. Local Area Networks: Part I.

    ERIC Educational Resources Information Center

    Dessy, Raymond E.

    1982-01-01

    Local area networks are common communication conduits allowing various terminals, computers, discs, printers, and other electronic devices to intercommunicate over short distances. Discusses the vocabulary of such networks including RS-232C point-to-point and IEEE-488 multidrop protocols; error detection; message packets; multiplexing; star, ring,…

  13. Local Area Networks: Part I.

    ERIC Educational Resources Information Center

    Dessy, Raymond E.

    1982-01-01

    Local area networks are common communication conduits allowing various terminals, computers, discs, printers, and other electronic devices to intercommunicate over short distances. Discusses the vocabulary of such networks including RS-232C point-to-point and IEEE-488 multidrop protocols; error detection; message packets; multiplexing; star, ring,…

  14. Non-Hermitian localization in biological networks

    NASA Astrophysics Data System (ADS)

    Amir, Ariel; Hatano, Naomichi; Nelson, David R.

    2016-04-01

    We explore the spectra and localization properties of the N -site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N , the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90∘ rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.

  15. Psychometric Measurement Models and Artificial Neural Networks

    ERIC Educational Resources Information Center

    Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.

    2004-01-01

    The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…

  16. Neural networks in the former Soviet Union

    SciTech Connect

    Wunsch, D.C. II.

    1993-01-01

    A brief overview is given of neural networks activities in the former Soviet Union that have potential aerospace applications. Activities at institutes in Moscow, the former Leningrad, Kiev, Taganrog, Rostov-on-Don, and Krasnoyarsk are addressed, including the most important scientists involved. 21 refs.

  17. Neural networks and dynamic complex systems

    SciTech Connect

    Fox, G.; Furmanski, Wojtek; Ho, Alex; Koller, J.; Simic, P.; Wong, Isaac

    1989-01-01

    We describe the use of neural networks for optimization and inference associated with a variety of complex systems. We show how a string formalism can be used for parallel computer decomposition, message routing and sequential optimizing compilers. We extend these ideas to a general treatment of spatial assessment and distributed artificial intelligence. 34 refs., 12 figs.

  18. Optoelectronic Integrated Circuits For Neural Networks

    NASA Technical Reports Server (NTRS)

    Psaltis, D.; Katz, J.; Kim, Jae-Hoon; Lin, S. H.; Nouhi, A.

    1990-01-01

    Many threshold devices placed on single substrate. Integrated circuits containing optoelectronic threshold elements developed for use as planar arrays of artificial neurons in research on neural-network computers. Mounted with volume holograms recorded in photorefractive crystals serving as dense arrays of variable interconnections between neurons.

  19. Multidimensional neural growing networks and computer intelligence

    SciTech Connect

    Yashchenko, V.A.

    1995-03-01

    This paper examines information-computation processes in time and in space and some aspects of computer intelligence using multidimensional matrix neural growing networks. In particular, issues of object-oriented {open_quotes}thinking{close_quotes} of computers are considered.

  20. Annual Meeting of International Neural Network Society

    DTIC Science & Technology

    1990-07-31

    Applications Session Max Planck Institut fur Biophysik- Michael Buffa Chemie Nestor, Inc. Daniel Amit Wilfrid Veldkamp Hebrew University MIT, Lincoln...30 AM Amit, Daniel Hebrew University Title To Be A nnounced...Poster Session Stanbro Room Thursday, September 8, 1988 Morning (continued) Vowel -Feature Extraction from Cochlear Vibration Using Neural Networks Irino T

  1. Neural Network Classification of Environmental Samples

    DTIC Science & Technology

    1996-12-01

    Biological and Artificial Neural Networks. Air Force Institute of Technology, 1990. 24. Rosenblatt. Principles of Neurodynamics . New York, NY: Spartan...Parallel Distributed Processing: Explorations in the Microstructure of Cognition . MIT Press, 1986. 29. Smagt, Patrick P. Van Der. "Minimisation Methods

  2. Psychometric Measurement Models and Artificial Neural Networks

    ERIC Educational Resources Information Center

    Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.

    2004-01-01

    The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…

  3. Nonlinear Time Series Analysis via Neural Networks

    NASA Astrophysics Data System (ADS)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  4. Automatic target identification using neural networks

    NASA Astrophysics Data System (ADS)

    Abdallah, Mahmoud A.; Samu, Tayib I.; Grissom, William A.

    1995-10-01

    Neural network theories are applied to attain human-like performance in areas such as speech recognition, statistical mapping, and target recognition or identification. In target identification, one of the difficult tasks has been the extraction of features to be used to train the neural network which is subsequently used for the target's identification. The purpose of this paper is to describe the development of an automatic target identification system using features extracted from a specific class of targets. The extracted features were the graphical representations of the silhouettes of the targets. Image processing techniques and some Fast Fourier Transform (FFT) properties were implemented to extract the features. The FFT eliminates variations in the extracted features due to rotation or scaling. A Neural Network was trained with the extracted features using the Learning Vector Quantization paradigm. An identification system was set up to test the algorithm. The image processing software was interfaced with MATLAB Neural Network Toolbox via a computer program written in C language to automate the target identification process. The system performed well as at classified the objects used to train it irrespective of rotation, scaling, and translation. This automatic target identification system had a classification success rate of about 95%.

  5. Neural network application to comprehensive engine diagnostics

    NASA Technical Reports Server (NTRS)

    Marko, Kenneth A.

    1994-01-01

    We have previously reported on the use of neural networks for detection and identification of faults in complex microprocessor controlled powertrain systems. The data analyzed in those studies consisted of the full spectrum of signals passing between the engine and the real-time microprocessor controller. The specific task of the classification system was to classify system operation as nominal or abnormal and to identify the fault present. The primary concern in earlier work was the identification of faults, in sensors or actuators in the powertrain system as it was exercised over its full operating range. The use of data from a variety of sources, each contributing some potentially useful information to the classification task, is commonly referred to as sensor fusion and typifies the type of problems successfully addressed using neural networks. In this work we explore the application of neural networks to a different diagnostic problem, the diagnosis of faults in newly manufactured engines and the utility of neural networks for process control.

  6. Brain tumor grading based on Neural Networks and Convolutional Neural Networks.

    PubMed

    Yuehao Pan; Weimin Huang; Zhiping Lin; Wanzheng Zhu; Jiayin Zhou; Wong, Jocelyn; Zhongxiang Ding

    2015-08-01

    This paper studies brain tumor grading using multiphase MRI images and compares the results with various configurations of deep learning structure and baseline Neural Networks. The MRI images are used directly into the learning machine, with some combination operations between multiphase MRIs. Compared to other researches, which involve additional effort to design and choose feature sets, the approach used in this paper leverages the learning capability of deep learning machine. We present the grading performance on the testing data measured by the sensitivity and specificity. The results show a maximum improvement of 18% on grading performance of Convolutional Neural Networks based on sensitivity and specificity compared to Neural Networks. We also visualize the kernels trained in different layers and display some self-learned features obtained from Convolutional Neural Networks.

  7. [Application of artificial neural networks in infectious diseases].

    PubMed

    Xu, Jun-fang; Zhou, Xiao-nong

    2011-02-28

    With the development of information technology, artificial neural networks has been applied to many research fields. Due to the special features such as nonlinearity, self-adaptation, and parallel processing, artificial neural networks are applied in medicine and biology. This review summarizes the application of artificial neural networks in the relative factors, prediction and diagnosis of infectious diseases in recent years.

