Sample records for local orbitals method

  1. Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates.

    PubMed

    Subotnik, Joseph E; Dutoi, Anthony D; Head-Gordon, Martin

    2005-09-15

    We present here an algorithm for computing stable, well-defined localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. The algorithm is very fast, limited only by diagonalization of two matrices with dimension the size of the number of virtual orbitals. Furthermore, we require no more than quadratic (in the number of electrons) storage. The basic premise behind our algorithm is that one can decompose any given atomic-orbital (AO) vector space as a minimal basis space (which includes the occupied and valence virtual spaces) and a hard-virtual (HV) space (which includes everything else). The valence virtual space localizes easily with standard methods, while the hard-virtual space is constructed to be atom centered and automatically local. The orbitals presented here may be computed almost as quickly as projecting the AO basis onto the virtual space and are almost as local (according to orbital variance), while our orbitals are orthonormal (rather than redundant and nonorthogonal). We expect this algorithm to find use in local-correlation methods.

  2. Pair 2-electron reduced density matrix theory using localized orbitals

    NASA Astrophysics Data System (ADS)

    Head-Marsden, Kade; Mazziotti, David A.

    2017-08-01

    Full configuration interaction (FCI) restricted to a pairing space yields size-extensive correlation energies but its cost scales exponentially with molecular size. Restricting the variational two-electron reduced-density-matrix (2-RDM) method to represent the same pairing space yields an accurate lower bound to the pair FCI energy at a mean-field-like computational scaling of O (r3) where r is the number of orbitals. In this paper, we show that localized molecular orbitals can be employed to generate an efficient, approximately size-extensive pair 2-RDM method. The use of localized orbitals eliminates the substantial cost of optimizing iteratively the orbitals defining the pairing space without compromising accuracy. In contrast to the localized orbitals, the use of canonical Hartree-Fock molecular orbitals is shown to be both inaccurate and non-size-extensive. The pair 2-RDM has the flexibility to describe the spectra of one-electron RDM occupation numbers from all quantum states that are invariant to time-reversal symmetry. Applications are made to hydrogen chains and their dissociation, n-acene from naphthalene through octacene, and cadmium telluride 2-, 3-, and 4-unit polymers. For the hydrogen chains, the pair 2-RDM method recovers the majority of the energy obtained from similar calculations that iteratively optimize the orbitals. The localized-orbital pair 2-RDM method with its mean-field-like computational scaling and its ability to describe multi-reference correlation has important applications to a range of strongly correlated phenomena in chemistry and physics.

  3. The effective local potential method: Implementation for molecules and relation to approximate optimized effective potential techniques

    NASA Astrophysics Data System (ADS)

    Izmaylov, Artur F.; Staroverov, Viktor N.; Scuseria, Gustavo E.; Davidson, Ernest R.; Stoltz, Gabriel; Cancès, Eric

    2007-02-01

    We have recently formulated a new approach, named the effective local potential (ELP) method, for calculating local exchange-correlation potentials for orbital-dependent functionals based on minimizing the variance of the difference between a given nonlocal potential and its desired local counterpart [V. N. Staroverov et al., J. Chem. Phys. 125, 081104 (2006)]. Here we show that under a mildly simplifying assumption of frozen molecular orbitals, the equation defining the ELP has a unique analytic solution which is identical with the expression arising in the localized Hartree-Fock (LHF) and common energy denominator approximations (CEDA) to the optimized effective potential. The ELP procedure differs from the CEDA and LHF in that it yields the target potential as an expansion in auxiliary basis functions. We report extensive calculations of atomic and molecular properties using the frozen-orbital ELP method and its iterative generalization to prove that ELP results agree with the corresponding LHF and CEDA values, as they should. Finally, we make the case for extending the iterative frozen-orbital ELP method to full orbital relaxation.

  4. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation.

    PubMed

    Ferenczy, György G

    2013-04-05

    The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.

  5. A complete active space valence bond method with nonorthogonal orbitals

    NASA Astrophysics Data System (ADS)

    Hirao, Kimihiko; Nakano, Haruyuki; Nakayama, Kenichi

    1997-12-01

    A complete active space self-consistent field (SCF) wave function is transformed into a valence bond type representation built from nonorthogonal orbitals, each strongly localized on a single atom. Nonorthogonal complete active space SCF orbitals are constructed by Ruedenberg's projected localization procedure so that they have maximal overlaps with the corresponding minimum basis set of atomic orbitals of the free-atoms. The valence bond structures which are composed of such nonorthogonal quasiatomic orbitals constitute the wave function closest to the concept of the oldest and most simple valence bond method. The method is applied to benzene, butadiene, hydrogen, and methane molecules and compared to the previously proposed complete active space valence bond approach with orthogonal orbitals. The results demonstrate the validity of the method as a powerful tool for describing the electronic structure of various molecules.

  6. Linear-scaling explicitly correlated treatment of solids: periodic local MP2-F12 method.

    PubMed

    Usvyat, Denis

    2013-11-21

    Theory and implementation of the periodic local MP2-F12 method in the 3*A fixed-amplitude ansatz is presented. The method is formulated in the direct space, employing local representation for the occupied, virtual, and auxiliary orbitals in the form of Wannier functions (WFs), projected atomic orbitals (PAOs), and atom-centered Gaussian-type orbitals, respectively. Local approximations are introduced, restricting the list of the explicitly correlated pairs, as well as occupied, virtual, and auxiliary spaces in the strong orthogonality projector to the pair-specific domains on the basis of spatial proximity of respective orbitals. The 4-index two-electron integrals appearing in the formalism are approximated via the direct-space density fitting technique. In this procedure, the fitting orbital spaces are also restricted to local fit-domains surrounding the fitted densities. The formulation of the method and its implementation exploits the translational symmetry and the site-group symmetries of the WFs. Test calculations are performed on LiH crystal. The results show that the periodic LMP2-F12 method substantially accelerates basis set convergence of the total correlation energy, and even more so the correlation energy differences. The resulting energies are quite insensitive to the resolution-of-the-identity domain sizes and the quality of the auxiliary basis sets. The convergence with the orbital domain size is somewhat slower, but still acceptable. Moreover, inclusion of slightly more diffuse functions, than those usually used in the periodic calculations, improves the convergence of the LMP2-F12 correlation energy with respect to both the size of the PAO-domains and the quality of the orbital basis set. At the same time, the essentially diffuse atomic orbitals from standard molecular basis sets, commonly utilized in molecular MP2-F12 calculations, but problematic in the periodic context, are not necessary for LMP2-F12 treatment of crystals.

  7. Block-localized wavefunction (BLW) method at the density functional theory (DFT) level.

    PubMed

    Mo, Yirong; Song, Lingchun; Lin, Yuchun

    2007-08-30

    The block-localized wavefunction (BLW) approach is an ab initio valence bond (VB) method incorporating the efficiency of molecular orbital (MO) theory. It can generate the wavefunction for a resonance structure or diabatic state self-consistently by partitioning the overall electrons and primitive orbitals into several subgroups and expanding each block-localized molecular orbital in only one subspace. Although block-localized molecular orbitals in the same subspace are constrained to be orthogonal (a feature of MO theory), orbitals between different subspaces are generally nonorthogonal (a feature of VB theory). The BLW method is particularly useful in the quantification of the electron delocalization (resonance) effect within a molecule and the charge-transfer effect between molecules. In this paper, we extend the BLW method to the density functional theory (DFT) level and implement the BLW-DFT method to the quantum mechanical software GAMESS. Test applications to the pi conjugation in the planar allyl radical and ions with the basis sets of 6-31G(d), 6-31+G(d), 6-311+G(d,p), and cc-pVTZ show that the basis set dependency is insignificant. In addition, the BLW-DFT method can also be used to elucidate the nature of intermolecular interactions. Examples of pi-cation interactions and solute-solvent interactions will be presented and discussed. By expressing each diabatic state with one BLW, the BLW method can be further used to study chemical reactions and electron-transfer processes whose potential energy surfaces are typically described by two or more diabatic states.

  8. Scanning tunneling microscopy current from localized basis orbital density functional theory

    NASA Astrophysics Data System (ADS)

    Gustafsson, Alexander; Paulsson, Magnus

    2016-03-01

    We present a method capable of calculating elastic scanning tunneling microscopy (STM) currents from localized atomic orbital density functional theory (DFT). To overcome the poor accuracy of the localized orbital description of the wave functions far away from the atoms, we propagate the wave functions, using the total DFT potential. From the propagated wave functions, the Bardeen's perturbative approach provides the tunneling current. To illustrate the method we investigate carbon monoxide adsorbed on a Cu(111) surface and recover the depression/protrusion observed experimentally with normal/CO-functionalized STM tips. The theory furthermore allows us to discuss the significance of s - and p -wave tips.

  9. Trajectory Control and Optimization for Responsive Spacecraft

    DTIC Science & Technology

    2012-03-22

    Orbital Elements and Local-Vertical-Local-Horizontal Frame 10 2.3 Equinoctial Frame with respect to ECI Frame [17] . . . . . . . . . 14 3.1...position and velocity, classical orbital elements , and equinoctial elements . These methods are detailed in the following sections. 2.1.1 Inertial Position...trajectory. However, if the singularities are unavoidable equinoctial orbital elements could be used. 2.1.3 Equinoctial Elements . Equinoctial

  10. An efficient linear-scaling CCSD(T) method based on local natural orbitals.

    PubMed

    Rolik, Zoltán; Szegedy, Lóránt; Ladjánszki, István; Ladóczki, Bence; Kállay, Mihály

    2013-09-07

    An improved version of our general-order local coupled-cluster (CC) approach [Z. Rolik and M. Kállay, J. Chem. Phys. 135, 104111 (2011)] and its efficient implementation at the CC singles and doubles with perturbative triples [CCSD(T)] level is presented. The method combines the cluster-in-molecule approach of Li and co-workers [J. Chem. Phys. 131, 114109 (2009)] with frozen natural orbital (NO) techniques. To break down the unfavorable fifth-power scaling of our original approach a two-level domain construction algorithm has been developed. First, an extended domain of localized molecular orbitals (LMOs) is assembled based on the spatial distance of the orbitals. The necessary integrals are evaluated and transformed in these domains invoking the density fitting approximation. In the second step, for each occupied LMO of the extended domain a local subspace of occupied and virtual orbitals is constructed including approximate second-order Mo̸ller-Plesset NOs. The CC equations are solved and the perturbative corrections are calculated in the local subspace for each occupied LMO using a highly-efficient CCSD(T) code, which was optimized for the typical sizes of the local subspaces. The total correlation energy is evaluated as the sum of the individual contributions. The computation time of our approach scales linearly with the system size, while its memory and disk space requirements are independent thereof. Test calculations demonstrate that currently our method is one of the most efficient local CCSD(T) approaches and can be routinely applied to molecules of up to 100 atoms with reasonable basis sets.

  11. Communication: Exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2)

    NASA Astrophysics Data System (ADS)

    Pinski, Peter; Neese, Frank

    2018-01-01

    Electron correlation methods based on pair natural orbitals (PNOs) have gained an increasing degree of interest in recent years, as they permit energy calculations to be performed on systems containing up to many hundred atoms, while maintaining chemical accuracy for reaction energies. We present an approach for taking exact analytical first derivatives of the energy contributions in the simplest method of the family of Domain-based Local Pair Natural Orbital (DLPNO) methods, closed-shell DLPNO-MP2. The Lagrangian function contains constraints to account for the relaxation of PNOs. RI-MP2 reference geometries are reproduced accurately, as exemplified for four systems with a substantial degree of nonbonding interactions. By the example of electric field gradients, we demonstrate that omitting PNO-specific constraints can lead to dramatic errors for orbital-relaxed properties.

  12. The dynamics and control of large flexible space structures, 3. Part A: Shape and orientation control of a platform in orbit using point actuators

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Reddy, A. S. S. R.; Krishna, R.; James, P. K.

    1980-01-01

    The dynamics, attitude, and shape control of a large thin flexible square platform in orbit are studied. Attitude and shape control are assumed to result from actuators placed perpendicular to the main surface and one edge and their effect on the rigid body and elastic modes is modelled to first order. The equations of motion are linearized about three different nominal orientations: (1) the platform following the local vertical with its major surface perpendicular to the orbital plane; (2) the platform following the local horizontal with its major surface normal to the local vertical; and (3) the platform following the local vertical with its major surface perpendicular to the orbit normal. The stability of the uncontrolled system is investigated analytically. Once controllability is established for a set of actuator locations, control law development is based on decoupling, pole placement, and linear optimal control theory. Frequencies and elastic modal shape functions are obtained using a finite element computer algorithm, two different approximate analytical methods, and the results of the three methods compared.

  13. Self-consistent self-interaction corrected density functional theory calculations for atoms using Fermi-Löwdin orbitals: Optimized Fermi-orbital descriptors for Li-Kr

    NASA Astrophysics Data System (ADS)

    Kao, Der-you; Withanage, Kushantha; Hahn, Torsten; Batool, Javaria; Kortus, Jens; Jackson, Koblar

    2017-10-01

    In the Fermi-Löwdin orbital method for implementing self-interaction corrections (FLO-SIC) in density functional theory (DFT), the local orbitals used to make the corrections are generated in a unitary-invariant scheme via the choice of the Fermi orbital descriptors (FODs). These are M positions in 3-d space (for an M-electron system) that can be loosely thought of as classical electron positions. The orbitals that minimize the DFT energy including the SIC are obtained by finding optimal positions for the FODs. In this paper, we present optimized FODs for the atoms from Li-Kr obtained using an unbiased search method and self-consistent FLO-SIC calculations. The FOD arrangements display a clear shell structure that reflects the principal quantum numbers of the orbitals. We describe trends in the FOD arrangements as a function of atomic number. FLO-SIC total energies for the atoms are presented and are shown to be in close agreement with the results of previous SIC calculations that imposed explicit constraints to determine the optimal local orbitals, suggesting that FLO-SIC yields the same solutions for atoms as these computationally demanding earlier methods, without invoking the constraints.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pederson, Mark R.; Baruah, Tunna; Basurto, Luis

    We have applied a recently developed method to incorporate the self-interaction correction through Fermi orbitals to Mg-porphyrin, C{sub 60}, and pentacene molecules. The Fermi-Löwdin orbitals are localized and unitarily invariant to the Kohn-Sham orbitals from which they are constructed. The self-interaction-corrected energy is obtained variationally leading to an optimum set of Fermi-Löwdin orbitals (orthonormalized Fermi orbitals) that gives the minimum energy. A Fermi orbital, by definition, is dependent on a certain point which is referred to as the descriptor position. The degree to which the initial choice of descriptor positions influences the variational approach to the minimum and the complexitymore » of the energy landscape as a function of Fermi-orbital descriptors is examined in detail for Mg-porphyrin. The applications presented here also demonstrate that the method can be applied to larger molecular systems containing a few hundred electrons. The atomization energy of the C{sub 60} molecule within the Fermi-Löwdin-orbital self-interaction-correction approach is significantly improved compared to local density approximation in the Perdew-Wang 92 functional and generalized gradient approximation of Perdew-Burke-Ernzerhof functionals. The eigenvalues of the highest occupied molecular orbitals show qualitative improvement.« less

  15. Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules

    NASA Astrophysics Data System (ADS)

    Pederson, Mark R.; Baruah, Tunna; Kao, Der-you; Basurto, Luis

    2016-04-01

    We have applied a recently developed method to incorporate the self-interaction correction through Fermi orbitals to Mg-porphyrin, C60, and pentacene molecules. The Fermi-Löwdin orbitals are localized and unitarily invariant to the Kohn-Sham orbitals from which they are constructed. The self-interaction-corrected energy is obtained variationally leading to an optimum set of Fermi-Löwdin orbitals (orthonormalized Fermi orbitals) that gives the minimum energy. A Fermi orbital, by definition, is dependent on a certain point which is referred to as the descriptor position. The degree to which the initial choice of descriptor positions influences the variational approach to the minimum and the complexity of the energy landscape as a function of Fermi-orbital descriptors is examined in detail for Mg-porphyrin. The applications presented here also demonstrate that the method can be applied to larger molecular systems containing a few hundred electrons. The atomization energy of the C60 molecule within the Fermi-Löwdin-orbital self-interaction-correction approach is significantly improved compared to local density approximation in the Perdew-Wang 92 functional and generalized gradient approximation of Perdew-Burke-Ernzerhof functionals. The eigenvalues of the highest occupied molecular orbitals show qualitative improvement.

  16. Performance of local orbital basis sets in the self-consistent Sternheimer method for dielectric matrices of extended systems

    NASA Astrophysics Data System (ADS)

    Hübener, H.; Pérez-Osorio, M. A.; Ordejón, P.; Giustino, F.

    2012-09-01

    We present a systematic study of the performance of numerical pseudo-atomic orbital basis sets in the calculation of dielectric matrices of extended systems using the self-consistent Sternheimer approach of [F. Giustino et al., Phys. Rev. B 81, 115105 (2010)]. In order to cover a range of systems, from more insulating to more metallic character, we discuss results for the three semiconductors diamond, silicon, and germanium. Dielectric matrices of silicon and diamond calculated using our method fall within 1% of reference planewaves calculations, demonstrating that this method is promising. We find that polarization orbitals are critical for achieving good agreement with planewaves calculations, and that only a few additional ζ's are required for obtaining converged results, provided the split norm is properly optimized. Our present work establishes the validity of local orbital basis sets and the self-consistent Sternheimer approach for the calculation of dielectric matrices in extended systems, and prepares the ground for future studies of electronic excitations using these methods.

  17. An efficient and near linear scaling pair natural orbital based local coupled cluster method.

    PubMed

    Riplinger, Christoph; Neese, Frank

    2013-01-21

    In previous publications, it was shown that an efficient local coupled cluster method with single- and double excitations can be based on the concept of pair natural orbitals (PNOs) [F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009)]. The resulting local pair natural orbital-coupled-cluster single double (LPNO-CCSD) method has since been proven to be highly reliable and efficient. For large molecules, the number of amplitudes to be determined is reduced by a factor of 10(5)-10(6) relative to a canonical CCSD calculation on the same system with the same basis set. In the original method, the PNOs were expanded in the set of canonical virtual orbitals and single excitations were not truncated. This led to a number of fifth order scaling steps that eventually rendered the method computationally expensive for large molecules (e.g., >100 atoms). In the present work, these limitations are overcome by a complete redesign of the LPNO-CCSD method. The new method is based on the combination of the concepts of PNOs and projected atomic orbitals (PAOs). Thus, each PNO is expanded in a set of PAOs that in turn belong to a given electron pair specific domain. In this way, it is possible to fully exploit locality while maintaining the extremely high compactness of the original LPNO-CCSD wavefunction. No terms are dropped from the CCSD equations and domains are chosen conservatively. The correlation energy loss due to the domains remains below <0.05%, which implies typically 15-20 but occasionally up to 30 atoms per domain on average. The new method has been given the acronym DLPNO-CCSD ("domain based LPNO-CCSD"). The method is nearly linear scaling with respect to system size. The original LPNO-CCSD method had three adjustable truncation thresholds that were chosen conservatively and do not need to be changed for actual applications. In the present treatment, no additional truncation parameters have been introduced. Any additional truncation is performed on the basis of the three original thresholds. There are no real-space cutoffs. Single excitations are truncated using singles-specific natural orbitals. Pairs are prescreened according to a multipole expansion of a pair correlation energy estimate based on local orbital specific virtual orbitals (LOSVs). Like its LPNO-CCSD predecessor, the method is completely of black box character and does not require any user adjustments. It is shown here that DLPNO-CCSD is as accurate as LPNO-CCSD while leading to computational savings exceeding one order of magnitude for larger systems. The largest calculations reported here featured >8800 basis functions and >450 atoms. In all larger test calculations done so far, the LPNO-CCSD step took less time than the preceding Hartree-Fock calculation, provided no approximations have been introduced in the latter. Thus, based on the present development reliable CCSD calculations on large molecules with unprecedented efficiency and accuracy are realized.

  18. Orbital dependent functionals: An atom projector augmented wave method implementation

    NASA Astrophysics Data System (ADS)

    Xu, Xiao

    This thesis explores the formulation and numerical implementation of orbital dependent exchange-correlation functionals within electronic structure calculations. These orbital-dependent exchange-correlation functionals have recently received renewed attention as a means to improve the physical representation of electron interactions within electronic structure calculations. In particular, electron self-interaction terms can be avoided. In this thesis, an orbital-dependent functional is considered in the context of Hartree-Fock (HF) theory as well as the Optimized Effective Potential (OEP) method and the approximate OEP method developed by Krieger, Li, and Iafrate, known as the KLI approximation. In this thesis, the Fock exchange term is used as a simple well-defined example of an orbital-dependent functional. The Projected Augmented Wave (PAW) method developed by P. E. Blochl has proven to be accurate and efficient for electronic structure calculations for local and semi-local functions because of its accurate evaluation of interaction integrals by controlling multiple moments. We have extended the PAW method to treat orbital-dependent functionals in Hartree-Fock theory and the Optimized Effective Potential method, particularly in the KLI approximation. In the course of study we develop a frozen-core orbital approximation that accurately treats the core electron contributions for above three methods. The main part of the thesis focuses on the treatment of spherical atoms. We have investigated the behavior of PAW-Hartree Fock and PAW-KLI basis, projector, and pseudopotential functions for several elements throughout the periodic table. We have also extended the formalism to the treatment of solids in a plane wave basis and implemented PWPAW-KLI code, which will appear in future publications.

  19. The limits of local correlation theory: electronic delocalization and chemically smooth potential energy surfaces.

    PubMed

    Subotnik, Joseph E; Sodt, Alex; Head-Gordon, Martin

    2008-01-21

    Local coupled-cluster theory provides an algorithm for measuring electronic correlation quickly, using only the spatial locality of localized electronic orbitals. Previously, we showed [J. Subotnik et al., J. Chem. Phys. 125, 074116 (2006)] that one may construct a local coupled-cluster singles-doubles theory which (i) yields smooth potential energy surfaces and (ii) achieves near linear scaling. That theory selected which orbitals to correlate based only on the distances between the centers of different, localized orbitals, and the approximate potential energy surfaces were characterized as smooth using only visual identification. This paper now extends our previous algorithm in three important ways. First, locality is now based on both the distances between the centers of orbitals as well as the spatial extent of the orbitals. We find that, by accounting for the spatial extent of a delocalized orbital, one can account for electronic correlation in systems with some electronic delocalization using fast correlation methods designed around orbital locality. Second, we now enforce locality on not just the amplitudes (which measure the exact electron-electron correlation), but also on the two-electron integrals themselves (which measure the bare electron-electron interaction). Our conclusion is that we can bump integrals as well as amplitudes, thereby gaining a tremendous increase in speed and paradoxically increasing the accuracy of our LCCSD approach. Third and finally, we now make a rigorous definition of chemical smoothness as requiring that potential energy surfaces not support artificial maxima, minima, or inflection points. By looking at first and second derivatives from finite difference techniques, we demonstrate complete chemical smoothness of our potential energy surfaces (bumping both amplitudes and integrals). These results are significant both from a theoretical and from a computationally practical point of view.

  20. Exact density functional and wave function embedding schemes based on orbital localization

    NASA Astrophysics Data System (ADS)

    Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály

    2016-08-01

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  1. Fingerprints of entangled spin and orbital physics in itinerant ferromagnets via angle-resolved resonant photoemission

    NASA Astrophysics Data System (ADS)

    Da Pieve, F.

    2016-01-01

    A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.

  2. AC orbit bump method of local impedance measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smaluk, Victor; Yang, Xi; Blednykh, Alexei

    A fast and precise technique of local impedance measurement has been developed and tested at NSLS-II. This technique is based on in-phase sine-wave (AC) excitation of four fast correctors adjacent to the vacuum chamber section, impedance of which is measured. The beam position is measured using synchronous detection. Use of the narrow-band sine-wave signal allows us to improve significantly the accuracy of the orbit bump method. Beam excitation by fast correctors results in elimination of the systematic error caused by hysteresis effect. The systematic error caused by orbit drift is also eliminated because the measured signal is not affected bymore » the orbit motion outside the excitation frequency range. In this article, the measurement technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented.« less

  3. AC orbit bump method of local impedance measurement

    DOE PAGES

    Smaluk, Victor; Yang, Xi; Blednykh, Alexei; ...

    2017-08-04

    A fast and precise technique of local impedance measurement has been developed and tested at NSLS-II. This technique is based on in-phase sine-wave (AC) excitation of four fast correctors adjacent to the vacuum chamber section, impedance of which is measured. The beam position is measured using synchronous detection. Use of the narrow-band sine-wave signal allows us to improve significantly the accuracy of the orbit bump method. Beam excitation by fast correctors results in elimination of the systematic error caused by hysteresis effect. The systematic error caused by orbit drift is also eliminated because the measured signal is not affected bymore » the orbit motion outside the excitation frequency range. In this article, the measurement technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented.« less

  4. Constant covariance in local vertical coordinates for near-circular orbits

    NASA Technical Reports Server (NTRS)

    Shepperd, Stanley W.

    1991-01-01

    A method is presented for devising a covariance matrix that either remains constant or grows in keeping with the presence of a period error in a rotating local-vertical coordinate system. The solution presented may prove useful in the initialization of simulation covariance matrices for near-circular-orbit problems. Use is made of the Clohessy-Wiltshire equations and the travelling-ellipse formulation.

  5. Simplification of the time-dependent generalized self-interaction correction method using two sets of orbitals: Application of the optimized effective potential formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messud, J.; Dinh, P. M.; Suraud, Eric

    2009-10-15

    We propose a simplification of the time-dependent self-interaction correction (TD-SIC) method using two sets of orbitals, applying the optimized effective potential (OEP) method. The resulting scheme is called time-dependent 'generalized SIC-OEP'. A straightforward approximation, using the spatial localization of one set of orbitals, leads to the 'generalized SIC-Slater' formalism. We show that it represents a great improvement compared to the traditional SIC-Slater and Krieger-Li-Iafrate formalisms.

  6. Simplification of the time-dependent generalized self-interaction correction method using two sets of orbitals: Application of the optimized effective potential formalism

    NASA Astrophysics Data System (ADS)

    Messud, J.; Dinh, P. M.; Reinhard, P.-G.; Suraud, Eric

    2009-10-01

    We propose a simplification of the time-dependent self-interaction correction (TD-SIC) method using two sets of orbitals, applying the optimized effective potential (OEP) method. The resulting scheme is called time-dependent “generalized SIC-OEP.” A straightforward approximation, using the spatial localization of one set of orbitals, leads to the “generalized SIC-Slater” formalism. We show that it represents a great improvement compared to the traditional SIC-Slater and Krieger-Li-Iafrate formalisms.

  7. Optimal four-impulse rendezvous between coplanar elliptical orbits

    NASA Astrophysics Data System (ADS)

    Wang, JianXia; Baoyin, HeXi; Li, JunFeng; Sun, FuChun

    2011-04-01

    Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods proposed for fuel optimal orbital rendezvous, Lawden's primer vector theory is favored by many researchers with its clear physical concept and simplicity in solution. Prussing has applied the primer vector optimization theory to minimum-fuel, multiple-impulse, time-fixed orbital rendezvous in a near circular orbit and achieved great success. Extending Prussing's work, this paper will employ the primer vector theory to study trajectory optimization problems of arbitrary eccentricity elliptical orbit rendezvous. Based on linearized equations of relative motion on elliptical reference orbit (referred to as T-H equations), the primer vector theory is used to deal with time-fixed multiple-impulse optimal rendezvous between two coplanar, coaxial elliptical orbits with arbitrary large eccentricity. A parameter adjustment method is developed for the prime vector to satisfy the Lawden's necessary condition for the optimal solution. Finally, the optimal multiple-impulse rendezvous solution including the time, direction and magnitudes of the impulse is obtained by solving the two-point boundary value problem. The rendezvous error of the linearized equation is also analyzed. The simulation results confirmed the analyzed results that the rendezvous error is small for the small eccentricity case and is large for the higher eccentricity. For better rendezvous accuracy of high eccentricity orbits, a combined method of multiplier penalty function with the simplex search method is used for local optimization. The simplex search method is sensitive to the initial values of optimization variables, but the simulation results show that initial values with the primer vector theory, and the local optimization algorithm can improve the rendezvous accuracy effectively with fast convergence, because the optimal results obtained by the primer vector theory are already very close to the actual optimal solution. If the initial values are taken randomly, it is difficult to converge to the optimal solution.

  8. Local Descriptors of Dynamic and Nondynamic Correlation.

    PubMed

    Ramos-Cordoba, Eloy; Matito, Eduard

    2017-06-13

    Quantitatively accurate electronic structure calculations rely on the proper description of electron correlation. A judicious choice of the approximate quantum chemistry method depends upon the importance of dynamic and nondynamic correlation, which is usually assesed by scalar measures. Existing measures of electron correlation do not consider separately the regions of the Cartesian space where dynamic or nondynamic correlation are most important. We introduce real-space descriptors of dynamic and nondynamic electron correlation that admit orbital decomposition. Integration of the local descriptors yields global numbers that can be used to quantify dynamic and nondynamic correlation. Illustrative examples over different chemical systems with varying electron correlation regimes are used to demonstrate the capabilities of the local descriptors. Since the expressions only require orbitals and occupation numbers, they can be readily applied in the context of local correlation methods, hybrid methods, density matrix functional theory, and fractional-occupancy density functional theory.

  9. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. Part I. Application of the Huzinaga equation.

    PubMed

    Ferenczy, György G

    2013-04-05

    Mixed quantum mechanics/quantum mechanics (QM/QM) and quantum mechanics/molecular mechanics (QM/MM) methods make computations feasible for extended chemical systems by separating them into subsystems that are treated at different level of sophistication. In many applications, the subsystems are covalently bound and the use of frozen localized orbitals at the boundary is a possible way to separate the subsystems and to ensure a sensible description of the electronic structure near to the boundary. A complication in these methods is that orthogonality between optimized and frozen orbitals has to be warranted and this is usually achieved by an explicit orthogonalization of the basis set to the frozen orbitals. An alternative to this approach is proposed by calculating the wave-function from the Huzinaga equation that guaranties orthogonality to the frozen orbitals without basis set orthogonalization. The theoretical background and the practical aspects of the application of the Huzinaga equation in mixed methods are discussed. Forces have been derived to perform geometry optimization with wave-functions from the Huzinaga equation. Various properties have been calculated by applying the Huzinaga equation for the central QM subsystem, representing the environment by point charges and using frozen strictly localized orbitals to connect the subsystems. It is shown that a two to three bond separation of the chemical or physical event from the frozen bonds allows a very good reproduction (typically around 1 kcal/mol) of standard Hartree-Fock-Roothaan results. The proposed scheme provides an appropriate framework for mixed QM/QM and QM/MM methods. Copyright © 2012 Wiley Periodicals, Inc.

  10. Minimal entropy approximation for cellular automata

    NASA Astrophysics Data System (ADS)

    Fukś, Henryk

    2014-02-01

    We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.

  11. Computed tomography of orbital tumors in the dog.

    PubMed

    LeCouteur, R A; Fike, J R; Scagliotti, R H; Cann, C E

    1982-04-15

    Computed tomography (CT) was used to investigate orbital tumors in 3 dogs. Tumors were clearly defined on transverse CT scans by their inherent density and gross distortion of normal orbital anatomy. Dorsal images synthesized from the original transverse scans were also used to visualize size and extent of tumors. Use of an iodinated contrast medium did not appear to improve localization of tumors in the orbit but was useful for identification of tumor extension into the calvaria. It was concluded that CT offered advantages over existing methods of radiographic diagnosis of orbital tumors and exophthalmos.

  12. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F.; Neese, Frank

    2016-03-01

    Multi-reference (MR) electronic structure methods, such as MR configuration interaction or MR perturbation theory, can provide reliable energies and properties for many molecular phenomena like bond breaking, excited states, transition states or magnetic properties of transition metal complexes and clusters. However, owing to their inherent complexity, most MR methods are still too computationally expensive for large systems. Therefore the development of more computationally attractive MR approaches is necessary to enable routine application for large-scale chemical systems. Among the state-of-the-art MR methods, second-order N-electron valence state perturbation theory (NEVPT2) is an efficient, size-consistent, and intruder-state-free method. However, there are still two important bottlenecks in practical applications of NEVPT2 to large systems: (a) the high computational cost of NEVPT2 for large molecules, even with moderate active spaces and (b) the prohibitive cost for treating large active spaces. In this work, we address problem (a) by developing a linear scaling "partially contracted" NEVPT2 method. This development uses the idea of domain-based local pair natural orbitals (DLPNOs) to form a highly efficient algorithm. As shown previously in the framework of single-reference methods, the DLPNO concept leads to an enormous reduction in computational effort while at the same time providing high accuracy (approaching 99.9% of the correlation energy), robustness, and black-box character. In the DLPNO approach, the virtual space is spanned by pair natural orbitals that are expanded in terms of projected atomic orbitals in large orbital domains, while the inactive space is spanned by localized orbitals. The active orbitals are left untouched. Our implementation features a highly efficient "electron pair prescreening" that skips the negligible inactive pairs. The surviving pairs are treated using the partially contracted NEVPT2 formalism. A detailed comparison between the partial and strong contraction schemes is made, with conclusions that discourage the strong contraction scheme as a basis for local correlation methods due to its non-invariance with respect to rotations in the inactive and external subspaces. A minimal set of conservatively chosen truncation thresholds controls the accuracy of the method. With the default thresholds, about 99.9% of the canonical partially contracted NEVPT2 correlation energy is recovered while the crossover of the computational cost with the already very efficient canonical method occurs reasonably early; in linear chain type compounds at a chain length of around 80 atoms. Calculations are reported for systems with more than 300 atoms and 5400 basis functions.

  13. Conformational analysis of methylphenidate: comparison of molecular orbital and molecular mechanics methods

    NASA Astrophysics Data System (ADS)

    Gilbert, Kathleen M.; Skawinski, William J.; Misra, Milind; Paris, Kristina A.; Naik, Neelam H.; Buono, Ronald A.; Deutsch, Howard M.; Venanzi, Carol A.

    2004-11-01

    Methylphenidate (MP) binds to the cocaine binding site on the dopamine transporter and inhibits reuptake of dopamine, but does not appear to have the same abuse potential as cocaine. This study, part of a comprehensive effort to identify a drug treatment for cocaine abuse, investigates the effect of choice of calculation technique and of solvent model on the conformational potential energy surface (PES) of MP and a rigid methylphenidate (RMP) analogue which exhibits the same dopamine transporter binding affinity as MP. Conformational analysis was carried out by the AM1 and AM1/SM5.4 semiempirical molecular orbital methods, a molecular mechanics method (Tripos force field with the dielectric set equal to that of vacuum or water) and the HF/6-31G* molecular orbital method in vacuum phase. Although all three methods differ somewhat in the local details of the PES, the general trends are the same for neutral and protonated MP. In vacuum phase, protonation has a distinctive effect in decreasing the regions of space available to the local conformational minima. Solvent has little effect on the PES of the neutral molecule and tends to stabilize the protonated species. The random search (RS) conformational analysis technique using the Tripos force field was found to be capable of locating the minima found by the molecular orbital methods using systematic grid search. This suggests that the RS/Tripos force field/vacuum phase protocol is a reasonable choice for locating the local minima of MP. However, the Tripos force field gave significantly larger phenyl ring rotational barriers than the molecular orbital methods for MP and RMP. For both the neutral and protonated cases, all three methods found the phenyl ring rotational barriers for the RMP conformers/invertamers (denoted as cte, tte, and cta) to be: cte, tte> MP > cta. Solvation has negligible effect on the phenyl ring rotational barrier of RMP. The B3LYP/6-31G* density functional method was used to calculate the phenyl ring rotational barrier for neutral MP and gave results very similar to those of the HF/6-31G* method.

  14. Efficient and accurate local single reference correlation methods for high-spin open-shell molecules using pair natural orbitals

    NASA Astrophysics Data System (ADS)

    Hansen, Andreas; Liakos, Dimitrios G.; Neese, Frank

    2011-12-01

    A production level implementation of the high-spin open-shell (spin unrestricted) single reference coupled pair, quadratic configuration interaction and coupled cluster methods with up to doubly excited determinants in the framework of the local pair natural orbital (LPNO) concept is reported. This work is an extension of the closed-shell LPNO methods developed earlier [F. Neese, F. Wennmohs, and A. Hansen, J. Chem. Phys. 130, 114108 (2009), 10.1063/1.3086717; F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009), 10.1063/1.3173827]. The internal space is spanned by localized orbitals, while the external space for each electron pair is represented by a truncated PNO expansion. The laborious integral transformation associated with the large number of PNOs becomes feasible through the extensive use of density fitting (resolution of the identity (RI)) techniques. Technical complications arising for the open-shell case and the use of quasi-restricted orbitals for the construction of the reference determinant are discussed in detail. As in the closed-shell case, only three cutoff parameters control the average number of PNOs per electron pair, the size of the significant pair list, and the number of contributing auxiliary basis functions per PNO. The chosen threshold default values ensure robustness and the results of the parent canonical methods are reproduced to high accuracy. Comprehensive numerical tests on absolute and relative energies as well as timings consistently show that the outstanding performance of the LPNO methods carries over to the open-shell case with minor modifications. Finally, hyperfine couplings calculated with the variational LPNO-CEPA/1 method, for which a well-defined expectation value type density exists, indicate the great potential of the LPNO approach for the efficient calculation of molecular properties.

  15. H4: A challenging system for natural orbital functional approximations

    NASA Astrophysics Data System (ADS)

    Ramos-Cordoba, Eloy; Lopez, Xabier; Piris, Mario; Matito, Eduard

    2015-10-01

    The correct description of nondynamic correlation by electronic structure methods not belonging to the multireference family is a challenging issue. The transition of D2h to D4h symmetry in H4 molecule is among the most simple archetypal examples to illustrate the consequences of missing nondynamic correlation effects. The resurgence of interest in density matrix functional methods has brought several new methods including the family of Piris Natural Orbital Functionals (PNOF). In this work, we compare PNOF5 and PNOF6, which include nondynamic electron correlation effects to some extent, with other standard ab initio methods in the H4 D4h/D2h potential energy surface (PES). Thus far, the wrongful behavior of single-reference methods at the D2h-D4h transition of H4 has been attributed to wrong account of nondynamic correlation effects, whereas in geminal-based approaches, it has been assigned to a wrong coupling of spins and the localized nature of the orbitals. We will show that actually interpair nondynamic correlation is the key to a cusp-free qualitatively correct description of H4 PES. By introducing interpair nondynamic correlation, PNOF6 is shown to avoid cusps and provide the correct smooth PES features at distances close to the equilibrium, total and local spin properties along with the correct electron delocalization, as reflected by natural orbitals and multicenter delocalization indices.

  16. SU (N ) spin-wave theory: Application to spin-orbital Mott insulators

    NASA Astrophysics Data System (ADS)

    Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin

    2018-05-01

    We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.

  17. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.

    PubMed

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2016-07-12

    We report the development and implementation of an energy decomposition analysis (EDA) scheme in the ONETEP linear-scaling electronic structure package. Our approach is hybrid as it combines the localized molecular orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102) and the absolutely localized molecular orbital EDA (Khaliullin, R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753-8765) to partition the intermolecular interaction energy into chemically distinct components (electrostatic, exchange, correlation, Pauli repulsion, polarization, and charge transfer). Limitations shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of biomolecular problems, especially in the context of drug design.

  18. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yang; Sivalingam, Kantharuban; Neese, Frank, E-mail: Frank.Neese@cec.mpg.de

    2016-03-07

    Multi-reference (MR) electronic structure methods, such as MR configuration interaction or MR perturbation theory, can provide reliable energies and properties for many molecular phenomena like bond breaking, excited states, transition states or magnetic properties of transition metal complexes and clusters. However, owing to their inherent complexity, most MR methods are still too computationally expensive for large systems. Therefore the development of more computationally attractive MR approaches is necessary to enable routine application for large-scale chemical systems. Among the state-of-the-art MR methods, second-order N-electron valence state perturbation theory (NEVPT2) is an efficient, size-consistent, and intruder-state-free method. However, there are still twomore » important bottlenecks in practical applications of NEVPT2 to large systems: (a) the high computational cost of NEVPT2 for large molecules, even with moderate active spaces and (b) the prohibitive cost for treating large active spaces. In this work, we address problem (a) by developing a linear scaling “partially contracted” NEVPT2 method. This development uses the idea of domain-based local pair natural orbitals (DLPNOs) to form a highly efficient algorithm. As shown previously in the framework of single-reference methods, the DLPNO concept leads to an enormous reduction in computational effort while at the same time providing high accuracy (approaching 99.9% of the correlation energy), robustness, and black-box character. In the DLPNO approach, the virtual space is spanned by pair natural orbitals that are expanded in terms of projected atomic orbitals in large orbital domains, while the inactive space is spanned by localized orbitals. The active orbitals are left untouched. Our implementation features a highly efficient “electron pair prescreening” that skips the negligible inactive pairs. The surviving pairs are treated using the partially contracted NEVPT2 formalism. A detailed comparison between the partial and strong contraction schemes is made, with conclusions that discourage the strong contraction scheme as a basis for local correlation methods due to its non-invariance with respect to rotations in the inactive and external subspaces. A minimal set of conservatively chosen truncation thresholds controls the accuracy of the method. With the default thresholds, about 99.9% of the canonical partially contracted NEVPT2 correlation energy is recovered while the crossover of the computational cost with the already very efficient canonical method occurs reasonably early; in linear chain type compounds at a chain length of around 80 atoms. Calculations are reported for systems with more than 300 atoms and 5400 basis functions.« less

  19. Perturbation expansion theory corrected from basis set superposition error. I. Locally projected excited orbitals and single excitations.

    PubMed

    Nagata, Takeshi; Iwata, Suehiro

    2004-02-22

    The locally projected self-consistent field molecular orbital method for molecular interaction (LP SCF MI) is reformulated for multifragment systems. For the perturbation expansion, two types of the local excited orbitals are defined; one is fully local in the basis set on a fragment, and the other has to be partially delocalized to the basis sets on the other fragments. The perturbation expansion calculations only within single excitations (LP SE MP2) are tested for water dimer, hydrogen fluoride dimer, and colinear symmetric ArM+ Ar (M = Na and K). The calculated binding energies of LP SE MP2 are all close to the corresponding counterpoise corrected SCF binding energy. By adding the single excitations, the deficiency in LP SCF MI is thus removed. The results suggest that the exclusion of the charge-transfer effects in LP SCF MI might indeed be the cause of the underestimation for the binding energy. (c) 2004 American Institute of Physics.

  20. Natural chemical shielding analysis of nuclear magnetic resonance shielding tensors from gauge-including atomic orbital calculations

    NASA Astrophysics Data System (ADS)

    Bohmann, Jonathan A.; Weinhold, Frank; Farrar, Thomas C.

    1997-07-01

    Nuclear magnetic shielding tensors computed by the gauge including atomic orbital (GIAO) method in the Hartree-Fock self-consistent-field (HF-SCF) framework are partitioned into magnetic contributions from chemical bonds and lone pairs by means of natural chemical shielding (NCS) analysis, an extension of natural bond orbital (NBO) analysis. NCS analysis complements the description provided by alternative localized orbital methods by directly calculating chemical shieldings due to delocalized features in the electronic structure, such as bond conjugation and hyperconjugation. Examples of NCS tensor decomposition are reported for CH4, CO, and H2CO, for which a graphical mnemonic due to Cornwell is used to illustrate the effect of hyperconjugative delocalization on the carbon shielding.

  1. LoFEx - A local framework for calculating excitation energies: Illustrations using RI-CC2 linear response theory.

    PubMed

    Baudin, Pablo; Kristensen, Kasper

    2016-06-14

    We present a local framework for the calculation of coupled cluster excitation energies of large molecules (LoFEx). The method utilizes time-dependent Hartree-Fock information about the transitions of interest through the concept of natural transition orbitals (NTOs). The NTOs are used in combination with localized occupied and virtual Hartree-Fock orbitals to generate a reduced excitation orbital space (XOS) specific to each transition where a standard coupled cluster calculation is carried out. Each XOS is optimized to ensure that the excitation energies are determined to a predefined precision. We apply LoFEx in combination with the RI-CC2 model to calculate the lowest excitation energies of a set of medium-sized organic molecules. The results demonstrate the black-box nature of the LoFEx approach and show that significant computational savings can be gained without affecting the accuracy of CC2 excitation energies.

  2. Speeding up local correlation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kats, Daniel

    2014-12-28

    We present two techniques that can substantially speed up the local correlation methods. The first one allows one to avoid the expensive transformation of the electron-repulsion integrals from atomic orbitals to virtual space. The second one introduces an algorithm for the residual equations in the local perturbative treatment that, in contrast to the standard scheme, does not require holding the amplitudes or residuals in memory. It is shown that even an interpreter-based implementation of the proposed algorithm in the context of local MP2 method is faster and requires less memory than the highly optimized variants of conventional algorithms.

  3. Localized and Spectroscopic Orbitals: Squirrel Ears on Water.

    ERIC Educational Resources Information Center

    Martin, R. Bruce

    1988-01-01

    Reexamines the electronic structure of water considering divergent views. Discusses several aspects of molecular orbital theory using spectroscopic molecular orbitals and localized molecular orbitals. Gives examples for determining lowest energy spectroscopic orbitals. (ML)

  4. A semi-analytical method to evaluate the dielectric response of a tokamak plasma accounting for drift orbit effects

    NASA Astrophysics Data System (ADS)

    Van Eester, Dirk

    2005-03-01

    A semi-analytical method is proposed to evaluate the dielectric response of a plasma to electromagnetic waves in the ion cyclotron domain of frequencies in a D-shaped but axisymmetric toroidal geometry. The actual drift orbit of the particles is accounted for. The method hinges on subdividing the orbit into elementary segments in which the integrations can be performed analytically or by tabulation, and it relies on the local book-keeping of the relation between the toroidal angular momentum and the poloidal flux function. Depending on which variables are chosen, the method allows computation of elementary building blocks for either the wave or the Fokker-Planck equation, but the accent is mainly on the latter. Two types of tangent resonance are distinguished.

  5. Common Orbital Infections ~ State of the Art ~ Part I

    PubMed Central

    Hamed-Azzam, Shirin; AlHashash, Islam; Briscoe, Daniel; Rose, Geoffrey E; Verity, David H.

    2018-01-01

    Infections of the orbit and periorbita are relatively frequent, and can cause significant local and systemic morbidity. Loss of vision occurs in more than 10% of patients, and systemic sequelae can include meningitis, intracranial abscess, and death. Numerous organisms infect the orbit, but the most common are bacteria. There are many methods through which orbital infections occur, with infection from the neighboring ethmoid sinuses the most likely cause for all age groups. Prompt management is essential in suspected orbital cellulitis, and involves urgent intravenous antibiotics, rehydration, and treatment of any co-existent underlying systemic disease, e.g., diabetes, renal failure. This review summarizes the common infectious processes of the orbit in both pediatric and adult groups. We review pathophysiology, symptoms, signs, and treatment for infectious orbital processes. PMID:29719647

  6. Orbit determination performances using single- and double-differenced methods: SAC-C and KOMPSAT-2

    NASA Astrophysics Data System (ADS)

    Hwang, Yoola; Lee, Byoung-Sun; Kim, Haedong; Kim, Jaehoon

    2011-01-01

    In this paper, Global Positioning System-based (GPS) Orbit Determination (OD) for the KOrea-Multi-Purpose-SATellite (KOMPSAT)-2 using single- and double-differenced methods is studied. The requirement of KOMPSAT-2 orbit accuracy is to allow 1 m positioning error to generate 1-m panchromatic images. KOMPSAT-2 OD is computed using real on-board GPS data. However, the local time of the KOMPSAT-2 GPS receiver is not synchronized with the zero fractional seconds of the GPS time internally, and it continuously drifts according to the pseudorange epochs. In order to resolve this problem, an OD based on single-differenced GPS data from the KOMPSAT-2 uses the tagged time of the GPS receiver, and the accuracy of the OD result is assessed using the overlapping orbit solution between two adjacent days. The clock error of the GPS satellites in the KOMPSAT-2 single-differenced method is corrected using International GNSS Service (IGS) clock information at 5-min intervals. KOMPSAT-2 OD using both double- and single-differenced methods satisfies the requirement of 1-m accuracy in overlapping three dimensional orbit solutions. The results of the SAC-C OD compared with JPL’s POE (Precise Orbit Ephemeris) are also illustrated to demonstrate the implementation of the single- and double-differenced methods using a satellite that has independent orbit information available for validation.

  7. Study of high-performance canonical molecular orbitals calculation for proteins

    NASA Astrophysics Data System (ADS)

    Hirano, Toshiyuki; Sato, Fumitoshi

    2017-11-01

    The canonical molecular orbital (CMO) calculation can help to understand chemical properties and reactions in proteins. However, it is difficult to perform the CMO calculation of proteins because of its self-consistent field (SCF) convergence problem and expensive computational cost. To certainly obtain the CMO of proteins, we work in research and development of high-performance CMO applications and perform experimental studies. We have proposed the third-generation density-functional calculation method of calculating the SCF, which is more advanced than the FILE and direct method. Our method is based on Cholesky decomposition for two-electron integrals calculation and the modified grid-free method for the pure-XC term evaluation. By using the third-generation density-functional calculation method, the Coulomb, the Fock-exchange, and the pure-XC terms can be given by simple linear algebraic procedure in the SCF loop. Therefore, we can expect to get a good parallel performance in solving the SCF problem by using a well-optimized linear algebra library such as BLAS on the distributed memory parallel computers. The third-generation density-functional calculation method is implemented to our program, ProteinDF. To achieve computing electronic structure of the large molecule, not only overcoming expensive computation cost and also good initial guess for safe SCF convergence are required. In order to prepare a precise initial guess for the macromolecular system, we have developed the quasi-canonical localized orbital (QCLO) method. The QCLO has the characteristics of both localized and canonical orbital in a certain region of the molecule. We have succeeded in the CMO calculations of proteins by using the QCLO method. For simplified and semi-automated calculation of the QCLO method, we have also developed a Python-based program, QCLObot.

  8. Geophysics-based method of locating a stationary earth object

    DOEpatents

    Daily, Michael R [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Novak, James L [Albuquerque, NM

    2008-05-20

    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  9. Assigning the Cerium Oxidation State for CH2CeF2 and OCeF2 Based on Multireference Wave Function Analysis.

    PubMed

    Mooßen, Oliver; Dolg, Michael

    2016-06-09

    The geometric and electronic structure of the recently experimentally studied molecules ZCeF2 (Z = CH2, O) was investigated by density functional theory (DFT) and wave function-based ab initio methods. Special attention was paid to the Ce-Z metal-ligand bonding, especially to the nature of the interaction between the Ce 4f and the Z 2p orbitals and the possible multiconfigurational character arising from it, as well as to the assignment of an oxidation state of Ce reflecting the electronic structure. Complete active space self-consistent field (CASSCF) calculations were performed, followed by orbital rotations in the active orbital space. The methylene compound CH2CeF2 has an open-shell singlet ground state, which is characterized by a two-configurational wave function in the basis of the strongly mixed natural CASSCF orbitals. The system can also be described in a very compact way by the dominant Ce 4f(1) C 2p(1) configuration, if nearly pure Ce 4f and C 2p orbitals are used. In the basis of these localized orbitals, the molecule is almost monoconfigurational and should be best described as a Ce(III) system. The singlet ground state of the oxygen OCeF2 complex is of closed-shell character when a monoconfigurational wave function with very strongly mixed Ce 4f and O 2p CASSCF natural orbitals is used for the description. The transformation to orbitals localized on the cerium and oxygen atoms leads to a multiconfigurational wave function and reveals characteristics of a mixed valent Ce(IV)/Ce(III) compound. Additionally, the interactions of the localized active orbitals were analyzed by evaluating the expectation values of the charge fluctuation operator and the local spin operator. The Ce 4f and C 2p orbital interaction of the CH2CeF2 compound is weakly covalent and resembles the interaction of the H 1s orbitals in a stretched hydrogen dimer. In contrast, the interaction of the localized active orbitals for OCeF2 shows ionic character. Calculated vibrational Ce-C and Ce-O stretching frequencies at the DFT, CASSCF, second-order Rayleigh-Schrödinger perturbation theory (RS2C), multireference configuration interaction (MRCI), as well as single, doubles, and perturbative triples coupled cluster (CCSD(T)) level are reported and compared to experimental infrared absorption data in a Ne and Ar matrix.

  10. A robotic orbital emulator with lidar-based SLAM and AMCL for multiple entity pose estimation

    NASA Astrophysics Data System (ADS)

    Shen, Dan; Xiang, Xingyu; Jia, Bin; Wang, Zhonghai; Chen, Genshe; Blasch, Erik; Pham, Khanh

    2018-05-01

    This paper revises and evaluates an orbital emulator (OE) for space situational awareness (SSA). The OE can produce 3D satellite movements using capabilities generated from omni-wheeled robot and robotic arm motions. The 3D motion of satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The 3D actions are emulated by omni-wheeled robot models while the up-down motions are performed by a stepped-motorcontrolled- ball along a rod (robotic arm), which is attached to the robot. Lidar only measurements are used to estimate the pose information of the multiple robots. SLAM (simultaneous localization and mapping) is running on one robot to generate the map and compute the pose for the robot. Based on the SLAM map maintained by the robot, the other robots run the adaptive Monte Carlo localization (AMCL) method to estimate their poses. The controller is designed to guide the robot to follow a given orbit. The controllability is analyzed by using a feedback linearization method. Experiments are conducted to show the convergence of AMCL and the orbit tracking performance.

  11. Methodology for the passive control of orbital inclination and mean local time to meet sun-synchronous orbit requirements

    NASA Technical Reports Server (NTRS)

    Folta, David; Kraft, Lauri

    1992-01-01

    The mean local time (MLT) of equatorial crossing of a sun-synchronous Earth-observing spacecraft orbit drifts with inclination; therefore, in order to maintain the MLT, the inclination must be controlled. Inclination may be maintained actively by costly out-of-plane maneuvers or passively by using the perturbing forces due to the sun and moon. This paper examines the passive control approach using the Earth Observing System (EOS) as a basis for the discussion. Applications to Landsat and National Oceanic and Atmospheric Administration (NOAA) spacecraft are presented for comparison. This technique is especially beneficial to spacecraft lacking propulsion systems. The results indicate that passive inclination control appears to be the preferable maintenance method when spacecraft weight restrictions, operational considerations, and scientific requirements apply.

  12. Implementation of an approximate self-energy correction scheme in the orthogonalized linear combination of atomic orbitals method of band-structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Z.; Ching, W.Y.

    Based on the Sterne-Inkson model for the self-energy correction to the single-particle energy in the local-density approximation (LDA), we have implemented an approximate energy-dependent and [bold k]-dependent [ital GW] correction scheme to the orthogonalized linear combination of atomic orbital-based local-density calculation for insulators. In contrast to the approach of Jenkins, Srivastava, and Inkson, we evaluate the on-site exchange integrals using the LDA Bloch functions throughout the Brillouin zone. By using a [bold k]-weighted band gap [ital E][sub [ital g

  13. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method

    NASA Astrophysics Data System (ADS)

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas

    2009-03-01

    Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Møller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol-1. Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500 times faster. The method performs best in conjunction with large and flexible basis sets. These results open the way for large-scale chemical applications.

  14. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method.

    PubMed

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas

    2009-03-21

    Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Moller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol(-1). Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500 times faster. The method performs best in conjunction with large and flexible basis sets. These results open the way for large-scale chemical applications.

  15. Calculations of the excitation energies of all-trans and 11,12s-dicis retinals using localized molecular orbitals obtained by the elongation method

    NASA Astrophysics Data System (ADS)

    Kurihara, Youji; Aoki, Yuriko; Imamura, Akira

    1997-09-01

    In the present article, the excitation energies of the all-trans and the 11,12s-dicis retinals were calculated by using the elongation method. The geometries of these molecules were optimized with the 4-31G basis set by using the GAUSSIAN 92 program. The wave functions for the calculation of the excitation energies were obtained with CNDO/S approximation by the elongation method, which enables us to analyze electronic structures of aperiodic polymers in terms of the exciton-type local excitation and the charge transfer-type excitation. The excitation energies were calculated by using the single excitation configuration interaction (SECI) on the basis of localized molecular orbitals (LMOs). The LMOs were obtained in the process of the elongation method. The configuration interaction (CI) matrices were diagonalized by Davidson's method. The calculated results were in good agreement with the experimental data for absorption spectra. In order to consider the isomerization path from 11,12s-dicis to all-trans retinals, the barriers to the rotations about C11-C12 double and C12-C13 single bonds were evaluated.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hégely, Bence; Nagy, Péter R.; Kállay, Mihály, E-mail: kallay@mail.bme.hu

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up themore » system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.« less

  17. Orbital relaxation effects on Kohn–Sham frontier orbital energies in density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, DaDi; Zheng, Xiao, E-mail: xz58@ustc.edu.cn; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2015-04-21

    We explore effects of orbital relaxation on Kohn–Sham frontier orbital energies in density functional theory by using a nonempirical scaling correction approach developed in Zheng et al. [J. Chem. Phys. 138, 174105 (2013)]. Relaxation of Kohn–Sham orbitals upon addition/removal of a fractional number of electrons to/from a finite system is determined by a systematic perturbative treatment. The information of orbital relaxation is then used to improve the accuracy of predicted Kohn–Sham frontier orbital energies by Hartree–Fock, local density approximation, and generalized gradient approximation methods. The results clearly highlight the significance of capturing the orbital relaxation effects. Moreover, the proposed scalingmore » correction approach provides a useful way of computing derivative gaps and Fukui quantities of N-electron finite systems (N is an integer), without the need to perform self-consistent-field calculations for (N ± 1)-electron systems.« less

  18. Slave boson theory of orbital differentiation with crystal field effects: Application to UO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu

    We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. Furthermore, we apply our theory to the archetypical nuclear fuel UO 2 and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ 8 and extended Γ 7 electrons.

  19. Slave boson theory of orbital differentiation with crystal field effects: Application to UO 2

    DOE PAGES

    Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu; ...

    2017-03-23

    We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. Furthermore, we apply our theory to the archetypical nuclear fuel UO 2 and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ 8 and extended Γ 7 electrons.

  20. Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO_{2}.

    PubMed

    Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu; Dobrosavljević, Vladimir; Kotliar, Gabriel

    2017-03-24

    We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. We apply our theory to the archetypical nuclear fuel UO_{2} and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ_{8} and extended Γ_{7} electrons.

  1. Local nematic susceptibility in stressed BaFe2As2 from NMR electric field gradient measurements

    NASA Astrophysics Data System (ADS)

    Kissikov, T.; Sarkar, R.; Lawson, M.; Bush, B. T.; Timmons, E. I.; Tanatar, M. A.; Prozorov, R.; Bud'ko, S. L.; Canfield, P. C.; Fernandes, R. M.; Goh, W. F.; Pickett, W. E.; Curro, N. J.

    2017-12-01

    The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe2As2 . We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. Our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.

  2. Tree Tensor Network State with Variable Tensor Order: An Efficient Multireference Method for Strongly Correlated Systems

    PubMed Central

    2015-01-01

    We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement. PMID:25844072

  3. Applications of Fermi-Lowdin-Orbital Self-Interaction Correction Scheme to Organic Systems

    NASA Astrophysics Data System (ADS)

    Baruah, Tunna; Kao, Der-You; Yamamoto, Yoh

    Recent progress in treating the self-interaction errors by means of local, Lowdin-orthogonalized Fermi Orbitals offers a promising route to study the effect of self-interaction errors in the electronic structure of molecules. The Fermi orbitals depend on the location of the electronic positions, called as Fermi orbital descriptors. One advantage of using the Fermi orbitals is that the corrected Hamiltonian is unitarily invariant. Minimization of the corrected energies leads to an optimized set of centroid positions. Here we discuss the applications of this method to various systems from constituent atoms to several medium size molecules such as Mg-porphyrin, C60, pentacene etc. The applications to the ionic systems will also be discussed. De-SC0002168, NSF-DMR 125302.

  4. Reinventing atomic magnetic simulations with spin-orbit coupling

    DOE PAGES

    Perera, Meewanage Dilina N.; Eisenbach, Markus; Nicholson, Don M.; ...

    2016-02-10

    We propose a powerful extension to the combined molecular and spin dynamics method that fully captures the coupling between the atomic and spin subsystems via spin-orbit interactions. Moreover, the foundation of this method lies in the inclusion of the local magnetic anisotropies that arise as a consequence of the lattice symmetry breaking due to phonons or crystallographic defects. By using canonical simulations of bcc iron with the system coupled to a phonon heat bath, we show that our extension enables the previously unachievable angular momentum exchange between the atomic and spin degrees of freedom.

  5. An efficient method for hybrid density functional calculation with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Maoyuan; Liu, Gui-Bin; Guo, Hong; Yao, Yugui

    2018-03-01

    In first-principles calculations, hybrid functional is often used to improve accuracy from local exchange correlation functionals. A drawback is that evaluating the hybrid functional needs significantly more computing effort. When spin-orbit coupling (SOC) is taken into account, the non-collinear spin structure increases computing effort by at least eight times. As a result, hybrid functional calculations with SOC are intractable in most cases. In this paper, we present an approximate solution to this problem by developing an efficient method based on a mixed linear combination of atomic orbital (LCAO) scheme. We demonstrate the power of this method using several examples and we show that the results compare very well with those of direct hybrid functional calculations with SOC, yet the method only requires a computing effort similar to that without SOC. The presented technique provides a good balance between computing efficiency and accuracy, and it can be extended to magnetic materials.

  6. Accurate computation and continuation of homoclinic and heteroclinic orbits for singular perturbation problems

    NASA Technical Reports Server (NTRS)

    Vaughan, William W.; Friedman, Mark J.; Monteiro, Anand C.

    1993-01-01

    In earlier papers, Doedel and the authors have developed a numerical method and derived error estimates for the computation of branches of heteroclinic orbits for a system of autonomous ordinary differential equations in R(exp n). The idea of the method is to reduce a boundary value problem on the real line to a boundary value problem on a finite interval by using a local (linear or higher order) approximation of the stable and unstable manifolds. A practical limitation for the computation of homoclinic and heteroclinic orbits has been the difficulty in obtaining starting orbits. Typically these were obtained from a closed form solution or via a homotopy from a known solution. Here we consider extensions of our algorithm which allow us to obtain starting orbits on the continuation branch in a more systematic way as well as make the continuation algorithm more flexible. In applications, we use the continuation software package AUTO in combination with some initial value software. The examples considered include computation of homoclinic orbits in a singular perturbation problem and in a turbulent fluid boundary layer in the wall region problem.

  7. Comparison and combination of "direct" and fragment based local correlation methods: Cluster in molecules and domain based local pair natural orbital perturbation and coupled cluster theories

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Becker, Ute; Neese, Frank

    2018-03-01

    Local correlation theories have been developed in two main flavors: (1) "direct" local correlation methods apply local approximation to the canonical equations and (2) fragment based methods reconstruct the correlation energy from a series of smaller calculations on subsystems. The present work serves two purposes. First, we investigate the relative efficiencies of the two approaches using the domain-based local pair natural orbital (DLPNO) approach as the "direct" method and the cluster in molecule (CIM) approach as the fragment based approach. Both approaches are applied in conjunction with second-order many-body perturbation theory (MP2) as well as coupled-cluster theory with single-, double- and perturbative triple excitations [CCSD(T)]. Second, we have investigated the possible merits of combining the two approaches by performing CIM calculations with DLPNO methods serving as the method of choice for performing the subsystem calculations. Our cluster-in-molecule approach is closely related to but slightly deviates from approaches in the literature since we have avoided real space cutoffs. Moreover, the neglected distant pair correlations in the previous CIM approach are considered approximately. Six very large molecules (503-2380 atoms) were studied. At both MP2 and CCSD(T) levels of theory, the CIM and DLPNO methods show similar efficiency. However, DLPNO methods are more accurate for 3-dimensional systems. While we have found only little incentive for the combination of CIM with DLPNO-MP2, the situation is different for CIM-DLPNO-CCSD(T). This combination is attractive because (1) the better parallelization opportunities offered by CIM; (2) the methodology is less memory intensive than the genuine DLPNO-CCSD(T) method and, hence, allows for large calculations on more modest hardware; and (3) the methodology is applicable and efficient in the frequently met cases, where the largest subsystem calculation is too large for the canonical CCSD(T) method.

  8. Localized diabatization applied to excitons in molecular crystals

    NASA Astrophysics Data System (ADS)

    Jin, Zuxin; Subotnik, Joseph E.

    2017-06-01

    Traditional ab initio electronic structure calculations of periodic systems yield delocalized eigenstates that should be understood as adiabatic states. For example, excitons are bands of extended states which superimpose localized excitations on every lattice site. However, in general, in order to study the effects of nuclear motion on exciton transport, it is standard to work with a localized description of excitons, especially in a hopping regime; even in a band regime, a localized description can be helpful. To extract localized excitons from a band requires essentially a diabatization procedure. In this paper, three distinct methods are proposed for such localized diabatization: (i) a simple projection method, (ii) a more general Pipek-Mezey localization scheme, and (iii) a variant of Boys diabatization. Approaches (i) and (ii) require localized, single-particle Wannier orbitals, while approach (iii) has no such dependence. These methods should be very useful for studying energy transfer through solids with ab initio calculations.

  9. Local nematic susceptibility in stressed BaFe 2 As 2 from NMR electric field gradient measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kissikov, T.; Sarkar, R.; Lawson, M.

    The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe 2As 2. We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. In conclusion,more » our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.« less

  10. Local nematic susceptibility in stressed BaFe 2 As 2 from NMR electric field gradient measurements

    DOE PAGES

    Kissikov, T.; Sarkar, R.; Lawson, M.; ...

    2017-12-15

    The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe 2As 2. We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. In conclusion,more » our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.« less

  11. Preoptimised VB: a fast method for the ground and excited states of ionic clusters II. Delocalised preoptimisation for He 2+, Ar 2+, He 3+ and Ar 3+

    NASA Astrophysics Data System (ADS)

    Archirel, Pierre

    1997-09-01

    We generalise the preoptimisation of orbitals within VB (Part I of this series) through letting the orbitals delocalise on the neighbouring fragments. The method is more accurate than the local preoptimisation. The method is tested on the rare gas clusters He 2+, Ar 2+, He 3+ and Ar 3+. The results are in good agreement with previously published data on these systems. We complete these data with higher excited states. The binding energies of (ArCO) +, (ArN 2) + and N 4+ are revisited. The simulation of the SCF method is extended to Cu +H 2O.

  12. Orbital symmetry fingerprints for magnetic adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Uchoa, Bruno; Yang, Ling; Tsai, S.-W.; Peres, N. M. R.; Castro Neto, A. H.

    2014-01-01

    In this paper, we describe the formation of local resonances in graphene in the presence of magnetic adatoms containing localized orbitals of arbitrary symmetry, corresponding to any given angular momentum state. We show that quantum interference effects which are naturally inbuilt in the honeycomb lattice in combination with the specific orbital symmetry of the localized state lead to the formation of fingerprints in differential conductance curves. In the presence of Jahn-Teller distortion effects, which lift the orbital degeneracy of the adatoms, the orbital symmetries can lead to distinctive signatures in the local density of states. We show that those effects allow scanning tunneling probes to characterize adatoms and defects in graphene.

  13. Shells, orbit bifurcations, and symmetry restorations in Fermi systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magner, A. G., E-mail: magner@kinr.kiev.ua; Koliesnik, M. V.; Arita, K.

    The periodic-orbit theory based on the improved stationary-phase method within the phase-space path integral approach is presented for the semiclassical description of the nuclear shell structure, concerning themain topics of the fruitful activity ofV.G. Soloviev. We apply this theory to study bifurcations and symmetry breaking phenomena in a radial power-law potential which is close to the realistic Woods–Saxon one up to about the Fermi energy. Using the realistic parametrization of nuclear shapes we explain the origin of the double-humped fission barrier and the asymmetry in the fission isomer shapes by the bifurcations of periodic orbits. The semiclassical origin of themore » oblate–prolate shape asymmetry and tetrahedral shapes is also suggested within the improved periodic-orbit approach. The enhancement of shell structures at some surface diffuseness and deformation parameters of such shapes are explained by existence of the simple local bifurcations and new non-local bridge-orbit bifurcations in integrable and partially integrable Fermi-systems. We obtained good agreement between the semiclassical and quantum shell-structure components of the level density and energy for several surface diffuseness and deformation parameters of the potentials, including their symmetry breaking and bifurcation values.« less

  14. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE PAGES

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; ...

    2016-09-09

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  15. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  16. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level.

    PubMed

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurélien; Blumberger, Jochen; Elstner, Marcus

    2016-10-11

    In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.

  17. Semiquantitative FMO Analysis of Substituent Effect on the Reaction of Permanganate Ion with Unsymmetrical Alkenes.

    PubMed

    Ogino, Toshio; Watanabe, Toru; Matsuura, Masato; Watanabe, Chikara; Ozaki, Hidetoshi

    1998-04-17

    The substituent effects on the reactions of permanganate ion with unsymmetrical alkenes are analyzed on the assumption of a concerted (3 + 2) cycloaddition model by using an equation obtained by approximation based on the FMO theory in which development and localization of the frontier molecular orbitals at the reaction sites with progress of the reaction are considered. The Hammett plots are successfully reproduced with the newly obtained rate data for the reactions of trans-chalcone and its derivatives and the data for methyl cinnamates, cinnamate ions, and alkyl vinyl ethers taken from the literature using FMO energies and orbital coefficients calculated by the PM3 method. It was indicated that a factor introduced to the basic equation in order to estimate the extent of localization of the molecular orbitals at the transition state is closely related to the position of the transition state along the reaction path.

  18. On the use of the exact exchange optimized effective potential method for static response properties

    NASA Astrophysics Data System (ADS)

    Krykunov, Mykhaylo; Ziegler, Tom

    In the present work, we question the notion that the modified Kohn-Sham orbital energies and smaller HOMO-LUMO gaps, produced from the exact exchange optimized effective potential (EXX-OEP) method, might significantly improve the paramagnetic contribution to the NMR chemical shifts compared with the regular Hartree-Fock (HF) scheme. First of all, it is shown analytically that if there is such a local potential that produces the HF energy, and the Kohn-Sham orbitals are obtained as a result of separate rotations of the occupied and virtual HF orbitals, any static magnetic property obtained from the coupled perturbed HF method will be identical to that obtained from the EXX-OEP approach. In fact the EXX-OEP method is equivalent to the improved virtual orbitals (IVO) scheme in which the energies of the virtual orbitals are modified by an effective potential. It is shown that the IVO procedure leaves static response properties unchanged. To test our analysis numerically we have employed several variants of the EXX-OEP method, based on the expansion of the local exchange potential into a linear combination of fit functions. The different EXX-OEP schemes have been used to calculate the NMR chemical shifts for a set of small molecules containing C, H, N, O, and F atoms. Comparison of the deviation between experimental and calculated chemical shifts from the HF, the EXX-OEP, and the common energy denominator approximation (CEDA) approximation to the EXX-OEP methods has shown that for carbon, hydrogen, and fluorine the EXX-OEP methods do not yield any improvement over the HF method. For nitrogen and oxygen we have found that the EXX-OEP performs better than the HF method. However, in the limit of infinite fit basis set and, as a consequence of it, a perfect fit of the HF potential the EXX-OEP and the HF methods would afford the same chemical shifts according to our theoretical analysis. Unfortunately, without a perfect fit the chemical shifts from the EXX-OEP method strongly depend on the fit convergence. In our opinion, the EXX-OEP method should not be used for response properties as it is numerically unstable. Thus, any apparent improvement of the EXX-OEP method over the HF scheme for a finite fit basis set must be considered spurious.

  19. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinski, Peter; Riplinger, Christoph; Neese, Frank, E-mail: evaleev@vt.edu, E-mail: frank.neese@cec.mpg.de

    2015-07-21

    In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implementsmore » sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in quantum chemistry and beyond.« less

  20. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals.

    PubMed

    Pinski, Peter; Riplinger, Christoph; Valeev, Edward F; Neese, Frank

    2015-07-21

    In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implements sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in quantum chemistry and beyond.

  1. Autonomous orbital navigation using Kepler's equation

    NASA Technical Reports Server (NTRS)

    Boltz, F. W.

    1974-01-01

    A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.

  2. Orbital Osteoblastoma: Technical Innovations in Resection and Reconstruction Using Virtual Surgery Simulation.

    PubMed

    Novelli, Giorgio; Gramegna, Marco; Tonellini, Gabriele; Valente, Gabriella; Boni, Pietro; Bozzetti, Alberto; Sozzi, Davide

    2016-09-01

    Osteoblastoma is a benign tumor of bone, representing less than 1% of bone tumors. Craniomaxillofacial localizations account for up to 15% of the total and frequently involve the posterior mandible. Endo-orbital localization is very rare, with most occurring in young patients. Very few of these tumors become malignant. Orbital localization requires radical removal of the tumor followed by careful surgical reconstruction of the orbit to avoid subsequent aesthetic or functional problems. Here, we present a clinical case of this condition and describe a surgical protocol that uses and integrates state-of-the art technologies to achieve orbital reconstruction.

  3. Kondo effect in the seven-orbital Anderson model hybridized with Γ8 conduction electrons

    NASA Astrophysics Data System (ADS)

    Hotta, Takashi

    2018-05-01

    We clarify the two-channel Kondo effect in the seven-orbital Anderson model hybridized with Γ8 conduction electrons by employing a numerical renormalization group method. From the numerical analysis for the case with two local f electrons, corresponding to Pr3+ or U4+ ion, we confirm that a residual entropy of 0.5 log 2 , a characteristic of two-channel Kondo phenomena, appears for the local Γ3 non-Kramers doublet state. For further understanding on the Γ3 state, the effective model is constructed on the basis of a j-j coupling scheme. Then, we rediscover the two-channel s-d model concerning quadrupole degrees of freedom. Finally, we briefly introduce our recent result on the two-channel Kondo effect for the case with three local f electrons.

  4. Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2).

    PubMed

    Schütz, Martin

    2015-06-07

    We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.

  5. Nonlocal correlations in the orbital selective Mott phase of a one-dimensional multiorbital Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S.; Kaushal, N.; Wang, Y.

    Here, we study nonlocal correlations in a three-orbital Hubbard model defined on an extended one-dimensional chain using determinant quantum Monte Carlo and density matrix renormalization group methods. We focus on a parameter regime with robust Hund's coupling, which produces an orbital selective Mott phase (OSMP) at intermediate values of the Hubbard U, as well as an orbitally ordered ferromagnetic insulating state at stronger coupling. An examination of the orbital- and spin-correlation functions indicates that the orbital ordering occurs before the onset of magnetic correlations in this parameter regime as a function of temperature. In the OSMP, we find that themore » self-energy for the itinerant electrons is momentum dependent, indicating a degree of nonlocal correlations while the localized electrons have largely momentum independent self-energies. These nonlocal correlations also produce relative shifts of the holelike and electronlike bands within our model. The overall momentum dependence of these quantities is strongly suppressed in the orbitally ordered insulating phase.« less

  6. Nonlocal correlations in the orbital selective Mott phase of a one-dimensional multiorbital Hubbard model

    DOE PAGES

    Li, S.; Kaushal, N.; Wang, Y.; ...

    2016-12-12

    Here, we study nonlocal correlations in a three-orbital Hubbard model defined on an extended one-dimensional chain using determinant quantum Monte Carlo and density matrix renormalization group methods. We focus on a parameter regime with robust Hund's coupling, which produces an orbital selective Mott phase (OSMP) at intermediate values of the Hubbard U, as well as an orbitally ordered ferromagnetic insulating state at stronger coupling. An examination of the orbital- and spin-correlation functions indicates that the orbital ordering occurs before the onset of magnetic correlations in this parameter regime as a function of temperature. In the OSMP, we find that themore » self-energy for the itinerant electrons is momentum dependent, indicating a degree of nonlocal correlations while the localized electrons have largely momentum independent self-energies. These nonlocal correlations also produce relative shifts of the holelike and electronlike bands within our model. The overall momentum dependence of these quantities is strongly suppressed in the orbitally ordered insulating phase.« less

  7. Optimization of selected molecular orbitals in group basis sets.

    PubMed

    Ferenczy, György G; Adams, William H

    2009-04-07

    We derive a local basis equation which may be used to determine the orbitals of a group of electrons in a system when the orbitals of that group are represented by a group basis set, i.e., not the basis set one would normally use but a subset suited to a specific electronic group. The group orbitals determined by the local basis equation minimize the energy of a system when a group basis set is used and the orbitals of other groups are frozen. In contrast, under the constraint of a group basis set, the group orbitals satisfying the Huzinaga equation do not minimize the energy. In a test of the local basis equation on HCl, the group basis set included only 12 of the 21 functions in a basis set one might ordinarily use, but the calculated active orbital energies were within 0.001 hartree of the values obtained by solving the Hartree-Fock-Roothaan (HFR) equation using all 21 basis functions. The total energy found was just 0.003 hartree higher than the HFR value. The errors with the group basis set approximation to the Huzinaga equation were larger by over two orders of magnitude. Similar results were obtained for PCl(3) with the group basis approximation. Retaining more basis functions allows an even higher accuracy as shown by the perfect reproduction of the HFR energy of HCl with 16 out of 21 basis functions in the valence basis set. When the core basis set was also truncated then no additional error was introduced in the calculations performed for HCl with various basis sets. The same calculations with fixed core orbitals taken from isolated heavy atoms added a small error of about 10(-4) hartree. This offers a practical way to calculate wave functions with predetermined fixed core and reduced base valence orbitals at reduced computational costs. The local basis equation can also be used to combine the above approximations with the assignment of local basis sets to groups of localized valence molecular orbitals and to derive a priori localized orbitals. An appropriately chosen localization and basis set assignment allowed a reproduction of the energy of n-hexane with an error of 10(-5) hartree, while the energy difference between its two conformers was reproduced with a similar accuracy for several combinations of localizations and basis set assignments. These calculations include localized orbitals extending to 4-5 heavy atoms and thus they require to solve reduced dimension secular equations. The dimensions are not expected to increase with increasing system size and thus the local basis equation may find use in linear scaling electronic structure calculations.

  8. Majorana states in prismatic core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Manolescu, Andrei; Sitek, Anna; Osca, Javier; Serra, Llorenç; Gudmundsson, Vidar; Stanescu, Tudor Dan

    2017-09-01

    We consider core-shell nanowires with conductive shell and insulating core and with polygonal cross section. We investigate the implications of this geometry on Majorana states expected in the presence of proximity-induced superconductivity and an external magnetic field. A typical prismatic nanowire has a hexagonal profile, but square and triangular shapes can also be obtained. The low-energy states are localized at the corners of the cross section, i.e., along the prism edges, and are separated by a gap from higher energy states localized on the sides. The corner localization depends on the details of the shell geometry, i.e., thickness, diameter, and sharpness of the corners. We study systematically the low-energy spectrum of prismatic shells using numerical methods and derive the topological phase diagram as a function of magnetic field and chemical potential for triangular, square, and hexagonal geometries. A strong corner localization enhances the stability of Majorana modes to various perturbations, including the orbital effect of the magnetic field, whereas a weaker localization favorizes orbital effects and reduces the critical magnetic field. The prismatic geometry allows the Majorana zero-energy modes to be accompanied by low-energy states, which we call pseudo Majorana, and which converge to real Majoranas in the limit of small shell thickness. We include the Rashba spin-orbit coupling in a phenomenological manner, assuming a radial electric field across the shell.

  9. Uncertainty Modeling for Structural Control Analysis and Synthesis

    NASA Technical Reports Server (NTRS)

    Campbell, Mark E.; Crawley, Edward F.

    1996-01-01

    The development of an accurate model of uncertainties for the control of structures that undergo a change in operational environment, based solely on modeling and experimentation in the original environment is studied. The application used throughout this work is the development of an on-orbit uncertainty model based on ground modeling and experimentation. A ground based uncertainty model consisting of mean errors and bounds on critical structural parameters is developed. The uncertainty model is created using multiple data sets to observe all relevant uncertainties in the system. The Discrete Extended Kalman Filter is used as an identification/parameter estimation method for each data set, in addition to providing a covariance matrix which aids in the development of the uncertainty model. Once ground based modal uncertainties have been developed, they are localized to specific degrees of freedom in the form of mass and stiffness uncertainties. Two techniques are presented: a matrix method which develops the mass and stiffness uncertainties in a mathematical manner; and a sensitivity method which assumes a form for the mass and stiffness uncertainties in macroelements and scaling factors. This form allows the derivation of mass and stiffness uncertainties in a more physical manner. The mass and stiffness uncertainties of the ground based system are then mapped onto the on-orbit system, and projected to create an analogous on-orbit uncertainty model in the form of mean errors and bounds on critical parameters. The Middeck Active Control Experiment is introduced as experimental verification for the localization and projection methods developed. In addition, closed loop results from on-orbit operations of the experiment verify the use of the uncertainty model for control analysis and synthesis in space.

  10. Micro-orbits in a many-brane model and deviations from Newton's 1/r^2 law

    NASA Astrophysics Data System (ADS)

    Donini, A.; Marimón, S. G.

    2016-12-01

    We consider a five-dimensional model with geometry M = M_4 × S_1, with compactification radius R. The Standard Model particles are localized on a brane located at y=0, with identical branes localized at different points in the extra dimension. Objects located on our brane can orbit around objects located on a brane at a distance d=y/R, with an orbit and a period significantly different from the standard Newtonian ones. We study the kinematical properties of the orbits, finding that it is possible to distinguish one motion from the other in a large region of the initial conditions parameter space. This is a warm-up to study if a SM-like mass distribution on one (or more) distant brane(s) may represent a possible dark matter candidate. After using the same technique to the study of orbits of objects lying on the same brane (d=0), we apply this method to the detection of generic deviations from the inverse-square Newton law. We propose a possible experimental setup to look for departures from Newtonian motion in the micro-world, finding that an order of magnitude improvement on present bounds can be attained at the 95% CL under reasonable assumptions.