  8. Electrically Modifiable Nonvolatile SONOS Synapses for Electronic Neural Networks.

    DTIC Science & Technology

    1992-09-30

    for the electrically reprogrammable analog conductance in an artificial neural network. We have demonstrated the attractive featuies of this synaptic ...Electrically Modifiable Synaptic Element for VLSI Neural Network Implementation", Proceedings of the 1991 IEEE Nonvolatile Semiconductor Memory Workshop...Nonvolatile Eletrically Modifiable Synaptic Element for VLSI Neural Network Implementation", 11th IEEE Nonvolatile Semiconductor Memory Workshop, 1991. 19. A

  9. Neural Network Design on the SRC-6 Reconfigurable Computer

    DTIC Science & Technology

    2006-12-01

    speeds of FPGA systems. This thesis explores the use of a Feed-forward, Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN) architecture... Implementation of a Fast Artificial Neural Network Library (FANN), Graduate Project Report, Department of Computer Science, University of Copenhagen (DIKU...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited NEURAL NETWORK

  10. Hyperspectral Imagery Classification Using a Backpropagation Neural Network

    DTIC Science & Technology

    1993-12-01

    A backpropagation neural network was developed and implemented for classifying AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) hyperspectral...imagery. It is a fully interconnected linkage of three layers of neural network . Fifty input layer neurons take in signals from Bands 41 to 90 of the...moderate AVIRIS pixel resolution of 20 meters by 20 meters. Backpropagation neural network , Hyperspectral imagery

  11. Optimal input sizes for neural network de-interlacing

    NASA Astrophysics Data System (ADS)

    Choi, Hyunsoo; Seo, Guiwon; Lee, Chulhee

    2009-02-01

    Neural network de-interlacing has shown promising results among various de-interlacing methods. In this paper, we investigate the effects of input size for neural networks for various video formats when the neural networks are used for de-interlacing. In particular, we investigate optimal input sizes for CIF, VGA and HD video formats.

  12. Chaotic time series prediction using artificial neural networks

    SciTech Connect

    Bartlett, E.B.

    1991-12-31

    This paper describes the use of artificial neural networks to model the complex oscillations defined by a chaotic Verhuist animal population dynamic. A predictive artificial neural network model is developed and tested, and results of computer simulations are given. These results show that the artificial neural network model predicts the chaotic time series with various initial conditions, growth parameters, or noise.

  13. Chaotic time series prediction using artificial neural networks

    SciTech Connect

    Bartlett, E.B.

    1991-01-01

    This paper describes the use of artificial neural networks to model the complex oscillations defined by a chaotic Verhuist animal population dynamic. A predictive artificial neural network model is developed and tested, and results of computer simulations are given. These results show that the artificial neural network model predicts the chaotic time series with various initial conditions, growth parameters, or noise.

  14. Ground states of partially connected binary neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1990-01-01

    Neural networks defined by outer products of vectors over (-1, 0, 1) are considered. Patterns over (-1, 0, 1) define by their outer products partially connected neural networks consisting of internally strongly connected, externally weakly connected subnetworks. Subpatterns over (-1, 1) define subnetworks, and their combinations that agree in the common bits define permissible words. It is shown that the permissible words are locally stable states of the network, provided that each of the subnetworks stores mutually orthogonal subwords, or, at most, two subwords. It is also shown that when each of the subnetworks stores two mutually orthogonal binary subwords at most, the permissible words, defined as the combinations of the subwords (one corresponding to each subnetwork), that agree in their common bits are the unique ground states of the associated energy function.

  15. Neural-network front ends in unsupervised learning.

    PubMed

    Pedrycz, W; Waletzky, J

    1997-01-01

    Proposed is an idea of partial supervision realized in the form of a neural-network front end to the schemes of unsupervised learning (clustering). This neural network leads to an anisotropic nature of the induced feature space. The anisotropic property of the space provides us with some of its local deformation necessary to properly represent labeled data and enhance efficiency of the mechanisms of clustering to be exploited afterwards. The training of the network is completed based upon available labeled patterns-a referential form of the labeling gives rise to reinforcement learning. It is shown that the discussed approach is universal and can be utilized in conjunction with any clustering method. Experimental studies are concentrated on three main categories of unsupervised learning including FUZZY ISODATA, Kohonen self-organizing maps, and hierarchical clustering.

  16. Electroencephalography epilepsy classifications using hybrid cuckoo search and neural network

    NASA Astrophysics Data System (ADS)

    Pratiwi, A. B.; Damayanti, A.; Miswanto

    2017-07-01

    Epilepsy is a condition that affects the brain and causes repeated seizures. This seizure is episodes that can vary and nearly undetectable to long periods of vigorous shaking or brain contractions. Epilepsy often can be confirmed with an electrocephalography (EEG). Neural Networks has been used in biomedic signal analysis, it has successfully classified the biomedic signal, such as EEG signal. In this paper, a hybrid cuckoo search and neural network are used to recognize EEG signal for epilepsy classifications. The weight of the multilayer perceptron is optimized by the cuckoo search algorithm based on its error. The aim of this methods is making the network faster to obtained the local or global optimal then the process of classification become more accurate. Based on the comparison results with the traditional multilayer perceptron, the hybrid cuckoo search and multilayer perceptron provides better performance in term of error convergence and accuracy. The purpose methods give MSE 0.001 and accuracy 90.0 %.

  17. Automated Wildfire Detection Through Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen

    2005-01-01

    We have tested and deployed Artificial Neural Network (ANN) data mining techniques to analyze remotely sensed multi-channel imaging data from MODIS, GOES, and AVHRR. The goal is to train the ANN to learn the signatures of wildfires in remotely sensed data in order to automate the detection process. We train the ANN using the set of human-detected wildfires in the U.S., which are provided by the Hazard Mapping System (HMS) wildfire detection group at NOAA/NESDIS. The ANN is trained to mimic the behavior of fire detection algorithms and the subjective decision- making by N O M HMS Fire Analysts. We use a local extremum search in order to isolate fire pixels, and then we extract a 7x7 pixel array around that location in 3 spectral channels. The corresponding 147 pixel values are used to populate a 147-dimensional input vector that is fed into the ANN. The ANN accuracy is tested and overfitting is avoided by using a subset of the training data that is set aside as a test data set. We have achieved an automated fire detection accuracy of 80-92%, depending on a variety of ANN parameters and for different instrument channels among the 3 satellites. We believe that this system can be deployed worldwide or for any region to detect wildfires automatically in satellite imagery of those regions. These detections can ultimately be used to provide thermal inputs to climate models.

  18. Classifying auroras using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Rydesater, Peter; Brandstrom, Urban; Steen, Ake; Gustavsson, Bjorn

    1999-03-01

    In Auroral Large Imaging System (ALIS) there is need of stable methods for analysis and classification of auroral images and images with for example mother of pearl clouds. This part of ALIS is called Selective Imaging Techniques (SIT) and is intended to sort out images of scientific interest. It's also used to find out what and where in the images there is for example different auroral phenomena's. We will discuss some about the SIT units main functionality but this work is mainly concentrated on how to find auroral arcs and how they are placed in images. Special case have been taken to make the algorithm robust since it's going to be implemented in a SIT unit which will work automatic and often unsupervised and some extends control the data taking of ALIS. The method for finding auroral arcs is based on a local operator that detects intensity differens. This gives arc orientation values as a preprocessing which is fed to a neural network classifier. We will show some preliminary results and possibilities to use and improve this algorithm for use in the future SIT unit.

  19. Natural language acquisition in large scale neural semantic networks

    NASA Astrophysics Data System (ADS)

    Ealey, Douglas

    This thesis puts forward the view that a purely signal- based approach to natural language processing is both plausible and desirable. By questioning the veracity of symbolic representations of meaning, it argues for a unified, non-symbolic model of knowledge representation that is both biologically plausible and, potentially, highly efficient. Processes to generate a grounded, neural form of this model-dubbed the semantic filter-are discussed. The combined effects of local neural organisation, coincident with perceptual maturation, are used to hypothesise its nature. This theoretical model is then validated in light of a number of fundamental neurological constraints and milestones. The mechanisms of semantic and episodic development that the model predicts are then used to explain linguistic properties, such as propositions and verbs, syntax and scripting. To mimic the growth of locally densely connected structures upon an unbounded neural substrate, a system is developed that can grow arbitrarily large, data- dependant structures composed of individual self- organising neural networks. The maturational nature of the data used results in a structure in which the perception of concepts is refined by the networks, but demarcated by subsequent structure. As a consequence, the overall structure shows significant memory and computational benefits, as predicted by the cognitive and neural models. Furthermore, the localised nature of the neural architecture also avoids the increasing error sensitivity and redundancy of traditional systems as the training domain grows. The semantic and episodic filters have been demonstrated to perform as well, or better, than more specialist networks, whilst using significantly larger vocabularies, more complex sentence forms and more natural corpora.