  11. Operational Experiences in Planning and Reconstructing Aqua Inclination Maneuvers

    NASA Technical Reports Server (NTRS)

    Rand, David; Reilly, Jacqueline; Schiff, Conrad

    2004-01-01

    As the lead satellite in NASA's growing Earth Observing System (EOS) PM constellation, it is increasingly critical that Aqua maintain its various orbit requirements. The two of interest for this paper are maintaining an orbit inclination that provides for a consistent mean local time and a semi-major Axis (SMA) that allows for ground track repeatability. Maneuvers to adjust the orbit inclination involve several flight dynamics constraints and complexities which make planning such maneuvers challenging. In particular, coupling between the orbital and attitude degrees of freedom lead to changes in SMA when changes in inclination are effected. A long term mission mean local time trend analysis was performed in order to determine the size and placement of the required inclination maneuvers. Following this analysis, detailed modeling of each burn and its Various segments was performed to determine its effects on the immediate orbit state. Data gathered from an inclination slew test of the spacecraft and first inclination maneuver uncovered discrepancies in the modeling method that were investigated and resolved. The new modeling techniques were applied and validated during the second spacecraft inclination maneuver. These improvements should position Aqua to successfully complete a series of inclination maneuvers in the fall of 2004. The following paper presents the events and results related

  12. Analytic energy derivatives for the calculation of the first-order molecular properties using the domain-based local pair-natural orbital coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Datta, Dipayan; Kossmann, Simone; Neese, Frank

    2016-09-01

    The domain-based local pair-natural orbital coupled-cluster (DLPNO-CC) theory has recently emerged as an efficient and powerful quantum-chemical method for the calculation of energies of molecules comprised of several hundred atoms. It has been demonstrated that the DLPNO-CC approach attains the accuracy of a standard canonical coupled-cluster calculation to about 99.9% of the basis set correlation energy while realizing linear scaling of the computational cost with respect to system size. This is achieved by combining (a) localized occupied orbitals, (b) large virtual orbital correlation domains spanned by the projected atomic orbitals (PAOs), and (c) compaction of the virtual space through a truncated pair natural orbital (PNO) basis. In this paper, we report on the implementation of an analytic scheme for the calculation of the first derivatives of the DLPNO-CC energy for basis set independent perturbations within the singles and doubles approximation (DLPNO-CCSD) for closed-shell molecules. Perturbation-independent one-particle density matrices have been implemented in order to account for the response of the CC wave function to the external perturbation. Orbital-relaxation effects due to external perturbation are not taken into account in the current implementation. We investigate in detail the dependence of the computed first-order electrical properties (e.g., dipole moment) on the three major truncation parameters used in a DLPNO-CC calculation, namely, the natural orbital occupation number cutoff used for the construction of the PNOs, the weak electron-pair cutoff, and the domain size cutoff. No additional truncation parameter has been introduced for property calculation. We present benchmark calculations on dipole moments for a set of 10 molecules consisting of 20-40 atoms. We demonstrate that 98%-99% accuracy relative to the canonical CCSD results can be consistently achieved in these calculations. However, this comes with the price of tightening the threshold for the natural orbital occupation number cutoff by an order of magnitude compared to the DLPNO-CCSD energy calculations.

  13. BLIMPK/Streamline Surface Catalytic Heating Predictions on the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Marichalar, Jeremiah J.; Rochelle, William C.; Kirk, Benjamin S.; Campbell, Charles H.

    2006-01-01

    This paper describes the results of an analysis of localized catalytic heating effects to the U.S. Space Shuttle Orbiter Thermal Protection System (TPS). The analysis applies to the High-temperature Reusable Surface Insulation (HRSI) on the lower fuselage and wing acreage, as well as the critical Reinforced Carbon-Carbon on the nose cap, chin panel and the wing leading edge. The object of the analysis was to use a modified two-layer approach to predict the catalytic heating effects on the Orbiter windward HRSI tile acreage, nose cap, and wing leading edge assuming localized highly catalytic or fully catalytic surfaces. The method incorporated the Boundary Layer Integral Matrix Procedure Kinetic (BLIMPK) code with streamline inputs from viscous Navier-Stokes solutions to produce heating rates for localized fully catalytic and highly catalytic surfaces as well as for nominal partially catalytic surfaces (either Reinforced Carbon-Carbon or Reaction Cured Glass) with temperature-dependent recombination coefficients. The highly catalytic heating results showed very good correlation with Orbiter Experiments STS-2, -3, and -5 centerline and STS-5 wing flight data for the HRSI tiles. Recommended catalytic heating factors were generated for use in future Shuttle missions in the event of quick-time analysis of damaged or repaired TPS areas during atmospheric reentry. The catalytic factors are presented along the streamlines as well as a function of stagnation enthalpy so they can be used for arbitrary trajectories.

  14. Parallel Study of HEND, RAD, and DAN Instrument Response to Martian Radiation and Surface Conditions

    NASA Technical Reports Server (NTRS)

    Martiniez Sierra, Luz Maria; Jun, Insoo; Litvak, Maxim; Sanin, Anton; Mitrofanov, Igor; Zeitlin, Cary

    2015-01-01

    Nuclear detection methods are being used to understand the radiation environment at Mars. JPL (Jet Propulsion Laboratory) assets on Mars include: Orbiter -2001 Mars Odyssey [High Energy Neutron Detector (HEND)]; Mars Science Laboratory Rover -Curiosity [(Radiation Assessment Detector (RAD); Dynamic Albedo Neutron (DAN))]. Spacecraft have instruments able to detect ionizing and non-ionizing radiation. Instrument response on orbit and on the surface of Mars to space weather and local conditions [is discussed] - Data available at NASA-PDS (Planetary Data System).

  15. Electronic structure studies of La2CuO4

    NASA Astrophysics Data System (ADS)

    Wachs, A. L.; Turchi, P. E. A.; Jean, Y. C.; Wetzler, K. H.; Howell, R. H.; Fluss, M. J.; Harshman, D. R.; Remeika, J. P.; Cooper, A. S.; Fleming, R. M.

    1988-07-01

    We report results of positron-electron momentum-distribution measurements of single-crystal La2CuO4 using two-dimensional angular correlation of positron-annihilation-radiation techniques. The data contain two components: a large (~85%), isotropic corelike electron contribution and a remaining, anisotropic valence-electron contribution modeled using a linear combination of atomic orbitals-molecular orbital method and a localized ion scheme, within the independent-particle model approximation. This work suggests a ligand-field Hamiltonian to be justified for describing the electronic properties of perovskite materials.

  16. Continuous-time quantum Monte Carlo calculation of multiorbital vertex asymptotics

    NASA Astrophysics Data System (ADS)

    Kaufmann, Josef; Gunacker, Patrik; Held, Karsten

    2017-07-01

    We derive the equations for calculating the high-frequency asymptotics of the local two-particle vertex function for a multiorbital impurity model. These relate the asymptotics for a general local interaction to equal-time two-particle Green's functions, which we sample using continuous-time quantum Monte Carlo simulations with a worm algorithm. As specific examples we study the single-orbital Hubbard model and the three t2 g orbitals of SrVO3 within dynamical mean-field theory (DMFT). We demonstrate how the knowledge of the high-frequency asymptotics reduces the statistical uncertainties of the vertex and further eliminates finite-box-size effects. The proposed method benefits the calculation of nonlocal susceptibilities in DMFT and diagrammatic extensions of DMFT.

  17. Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippi, Claudia, E-mail: c.filippi@utwente.nl; Assaraf, Roland, E-mail: assaraf@lct.jussieu.fr; Moroni, Saverio, E-mail: moroni@democritos.it

    2016-05-21

    We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital parameters. Furthermore, for a large multi-determinant expansion, the significant computational gain afforded by a recently introduced table method is here extended to the local value of any one-body operator and to its derivatives, inmore » both all-electron and pseudopotential calculations.« less

  18. Modulation of localized solutions in a system of two coupled nonlinear Schrödinger equations.

    PubMed

    Cardoso, W B; Avelar, A T; Bazeia, D

    2012-08-01

    In this work we study localized solutions of a system of two coupled nonlinear Schrödinger equations, with the linear (potential) and nonlinear coefficients engendering spatial and temporal dependencies. Similarity transformations are used to convert the nonautonomous coupled equations into autonomous ones and we use the trial orbit method to help us solving them, presenting solutions in a general way. Numerical experiments are then used to verify the stability of the localized solutions.

  19. Localized diabatization applied to excitons in molecular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Zuxin; Subotnik, Joseph E.

    Traditional ab initio electronic structure calculations of periodic systems yield delocalized eigenstates that should be understood as adiabatic states. For example, excitons are bands of extended states which superimpose localized excitations on every lattice site. However, in general, in order to study the effects of nuclear motion on exciton transport, it is standard to work with a localized description of excitons, especially in a hopping regime; even in a band regime, a localized description can be helpful. To extract localized excitons from a band requires essentially a diabatization procedure. In this paper, three distinct methods are proposed for such localizedmore » diabatization: (i) a simple projection method, (ii) a more general Pipek-Mezey localization scheme, and (iii) a variant of Boys diabatization. Approaches (i) and (ii) require localized, single-particle Wannier orbitals, while approach (iii) has no such dependence. Lastly, these methods should be very useful for studying energy transfer through solids with ab initio calculations.« less

  20. Localized diabatization applied to excitons in molecular crystals

    DOE PAGES

    Jin, Zuxin; Subotnik, Joseph E.

    2017-06-28

    Traditional ab initio electronic structure calculations of periodic systems yield delocalized eigenstates that should be understood as adiabatic states. For example, excitons are bands of extended states which superimpose localized excitations on every lattice site. However, in general, in order to study the effects of nuclear motion on exciton transport, it is standard to work with a localized description of excitons, especially in a hopping regime; even in a band regime, a localized description can be helpful. To extract localized excitons from a band requires essentially a diabatization procedure. In this paper, three distinct methods are proposed for such localizedmore » diabatization: (i) a simple projection method, (ii) a more general Pipek-Mezey localization scheme, and (iii) a variant of Boys diabatization. Approaches (i) and (ii) require localized, single-particle Wannier orbitals, while approach (iii) has no such dependence. Lastly, these methods should be very useful for studying energy transfer through solids with ab initio calculations.« less

  1. Mott Transition of MnO under Pressure: A Comparison of Correlated Band Theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasinathan, Deepa; Kunes, Jan; Koepernik, K

    The electronic structure, magnetic moment, and volume collapse of MnO under pressure are obtained from four different correlated band theory methods; local density approximation+Hubbard U (LDA+U), pseudopotential self-interaction correction (pseudo-SIC), the hybrid functional (combined local exchange plus Hartree-Fock exchange), and the local spin density SIC (SIC-LSD) method. Each method treats correlation among the five Mn 3d orbitals (per spin), including their hybridization with three O 2p orbitals in the valence bands and their changes with pressure. The focus is on comparison of the methods for rock salt MnO (neglecting the observed transition to the NiAs structure in the 90-100 GPamore » range). Each method predicts a first-order volume collapse, but with variation in the predicted volume and critical pressure. Accompanying the volume collapse is a moment collapse, which for all methods is from high-spin to low-spin ((5/2){yields}(1/2)), not to nonmagnetic as the simplest scenario would have. The specific manner in which the transition occurs varies considerably among the methods: pseudo-SIC and SIC-LSD give insulator-to-metal, while LDA+U gives insulator-to-insulator and the hybrid method gives an insulator-to-semimetal transition. Projected densities of states above and below the transition are presented for each of the methods and used to analyze the character of each transition. In some cases the rhombohedral symmetry of the antiferromagnetically ordered phase clearly influences the character of the transition.« less

  2. Conjugate-gradient optimization method for orbital-free density functional calculations.

    PubMed

    Jiang, Hong; Yang, Weitao

    2004-08-01

    Orbital-free density functional theory as an extension of traditional Thomas-Fermi theory has attracted a lot of interest in the past decade because of developments in both more accurate kinetic energy functionals and highly efficient numerical methodology. In this paper, we developed a conjugate-gradient method for the numerical solution of spin-dependent extended Thomas-Fermi equation by incorporating techniques previously used in Kohn-Sham calculations. The key ingredient of the method is an approximate line-search scheme and a collective treatment of two spin densities in the case of spin-dependent extended Thomas-Fermi problem. Test calculations for a quartic two-dimensional quantum dot system and a three-dimensional sodium cluster Na216 with a local pseudopotential demonstrate that the method is accurate and efficient. (c) 2004 American Institute of Physics.

  3. Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: experiment and theory.

    PubMed

    Alagia, Michele; Baldacchini, Chiara; Betti, Maria Grazia; Bussolotti, Fabio; Carravetta, Vincenzo; Ekström, Ulf; Mariani, Carlo; Stranges, Stefano

    2005-03-22

    The C K-edge photoabsorption and 1s core-level photoemission of pentacene (C22H14) free molecules are experimentally measured, and calculated by self-consistent-field and static-exchange approximation ab initio methods. Six nonequivalent C atoms present in the molecule contribute to the C 1s photoemission spectrum. The complex near-edge structures of the carbon K-edge absorption spectrum present two main groups of discrete transitions between 283 and 288 eV photon energy, due to absorption to pi* virtual orbitals, and broader structures at higher energy, involving sigma* virtual orbitals. The sharp absorption structures to the pi* empty orbitals lay well below the thresholds for the C 1s ionizations, caused by strong excitonic and localization effects. We can definitely explain the C K-edge absorption spectrum as due to both final (virtual) and initial (core) orbital effects, mainly involving excitations to the two lowest-unoccupied molecular orbitals of pi* symmetry, from the six chemically shifted C 1s core orbitals.

  4. Core-shell photoabsorption and photoelectron spectra of gas-phase pentacene: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Alagia, Michele; Baldacchini, Chiara; Betti, Maria Grazia; Bussolotti, Fabio; Carravetta, Vincenzo; Ekström, Ulf; Mariani, Carlo; Stranges, Stefano

    2005-03-01

    The C K-edge photoabsorption and 1s core-level photoemission of pentacene (C22H14) free molecules are experimentally measured, and calculated by self-consistent-field and static-exchange approximation ab initio methods. Six nonequivalent C atoms present in the molecule contribute to the C 1s photoemission spectrum. The complex near-edge structures of the carbon K-edge absorption spectrum present two main groups of discrete transitions between 283 and 288eV photon energy, due to absorption to π* virtual orbitals, and broader structures at higher energy, involving σ* virtual orbitals. The sharp absorption structures to the π* empty orbitals lay well below the thresholds for the C 1s ionizations, caused by strong excitonic and localization effects. We can definitely explain the C K-edge absorption spectrum as due to both final (virtual) and initial (core) orbital effects, mainly involving excitations to the two lowest-unoccupied molecular orbitals of π* symmetry, from the six chemically shifted C 1s core orbitals.

  5. Quantitative evaluation of orbital hybridization in carbon nanotubes under radial deformation using π-orbital axis vector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnishi, Masato, E-mail: masato.ohnishi@rift.mech.tohoku.ac.jp; Suzuki, Ken; Miura, Hideo, E-mail: hmiura@rift.mech.tohoku.ac.jp

    2015-04-15

    When a radial strain is applied to a carbon nanotube (CNT), the increase in local curvature induces orbital hybridization. The effect of the curvature-induced orbital hybridization on the electronic properties of CNTs, however, has not been evaluated quantitatively. In this study, the strength of orbital hybridization in CNTs under homogeneous radial strain was evaluated quantitatively. Our analyses revealed the detailed procedure of the change in electronic structure of CNTs. In addition, the dihedral angle, the angle between π-orbital axis vectors of adjacent atoms, was found to effectively predict the strength of local orbital hybridization in deformed CNTs.

  6. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar; Sauer, Stephan P. A., E-mail: sauer@kiku.dk

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing themore » changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.« less

  7. Gauge-origin dependence in electronic g-tensor calculations

    NASA Astrophysics Data System (ADS)

    Glasbrenner, Michael; Vogler, Sigurd; Ochsenfeld, Christian

    2018-06-01

    We present a benchmark study on the gauge-origin dependence of the electronic g-tensor using data from unrestricted density functional theory calculations with the spin-orbit mean field ansatz. Our data suggest in accordance with previous studies that g-tensor calculations employing a common gauge-origin are sufficiently accurate for small molecules; however, for extended molecules, the introduced errors can become relevant and significantly exceed the basis set error. Using calculations with the spin-orbit mean field ansatz and gauge-including atomic orbitals as a reference, we furthermore show that the accuracy and reliability of common gauge-origin approaches in larger molecules depends strongly on the locality of the spin density distribution. We propose a new pragmatic ansatz for choosing the gauge-origin which takes the spin density distribution into account and gives reasonably accurate values for molecules with a single localized spin center. For more general cases like molecules with several spatially distant spin centers, common gauge-origin approaches are shown to be insufficient for consistently achieving high accuracy. Therefore the computation of g-tensors using distributed gauge-origin methods like gauge-including atomic orbitals is considered as the ideal approach and is recommended for larger molecular systems.

  8. An orbital localization criterion based on the theory of "fuzzy" atoms.

    PubMed

    Alcoba, Diego R; Lain, Luis; Torre, Alicia; Bochicchio, Roberto C

    2006-04-15

    This work proposes a new procedure for localizing molecular and natural orbitals. The localization criterion presented here is based on the partitioning of the overlap matrix into atomic contributions within the theory of "fuzzy" atoms. Our approach has several advantages over other schemes: it is computationally inexpensive, preserves the sigma/pi-separability in planar systems and provides a straightforward interpretation of the resulting orbitals in terms of their localization indices and atomic occupancies. The corresponding algorithm has been implemented and its efficiency tested on selected molecular systems. (c) 2006 Wiley Periodicals, Inc.

  9. Critical thickness for the two-dimensional electron gas in LaTiO3/SrTiO3 superlattices

    NASA Astrophysics Data System (ADS)

    You, Jeong Ho; Lee, Jun Hee

    2013-10-01

    Transport dimensionality of Ti d electrons in (LaTiO3)1/(SrTiO3)N superlattices has been investigated using density functional theory with local spin-density approximation + U method. Different spatial distribution patterns have been found between Ti t2g orbital electrons. The dxy orbital electrons are highly localized near interfaces due to the potentials by positively charged LaO layers, while the degenerate dyz and dxz orbital electrons are more distributed inside SrTiO3 insulators. For N ≥ 3 unit cells (u.c.), the Ti dxy densities of state exhibit the staircaselike increments, which appear at the same energy levels as the dxy flat bands along the Γ-Z direction in band structures. The kz-independent discrete energy levels indicate that the electrons in dxy flat bands are two-dimensional electron gases (2DEGs) which can transport along interfaces, but they cannot transport perpendicularly to interfaces due to the confinements in the potential wells by LaO layers. Unlike the dxy orbital electrons, the dyz and dxz orbital electrons have three-dimensional (3D) transport characteristics, regardless of SrTiO3 thicknesses. The 2DEG formation by dxy orbital electrons, when N ≥ 3 u.c., indicates the existence of critical SrTiO3 thickness where the electron transport dimensionality starts to change from 3D to 2D in (LaTiO3)1/(SrTiO3)N superlattices.

  10. Gravitational self-force on generic bound geodesics in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    van de Meent, Maarten

    2018-05-01

    In this work we present the first calculation of the gravitational self-force on generic bound geodesics in Kerr spacetime to first order in the mass ratio. That is, the local correction to equations of motion for a compact object orbiting a larger rotating black hole due to its own impact on the gravitational field. This includes both dissipative and conservative effects. Our method builds on and extends earlier methods for calculating the gravitational self-force on equatorial orbits. In particular we reconstruct the local metric perturbation in the outgoing radiation gauge from the Weyl scalar ψ4 , which in turn is obtained by solving the Teukolsky equation using semianalytical frequency domain methods. The gravitational self-force is subsequently obtained using (spherical) l -mode regularization. We test our implementation by comparing the large l -behavior against the analytically known regularization parameters. In addition we validate our results by comparing the long-term average changes to the energy, angular momentum, and Carter constant to changes to these constants of motion inferred from the gravitational wave flux to infinity and down the horizon.

  11. Satellite scheduling considering maximum observation coverage time and minimum orbital transfer fuel cost

    NASA Astrophysics Data System (ADS)

    Zhu, Kai-Jian; Li, Jun-Feng; Baoyin, He-Xi

    2010-01-01

    In case of an emergency like the Wenchuan earthquake, it is impossible to observe a given target on earth by immediately launching new satellites. There is an urgent need for efficient satellite scheduling within a limited time period, so we must find a way to reasonably utilize the existing satellites to rapidly image the affected area during a short time period. Generally, the main consideration in orbit design is satellite coverage with the subsatellite nadir point as a standard of reference. Two factors must be taken into consideration simultaneously in orbit design, i.e., the maximum observation coverage time and the minimum orbital transfer fuel cost. The local time of visiting the given observation sites must satisfy the solar radiation requirement. When calculating the operational orbit elements as optimal parameters to be evaluated, we obtain the minimum objective function by comparing the results derived from the primer vector theory with those derived from the Hohmann transfer because the operational orbit for observing the disaster area with impulse maneuvers is considered in this paper. The primer vector theory is utilized to optimize the transfer trajectory with three impulses and the Hohmann transfer is utilized for coplanar and small inclination of non-coplanar cases. Finally, we applied this method in a simulation of the rescue mission at Wenchuan city. The results of optimizing orbit design with a hybrid PSO and DE algorithm show that the primer vector and Hohmann transfer theory proved to be effective methods for multi-object orbit optimization.

  12. Asteroid orbital inversion using uniform phase-space sampling

    NASA Astrophysics Data System (ADS)

    Muinonen, K.; Pentikäinen, H.; Granvik, M.; Oszkiewicz, D.; Virtanen, J.

    2014-07-01

    We review statistical inverse methods for asteroid orbit computation from a small number of astrometric observations and short time intervals of observations. With the help of Markov-chain Monte Carlo methods (MCMC), we present a novel inverse method that utilizes uniform sampling of the phase space for the orbital elements. The statistical orbital ranging method (Virtanen et al. 2001, Muinonen et al. 2001) was set out to resolve the long-lasting challenges in the initial computation of orbits for asteroids. The ranging method starts from the selection of a pair of astrometric observations. Thereafter, the topocentric ranges and angular deviations in R.A. and Decl. are randomly sampled. The two Cartesian positions allow for the computation of orbital elements and, subsequently, the computation of ephemerides for the observation dates. Candidate orbital elements are included in the sample of accepted elements if the χ^2-value between the observed and computed observations is within a pre-defined threshold. The sample orbital elements obtain weights based on a certain debiasing procedure. When the weights are available, the full sample of orbital elements allows the probabilistic assessments for, e.g., object classification and ephemeris computation as well as the computation of collision probabilities. The MCMC ranging method (Oszkiewicz et al. 2009; see also Granvik et al. 2009) replaces the original sampling algorithm described above with a proposal probability density function (p.d.f.), and a chain of sample orbital elements results in the phase space. MCMC ranging is based on a bivariate Gaussian p.d.f. for the topocentric ranges, and allows for the sampling to focus on the phase-space domain with most of the probability mass. In the virtual-observation MCMC method (Muinonen et al. 2012), the proposal p.d.f. for the orbital elements is chosen to mimic the a posteriori p.d.f. for the elements: first, random errors are simulated for each observation, resulting in a set of virtual observations; second, corresponding virtual least-squares orbital elements are derived using the Nelder-Mead downhill simplex method; third, repeating the procedure two times allows for a computation of a difference for two sets of virtual orbital elements; and, fourth, this orbital-element difference constitutes a symmetric proposal in a random-walk Metropolis-Hastings algorithm, avoiding the explicit computation of the proposal p.d.f. In a discrete approximation, the allowed proposals coincide with the differences that are based on a large number of pre-computed sets of virtual least-squares orbital elements. The virtual-observation MCMC method is thus based on the characterization of the relevant volume in the orbital-element phase space. Here we utilize MCMC to map the phase-space domain of acceptable solutions. We can make use of the proposal p.d.f.s from the MCMC ranging and virtual-observation methods. The present phase-space mapping produces, upon convergence, a uniform sampling of the solution space within a pre-defined χ^2-value. The weights of the sampled orbital elements are then computed on the basis of the corresponding χ^2-values. The present method resembles the original ranging method. On one hand, MCMC mapping is insensitive to local extrema in the phase space and efficiently maps the solution space. This is somewhat contrary to the MCMC methods described above. On the other hand, MCMC mapping can suffer from producing a small number of sample elements with small χ^2-values, in resemblance to the original ranging method. We apply the methods to example near-Earth, main-belt, and transneptunian objects, and highlight the utilization of the methods in the data processing and analysis pipeline of the ESA Gaia space mission.

  13. KENNEDY SPACE CENTER, FLA. - Local Central Florida television reporters Phil Robertson (left), with WFTV, and Dan Billow (right), with WESH, tape commentaries after a media tour of the Orbiter Processing Facility. The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

    NASA Image and Video Library

    2003-09-26

    KENNEDY SPACE CENTER, FLA. - Local Central Florida television reporters Phil Robertson (left), with WFTV, and Dan Billow (right), with WESH, tape commentaries after a media tour of the Orbiter Processing Facility. The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

  14. On the relation between orbital-localization and self-interaction errors in the density functional theory treatment of organic semiconductors.

    PubMed

    Körzdörfer, T

    2011-03-07

    It is commonly argued that the self-interaction error (SIE) inherent in semilocal density functionals is related to the degree of the electronic localization. Yet at the same time there exists a latent ambiguity in the definitions of the terms "localization" and "self-interaction," which ultimately prevents a clear and readily accessible quantification of this relationship. This problem is particularly pressing for organic semiconductor molecules, in which delocalized molecular orbitals typically alternate with localized ones, thus leading to major distortions in the eigenvalue spectra. This paper discusses the relation between localization and SIEs in organic semiconductors in detail. Its findings provide further insights into the SIE in the orbital energies and yield a new perspective on the failure of self-interaction corrections that identify delocalized orbital densities with electrons. © 2011 American Institute of Physics.

  15. Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams

    NASA Astrophysics Data System (ADS)

    Li, Manman; Cai, Yanan; Yan, Shaohui; Liang, Yansheng; Zhang, Peng; Yao, Baoli

    2018-05-01

    Light beams may carry optical spin or orbital angular momentum, or both. The spin and orbital parts manifest themselves by the ellipticity of the state of polarization and the vortex structure of phase of light beams, separately. Optical spin and orbit interaction, arising from the interaction between the polarization and the spatial structure of light beams, has attracted enormous interest recently. The optical spin-to-orbital angular momentum conversion under strong focusing is well known, while the converse process, orbital-to-spin conversion, has not been reported so far. In this paper, we predict in theory that the orbital angular momentum can induce a localized spin angular momentum in strong focusing of a spin-free azimuthal polarization vortex beam. This localized longitudinal spin of the focused field can drive the trapped particle to spin around its own axis. This investigation provides a new degree of freedom for spinning particles by using a vortex phase, which may have considerable potentials in optical spin and orbit interaction, light-beam shaping, or optical manipulation.

  16. The melting point of lithium: an orbital-free first-principles molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mohan; Hung, Linda; Huang, Chen

    2013-08-25

    The melting point of liquid lithium near zero pressure is studied with large-scale orbital-free first-principles molecular dynamics (OF-FPMD) in the isobaric-isothermal ensemble. Here, we adopt the Wang-Govind-Carter (WGC) functional as our kinetic energy density functional (KEDF) and construct a bulk-derived local pseudopotential (BLPS) for Li. Our simulations employ both the ‘heat-until-melts’ method and the coexistence method. We predict 465 K as an upper bound of the melting point of Li from the ‘heat-until-melts’ method, while we predict 434 K as the melting point of Li from the coexistence method. These values compare well with an experimental melting point of 453more » K at zero pressure. Furthermore, we calculate a few important properties of liquid Li including the diffusion coefficients, pair distribution functions, static structure factors, and compressibilities of Li at 470 K and 725 K in the canonical ensemble. This theoretically-obtained results show good agreement with known experimental results, suggesting that OF-FPMD using a non-local KEDF and a BLPS is capable of accurately describing liquid metals.« less

  17. NBO, conformational, NLO, HOMO-LUMO, NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods

    NASA Astrophysics Data System (ADS)

    Xavier, S.; Periandy, S.; Ramalingam, S.

    2015-02-01

    In this study, FT-IR, FT-Raman, NMR and UV spectra of 1-phenyl-1-propanol, an intermediate of anti-depressant drug fluoxetine, has been investigated. The theoretical vibrational frequencies and optimized geometric parameters have been calculated by using HF and density functional theory with the hybrid methods B3LYP, B3PW91 and 6-311+G(d,p)/6-311++G(d,p) basis sets. The theoretical vibrational frequencies have been found in good agreement with the corresponding experimental data. 1H and 13C NMR spectra were recorded and chemical shifts of the molecule were compared to TMS by using the Gauge-Independent Atomic Orbital (GIAO) method. A study on the electronic and optical properties, absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies are performed using HF and DFT methods. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures are also calculated. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. The local reactivity of the molecule has been studied using the Fukui function. NLO properties related to polarizability and hyperpolarizability are also discussed.

  18. A simple molecular orbital treatment of current distributions in quantum transport through molecular junctions

    NASA Astrophysics Data System (ADS)

    Jhan, Sin-Mu; Jin, Bih-Yaw

    2017-11-01

    A simple molecular orbital treatment of local current distributions inside single molecular junctions is developed in this paper. Using the first-order perturbation theory and nonequilibrium Green's function techniques in the framework of Hückel theory, we show that the leading contributions to local current distributions are directly proportional to the off-diagonal elements of transition density matrices. Under the orbital approximation, the major contributions to local currents come from a few dominant molecular orbital pairs which are mixed by the interactions between the molecule and electrodes. A few simple molecular junctions consisting of single- and multi-ring conjugated systems are used to demonstrate that local current distributions inside molecular junctions can be decomposed by partial sums of a few leading contributing transition density matrices.

  19. A geometric initial guess for localized electronic orbitals in modular biological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, P. G.; Fattebert, J. L.; Lau, E. Y.

    Recent first-principles molecular dynamics algorithms using localized electronic orbitals have achieved O(N) complexity and controlled accuracy in simulating systems with finite band gaps. However, accurately deter- mining the centers of these localized orbitals during simulation setup may require O(N 3) operations, which is computationally infeasible for many biological systems. We present an O(N) approach for approximating orbital centers in proteins, DNA, and RNA which uses non-localized solutions for a set of fixed-size subproblems to create a set of geometric maps applicable to larger systems. This scalable approach, used as an initial guess in the O(N) first-principles molecular dynamics code MGmol,more » facilitates first-principles simulations in biological systems of sizes which were previously impossible.« less

  20. Methodology of Numerical Optimization for Orbital Parameters of Binary Systems

    NASA Astrophysics Data System (ADS)

    Araya, I.; Curé, M.

    2010-02-01

    The use of a numerical method of maximization (or minimization) in optimization processes allows us to obtain a great amount of solutions. Therefore, we can find a global maximum or minimum of the problem, but this is only possible if we used a suitable methodology. To obtain the global optimum values, we use the genetic algorithm called PIKAIA (P. Charbonneau) and other four algorithms implemented in Mathematica. We demonstrate that derived orbital parameters of binary systems published in some papers, based on radial velocity measurements, are local minimum instead of global ones.

  1. Introducing a new methodology for the calculation of local philicity and multiphilic descriptor: an alternative to the finite difference approximation

    NASA Astrophysics Data System (ADS)

    Sánchez-Márquez, Jesús; Zorrilla, David; García, Víctor; Fernández, Manuel

    2018-07-01

    This work presents a new development based on the condensation scheme proposed by Chamorro and Pérez, in which new terms to correct the frozen molecular orbital approximation have been introduced (improved frontier molecular orbital approximation). The changes performed on the original development allow taking into account the orbital relaxation effects, providing equivalent results to those achieved by the finite difference approximation and leading also to a methodology with great advantages. Local reactivity indices based on this new development have been obtained for a sample set of molecules and they have been compared with those indices based on the frontier molecular orbital and finite difference approximations. A new definition based on the improved frontier molecular orbital methodology for the dual descriptor index is also shown. In addition, taking advantage of the characteristics of the definitions obtained with the new condensation scheme, the descriptor local philicity is analysed by separating the components corresponding to the frontier molecular orbital approximation and orbital relaxation effects, analysing also the local parameter multiphilic descriptor in the same way. Finally, the effect of using the basis set is studied and calculations using DFT, CI and Möller-Plesset methodologies are performed to analyse the consequence of different electronic-correlation levels.

  2. Impact of local and non-local sources of pollution on background US Ozone: synergy of a low-earth orbiting and geostationary sounder constellation

    NASA Astrophysics Data System (ADS)

    Bowman, K. W.; Lee, M.

    2015-12-01

    Dramatic changes in the global distribution of emissions over the last decade have fundamentally altered source-receptor pollution impacts. A new generation of low-earth orbiting (LEO) sounders complimented by geostationary sounders over North America, Europe, and Asia providing a unique opportunity to quantify the current and future trajectory of emissions and their impact on global pollution. We examine the potential of this constellation of air quality sounders to quantify the role of local and non-local sources of pollution on background ozone in the US. Based upon an adjoint sensitivity method, we quantify the role synoptic scale transport of non-US pollution on US background ozone over months representative of different source-receptor relationships. This analysis allows us distinguish emission trajectories from megacities, e.g. Beijing, or regions, e.g., western China, from natural trends on downwind ozone. We subsequently explore how a combination of LEO and GEO observations could help quantify the balance of local emissions against changes in distant sources . These results show how this unprecedented new international ozone observing system can monitor the changing structure of emissions and their impact on global pollution.

  3. X-ray Constrained Extremely Localized Molecular Orbitals: Theory and Critical Assessment of the New Technique.

    PubMed

    Genoni, Alessandro

    2013-07-09

    Following the X-ray constrained wave function approach proposed by Jayatilaka, we have devised a new technique that allows to extract molecular orbitals strictly localized on small molecular fragments from sets of experimental X-ray structure factors amplitudes. Since the novel strategy enables to obtain electron distributions that have quantum mechanical features and that can be easily interpreted in terms of traditional chemical concepts, the method can be also considered as a new useful tool for the determination and the analysis of charge densities from high-resolution X-ray experiments. In this paper, we describe in detail the theory of the new technique, which, in comparison to our preliminary work, has been improved both treating the effects of isotropic secondary extinctions and introducing a new protocol to halt the fitting procedure against the experimental X-ray scattering data. The performances of the novel strategy have been studied both in function of the basis-sets flexibility and in function of the quality of the considered crystallographic data. The tests performed on four different systems (α-glycine, l-cysteine, (aminomethyl)phosphonic acid and N-(trifluoromethyl)formamide) have shown that the achievement of good statistical agreements with the experimental measures mainly depends on the quality of the crystal structures (i.e., geometry positions and thermal parameters) used in the X-ray constrained calculations. Finally, given the reliable transferability of the obtained Extremely Localized Molecular Orbitals (ELMOs), we envisage to exploit the novel approach to construct new ELMOs databases suited to the development of linear-scaling methods for the refinement of macromolecular crystal structures.

  4. Hybrid-exchange density-functional theory study of the electronic structure of MnV2O4 : Exotic orbital ordering in the cubic structure

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    2015-05-01

    The electronic structures of cubic and tetragonal MnV2O4 have been studied using hybrid-exchange density-functional theory. The computed electronic structure of the tetragonal phase shows an antiferro-orbital ordering on V sites and a ferrimagnetic ground state (the spins on V and Mn are antialigned). These results are in good agreement with the previous theoretical result obtained from the local-density approximation + U methods [S. Sarkar et al., Phys. Rev. Lett. 102, 216405 (2009), 10.1103/PhysRevLett.102.216405]. Moreover, the electronic structure, especially the projected density of states of the cubic phase, has been predicted with good agreement with the recent soft x-ray spectroscopy experiment. Similar to the tetragonal phase, the spins on V and Mn in the cubic structure favor a ferrimagnetic configuration. Most interesting is that the computed charge densities of the spin-carrying orbitals on V in the cubic phase show an exotic orbital ordering, i.e., a ferro-orbital ordering along [110] but an antiferro-orbital ordering along [1 ¯10 ] .

  5. Local Control With Reduced-Dose Radiotherapy for Low-Risk Rhabdomyosarcoma: A Report From the Children's Oncology Group D9602 Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breneman, John, E-mail: john.breneman@uchealth.com; Meza, Jane; Donaldson, Sarah S.

    2012-06-01

    Purpose: To analyze the effect of reduced-dose radiotherapy on local control in children with low-risk rhabdomyosarcoma (RMS) treated in the Children's Oncology Group D9602 study. Methods and Materials: Patients with low-risk RMS were nonrandomly assigned to receive radiotherapy doses dependent on the completeness of surgical resection of the primary tumor (clinical group) and the presence of involved regional lymph nodes. After resection, most patients with microscopic residual and uninvolved nodes received 36 Gy, those with involved nodes received 41.4 to 50.4 Gy, and those with orbital primary tumors received 45 Gy. All patients received vincristine and dactinomycin, with cyclophosphamide addedmore » for patient subsets with a higher risk of relapse in Intergroup Rhabdomyosarcoma Study Group III and IV studies. Results: Three hundred forty-two patients were eligible for analysis; 172 received radiotherapy as part of their treatment. The cumulative incidence of local/regional failure was 15% in patients with microscopic involved margins when cyclophosphamide was not part of the treatment regimen and 0% when cyclophosphamide was included. The cumulative incidence of local/regional failure was 14% in patients with orbital tumors. Protocol-specified omission of radiotherapy in girls with Group IIA vaginal tumors (n = 5) resulted in three failures for this group. Conclusions: In comparison with Intergroup Rhabdomyosarcoma Study Group III and IV results, reduced-dose radiotherapy does not compromise local control for patients with microscopic tumor after surgical resection or with orbital primary tumors when cyclophosphamide is added to the treatment program. Girls with unresected nonbladder genitourinary tumors require radiotherapy for postsurgical residual tumor for optimal local control to be achieved.« less

  6. Chemical Bonding: The Orthogonal Valence-Bond View

    PubMed Central

    Sax, Alexander F.

    2015-01-01

    Chemical bonding is the stabilization of a molecular system by charge- and spin-reorganization processes in chemical reactions. These processes are said to be local, because the number of atoms involved is very small. With multi-configurational self-consistent field (MCSCF) wave functions, these processes can be calculated, but the local information is hidden by the delocalized molecular orbitals (MO) used to construct the wave functions. The transformation of such wave functions into valence bond (VB) wave functions, which are based on localized orbitals, reveals the hidden information; this transformation is called a VB reading of MCSCF wave functions. The two-electron VB wave functions describing the Lewis electron pair that connects two atoms are frequently called covalent or neutral, suggesting that these wave functions describe an electronic situation where two electrons are never located at the same atom; such electronic situations and the wave functions describing them are called ionic. When the distance between two atoms decreases, however, every covalent VB wave function composed of non-orthogonal atomic orbitals changes its character from neutral to ionic. However, this change in the character of conventional VB wave functions is hidden by its mathematical form. Orthogonal VB wave functions composed of orthonormalized orbitals never change their character. When localized fragment orbitals are used instead of atomic orbitals, one can decide which local information is revealed and which remains hidden. In this paper, we analyze four chemical reactions by transforming the MCSCF wave functions into orthogonal VB wave functions; we show how the reactions are influenced by changing the atoms involved or by changing their local symmetry. Using orthogonal instead of non-orthogonal orbitals is not just a technical issue; it also changes the interpretation, revealing the properties of wave functions that remain otherwise undetected. PMID:25906476

  7. A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, Yu V.; Harvey, R. W.

    The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less

  8. A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code

    DOE PAGES

    Petrov, Yu V.; Harvey, R. W.

    2016-09-08

    The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less

  9. Spin-orbit optical cross-phase-modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasselet, Etienne

    2010-12-15

    We show experimentally that optical phase singularities (PSs) can be written and erased, locally and in a controllable manner, into a light beam using the giant Kerr optical nonlinearities of liquid crystals. The method relies on the nonlinear optical spin-orbit coupling experienced by a collimated probe beam when a collinear focused pump beam imprints a radial birefringent pattern into a nematic film. In addition, experimental data are quantitatively described, accounting for the elastic anisotropy of the material and its nonlocal spatial response to the pump light field. Since we show that the optical intensity of a light beam (the 'pump')more » controls the phase of another beam (the 'probe') in a singular fashion (i.e., with the generation of a screw PS) via their interaction in a nonlinear medium that involves spin-orbit coupling, we dubbed such a nonlinear optical process as spin-orbit optical cross-phase-modulation.« less

  10. L-Mapping Solar Energetic Particles from LEO to High Altitudes at High Latitudes

    NASA Astrophysics Data System (ADS)

    Young, S. L.; Wilson, G.

    2017-12-01

    The current solar energetic particle (SEP) hazard specification is focused on geosynchronous orbit with some capability at LEO, but there is no specification for the large region between these orbital regimes. The L-mapping technique, which attempts to fill this capability gap, assumes that there is a simple relationship between magnetic L-shells and SEP penetration boundaries that can be exploited. A previous study compared POES observations that had been mapped to the Van Allen Probes with local observations. It found that more than 90% of the mapped and local fluxes were within a factor of four of each other; this is thought to be sucient for operational purposes. One concern with the previous study was the limited number of SEP events that have occurred during the Van Allen Probes mission. The current study examines the L-mapping method's accuracy at higher latitudes. Observations from a satellite that was launched into a HEO orbit with a 63° inclination before the peak of solar cycle 24 are compared to L-mapped POES observations. The larger number of events provides better statistics and the 63° orbit inclination allows us to examine the difference between mapping from POES to the magnetic equator, as in the previous study, and mapping from POES to higher latitudes.

  11. Morphology-dependent optical absorption and conduction properties of photoelectrochemical photocatalysts for H2 production: A case study

    NASA Astrophysics Data System (ADS)

    Huda, Muhammad N.; Turner, John A.

    2010-06-01

    Efficient photoelectrochemical H2 production by solar irradiation depends not only on the photocatalyst's band gap and its band-edge positions but also on the detailed electronic nature of the bands, such as the localization or delocalization of the band edges and their orbital characteristics. These determine the carrier transport properties, reactivity, light absorption strength, etc. and significantly impact the material's efficiency as a photoconverter. The localization or delocalization of the band edges may arise either due to the orbital nature of the bands or the structural morphology of the material. A recent experimental report on a photocatalyst based on s /p orbitals showed very poor performance for H2 production despite the delocalized nature of the s /p bands as compared to the d-bands of transition metal oxides. It is then important to examine whether this poor performance is inherent to these materials or rather arises from some experimental limitations. A theoretical analysis by first-principle methods is well suited to shed light on this question.