  20. Optical implementation of neural networks

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Guo, Ruyan

    2002-12-01

    An adaptive optical neuro-computing (ONC) using inexpensive pocket size liquid crystal televisions (LCTVs) had been developed by the graduate students in the Electro-Optics Laboratory at The Pennsylvania State University. Although this neuro-computing has only 8×8=64 neurons, it can be easily extended to 16×20=320 neurons. The major advantages of this LCTV architecture as compared with other reported ONCs, are low cost and the flexibility to operate. To test the performance, several neural net models are used. These models are Interpattern Association, Hetero-association and unsupervised learning algorithms. The system design considerations and experimental demonstrations are also included.

  1. Plasticity of neonatal neuronal networks in very premature infants: Source localization of temporal theta activity, the first endogenous neural biomarker, in temporoparietal areas.

    PubMed

    Routier, L; Mahmoudzadeh, M; Panzani, M; Azizollahi, H; Goudjil, S; Kongolo, G; Wallois, F

    2017-01-23

    Temporal theta slow-wave activity (TTA-SW) in premature infants is a specific signature of the early development of temporal networks, as it is observed at the turning point between non-sensory driven spontaneous local processing and cortical network functioning. The role in development and the precise location of TTA-SW remain unknown. Previous studies have demonstrated that preterms from 28 weeks of gestational age (wGA) are able to discriminate phonemes and voice, supporting the idea of a prior genetic structural or activity-dependent fingerprint that would prepare the auditory network to compute auditory information at the onset of thalamocortical connectivity. They recorded TTA-SW in 26-32 wGA preterms. The rate of TTA-SW in response to click stimuli was evaluated using low-density EEG in 30 preterms. The sources of TTA-SW were localized by high-density EEG using different tissues conductivities, head models and mathematical models. They observed that TTA-SW is not sensory driven. Regardless of age, conductivities, head models and mathematical models, sources of TTA-SW were located adjacent to auditory and temporal junction areas. These sources become situated closer to the surface during development. TTA-SW corresponds to spontaneous transient endogenous activities independent of sensory information at this period which might participate in the implementation of auditory, language, memory, attention and or social cognition convergent and does not simply represent a general interaction between the subplate and the cortical plate. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

  2. Classifying multispectral data by neural networks

    NASA Technical Reports Server (NTRS)

    Telfer, Brian A.; Szu, Harold H.; Kiang, Richard K.

    1993-01-01

    Several energy functions for synthesizing neural networks are tested on 2-D synthetic data and on Landsat-4 Thematic Mapper data. These new energy functions, designed specifically for minimizing misclassification error, in some cases yield significant improvements in classification accuracy over the standard least mean squares energy function. In addition to operating on networks with one output unit per class, a new energy function is tested for binary encoded outputs, which result in smaller network sizes. The Thematic Mapper data (four bands were used) is classified on a single pixel basis, to provide a starting benchmark against which further improvements will be measured. Improvements are underway to make use of both subpixel and superpixel (i.e. contextual or neighborhood) information in tile processing. For single pixel classification, the best neural network result is 78.7 percent, compared with 71.7 percent for a classical nearest neighbor classifier. The 78.7 percent result also improves on several earlier neural network results on this data.

  3. Back propagation neural networks for facial verification

    SciTech Connect

    Garnett, A.E.; Solheim, I.; Payne, T.; Castain, R.H.

    1992-10-01

    We conducted a test to determine the aptitude of neural networks to recognize human faces. The pictures we collected of 511 subjects captured both profiles and many natural expressions. Some of the subjects were wearing glasses, sunglasses, or hats in some of the pictures. The images were compressed by a factor of 100 and converted into image vectors of 1400 pixels. The image vectors were fed into a back propagation neural network with one hidden layer and one output node. The networks were trained to recognize one target person and to reject all other persons. Neural networks for 37 target subjects were trained with 8 different training sets that consisted of different subsets of the data. The networks were then tested on the rest of the data, which consisted of 7000 or more unseen pictures. Results indicate that a false acceptance rate of less than 1 percent can be obtained, and a false rejection rate of 2 percent can be obtained when certain restrictions are followed.

  4. Neural networks in windprofiler data processing

    NASA Astrophysics Data System (ADS)

    Weber, H.; Richner, H.; Kretzschmar, R.; Ruffieux, D.

    2003-04-01

    Wind profilers are basically Doppler radars yielding 3-dimensional wind profiles that are deduced from the Doppler shift caused by turbulent elements in the atmosphere. These signals can be contaminated by other airborne elements such as birds or hydrometeors. Using a feed-forward neural network with one hidden layer and one output unit, birds and hydrometeors can be successfully identified in non-averaged single spectra; theses are subsequently removed in the wind computation. An infrared camera was used to identify birds in one of the beams of the wind profiler. After training the network with about 6000 contaminated data sets, it was able to identify contaminated data in a test data set with a reliability of 96 percent. The assumption was made that the neural network parameters obtained in the beam for which bird data was collected can be transferred to the other beams (at least three beams are needed for computing wind vectors). Comparing the evolution of a wind field with and without the neural network shows a significant improvement of wind data quality. Current work concentrates on training the network also for hydrometeors. It is hoped that the instrument's capability can thus be expanded to measure not only correct winds, but also observe bird migration, estimate precipitation and -- by combining precipitation information with vertical velocity measurement -- the monitoring of the height of the melting layer.

  5. Back propagation neural networks for facial verification

    SciTech Connect

    Garnett, A.E.; Solheim, I.; Payne, T.; Castain, R.H.

    1992-10-01

    We conducted a test to determine the aptitude of neural networks to recognize human faces. The pictures we collected of 511 subjects captured both profiles and many natural expressions. Some of the subjects were wearing glasses, sunglasses, or hats in some of the pictures. The images were compressed by a factor of 100 and converted into image vectors of 1400 pixels. The image vectors were fed into a back propagation neural network with one hidden layer and one output node. The networks were trained to recognize one target person and to reject all other persons. Neural networks for 37 target subjects were trained with 8 different training sets that consisted of different subsets of the data. The networks were then tested on the rest of the data, which consisted of 7000 or more unseen pictures. Results indicate that a false acceptance rate of less than 1 percent can be obtained, and a false rejection rate of 2 percent can be obtained when certain restrictions are followed.

  6. Computationally Efficient Neural Network Intrusion Security Awareness

    SciTech Connect

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  7. Multiscale Modeling of Cortical Neural Networks

    NASA Astrophysics Data System (ADS)

    Torben-Nielsen, Benjamin; Stiefel, Klaus M.

    2009-09-01

    In this study, we describe efforts at modeling the electrophysiological dynamics of cortical networks in a multi-scale manner. Specifically, we describe the implementation of a network model composed of simple single-compartmental neuron models, in which a single complex multi-compartmental model of a pyramidal neuron is embedded. The network is capable of generating Δ (2 Hz, observed during deep sleep states) and γ (40 Hz, observed during wakefulness) oscillations, which are then imposed onto the multi-compartmental model, thus providing realistic, dynamic boundary conditions. We furthermore discuss the challenges and chances involved in multi-scale modeling of neural function.

  8. Intrinsic adaptation in autonomous recurrent neural networks.

    PubMed

    Marković, Dimitrije; Gros, Claudius

    2012-02-01

    A massively recurrent neural network responds on one side to input stimuli and is autonomously active, on the other side, in the absence of sensory inputs. Stimuli and information processing depend crucially on the quality of the autonomous-state dynamics of the ongoing neural activity. This default neural activity may be dynamically structured in time and space, showing regular, synchronized, bursting, or chaotic activity patterns. We study the influence of nonsynaptic plasticity on the default dynamical state of recurrent neural networks. The nonsynaptic adaption considered acts on intrinsic neural parameters, such as the threshold and the gain, and is driven by the optimization of the information entropy. We observe, in the presence of the intrinsic adaptation processes, three distinct and globally attracting dynamical regimes: a regular synchronized, an overall chaotic, and an intermittent bursting regime. The intermittent bursting regime is characterized by intervals of regular flows, which are quite insensitive to external stimuli, interceded by chaotic bursts that respond sensitively to input signals. We discuss these findings in the context of self-organized information processing and critical brain dynamics.

  9. Controlling neural network responsiveness: tradeoffs and constraints

    PubMed Central

    Keren, Hanna; Marom, Shimon

    2014-01-01

    In recent years much effort is invested in means to control neural population responses at the whole brain level, within the context of developing advanced medical applications. The tradeoffs and constraints involved, however, remain elusive due to obvious complications entailed by studying whole brain dynamics. Here, we present effective control of response features (probability and latency) of cortical networks in vitro over many hours, and offer this approach as an experimental toy for studying controllability of neural networks in the wider context. Exercising this approach we show that enforcement of stable high activity rates by means of closed loop control may enhance alteration of underlying global input–output relations and activity dependent dispersion of neuronal pair-wise correlations across the network. PMID:24808860

  10. Fuzzy logic and neural network technologies

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.; Lea, Robert N.; Savely, Robert T.

    1992-01-01

    Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.

  11. Noise in genetic and neural networks

    NASA Astrophysics Data System (ADS)

    Swain, Peter S.; Longtin, André

    2006-06-01

    Both neural and genetic networks are significantly noisy, and stochastic effects in both cases ultimately arise from molecular events. Nevertheless, a gulf exists between the two fields, with researchers in one often being unaware of similar work in the other. In this Special Issue, we focus on bridging this gap and present a collection of papers from both fields together. For each field, the networks studied range from just a single gene or neuron to endogenous networks. In this introductory article, we describe the sources of noise in both genetic and neural systems. We discuss the modeling techniques in each area and point out similarities. We hope that, by reading both sets of papers, ideas developed in one field will give insight to scientists from the other and that a common language and methodology will develop.

  12. Neural networks: Application to medical imaging

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  13. a Heterosynaptic Learning Rule for Neural Networks

    NASA Astrophysics Data System (ADS)

    Emmert-Streib, Frank

    In this article we introduce a novel stochastic Hebb-like learning rule for neural networks that is neurobiologically motivated. This learning rule combines features of unsupervised (Hebbian) and supervised (reinforcement) learning and is stochastic with respect to the selection of the time points when a synapse is modified. Moreover, the learning rule does not only affect the synapse between pre- and postsynaptic neuron, which is called homosynaptic plasticity, but effects also further remote synapses of the pre- and postsynaptic neuron. This more complex form of synaptic plasticity has recently come under investigations in neurobiology and is called heterosynaptic plasticity. We demonstrate that this learning rule is useful in training neural networks by learning parity functions including the exclusive-or (XOR) mapping in a multilayer feed-forward network. We find, that our stochastic learning rule works well, even in the presence of noise. Importantly, the mean learning time increases with the number of patterns to be learned polynomially, indicating efficient learning.

  14. Do neural networks offer something for you?

    SciTech Connect

    Ramchandran, S.; Rhinehart, R.R.

    1995-11-01

    The concept of neural network computation was inspired by the hope to artifically reproduce some of the flexibility and power of the human brain. Human beings can recognize different patterns and voices even though these signals do not have a simple phenomenological understanding. Scientists have developed artificial neural networks (ANNs) for modeling processes that do not have a simple phenomenological explanation, such as voice recognition. Consequently, ANN jargon can be confusing to process and control engineers. In simple terms, ANNs take a nonlinear regression modeling approach. Like any regression curve-fitting approach, a least-squares optimization can generate model parameters. One advantage of ANNs is that they require neither a priori understanding of the process behavior nor phenomenological understanding of the process. ANNs use data describing the input/output relationship in a process to {open_quotes}learn{close_quotes} about the underlying process behavior. As a result of this, ANNs have a wide range of applicability. Furthermore, ANNs are computationally efficient and can replace models that are computationally intensive. This can make real-time online model-based applications practicable. A neural network is a dense mesh of nodes and connections. The basic processing elements of a network are called neurons. Neural networks are organized in layers, and typically consist of at least three layers: an input layer, one or more hidden layers, and an output layer. The input and output layers serve as interfaces that perform appropriate scaling between `real-world` and network data. Hidden layers are so termed because their neurons are hidden to the real-world data. Connections are the means for information flow. Each connection has an associated adjustable weight, w{sub i}. The weight can be regarded as a measure of the importance of the signals between the two neurons. 7 figs.

  15. Neural networks in the process industries

    SciTech Connect

    Ben, L.R.; Heavner, L.

    1996-12-01

    Neural networks, or more precisely, artificial neural networks (ANNs), are rapidly gaining in popularity. They first began to appear on the process-control scene in the early 1990s, but have been a research focus for more than 30 years. Neural networks are really empirical models that approximate the way man thinks neurons in the human brain work. Neural-net technology is not trying to produce computerized clones, but to model nature in an effort to mimic some of the brain`s capabilities. Modeling, for the purposes of this article, means developing a mathematical description of physical phenomena. The physics and chemistry of industrial processes are usually quite complex and sometimes poorly understood. Our process understanding, and our imperfect ability to describe complexity in mathematical terms, limit fidelity of first-principle models. Computational requirements for executing these complex models are a further limitation. It is often not possible to execute first-principle model algorithms at the high rate required for online control. Nevertheless, rigorous first principle models are commonplace design tools. Process control is another matter. Important model inputs are often not available as process measurements, making real-time application difficult. In fact, engineers often use models to infer unavailable measurements. 5 figs.

  16. Pruning Neural Networks with Distribution Estimation Algorithms

    SciTech Connect

    Cantu-Paz, E

    2003-01-15

    This paper describes the application of four evolutionary algorithms to the pruning of neural networks used in classification problems. Besides of a simple genetic algorithm (GA), the paper considers three distribution estimation algorithms (DEAs): a compact GA, an extended compact GA, and the Bayesian Optimization Algorithm. The objective is to determine if the DEAs present advantages over the simple GA in terms of accuracy or speed in this problem. The experiments used a feed forward neural network trained with standard back propagation and public-domain and artificial data sets. The pruned networks seemed to have better or equal accuracy than the original fully-connected networks. Only in a few cases, pruning resulted in less accurate networks. We found few differences in the accuracy of the networks pruned by the four EAs, but found important differences in the execution time. The results suggest that a simple GA with a small population might be the best algorithm for pruning networks on the data sets we tested.

  17. Membership generation using multilayer neural network

    NASA Technical Reports Server (NTRS)

    Kim, Jaeseok

    1992-01-01

    There has been intensive research in neural network applications to pattern recognition problems. Particularly, the back-propagation network has attracted many researchers because of its outstanding performance in pattern recognition applications. In this section, we describe a new method to generate membership functions from training data using a multilayer neural network. The basic idea behind the approach is as follows. The output values of a sigmoid activation function of a neuron bear remarkable resemblance to membership values. Therefore, we can regard the sigmoid activation values as the membership values in fuzzy set theory. Thus, in order to generate class membership values, we first train a suitable multilayer network using a training algorithm such as the back-propagation algorithm. After the training procedure converges, the resulting network can be treated as a membership generation network, where the inputs are feature values and the outputs are membership values in the different classes. This method allows fairly complex membership functions to be generated because the network is highly nonlinear in general. Also, it is to be noted that the membership functions are generated from a classification point of view. For pattern recognition applications, this is highly desirable, although the membership values may not be indicative of the degree of typicality of a feature value in a particular class.