  12. Enhanced spin-orbit coupling in dilute fluorinated graphene

    NASA Astrophysics Data System (ADS)

    Avsar, Ahmet; Lee, Jong Hak; Koon, Gavin Kok Wai; Özyilmaz, Barbaros

    2015-12-01

    The preservation and manipulation of a spin state mainly depends on the strength of the spin-orbit interaction. For pristine graphene, the intrinsic spin-orbit coupling (SOC) is only in the order of few μeV, which makes it almost impossible to be used as an active element in future electric field controlled spintronics devices. This stimulates the development of a systematic method for extrinsically enhancing the SOC of graphene. In this letter, we study the strength of SOC in weakly fluorinated graphene devices. We observe high non-local signals even without applying any external magnetic field. The magnitude of the signal increases with increasing fluorine adatom coverage. From the length dependence of the non-local transport measurements, we obtain SOC values of ˜5.1 meV and ˜9.1 meV for the devices with ˜0.005% and ˜0.06% fluorination, respectively. Such a large enhancement, together with the high charge mobility of fluorinated samples (μ ˜ 4300 cm2 V-1 s-1-2700 cm2 V-1 s-1), enables the detection of the spin Hall effect even at room temperature.

  13. All-electron density functional calculation on insulin with quasi-canonical localized orbitals.

    PubMed

    Inaba, Toru; Tahara, Saisei; Nisikawa, Nobutaka; Kashiwagi, Hiroshi; Sato, Fumitoshi

    2005-07-30

    An all-electron density functional (DF) calculation on insulin was performed by the Gaussian-based DF program, ProteinDF. Quasi-canonical localized orbitals (QCLOs) were used to improve the initial guess for the self-consistent field (SCF) calculation. All calculations were carried out by parallel computing on eight processors of an Itanium2 cluster (SGI Altix3700) with a theoretical peak performance of 41.6 GFlops. It took 35 h for the whole calculation. Insulin is a protein hormone consisting of two peptide chains linked by three disulfide bonds. The numbers of residues, atoms, electrons, orbitals, and auxiliary functions are 51, 790, 3078, 4439, and 8060, respectively. An all-electron DF calculation on insulin was successfully carried out, starting from connected QCLOs. Regardless of a large molecule with complicated topology, the differences in the total energy and the Mulliken atomic charge between initial and converged wavefunctions were very small. The calculation proceeded smoothly without any trial and error, suggesting that this is a promising method to obtain SCF convergence on large molecules such as proteins.

  14. Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions

    PubMed Central

    Hankiewicz, Ewelina M.; Culcer, Dimitrie

    2017-01-01

    Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions in Weyl semimetal thin films, taking into account both intrinsic and extrinsic spin-orbit interactions. The physics is governed by the complex interplay of the chiral spin texture, quasiparticle mass, and scalar and spin-orbit scattering. We demonstrate that terms linear in the extrinsic spin-orbit scattering are generally present in the Bloch and momentum relaxation times in all topological materials, and the correction to the diffusion constant is linear in the strength of the extrinsic spin-orbit. In topological insulators, which have zero quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to an observable density dependence in the weak antilocalization correction. They produce substantial qualitative modifications to the magnetoconductivity, differing greatly from the conventional Hikami-Larkin-Nagaoka formula traditionally used in experimental fits, which predicts a crossover from weak localization to antilocalization as a function of the extrinsic spin-orbit strength. In contrast, our analysis reveals that topological insulators always exhibit weak antilocalization. In Weyl semimetal thin films having intermediate to large values of the quasiparticle mass, we show that extrinsic spin-orbit scattering strongly affects the boundary of the weak localization to antilocalization transition. We produce a complete phase diagram for this transition as a function of the mass and spin-orbit scattering strength. Throughout the paper, we discuss implications for experimental work, and, at the end, we provide a brief comparison with transition metal dichalcogenides. PMID:28773167

  15. State-selective optimization of local excited electronic states in extended systems

    NASA Astrophysics Data System (ADS)

    Kovyrshin, Arseny; Neugebauer, Johannes

    2010-11-01

    Standard implementations of time-dependent density-functional theory (TDDFT) for the calculation of excitation energies give access to a number of the lowest-lying electronic excitations of a molecule under study. For extended systems, this can become cumbersome if a particular excited state is sought-after because many electronic transitions may be present. This often means that even for systems of moderate size, a multitude of excited states needs to be calculated to cover a certain energy range. Here, we present an algorithm for the selective determination of predefined excited electronic states in an extended system. A guess transition density in terms of orbital transitions has to be provided for the excitation that shall be optimized. The approach employs root-homing techniques together with iterative subspace diagonalization methods to optimize the electronic transition. We illustrate the advantages of this method for solvated molecules, core-excitations of metal complexes, and adsorbates at cluster surfaces. In particular, we study the local π →π∗ excitation of a pyridine molecule adsorbed at a silver cluster. It is shown that the method works very efficiently even for high-lying excited states. We demonstrate that the assumption of a single, well-defined local excitation is, in general, not justified for extended systems, which can lead to root-switching during optimization. In those cases, the method can give important information about the spectral distribution of the orbital transition employed as a guess.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finzel, Kati, E-mail: kati.finzel@liu.se

    The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possiblemore » to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.« less

  17. Statespace geometry of puff formation in pipe flow

    NASA Astrophysics Data System (ADS)

    Budanur, Nazmi Burak; Hof, Bjoern

    2017-11-01

    Localized patches of chaotically moving fluid known as puffs play a central role in the transition to turbulence in pipe flow. Puffs coexist with the laminar flow and their large-scale dynamics sets the critical Reynolds number: When the rate of puff splitting exceeds that of decaying, turbulence in a long pipe becomes sustained in a statistical sense. Since puffs appear despite the linear stability of the Hagen-Poiseuille flow, one expects them to emerge from the bifurcations of finite-amplitude solutions of Navier-Stokes equations. In numerical simulations of pipe flow, Avila et al., discovered a pair of streamwise localized relative periodic orbits, which are time-periodic solutions with spatial drifts. We combine symmetry reduction and Poincaré section methods to compute the unstable manifolds of these orbits, revealing statespace structures associated with different stages of puff formation.

  18. Original endoscopic orbital decompression of lateral wall through hairline approach for Graves' ophthalmopathy: an innovation of balanced orbital decompression.

    PubMed

    Gong, Yi; Yin, Jiayang; Tong, Boding; Li, Jingkun; Zeng, Jiexi; Zuo, Zhongkun; Ye, Fei; Luo, Yongheng; Xiao, Jing; Xiong, Wei

    2018-01-01

    Orbital decompression is an important surgical procedure for treatment of Graves' ophthalmopathy (GO), especially in women. It is reasonable for balanced orbital decompression of the lateral and medial wall. Various surgical approaches, including endoscopic transnasal surgery for medial wall and eye-side skin incision surgery for lateral wall, are being used nowadays, but many of them lack the validity, safety, or cosmetic effect. Endoscopic orbital decompression of lateral wall through hairline approach and decompression of medial wall via endoscopic transnasal surgery was done to achieve a balanced orbital decompression, aiming to improve the appearance of proptosis and create conditions for possible strabismus and eyelid surgery afterward. From January 29, 2016 to February 14, 2017, this surgery was performed on 41 orbits in 38 patients with GO, all of which were at inactive stage of disease. Just before surgery and at least 3 months after surgery, Hertel's ophthalmostatometer and computed tomography (CT) were used to check proptosis and questionnaires of GO quality of life (QOL) were completed. The postoperative retroversion of eyeball was 4.18±1.11 mm (Hertel's ophthalmostatometer) and 4.17±1.14 mm (CT method). The patients' QOL was significantly improved, especially the change in appearance without facial scar. The only postoperative complication was local soft tissue depression at temporal region. Obvious depression occurred in four cases (9.76%), which can be repaired by autologous fat filling. This surgery is effective, safe, and cosmetic. Effective balanced orbital decompression can be achieved by using this original and innovative surgery method. The whole manipulation is safe and controllable under endoscope. The postoperative scar of endoscopic surgery through hairline approach is covered by hair and the anatomic structure of anterior orbit is not impacted.

  19. Realization of localized Bohr-like wave packets.

    PubMed

    Mestayer, J J; Wyker, B; Lancaster, J C; Dunning, F B; Reinhold, C O; Yoshida, S; Burgdörfer, J

    2008-06-20

    We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create "planetary atoms" in highly correlated stable multiply excited states is discussed.

  20. Guidance and Control System for a Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Bryson, Jonathan Lamar; Cox, James; Mays, Paul Richard; Neidhoefer, James Christian; Ephrain, Richard

    2010-01-01

    A distributed guidance and control algorithm was developed for a constellation of satellites. The system repositions satellites as required, regulates satellites to desired orbits, and prevents collisions. 1. Optimal methods are used to compute nominal transfers from orbit to orbit. 2. Satellites are regulated to maintain the desired orbits once the transfers are complete. 3. A simulator is used to predict potential collisions or near-misses. 4. Each satellite computes perturbations to its controls so as to increase any unacceptable distances of nearest approach to other objects. a. The avoidance problem is recast in a distributed and locally-linear form to arrive at a tractable solution. b. Plant matrix values are approximated via simulation at each time step. c. The Linear Quadratic Gaussian (LQG) method is used to compute perturbations to the controls that will result in increased miss distances. 5. Once all danger is passed, the satellites return to their original orbits, all the while avoiding each other as above. 6. The delta-Vs are reasonable. The controller begins maneuvers as soon as practical to minimize delta-V. 7. Despite the inclusion of trajectory simulations within the control loop, the algorithm is sufficiently fast for available satellite computer hardware. 8. The required measurement accuracies are within the capabilities of modern inertial measurement devices and modern positioning devices.

  1. Orbit design and optimization based on global telecommunication performance metrics

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Lee, Charles H.; Kerridge, Stuart; Cheung, Kar-Ming; Edwards, Charles D.

    2006-01-01

    The orbit selection of telecommunications orbiters is one of the critical design processes and should be guided by global telecom performance metrics and mission-specific constraints. In order to aid the orbit selection, we have coupled the Telecom Orbit Analysis and Simulation Tool (TOAST) with genetic optimization algorithms. As a demonstration, we have applied the developed tool to select an optimal orbit for general Mars telecommunications orbiters with the constraint of being a frozen orbit. While a typical optimization goal is to minimize tele-communications down time, several relevant performance metrics are examined: 1) area-weighted average gap time, 2) global maximum of local maximum gap time, 3) global maximum of local minimum gap time. Optimal solutions are found with each of the metrics. Common and different features among the optimal solutions as well as the advantage and disadvantage of each metric are presented. The optimal solutions are compared with several candidate orbits that were considered during the development of Mars Telecommunications Orbiter.

  2. Towards sub-nanometer real-space observation of spin and orbital magnetism at the Fe/MgO interface

    PubMed Central

    Thersleff, Thomas; Muto, Shunsuke; Werwiński, Mirosław; Spiegelberg, Jakob; Kvashnin, Yaroslav; Hjӧrvarsson, Björgvin; Eriksson, Olle; Rusz, Ján; Leifer, Klaus

    2017-01-01

    While the performance of magnetic tunnel junctions based on metal/oxide interfaces is determined by hybridization, charge transfer, and magnetic properties at the interface, there are currently only limited experimental techniques with sufficient spatial resolution to directly observe these effects simultaneously in real-space. In this letter, we demonstrate an experimental method based on Electron Magnetic Circular Dichroism (EMCD) that will allow researchers to simultaneously map magnetic transitions and valency in real-space over interfacial cross-sections with sub-nanometer spatial resolution. We apply this method to an Fe/MgO bilayer system, observing a significant enhancement in the orbital to spin moment ratio that is strongly localized to the interfacial region. Through the use of first-principles calculations, multivariate statistical analysis, and Electron Energy-Loss Spectroscopy (EELS), we explore the extent to which this enhancement can be attributed to emergent magnetism due to structural confinement at the interface. We conclude that this method has the potential to directly visualize spin and orbital moments at buried interfaces in magnetic systems with unprecedented spatial resolution. PMID:28338011

  3. Towards sub-nanometer real-space observation of spin and orbital magnetism at the Fe/MgO interface

    NASA Astrophysics Data System (ADS)

    Thersleff, Thomas; Muto, Shunsuke; Werwiński, Mirosław; Spiegelberg, Jakob; Kvashnin, Yaroslav; Hjӧrvarsson, Björgvin; Eriksson, Olle; Rusz, Ján; Leifer, Klaus

    2017-03-01

    While the performance of magnetic tunnel junctions based on metal/oxide interfaces is determined by hybridization, charge transfer, and magnetic properties at the interface, there are currently only limited experimental techniques with sufficient spatial resolution to directly observe these effects simultaneously in real-space. In this letter, we demonstrate an experimental method based on Electron Magnetic Circular Dichroism (EMCD) that will allow researchers to simultaneously map magnetic transitions and valency in real-space over interfacial cross-sections with sub-nanometer spatial resolution. We apply this method to an Fe/MgO bilayer system, observing a significant enhancement in the orbital to spin moment ratio that is strongly localized to the interfacial region. Through the use of first-principles calculations, multivariate statistical analysis, and Electron Energy-Loss Spectroscopy (EELS), we explore the extent to which this enhancement can be attributed to emergent magnetism due to structural confinement at the interface. We conclude that this method has the potential to directly visualize spin and orbital moments at buried interfaces in magnetic systems with unprecedented spatial resolution.

  4. Accurate Energies and Orbital Description in Semi-Local Kohn-Sham DFT

    NASA Astrophysics Data System (ADS)

    Lindmaa, Alexander; Kuemmel, Stephan; Armiento, Rickard

    2015-03-01

    We present our progress on a scheme in semi-local Kohn-Sham density-functional theory (KS-DFT) for improving the orbital description while still retaining the level of accuracy of the usual semi-local exchange-correlation (xc) functionals. DFT is a widely used tool for first-principles calculations of properties of materials. A given task normally requires a balance of accuracy and computational cost, which is well achieved with semi-local DFT. However, commonly used semi-local xc functionals have important shortcomings which often can be attributed to features of the corresponding xc potential. One shortcoming is an overly delocalized representation of localized orbitals. Recently a semi-local GGA-type xc functional was constructed to address these issues, however, it has the trade-off of lower accuracy of the total energy. We discuss the source of this error in terms of a surplus energy contribution in the functional that needs to be accounted for, and offer a remedy for this issue which formally stays within KS-DFT, and, which does not harshly increase the computational effort. The end result is a scheme that combines accurate total energies (e.g., relaxed geometries) with an improved orbital description (e.g., improved band structure).

  5. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

    PubMed

    Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin

    2011-06-07

    The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics

  6. Coulomb versus spin-orbit interaction in few-electron carbon-nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Secchi, Andrea; Rontani, Massimo

    2009-07-01

    Few-electron states in carbon-nanotube quantum dots are studied by means of the configuration-interaction method. The peculiar noninteracting feature of the tunneling spectrum for two electrons, recently measured by F. Kuemmeth, S. Ilani, D. C. Ralph, and P. L. McEuen [Nature (London) 452, 448 (2008)], is explained by the splitting of a low-lying isospin multiplet due to spin-orbit interaction. Nevertheless, the strongly interacting ground state forms a “Wigner molecule” made of electrons localized in space. Signatures of the electron molecule may be seen in tunneling spectra by varying the tunable dot confinement potential.

  7. Mapping and localization for extraterrestrial robotic explorations

    NASA Astrophysics Data System (ADS)

    Xu, Fengliang

    In the exploration of an extraterrestrial environment such as Mars, orbital data, such as high-resolution imagery Mars Orbital Camera-Narrow Angle (MOC-NA), laser ranging data Mars Orbital Laser Altimeter (MOLA), and multi-spectral imagery Thermal Emission Imaging System (THEMIS), play more and more important roles. However, these remote sensing techniques can never replace the role of landers and rovers, which can provide a close up and inside view. Similarly, orbital mapping can not compete with ground-level close-range mapping in resolution, precision, and speed. This dissertation addresses two tasks related to robotic extraterrestrial exploration: mapping and rover localization. Image registration is also discussed as an important aspect for both of them. Techniques from computer vision and photogrammetry are applied for automation and precision. Image registration is classified into three sub-categories: intra-stereo, inter-stereo, and cross-site, according to the relationship between stereo images. In the intra-stereo registration, which is the most fundamental sub-category, interest point-based registration and verification by parallax continuity in the principal direction are proposed. Two other techniques, inter-scanline search with constrained dynamic programming for far range matching and Markov Random Field (MRF) based registration for big terrain variation, are explored as possible improvements. Creating using rover ground images mainly involves the generation of Digital Terrain Model (DTM) and ortho-rectified map (orthomap). The first task is to derive the spatial distribution statistics from the first panorama and model the DTM with a dual polynomial model. This model is used for interpolation of the DTM, using Kriging in the close range and Triangular Irregular Network (TIN) in the far range. To generate a uniformly illuminated orthomap from the DTM, a least-squares-based automatic intensity balancing method is proposed. Finally a seamless orthomap is constructed by a split-and-merge technique: the mapped area is split or subdivided into small regions of image overlap, and then each small map piece was processed and all of the pieces are merged together to form a seamless map. Rover localization has three stages, all of which use a least-squares adjustment procedure: (1) an initial localization which is accomplished by adjustment over features common to rover images and orbital images, (2) an adjustment of image pointing angles at a single site through inter and intra-stereo tie points, and (3) an adjustment of the rover traverse through manual cross-site tie points. The first stage is based on adjustment of observation angles of features. The second stage and third stage are based on bundle-adjustment. In the third-stage an incremental adjustment method was proposed. Automation in rover localization includes automatic intra/inter-stereo tie point selection, computer-assisted cross-site tie point selection, and automatic verification of accuracy. (Abstract shortened by UMI.)

  8. A real-space stochastic density matrix approach for density functional electronic structure.

    PubMed

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  9. Relativistic nuclear magnetic resonance J-coupling with ultrasoft pseudopotentials and the zeroth-order regular approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Timothy F. G., E-mail: tim.green@materials.ox.ac.uk; Yates, Jonathan R., E-mail: jonathan.yates@materials.ox.ac.uk

    2014-06-21

    We present a method for the first-principles calculation of nuclear magnetic resonance (NMR) J-coupling in extended systems using state-of-the-art ultrasoft pseudopotentials and including scalar-relativistic effects. The use of ultrasoft pseudopotentials is allowed by extending the projector augmented wave (PAW) method of Joyce et al. [J. Chem. Phys. 127, 204107 (2007)]. We benchmark it against existing local-orbital quantum chemical calculations and experiments for small molecules containing light elements, with good agreement. Scalar-relativistic effects are included at the zeroth-order regular approximation level of theory and benchmarked against existing local-orbital quantum chemical calculations and experiments for a number of small molecules containing themore » heavy row six elements W, Pt, Hg, Tl, and Pb, with good agreement. Finally, {sup 1}J(P-Ag) and {sup 2}J(P-Ag-P) couplings are calculated in some larger molecular crystals and compared against solid-state NMR experiments. Some remarks are also made as to improving the numerical stability of dipole perturbations using PAW.« less

  10. Comparison of System Identification Techniques for the Hydraulic Manipulator Test Bed (HMTB)

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1996-01-01

    In this thesis linear, dynamic, multivariable state-space models for three joints of the ground-based Hydraulic Manipulator Test Bed (HMTB) are identified. HMTB, housed at the NASA Langley Research Center, is a ground-based version of the Dexterous Orbital Servicing System (DOSS), a representative space station manipulator. The dynamic models of the HMTB manipulator will first be estimated by applying nonparametric identification methods to determine each joint's response characteristics using various input excitations. These excitations include sum of sinusoids, pseudorandom binary sequences (PRBS), bipolar ramping pulses, and chirp input signals. Next, two different parametric system identification techniques will be applied to identify the best dynamical description of the joints. The manipulator is localized about a representative space station orbital replacement unit (ORU) task allowing the use of linear system identification methods. Comparisons, observations, and results of both parametric system identification techniques are discussed. The thesis concludes by proposing a model reference control system to aid in astronaut ground tests. This approach would allow the identified models to mimic on-orbit dynamic characteristics of the actual flight manipulator thus providing astronauts with realistic on-orbit responses to perform space station tasks in a ground-based environment.

  11. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the media record workers on the job preparing the orbiter Atlantis for Return to Flight. Both local and national reporters representing print and TV networks were invited to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

    NASA Image and Video Library

    2003-09-26

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the media record workers on the job preparing the orbiter Atlantis for Return to Flight. Both local and national reporters representing print and TV networks were invited to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

  12. The role of the 5f valence orbitals of early actinides in chemical bonding

    PubMed Central

    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.

    2017-01-01

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/ϕ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements. PMID:28681848

  13. The role of the 5f valence orbitals of early actinides in chemical bonding

    NASA Astrophysics Data System (ADS)

    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.

    2017-07-01

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/φ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements.

  14. The problem of hole localization in inner-shell states of N2 and CO2 revisited with complete active space self-consistent field approach.

    PubMed

    Rocha, Alexandre B; de Moura, Carlos E V

    2011-12-14

    Potential energy curves for inner-shell states of nitrogen and carbon dioxide molecules are calculated by inner-shell complete active space self-consistent field (CASSCF) method, which is a protocol, recently proposed, to obtain specifically converged inner-shell states at multiconfigurational level. This is possible since the collapse of the wave function to a low-lying state is avoided by a sequence of constrained optimization in the orbital mixing step. The problem of localization of K-shell states is revisited by calculating their energies at CASSCF level based on both localized and delocalized orbitals. The localized basis presents the best results at this level of calculation. Transition energies are also calculated by perturbation theory, by taking the above mentioned MCSCF function as zeroth order wave function. Values for transition energy are in fairly good agreement with experimental ones. Bond dissociation energies for N(2) are considerably high, which means that these states are strongly bound. Potential curves along ground state normal modes of CO(2) indicate the occurrence of Renner-Teller effect in inner-shell states. © 2011 American Institute of Physics

  15. Accurate and Efficient Parallel Implementation of an Effective Linear-Scaling Direct Random Phase Approximation Method.

    PubMed

    Graf, Daniel; Beuerle, Matthias; Schurkus, Henry F; Luenser, Arne; Savasci, Gökcen; Ochsenfeld, Christian

    2018-05-08

    An efficient algorithm for calculating the random phase approximation (RPA) correlation energy is presented that is as accurate as the canonical molecular orbital resolution-of-the-identity RPA (RI-RPA) with the important advantage of an effective linear-scaling behavior (instead of quartic) for large systems due to a formulation in the local atomic orbital space. The high accuracy is achieved by utilizing optimized minimax integration schemes and the local Coulomb metric attenuated by the complementary error function for the RI approximation. The memory bottleneck of former atomic orbital (AO)-RI-RPA implementations ( Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016 , 144 , 031101 and Luenser, A.; Schurkus, H. F.; Ochsenfeld, C. J. Chem. Theory Comput. 2017 , 13 , 1647 - 1655 ) is addressed by precontraction of the large 3-center integral matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of [Formula: see text]. Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems, where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Tuomas P., E-mail: tuomas.rossi@alumni.aalto.fi; Sakko, Arto; Puska, Martti J.

    We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate thatmore » the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.« less

  17. Effect of spin-orbit and on-site Coulomb interactions on the electronic structure and lattice dynamics of uranium monocarbide

    NASA Astrophysics Data System (ADS)

    Wdowik, U. D.; Piekarz, P.; Legut, D.; Jagło, G.

    2016-08-01

    Uranium monocarbide, a potential fuel material for the generation IV reactors, is investigated within density functional theory. Its electronic, magnetic, elastic, and phonon properties are analyzed and discussed in terms of spin-orbit interaction and localized versus itinerant behavior of the 5 f electrons. The localization of the 5 f states is tuned by varying the local Coulomb repulsion interaction parameter. We demonstrate that the theoretical electronic structure, elastic constants, phonon dispersions, and their densities of states can reproduce accurately the results of x-ray photoemission and bremsstrahlung isochromat measurements as well as inelastic neutron scattering experiments only when the 5 f states experience the spin-orbit interaction and simultaneously remain partially localized. The partial localization of the 5 f electrons could be represented by a moderate value of the on-site Coulomb interaction parameter of about 2 eV. The results of the present studies indicate that both strong electron correlations and spin-orbit effects are crucial for realistic theoretical description of the ground-state properties of uranium carbide.

  18. Many-Body Theory of Pyrochlore Iridates and Related Materials

    NASA Astrophysics Data System (ADS)

    Wang, Runzhi

    In this thesis we focus on two problems. First we propose a numerical method for generating optimized Wannier functions with desired properties. Second we perform the state of the art density functional plus dynamical mean-field calculations in pyrochlore iridates, to investigate the physics induced by the cooperation of spin-orbit coupling and electron correlation. We begin with the introduction for maximally localized Wannier functions and other related extensions. Then we describe the current research in the field of spin-orbit coupling and its interplay with correlation effects, followed by a brief introduction of the `hot' materials of iridates. Before the end of the introduction, we discuss the numerical methods employed in our work, including the density functional theory; dynamical mean-field theory and its combination with the exact diagonalization impurity solver. Then we propose our approach for constructing an optimized set of Wannier functions, which is a generalization of the functionality of the classic maximal localization method put forward by Marzari and Vanderbilt. Our work is motivated by the requirement of the effective description of the local subspace of the Hamiltonian by the beyond density functional theory methods. In extensions of density functional theory such as dynamical mean-field theory, one may want highly accurate description of particular local orbitals, including correct centers and symmetries; while the basis for the remaining degrees of freedom is unimportant. Therefore, we develop the selectively localized Wannier function approach which allows for a greater localization in the selected subset of Wannier functions and at the same time allows us to fix the centers and ensure the point symmetries. Applications in real materials are presented to demonstrate the power of our approach. Next we move to the investigation of pyrochlore iridates, focussing on the metal-insulator transition and material dependence in these compounds. We perform combined density functional plus dynamical mean-field calculations in Lu2Ir2O7, Y2Ir2O 7, Eu2Ir2O7, with spin-orbit coupling included and both single-site and cluster approximations appiled. A broad range of Weyl metal is predicted as the intervening phase in the metal-insulator transition. By comparing to experiments, we find that the single-site approximation fails to predict the gap values and substantial difference between the Y and Eu-compound, demonstrating the inadequacy of this approximation and indicating the key role played by the intersite effects. Finally, we provide a more accurate description of the vicinity of the metal-insulator and topological transitions implied by density functional plus cluster dynamical mean-field calculations of pyrochlore iridates. We find definitive evidence of the Weyl semimetal phase, the electronic structure of which can be approximately described as ``Weyl rings" with an extremely flat dispersion of one of the Weyl bands. This Weyl semimetal phase is further investigated by the k • p analysis fitting to the numerical results. We find that this unusual structure leads to interesting behavior in the optical conductivity including a Hall effect in the interband component, and to an enhanced susceptibility.

  19. Role of Orbital Dynamics in Spin Relaxation and Weak Antilocalization in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zaitsev, Oleg; Frustaglia, Diego; Richter, Klaus

    2005-01-01

    We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.

  20. REVIEWS OF TOPICAL PROBLEMS Gravitational radiation of systems and the role of their force field

    NASA Astrophysics Data System (ADS)

    Nikishov, Anatolii I.; Ritus, Vladimir I.

    2011-02-01

    Gravitational radiation (GR) from compact relativistic systems with a known energy-momentum tensor (EMT) and GR from two masses elliptically orbiting their common center of inertia are considered. In the ultrarelativistic limit, the GR spectrum of a charge rotating in a uniform magnetic field, a Coulomb field, a magnetic moment field, and a combination of the last two fields differs by a factor 4πGm2Γ2/e2 (Γ being of the order of the charge Lorentz factor) from its electromagnetic radiation (EMR) spectrum. This factor is independent of the radiation frequency but does depend on the wave vector direction and the way the field behaves outside of the orbit. For a plane wave external field, the proportionality between the gravitational and electromagnetic radiation spectra is exact, whatever the velocity of the charge. Qualitative estimates of Γ are given for a charge moving ultrarelativistically in an arbitrary field, showing that it is of the order of the ratio of the nonlocal and local source contributions to the GR. The localization of external forces near the orbit violates the proportionality of the spectra and reduces GR by about the Lorentz factor squared. The GR spectrum of a rotating relativistic string with masses at the ends is given, and it is shown that the contributions by the masses and string are of the same order of magnitude. In the nonrelativistic limit, the harmonics of GR spectra behave universally for all the rotating systems considered. A trajectory method is developed for calculating the GR spectrum. In this method, the spatial (and hence polarization) components of the conserved EMT are calculated in the long wavelength approximation from the time component of the EMTs of the constituent masses of the system. Using this method, the GR spectrum of two masses moving in elliptic orbits about their common center of inertia is calculated, as are the relativistic corrections to it.

  1. Spin-orbit torque in a thin film of the topological insulator Bi2Se3: Crossover from the ballistic to diffusive regime

    NASA Astrophysics Data System (ADS)

    Ren, Y. J.; Deng, W. Y.; Geng, H.; Shen, R.; Shao, L. B.; Sheng, L.; Xing, D. Y.

    2017-12-01

    The spin-orbit torque provides an efficient method for switching the direction of a magnetization by using an electric field. Owing to the spin-orbit coupling, when an electric field is applied, a nonequilibrium spin density is generated, which exerts a torque on the local magnetization. Here, we investigate the spin-orbit torque in a thin film of topological insulator \\text{Bi}2\\text{Se}3 based upon a Boltzmann equation, with proper boundary conditions, which is applicable from the ballistic regime to the diffusive regime. It is shown that due to the spin-momentum interlocking of the electron surface states, the magnitude of the field-like torque is simply in linear proportion to the longitudinal electrical current. For a fixed electric field, the spin-orbit torque is proportional to the sample length in the ballistic limit, and saturates to a constant in the diffusive limit. The dependence of the torque on the magnetization direction and exchange coupling strength is also studied. Our theory may offer useful guidance for experimental investigations of the spin-orbit torque in finite-size systems.

  2. Microhartree precision in density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Gulans, Andris; Kozhevnikov, Anton; Draxl, Claudia

    2018-04-01

    To address ultimate precision in density functional theory calculations we employ the full-potential linearized augmented plane-wave + local-orbital (LAPW + lo) method and justify its usage as a benchmark method. LAPW + lo and two completely unrelated numerical approaches, the multiresolution analysis (MRA) and the linear combination of atomic orbitals, yield total energies of atoms with mean deviations of 0.9 and 0.2 μ Ha , respectively. Spectacular agreement with the MRA is reached also for total and atomization energies of the G2-1 set consisting of 55 molecules. With the example of α iron we demonstrate the capability of LAPW + lo to reach μ Ha /atom precision also for periodic systems, which allows also for the distinction between the numerical precision and the accuracy of a given functional.

  3. Local nature of impurity induced spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Nikolaev, Sergey; Kalitsov, Alan; Chshiev, Mairbec; Mryasov, Oleg

    Spin-orbit torques are of a great interest due to their potential applications for spin electronics. Generally, it originates from strong spin orbit coupling of heavy 4d/5d elements and its mechanism is usually attributed either to the Spin Hall effect or Rashba spin-orbit coupling. We have developed a quantum-mechanical approach based on the non-equilibrium Green's function formalism and tight binding Hamiltonian model to study spin-orbit torques and extended our theory for the case of extrinsic spin-orbit coupling induced by impurities. For the sake of simplicity, we consider a magnetic material on a two dimensional lattice with a single non-magnetic impurity. However, our model can be easily extended for three dimensional layered heterostructures. Based on our calculations, we present the detailed analysis of the origin of local spin-orbit torques and persistent charge currents around the impurity, that give rise to spin-orbit torques even in equilibrium and explain the existence of anisotropy.

  4. Theoretical band structure of the superconducting antiperovskite oxide Sr3-xSnO

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsutoshi; Fukumoto, Toshiyuki; Oudah, Mohamed; Hausmann, Jan Niklas; Yonezawa, Shingo; Kobayashi, Shingo; Sato, Masatoshi; Tassel, Cédric; Takeiri, Fumitaka; Takatsu, Hiroshi; Kageyama, Hiroshi; Maeno, Yoshiteru

    2018-05-01

    In order to investigate the position of the strontium deficiency in superconductive Sr3-xSnO, we synthesized and measured X-ray-diffraction patterns of Sr3-xSnO (x ∼ 0.5). Because no clear peaks originating from superstructures were observed, strontium deficiency is most likely to be randomly distributed. We also performed first-principles band-structure calculations on Sr3-xSnO (x = 0, 0.5) using two methods: full-potential linearized-augmented plane-wave plus local orbitals method and the Korringa-Kohn-Rostoker Green function method combined with the coherent potential approximation. We revealed that the Fermi energy of Sr3-xSnO in case of x ∼ 0.5 is about 0.8 eV below the original Fermi energy of the stoichiometric Sr3SnO, where the mixing of the valence p and conduction d orbitals are considered to be small.

  5. A New Method of Space Travel Optimized for Space Tourism and Colonization

    NASA Astrophysics Data System (ADS)

    Turek, Philip A.

    2006-01-01

    High costs associated with expendable rockets are stifling the development of permanent space colonies. A new method of space travel is presented that enjoys significantly increased performance and reduced cost relative to competing concepts. Based on recycling the kinetic energy of an arriving spacecraft, up to 200 MW of average electrical power is generated and sustained for 2 minutes, and is immediately applied in launching a departing partner spacecraft. The resulting required delta vee for a round trip between low Earth orbit (LEO) and geosynchronous orbit (GEO) drops from 7.6 km/s to 0.54 km/s when 3 recycling stations with an 80 % energy coupling efficiency are used to exchange kinetic energy between 8 partner spacecraft transiting the same route. This method is well suited for round trip high volume space travel such as space tourism traffic to LEO, lunar orbit, and beyond. As the kinetic energy of an arriving spacecraft is the power source for launching departing spacecraft, nascent lunar colonies can electrically launch 26,000 kg payloads long before sustained 100 MW level power supplies become locally available. A pair of recycling stations at an orbiting space colony construction site provides a resource of net impulse, net torque, and electrical power to the colony irrespective of the contents of the arriving payloads. Kinetic energy recycling technology, configuration, operations, and near Earth applications are described.

  6. Energy profile, spectroscopic (FT-IR, FT-Raman and FT-NMR) and DFT studies of 4-bromoisophthalic acid

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Thirunarayanan, S.; Mohan, S.

    2018-04-01

    The stable conformer of 4-bromoisophthalic acid (BIPA) has been identified by potential energy profile analysis. All the structural parameters of 4-bromoisophthalic acid are determined by B3LYP method with 6-311++G**, 6-31G** and cc-pVTZ basis sets. The fundamental vibrations are analysed with the use of FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra. The harmonic vibrational frequencies are theoretically calculated and compared with experimental FTIR and FT-Raman frequencies. The 1H and 13C NMR spectra have been analysed and compared with theoretical 1H and 13C NMR chemical shifts calculated by gauge independent atomic orbital (GIAO) method. The electronic properties, such as HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energies are determined by B3LYP/cc-pVTZ method. The electron density distribution and site of chemical reactivity of BIPA molecule have been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP). Stability of the molecules arising from hyperconjugative interactions, charge delocalizations have been analysed by using natural bond orbital (NBO) analysis. The thermodynamic properties and atomic natural charges of the compound are analysed and the reactive sites of the molecule are identified. The global and local reactivity descriptors are evaluated to analyse the chemical reactivity and site selectivity of molecule through Fukui functions.

  7. Opendf - An Implementation of the Dual Fermion Method for Strongly Correlated Systems

    NASA Astrophysics Data System (ADS)

    Antipov, Andrey E.; LeBlanc, James P. F.; Gull, Emanuel

    The dual fermion method is a multiscale approach for solving lattice problems of interacting strongly correlated systems. In this paper, we present the opendfcode, an open-source implementation of the dual fermion method applicable to fermionic single- orbital lattice models in dimensions D = 1, 2, 3 and 4. The method is built on a dynamical mean field starting point, which neglects all local correlations, and perturbatively adds spatial correlations. Our code is distributed as an open-source package under the GNU public license version 2.

  8. Constructing diabatic states from adiabatic states: Extending generalized Mulliken-Hush to multiple charge centers with Boys localization

    NASA Astrophysics Data System (ADS)

    Subotnik, Joseph E.; Yeganeh, Sina; Cave, Robert J.; Ratner, Mark A.

    2008-12-01

    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.

  9. Constructing diabatic states from adiabatic states: extending generalized Mulliken-Hush to multiple charge centers with boys localization.

    PubMed

    Subotnik, Joseph E; Yeganeh, Sina; Cave, Robert J; Ratner, Mark A

    2008-12-28

    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.

  10. Mitigating Climate Change with Earth Orbital Sunshades

    NASA Technical Reports Server (NTRS)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  11. Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zou, X.; Qin, Z.

    2018-03-01

    Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polarorbiting Operational Environmental Satellites (POES) have been extensively used for studying atmospheric temperature trends over the past several decades. Intersensor biases, orbital drifts and diurnal variations of atmospheric and surface temperatures must be considered before using a merged long-term time series of AMSU-A measurements from NOAA-15, -18, -19 and MetOp-A.We study the impacts of the orbital drift and orbital differences of local equator crossing times (LECTs) on temperature trends derivable from AMSU-A using near-nadir observations from NOAA-15, NOAA-18, NOAA-19, and MetOp-A during 1998-2014 over the Amazon rainforest. The double difference method is firstly applied to estimation of inter-sensor biases between any two satellites during their overlapping time period. The inter-calibrated observations are then used to generate a monthly mean diurnal cycle of brightness temperature for each AMSU-A channel. A diurnal correction is finally applied each channel to obtain AMSU-A data valid at the same local time. Impacts of the inter-sensor bias correction and diurnal correction on the AMSU-A derived long-term atmospheric temperature trends are separately quantified and compared with those derived from original data. It is shown that the orbital drift and differences of LECTamong different POESs induce a large uncertainty in AMSU-A derived long-term warming/cooling trends. After applying an inter-sensor bias correction and a diurnal correction, the warming trends at different local times, which are approximately the same, are smaller by half than the trends derived without applying these corrections.

  12. Efficacy of High Frequency Ultrasound in Localization and Characterization of Orbital Lesions

    PubMed Central

    Gurushankar, G; Bhimarao; Kadakola, Bindushree

    2015-01-01

    Background The complicated anatomy of orbit and the wide spectrum of pathological conditions present a formidable challenge for early diagnosis, which is critical for management. Ultrasonography provides a detailed cross sectional anatomy of the entire globe with excellent topographic visualization and real time display of the moving organ. Objectives of the study To evaluate the efficacy of high frequency Ultrasound in localization of orbital diseases and to characterize various orbital pathologies sonologically. Materials and Methods Hundred eyes of 85 patients were examined with ultrasound using linear high frequency probe (5 to 17 MHz) of PHILPS IU22 ultrasound system. Sonological diagnosis was made based on location, acoustic characteristics, kinetic properties and Doppler flow dynamics. Final diagnosis was made based on clinical & laboratory findings/higher cross-sectional imaging/surgery & histopathology (as applicable). Diagnostic accuracy of ultrasonography was evaluated and compared with final diagnosis. Results The distinction between ocular and extraocular pathologies was made in 100% of cases. The overall sensitivity, specificity, NPV and accuracy of ultrasonography were 94.2%, 98.8%, 92.2% & 94.9% respectively for diagnosis of ocular pathologies and 94.2%, 99.2%, 95.9% & 95.2% respectively for extra ocular pathologies. Conclusion Ultrasonography is a readily available, simple, cost effective, non ionizing and non invasive modality with overall high diagnostic accuracy in localising and characterising orbital pathologies. It has higher spatial and temporal resolution compared to CT/MRI. However, CT/MRI may be indicated in certain cases for the evaluation of calcifications, bony involvement, extension to adjacent structures and intracranial extension. PMID:26500977

  13. Applying Dynamical Systems Theory to Optimize Libration Point Orbit Stationkeeping Maneuvers for WIND

    NASA Technical Reports Server (NTRS)

    Brown, Jonathan M.; Petersen, Jeremy D.

    2014-01-01

    NASA's WIND mission has been operating in a large amplitude Lissajous orbit in the vicinity of the interior libration point of the Sun-Earth/Moon system since 2004. Regular stationkeeping maneuvers are required to maintain the orbit due to the instability around the collinear libration points. Historically these stationkeeping maneuvers have been performed by applying an incremental change in velocity, or (delta)v along the spacecraft-Sun vector as projected into the ecliptic plane. Previous studies have shown that the magnitude of libration point stationkeeping maneuvers can be minimized by applying the (delta)v in the direction of the local stable manifold found using dynamical systems theory. This paper presents the analysis of this new maneuver strategy which shows that the magnitude of stationkeeping maneuvers can be decreased by 5 to 25 percent, depending on the location in the orbit where the maneuver is performed. The implementation of the optimized maneuver method into operations is discussed and results are presented for the first two optimized stationkeeping maneuvers executed by WIND.

  14. A second catalog of gamma ray bursts: 1978 - 1980 localizations from the interplanetary network

    NASA Technical Reports Server (NTRS)

    Atteia, J. L.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.; Evans, W. D.; Fenimore, E. E.; Klebesadel, R. W.; Laros, J. G.; Cline, T. L.

    1985-01-01

    Eighty-two gamma ray bursts were detected between 1978 September 14 and 1980 February 13 by the experiments of the interplanetary network (Prognoz 7, Venera 11 and 12 SIGNE experiments, Pioneer Venus Orbiter, International Sun-Earth Explorer 3, Helios 2, and Vela). Sixty-five of these events have been localized to annuli or error boxes by the method of arrival time analysis. The distribution of sources is consistent with isotropy, and there is no statistically convincing evidence for the detection of more than one burst from any source position. The localizations are compared with those of two previous catalogs.

  15. A general intermolecular force field based on tight-binding quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas

    2017-10-01

    A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.