  18. Neural network computer simulation of medical aerosols.

    PubMed

    Richardson, C J; Barlow, D J

    1996-06-01

    Preliminary investigations have been conducted to assess the potential for using artificial neural networks to simulate aerosol behaviour, with a view to employing this type of methodology in the evaluation and design of pulmonary drug-delivery systems. Details are presented of the general purpose software developed for these tasks; it implements a feed-forward back-propagation algorithm with weight decay and connection pruning, the user having complete run-time control of the network architecture and mode of training. A series of exploratory investigations is then reported in which different network structures and training strategies are assessed in terms of their ability to simulate known patterns of fluid flow in simple model systems. The first of these involves simulations of cellular automata-generated data for fluid flow through a partially obstructed two-dimensional pipe. The artificial neural networks are shown to be highly successful in simulating the behaviour of this simple linear system, but with important provisos relating to the information content of the training data and the criteria used to judge when the network is properly trained. A second set of investigations is then reported in which similar networks are used to simulate patterns of fluid flow through aerosol generation devices, using training data furnished through rigorous computational fluid dynamics modelling. These more complex three-dimensional systems are modelled with equal success. It is concluded that carefully tailored, well trained networks could provide valuable tools not just for predicting but also for analysing the spatial dynamics of pharmaceutical aerosols.

  19. Adaptive Neural Networks for Automatic Negotiation

    SciTech Connect

    Sakas, D. P.; Vlachos, D. S.; Simos, T. E.

    2007-12-26

    The use of fuzzy logic and fuzzy neural networks has been found effective for the modelling of the uncertain relations between the parameters of a negotiation procedure. The problem with these configurations is that they are static, that is, any new knowledge from theory or experiment lead to the construction of entirely new models. To overcome this difficulty, we apply in this work, an adaptive neural topology to model the negotiation process. Finally a simple simulation is carried in order to test the new method.

  20. Gait Recognition Based on Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Sokolova, A.; Konushin, A.

    2017-05-01

    In this work we investigate the problem of people recognition by their gait. For this task, we implement deep learning approach using the optical flow as the main source of motion information and combine neural feature extraction with the additional embedding of descriptors for representation improvement. In order to find the best heuristics, we compare several deep neural network architectures, learning and classification strategies. The experiments were made on two popular datasets for gait recognition, so we investigate their advantages and disadvantages and the transferability of considered methods.

  1. Exceptional reducibility of complex-valued neural networks.

    PubMed

    Kobayashi, Masaki

    2010-07-01

    A neural network is referred to as minimal if it cannot reduce the number of hidden neurons that maintain the input-output map. The condition in which the number of hidden neurons can be reduced is referred to as reducibility. Real-valued neural networks have only three simple types of reducibility. It can be naturally extended to complex-valued neural networks without bias terms of hidden neurons. However, general complex-valued neural networks have another type of reducibility, referred to herein as exceptional reducibility. In this paper, another type of reducibility is presented, and a method by which to minimize complex-valued neural networks is proposed.

  2. Establishing a Dynamic Self-Adaptation Learning Algorithm of the BP Neural Network and Its Applications

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min

    2015-12-01

    In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.

  3. Predicting stream water quality using artificial neural networks (ANN)

    SciTech Connect

    Bowers, J.A.

    2000-05-17

    Predicting point and nonpoint source runoff of dissolved and suspended materials into their receiving streams is important to protecting water quality and traditionally has been modeled using deterministic or statistical methods. The purpose of this study was to predict water quality in small streams using an Artificial Neural Network (ANN). The selected input variables were local precipitation, stream flow rates and turbidity for the initial prediction of suspended solids in the stream. A single hidden-layer feedforward neural network using backpropagation learning algorithms was developed with a detailed analysis of model design of those factors affecting successful implementation of the model. All features of a feedforward neural model were investigated including training set creation, number and layers of neurons, neural activation functions, and backpropagation algorithms. Least-squares regression was used to compare model predictions with test data sets. Most of the model configurations offered excellent predictive capabilities. Using either the logistic or the hyperbolic tangent neural activation function did not significantly affect predicted results. This was also true for the two learning algorithms tested, the Levenberg-Marquardt and Polak-Ribiere conjugate-gradient descent methods. The most important step during model development and training was the representative selection of data records for training of the model.

  4. Markov Chain Monte Carlo Bayesian Learning for Neural Networks

    NASA Technical Reports Server (NTRS)

    Goodrich, Michael S.

    2011-01-01

    Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.

  5. Vitality of Neural Networks under Reoccurring Catastrophic Failures

    NASA Astrophysics Data System (ADS)

    Sardi, Shira; Goldental, Amir; Amir, Hamutal; Vardi, Roni; Kanter, Ido

    2016-08-01

    Catastrophic failures are complete and sudden collapses in the activity of large networks such as economics, electrical power grids and computer networks, which typically require a manual recovery process. Here we experimentally show that excitatory neural networks are governed by a non-Poissonian reoccurrence of catastrophic failures, where their repetition time follows a multimodal distribution characterized by a few tenths of a second and tens of seconds timescales. The mechanism underlying the termination and reappearance of network activity is quantitatively shown here to be associated with nodal time-dependent features, neuronal plasticity, where hyperactive nodes damage the response capability of their neighbors. It presents a complementary mechanism for the emergence of Poissonian catastrophic failures from damage conductivity. The effect that hyperactive nodes degenerate their neighbors represents a type of local competition which is a common feature in the dynamics of real-world complex networks, whereas their spontaneous recoveries represent a vitality which enhances reliable functionality.

  6. Vitality of Neural Networks under Reoccurring Catastrophic Failures.

    PubMed

    Sardi, Shira; Goldental, Amir; Amir, Hamutal; Vardi, Roni; Kanter, Ido

    2016-08-17

    Catastrophic failures are complete and sudden collapses in the activity of large networks such as economics, electrical power grids and computer networks, which typically require a manual recovery process. Here we experimentally show that excitatory neural networks are governed by a non-Poissonian reoccurrence of catastrophic failures, where their repetition time follows a multimodal distribution characterized by a few tenths of a second and tens of seconds timescales. The mechanism underlying the termination and reappearance of network activity is quantitatively shown here to be associated with nodal time-dependent features, neuronal plasticity, where hyperactive nodes damage the response capability of their neighbors. It presents a complementary mechanism for the emergence of Poissonian catastrophic failures from damage conductivity. The effect that hyperactive nodes degenerate their neighbors represents a type of local competition which is a common feature in the dynamics of real-world complex networks, whereas their spontaneous recoveries represent a vitality which enhances reliable functionality.

  7. Vitality of Neural Networks under Reoccurring Catastrophic Failures

    PubMed Central

    Sardi, Shira; Goldental, Amir; Amir, Hamutal; Vardi, Roni; Kanter, Ido

    2016-01-01

    Catastrophic failures are complete and sudden collapses in the activity of large networks such as economics, electrical power grids and computer networks, which typically require a manual recovery process. Here we experimentally show that excitatory neural networks are governed by a non-Poissonian reoccurrence of catastrophic failures, where their repetition time follows a multimodal distribution characterized by a few tenths of a second and tens of seconds timescales. The mechanism underlying the termination and reappearance of network activity is quantitatively shown here to be associated with nodal time-dependent features, neuronal plasticity, where hyperactive nodes damage the response capability of their neighbors. It presents a complementary mechanism for the emergence of Poissonian catastrophic failures from damage conductivity. The effect that hyperactive nodes degenerate their neighbors represents a type of local competition which is a common feature in the dynamics of real-world complex networks, whereas their spontaneous recoveries represent a vitality which enhances reliable functionality. PMID:27530974

  8. Face Recognition With Neural Networks

    DTIC Science & Technology

    1992-12-01

    condition known as prosopagnosia . Both researchers agree that patients with prosopagnosia , when they have come to autopsy, always have bilateral lesions...parietal region) do not have prosopagnosia . This also supports, albeit in a limited manner, the notion that the process is localized. Accepting...global to local idea is also supported in the prosopagnosia studies. Individuals with prosopagnosia can still identify a face as a face, but they can

  9. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.

    PubMed

    Li, Zhixiu; Yang, Yuedong; Faraggi, Eshel; Zhan, Jian; Zhou, Yaoqi

    2014-10-01

    Locating sequences compatible with a protein structural fold is the well-known inverse protein-folding problem. While significant progress has been made, the success rate of protein design remains low. As a result, a library of designed sequences or profile of sequences is currently employed for guiding experimental screening or directed evolution. Sequence profiles can be computationally predicted by iterative mutations of a random sequence to produce energy-optimized sequences, or by combining sequences of structurally similar fragments in a template library. The latter approach is computationally more efficient but yields less accurate profiles than the former because of lacking tertiary structural information. Here we present a method called SPIN that predicts Sequence Profiles by Integrated Neural network based on fragment-derived sequence profiles and structure-derived energy profiles. SPIN improves over the fragment-derived profile by 6.7% (from 23.6 to 30.3%) in sequence identity between predicted and wild-type sequences. The method also reduces the number of residues in low complex regions by 15.7% and has a significantly better balance of hydrophilic and hydrophobic residues at protein surface. The accuracy of sequence profiles obtained is comparable to those generated from the protein design program RosettaDesign 3.5. This highly efficient method for predicting sequence profiles from structures will be useful as a single-body scoring term for improving scoring functions used in protein design and fold recognition. It also complements protein design programs in guiding experimental design of the sequence library for screening and directed evolution of designed sequences. The SPIN server is available at http://sparks-lab.org. © 2014 Wiley Periodicals, Inc.

  10. Direct prediction of profiles of sequences compatible to a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles

    PubMed Central

    Li, Zhixiu; Yang, Yuedong; Faraggi, Eshel; Zhan, Jian; Zhou, Yaoqi

    2014-01-01

    Locating sequences compatible to a protein structural fold is the well-known inverse protein-folding problem. While significant progress has been made, the success rate of protein design remains low. As a result, a library of designed sequences or profile of sequences is currently employed for guiding experimental screening or directed evolution. Sequence profiles can be computationally predicted by iterative mutations of a random sequence to produce energy-optimized sequences, or by combining sequences of structurally similar fragments in a template library. The latter approach is computationally more efficient but yields less accurate profiles than the former because of lacking tertiary structural information. Here we present a method called SPIN that predicts Sequence Profiles by Integrated Neural network based on fragment-derived sequence profiles and structure-derived energy profiles. SPIN improves over the fragment-derived profile by 6.7% (from 23.6% to 30.3%) in sequence identity between predicted and wild-type sequences. The method also reduces the number of residues in low complex regions by 15.7% and has a significant better balance of hydrophilic and hydrophobic residues at protein surfaces. The accuracy of sequence profiles obtained is comparable to those generated from the protein design program RosettaDesign 3.5. This highly efficient method for predicting sequence profiles from structures will be useful as a single-body scoring term for improving scoring functions used in protein design and fold recognition. It also complements protein design programs in guiding experimental design of the sequence library for screening and directed evolution of designed sequences. The SPIN server is available at http://sparks-lab.org. PMID:24898915

  11. Non-Intrusive Gaze Tracking Using Artificial Neural Networks

    DTIC Science & Technology

    1994-01-05

    Artificial Neural Networks Shumeet Baluja & Dean...this paper appear in: Baluja, S. & Pomerleau, D.A. "Non-Intrusive Gaze Tracking Using Artificial Neural Networks ", Advances in Neural Information...document hLc-s been opproved t0T 011bhiC leleWOe cad ý’ir/4 its di stT-b’ution Ls •_nii•ite6. - Keywords Gaze Tracking, Artificial Neural Networks ,

  12. Applications of neural networks in training science.

    PubMed

    Pfeiffer, Mark; Hohmann, Andreas

    2012-04-01

    Training science views itself as an integrated and applied science, developing practical measures founded on scientific method. Therefore, it demands consideration of a wide spectrum of approaches and methods. Especially in the field of competitive sports, research questions are usually located in complex environments, so that mainly field studies are drawn upon to obtain broad external validity. Here, the interrelations between different variables or variable sets are mostly of a nonlinear character. In these cases, methods like neural networks, e.g., the pattern recognizing methods of Self-Organizing Kohonen Feature Maps or similar instruments to identify interactions might be successfully applied to analyze data. Following on from a classification of data analysis methods in training-science research, the aim of the contribution is to give examples of varied sports in which network approaches can be effectually used in training science. First, two examples are given in which neural networks are employed for pattern recognition. While one investigation deals with the detection of sporting talent in swimming, the other is located in game sports research, identifying tactical patterns in team handball. The third and last example shows how an artificial neural network can be used to predict competitive performance in swimming.

  13. Diagnostic ECG classification based on neural networks.

    PubMed

    Bortolan, G; Willems, J L

    1993-01-01

    This study illustrates the use of the neural network approach in the problem of diagnostic classification of resting 12-lead electrocardiograms. A large electrocardiographic library (the CORDA database established at the University of Leuven, Belgium) has been utilized in this study, whose classification is validated by electrocardiographic-independent clinical data. In particular, a subset of 3,253 electrocardiographic signals with single diseases has been selected. Seven diagnostic classes have been considered: normal, left, right, and biventricular hypertrophy, and anterior, inferior, and combined myocardial infarction. The basic architecture used is a feed-forward neural network and the backpropagation algorithm for the training phase. Sensitivity, specificity, total accuracy, and partial accuracy are the indices used for testing and comparing the results with classical methodologies. In order to validate this approach, the accuracy of two statistical models (linear discriminant analysis and logistic discriminant analysis) tuned on the same dataset have been taken as the reference point. Several nets have been trained, either adjusting some components of the architecture of the networks, considering subsets and clusters of the original learning set, or combining different neural networks. The results have confirmed the potentiality and good performance of the connectionist approach when compared with classical methodologies.

  14. Functional expansion representations of artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gray, W. Steven

    1992-01-01

    In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.

  15. Character Recognition Using Genetically Trained Neural Networks

    SciTech Connect

    Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-10-01

    Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the amount of

  16. Toward implementation of artificial neural networks that "really work".

    PubMed Central

    Leon, M. A.; Keller, J.

    1997-01-01

    Artificial neural networks are established analytical methods in bio-medical research. They have repeatedly outperformed traditional tools for pattern recognition and clinical outcome prediction while assuring continued adaptation and learning. However, successful experimental neural networks systems seldom reach a production state. That is, they are not incorporated into clinical information systems. It could be speculated that neural networks simply must undergo a lengthy acceptance process before they become part of the day to day operations of health care systems. However, our experience trying to incorporate experimental neural networks into information systems lead us to believe that there are technical and operational barriers that greatly difficult neural network implementation. A solution for these problems may be the delineation of policies and procedures for neural network implementation and the development a new class of neural network client/server applications that fit the needs of current clinical information systems. PMID:9357613

  17. A Projection Neural Network for Constrained Quadratic Minimax Optimization.

    PubMed

    Liu, Qingshan; Wang, Jun

    2015-11-01

    This paper presents a projection neural network described by a dynamic system for solving constrained quadratic minimax programming problems. Sufficient conditions based on a linear matrix inequality are provided for global convergence of the proposed neural network. Compared with some of the existing neural networks for quadratic minimax optimization, the proposed neural network in this paper is capable of solving more general constrained quadratic minimax optimization problems, and the designed neural network does not include any parameter. Moreover, the neural network has lower model complexities, the number of state variables of which is equal to that of the dimension of the optimization problems. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.

  18. Neural network models of categorical perception.

    PubMed

    Damper, R I; Harnad, S R

    2000-05-01

    Studies of the categorical perception (CP) of sensory continua have a long and rich history in psychophysics. In 1977, Macmillan, Kaplan, and Creelman introduced the use of signal detection theory to CP studies. Anderson and colleagues simultaneously proposed the first neural model for CP, yet this line of research has been less well explored. In this paper, we assess the ability of neural-network models of CP to predict the psychophysical performance of real observers with speech sounds and artificial/novel stimuli. We show that a variety of neural mechanisms are capable of generating the characteristics of CP. Hence, CP may not be a special model of perception but an emergent property of any sufficiently powerful general learning system.