  16. Efficient anharmonic vibrational spectroscopy for large molecules using local-mode coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xiaolu; Steele, Ryan P., E-mail: ryan.steele@utah.edu

    This article presents a general computational approach for efficient simulations of anharmonic vibrational spectra in chemical systems. An automated local-mode vibrational approach is presented, which borrows techniques from localized molecular orbitals in electronic structure theory. This approach generates spatially localized vibrational modes, in contrast to the delocalization exhibited by canonical normal modes. The method is rigorously tested across a series of chemical systems, ranging from small molecules to large water clusters and a protonated dipeptide. It is interfaced with exact, grid-based approaches, as well as vibrational self-consistent field methods. Most significantly, this new set of reference coordinates exhibits a well-behavedmore » spatial decay of mode couplings, which allows for a systematic, a priori truncation of mode couplings and increased computational efficiency. Convergence can typically be reached by including modes within only about 4 Å. The local nature of this truncation suggests particular promise for the ab initio simulation of anharmonic vibrational motion in large systems, where connection to experimental spectra is currently most challenging.« less

  17. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L.; Song, M.; Liu, W.

    2017-02-09

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba 2NaOsO 6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probemore » spin and orbital/lattice degrees of freedom of Ba 2NaOsO 6 provide such tests. As a result, we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.« less

  18. A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme

    NASA Astrophysics Data System (ADS)

    Ochsenfeld, Christian; Head-Gordon, Martin

    1997-05-01

    To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.

  19. KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager Scott Thurston talks to the media in the Orbiter Processing Facility. The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

    NASA Image and Video Library

    2003-09-26

    KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager Scott Thurston talks to the media in the Orbiter Processing Facility. The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

  20. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Riplinger, Christoph; Pinski, Peter; Becker, Ute; Valeev, Edward F.; Neese, Frank

    2016-01-01

    Domain based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)) is a highly efficient local correlation method. It is known to be accurate and robust and can be used in a black box fashion in order to obtain coupled cluster quality total energies for large molecules with several hundred atoms. While previous implementations showed near linear scaling up to a few hundred atoms, several nonlinear scaling steps limited the applicability of the method for very large systems. In this work, these limitations are overcome and a linear scaling DLPNO-CCSD(T) method for closed shell systems is reported. The new implementation is based on the concept of sparse maps that was introduced in Part I of this series [P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108 (2015)]. Using the sparse map infrastructure, all essential computational steps (integral transformation and storage, initial guess, pair natural orbital construction, amplitude iterations, triples correction) are achieved in a linear scaling fashion. In addition, a number of additional algorithmic improvements are reported that lead to significant speedups of the method. The new, linear-scaling DLPNO-CCSD(T) implementation typically is 7 times faster than the previous implementation and consumes 4 times less disk space for large three-dimensional systems. For linear systems, the performance gains and memory savings are substantially larger. Calculations with more than 20 000 basis functions and 1000 atoms are reported in this work. In all cases, the time required for the coupled cluster step is comparable to or lower than for the preceding Hartree-Fock calculation, even if this is carried out with the efficient resolution-of-the-identity and chain-of-spheres approximations. The new implementation even reduces the error in absolute correlation energies by about a factor of two, compared to the already accurate previous implementation.

  1. A partitioned correlation function interaction approach for describing electron correlation in atoms

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.

    2013-04-01

    The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR function, the variational degrees of freedom in the relative mixing coefficients of the CSFs building the PCFs are inhibited. The constraints on the mixing coefficients lead to small off-sets in computed properties such as hyperfine structure, isotope shift and transition rates, with respect to the correct values. By (partially) deconstraining the mixing coefficients one converges to the correct limits and keeps the tremendous advantage of improved convergence rates that comes from the use of several orbital sets. Reducing ultimately each PCF to a single CSF with its own orbital basis leads to a non-orthogonal CI approach. Various perspectives of the new method are given.

  2. Electronic Properties of Cyclacenes from TAO-DFT

    PubMed Central

    Wu, Chun-Shian; Lee, Pei-Yin; Chai, Jeng-Da

    2016-01-01

    Owing to the presence of strong static correlation effects, accurate prediction of the electronic properties (e.g., the singlet-triplet energy gaps, vertical ionization potentials, vertical electron affinities, fundamental gaps, symmetrized von Neumann entropy, active orbital occupation numbers, and real-space representation of active orbitals) of cyclacenes with n fused benzene rings (n = 4–100) has posed a great challenge to traditional electronic structure methods. To meet the challenge, we study these properties using our newly developed thermally-assisted-occupation density functional theory (TAO-DFT), a very efficient method for the study of large systems with strong static correlation effects. Besides, to examine the role of cyclic topology, the electronic properties of cyclacenes are also compared with those of acenes. Similar to acenes, the ground states of cyclacenes are singlets for all the cases studied. In contrast to acenes, the electronic properties of cyclacenes, however, exhibit oscillatory behavior (for n ≤ 30) in the approach to the corresponding properties of acenes with increasing number of benzene rings. On the basis of the calculated orbitals and their occupation numbers, the larger cyclacenes are shown to exhibit increasing polyradical character in their ground states, with the active orbitals being mainly localized at the peripheral carbon atoms. PMID:27853249

  3. Taking advantage of inclination variation in resonant remote-sensing satellite orbits

    NASA Astrophysics Data System (ADS)

    Gopinath, N. S.; Ravindrababu, T.; Rao, S. V.; Daniel, D. A.; Goel, P. S.

    2004-08-01

    The inclination of remote-sensing satellites, which are generally placed in sun-synchronous orbits, varies as a function of the nominal equatorial crossing local mean solar time selected for a given mission. The Indian Remote-Sensing satellites will have an inclination reduction of about 0.034° per year and for most of the satellites, the local time chosen was around 10:30 hours at descending node. In practice, the initial inclination is biased appropriately so that the expensive out-of-plane maneuvers could be taken up after few years of mission operations, depending on the deviations permitted in the local time for a given mission. However, the scenario differs when the mission objectives require an almost exact repeat orbit of 14 or 15 per day. In such a situation, the satellite orbit, which passes through a 14th or 15th order resonance, undergoes a nearly secular increase in orbit inclination. This paper presents a detailed analysis carried out for such an orbit, based on Cowell's approach. Long-term predictions have been carried out by considering all major forces that perturbs the satellite orbit. Observed behavior of orbit, based on the daily definitive orbit determination is also presented. The variation in inclination and the cause is clearly brought out. Further, it is demonstrated that the selection of longitude for nominal ground track pattern has an impact on the inclination variation. A proposal is made to take advantage of such expected inclination variation so that initial inclination bias can be chosen appropriately. Ground track longitude can be chosen to take advantage, subject to the mission coverage requirements. The paper contains the results of an exhaustive analysis of the actually observed orbit resonance. It is felt that the work has both theoretical and operational importance for remote-sensing missions.

  4. Orbital infections: a complete cycle 7-year audit and a management guideline.

    PubMed

    Atfeh, Mihiar Sami; Singh, Kathryn; Khalil, Hisham Saleh

    2018-06-04

    Orbital infections are regularly encountered and are managed by various healthcare disciplines. Sepsis of the orbit and adjacent tissues can be associated with considerable acute complication and long-term sequelae. Therefore, prompt recognition and management of this condition are crucial. This article presents the outcomes of a 7-year complete cycle audit project and describes the development of the new local guideline on the management of orbital infections in our tertiary centre. (1) A retrospective 5-year audit cycle on patients with orbital infections. (2) A review of available evidence on the management of orbital infections. (3) A new local multidisciplinary guideline on the management of orbital infections. (4) A retrospective 2-year second audit cycle to assess the clinical outcomes. Various disciplines intersect in the management of orbital infections. Standardising the management of this condition proved to be achievable through the developed guideline. However, room for improvement in practice exists in areas such as the promptness in referring patients to specialist care, the multidisciplinary assessment of patients on admission, and the improvement of scanning requests of patients.

  5. A visible light photocatalyst: effects of vanadium substitution on ETS-10.

    PubMed

    Marie Shough, Anne; Lobo, Raul F; Doren, Douglas J

    2007-10-07

    Hybrid density functional theory/molecular mechanics (DFT/MM) methods have been used to investigate the effects of vanadium substitution in ETS-10. Models have been developed to contain varying concentrations of V(IV) and V(V) within the O-M-O (M = Ti, V) chain. Most of the V-substituted models have a localized mid-gap state. The occupation of this localized state depends upon the dopant oxidation state, leading to the addition of multiple low energy transitions. A linear correlation has been identified between band gap energies estimated using ground state orbital energies and those calculated using the more accurate and computationally demanding time-dependent DFT (TDDFT) method for a variety of transition metal substituted models of ETS-10. Consistent with experimental data for V substitution, our models predict a decrease in the optical band gap with increasing [V], due to a lowering of the delocalized d-orbital states at the bottom of the conduction band with increasing V d-orbital character. This effect is more pronounced in the case of V(V) substitution than V(IV). Excitation energies for the V-doped models, calculated with TDDFT methods correlate well with experimental data, allowing for the assignment of specific optical transitions to experimental UV-Vis spectra. The electronic structure of V-substituted ETS-10 at high V concentration demonstrates band gap energies within the visible range of the spectrum. Additionally, at high [V] the band gap energy and presence of low energy electron traps can be controlled by the relative concentration of V(IV) and V(V) along the O-M-O chain, establishing V-substituted ETS-10 as a promising visible light photocatalyst.

  6. Orbital occupancy and charge doping in iron-based superconductors.

    PubMed

    Cantoni, Claudia; Mitchell, Jonathan E; May, Andrew F; McGuire, Michael A; Idrobo, Juan-Carlos; Berlijn, Tom; Dagotto, Elbio; Chisholm, Matthew F; Zhou, Wu; Pennycook, Stephen J; Sefat, Athena S; Sales, Brian C

    2014-09-17

    The intrinsic Fe local magnetic moment and Fe orbital occupations of iron-based superconductors are unveiled through the local, real-space capability of aberration-corrected scanning transmission electron microscopy/electron energy loss spectroscopy (STEM/EELS). Although the ordering of Fe moments needs to be suppressed for superconductivity to arise, the local, fluctuating Fe magnetic moment is enhanced near optimal superconductivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Useful lower limits to polarization contributions to intermolecular interactions using a minimal basis of localized orthogonal orbitals: theory and analysis of the water dimer.

    PubMed

    Azar, R Julian; Horn, Paul Richard; Sundstrom, Eric Jon; Head-Gordon, Martin

    2013-02-28

    The problem of describing the energy-lowering associated with polarization of interacting molecules is considered in the overlapping regime for self-consistent field wavefunctions. The existing approach of solving for absolutely localized molecular orbital (ALMO) coefficients that are block-diagonal in the fragments is shown based on formal grounds and practical calculations to often overestimate the strength of polarization effects. A new approach using a minimal basis of polarized orthogonal local MOs (polMOs) is developed as an alternative. The polMO basis is minimal in the sense that one polarization function is provided for each unpolarized orbital that is occupied; such an approach is exact in second-order perturbation theory. Based on formal grounds and practical calculations, the polMO approach is shown to underestimate the strength of polarization effects. In contrast to the ALMO method, however, the polMO approach yields results that are very stable to improvements in the underlying AO basis expansion. Combining the ALMO and polMO approaches allows an estimate of the range of energy-lowering due to polarization. Extensive numerical calculations on the water dimer using a large range of basis sets with Hartree-Fock theory and a variety of different density functionals illustrate the key considerations. Results are also presented for the polarization-dominated Na(+)CH4 complex. Implications for energy decomposition analysis of intermolecular interactions are discussed.

  8. Geospatial Representation, Analysis and Computing Using Bandlimited Functions

    DTIC Science & Technology

    2010-02-19

    navigation of aircraft and missiles require detailed representations of gravity and efficient methods for determining orbits and trajectories. However, many...efficient on today’s computers. Under this grant new, computationally efficient, localized representations of gravity have been developed and tested. As a...step in developing a new approach to estimating gravitational potentials, a multiresolution representation for gravity estimation has been proposed

  9. Self-Attractive Hartree Decomposition: Partitioning Electron Density into Smooth Localized Fragments.

    PubMed

    Zhu, Tianyu; de Silva, Piotr; Van Voorhis, Troy

    2018-01-09

    Chemical bonding plays a central role in the description and understanding of chemistry. Many methods have been proposed to extract information about bonding from quantum chemical calculations, the majority of them resorting to molecular orbitals as basic descriptors. Here, we present a method called self-attractive Hartree (SAH) decomposition to unravel pairs of electrons directly from the electron density, which unlike molecular orbitals is a well-defined observable that can be accessed experimentally. The key idea is to partition the density into a sum of one-electron fragments that simultaneously maximize the self-repulsion and maintain regular shapes. This leads to a set of rather unusual equations in which every electron experiences self-attractive Hartree potential in addition to an external potential common for all the electrons. The resulting symmetry breaking and localization are surprisingly consistent with chemical intuition. SAH decomposition is also shown to be effective in visualization of single/multiple bonds, lone pairs, and unusual bonds due to the smooth nature of fragment densities. Furthermore, we demonstrate that it can be used to identify specific chemical bonds in molecular complexes and provides a simple and accurate electrostatic model of hydrogen bonding.

  10. Relative attitude dynamics and control for a satellite inspection mission

    NASA Astrophysics Data System (ADS)

    Horri, Nadjim M.; Kristiansen, Kristian U.; Palmer, Phil; Roberts, Mark

    2012-02-01

    The problem of conducting an inspection mission from a chaser satellite orbiting a target spaceraft is considered. It is assumed that both satellites follow nearly circular orbits. The relative orbital motion is described by the Hill-Clohessy-Wiltshire equation. In the case of an elliptic relative orbit, it is shown that an inspection mission is feasible when the chaser is inertially pointing, provided that the camera mounted on the chaser satellite has sufficiently large field of view. The same possibility is shown when the optical axis of the chaser's camera points in, or opposite to, the tangential direction of the local vertical local horizontal frame. For an arbitrary relative orbit and arbitrary initial conditions, the concept of relative Euler angles is defined for this inspection mission. The expression of the desired relative angular velocity vector is derived as a function of Cartesian coordinates of the relative orbit. A quaternion feedback controller is then designed and shown to perform relative attitude control with admissible internal torques. Three different types of relative orbits are considered, namely the elliptic, Pogo and drifting relative orbits. Measurements of the relative orbital motion are assumed to be available from optical navigation.

  11. MoonBEAM: A Beyond Earth-Orbit Gamma-Ray Burst Detector for Gravitational-Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.

    2018-01-01

    Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between different orbits. We present here a gamma-ray SmallSat concept in Earth-Moon L3 halo orbit that is capable of rapid response and provide a timing baseline for localization improvement when partnered with an Earth-orbit instrument. Such an instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.

  12. Adaptation of the projector-augmented-wave formalism to the treatment of orbital-dependent exchange-correlation functionals

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Holzwarth, N. A. W.

    2011-10-01

    This paper presents the formulation and numerical implementation of a self-consistent treatment of orbital-dependent exchange-correlation functionals within the projector-augmented-wave method of Blöchl [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.50.17953 50, 17953 (1994)] for electronic structure calculations. The methodology is illustrated with binding energy curves for C in the diamond structure and LiF in the rock salt structure, by comparing results from the Hartree-Fock (HF) formalism and the optimized effective potential formalism in the so-called KLI approximation [Krieger, Li, and Iafrate, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.45.101 45, 101 (1992)] with those of the local density approximation. While the work here uses pure Fock exchange only, the formalism can be extended to treat orbital-dependent functionals more generally.

  13. A study of leeside flow field heat transfer on Shuttle Orbiter configuration

    NASA Technical Reports Server (NTRS)

    Baranowski, L. C.; Kipp, H. W.

    1984-01-01

    A coupled inviscid and viscous theoretical solution of the flow about the entire configuration is the desirable and comprehensive approach to defining thermal environments about the space shuttle orbiter. Simplified methods for predicting entry heating on leeside surfaces of the orbiter are considered. Wind tunnel heat transfer and oil flow data at Mach 6 and 10 and Reynolds numbers ranging from 500,000 to 73 million were used to develop correlations for the wing upper surface and the top surface of the fuselage. These correlations were extrapolated to flight Reynolds number and compared with heating data obtained during the shuttle STS-2 reentry. Efforts directed toward the wing leeside surface resulted in an approach which generally agreed with the flight data. Heating predictions for the upper fuselage were less successful due to the extreme complexity of local flow interactions and the associated heating environment.

  14. Exploring biorthonormal transformations of pair-correlation functions in atomic structure variational calculations

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Jönsson, P.; Gaigalas, G.; Godefroid, M.; Froese Fischer, C.

    2010-04-01

    Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of configuration state functions (CSFs), many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the multiconfiguration Hartree-Fock (MCHF) method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double-excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional complete active space (CAS)-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations.

  15. SOMO–HOMO Level Inversion in Biologically Important Radicals

    PubMed Central

    2017-01-01

    Conventionally, the singly occupied molecular orbital (SOMO) of a radical species is considered to be the highest occupied molecular orbital (HOMO), but this is not the case always. In this study, we considered a number of radicals from smallest diatomic anion radicals such as superoxide anion radical to one-electron oxidized DNA related base radicals that show the SOMO is energetically lower than one or more doubly occupied molecular orbitals (MOs) (SOMO–HOMO level inversion). The electronic configurations are calculated employing the B3LYP/6-31++G** method, with the inclusion of aqueous phase via the integral equation formalism of the polarized continuum model solvation model. From the extensive study of the electronic configurations of radicals produced by one-electron oxidation or reduction of natural-DNA bases, bromine-, sulfur-, selenium-, and aza-substituted DNA bases, as well as 20 diatomic molecules, we highlight the following important findings: (i) SOMO–HOMO level inversion is a common phenomenon in radical species. (ii) The more localized spin density in σ-orbital on a single atom (carbon, nitrogen, oxygen, sulfur, or selenium), the greater the gap between HOMO and SOMO. (iii) In species with SOMO–HOMO level inversion, one-electron oxidation takes place from HOMO not from the SOMO, which produces a molecule in its triplet ground state. Oxidation of aqueous superoxide anion producing triplet molecular oxygen is one example of many. (iv) These results are for conventional radicals and in contrast with those reported for distonic radical anions in which SOMO–HOMO gaps are smaller for more localized radicals and the orbital inversions vanish in water. Our findings yield new insights into the properties of free radical systems. PMID:29240424

  16. Use of density functional theory orbitals in the GVVPT2 variant of second-order multistate multireference perturbation theory.

    PubMed

    Hoffmann, Mark R; Helgaker, Trygve

    2015-03-05

    A new variation of the second-order generalized van Vleck perturbation theory (GVVPT2) for molecular electronic structure is suggested. In contrast to the established procedure, in which CASSCF or MCSCF orbitals are first obtained and subsequently used to define a many-electron model (or reference) space, the use of an orbital space obtained from the local density approximation (LDA) variant of density functional theory is considered. Through a final, noniterative diagonalization of an average Fock matrix within orbital subspaces, quasicanonical orbitals that are otherwise indistinguishable from quasicanonical orbitals obtained from a CASSCF or MCSCF calculation are obtained. Consequently, all advantages of the GVVPT2 method are retained, including use of macroconfigurations to define incomplete active spaces and rigorous avoidance of intruder states. The suggested variant is vetted on three well-known model problems: the symmetric stretching of the O-H bonds in water, the dissociation of N2, and the stretching of ground and excited states C2 to more than twice the equilibrium bond length of the ground state. It is observed that the LDA-based GVVPT2 calculations yield good results, of comparable quality to conventional CASSCF-based calculations. This is true even for the C2 model problem, in which the orbital space for each state was defined by the LDA orbitals. These results suggest that GVVPT2 can be applied to much larger problems than previously accessible.

  17. Transit-Time Damping, Landau Damping, and Perturbed Orbits

    NASA Astrophysics Data System (ADS)

    Simon, A.; Short, R. W.

    1997-11-01

    Transit-time damping(G.J. Morales and Y.C. Lee, Phys. Rev. Lett. 33), 1534 (1974).*^,*(P.A. Robinson, Phys. Fluids B 3), 545 (1991).** has traditionally been obtained by calculating the net energy gain of transiting electrons, of velocity v, to order E^2* in the amplitude of a localized electric field. This necessarily requires inclusion of the perturbed orbits in the equation of motion. A similar method has been used by others(D.R. Nicholson, Introduction to Plasma Theory) (Wiley, 1983).*^,*(E.M. Lifshitz and L.P. Pitaevskifi, Physical Kinetics) (Pergamon, 1981).** to obtain a ``physical'' picture of Landau damping in a nonlocalized field. The use of perturbed orbits seems odd since the original derivation of Landau (and that of Dawson) never went beyond a linear picture of the dynamics. We introduce a novel method that takes advantage of the time-reversal invariance of the Vlasov equation and requires only the unperturbed orbits to obtain the result. Obviously, there is much reduction in complexity. Application to finite slab geometry yields a simple expression for the damping rate. Equivalence to much more complicated results^2* is demonstrated. This method allows us to calculate damping in more complicated geometries and more complex electric fields, such as occur in SRS in filaments. See accompanying talk.(R.W. Short and A. Simon, this conference.) This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Co-op Agreement No. DE-FC03-92SF19460.

  18. Equine orbital neoplasia: a review of 10 cases (1983-1998).

    PubMed Central

    Baptiste, K E; Grahn, B H

    2000-01-01

    The clinical manifestations, laboratory findings, and survival times of 10 horses with orbital neoplasms are reported. In all cases, orbital neoplasms were malignant and locally invasive with no defined surgical circumscribed edges. It was often difficult to identify the primary cell type of the neoplasia in histologic specimens due to the poorly differentiated, anaplastic nature of the majority of cases. All except one horse were eventually euthanized 2 mo to 5 y after diagnosis due to poor response to treatment, metastasis, or unrelenting orbital neoplasia. Mean survival time increased with surgical treatment, but no significant difference was found among no treatment, chemotherapy, surgical mass removal, or exenteration/enucleation. Equine practitioners should be aware of the marked difference in prognosis of orbital neoplasms compared with ocular or localized eyelid neoplasia. Images Figure 1. Figure 2. Figure 3. PMID:10769765

  19. Elucidating Hyperconjugation from Electronegativity to Predict Drug Conformational Energy in a High Throughput Manner.

    PubMed

    Liu, Zhaomin; Pottel, Joshua; Shahamat, Moeed; Tomberg, Anna; Labute, Paul; Moitessier, Nicolas

    2016-04-25

    Computational chemists use structure-based drug design and molecular dynamics of drug/protein complexes which require an accurate description of the conformational space of drugs. Organic chemists use qualitative chemical principles such as the effect of electronegativity on hyperconjugation, the impact of steric clashes on stereochemical outcome of reactions, and the consequence of resonance on the shape of molecules to rationalize experimental observations. While computational chemists speak about electron densities and molecular orbitals, organic chemists speak about partial charges and localized molecular orbitals. Attempts to reconcile these two parallel approaches such as programs for natural bond orbitals and intrinsic atomic orbitals computing Lewis structures-like orbitals and reaction mechanism have appeared. In the past, we have shown that encoding and quantifying chemistry knowledge and qualitative principles can lead to predictive methods. In the same vein, we thought to understand the conformational behaviors of molecules and to encode this knowledge back into a molecular mechanics tool computing conformational potential energy and to develop an alternative to atom types and training of force fields on large sets of molecules. Herein, we describe a conceptually new approach to model torsion energies based on fundamental chemistry principles. To demonstrate our approach, torsional energy parameters were derived on-the-fly from atomic properties. When the torsional energy terms implemented in GAFF, Parm@Frosst, and MMFF94 were substituted by our method, the accuracy of these force fields to reproduce MP2-derived torsional energy profiles and their transferability to a variety of functional groups and drug fragments were overall improved. In addition, our method did not rely on atom types and consequently did not suffer from poor automated atom type assignments.

  20. Various oscillation patterns in phase models with locally attractive and globally repulsive couplings.

    PubMed

    Sato, Katsuhiko; Shima, Shin-ichiro

    2015-10-01

    We investigate a phase model that includes both locally attractive and globally repulsive coupling in one dimension. This model exhibits nontrivial spatiotemporal patterns that have not been observed in systems that contain only local or global coupling. Depending on the relative strengths of the local and global coupling and on the form of global coupling, the system can show a spatially uniform state (in-phase synchronization), a monotonically increasing state (traveling wave), and three types of oscillations of relative phase difference. One of the oscillations of relative phase difference has the characteristic of being locally unstable but globally attractive. That is, any small perturbation to the periodic orbit in phase space destroys its periodic motion, but after a long time the system returns to the original periodic orbit. This behavior is closely related to the emergence of saddle two-cluster states for global coupling only, which are connected to each other by attractive heteroclinic orbits. The mechanism of occurrence of this type of oscillation is discussed.

  1. Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals

    NASA Astrophysics Data System (ADS)

    Ge, Qinghui; Mao, Yuezhi; Head-Gordon, Martin

    2018-02-01

    An energy decomposition analysis (EDA) scheme is developed for understanding the intermolecular interaction involving molecules in their excited states. The EDA utilizes absolutely localized molecular orbitals to define intermediate states and is compatible with excited state methods based on linear response theory such as configuration interaction singles and time-dependent density functional theory. The shift in excitation energy when an excited molecule interacts with the environment is decomposed into frozen, polarization, and charge transfer contributions, and the frozen term can be further separated into Pauli repulsion and electrostatics. These terms can be added to their counterparts obtained from the ground state EDA to form a decomposition of the total interaction energy. The EDA scheme is applied to study a variety of systems, including some model systems to demonstrate the correct behavior of all the proposed energy components as well as more realistic systems such as hydrogen-bonding complexes (e.g., formamide-water, pyridine/pyrimidine-water) and halide (F-, Cl-)-water clusters that involve charge-transfer-to-solvent excitations.

  2. Electronic-structure calculations of praseodymium metal by means of modified density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svane, A.; Trygg, J.; Johansson, B.

    1997-09-01

    Electronic-structure calculations of elemental praseodymium are presented. Several approximations are used to describe the Pr f electrons. It is found that the low-pressure, trivalent phase is well described using either the self-interaction corrected (SIC) local-spin-density (LSD) approximation or the generalized-gradient approximation (GGA) with spin and orbital polarization (OP). In the SIC-LSD approach the Pr f electrons are treated explicitly as localized with a localization energy given by the self-interaction of the f orbital. In the GGA+OP scheme the f-electron localization is described by the onset of spin and orbital polarization, the energetics of which is described by spin-moment formation energymore » and a term proportional to the total orbital moment, L{sub z}{sup 2}. The high-pressure phase is well described with the f electrons treated as band electrons, in either the LSD or the GGA approximations, of which the latter describes more accurately the experimental equation of state. The calculated pressure of the transition from localized to delocalized behavior is 280 kbar in the SIC-LSD approximation and 156 kbar in the GGA+OP approach, both comparing favorably with the experimentally observed transition pressure of 210 kbar. {copyright} {ital 1997} {ital The American Physical Society}« less

  3. Distinct nature of orbital-selective Mott phases dominated by low-energy local spin fluctuations

    NASA Astrophysics Data System (ADS)

    Song, Ze-Yi; Jiang, Xiu-Cai; Lin, Hai-Qing; Zhang, Yu-Zhong

    2017-12-01

    Quantum orbital-selective Mott (OSM) transitions are investigated within dynamical mean-field theory based on a two-orbital Hubbard model with different bandwidth at half filling. We find two distinct OSM phases both showing coexistence of itinerant electrons and localized spins, dependent on whether the Hund's coupling is full or of Ising type. The critical values and the nature of the OSM transitions are efficiently determined by entanglement entropy. We reveal that vanishing of the Kondo energy scale evidenced by absence of local spin fluctuations at low frequency in local dynamical spin susceptibility is responsible for the appearance of non-Fermi-liquid OSM phase in Ising Hund's coupling case. We argue that this scenario can also be applied to account for emergent quantum non-Fermi liquid in the one-band Hubbard model when short-range antiferromagnetic order is considered.

  4. Core localization and {sigma}* delocalization in the O 1s core-excited sulfur dioxide molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindgren, Andreas; Kivimaeki, Antti; Sorensen, Stacey L.

    Electron-ion-ion coincidence measurements of sulfur dioxide at discrete resonances near the O 1s ionization edge are reported. The spectra are analyzed using a model based upon molecular symmetry and on the geometry of the molecule. We find clear evidence for molecular alignment that can be ascribed to symmetry properties of the ground and core-excited states. Configuration interaction (CI) calculations indicate geometry changes in accord with the measured spectra. For the SO{sub 2} molecule, however, we find that the localized core hole does not produce measurable evidence for valence localization, since the transition dipole moment is not parallel to a breakingmore » {sigma}* O-S bond, in contrast to the case of ozone. The dissociation behavior based upon the CI calculations using symmetry-broken orbitals while fixing a localized core-hole site is found to be nearly equivalent to that using symmetry-adapted orbitals. This implies that the core-localization effect is not strong enough to localize the {sigma}* valence orbital.« less

  5. Quasi-particle energy spectra in local reduced density matrix functional theory.

    PubMed

    Lathiotakis, Nektarios N; Helbig, Nicole; Rubio, Angel; Gidopoulos, Nikitas I

    2014-10-28

    Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A 90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C20 isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solids.

  6. Shuttle Wing Leading Edge Root Cause NDE Team Findings and Implementation of Quantitative Flash Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Burke, Eric R.

    2009-01-01

    Comparison metrics can be established to reliably and repeatedly establish the health of the joggle region of the Orbiter Wing Leading Edge reinforced carbon carbon (RCC) panels. Using these metrics can greatly reduced the man hours needed to perform, wing leading edge scanning for service induced damage. These time savings have allowed for more thorough inspections to be preformed in the necessary areas with out affecting orbiter flow schedule. Using specialized local inspections allows for a larger margin of safety by allowing for more complete characterizations of panel defects. The presence of the t-seal during thermographic inspection can have adverse masking affects on ability properly characterize defects that exist in the joggle region of the RCC panels. This masking affect dictates the final specialized inspection should be preformed with the t-seal removed. Removal of the t-seal and use of the higher magnification optics has lead to the most effective and repeatable inspection method for characterizing and tracking defects in the wing leading edge. Through this study some inadequacies in the main health monitoring system for the orbiter wing leading edge have been identified and corrected. The use of metrics and local specialized inspection have lead to a greatly increased reliability and repeatable inspection of the shuttle wing leading edge.

  7. Colloidal Bandpass and Bandgap Filters

    NASA Astrophysics Data System (ADS)

    Yellen, Benjamin; Tahir, Mukarram; Ouyang, Yuyu; Nori, Franco

    2013-03-01

    Thermally or deterministically-driven transport of objects through asymmetric potential energy landscapes (ratchet-based motion) is of considerable interest as models for biological transport and as methods for controlling the flow of information, material, and energy. Here, we provide a general framework for implementing a colloidal bandpass filter, in which particles of a specific size range can be selectively transported through a periodic lattice, whereas larger or smaller particles are dynamically trapped in closed-orbits. Our approach is based on quasi-static (adiabatic) transition in a tunable potential energy landscape composed of a multi-frequency magnetic field input signal with the static field of a spatially-periodic magnetization. By tuning the phase shifts between the input signal and the relative forcing coefficients, large-sized particles may experience no local energy barriers, medium-sized particles experience only one local energy barrier, and small-sized particles experience two local energy barriers. The odd symmetry present in this system can be used to nudge the medium-sized particles along an open pathway, whereas the large or small beads remain trapped in a closed-orbit, leading to a bandpass filter, and vice versa for a bandgap filter. NSF CMMI - 0800173, Youth 100 Scholars Fund

  8. A local model of warped magnetized accretion discs

    NASA Astrophysics Data System (ADS)

    Paris, J. B.; Ogilvie, G. I.

    2018-06-01

    We derive expressions for the local ideal magnetohydrodynamic (MHD) equations for a warped astrophysical disc using a warped shearing box formalism. A perturbation expansion of these equations to first order in the warping amplitude leads to a linear theory for the internal local structure of magnetized warped discs in the absence of magnetorotational instability (MRI) turbulence. In the special case of an external magnetic field oriented normal to the disc surface, these equations are solved semi-analytically via a spectral method. The relatively rapid warp propagation of low-viscosity Keplerian hydrodynamic warped discs is diminished by the presence of a magnetic field. The magnetic tension adds a stiffness to the epicyclic oscillations, detuning the natural frequency from the orbital frequency and thereby removing the resonant forcing of epicyclic modes characteristic of hydrodynamic warped discs. In contrast to a single hydrodynamic resonance, we find a series of Alfvénic-epicyclic modes which may be resonantly forced by the warped geometry at critical values of the orbital shear rate q and magnetic field strength. At these critical points large internal torques are generated and anomalously rapid warp propagation occurs. As our treatment omits MRI turbulence, these results are of greatest applicability to strongly magnetized discs.

  9. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.

    2015-06-01

    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5))more » and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure« less

  10. KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager Scott Thurston (hands extended) talks to the media in the Orbiter Processing Facility. The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

    NASA Image and Video Library

    2003-09-26

    KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager Scott Thurston (hands extended) talks to the media in the Orbiter Processing Facility. The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

  11. KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager Scott Thurston (facing camera) talks to the media in the Orbiter Processing Facility. The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

    NASA Image and Video Library

    2003-09-26

    KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager Scott Thurston (facing camera) talks to the media in the Orbiter Processing Facility. The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

  12. KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager Scott Thurston (left) talks to a phalanx of media in the Orbiter Processing Facility. The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

    NASA Image and Video Library

    2003-09-26

    KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager Scott Thurston (left) talks to a phalanx of media in the Orbiter Processing Facility. The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

  13. KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager Scott Thurston (right) talks to the media in the Orbiter Processing Facility . The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

    NASA Image and Video Library

    2003-09-26

    KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager Scott Thurston (right) talks to the media in the Orbiter Processing Facility . The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

  14. KENNEDY SPACE CENTER, FLA. - The media gather around NASA Vehicle Manager Scott Thurston (white shirt, right) who talks about some of the work being done on the orbiter Atlantis as it is being prepared for Return to Flight in the Orbiter Processing Facility. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

    NASA Image and Video Library

    2003-09-26

    KENNEDY SPACE CENTER, FLA. - The media gather around NASA Vehicle Manager Scott Thurston (white shirt, right) who talks about some of the work being done on the orbiter Atlantis as it is being prepared for Return to Flight in the Orbiter Processing Facility. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

  15. Orbital Metastasis: Rare Initial Presentation of an Occult Gall Bladder Carcinoma.

    PubMed

    Jain, Tarun Kumar; Parihar, Ashwin Singh; Sood, Ashwani; Basher, Rajender Kumar; Bollampally, Neeraja; Shekhawat, Amit Singh; Mittal, Bhagwant Rai

    2018-03-01

    Orbital metastases are known to arise from primary breast carcinoma followed by prostate, malignant melanoma, and lung carcinoma. We report a case of orbital metastasis as the initial presentation of an occult primary gall bladder carcinoma. The FDG PET/CT helped in localizing the occult distant primary site, which previously escaped detection, and also enabled the evaluation of orbital metastasis.

  16. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)].

    PubMed

    Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G; Minenkov, Yury; Cavallo, Luigi; Neese, Frank

    2018-01-07

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T 0 ) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T 0 ) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T 0 ) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T 0 ) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T 0 ) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T 0 ) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T 0 ), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  17. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G.; Minenkov, Yury; Cavallo, Luigi; Neese, Frank

    2018-01-01

    In this communication, an improved perturbative triples correction (T) algorithm for domain based local pair-natural orbital singles and doubles coupled cluster (DLPNO-CCSD) theory is reported. In our previous implementation, the semi-canonical approximation was used and linear scaling was achieved for both the DLPNO-CCSD and (T) parts of the calculation. In this work, we refer to this previous method as DLPNO-CCSD(T0) to emphasize the semi-canonical approximation. It is well-established that the DLPNO-CCSD method can predict very accurate absolute and relative energies with respect to the parent canonical CCSD method. However, the (T0) approximation may introduce significant errors in absolute energies as the triples correction grows up in magnitude. In the majority of cases, the relative energies from (T0) are as accurate as the canonical (T) results of themselves. Unfortunately, in rare cases and in particular for small gap systems, the (T0) approximation breaks down and relative energies show large deviations from the parent canonical CCSD(T) results. To address this problem, an iterative (T) algorithm based on the previous DLPNO-CCSD(T0) algorithm has been implemented [abbreviated here as DLPNO-CCSD(T)]. Using triples natural orbitals to represent the virtual spaces for triples amplitudes, storage bottlenecks are avoided. Various carefully designed approximations ease the computational burden such that overall, the increase in the DLPNO-(T) calculation time over DLPNO-(T0) only amounts to a factor of about two (depending on the basis set). Benchmark calculations for the GMTKN30 database show that compared to DLPNO-CCSD(T0), the errors in absolute energies are greatly reduced and relative energies are moderately improved. The particularly problematic case of cumulene chains of increasing lengths is also successfully addressed by DLPNO-CCSD(T).

  18. Reduction of variance in spectral estimates for correction of ultrasonic aberration.

    PubMed

    Astheimer, Jeffrey P; Pilkington, Wayne C; Waag, Robert C

    2006-01-01

    A variance reduction factor is defined to describe the rate of convergence and accuracy of spectra estimated from overlapping ultrasonic scattering volumes when the scattering is from a spatially uncorrelated medium. Assuming that the individual volumes are localized by a spherically symmetric Gaussian window and that centers of the volumes are located on orbits of an icosahedral rotation group, the factor is minimized by adjusting the weight and radius of each orbit. Conditions necessary for the application of the variance reduction method, particularly for statistical estimation of aberration, are examined. The smallest possible value of the factor is found by allowing an unlimited number of centers constrained only to be within a ball rather than on icosahedral orbits. Computations using orbits formed by icosahedral vertices, face centers, and edge midpoints with a constraint radius limited to a small multiple of the Gaussian width show that a significant reduction of variance can be achieved from a small number of centers in the confined volume and that this reduction is nearly the maximum obtainable from an unlimited number of centers in the same volume.

  19. Modeling L2,3-Edge X-ray Absorption Spectroscopy with Real-Time Exact Two-Component Relativistic Time-Dependent Density Functional Theory.

    PubMed

    Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong

    2018-04-10

    X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.

  20. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    NASA Astrophysics Data System (ADS)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-01

    This study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Second, using a newly developed proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ˜ 2°, than those from the three empirical models with averaged errors > ˜ 5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. This study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.

  1. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    DOE PAGES

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-21

    Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less

  2. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less

  3. Spin-orbit coupling effects in zinc-blende InSb and wurtzite InAs nanowires: Realistic calculations with multiband k .p method

    NASA Astrophysics Data System (ADS)

    Campos, Tiago; Faria Junior, Paulo E.; Gmitra, Martin; Sipahi, Guilherme M.; Fabian, Jaroslav

    2018-06-01

    A systematic numerical investigation of spin-orbit fields in the conduction bands of III-V semiconductor nanowires is performed. Zinc-blende (ZB) InSb nanowires are considered along [001], [011], and [111] directions, while wurtzite (WZ) InAs nanowires are studied along [0001] and [10 1 ¯0 ] or [11 2 ¯0 ] directions. Robust multiband k .p Hamiltonians are solved by using plane-wave expansions of real-space parameters. In all cases, the linear and cubic spin-orbit coupling parameters are extracted for nanowire widths from 30 to 100 nm. Typical spin-orbit energies are on the μ eV scale, except for WZ InAs nanowires grown along [10 1 ¯0 ] or [11 2 ¯0 ] , in which the spin-orbit energy is about meV, largely independent of the wire diameter. Significant spin-orbit coupling is obtained by applying a transverse electric field, causing the Rashba effect. For an electric field of about 4 mV/nm, the obtained spin-orbit energies are about 1 meV for both materials in all investigated growth directions. The most favorable system, in which the spin-orbit effects are maximal, are WZ InAs nanowires grown along [1010] or [11 2 ¯0 ] since here spin-orbit energies are giant (meV) already in the absence of electric field. The least favorable are InAs WZ nanowires grown along [0001] since here even the electric field does not increase the spin-orbit energies beyond 0.1 meV. The presented results should be useful for investigations of optical orientation, spin transport, weak localization, and superconducting proximity effects in semiconductor nanowires.

  4. Parallel Implicit Runge-Kutta Methods Applied to Coupled Orbit/Attitude Propagation

    NASA Astrophysics Data System (ADS)

    Hatten, Noble; Russell, Ryan P.

    2017-12-01

    A variable-step Gauss-Legendre implicit Runge-Kutta (GLIRK) propagator is applied to coupled orbit/attitude propagation. Concepts previously shown to improve efficiency in 3DOF propagation are modified and extended to the 6DOF problem, including the use of variable-fidelity dynamics models. The impact of computing the stage dynamics of a single step in parallel is examined using up to 23 threads and 22 associated GLIRK stages; one thread is reserved for an extra dynamics function evaluation used in the estimation of the local truncation error. Efficiency is found to peak for typical examples when using approximately 8 to 12 stages for both serial and parallel implementations. Accuracy and efficiency compare favorably to explicit Runge-Kutta and linear-multistep solvers for representative scenarios. However, linear-multistep methods are found to be more efficient for some applications, particularly in a serial computing environment, or when parallelism can be applied across multiple trajectories.

  5. Orbital Apex Syndrome Caused by Invasive Aspergillosis as an Adverse Effect of Systemic Chemotherapy for Metastatic Colorectal Cancer: a Case Report.

    PubMed

    Miyamoto, Yuji; Sakamoto, Yasuo; Ohuchi, Mayuko; Tokunaga, Ryuma; Shigaki, Hironobu; Kurashige, Junji; Iwatsuki, Masaaki; Baba, Yoshifumi; Yoshida, Naoya; Watanabe, Masayuki; Baba, Hideo

    2016-02-01

    Continuous therapy with cytotoxic drugs suppresses humoral immune function and may result in local infection. We present a case of orbital apex syndrome caused by Aspergillus infection during chemotherapy for metastatic colorectal cancer. A 74-year-old man with colorectal liver metastases under long-term continuous systemic chemotherapy presented with painful, progressive orbital apex syndrome. Magnetic resonance imaging disclosed a small enhancing lesion around the right ethmoid sinus. We initially diagnosed colorectal cancer metastasis and he underwent biopsy via the endoscopic endonasal transethmoid approach. However, pathological examination of the cultured specimen revealed Aspergillus fumigatus. The patient was treated with voriconazole and the orbital apex syndrome resolved after 1 month. Orbital aspergillosis is a life-threatening disease and should be listed as a differential diagnosis of uncommon local infections during continuous chemotherapy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Hyperostosis in an orbital defect with craniofacial implants and open-field magnets: a clinical report.

    PubMed

    Sullivan, Maureen; Casey, David M; Alberico, Ronald; Litwin, Alan; Schaaf, Norman G

    2007-04-01

    An orbital facial prosthesis wearer was found to have significant hyperostosis in an exenterated orbit exposed to long-term, open field, rare earth magnets attached to craniofacial implants. Localized exophytic osseous formation was found in multiple areas around the exenterated orbit. The overall thickness of the walls of the exenterated orbit was approximately double that of the unaffected side. Magnetic field effect on bone formation and recommended treatment are discussed.

  7. Time Harmonic Two-Dimensional Cavity Scar Statistics: Convex Mirrors and Bowtie

    DOE PAGES

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; ...

    2011-02-10

    Here, this article examines the localization of time harmonic high-frequency modal fields in two-dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This article examines the enhancements for these unstable orbits when the opposing mirrors are convex, constructing the high-frequency field in the scar region using elliptic cylinder coordinates in combination with a random reflection phase from the outer chaotic region. Finally, the enhancements when the cavity is symmetric as well as asymmetric about the orbit are examined.

  8. Adaptive lyapunov control and artificial neural networks for spacecraft relative maneuvering using atmospheric differential drag

    NASA Astrophysics Data System (ADS)

    Perez Chaparro, David Andres

    At low Earth orbits, a differential in the drag acceleration between spacecraft can be used to control their relative motion. This drag differential allows for a propellant-free alternative to thrusters for performing relative maneuvers in these orbits. The interest in autonomous propellant-less maneuvering comes from the desire to reduce the costs of spacecraft formations. Formation maneuvering opens up a wide variety of new applications for spacecraft missions, such as on-orbit maintenance and refueling. In this work atmospheric differential drag based nonlinear controllers are presented that can be used for virtually any planar relative maneuver of two spacecraft, provided that there is enough atmospheric density and that the spacecraft can change their ballistic coefficients by sufficient amounts to generate the necessary differential accelerations. The control techniques are successfully tested using high fidelity Satellite Tool Kit simulations for re-phase, fly-around, and rendezvous maneuvers, proving the feasibility of the proposed approach for a real flight. Furthermore, the atmospheric density varies in time and in space as the spacecraft travel along their orbits. The ability to accurately forecast the density allows for accurate onboard orbit propagation and for creating realistic guidance trajectories for maneuvers that rely on the differential drag. In this work a localized density predictor based on artificial neural networks is also presented. The predictor uses density measurements or estimates along the past orbits and can use a set of proxies for solar and geomagnetic activities to predict the value of the density along the future orbits of the spacecraft. The performance of the localized predictor is studied for different neural network structures, testing periods of high and low solar and geomagnetic activities and different prediction windows. Comparison with previously developed methods show substantial benefits in using neural networks, both in prediction accuracy and in the potential for spacecraft onboard implementation. The controllers and the predictor are designed for onboard implementation, and provide spacecraft with the tools necessary for performing propellant-less formation maneuvers using differential drag.

  9. Spin-Orbital entangled 2DEG in the δ-doped interface LaδSr2IrO4: Density-Functional Studies and Transport Results from Boltzmann Equations

    NASA Astrophysics Data System (ADS)

    Bhandari, Churna; Popovic, Zoran; Satpathy, Sashi

    The strong spin-orbit coupled iridates are of considerable interest because of the Mottminsulating state,which is produced by the combined effect of a strong spin-orbit coupling (SOC) and Coulomb repulsion. In this work, using density-functional methods, we predict the existence of a spin-orbital entangled two dimensional electron gas (2DEG) in the delta-doped structure, where a single SrO layer is replaced by an LaO layer. In the bulk Sr2IrO4, a strong SOC splits the t2 g states into Jeff = 1 / 2 and 3 / 2 states. The Coulomb repulsion further splits the half-filled Jeff = 1 / 2 bands into a lower and an upper Hubbard band (UHB) producing a Mott insulator. In the δ-doped structure, La dopes electrons into the UHB, and our results show that the doped electrons are strongly localized in one or two Ir layers at the interface, reminiscent of the 2DEG in the well-studied LaAlO3/SrTiO3 interface. The UHB, consisting of spin-orbit entangled states, is partially filled, resulting in a spin-orbital entangled 2DEG. Transport properties of the 2DEG shows many interesting features, which we study by solving the semi-classical Boltzmann transport equation in the presence of the magnetic and electric fields.

  10. Orbits of massive satellite galaxies - II. Bayesian estimates of the Milky Way and Andromeda masses using high-precision astrometry and cosmological simulations

    NASA Astrophysics Data System (ADS)

    Patel, Ekta; Besla, Gurtina; Mandel, Kaisey

    2017-07-01

    In the era of high-precision astrometry, space observatories like the Hubble Space Telescope (HST) and Gaia are providing unprecedented 6D phase-space information of satellite galaxies. Such measurements can shed light on the structure and assembly history of the Local Group, but improved statistical methods are needed to use them efficiently. Here we illustrate such a method using analogues of the Local Group's two most massive satellite galaxies, the Large Magellanic Cloud (LMC) and Triangulum (M33), from the Illustris dark-matter-only cosmological simulation. We use a Bayesian inference scheme combining measurements of positions, velocities and specific orbital angular momenta (j) of the LMC/M33 with importance sampling of their simulated analogues to compute posterior estimates of the Milky Way (MW) and Andromeda's (M31) halo masses. We conclude that the resulting host halo mass is more susceptible to bias when using measurements of the current position and velocity of satellites, especially when satellites are at short-lived phases of their orbits (I.e. at pericentre). Instead, the j value of a satellite is well conserved over time and provides a more reliable constraint on host mass. The inferred virial mass of the MW (M31) using j of the LMC (M33) is {{M}}_{vir, MW} = 1.02^{+0.77}_{-0.55} × 10^{12} M⊙ ({{M}}_{vir, M31} = 1.37^{+1.39}_{-0.75} × 10^{12} M⊙). Choosing simulated analogues whose j values are consistent with the conventional picture of a previous (<3 Gyr ago), close encounter (<100 kpc) of M33 about M31 results in a very low virial mass for M31 (˜1012 M⊙). This supports the new scenario put forth in Patel, Besla & Sohn, wherein M33 is on its first passage about M31 or on a long-period orbit. We conclude that this Bayesian inference scheme, utilizing satellite j, is a promising method to reduce the current factor of 2 spread in the mass range of the MW and M31. This method is easily adaptable to include additional satellites as new 6D phase-space information becomes available from HST, Gaia and the James Webb Space Telescope.

  11. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform.

    PubMed

    Nagy, Péter R; Kállay, Mihály

    2017-06-07

    An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor.

  12. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform

    PubMed Central

    2017-01-01

    An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor. PMID:28576082

  13. Automatic streak endpoint localization from the cornerness metric

    NASA Astrophysics Data System (ADS)

    Sease, Brad; Flewelling, Brien; Black, Jonathan

    2017-05-01

    Streaked point sources are a common occurrence when imaging unresolved space objects from both ground- and space-based platforms. Effective localization of streak endpoints is a key component of traditional techniques in space situational awareness related to orbit estimation and attitude determination. To further that goal, this paper derives a general detection and localization method for streak endpoints based on the cornerness metric. Corners detection involves searching an image for strong bi-directional gradients. These locations typically correspond to robust structural features in an image. In the case of unresolved imagery, regions with a high cornerness score correspond directly to the endpoints of streaks. This paper explores three approaches for global extraction of streak endpoints and applies them to an attitude and rate estimation routine.

  14. Semi-Local DFT Functionals with Exact-Exchange-Like Features: Beyond the AK13

    NASA Astrophysics Data System (ADS)

    Armiento, Rickard

    The Armiento-Kümmel functional from 2013 (AK13) is a non-empirical semi-local exchange functional on generalized gradient approximation form (GGA) in Kohn-Sham (KS) density functional theory (DFT). Recent works have established that AK13 gives improved electronic-structure exchange features over other semi-local methods, with a qualitatively improved orbital description and band structure. For example, the Kohn-Sham band gap is greatly extended, as it is for exact exchange. This talk outlines recent efforts towards new exchange-correlation functionals based on, and extending, the AK13 design ideas. The aim is to improve the quantitative accuracy, the description of energetics, and to address other issues found with the original formulation. Swedish e-Science Research Centre (SeRC).

  15. On the importance of local orbitals using second energy derivatives for d and f electrons

    NASA Astrophysics Data System (ADS)

    Karsai, Ferenc; Tran, Fabien; Blaha, Peter

    2017-11-01

    The all-electron linearized augmented plane wave (LAPW) methods are among the most accurate to solve the Kohn-Sham equations of density functional theory for periodic solids. In the LAPW methods, the unit cell is partitioned into spheres surrounding the atoms, inside which the wave functions are expanded into spherical harmonics, and the interstitial region, where the wave functions are expanded in Fourier series. Recently, Michalicek et al. (2013) reported an analysis of the so-called linearization error, which is inherent to the basis functions inside the spheres, and advocated the use of local orbital basis functions involving the second energy derivative of the radial part (HDLO). In the present work, we report the implementation of such basis functions into the WIEN2k code, and discuss in detail the improvement in terms of accuracy. From our tests, which involve atoms from the whole periodic table, it is concluded that for ground-state properties (e.g., equilibrium volume) the use of HDLO is necessary only for atoms with d or f electrons in the valence and large atomic spheres. For unoccupied states which are not too high above the Fermi energy, HDLO systematically improve the band structure, which may be of importance for the calculation of optical properties.

  16. Oxygen holes and hybridization in the bismuthates

    NASA Astrophysics Data System (ADS)

    Khazraie, Arash; Foyevtsova, Kateryna; Elfimov, Ilya; Sawatzky, George A.

    2018-02-01

    Motivated by the recently renewed interest in the superconducting bismuth perovskites, we investigate the electronic structure of the parent compounds A BiO3 (A = Sr, Ba) using ab initio methods and tight-binding (TB) modeling. We use the density functional theory (DFT) in the local density approximation (LDA) to understand the role of various interactions in shaping the A BiO3 band structure near the Fermi level. It is established that interatomic hybridization involving Bi-6 s and O-2 p orbitals plays the most important role. Based on our DFT calculations, we derive a minimal TB model and demonstrate that it can describe the properties of the band structure as a function of lattice distortions, such as the opening of a charge gap with the onset of the breathing distortion and the associated condensation of holes onto a1 g-symmetric molecular orbitals formed by the O-2 pσ orbitals on collapsed octahedra. We also derive a single band model involving the hopping of an extended molecular orbital involving both Bi-6 s and a linear combination of six O-2 p orbitals which provides a very good description of the dispersion and band gaps of the low energy scale bands straddling the chemical potential.

  17. NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations

    NASA Astrophysics Data System (ADS)

    de Wijs, G. A.; Laskowski, R.; Blaha, P.; Havenith, R. W. A.; Kresse, G.; Marsman, M.

    2017-02-01

    We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.

  18. NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations.

    PubMed

    de Wijs, G A; Laskowski, R; Blaha, P; Havenith, R W A; Kresse, G; Marsman, M

    2017-02-14

    We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.

  19. Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3

    NASA Astrophysics Data System (ADS)

    Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.

    2016-02-01

    Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.

  20. KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager Scott Thurston (right) talks to the media in the Orbiter Processing Facility. The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System. will be available to discuss the work and answer questions.

    NASA Image and Video Library

    2003-09-26

    KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager Scott Thurston (right) talks to the media in the Orbiter Processing Facility. The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System. will be available to discuss the work and answer questions.

  1. F-18 FDG PET/CT findings in a patient with bilateral orbital and gastric mucosa-associated lymphoid tissue lymphomas.

    PubMed

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Hiyama, Atsuto; Takeda, Koumei; Matsunaga, Naofumi

    2009-09-01

    Orbital mucosa-associated lymphoid tissue (MALT) lymphoma is an uncommon disease, while the incidence is recently increasing. We describe the F-18 fluorodeoxyglucose positron emission tomography computerized tomography (FDG PET/CT) findings in a case of bilateral orbital MALT lymphomas with a coexisting gastric lesion. Although only the lesion in the left orbit was initially identified on MR imaging, FDG PET/CT scan unexpectedly and additionally could identify the tiny lesion of the contralateral orbit and the gastric lesion. This patient received radiotherapy to all these lesions, with a combination of rituximab monoclonal antibody therapy. The follow-up PET/CT studies at 3, 6, and 9 months and 1.5 years after treatment showed regression or disappearance of all these FDG-avid lesions. Accurate localization and staging are crucial to select an adequate treatment in MALT lymphoma at any location. This case indicates the feasibility of FDG PET/CT scan for accurate localization and staging and also for monitoring treatment in patients with orbital MALT lymphoma.

  2. Orbital liquid in three-dimensional mott insulator: LaTiO3

    PubMed

    Khaliullin; Maekawa

    2000-10-30

    We present a theory of spin and orbital states in Mott insulator LaTiO3. The spin-orbital superexchange interaction between d(1)(t(2g)) ions in cubic crystal suffers from a pathological degeneracy of orbital states at the classical level. Quantum effects remove this degeneracy and result in the formation of the coherent ground state, in which the orbital moment of t(2g) level is fully quenched. We find a finite gap for orbital excitations. Such a disordered state of local degrees of freedom on unfrustrated, simple cubic lattice is highly unusual. Orbital liquid state naturally explains observed anomalies of LaTiO3.

  3. Localized Density/Drag Prediction for Improved Onboard Orbit Propagation

    DTIC Science & Technology

    2009-09-01

    Localized Density/Drag Prediction for Improved Onboard Orbit Propagation Nathan B. Stastny, Frank R. Chavez, Chin Lin, T. Alan Lovell , Robert A...Terrestrial Physics, Vol. 70, 774-793, 2008 3. Storz, M.F, Bowman, B.R., Branson, J.I., High Accuracy Satellite Drag Model (HASDM), AIAA/ AAS ...Geomagnetic Indices, AIAA/ AAS Astrodynamics Specialist Conference, Honolulu, HI, Aug. 2008 5. Bruinsma, S., Biancale, R., Total Densities Derived from

  4. Mottness Collapse in 1 T -TaS2 -xSex Transition-Metal Dichalcogenide: An Interplay between Localized and Itinerant Orbitals

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Li, Xintong; Wang, Naizhou; Ruan, Wei; Ye, Cun; Cai, Peng; Hao, Zhenqi; Yao, Hong; Chen, Xianhui; Wu, Jian; Wang, Yayu; Liu, Zheng

    2017-10-01

    The layered transition-metal dichalcogenide 1 T -TaS2 has been recently found to undergo a Mott-insulator-to-superconductor transition induced by high pressure, charge doping, or isovalent substitution. By combining scanning tunneling microscopy measurements and first-principles calculations, we investigate the atomic scale electronic structure of the 1 T -TaS2 Mott insulator and its evolution to the metallic state upon isovalent substitution of S with Se. We identify two distinct types of orbital textures—one localized and the other extended—and demonstrate that the interplay between them is the key factor that determines the electronic structure. In particular, we show that the continuous evolution of the charge gap visualized by scanning tunneling microscopy is due to the immersion of the localized-orbital-induced Hubbard bands into the extended-orbital-spanned Fermi sea, featuring a unique evolution from a Mott gap to a charge-transfer gap. This new mechanism of Mottness collapse revealed here suggests an interesting route for creating novel electronic states and designing future electronic devices.

  5. Spacecraft transfer trajectory design exploiting resonant orbits in multi-body environments

    NASA Astrophysics Data System (ADS)

    Vaquero Escribano, Tatiana Mar

    Historically, resonant orbits have been employed in mission design for multiple planetary flyby trajectories and, more recently, as a source of long-term orbital stability. For instance, in support of a mission concept in NASA's Outer Planets Program, the Jupiter Europa Orbiter spacecraft is designed to encounter two different resonances with Europa during the 'endgame' phase, leading to Europa orbit insertion on the final pass. In 2011, the Interstellar Boundary Explorer spacecraft was inserted into a stable out-of-plane lunar-resonant orbit, the first of this type for a spacecraft in a long-term Earth orbit. However, resonant orbits have not yet been significantly explored as transfer mechanisms between non-resonant orbits in multi-body systems. This research effort focuses on incorporating resonant orbits into the design process to potentially enable the construction of more efficient or even novel transfer scenarios. Thus, the goals in this investigation are twofold: i) to expand the orbit architecture in multi-body environments by cataloging families of resonant orbits, and ii) to assess the role of such families in the design of transfer trajectories with specific patterns and itineraries. The benefits and advantages of employing resonant orbits in the design process are demonstrated through a variety of astrodynamics applications in several multi-body systems. In the Earth-Moon system, locally optimal transfer trajectories from low Earth orbit to selected libration point orbits are designed by leveraging conic arcs and invariant manifolds associated with resonant orbits. Resonant manifolds in the Earth-Moon system offer trajectories that tour the entire space within reasonable time intervals, facilitating the design of libration point orbit tours as well as Earth-Moon cyclers. In the Saturnian system, natural transitions between resonant and libration point orbits are sought and the problem of accessing Hyperion from orbits that are resonant with Titan is also examined. To add versatility to the proposed design method, a system translation technique enables the straightforward transition of solutions from the Earth-Moon system to any Sun-planet or planet-moon three-body system. The circular restricted three-body problem serves as a basis to quickly generate solutions that meet specific requirements, but candidate transfer trajectories are then transitioned to an ephemeris model for validation.

  6. GW100: Benchmarking G0W0 for Molecular Systems.

    PubMed

    van Setten, Michiel J; Caruso, Fabio; Sharifzadeh, Sahar; Ren, Xinguo; Scheffler, Matthias; Liu, Fang; Lischner, Johannes; Lin, Lin; Deslippe, Jack R; Louie, Steven G; Yang, Chao; Weigend, Florian; Neaton, Jeffrey B; Evers, Ferdinand; Rinke, Patrick

    2015-12-08

    We present the GW100 set. GW100 is a benchmark set of the ionization potentials and electron affinities of 100 molecules computed with the GW method using three independent GW codes and different GW methodologies. The quasi-particle energies of the highest-occupied molecular orbitals (HOMO) and lowest-unoccupied molecular orbitals (LUMO) are calculated for the GW100 set at the G0W0@PBE level using the software packages TURBOMOLE, FHI-aims, and BerkeleyGW. The use of these three codes allows for a quantitative comparison of the type of basis set (plane wave or local orbital) and handling of unoccupied states, the treatment of core and valence electrons (all electron or pseudopotentials), the treatment of the frequency dependence of the self-energy (full frequency or more approximate plasmon-pole models), and the algorithm for solving the quasi-particle equation. Primary results include reference values for future benchmarks, best practices for convergence within a particular approach, and average error bars for the most common approximations.

  7. Structure and electronic properties of Alq3 derivatives with electron acceptor/donor groups at the C4 positions of the quinolate ligands: a theoretical study.

    PubMed

    Rao, Joshi Laxmikanth; Bhanuprakash, Kotamarthi

    2011-12-01

    The molecular structures of the ground (S(0)) and first singlet excited (S(1)) states of Alq3 derivatives in which pyrazolyl and 3-methylpyrazolyl groups are substituted at the C4 positions of the 8-hydroxyquinolate ligands as electron acceptors, and piperidinyl and N-methylpiperazinyl groups are substituted at the same positions as electron donors, have been optimized using the B3LYP/6-31G and CIS/6-31G methods, respectively. In order to analyze the electronic transitions in these derivatives, the frontier molecular orbital characteristics were analyzed systematically, and it was found that the highest occupied molecular orbital is localized on the A ligand while the lowest unoccupied molecular orbital is localized on the B ligand in their ground states, similar to what is seen for mer-Alq3. The absorption and emission spectra were evaluated at the TD-PBE0/6-31G level, and it was observed that electron acceptor substitution causes a red-shift in the emission spectra, which is also seen experimentally. The reorganization energies were calculated at the B3LYP/6-31G level and the results show that acceptor/donor substitution has a significant effect on the intrinsic charge mobilities of these derivatives as compared to mer-Alq3.

  8. Classical Coset Hamiltonian for the Electronic Motion and its Application to Anderson Localization and Hammett Equation

    NASA Astrophysics Data System (ADS)

    Xing, Guan; Wu, Guo-Zhen

    2001-02-01

    A classical coset Hamiltonian is introduced for the system of one electron in multi-sites. By this Hamiltonian, the dynamical behaviour of the electronic motion can be readily simulated. The simulation reproduces the retardation of the electron density decay in a lattice with site energies randomly distributed - an analogy with Anderson localization. This algorithm is also applied to reproduce the Hammett equation which relates the reaction rate with the property of the substitutions in the organic chemical reactions. The advantages and shortcomings of this algorithm, as contrasted with traditional quantum methods such as the molecular orbital theory, are also discussed.

  9. Conformational analysis, spectroscopic, structure-activity relations and quantum chemical simulation studies of 4-(trifluoromethyl)benzylamine

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Devi, L.; Mohan, S.

    2018-05-01

    The FT-IR and FT-Raman spectra of 4-trifluoromethylbenzylamine (TFMBA) have been recorded in the range 4000-450 and 4000-100 cm-1 respectively. The conformational analysis of the compound has been carried out to attain stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies. The experimental vibrational frequencies are compared with the wavenumbers obtained theoretically from the B3LYP gradient calculations employing the standard high level 6-311++G** and cc-pVTZ basis sets for the optimised geometry of the compound. The structural parameters, thermodynamic properties and vibrational frequencies of the normal modes obtained from the B3LYP methods are in good agreement with the experimental data. The 1H (400 MHz; CDCl3) and 13C (100 MHz; CDCl3) nuclear magnetic resonance (NMR) spectra were also recorded. The electronic properties, highest occupied molecular orbital and lowest unoccupied molecular orbital energies are measured by DFT approach. The charges of the atoms by natural bond orbital (NBO) analysis are determined by B3LYP/cc-pVTZ method. The structure-chemical reactivity relations of the compound are determined through chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors by conceptual DFT methods.

  10. Multi-orbital non-crossing approximation from maximally localized Wannier functions: the Kondo signature of copper phthalocyanine on Ag(100).

    PubMed

    Korytár, Richard; Lorente, Nicolás

    2011-09-07

    We have developed a multi-orbital approach to compute the electronic structure of a quantum impurity using the non-crossing approximation. The calculation starts with a mean-field evaluation of the system's electronic structure using a standard quantum chemistry code; here we use density functional theory (DFT). We transformed the one-electron structure into an impurity Hamiltonian by using maximally localized Wannier functions. Hence, we have developed a method to study the Kondo effect in systems based on an initial one-electron calculation. We have applied our methodology to a copper phthalocyanine molecule chemisorbed on Ag(100), and we have described its spectral function for three different cases where the molecule presents a single spin or two spins with ferro- and anti-ferromagnetic exchange couplings. We find that the use of broken-symmetry mean-field theories such as Kohn-Sham DFT cannot deal with the complexity of the spin of open-shell molecules on metal surfaces and extra modeling is needed. © 2011 IOP Publishing Ltd

  11. Evolution of the orbitals Dy-4f in the DyB2 compound using the LDA, PBE approximations, and the PBE0 hybrid functional

    NASA Astrophysics Data System (ADS)

    Rasero Causil, Diego; Ortega López, César; Espitia Rico, Miguel

    2018-04-01

    Computational calculations of total energy based on density functional theory were used to investigate the structural, electronic, and magnetic properties of the DyB2 compounds in the hexagonal structure. The calculations were carried out by means of the full-potential linearized augmented plane wave (FP-LAPW) method, employing the computational Wien2k package. The local density approximation (LDA) and the generalized gradient approximation (GGA) were used for the electron-electron interactions. Additionally, we used the functional hybrid PBE0 for a better description the electronic and magnetic properties, because the DyB2 compound is a strongly-correlated system. We found that the calculated lattice constant agrees well with the values reported theoretically and experimentally. The density of states (DOS) calculation shows that the compound exhibits a metallic behavior and has magnetic properties, with a total magnetic moment of 5.47 μ0/cell determined mainly by the 4f states of the rare earth elements. The functional PBE0 shows a strong localization of the Dy-4f orbitals.

  12. Spin-orbit torques in magnetic bilayers

    NASA Astrophysics Data System (ADS)

    Haney, Paul

    2015-03-01

    Spintronics aims to utilize the coupling between charge transport and magnetic dynamics to develop improved and novel memory and logic devices. Future progress in spintronics may be enabled by exploiting the spin-orbit coupling present at the interface between thin film ferromagnets and heavy metals. In these systems, applying an in-plane electrical current can induce magnetic dynamics in single domain ferromagnets, or can induce rapid motion of domain wall magnetic textures. There are multiple effects responsible for these dynamics. They include spin-orbit torques and a chiral exchange interaction (the Dzyaloshinskii-Moriya interaction) in the ferromagnet. Both effects arise from the combination of ferromagnetism and spin-orbit coupling present at the interface. There is additionally a torque from the spin current flux impinging on the ferromagnet, arising from the spin hall effect in the heavy metal. Using a combination of approaches, from drift-diffusion to Boltzmann transport to first principles methods, we explore the relative contributions to the dynamics from these different effects. We additionally propose that the transverse spin current is locally enhanced over its bulk value in the vicinity of an interface which is oriented normal to the charge current direction.

  13. ARC-2002-ACD02-0061-5

    NASA Image and Video Library

    2002-02-26

    Microvave effects on plant growth (alfalfa), shown here is Dr. Jay Skiles of NASA Ames Research Center, Moffett Field, Calif. NASA scientists are about to test that hypothesis by evaluating the effects of continuously beaming weak microwaves on alfalfa plants during laboratory tests. Microwaves derived from solar power and transmitted by orbiting satellites to electric power stations on Earth may someday enable U.S. energy self-sufficiency, but is this method safe for local plant life?

  14. ARC-2002-ACD02-0061-4

    NASA Image and Video Library

    2002-02-26

    Microvave effects on plant growth (alfalfa), shown here is Dr. Jay Skiles of NASA Ames Research Center, Moffett Field, Calif. NASA scientists are about to test that hypothesis by evaluating the effects of continuously beaming weak microwaves on alfalfa plants during laboratory tests. Microwaves derived from solar power and transmitted by orbiting satellites to electric power stations on Earth may someday enable U.S. energy self-sufficiency, but is this method safe for local plant life?

  15. Approximation for limit cycles and their isochrons.

    PubMed

    Demongeot, Jacques; Françoise, Jean-Pierre

    2006-12-01

    Local analysis of trajectories of dynamical systems near an attractive periodic orbit displays the notion of asymptotic phase and isochrons. These notions are quite useful in applications to biosciences. In this note, we give an expression for the first approximation of equations of isochrons in the setting of perturbations of polynomial Hamiltonian systems. This method can be generalized to perturbations of systems that have a polynomial integral factor (like the Lotka-Volterra equation).

  16. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    NASA Astrophysics Data System (ADS)

    da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-04-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.

  17. Electronically highly cubic conditions for Ru in α -RuCl3

    NASA Astrophysics Data System (ADS)

    Agrestini, S.; Kuo, C.-Y.; Ko, K.-T.; Hu, Z.; Kasinathan, D.; Vasili, H. B.; Herrero-Martin, J.; Valvidares, S. M.; Pellegrin, E.; Jang, L.-Y.; Henschel, A.; Schmidt, M.; Tanaka, A.; Tjeng, L. H.

    2017-10-01

    We studied the local Ru 4 d electronic structure of α -RuCl3 by means of polarization-dependent x-ray absorption spectroscopy at the Ru L2 ,3 edges. We observed a vanishingly small linear dichroism indicating that electronically the Ru 4 d local symmetry is highly cubic. Using full multiplet cluster calculations we were able to reproduce the spectra excellently and to extract that the trigonal splitting of the t2 g orbitals is -12 ±10 meV, i.e., negligible as compared to the Ru 4 d spin-orbit coupling constant. Consistent with our magnetic circular dichroism measurements, we found that the ratio of the orbital and spin moments is 2.0, the value expected for a Jeff=1/2 ground state. We have thus shown that as far as the Ru 4 d local properties are concerned, α -RuCl3 is an ideal candidate for the realization of Kitaev physics.

  18. Adsorption and dissociation of molecular hydrogen on the (0001) surface of double hexagonal close packed americium

    NASA Astrophysics Data System (ADS)

    Dholabhai, P. P.; Ray, A. K.

    2009-01-01

    Hydrogen molecule adsorption on the (0001) surface of double hexagonal packed americium has been studied in detail within the framework of density functional theory using a full-potential all-electron linearized augmented plane wave plus local orbitals method (FP-L/APW+lo). Weak molecular hydrogen adsorptions were observed. Adsorption energies were optimized with respect to the distance of the adsorbates from the surface for three approach positions at three adsorption sites, namely t1 (one-fold top), b2 (two-fold bridge), and h3 (three-fold hollow) sites. Adsorption energies were computed at the scalar-relativistic level (no spin-orbit coupling NSOC) and at the fully relativistic level (with spin-orbit coupling SOC). The most stable configuration corresponds to a horizontal adsorption with the molecular approach being perpendicular to a lattice vector. The surface coverage is equivalent to one-fourth of a monolayer (ML), with the adsorption energies at the NSOC and SOC theoretical levels being 0.0997 eV and 0.1022 eV, respectively. The respective distance of the hydrogen molecule from the surface and hydrogen-hydrogen distance was found to be 2.645 Å and 0.789 Å, respectively. The work functions decreased and the net magnetic moments remained almost unchanged in all cases compared with the corresponding quantities of bare dhcp Am (0001) surface. The adsorbate-substrate interactions have been analyzed in detail using the partial charges inside the muffin-tin spheres, difference charge density distributions, and the local density of states. The effects of adsorption on the Am 5f electron localization-delocalization characteristics have been discussed. Reaction barrier for the dissociation of hydrogen molecule has been presented.

  19. Vision-based localization for on-orbit servicing of a partially cooperative satellite

    NASA Astrophysics Data System (ADS)

    Oumer, Nassir W.; Panin, Giorgio; Mülbauer, Quirin; Tseneklidou, Anastasia

    2015-12-01

    This paper proposes ground-in-the-loop, model-based visual localization system based on transmitted images to ground, to aid rendezvous and docking maneuvers between a servicer and a target satellite. In particular, we assume to deal with a partially cooperative target, i.e. passive and without fiducial markers, but supposed at least to keep a controlled attitude, up to small fluctuations, so that the approach mainly involves translational motion. For the purpose of localization, video cameras provide an effective and relatively inexpensive solution, working at a wide range of distances with an increasing accuracy and robustness during the approach. However, illumination conditions in space are especially challenging, due to the direct sunlight exposure and to the glossy surface of a satellite, that creates strong reflections and saturations and therefore a high level of background clutter and missing detections. We employ a monocular camera for mid-range tracking (20 - 5 m) and stereo camera at close-range (5 - 0.5 m), with the respective detection and tracking methods, both using intensity edges and robustly dealing with the above issues. Our tracking system has been extensively verified at the facility of the European Proximity Operations Simulator (EPOS) of DLR, which is a very realistic ground simulation able to reproduce sunlight conditions through a high power floodlight source, satellite surface properties using multilayer insulation foils, as well as orbital motion trajectories with ground-truth data, by means of two 6 DOF industrial robots. Results from this large dataset show the effectiveness and robustness of our method against the above difficulties.

  20. The Space Shuttle Orbiter molecular environment induced by the supplemental flash evaporator system

    NASA Technical Reports Server (NTRS)

    Ehlers, H. K. F.

    1985-01-01

    The water vapor environment of the Space Shuttle Orbiter induced by the supplemental flash evaporator during the on-orbit flight phase has been analyzed based on Space II model predictions and orbital flight measurements. Model data of local density, column density, and return flux are presented. Results of return flux measurements with a mass spectrometer during STS-2 and of direct flux measurements during STS-4 are discussed and compared with model predictions.

  1. Direct mapping between exchange potentials of Hartree-Fock and Kohn-Sham schemes as origin of orbital proximity

    NASA Astrophysics Data System (ADS)

    Cinal, M.

    2010-01-01

    It is found that for closed-l-shell atoms, the exact local exchange potential vx(r) calculated in the exchange-only Kohn-Sham (KS) scheme of the density functional theory (DFT) is very well represented within the region of every atomic shell by each of the suitably shifted potentials obtained with the nonlocal Fock exchange operator for the individual Hartree-Fock (HF) orbitals belonging to this shell. This newly revealed property is not related to the well-known steplike shell structure in the response part of vx(r), but it results from specific relations satisfied by the HF orbital exchange potentials. These relations explain the outstanding proximity of the occupied HF and exchange-only KS orbitals as well as the high quality of the Krieger-Li-Iafrate and localized HF (or, equivalently, common-energy-denominator) approximations to the DFT exchange potential vx(r). Another highly accurate representation of vx(r) is given by the continuous piecewise function built of shell-specific exchange potentials, each defined as the weighted average of the shifted orbital exchange potentials corresponding to a given shell. The constant shifts added to the HF orbital exchange potentials, to map them onto vx(r), are nearly equal to the differences between the energies of the corresponding KS and HF orbitals. It is discussed why these differences are positive and grow when the respective orbital energies become lower for inner orbitals.

  2. Solitary Fibrous Tumors of the Orbit and Central Nervous System: A Case Series Analysis

    PubMed Central

    Brum, Marisa; Nzwalo, Hipólito; Oliveira, Edson; Pelejão, Maria Rita; Pereira, Pedro; Farias, João Paulo; Pimentel, José

    2018-01-01

    Introduction: Solitary fibrous tumor (SFT) is rarely diagnosed in clinical practice. Since its initial descriptions in the central nervous system (CNS) and the orbits, very few case reports and small case series have expanded their clinical and pathological characterization. We sought to describe a cases series of SFT from a single laboratory of neuropathology belonging to a tertiary university hospital. Methods: Retrospective clinical and histopathological description of eight cases of CNS and orbital SFT diagnosed over a 21-year period of time. Results: Median age was 47.3 years and four were males. Clinical presentation was related to local mass effect in all. Tumors occurred in the orbits (5/62.5%), intracranial dura attached (2), and the spinal medulla (1). The neuropathology showed the presence of hemangiopericytoma type (2), classic type (3), and mixed type (3). Histological anaplasia was present in two cases. Widespread/total immunoreactivity for vimentin, CD34, and Bcl-2 was present in all. Gross total removal was conducted in the majority (6/75%) and subtotal removal in 2 (25%). Three patients were submitted to adjuvant treatment (radiosurgery and radiotherapy). Recurrence occurred in four patients, 13–120 months after surgical intervention. Anaplasia was present in one case of recurrence. Conclusion: Our case series confirms the clinical and neuropathological diversity of CNS and orbital SFTs. Studies with longer follow-up periods are necessary to better understand the clinical behavior and prognosis of the SFT in the CNS and orbits. PMID:29682031

  3. Examination of orbital tissues in murine models of Graves' disease reveals expression of UCP-1 and the TSHR in retrobulbar adipose tissues.

    PubMed

    Johnson, K T M; Wiesweg, B; Schott, M; Ehlers, M; Müller, M; Minich, W B; Nagayama, Y; Gulbins, E; Eckstein, A K; Berchner-Pfannschmidt, U

    2013-06-01

    Over the past decade a number of murine models of Graves' disease (GD) have been described. The full symptom complex, including typical orbital changes, however, could not yet be induced. In this report, we examined the influence of modified immunization protocols on orbital pathology. C57BL/6 and BALB/c mice were immunized against the human TSH receptor (TSHR), using either a TSHR encoding plasmid or a TSHR A-subunit adenovirus. Prior to immunization with the TSHR plasmid, regulatory T cells were depleted in one group of each strain. TSHR-stimulating antibodies (TSAbs) were evaluated and orbits were stained immunohistochemically for F4/80, uncoupling protein-1 (UCP-1) and the TSHR. We found that after depletion of regulatory T cells, incidence of TSAb was increased in TSHR plasmid immunized C57BL/6 mice. Examination of early immunized mice showed no antibody production. However, a TSHR epitope-specific cellular immune response could be detected by tetramer-analyses. Adenoviral immunization lead to TSAb production in all but one animal. Analysis of F4/80 positive cells in retrobulbar fat revealed no significant macrophage infiltration in the orbits of immunized mice. Immunohistochemical staining shows co-localization of F4/80 positive cells, UCP-1 and the TSHR in retrobulbar fat. Though targets for TSHR autoimmunity could clearly be shown, immunization methods were not efficient enough to cause clear signs of orbital inflammation. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Theoretical Study on the Photoelectron Spectra of Ln(COT)2-: Lanthanide Dependence of the Metal-Ligand Interaction.

    PubMed

    Nakajo, Erika; Masuda, Tomohide; Yabushita, Satoshi

    2016-12-08

    We have performed a theoretical analysis of the recently reported photoelectron (PE) spectra of the series of sandwich complex anions Ln(COT) 2 - (Ln = La-Lu, COT = 1,3,5,7-cyclooctatetraene), focusing on the Ln dependence of the vertical detachment energies. For most Ln, the π molecular orbitals, largely localized on the COT ligands, have the energy order of e 1g < e 1u < e 2g < e 2u as in the actinide analogues, reflecting the substantial orbital interaction with the Ln 5d and 5p orbitals. Thus, it would be expected that the lanthanide contraction would increase the orbital interaction so that the overlaps between the COT π and Ln atomic orbitals tend to increase across the series. However, the PE spectra and theoretical calculations were not consistent with this expectation, and the details have been clarified in this study. Furthermore, the energy level splitting patterns of the anion and neutral complexes have been studied by multireference ab initio methods, and the X peak splittings observed in the PE spectra only for the middle-range Ln complexes were found to be due to the specific interaction between the Ln 4f and ligand π orbitals of the neutral complexes in e 2u symmetry. Because the magnitude of this 4f-ligand interaction depends critically on the final state 4f electron configuration and the spin state, a significant Ln dependence in the PE spectra is explained.

  5. From the Orbital Implementation of the Kinetic Theory to the Polarization Propagator Method in the Study of Energy Deposition Problems

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.; Cruz, S. A.; Soullard, J.

    The energy deposited by swift atomic-ion projectiles when colliding with a given target material has been a topic of special scientific interest for the last century due to the variety of applications of ion beams in modern materials technology as well as in medical physics. In this work, we summarize our contributions in this field as a consequence of fruitful discussions and enlightening ideas put forward by one of the main protagonists in stopping power theory during the last three decades: Jens Oddershede. Our review, mainly motivated by Jens' work, evolves from the extension of the orbital implementation of the kinetic theory of stopping through the orbital local plasma approximation, its use in studies of orbital and total mean excitation energies for the study of atomic and molecular stopping until the advances on generalized oscillator strength and sum rules in the study of stopping cross sections. Finally, as a tribute to Jens' work on the orbital implementation of the kinetic theory of stopping, in this work we present new results on the use of the Thomas-Fermi-Dirac-Weizsäcker density functional for the calculation of orbital and total atomic mean excitation energies. The results are applied to free-atoms and and extension is done to confined atoms - taking Si as an example - whereby target pressure effects on stopping are derived. Hence, evidence of the far-yield of Jens' ideas is given.

  6. Isolated upper eyelid retraction: a sign of idiopathic inflammatory orbital disease.

    PubMed

    Shome, Debraj; Toshniwal, Svetlana; Jain, Vandana; Natarajan, Sundaram; Vemuganti, Geeta K

    2008-01-01

    A 41-year-old woman was examined for left upper eyelid retraction. Remaining ocular and systemic examination was unremarkable. Orbital CT demonstrated an ill-defined, extraconal, superior orbital soft-tissue mass involving the levator palpebrae superioris muscle. Incisional biopsy with histopathology demonstrated idiopathic orbital inflammation. The patient was started on a gradually tapering dose of oral steroids, for 6 weeks. On follow-up, the eyelid retraction had resolved. We report this case to demonstrate that idiopathic inflammatory orbital disease, localized to the superior orbit, may cause isolated upper eyelid retraction without associated proptosis. This condition resolves with medical therapy, leading to symmetrical palpebral apertures.

  7. Future observations of and missions to Mercury

    NASA Technical Reports Server (NTRS)

    Stern, Alan S.; Vilas, Faith

    1988-01-01

    Key scientific objectives of Mercury explorations are discussed, and the methods by which remote observations of Mercury can be carried out from earth and from space are examined. Attention is also given to the scientific rationale and technical concepts for missions to Mercury. It is pointed out that multiple Venus-Mercury encounter trajectories exist which, through successive gravity assists, reduce mission performance requirements to levels deliverable by available systems, such as Titan-Centaur, Atlas-Centaur, and Shuttle/TOS. It is shown that a single launch in July of 1994, using a Titan-Centaur combination, could place a 1477-kg payload into orbit around Meercury. The components of a Mercury-orbiter payload designed to study surface geology and geochemistry, atmospheric composition and structure, the local particle and fields environment, and solid-body rotation dynamics are listed.

  8. Kohn-Sham potentials from electron densities using a matrix representation within finite atomic orbital basis sets

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Carter, Emily A.

    2018-01-01

    We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.