  19. Neural networks as a control methodology

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1990-01-01

    While conventional computers must be programmed in a logical fashion by a person who thoroughly understands the task to be performed, the motivation behind neural networks is to develop machines which can train themselves to perform tasks, using available information about desired system behavior and learning from experience. There are three goals of this fellowship program: (1) to evaluate various neural net methods and generate computer software to implement those deemed most promising on a personal computer equipped with Matlab; (2) to evaluate methods currently in the professional literature for system control using neural nets to choose those most applicable to control of flexible structures; and (3) to apply the control strategies chosen in (2) to a computer simulation of a test article, the Control Structures Interaction Suitcase Demonstrator, which is a portable system consisting of a small flexible beam driven by a torque motor and mounted on springs tuned to the first flexible mode of the beam. Results of each are discussed.

  20. On lateral competition in dynamic neural networks

    SciTech Connect

    Bellyustin, N.S.

    1995-02-01

    Artificial neural networks connected homogeneously, which use retinal image processing methods, are considered. We point out that there are probably two different types of lateral inhibition for each neural element by the neighboring ones-due to the negative connection coefficients between elements and due to the decreasing neuron`s response to a too high input signal. The first case characterized by stable dynamics, which is given by the Lyapunov function, while in the second case, stability is absent and two-dimensional dynamic chaos occurs if the time step in the integration of model equations is large enough. The continuous neural medium approximation is used for analytical estimation in both cases. The result is the partition of the parameter space into domains with qualitatively different dynamic modes. Computer simulations confirm the estimates and show that joining two-dimensional chaos with symmetries provided by the initial and boundary conditions may produce patterns which are genuine pieces of art.

  1. Speed up Neural Network Learning by GPGPU

    NASA Astrophysics Data System (ADS)

    Tsuchida, Yuta; Yoshioka, Michifumi

    Recently, graphic boards have higher performance with development of 3DCG and movie processing than CPU, and widely used with progress of computer entertainment. Implementation of the General-purpose computing on GPU (GPGPU) become more easier by the integrated development environment, CUDA distributed by NVIDIA. GPU has dozens or a hundred arithmetic circuits, whose allocations are controlled by CUDA. In the previous researches, the implementation of the neural network using GPGPU have been studied, however the learning of networks was not mentioned because the GPU performance is low in conditional processing whereas high in linear algebra processing. Therefore we have proposed two methods. At first, a whole network is implemented as a thread, and some networks are taught in parallel to shorten the time necessary to find the optimal weight coefficients. Secondly, this paper introduces parallelization in the neural network structure, that is, the calculation of neurons in the same layers can be paralleled. And the processes to teach for same network with different patterns are independent also. As a result, the second method is 20 times faster than CPU, and compared with the first proposed method, that is about 6 times faster.

  2. Synchronization criteria for generalized reaction-diffusion neural networks via periodically intermittent control.

    PubMed

    Gan, Qintao; Lv, Tianshi; Fu, Zhenhua

    2016-04-01

    In this paper, the synchronization problem for a class of generalized neural networks with time-varying delays and reaction-diffusion terms is investigated concerning Neumann boundary conditions in terms of p-norm. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. By establishing a new inequality, some simple and useful conditions are obtained analytically to guarantee the global exponential synchronization of the addressed neural networks under the periodically intermittent control. According to the theoretical results, the influences of diffusion coefficients, diffusion space, and control rate on synchronization are analyzed. Finally, the feasibility and effectiveness of the proposed methods are shown by simulation examples, and by choosing different diffusion coefficients, diffusion spaces, and control rates, different controlled synchronization states can be obtained.

  3. Design and analysis of a novel chaotic diagonal recurrent neural network

    NASA Astrophysics Data System (ADS)

    Wang, Libiao; Meng, Zhuo; Sun, Yize; Guo, Lei; Zhou, Mingxing

    2015-09-01

    A chaotic neural network model with logistic mapping is proposed to improve the performance of the conventional diagonal recurrent neural network. The network shows rich dynamic behaviors that contribute to escaping from a local minimum to reach the global minimum easily. Then, a simple parameter modulated chaos controller is adopted to enhance convergence speed of the network. Furthermore, an adaptive learning algorithm with the robust adaptive dead zone vector is designed to improve the generalization performance of the network, and weights convergence for the network with the adaptive dead zone vectors is proved in the sense of Lyapunov functions. Finally, the numerical simulation is carried out to demonstrate the correctness of the theory.

  4. Wireless local area network security.

    PubMed

    Bergeron, Bryan P

    2004-01-01

    Wireless local area networks (WLANs) are increasingly popular in clinical settings because they facilitate the use of wireless PDAs, laptops, and other pervasive computing devices at the point of care. However, because of the relative immaturity of wireless network technology and evolving standards, WLANs, if improperly configured, can present significant security risks. Understanding the security limitations of the technology and available fixes can help minimize the risks of clinical data loss and maintain compliance with HIPAA guidelines.

  5. When Networks Disagree: Ensemble Methods for Hybrid Neural Networks

    DTIC Science & Technology

    1992-10-27

    takes the form of repeated on-line stochastic gradient descent of randomly initialized nets. However, unlike the combination process in parametric ... estimation which usually takes the form of a simple average in parameter space, the parameters in a neural network take the form of neuronal weights which

  6. Representing Shape Primitives In Neural Networks

    NASA Astrophysics Data System (ADS)

    Pawlicki, Ted

    1988-08-01

    Parallel distributed, connectionist, neural networks present powerful computational metaphors for diverse applications ranging from machine perception to artificial intelligence [1-3,6]. Historically, such systems have been appealing for their ability to perform self-organization and learning[7, 8, 11]. However, while simple systems of this type can perform interesting tasks, results from such systems perform little better than existing template matchers in some real world applications [9,10]. The definition of a more complex structure made from simple units can be used to enhance performance of these models [4, 5], but the addition of extra complexity raises representational issues. This paper reports on attempts to code information and features which have classically been useful to shape analysis into a neural network system.

  7. Iris Data Classification Using Quantum Neural Networks

    NASA Astrophysics Data System (ADS)

    Sahni, Vishal; Patvardhan, C.

    2006-11-01

    Quantum computing is a novel paradigm that promises to be the future of computing. The performance of quantum algorithms has proved to be stunning. ANN within the context of classical computation has been used for approximation and classification tasks with some success. This paper presents an idea of quantum neural networks along with the training algorithm and its convergence property. It synergizes the unique properties of quantum bits or qubits with the various techniques in vogue in neural networks. An example application of Fisher's Iris data set, a benchmark classification problem has also been presented. The results obtained amply demonstrate the classification capabilities of the quantum neuron and give an idea of their promising capabilities.

  8. Privacy-preserving backpropagation neural network learning.

    PubMed

    Chen, Tingting; Zhong, Sheng

    2009-10-01

    With the development of distributed computing environment , many learning problems now have to deal with distributed input data. To enhance cooperations in learning, it is important to address the privacy concern of each data holder by extending the privacy preservation notion to original learning algorithms. In this paper, we focus on preserving the privacy in an important learning model, multilayer neural networks. We present a privacy-preserving two-party distributed algorithm of backpropagation which allows a neural network to be trained without requiring either party to reveal her data to the other. We provide complete correctness and security analysis of our algorithms. The effectiveness of our algorithms is verified by experiments on various real world data sets.

  9. Application of neural networks in space construction

    NASA Technical Reports Server (NTRS)

    Thilenius, Stephen C.; Barnes, Frank

    1990-01-01

    When trying to decide what task should be done by robots and what tasks should be done by humans with respect to space construction, there has been one decisive barrier which ultimately divides the tasks: can a computer do the job? Von Neumann type computers have great difficulty with problems that the human brain seems to do instantaneously and with little effort. Some of these problems are pattern recognition, speech recognition, content addressable memories, and command interpretation. In an attempt to simulate these talents of the human brain, much research was currently done into the operations and construction of artificial neural networks. The efficiency of the interface between man and machine, robots in particular, can therefore be greatly improved with the use of neural networks. For example, wouldn't it be easier to command a robot to 'fetch an object' rather then having to remotely control the entire operation with remote control?