  9. Modeling of the gate-controlled Kondo effect at carbon point defects in graphene

    NASA Astrophysics Data System (ADS)

    May, Daniel; Lo, Po-Wei; Deltenre, Kira; Henke, Anika; Mao, Jinhai; Jiang, Yuhang; Li, Guohong; Andrei, Eva Y.; Guo, Guang-Yu; Anders, Frithjof B.

    2018-04-01

    We study the magnetic properties in the vicinity of a single carbon defect in a monolayer of graphene. We include the unbound σ orbital and the vacancy-induced bound π state in an effective two-orbital single-impurity model. The local magnetic moments are stabilized by the Coulomb interaction as well as a significant ferromagnetic Hund's rule coupling between the orbitals predicted by a density functional theory calculation. A hybridization between the orbitals and the Dirac fermions is generated by the curvature of the graphene sheet in the vicinity of the vacancy. We present results for the local spectral function calculated using Wilson's numerical renormalization group approach for a realistic graphene band structure and find three different regimes depending on the filling, the controlling chemical potential, and the hybridization strength. These different regions are characterized by different magnetic properties. The calculated spectral functions qualitatively agree with recent scanning tunneling spectra on graphene vacancies.

  10. Lightning measurements from the Pioneer Venus Orbiter

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Russell, C. T.

    1983-01-01

    The plasma wave instrument on the Pioneer Venus Orbiter frequently detects strong and impulsive low-frequency signals when the spacecraft traverses the nightside ionosphere near periapsis. These particular noise bursts appear only when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere thus; the signals have all characteristics of lightning whistlers. We have tried to identify lightning sources between the cloud layers and the planet itself by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set, consisting of measurements through Orbit 1185, strongly indicates a clustering of lightning sources near the Beta and Phoebe Regios, with an additional significant cluster near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized lightning sources at or near the planetary surface.

  11. Multimodality imaging of the orbit

    PubMed Central

    Hande, Pradipta C; Talwar, Inder

    2012-01-01

    The role of imaging is well established in the evaluation of orbital diseases. Ultrasonography, Computed tomography and Magnetic resonance imaging are complementary modalities, which allow direct visualization of regional anatomy, accurate localization and help to characterize lesions to make a reliable radiological diagnosis. The purpose of this pictorial essay is to highlight the imaging features of commonly encountered pathologies which involve the orbit. PMID:23599570

  12. Turbulence heterodyne coherent mitigation of orbital angular momentum multiplexing in a free space optical link by auxiliary light.

    PubMed

    Yang, Chunyong; Xu, Chuang; Ni, Wenjun; Gan, Yu; Hou, Jin; Chen, Shaoping

    2017-10-16

    A novel scheme is proposed to mitigate the atmospheric turbulence effect in free space optical (FSO) communication employing orbital angular momentum (OAM) multiplexing. In this scheme, the Gaussian beam is used as an auxiliary light with a common-path to obtain the distortion information caused by atmospheric turbulence. After turbulence, the heterodyne coherent detection technology is demonstrated to realize the turbulence mitigation. With the same turbulence distortion, the OAM beams and the Gaussian beam are respectively utilized as the signal light and the local oscillation light. Then the turbulence distortion is counteracted to a large extent. Meanwhile, a phase matching method is proposed to select the specific OAM mode. The discrimination between the neighboring OAM modes is obviously improved by detecting the output photocurrent. Moreover, two methods of beam size adjustment have been analyzed to achieve better performance for turbulence mitigation. Numerical results show that the system bit error rate (BER) can reach 10 -5 under strong turbulence in simulation situation.

  13. Electronic structure and magnetic properties of dilute U impurities in metals

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Cottenier, S.; Mishra, S. N.

    2016-05-01

    The electronic structure and magnetic moment of dilute U impurity in metallic hosts have been calculated from first principles. The calculations have been performed within local density approximation of the density functional theory using Augmented plane wave+local orbital (APW+lo) technique, taking account of spin-orbit coupling and Coulomb correlation through LDA+U approach. We present here our results for the local density of states, magnetic moment and hyperfine field calculated for an isolated U impurity embedded in hosts with sp-, d- and f-type conduction electrons. The results of our systematic study provide a comprehensive insight on the pressure dependence of 5f local magnetism in metallic systems. The unpolarized local density of states (LDOS), analyzed within the frame work of Stoner model suggest the occurrence of local moment for U in sp-elements, noble metals and f-block hosts like La, Ce, Lu and Th. In contrast, U is predicted to be nonmagnetic in most transition metal hosts except in Sc, Ti, Y, Zr, and Hf consistent with the results obtained from spin polarized calculation. The spin and orbital magnetic moments of U computed within the frame of LDA+U formalism show a scaling behavior with lattice compression. We have also computed the spin and orbital hyperfine fields and a detail analysis has been carried out. The host dependent trends for the magnetic moment, hyperfine field and 5f occupation reflect pressure induced change of electronic structure with U valency changing from 3+ to 4+ under lattice compression. In addition, we have made a detailed analysis of the impurity induced host spin polarization suggesting qualitatively different roles of f-band electrons on moment stability. The results presented in this work would be helpful towards understanding magnetism and spin fluctuation in U based alloys.

  14. Structural phase transition and 5f-electrons localization of PuSe explored by ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui Shouxin, E-mail: shouxincui@yahoo.co; Feng Wenxia; Hu Haiquan

    2010-04-15

    An investigation into the structural phase transformation, electronic and optical properties of PuSe under high pressure was conducted by using the full potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method, in the presence and in the absence of spin-orbit coupling (SOC). Our results demonstrate that there exists a structural phase transition from rocksalt (B 1) structure to CsCl-type (B 2) structure at the transition pressure of 36.3 GPa (without SOC) and 51.3 GPa (with SOC). The electronic density of states (DOS) for PuSe show that the f-electrons of Pu are more localized and concentrated in a narrow peakmore » near the Fermi level, which is consistent with the experimental studies. The band structure shows that B 1-PuSe is metallic. A pseudogap appears around the Fermi level of the total density of states of B 1 phase PuSe, which may contribute to its stability. The calculated reflectivity R(omega) shows agreement with the available experimental results. Furthermore, the absorption spectrum, refractive index, extinction coefficient, energy-loss spectrum and dielectric function were calculated. The origin of the spectral peaks was interpreted based on the electronic structures. - Abstract: Graphical Abstract Legend (TOC Figure): 5f-electrons are more localized by the analysis of the density of states (SOC). The origin spectra peaks was interpreted based on electronic structures.« less

  15. A local framework for calculating coupled cluster singles and doubles excitation energies (LoFEx-CCSD)

    DOE PAGES

    Baudin, Pablo; Bykov, Dmytro; Liakh, Dmitry I.; ...

    2017-02-22

    Here, the recently developed Local Framework for calculating Excitation energies (LoFEx) is extended to the coupled cluster singles and doubles (CCSD) model. In the new scheme, a standard CCSD excitation energy calculation is carried out within a reduced excitation orbital space (XOS), which is composed of localised molecular orbitals and natural transition orbitals determined from time-dependent Hartree–Fock theory. The presented algorithm uses a series of reduced second-order approximate coupled cluster singles and doubles (CC2) calculations to optimise the XOS in a black-box manner. This ensures that the requested CCSD excitation energies have been determined to a predefined accuracy compared tomore » a conventional CCSD calculation. We present numerical LoFEx-CCSD results for a set of medium-sized organic molecules, which illustrate the black-box nature of the approach and the computational savings obtained for transitions that are local compared to the size of the molecule. In fact, for such local transitions, the LoFEx-CCSD scheme can be applied to molecular systems where a conventional CCSD implementation is intractable.« less

  16. Vision-based localization of the center of mass of large space debris via statistical shape analysis

    NASA Astrophysics Data System (ADS)

    Biondi, G.; Mauro, S.; Pastorelli, S.

    2017-08-01

    The current overpopulation of artificial objects orbiting the Earth has increased the interest of the space agencies on planning missions for de-orbiting the largest inoperative satellites. Since this kind of operations involves the capture of the debris, the accurate knowledge of the position of their center of mass is a fundamental safety requirement. As ground observations are not sufficient to reach the required accuracy level, this information should be acquired in situ just before any contact between the chaser and the target. Some estimation methods in the literature rely on the usage of stereo cameras for tracking several features of the target surface. The actual positions of these features are estimated together with the location of the center of mass by state observers. The principal drawback of these methods is related to possible sudden disappearances of one or more features from the field of view of the cameras. An alternative method based on 3D Kinematic registration is presented in this paper. The method, which does not suffer of the mentioned drawback, considers a preliminary reduction of the inaccuracies in detecting features by the usage of statistical shape analysis.

  17. Refined method for predicting electrochemical windows of ionic liquids and experimental validation studies.

    PubMed

    Zhang, Yong; Shi, Chaojun; Brennecke, Joan F; Maginn, Edward J

    2014-06-12

    A combined classical molecular dynamics (MD) and ab initio MD (AIMD) method was developed for the calculation of electrochemical windows (ECWs) of ionic liquids. In the method, the liquid phase of ionic liquid is explicitly sampled using classical MD. The electrochemical window, estimated by the energy difference between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), is calculated at the density functional theory (DFT) level based on snapshots obtained from classical MD trajectories. The snapshots were relaxed using AIMD and quenched to their local energy minima, which assures that the HOMO/LUMO calculations are based on stable configurations on the same potential energy surface. The new procedure was applied to a group of ionic liquids for which the ECWs were also experimentally measured in a self-consistent manner. It was found that the predicted ECWs not only agree with the experimental trend very well but also the values are quantitatively accurate. The proposed method provides an efficient way to compare ECWs of ionic liquids in the same context, which has been difficult in experiments or simulation due to the fact that ECW values sensitively depend on experimental setup and conditions.

  18. Topology of the Relative Motion: Circular and Eccentric Reference Orbit Cases

    NASA Technical Reports Server (NTRS)

    FontdecabaiBaig, Jordi; Metris, Gilles; Exertier, Pierre

    2007-01-01

    This paper deals with the topology of the relative trajectories in flight formations. The purpose is to study the different types of relative trajectories, their degrees of freedom, and to give an adapted parameterization. The paper also deals with the research of local circular motions. Even if they exist only when the reference orbit is circular, we extrapolate initial conditions to the eccentric reference orbit case.This alternative approach is complementary with traditional approaches in terms of cartesian coordinates or differences of orbital elements.

  19. Rare Orbital Infections ~ State of the Art ~ Part II

    PubMed Central

    Hamed-Azzam, Shirin; AlHashash, Islam; Briscoe, Daniel; Rose, Geoffrey E; Verity, David H.

    2018-01-01

    Infections of the orbit and periorbita are relatively frequent. Identifying unusual organisms is crucial because they can cause severe local and systemic morbidity, despite their rarity. Opportunistic infections of the orbit should be considered mainly in debilitated or immunocompromised patients. The key to successful management includes a high index of suspicion, prompt diagnosis, and addressing the underlying systemic disease. This review summarizes unusual infectious processes of the orbit, including mycobacterial, fungal, and parasitic infections, as well as their pathophysiology, symptoms, signs, and treatment. PMID:29719648

  20. Calculation of transmission probability by solving an eigenvalue problem

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Varga, Kálmán

    2010-11-01

    The electron transmission probability in nanodevices is calculated by solving an eigenvalue problem. The eigenvalues are the transmission probabilities and the number of nonzero eigenvalues is equal to the number of open quantum transmission eigenchannels. The number of open eigenchannels is typically a few dozen at most, thus the computational cost amounts to the calculation of a few outer eigenvalues of a complex Hermitian matrix (the transmission matrix). The method is implemented on a real space grid basis providing an alternative to localized atomic orbital based quantum transport calculations. Numerical examples are presented to illustrate the efficiency of the method.

  1. Correlation effect and magnetic moments in Cr2Te3

    NASA Astrophysics Data System (ADS)

    Youn, S. J.; Kwon, S. K.; Min, B. I.

    2007-05-01

    The electronic and magnetic structures of Cr2Te3 have been studied theoretically using the linearized muffin-tin orbitals band method. Experimental photoemission spectra and magnetic moments can be described better when the on-site Coulomb correlation U of Cr 3d electrons is considered using the local spin-density approximation+U method. The proper size of U is found to be U ˜1.7eV. The complex magnetic behaviors of Cr2Te3 come from the degeneracy of parallel and antiparallel alignments of CrI spin to CrII and CrIII spins.

  2. On the magnetic attitude control for spacecraft via the ɛ-strategies method

    NASA Astrophysics Data System (ADS)

    Smirnov, Georgi V.; Ovchinnikov, Mikhail; Miranda, Francisco

    2008-09-01

    We develop a new approach to stabilization problems based on a combination of the Lyapunov functions method with local controllability properties. The stabilizability is understood in the sense of ɛ-strategies introduced by Pontryagin in the frame of differential games theory. To illustrate the possibilities of our approach we consider a satellite with two magnetic coils directed along its principal inertia axes. Its circular orbit is neither polar nor equatorial. We show that there exists an ɛ-strategy stabilizing an Earth pointing satellite, whenever the deviations from the equilibrium position are small enough.

  3. Hybrid Semiclassical Theory of Quantum Quenches in One-Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Moca, Cǎtǎlin Paşcu; Kormos, Márton; Zaránd, Gergely

    2017-09-01

    We develop a hybrid semiclassical method to study the time evolution of one-dimensional quantum systems in and out of equilibrium. Our method handles internal degrees of freedom completely quantum mechanically by a modified time-evolving block decimation method while treating orbital quasiparticle motion classically. We can follow dynamics up to time scales well beyond the reach of standard numerical methods to observe the crossover between preequilibrated and locally phase equilibrated states. As an application, we investigate the quench dynamics and phase fluctuations of a pair of tunnel-coupled one-dimensional Bose condensates. We demonstrate the emergence of soliton-collision-induced phase propagation, soliton-entropy production, and multistep thermalization. Our method can be applied to a wide range of gapped one-dimensional systems.

  4. Enhancing catalytic activity by narrowing local energy gaps--X-ray studies of a manganese water oxidation catalyst.

    PubMed

    Xiao, Jie; Khan, Munirah; Singh, Archana; Suljoti, Edlira; Spiccia, Leone; Aziz, Emad F

    2015-03-01

    Changes in the local electronic structure of the Mn 3d orbitals of a Mn catalyst derived from a dinuclear Mn(III) complex during the water oxidation cycle were investigated ex situ by X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) analyses. Detailed information about the Mn 3d orbitals, especially the local HOMO-LUMO gap on Mn sites revealed by RIXS analyses, indicated that the enhancement in catalytic activity (water oxidation) originated from the narrowing of the local HOMO-LUMO gap when electrical voltage and visible light illumination were applied simultaneously to the Mn catalytic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Applicability of meteor radiant determination methods depending on orbit type. II. Low-eccentric orbits

    NASA Astrophysics Data System (ADS)

    Svoren, J.; Neslusan, L.; Porubcan, V.

    1994-08-01

    All known parent bodies of meteor showers belong to bodies moving in high-eccentricity orbits (e => 0.5). Recently, asteroids in low-eccentricity orbits (e < 0.5) approaching the Earth's orbit, were suggested as another population of possible parent bodies of meteor streams. This paper deals with the problem of calculation of meteor radiants connected with the bodies in low-eccentricity orbits from the point of view of optimal results depending on the method applied. The paper is a continuation of our previous analysis of high-eccentricity orbits (Svoren, J., Neslusan, L., Porubcan, V.: 1993, Contrib. Astron. Obs. Skalnate Pleso 23, 23). Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys. 7, 261) was applied. D <= 0.1 indicates a very good fit of orbits, 0.1 < D <= 0.2 is considered for a good fit and D > 0.2 means that the fit is rather poor and the change of orbit unrealistic. The optimal method, i.e. the one which results in the smallest D values for the population of low-eccentricity orbits, is that of adjusting the orbit by varying both the eccentricity and perihelion distance. A comparison of theoretical radiants obtained by various methods was made for typical representatives from each group of the NEA (near-Earth asteroids) objects.

  6. Applicability of meteor radiant determination methods depending on orbit type. I. High-eccentric orbits

    NASA Astrophysics Data System (ADS)

    Svoren, J.; Neslusan, L.; Porubcan, V.

    1993-07-01

    It is evident that there is no uniform method of calculating meteor radiants which would yield reliable results for all types of cometary orbits. In the present paper an analysis of this problem is presented, together with recommended methods for various types of orbits. Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, we applied the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys 7, 261). D<=0.1 indicates a very good fit of orbits, 0.10.2 the fit is rather poor and the change of orbit unrealistic. The optimal methods with the smallest values of D for given types of orbits are shown in two series of six plots. The new method of rotation around the line of apsides we propose is very appropriate in the region of small inclinations. There is no doubt that Hasegawa's omega-adjustment method (Hasegawa, I.: 1990, Publ. Astron. Soc. Japan 42, 175) has the widest application. A comparison of the theoretical radiants with the observed radiants of seven known meteor showers is also presented.

  7. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  8. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    DOE PAGES

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; ...

    2018-01-31

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  9. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    NASA Astrophysics Data System (ADS)

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold

    2018-02-01

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7 p electronic shell becomes so large (˜10 eV ) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. This effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  10. Dynamic localization in optical and Zeeman lattices in the presence of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Kartashov, Yaroslav V.; Konotop, Vladimir V.; Zezyulin, Dmitry A.; Torner, Lluis

    2016-12-01

    The dynamic localization of a two-level atom in a periodic potential under the action of spin-orbit coupling and a weak harmonically varying linear force is studied. We consider optical and Zeeman potentials that are either in phase or out of phase in two spinor components, respectively. The expectation value for the position of the atom after one oscillation period of the linear force is recovered in authentic resonances or in pseudoresonances. The frequencies of the linear force corresponding to authentic resonances are determined by the band structure of the periodic potential and are affected by the spin-orbit coupling. The width or dispersion of the wave packet in authentic resonances is usually minimal. The frequencies corresponding to pseudoresonances do not depend on the type of potential and on the strength of the spin-orbit coupling, while the evolution of excitations at the corresponding frequencies is usually accompanied by significant dispersion. Pseudoresonances are determined by the initial phase of the linear force and by the quasimomentum of the wave packet. Due to the spinor nature of the system, the motion of the atom is accompanied by periodic, but not harmonic, spin oscillations. Under the action of spin-orbit coupling the oscillations of the wave packet can be nearly completely suppressed in optical lattices. Dynamic localization in Zeeman lattices is characterized by doubling of the resonant oscillation periods due to band crossing at the boundary of the Brillouin zone. We also show that higher harmonics in the Fourier expansion of the energy band lead to effective dispersion, which can be strong enough to prevent dynamic localization of the Bloch wave packet.

  11. Seasonal Variations of the James Webb Space Telescope Orbital Dynamics

    NASA Technical Reports Server (NTRS)

    Brown, Jonathan; Petersen, Jeremy; Villac, Benjamin; Yu, Wayne

    2015-01-01

    While spacecraft orbital variations due to the Earth's tilt and orbital eccentricity are well-known phenomena, the implications for the James Webb Space Telescope present unique features. We investigate the variability of the observatory trajectory characteristics, and present an explanation of some of these effects using invariant manifold theory and local approximation of the dynamics in terms of the restricted three-body problem.

  12. A case of orbital hemangiopericytoma in a dog.

    PubMed

    Beltran, W A; Colle, M A; Boulouha, L; Daude-Lagrave, A; Moissonnier, P; Clerc, B

    2001-12-01

    A 7-and-a-half-year-old-dog was presented with progressive unilateral exophthalmos. Computed tomography imaging revealed an orbital mass that was surgically excised by lateral orbitotomy to preserve vision. The tumor was diagnosed histologically as a hemangiopericytoma. Twelve months postoperatively there were no signs of a local recurrence. This is the first case report of a hemangiopericytoma involving the orbit of a dog.

  13. Hybrid-DFT  +  V w method for band structure calculation of semiconducting transition metal compounds: the case of cerium dioxide.

    PubMed

    Ivády, Viktor; Gali, Adam; Abrikosov, Igor A

    2017-11-15

    Hybrid functionals' non-local exchange-correlation potential contains a derivative discontinuity that improves on standard semi-local density functional theory (DFT) band gaps. Moreover, by careful parameterization, hybrid functionals can provide self-interaction reduced description of selected states. On the other hand, the uniform description of all the electronic states of a given system is a known drawback of these functionals that causes varying accuracy in the description of states with different degrees of localization. This limitation can be remedied by the orbital dependent exact exchange extension of hybrid functionals; the hybrid-DFT  +  V w method (Ivády et al 2014 Phys. Rev. B 90 035146). Based on the analogy of quasi-particle equations and hybrid-DFT single particle equations, here we demonstrate that parameters of hybrid-DFT  +  V w functional can be determined from approximate theoretical quasi-particle spectra without any fitting to experiment. The proposed method is illustrated on the charge self-consistent electronic structure calculation for cerium dioxide where itinerant valence states interact with well-localized 4f atomic like states, making this system challenging for conventional methods, either hybrid-DFT or LDA  +  U, and therefore allowing for a demonstration of the advantages of the proposed scheme.

  14. Particle Swarm Optimization of Low-Thrust, Geocentric-to-Halo-Orbit Transfers

    NASA Astrophysics Data System (ADS)

    Abraham, Andrew J.

    Missions to Lagrange points are becoming increasingly popular amongst spacecraft mission planners. Lagrange points are locations in space where the gravity force from two bodies, and the centrifugal force acting on a third body, cancel. To date, all spacecraft that have visited a Lagrange point have done so using high-thrust, chemical propulsion. Due to the increasing availability of low-thrust (high efficiency) propulsive devices, and their increasing capability in terms of fuel efficiency and instantaneous thrust, it has now become possible for a spacecraft to reach a Lagrange point orbit without the aid of chemical propellant. While at any given time there are many paths for a low-thrust trajectory to take, only one is optimal. The traditional approach to spacecraft trajectory optimization utilizes some form of gradient-based algorithm. While these algorithms offer numerous advantages, they also have a few significant shortcomings. The three most significant shortcomings are: (1) the fact that an initial guess solution is required to initialize the algorithm, (2) the radius of convergence can be quite small and can allow the algorithm to become trapped in local minima, and (3) gradient information is not always assessable nor always trustworthy for a given problem. To avoid these problems, this dissertation is focused on optimizing a low-thrust transfer trajectory from a geocentric orbit to an Earth-Moon, L1, Lagrange point orbit using the method of Particle Swarm Optimization (PSO). The PSO method is an evolutionary heuristic that was originally written to model birds swarming to locate hidden food sources. This PSO method will enable the exploration of the invariant stable manifold of the target Lagrange point orbit in an effort to optimize the spacecraft's low-thrust trajectory. Examples of these optimized trajectories are presented and contrasted with those found using traditional, gradient-based approaches. In summary, the results of this dissertation find that the PSO method does, indeed, successfully optimize the low-thrust trajectory transfer problem without the need for initial guessing. Furthermore, a two-degree-of-freedom PSO problem formulation significantly outperformed a one-degree-of-freedom formulation by at least an order of magnitude, in terms of CPU time. Finally, the PSO method is also used to solve a traditional, two-burn, impulsive transfer to a Lagrange point orbit using a hybrid optimization algorithm that incorporates a gradient-based shooting algorithm as a pre-optimizer. Surprisingly, the results of this study show that "fast" transfers outperform "slow" transfers in terms of both Deltav and time of flight.

  15. Geographically correlated errors observed from a laser-based short-arc technique

    NASA Astrophysics Data System (ADS)

    Bonnefond, P.; Exertier, P.; Barlier, F.

    1999-07-01

    The laser-based short-arc technique has been developed in order to avoid local errors which affect the dynamical orbit computation, such as those due to mismodeling in the geopotential. It is based on a geometric method and consists in fitting short arcs (about 4000 km), issued from a global orbit, with satellite laser ranging tracking measurements from a ground station network. Ninety-two TOPEX/Poseidon (T/P) cycles of laser-based short-arc orbits have then been compared to JGM-2 and JGM-3 T/P orbits computed by the Precise Orbit Determination (POD) teams (Service d'Orbitographie Doris/Centre National d'Etudes Spatiales and Goddard Space Flight Center/NASA) over two areas: (1) the Mediterranean area and (2) a part of the Pacific (including California and Hawaii) called hereafter the U.S. area. Geographically correlated orbit errors in these areas are clearly evidenced: for example, -2.6 cm and +0.7 cm for the Mediterranean and U.S. areas, respectively, relative to JGM-3 orbits. However, geographically correlated errors (GCE) which are commonly linked to errors in the gravity model, can also be due to systematic errors in the reference frame and/or to biases in the tracking measurements. The short-arc technique being very sensitive to such error sources, our analysis however demonstrates that the induced geographical systematic effects are at the level of 1-2 cm on the radial orbit component. Results are also compared with those obtained with the GPS-based reduced dynamic technique. The time-dependent part of GCE has also been studied. Over 6 years of T/P data, coherent signals in the radial component of T/P Precise Orbit Ephemeris (POE) are clearly evidenced with a time period of about 6 months. In addition, impact of time varying-error sources coming from the reference frame and the tracking data accuracy has been analyzed, showing a possible linear trend of about 0.5-1 mm/yr in the radial component of T/P POE.

  16. The development and validation of command schedules for SeaWiFS

    NASA Astrophysics Data System (ADS)

    Woodward, Robert H.; Gregg, Watson W.; Patt, Frederick S.

    1994-11-01

    An automated method for developing and assessing spacecraft and instrument command schedules is presented for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) project. SeaWiFS is to be carried on the polar-orbiting SeaStar satellite in 1995. The primary goal of the SeaWiFS mission is to provide global ocean chlorophyll concentrations every four days by employing onboard recorders and a twice-a-day data downlink schedule. Global Area Coverage (GAC) data with about 4.5 km resolution will be used to produce the global coverage. Higher resolution (1.1 km resolution) Local Area Coverage (LAC) data will also be recorded to calibrate the sensor. In addition, LAC will be continuously transmitted from the satellite and received by High Resolution Picture Transmission (HRPT) stations. The methods used to generate commands for SeaWiFS employ numerous hierarchical checks as a means of maximizing coverage of the Earth's surface and fulfilling the LAC data requirements. The software code is modularized and written in Fortran with constructs to mirror the pre-defined mission rules. The overall method is specifically developed for low orbit Earth-observing satellites with finite onboard recording capabilities and regularly scheduled data downlinks. Two software packages using the Interactive Data Language (IDL) for graphically displaying and verifying the resultant command decisions are presented. Displays can be generated which show portions of the Earth viewed by the sensor and spacecraft sub-orbital locations during onboard calibration activities. An IDL-based interactive method of selecting and testing LAC targets and calibration activities for command generation is also discussed.

  17. Orbital-dependent Electron-Hole Interaction in Graphene and Associated Multi-Layer Structures

    PubMed Central

    Deng, Tianqi; Su, Haibin

    2015-01-01

    We develop an orbital-dependent potential to describe electron-hole interaction in materials with structural 2D character, i.e. quasi-2D materials. The modulated orbital-dependent potentials are also constructed with non-local screening, multi-layer screening, and finite gap due to the coupling with substrates. We apply the excitonic Hamiltonian in coordinate-space with developed effective electron-hole interacting potentials to compute excitons’ binding strength at M (π band) and Γ (σ band) points in graphene and its associated multi-layer forms. The orbital-dependent potential provides a range-separated property for regulating both long- and short-range interactions. This accounts for the existence of the resonant π exciton in single- and bi-layer graphenes. The remarkable strong electron-hole interaction in σ orbitals plays a decisive role in the existence of σ exciton in graphene stack at room temperature. The interplay between gap-opening and screening from substrates shed a light on the weak dependence of σ exciton binding energy on the thickness of graphene stacks. Moreover, the analysis of non-hydrogenic exciton spectrum in quasi-2D systems clearly demonstrates the remarkable comparable contribution of orbital dependent potential with respect to non-local screening process. The understanding of orbital-dependent potential developed in this work is potentially applicable for a wide range of materials with low dimension. PMID:26610715

  18. Formal expressions and corresponding expansions for the exact Kohn-Sham exchange potential

    NASA Astrophysics Data System (ADS)

    Bulat, Felipe A.; Levy, Mel

    2009-11-01

    Formal expressions and their corresponding expansions in terms of Kohn-Sham (KS) orbitals are deduced for the exchange potential vx(r) . After an alternative derivation of the basic optimized effective potential integrodifferential equations is given through a Hartree-Fock adiabatic connection perturbation theory, we present an exact infinite expansion for vx(r) that is particularly simple in structure. It contains the very same occupied-virtual quantities that appear in the well-known optimized effective potential integral equation, but in this new expression vx(r) is isolated on one side of the equation. An orbital-energy modified Slater potential is its leading term which gives encouraging numerical results. Along different lines, while the earlier Krieger-Li-Iafrate approximation truncates completely the necessary first-order perturbation orbitals, we observe that the improved localized Hartree-Fock (LHF) potential, or common energy denominator potential (CEDA), or effective local potential (ELP), incorporates the part of each first-order orbital that consists of the occupied KS orbitals. With this in mind, the exact correction to the LHF, CEDA, or ELP potential (they are all equivalent) is deduced and displayed in terms of the virtual portions of the first-order orbitals. We close by observing that the newly derived exact formal expressions and corresponding expansions apply as well for obtaining the correlation potential from an orbital-dependent correlation energy functional.

  19. Orbital metastases in Italy

    PubMed Central

    Magliozzi, Patrizio; Strianese, Diego; Bonavolontà, Paola; Ferrara, Mariantonia; Ruggiero, Pasquale; Carandente, Raffaella; Bonavolontà, Giulio; Tranfa, Fausto

    2015-01-01

    AIM To describe a series of Italian patients with orbital metastasis focusing on the outcomes in relation to the different primary site of malignancy. METHODS Retrospective chart review of 93 patients with orbital metastasis collected in a tertiary referral centre in a period of 38y and review of literature. RESULTS Out of 93 patients, 52 were females and 41 were males. Median age at diagnosis was 51y (range 1 to 88y). The patients have been divided into four groups on the basis of the year of diagnosis. The frequency of recorded cases had decreased significantly (P<0.05) during the last 9.5y. Primary tumor site was breast in 36 cases (39%), kidney in 10 (11%), lung in 8 (9%), skin in 6 (6%); other sites were less frequent. In 16 case (17%) the primary tumor remained unknown. The most frequent clinical findings were proptosis (73%), limited ocular motility (55%), blepharoptosis (46%) and blurred vision (43%). The diagnosis were established by history, ocular and systemic evaluation, orbital imaging studies and open biopsy or fine needle aspiration biopsy (FNAB). Treatment included surgical excision, irradiation, chemotherapy, hormone therapy, or observation. Ninety-one percent of patients died of metastasis with an overall mean survival time (OMST) after the orbital diagnosis of 13.5mo. CONCLUSION Breast, kidney and lung are the most frequent primary sites of cancer leading to an orbital metastasis. When the primary site is unknown, gastrointestinal tract should be carefully investigated. In the last decade a decrease in the frequency of orbital metastasis has been observed. Surgery provides a local palliation. Prognosis remains poor with a OMST of 13.5mo ranging from the 3mo in the lung cancer to 24mo in the kidney tumor. PMID:26558220

  20. A state-specific approach to multireference coupled electron-pair approximation like methods: Development and applications

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sudip; Pahari, Dola; Mukherjee, Debashis; Mahapatra, Uttam Sinha

    2004-04-01

    The traditional multireference (MR) coupled-cluster (CC) methods based on the effective Hamiltonian are often beset by the problem of intruder states, and are not suitable for studying potential energy surface (PES) involving real or avoided curve crossing. State-specific MR-based approaches obviate this limitation. The state-specific MRCC (SS-MRCC) method developed some years ago [Mahapatra et al., J. Chem. Phys. 110, 6171 (1999)] can handle quasidegeneracy of varying degrees over a wide range of PES, including regions of real or avoided curve-crossing. Motivated by its success, we have suggested and explored in this paper a suite of physically motivated coupled electron-pair approximations (SS-MRCEPA) like methods, which are designed to capture the essential strength of the parent SS-MRCC method without significant sacrificing its accuracy. These SS-MRCEPA theories, like their CC counterparts, are based on complete active space, treat all the reference functions on the same footing and provide a description of potentially uniform precision of PES of states with varying MR character. The combining coefficients of the reference functions are self-consistently determined along with the cluster amplitudes themselves. The newly developed SS-MRCEPA methods are size-extensive, and are also size-consistent with localized orbitals. Among the various versions, there are two which are invariant with respect to the restricted rotations among doubly occupied and active orbitals separately. Similarity of performance of this latter and the noninvariant versions at the crossing points of the degenerate orbitals imply that the all the methods presented are rather robust with respect to the rotations among degenerate orbitals. Illustrative numerical applications are presented for PES of the ground state of a number of difficult test cases such as the model H4, H8 problems, the insertion of Be into H2, and Li2, where intruders exist and for a state of a molecule such as CH2, with pronounced MR character. Results obtained with SS-MRCEPA methods are found to be comparable in accuracy to the parent SS-MRCC and FCI/large scale CI results throughout the PES, which indicates the efficacy of our SS-MRCEPA methods over a wide range of geometries, despite their neglect of a host of complicated nonlinear terms, even when the traditional MR-based methods based on effective Hamiltonians fail due to intruders.

  1. results obtained by the application of two different methods for the calculation of optimal coplanar orbital maneuvers with time limit

    NASA Astrophysics Data System (ADS)

    Rocco, Emr; Prado, Afbap; Souza, Mlos

    In this work, the problem of bi-impulsive orbital transfers between coplanar elliptical orbits with minimum fuel consumption but with a time limit for this transfer is studied. As a first method, the equations presented by Lawden (1993) were used. Those equations furnishes the optimal transfer orbit with fixed time for this transfer, between two elliptical coplanar orbits considering fixed terminal points. The method was adapted to cases with free terminal points and those equations was solved to develop a software for orbital maneuvers. As a second method, the equations presented by Eckel and Vinh (1984) were used, those equations provide the transfer orbit between non-coplanar elliptical orbits with minimum fuel and fixed time transfer, or minimum time transfer for a prescribed fuel consumption, considering free terminal points. But in this work only the problem with fixed time transfer was considered, the case of minimum time for a prescribed fuel consumption was already studied in Rocco et al. (2000). Then, the method was modified to consider cases of coplanar orbital transfer, and develop a software for orbital maneuvers. Therefore, two software that solve the same problem using different methods were developed. The first method, presented by Lawden, uses the primer vector theory. The second method, presented by Eckel and Vinh, uses the ordinary theory of maxima and minima. So, to test the methods we choose the same terminal orbits and the same time as input. We could verify that we didn't obtain exactly the same result. In this work, that is an extension of Rocco et al. (2002), these differences in the results are explored with objective of determining the reason of the occurrence of these differences and which modifications should be done to eliminate them.

  2. An advanced analysis method of initial orbit determination with too short arc data

    NASA Astrophysics Data System (ADS)

    Li, Binzhe; Fang, Li

    2018-02-01

    This paper studies the initial orbit determination (IOD) based on space-based angle measurement. Commonly, these space-based observations have short durations. As a result, classical initial orbit determination algorithms give poor results, such as Laplace methods and Gauss methods. In this paper, an advanced analysis method of initial orbit determination is developed for space-based observations. The admissible region and triangulation are introduced in the method. Genetic algorithm is also used for adding some constraints of parameters. Simulation results show that the algorithm can successfully complete the initial orbit determination.

  3. Impacts of Earth rotation parameters on GNSS ultra-rapid orbit prediction: Derivation and real-time correction

    NASA Astrophysics Data System (ADS)

    Wang, Qianxin; Hu, Chao; Xu, Tianhe; Chang, Guobin; Hernández Moraleda, Alberto

    2017-12-01

    Analysis centers (ACs) for global navigation satellite systems (GNSSs) cannot accurately obtain real-time Earth rotation parameters (ERPs). Thus, the prediction of ultra-rapid orbits in the international terrestrial reference system (ITRS) has to utilize the predicted ERPs issued by the International Earth Rotation and Reference Systems Service (IERS) or the International GNSS Service (IGS). In this study, the accuracy of ERPs predicted by IERS and IGS is analyzed. The error of the ERPs predicted for one day can reach 0.15 mas and 0.053 ms in polar motion and UT1-UTC direction, respectively. Then, the impact of ERP errors on ultra-rapid orbit prediction by GNSS is studied. The methods for orbit integration and frame transformation in orbit prediction with introduced ERP errors dominate the accuracy of the predicted orbit. Experimental results show that the transformation from the geocentric celestial references system (GCRS) to ITRS exerts the strongest effect on the accuracy of the predicted ultra-rapid orbit. To obtain the most accurate predicted ultra-rapid orbit, a corresponding real-time orbit correction method is developed. First, orbits without ERP-related errors are predicted on the basis of ITRS observed part of ultra-rapid orbit for use as reference. Then, the corresponding predicted orbit is transformed from GCRS to ITRS to adjust for the predicted ERPs. Finally, the corrected ERPs with error slopes are re-introduced to correct the predicted orbit in ITRS. To validate the proposed method, three experimental schemes are designed: function extrapolation, simulation experiments, and experiments with predicted ultra-rapid orbits and international GNSS Monitoring and Assessment System (iGMAS) products. Experimental results show that using the proposed correction method with IERS products considerably improved the accuracy of ultra-rapid orbit prediction (except the geosynchronous BeiDou orbits). The accuracy of orbit prediction is enhanced by at least 50% (error related to ERP) when a highly accurate observed orbit is used with the correction method. For iGMAS-predicted orbits, the accuracy improvement ranges from 8.5% for the inclined BeiDou orbits to 17.99% for the GPS orbits. This demonstrates that the correction method proposed by this study can optimize the ultra-rapid orbit prediction.

  4. A pair natural orbital based implementation of CCSD excitation energies within the framework of linear response theory

    NASA Astrophysics Data System (ADS)

    Frank, Marius S.; Hättig, Christof

    2018-04-01

    We present a pair natural orbital (PNO)-based implementation of coupled cluster singles and doubles (CCSD) excitation energies that builds upon the previously proposed state-specific PNO approach to the excited state eigenvalue problem. We construct the excited state PNOs for each state separately in a truncated orbital specific virtual basis and use a local density-fitting approximation to achieve an at most quadratic scaling of the computational costs for the PNO construction. The earlier reported excited state PNO construction is generalized such that a smooth convergence of the results for charge transfer states is ensured for general coupled cluster methods. We investigate the accuracy of our implementation by applying it to a large and diverse test set comprising 153 singlet excitations in organic molecules. Already moderate PNO thresholds yield mean absolute errors below 0.01 eV. The performance of the implementation is investigated through the calculations on alkene chains and reveals an at most cubic cost-scaling for the CCSD iterations with the system size.

  5. Correlation effects in fcc-Fe(x)Ni(1-x) alloys investigated by means of the KKR-CPA.

    PubMed

    Minár, J; Mankovsky, S; Šipr, O; Benea, D; Ebert, H

    2014-07-09

    The electronic structure and magnetic properties of the disordered alloy system fcc-FexNi1-x (fcc: face centered cubic) have been investigated by means of the KKR-CPA (Korringa-Kohn-Rostoker coherent potential approximation) band structure method. To investigate the impact of correlation effects, the calculations have been performed on the basis of the LSDA (local spin density approximation), the LSDA + U as well as the LSDA + DMFT (dynamical mean field theory). It turned out that the inclusion of correlation effects hardly changed the spin magnetic moments and the related hyperfine fields. The spin-orbit induced orbital magnetic moments and hyperfine fields, on the other hand, show a pronounced and element-specific enhancement. These findings are in full accordance with the results of a recent experimental study.

  6. NMR shifts for polycyclic aromatic hydrocarbons from first-principles

    NASA Astrophysics Data System (ADS)

    Thonhauser, T.; Ceresoli, Davide; Marzari, Nicola

    We present first-principles, density-functional theory calculations of the NMR chemical shifts for polycyclic aromatic hydrocarbons, starting with benzene and increasing sizes up to the one- and two-dimensional infinite limits of graphene ribbons and sheets. Our calculations are performed using a combination of the recently developed theory of orbital magnetization in solids, and a novel approach to NMR calculations where chemical shifts are obtained from the derivative of the orbital magnetization with respect to a microscopic, localized magnetic dipole. Using these methods we study on equal footing the 1H and 13 shifts in benzene, pyrene, coronene, in naphthalene, anthracene, naphthacene, and pentacene, and finally in graphene, graphite, and an infinite graphene ribbon. Our results show very good agreement with experiments and allow us to characterize the trends for the chemical shifts as a function of system size.

  7. Two-Component Noncollinear Time-Dependent Spin Density Functional Theory for Excited State Calculations.

    PubMed

    Egidi, Franco; Sun, Shichao; Goings, Joshua J; Scalmani, Giovanni; Frisch, Michael J; Li, Xiaosong

    2017-06-13

    We present a linear response formalism for the description of the electronic excitations of a noncollinear reference defined via Kohn-Sham spin density functional methods. A set of auxiliary variables, defined using the density and noncollinear magnetization density vector, allows the generalization of spin density functional kernels commonly used in collinear DFT to noncollinear cases, including local density, GGA, meta-GGA and hybrid functionals. Working equations and derivations of functional second derivatives with respect to the noncollinear density, required in the linear response noncollinear TDDFT formalism, are presented in this work. This formalism takes all components of the spin magnetization into account independent of the type of reference state (open or closed shell). As a result, the method introduced here is able to afford a nonzero local xc torque on the spin magnetization while still satisfying the zero-torque theorem globally. The formalism is applied to a few test cases using the variational exact-two-component reference including spin-orbit coupling to illustrate the capabilities of the method.

  8. KENNEDY SPACE CENTER, FLA. - A helicopter approaches an orbiter crew compartment mock-up as part of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews will respond to the volunteer “astronauts” simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.