  10. Hardware neural network on an SOPC platform

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Ding, Mingyue; Hu, Xia; Zhou, Yanhong

    2009-10-01

    SOPC (System on Programmable Chip) is an on-chip programmable system based on large scale Field Programmable Arrays (FPGAs). This paper presented an implementation of an SOPC system with a custom hardware neural network using Altera FPGA chip-EP2C35F672C. The embedded Nios processor was used as the test bench. The test result showed that the SOPC Platform with hardware neural network is faster than the software implementation respectively and the accuracy of the design meets the requirement of system. The verified SOPC system can closely model real-world system, which will have wide applications in different areas such as pattern recognition, data mining and signal processing.

  11. Neural networks predict tomato maturity stage

    NASA Astrophysics Data System (ADS)

    Hahn, Federico

    1999-03-01

    Almost 40% of the total horticultural produce exported from Mexico the USA is tomato, and quality is fundamental for maintaining the market. Many fruits packed at the green-mature stage do not mature towards a red color as they were harvested before achieving its physiological maturity. Tomato gassed for advancing maturation does not respond on those fruits, and repacking is necessary at terminal markets, causing losses to the producer. Tomato spectral signatures are different on each maturity stage and tomato size was poorly correlated against peak wavelengths. A back-propagation neural network was used to predict tomato maturity using reflectance ratios as inputs. Higher success rates were achieved on tomato maturity stage recognition with neural networks than with discriminant analysis.

  12. On analog implementations of discrete neural networks

    SciTech Connect

    Beiu, V.; Moore, K.R.

    1998-12-01

    The paper will show that in order to obtain minimum size neural networks (i.e., size-optimal) for implementing any Boolean function, the nonlinear activation function of the neutrons has to be the identity function. The authors shall shortly present many results dealing with the approximation capabilities of neural networks, and detail several bounds on the size of threshold gate circuits. Based on a constructive solution for Kolmogorov`s superpositions they will show that implementing Boolean functions can be done using neurons having an identity nonlinear function. It follows that size-optimal solutions can be obtained only using analog circuitry. Conclusions, and several comments on the required precision are ending the paper.

  13. Evaluating neural networks and artificial intelligence systems

    NASA Astrophysics Data System (ADS)

    Alberts, David S.

    1994-02-01

    Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.

  14. Automatic breast density classification using neural network

    NASA Astrophysics Data System (ADS)

    Arefan, D.; Talebpour, A.; Ahmadinejhad, N.; Kamali Asl, A.

    2015-12-01

    According to studies, the risk of breast cancer directly associated with breast density. Many researches are done on automatic diagnosis of breast density using mammography. In the current study, artifacts of mammograms are removed by using image processing techniques and by using the method presented in this study, including the diagnosis of points of the pectoral muscle edges and estimating them using regression techniques, pectoral muscle is detected with high accuracy in mammography and breast tissue is fully automatically extracted. In order to classify mammography images into three categories: Fatty, Glandular, Dense, a feature based on difference of gray-levels of hard tissue and soft tissue in mammograms has been used addition to the statistical features and a neural network classifier with a hidden layer. Image database used in this research is the mini-MIAS database and the maximum accuracy of system in classifying images has been reported 97.66% with 8 hidden layers in neural network.

  15. Neural Flows in Hopfield Network Approach

    NASA Astrophysics Data System (ADS)

    Ionescu, Carmen; Panaitescu, Emilian; Stoicescu, Mihai

    2013-12-01

    In most of the applications involving neural networks, the main problem consists in finding an optimal procedure to reduce the real neuron to simpler models which still express the biological complexity but allow highlighting the main characteristics of the system. We effectively investigate a simple reduction procedure which leads from complex models of Hodgkin-Huxley type to very convenient binary models of Hopfield type. The reduction will allow to describe the neuron interconnections in a quite large network and to obtain information concerning its symmetry and stability. Both cases, on homogeneous voltage across the membrane and inhomogeneous voltage along the axon will be tackled out. Few numerical simulations of the neural flow based on the cable-equation will be also presented.

  16. A Novel Higher Order Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Xu, Shuxiang

    2010-05-01

    In this paper a new Higher Order Neural Network (HONN) model is introduced and applied in several data mining tasks. Data Mining extracts hidden patterns and valuable information from large databases. A hyperbolic tangent function is used as the neuron activation function for the new HONN model. Experiments are conducted to demonstrate the advantages and disadvantages of the new HONN model, when compared with several conventional Artificial Neural Network (ANN) models: Feedforward ANN with the sigmoid activation function; Feedforward ANN with the hyperbolic tangent activation function; and Radial Basis Function (RBF) ANN with the Gaussian activation function. The experimental results seem to suggest that the new HONN holds higher generalization capability as well as abilities in handling missing data.

  17. Design of fiber optic adaline neural networks

    NASA Astrophysics Data System (ADS)

    Ghosh, Anjan K.; Trepka, Jim

    1997-03-01

    Based on possible optoelectronic realization of adaptive filters and equalizers using fiber optic tapped delay lines and spatial light modulators we describe the design of a single-layer fiber optic Adaline neural network that can be used as a bit pattern classifier. In our design, we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in processing speed, parallelism, and interconnection. The described new optical neural network design is for optical processing of guided light wave signals, not electronic signals. We analyze the convergence or learning characteristics of the optoelectronic Adaline in the presence of errors in the hardware. We show that with such an optoelectronic Adaline it is possible to detect a desired code word/token/header with good accuracy.

  18. Neural networks for aerosol particles characterization

    NASA Astrophysics Data System (ADS)

    Berdnik, V. V.; Loiko, V. A.

    2016-11-01

    Multilayer perceptron neural networks with one, two and three inputs are built to retrieve parameters of spherical homogeneous nonabsorbing particle. The refractive index ranges from 1.3 to 1.7; particle radius ranges from 0.251 μm to 56.234 μm. The logarithms of the scattered radiation intensity are used as input signals. The problem of the most informative scattering angles selection is elucidated. It is shown that polychromatic illumination helps one to increase significantly the retrieval accuracy. In the absence of measurement errors relative error of radius retrieval by the neural network with three inputs is 0.54%, relative error of the refractive index retrieval is 0.84%. The effect of measurement errors on the result of retrieval is simulated.

  19. Complex Chebyshev-polynomial-based unified model (CCPBUM) neural networks

    NASA Astrophysics Data System (ADS)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1998-03-01

    In this paper, we propose complex Chebyshev Polynomial Based unified model neural network for the approximation of complex- valued function. Based on this approximate transformable technique, we have derived the relationship between the single-layered neural network and multi-layered perceptron neural network. It is shown that the complex Chebyshev Polynomial Based unified model neural network can be represented as a functional link network that are based on Chebyshev polynomial. We also derived a new learning algorithm for the proposed network. It turns out that the complex Chebyshev Polynomial Based unified model neural network not only has the same capability of universal approximator, but also has faster learning speed than conventional complex feedforward/recurrent neural network.

  20. Pattern recognition, neural networks, and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Bezdek, James C.

    1991-03-01

    We write about the relationship between numerical patten recognition and neural-like computation networks. Extensive research that proposes the use of neural models for a wide variety of applications has been conducted in the past few years. Sometimes justification for investigating the potential of neural nets (NNs) is obvious. On the other hand, current enthusiasm for this approach has also led to the use of neural models when the apparent rationale for their use has been justified by what is best described as 'feeding frenzy'. In this latter instance there is at times concomitant lack of concern about many 'side issues' connected with algorithms (e.g., complexity, convergence, stability, robustness and performance validation) that need attention before any computational model becomes part of an operation system. These issues are examined with a view towards guessing how best to integrate and exploit the promise of the neural approach with there efforts aimed at advancing the art and science of pattern recognition and its applications in fielded systems in the next decade.