    NASA Image and Video Library

    2004-02-18

    KENNEDY SPACE CENTER, FLA. - A helicopter approaches an orbiter crew compartment mock-up as part of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews will respond to the volunteer “astronauts” simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.

  9. Orbitally limited pair-density-wave phase of multilayer superconductors

    NASA Astrophysics Data System (ADS)

    Möckli, David; Yanase, Youichi; Sigrist, Manfred

    2018-04-01

    We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0 and a Maki parameter αM. We find that when the spin-orbit Rashba interaction compares to the superconducting condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM>10 .

  10. Applying Molecular Bonding Concepts to the Solid State

    NASA Astrophysics Data System (ADS)

    Dunnington, Benjamin D.

    In this thesis, we describe the extension and application of Natural Bond Orbital (NBO) analysis to periodic systems. This enables the translation of rigorous, quantum mechanical calculation results of solid systems into the localized lone pairs and two-center bonds of Lewis structures. Such localized bonding descriptions form the basic language of chemistry, and application of these ideas to solids allows for the understanding of complex phenomena in bulk systems using readily accessible concepts from molecular science. In addition to the algorithmic adjustments needed for to account for periodic boundary conditions in the NBO process, we also discuss methodology to interface the ubiquitous plane wave basis sets of the solid state with the atom-centered basis functions needed as input for NBO analysis. We will describe one method using projection of the plane wave eigenstates, and a second projection-free method that involves the direct calculation of matrix elements of the plane wave Hamiltonian in an atom-centered basis. The reliance of many localized, post-computational analysis techniques on an atom-centered description of the orbitals, means these interfaces will have applicability beyond our NBO development. An ideal area for application of such molecular descriptions of periodic systems is heterogeneous catalysis, where reactants from a gas/liquid phase react on a solid catalyst surface. Previous studies of these systems have originated from the delocalized perspective of the bulk catalyst. NBO provides an explicit description of the perturbative effect of the catalyst on the covalent bonds of the reactant, which is correlated with the catalytic activity of the material. Such a shift to an adsorbate focused description of surface reactivity will enable understanding of catalysis across a variety of materials.

  11. Hot-spot model for accretion disc variability as random process. II. Mathematics of the power-spectrum break frequency

    NASA Astrophysics Data System (ADS)

    Pecháček, T.; Goosmann, R. W.; Karas, V.; Czerny, B.; Dovčiak, M.

    2013-08-01

    Context. We study some general properties of accretion disc variability in the context of stationary random processes. In particular, we are interested in mathematical constraints that can be imposed on the functional form of the Fourier power-spectrum density (PSD) that exhibits a multiply broken shape and several local maxima. Aims: We develop a methodology for determining the regions of the model parameter space that can in principle reproduce a PSD shape with a given number and position of local peaks and breaks of the PSD slope. Given the vast space of possible parameters, it is an important requirement that the method is fast in estimating the PSD shape for a given parameter set of the model. Methods: We generated and discuss the theoretical PSD profiles of a shot-noise-type random process with exponentially decaying flares. Then we determined conditions under which one, two, or more breaks or local maxima occur in the PSD. We calculated positions of these features and determined the changing slope of the model PSD. Furthermore, we considered the influence of the modulation by the orbital motion for a variability pattern assumed to result from an orbiting-spot model. Results: We suggest that our general methodology can be useful for describing non-monotonic PSD profiles (such as the trend seen, on different scales, in exemplary cases of the high-mass X-ray binary Cygnus X-1 and the narrow-line Seyfert galaxy Ark 564). We adopt a model where these power spectra are reproduced as a superposition of several Lorentzians with varying amplitudes in the X-ray-band light curve. Our general approach can help in constraining the model parameters and in determining which parts of the parameter space are accessible under various circumstances.

  12. Local density approximation in site-occupation embedding theory

    NASA Astrophysics Data System (ADS)

    Senjean, Bruno; Tsuchiizu, Masahisa; Robert, Vincent; Fromager, Emmanuel

    2017-01-01

    Site-occupation embedding theory (SOET) is a density functional theory (DFT)-based method which aims at modelling strongly correlated electrons. It is in principle exact and applicable to model and quantum chemical Hamiltonians. The theory is presented here for the Hubbard Hamiltonian. In contrast to conventional DFT approaches, the site (or orbital) occupations are deduced in SOET from a partially interacting system consisting of one (or more) impurity site(s) and non-interacting bath sites. The correlation energy of the bath is then treated implicitly by means of a site-occupation functional. In this work, we propose a simple impurity-occupation functional approximation based on the two-level (2L) Hubbard model which is referred to as two-level impurity local density approximation (2L-ILDA). Results obtained on a prototypical uniform eight-site Hubbard ring are promising. The extension of the method to larger systems and more sophisticated model Hamiltonians is currently in progress.

  13. [Orbital inflammation].

    PubMed

    Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N

    2014-12-01

    Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. A parallel orbital-updating based plane-wave basis method for electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Pan, Yan; Dai, Xiaoying; de Gironcoli, Stefano; Gong, Xin-Gao; Rignanese, Gian-Marco; Zhou, Aihui

    2017-11-01

    Motivated by the recently proposed parallel orbital-updating approach in real space method [1], we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers.

  15. KENNEDY SPACE CENTER, FLA. - This logo for the Gravity Probe B mission portrays the theory of curved spacetime and "frame-dragging," developed by Einstein and other scientists, that the mission will test. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit. Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring the effects. The experiment was developed by Stanford University, NASA’s Marshall Space Flight Center and Lockheed Martin.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - This logo for the Gravity Probe B mission portrays the theory of curved spacetime and "frame-dragging," developed by Einstein and other scientists, that the mission will test. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit. Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring the effects. The experiment was developed by Stanford University, NASA’s Marshall Space Flight Center and Lockheed Martin.

  16. Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams

    NASA Astrophysics Data System (ADS)

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Zhao, Jianlin

    2018-05-01

    We report on the catalystlike effect of orbital angular momentum (OAM) on local spin-state conversion within the tightly focused radially polarized beams associated with optical spin-orbit interaction. It is theoretically demonstrated that the incident OAM can lead to a conversion of purely transverse spin state to a three-dimensional spin state on the focal plane. This conversion can be conveniently manipulated by altering the sign and value of the OAM. By comparing the total OAM and spin angular momentum (SAM) on the incident plane to those on the focal plane, it is indicated that the incident OAM have no participation in the angular momentum intertransfer, and just play a role as a catalyst of local SAM conversion. Such an effect of OAM sheds new light on the optical spin-orbit interaction in tight-focusing processes. The resultant three-dimensional spin states may provide more degrees of freedom in optical manipulation and spin-dependent directive coupling.

  17. A study on the electronic spectra of some 2-azidobenzothiazoles, TD-DFT treatment.

    PubMed

    Abu-Eittah, Rafie H; El-Taher, Sabry; Hassan, Walid; Noamaan, Mahmoud

    2015-12-05

    The electronic absorption spectra of some 2-azidobenzothiazoles were measured in different solvents. The effects of solvent and substitution on the spectra were investigated. Substitution by a bromine atom and by a nitro group have significant effects on both band maxima and band intensity. Correlation between the spectra of the studied compounds and the corresponding hydrocarbons proved to be weak, whereas the correlation between the observed spectra and those calculated is adequate. Theoretical treatment of the ultraviolet spectra of the studied compounds was carried out by using the TD-DFT procedures, at the B3LYP level and the 6-311+G(∗∗) basis sets, the results compared well with the experimental values. The computed molecular orbitals of the ground state indicate that some orbitals are "localized-π" or "localized σ" molecular orbitals while the others are delocalized orbitals. The calculated functions of the excited states lead to an accurate assignment of the bands observed in the spectra. Copyright © 2015. Published by Elsevier B.V.

  18. A generalized operational formula based on total electronic densities to obtain 3D pictures of the dual descriptor to reveal nucleophilic and electrophilic sites accurately on closed-shell molecules.

    PubMed

    Martínez-Araya, Jorge I

    2016-09-30

    By means of the conceptual density functional theory, the so-called dual descriptor (DD) has been adapted to be used in any closed-shell molecule that presents degeneracy in its frontier molecular orbitals. The latter is of paramount importance because a correct description of local reactivity will allow to predict the most favorable sites on a molecule to undergo nucleophilic or electrophilic attacks; on the contrary, an incomplete description of local reactivity might have serio us consequences, particularly for those experimental chemists that have the need of getting an insight about reactivity of chemical reagents before using them in synthesis to obtain a new compound. In the present work, the old approach based only on electronic densities of frontier molecular orbitals is replaced by the most accurate procedure that implies the use of total electronic densities thus keeping consistency with the essential principle of the DFT in which the electronic density is the fundamental variable and not the molecular orbitals. As a result of the present work, the DD will be able to properly describe local reactivities only in terms of total electronic densities. To test the proposed operational formula, 12 very common molecules were selected as the original definition of the DD was not able to describe their local reactivities properly. The ethylene molecule was additionally used to test the capability of the proposed operational formula to reveal a correct local reactivity even in absence of degeneracy in frontier molecular orbitals. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. An Optimized Method to Detect BDS Satellites' Orbit Maneuvering and Anomalies in Real-Time.

    PubMed

    Huang, Guanwen; Qin, Zhiwei; Zhang, Qin; Wang, Le; Yan, Xingyuan; Wang, Xiaolei

    2018-02-28

    The orbital maneuvers of Global Navigation Satellite System (GNSS) Constellations will decrease the performance and accuracy of positioning, navigation, and timing (PNT). Because satellites in the Chinese BeiDou Navigation Satellite System (BDS) are in Geostationary Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO), maneuvers occur more frequently. Also, the precise start moment of the BDS satellites' orbit maneuvering cannot be obtained by common users. This paper presented an improved real-time detecting method for BDS satellites' orbit maneuvering and anomalies with higher timeliness and higher accuracy. The main contributions to this improvement are as follows: (1) instead of the previous two-steps method, a new one-step method with higher accuracy is proposed to determine the start moment and the pseudo random noise code (PRN) of the satellite orbit maneuvering in that time; (2) BDS Medium Earth Orbit (MEO) orbital maneuvers are firstly detected according to the proposed selection strategy for the stations; and (3) the classified non-maneuvering anomalies are detected by a new median robust method using the weak anomaly detection factor and the strong anomaly detection factor. The data from the Multi-GNSS Experiment (MGEX) in 2017 was used for experimental analysis. The experimental results and analysis showed that the start moment of orbital maneuvers and the period of non-maneuver anomalies can be determined more accurately in real-time. When orbital maneuvers and anomalies occur, the proposed method improved the data utilization for 91 and 95 min in 2017.

  20. An Optimized Method to Detect BDS Satellites’ Orbit Maneuvering and Anomalies in Real-Time

    PubMed Central

    Huang, Guanwen; Qin, Zhiwei; Zhang, Qin; Wang, Le; Yan, Xingyuan; Wang, Xiaolei

    2018-01-01

    The orbital maneuvers of Global Navigation Satellite System (GNSS) Constellations will decrease the performance and accuracy of positioning, navigation, and timing (PNT). Because satellites in the Chinese BeiDou Navigation Satellite System (BDS) are in Geostationary Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO), maneuvers occur more frequently. Also, the precise start moment of the BDS satellites’ orbit maneuvering cannot be obtained by common users. This paper presented an improved real-time detecting method for BDS satellites’ orbit maneuvering and anomalies with higher timeliness and higher accuracy. The main contributions to this improvement are as follows: (1) instead of the previous two-steps method, a new one-step method with higher accuracy is proposed to determine the start moment and the pseudo random noise code (PRN) of the satellite orbit maneuvering in that time; (2) BDS Medium Earth Orbit (MEO) orbital maneuvers are firstly detected according to the proposed selection strategy for the stations; and (3) the classified non-maneuvering anomalies are detected by a new median robust method using the weak anomaly detection factor and the strong anomaly detection factor. The data from the Multi-GNSS Experiment (MGEX) in 2017 was used for experimental analysis. The experimental results and analysis showed that the start moment of orbital maneuvers and the period of non-maneuver anomalies can be determined more accurately in real-time. When orbital maneuvers and anomalies occur, the proposed method improved the data utilization for 91 and 95 min in 2017. PMID:29495638

  1. Orbital necrotizing fasciitis and osteomyelitis caused by arcanobacterium haemolyticum: a case report.

    PubMed

    Stone, Lindsay A; Harshbarger, Raymond J

    2015-01-01

    The facial region is infrequently affected by necrotizing infections. Orbital necrotizing infections are even rarer, seen following trauma, local skin infection, and sinusitis. The authors report a unique case of orbital necrotizing fasciitis and osteomyelitis resulting from Arcanobacterium Haemolyticum ethmoid sinusitis. No prior occurrences of Arcanobacterial species orbital necrotizing fasciitis/osteomyelitis have been reported.A 16-year-old boy presented to the ER with a 3-day history of fever, chills, headache, and sinus pressure. CT scan revealed soft tissue swelling of the right orbit, forehead, and ethmoid sinusitis. Within 24 hours of admission, he suffered rapidly progressive swelling and erythema of the right orbit and forehead with diminished visual acuity, despite broad-spectrum antibiotics. Orbital exploration revealed frankly necrotic fascia and periosteum along the superior aspect. Lateral canthotomy, cantholysis, decompression of the optic nerve, and soft tissue debridement with bone biopsy was performed. Operative specimens isolated Arcanobacterium Haemolyticum. Pathologic examination revealed right orbital osteomyelitis.

  2. Characteristics of Sudden Commencements Observed by Van Allen Probes in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Fathy, A.; Kim, K.-H.; Park, J.-S.; Jin, H.; Kletzing, C.; Wygant, J. R.; Ghamry, E.

    2018-02-01

    We have statistically studied sudden commencement (SC) by using the data acquired from Van Allen Probes (VAP) in the inner magnetosphere (L = 3.0-6.5) and GOES spacecraft at geosynchronous orbit (L =˜ 6.7) from October 2012 to September 2017. During the time period, we identified 85 SCs in the inner magnetosphere and 90 SCs at geosynchronous orbit. Statistical results of the SC events reveal the following characteristics. (1) There is strong seasonal dependence of the geosynchronous SC amplitude in the radial BV component at all local times. However, BV shows weak seasonal variation on the dayside in the inner magnetosphere. (2) The local time dependence of the SC amplitude in the compressional BH component at geosynchronous orbit is similar to that in the inner magnetosphere. (3) In a nightside region of L = 5.0-6.5, ˜19% of BH events are negative, while ˜58% of BH events are negative at geosynchronous orbit. (4) The amplitude of the SC-associated Ey perturbations varies systematically with local time with a morning-afternoon asymmetry near noon. These observations can be explained by spatial and/or temporal changes in the magnetopause and cross-tail currents, which are caused by changes in the solar wind dynamic pressure, with respect to spacecraft positions.

  3. Initial Assessment of a Rapid Method of Calculating CEV Environmental Heating

    NASA Technical Reports Server (NTRS)

    Pickney, John T.; Milliken, Andrew H.

    2010-01-01

    An innovative method for rapidly calculating spacecraft environmental absorbed heats in planetary orbit is described. The method employs reading a database of pre-calculated orbital absorbed heats and adjusting those heats for desired orbit parameters. The approach differs from traditional Monte Carlo methods that are orbit based with a planet centered coordinate system. The database is based on a spacecraft centered coordinated system where the range of all possible sun and planet look angles are evaluated. In an example case 37,044 orbit configurations were analyzed for average orbital heats on selected spacecraft surfaces. Calculation time was under 2 minutes while a comparable Monte Carlo evaluation would have taken an estimated 26 hours

  4. Phase diagram of Ba 2 NaOsO 6, a Mott insulator with strong spin orbit interactions

    NASA Astrophysics Data System (ADS)

    Liu, W.; Cong, R.; Garcia, E.; Reyes, A. P.; Lee, H. O.; Fisher, I. R.; Mitrović, V. F.

    2018-05-01

    We report 23Na nuclear magnetic resonance (NMR) measurements of the Mott insulator with strong spin-orbit interaction Ba2NaOsO6 as a function of temperature in different magnetic fields ranging from 7 T to 29 T. The measurements, intended to concurrently probe spin and orbital/lattice degrees of freedom, are an extension of our work at lower fields reported in Lu et al. (2017) [1]. We have identified clear quantitative NMR signatures that display the appearance of a canted ferromagnetic phase, which is preceded by local point symmetry breaking. We have compiled the field temperature phase diagram extending up to 29 T. We find that the broken local point symmetry phase extends over a wider temperature range as magnetic field increases.

  5. Contingency maneuver strategies for the Total Ozone Mapping Spectrometer-Earth Probe (TOMS-EP)

    NASA Technical Reports Server (NTRS)

    Kestler, James; Walls, Donna

    1995-01-01

    The Total Ozone Mapping Spectrometer-Earth Probe (TOMS-EP) is a polar-orbiting spacecraft designed to measure total ozone levels in the Earth's atmosphere. The nominal mission orbit is a 955-kilometer circular Sun-synchronous orbit with an ascending node mean local crossing time (MLT) between 11:02 a.m. and 11:25 a.m. These two mean local ascending node times constitute the boundaries of the MLT box for this mission. The MLT boundaries were chosen to maintain the Sun-to-Earth-to-vehicle orbit-normal (SVN) angle within a preselected set of seasonally independent boundaries. Because the SVN angle is seasonally dependent, but the MLT is not, contingency options for correcting the MLT of orbital states that fall outside of the required MLT range become time dependent. This paper focuses on contingency orbit adjustment strategies developed at the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) during the mission planning phase of TOMS-EP. Time-dependent delta-V strategies are presented for correcting mission orbit states lying outside of the MLT range. Typically, passive control of the MLT drift rate can be used to restore the orbit state to the required MLT before a seasonal violation of SVN angle constraints can occur. Passive control of the MLT drift rate is obtained through adjustment of the semimajor axis and/or the inclination. The time between initial arrival on orbit at an 'out-of-the box' MLT state and violation of the SVN angle constraints is always less than or equal to 1 year. The choice of which parameter(s) to adjust is dictated by the duration of this time period, the desired mission lifetime, the delta-V cost, and operational constraints.

  6. Structure factors for tunneling ionization rates of molecules: General Hartree-Fock-based integral representation

    NASA Astrophysics Data System (ADS)

    Madsen, Lars Bojer; Jensen, Frank; Dnestryan, Andrey I.; Tolstikhin, Oleg I.

    2017-07-01

    In the leading-order approximation of the weak-field asymptotic theory (WFAT), the dependence of the tunneling ionization rate of a molecule in an electric field on its orientation with respect to the field is determined by the structure factor of the ionizing molecular orbital. The WFAT yields an expression for the structure factor in terms of a local property of the orbital in the asymptotic region. However, in general quantum chemistry approaches molecular orbitals are expanded in a Gaussian basis which does not reproduce their asymptotic behavior correctly. This hinders the application of the WFAT to polyatomic molecules, which are attracting increasing interest in strong-field physics. Recently, an integral-equation approach to the WFAT for tunneling ionization of one electron from an arbitrary potential has been developed. The structure factor is expressed in an integral form as a matrix element involving the ionizing orbital. The integral is not sensitive to the asymptotic behavior of the orbital, which resolves the difficulty mentioned above. Here, we extend the integral representation for the structure factor to many-electron systems treated within the Hartree-Fock method and show how it can be implemented on the basis of standard quantum chemistry software packages. We validate the methodology by considering noble-gas atoms and the CO molecule, for which accurate structure factors exist in the literature. We also present benchmark results for CO2 and for NH3 in the pyramidal and planar geometries.

  7. Computer Aided Ballistic Orbit Classification Around Small Bodies

    NASA Astrophysics Data System (ADS)

    Villac, Benjamin F.; Anderson, Rodney L.; Pini, Alex J.

    2016-09-01

    Orbital dynamics around small bodies are as varied as the shapes and dynamical states of these bodies. While various classes of orbits have been analyzed in detail, the global overview of relevant ballistic orbits at particular bodies is not easily computed or organized. Yet, correctly categorizing these orbits will ease their future use in the overall trajectory design process. This paper overviews methods that have been used to organize orbits, focusing on periodic orbits in particular, and introduces new methods based on clustering approaches.

  8. Celestial data routing network

    NASA Astrophysics Data System (ADS)

    Bordetsky, Alex

    2000-11-01

    Imagine that information processing human-machine network is threatened in a particular part of the world. Suppose that an anticipated threat of physical attacks could lead to disruption of telecommunications network management infrastructure and access capabilities for small geographically distributed groups engaged in collaborative operations. Suppose that small group of astronauts are exploring the solar planet and need to quickly configure orbital information network to support their collaborative work and local communications. The critical need in both scenarios would be a set of low-cost means of small team celestial networking. To the geographically distributed mobile collaborating groups such means would allow to maintain collaborative multipoint work, set up orbital local area network, and provide orbital intranet communications. This would be accomplished by dynamically assembling the network enabling infrastructure of the small satellite based router, satellite based Codec, and set of satellite based intelligent management agents. Cooperating single function pico satellites, acting as agents and personal switching devices together would represent self-organizing intelligent orbital network of cooperating mobile management nodes. Cooperative behavior of the pico satellite based agents would be achieved by comprising a small orbital artificial neural network capable of learning and restructing the networking resources in response to the anticipated threat.

  9. Tunable Orbital-Selective Magnetic Interaction in Tricolor Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Kareev, Michael; Liu, Xiaoran; Choudhury, Debraj; Middey, Srimanta; Meyers, Derek; Chakhalian, Jak

    2015-03-01

    Recently, several theoretical scenarios of orbital-selective magnetic interactions were proposed to understand the emergence of the unexpected interfacial magnetism in the archetypical SrTiO3-based two-dimensional electron gas systems, the origin of which is still intriguing and not an entirely understood phenomenon in oxide interface physics. Experimentally, however, there thus far lacks a material system to directly demonstrate the magnetic interaction with orbital-selection (dxy vs. dxz/dyz) and eventually manipulate this magnetic interaction. To address this, here we induced 2DEG and localized magnetism into the same SrTiO3 layer by devising the heterostructure LaTiO3/SrTiO3/YTiO3. Combined electrical transport and atomic-resolved scanning transmission electron microscope with electron energy loss spectroscopy revealed that the magnetic localized electrons are formed by the spin transfer from the YTiO3 layer into 2DEG formed at the LaTiO3 /SrTiO3 interface, with the orbital occupancy and strength of the magnetic interaction controlled by the SrTiO3 layer thickness. Our work provides an ideal platform to explore the orbital physics driven by the interfacial magnetism with prospects for exciting spintronic applications.

  10. Magnetic-field-induced effects in the electronic structure of itinerant d- and f-metal systems

    NASA Astrophysics Data System (ADS)

    Grechnev, G. E.

    2009-08-01

    A paramagnetic response of transition metals and itinerant d- and f-metal compounds in an external magnetic field is studied by employing ab initio full-potential LMTO method in the framework of the local spin density approximation. Within this method the anisotropy of the magnetic susceptibility in hexagonal close-packed transition metals is evaluated for the first time. This anisotropy is owing to the orbital Van Vleck-like paramagnetic susceptibility, which is revealed to be substantial in transition-metal systems due to hybridization effects in the electronic structure. It is demonstrated that compounds TiCo, Ni3Al, YCo2, CeCo2, YNi5, LaNi5, and CeNi5 are strong paramagnets close to the quantum critical point. For these systems the Stoner approximation underestimates the spin susceptibility, whereas the calculated field-induced spin moments provide a good description of the large paramagnetic susceptibilities and magnetovolume effects. It is revealed that an itinerant description of hybridized f electrons produces magnetic properties of the compounds CeCo2, CeNi5, UAl3, UGa3, USi3, and UGe3 in close agreement with experiment. In the uranium compounds UX3 the strong spin-orbit coupling together with hybridization effects give rise to peculiar magnetic states in which the field-induced spin moments are antiparallel to the external field, and the magnetic response is dominated by the orbital contribution.

  11. Localization of holes near charged defects in orbitally degenerate, doped Mott insulators

    NASA Astrophysics Data System (ADS)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-05-01

    We study the role of charged defects, disorder and electron-electron (e-e) interactions in a multiband model for t2g electrons in vanadium perovskites R1-xCaxVO3 (R = La,…,Y). By means of unrestricted Hartree-Fock calculations, we find that the atomic multiplet structure persists up to 50% Ca doping. Using the inverse participation number, we explore the degree of localization and its doping dependence for all electronic states. The observation of strongly localized wave functions is consistent with our conjecture that doped holes form spin-orbital polarons that are strongly bound to the charged Ca2+ defects. Interestingly, the long-range e-e interactions lead to a discontinuity in the wave function size across the chemical potential, where the electron removal states are more localized than the addition states.

  12. Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havu, V.; Fritz Haber Institute of the Max Planck Society, Berlin; Blum, V.

    2009-12-01

    We consider the problem of developing O(N) scaling grid-based operations needed in many central operations when performing electronic structure calculations with numeric atom-centered orbitals as basis functions. We outline the overall formulation of localized algorithms, and specifically the creation of localized grid batches. The choice of the grid partitioning scheme plays an important role in the performance and memory consumption of the grid-based operations. Three different top-down partitioning methods are investigated, and compared with formally more rigorous yet much more expensive bottom-up algorithms. We show that a conceptually simple top-down grid partitioning scheme achieves essentially the same efficiency as themore » more rigorous bottom-up approaches.« less

  13. Unusual intraconal localization of orbital giant cell angiofibroma.

    PubMed

    Ekin, Meryem Altin; Ugurlu, Seyda Karadeniz; Cakalagaoglu, Fulya

    2018-01-01

    Giant cell angiofibroma (GCA) is a recently reported rare soft-tissue tumor that can develop in various sites including orbit. Orbital GCAs were mainly located in the eyelid or extraconal regions such as lacrimal gland and conjunctiva. We report an atypical case of a GCA arising in the intraconal area of the orbit in a 65-year-old male patient. The tumor was excised in total by lateral orbitotomy. Histological and immunohistochemical features were consistent with the diagnosis of GCA. No recurrence was observed during the follow-up of over 2 years. GCA is a rare tumor that should be considered in the differential diagnosis of intraconal orbital tumors. Complete surgical removal is the current optimal treatment option.

  14. Dynamics of Orbits near 3:1 Resonance in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Lebois, Ryan; Carrico, John P., Jr.

    2013-01-01

    The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next twenty years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study.

  15. Studies of the electron density in the highest occupied molecular orbitals of PH 3, PF 3 and P(CH 3) 3 by electron momentum spectroscopy and Hartree-Fock, MRSD-CI and DFT calculations

    NASA Astrophysics Data System (ADS)

    Rolke, J.; Brion, C. E.

    1996-06-01

    The spherically averaged momentum profiles for the highest occupied molecular orbitals of PF 3 and P(CH 3) 3 have been obtained by electron momentum spectroscopy. The measurements provide a stringent test of basis set effects and the quality of ab-initio methods in the description of these larger molecular systems. As in previous work on the methyl-substituted amines, intuitive arguments fail to predict the correct amount of s- and p-type contributions to the momentum profile while delocalized molecular orbital concepts provide a more adequate description of the HOMOs. The experimental momentum profiles have been compared with theoretical momentum profiles calculated at the level of the target Hartree-Fock approximation with a range of basis sets. New Hartree-Fock calculations are also presented for the HOMO of PH 3 and compared to previously published experimental and theoretical momentum profiles. The experimental momentum profiles have further been compared to calculations at the level of the target Kohn-Sham approximation using density functional theory with the local density approximation and also with gradient corrected (non-local) exchange correlation potentials. In addition, total energies and dipole moments have been calculated for all three molecules by the various theoretical methods and compared to experimental values. Calculated 'density difference maps' show the regions where the HOMO momentum and position electron densities of PF 3 and P(CH 3) 3 change relative to the corresponding HOMO density of PH 3. The results suggest that methyl groups have an electron-attracting effect (relative to H) on the HOMO charge density in trimethyl phosphines. These conclusions are supported by a consideration of dipole moments and the 31P NMR chemical shifts for PH 3, PF 3 and P(CH 3) 3.

  16. Comparison of precise orbit determination methods of zero-difference kinematic, dynamic and reduced-dynamic of GRACE-A satellite using SHORDE software

    NASA Astrophysics Data System (ADS)

    Li, Kai; Zhou, Xuhua; Guo, Nannan; Zhao, Gang; Xu, Kexin; Lei, Weiwei

    2017-09-01

    Zero-difference kinematic, dynamic and reduced-dynamic precise orbit determination (POD) are three methods to obtain the precise orbits of Low Earth Orbit satellites (LEOs) by using the on-board GPS observations. Comparing the differences between those methods have great significance to establish the mathematical model and is usefull for us to select a suitable method to determine the orbit of the satellite. Based on the zero-difference GPS carrier-phase measurements, Shanghai Astronomical Observatory (SHAO) has improved the early version of SHORDE and then developed it as an integrated software system, which can perform the POD of LEOs by using the above three methods. In order to introduce the function of the software, we take the Gravity Recovery And Climate Experiment (GRACE) on-board GPS observations in January 2008 as example, then we compute the corresponding orbits of GRACE by using the SHORDE software. In order to evaluate the accuracy, we compare the orbits with the precise orbits provided by Jet Propulsion Laboratory (JPL). The results show that: (1) If we use the dynamic POD method, and the force models are used to represent the non-conservative forces, the average accuracy of the GRACE orbit is 2.40cm, 3.91cm, 2.34cm and 5.17cm in radial (R), along-track (T), cross-track (N) and 3D directions respectively; If we use the accelerometer observation instead of non-conservative perturbation model, the average accuracy of the orbit is 1.82cm, 2.51cm, 3.48cm and 4.68cm in R, T, N and 3D directions respectively. The result shows that if we use accelerometer observation instead of the non-conservative perturbation model, the accuracy of orbit is better. (2) When we use the reduced-dynamic POD method to get the orbits, the average accuracy of the orbit is 0.80cm, 1.36cm, 2.38cm and 2.87cm in R, T, N and 3D directions respectively. This method is carried out by setting up the pseudo-stochastic pulses to absorb the errors of atmospheric drag and other perturbations. (3) If we use the kinematic POD method, the accuracy of the GRACE orbit is 2.92cm, 2.48cm, 2.76cm and 4.75cm in R, T, N and 3D directions respectively. In conclusion, it can be seen that the POD of GRACE satellite is practicable by using different strategies and methods. The orbit solution is well and stable, they all can obtain the GRACE orbits with centimeter-level precision.

  17. Observation of localized ground and excited orbitals in graphene photonic ribbons

    NASA Astrophysics Data System (ADS)

    Cantillano, C.; Mukherjee, S.; Morales-Inostroza, L.; Real, B.; Cáceres-Aravena, G.; Hermann-Avigliano, C.; Thomson, R. R.; Vicencio, R. A.

    2018-03-01

    We report on the experimental realization of a quasi-one-dimensional photonic graphene ribbon supporting four flat-bands (FBs). We study the dynamics of fundamental and dipolar modes, which are analogous to the s and p orbitals, respectively. In the experiment, both modes (orbitals) are effectively decoupled from each other, implying two sets of six bands, where two of them are completely flat (dispersionless). Using an image generator setup, we excite the s and p FB modes and demonstrate their non-diffracting propagation for the first time. Our results open an exciting route towards photonic emulation of higher orbital dynamics.

  18. Modern Possibilities for Calculating Some Properties of Molecules and Crystals from the Experimental Electron Density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stash, A.I.; Tsirelson, V.G.

    2005-03-01

    Methods for calculating some properties of molecules and crystals from the electron density reconstructed from a precise X-ray diffraction experiment using the multipole model are considered. These properties include, on the one hand, the characteristics of the electron density and the inner-crystal electrostatic field and, on the other hand, the local electronic energies (kinetic, potential, total), the exchange energy density, the electron-pair localization function, the localized-orbital locator, the effective crystal potential, and others. It is shown that the integration of these characteristics over pseudoatomic volumes bounded by the surfaces of the zero flux of the electron density gradient makes itmore » possible to characterize directly from an experiment the properties of molecules and crystals in terms of the atomic contributions. The computer program WinXPRO2004, realizing these possibilities, is briefly described.« less

  19. Prediction of flow dynamics using point processes

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Stemler, Thomas; Eroglu, Deniz; Marwan, Norbert

    2018-01-01

    Describing a time series parsimoniously is the first step to study the underlying dynamics. For a time-discrete system, a generating partition provides a compact description such that a time series and a symbolic sequence are one-to-one. But, for a time-continuous system, such a compact description does not have a solid basis. Here, we propose to describe a time-continuous time series using a local cross section and the times when the orbit crosses the local cross section. We show that if such a series of crossing times and some past observations are given, we can predict the system's dynamics with fine accuracy. This reconstructability neither depends strongly on the size nor the placement of the local cross section if we have a sufficiently long database. We demonstrate the proposed method using the Lorenz model as well as the actual measurement of wind speed.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakh, Dmitry I

    While the formalism of multiresolution analysis (MRA), based on wavelets and adaptive integral representations of operators, is actively progressing in electronic structure theory (mostly on the independent-particle level and, recently, second-order perturbation theory), the concepts of multiresolution and adaptivity can also be utilized within the traditional formulation of correlated (many-particle) theory which is based on second quantization and the corresponding (generally nonorthogonal) tensor algebra. In this paper, we present a formalism called scale-adaptive tensor algebra (SATA) which exploits an adaptive representation of tensors of many-body operators via the local adjustment of the basis set quality. Given a series of locallymore » supported fragment bases of a progressively lower quality, we formulate the explicit rules for tensor algebra operations dealing with adaptively resolved tensor operands. The formalism suggested is expected to enhance the applicability and reliability of local correlated many-body methods of electronic structure theory, especially those directly based on atomic orbitals (or any other localized basis functions).« less

  1. Effective on-site Coulomb interaction and electron configurations in transition-metal complexes from constraint density functional theory

    NASA Astrophysics Data System (ADS)

    Nawa, Kenji; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori; Weinert, Michael

    Effective on-site Coulomb interactions (Ueff) and electron configurations in the localized d and f orbitals of metal complexes in transition-metal oxides and organometallic molecules, play a key role in the first-principles search for the true ground-state. However, wide ranges of values in the Ueff parameter of a material, even in the same ionic state, are often reported. Here, we revisit this issue from constraint density functional theory (DFT) by using the full-potential linearized augmented plane wave method. The Ueff parameters for prototypical transition-metal oxides, TMO (TM =Mn, Fe, Co, Ni), were calculated by the second derivative of the total energy functional with respect to the d occupation numbers inside the muffin-tin (MT) spheres as a function of the sphere radius. We find that the calculated Ueff values depend significantly on the MT radius, with a variation of more than 3 eV when the MT radius changes from 2.0 to 2.7 a.u., but importantly an identical valence band structure can be produced in all the cases, with an approximate scaling of Ueff. This indicates that a simple transferability of the Ueff value among different calculation methods is not allowed. We further extend the constraint DFT to treat various electron configurations of the localized d-orbitals in organometallic molecules, TMCp2 (TM =Cr, Mn, Fe, Co, Ni), and find that the calculated Ueff values can reproduce the experimentally determined ground-state electron configurations.

  2. Hyperfine interactions in titanates: Study of orbital ordering and local magnetic properties

    NASA Astrophysics Data System (ADS)

    Agzamova, P. A.; Leskova, Yu. V.; Nikiforov, A. E.

    2013-05-01

    Hyperfine magnetic fields induced on the nuclei of nonmagnetic ions 139La and 89Y in LaTiO3 and YTiO3, respectively, have been microscopically calculated. The dependence of the hyperfine fields on the orbital and magnetic structures of the compounds under study has been analyzed. The comparative analysis of the calculated and known experimental data confirms the existence of the static orbital structure in lanthanum and yttrium titanates.

  3. KENNEDY SPACE CENTER, FLA. - Emergency crew members assess medical needs on “injured” astronauts removed from the orbiter crew compartment mock-up during a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.

    NASA Image and Video Library

    2004-02-18

    KENNEDY SPACE CENTER, FLA. - Emergency crew members assess medical needs on “injured” astronauts removed from the orbiter crew compartment mock-up during a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.

  4. Position Extrema in Keplerian Relative Motion: A Gröbner Basis Approach

    NASA Astrophysics Data System (ADS)

    Allgeier, Shawn E.; Fitz-Coy, Norman G.; Erwin, R. Scott

    2012-12-01

    This paper analyzes the relative motion between two spacecraft in orbit. Specifically, the paper provides bounds for relative spacecraft position-based measures which impact spacecraft formation-flight mission design and analysis. Previous efforts have provided bounds for the separation distance between two spacecraft. This paper presents a methodology for bounding the local vertical, horizontal, and cross track components of the relative position vector in a spacecraft centered, rotating reference frame. Three metrics are derived and a methodology for bounding them is presented. The solution of the extremal equations for the metrics is formulated as an affine variety and obtained using a Gröbner basis reduction. No approximations are utilized and the only assumption is that the two spacecraft are in bound Keplerian orbits. Numerical examples are included to demonstrate the efficacy of the method. The metrics have utility to the mission designer of formation flight architectures, with relevance to Earth observation constellations.

  5. Spectroscopic method for Earth-satellite-Earth laser long-path absorption measurements using Retroreflector In Space (RIS)

    NASA Technical Reports Server (NTRS)

    Sugimoto, Nobuo; Minato, Atsushi; Sasano, Yasuhiro

    1992-01-01

    The Retroreflector in Space (RIS) is a single element cube-corner retroreflector with a diameter of 0.5 m designed for earth-satellite-earth laser long-path absorption experiments. The RIS is to be loaded on the Advanced Earth Observing System (ADEOS) satellite which is scheduled for launch in Feb. 1996. The orbit for ADEOS is a sun synchronous subrecurrent polar-orbit with an inclination of 98.6 deg. It has a period of 101 minutes and an altitude of approximately 800 km. The local time at descending node is 10:15-10:45, and the recurrent period is 41 days. The velocity relative to the ground is approximately 7 km/s. In the RIS experiment, a laser beam transmitted from a ground station is reflected by RIS and received at the ground station. The absorption of the intervening atmosphere is measured in the round-trip optical path.

  6. The converse approach to NMR chemical shifts from first-principles: application to finite and infinite aromatic compounds

    NASA Astrophysics Data System (ADS)

    Thonhauser, T.; Ceresoli, D.; Marzari, N.

    2009-03-01

    We present first-principles, density-functional theory calculations of the NMR chemical shifts for polycyclic aromatic hydrocarbons, starting with benzene and increasing sizes up to the one- and two-dimensional infinite limits of graphene ribbons and sheets. Our calculations are performed using a combination of the recently developed theory of orbital magnetization in solids, and a novel approach to NMR calculations where chemical shifts are obtained from the derivative of the orbital magnetization with respect to a microscopic, localized magnetic dipole. Using these methods we study on equal footing the ^1H and ^13C shifts in benzene, pyrene, coronene, in naphthalene, anthracene, naphthacene, and pentacene, and finally in graphene, graphite, and an infinite graphene ribbon. Our results show very good agreement with experiments and allow us to characterize the trends for the chemical shifts as a function of system size.

  7. Adsorption and dissociation of molecular oxygen on α-Pu (0 2 0) surface: A density functional study

    NASA Astrophysics Data System (ADS)

    Wang, Jianguang; Ray, Asok K.

    2011-09-01

    Molecular and dissociative oxygen adsorptions on the α-Pu (0 2 0) surface have been systematically studied using the full-potential linearized augmented-plane-wave plus local orbitals (FP-LAPW+lo) basis method and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. Chemisorption energies have been optimized for the distance of the admolecule from the Pu surface and the bond length of O-O atoms for four adsorption sites and three approaches of O 2 admolecule to the (0 2 0) surface. Chemisorption energies have been calculated at the scalar relativistic level with no spin-orbit coupling (NSOC) and at the fully relativistic level with spin-orbit coupling (SOC). Dissociative adsorptions are found at the two horizontal approaches (O 2 is parallel to the surface and perpendicular/parallel to a lattice vector). Hor2 (O 2 is parallel to the surface and perpendicular to a lattice vector) approach at the one-fold top site is the most stable adsorption site, with chemisorption energies of 8.048 and 8.415 eV for the NSOC and SOC cases, respectively, and an OO separation of 3.70 Å. Molecular adsorption occurs at the Vert (O 2 is vertical to the surface) approach of each adsorption site. The calculated work functions and net spin magnetic moments, respectively, increase and decrease in all cases upon chemisorption compared to the clean surface. The partial charges inside the muffin-tins, the difference charge density distributions, and the local density of states have been used to investigate the Pu-admolecule electronic structures and bonding mechanisms.

  8. Exploring one-particle orbitals in large many-body localized systems

    NASA Astrophysics Data System (ADS)

    Villalonga, Benjamin; Yu, Xiongjie; Luitz, David J.; Clark, Bryan K.

    2018-03-01

    Strong disorder in interacting quantum systems can give rise to the phenomenon of many-body localization (MBL), which defies thermalization due to the formation of an extensive number of quasilocal integrals of motion. The one-particle operator content of these integrals of motion is related to the one-particle orbitals (OPOs) of the one-particle density matrix and shows a strong signature across the MBL transition as recently pointed out by Bera et al. [Phys. Rev. Lett. 115, 046603 (2015), 10.1103/PhysRevLett.115.046603; Ann. Phys. 529, 1600356 (2017), 10.1002/andp.201600356]. We study the properties of the OPOs of many-body eigenstates of an MBL system in one dimension. Using shift-and-invert MPS, a matrix product state method to target highly excited many-body eigenstates introduced previously [Phys. Rev. Lett. 118, 017201 (2017), 10.1103/PhysRevLett.118.017201], we are able to obtain accurate results for large systems of sizes up to L =64 . We find that the OPOs drawn from eigenstates at different energy densities have high overlap and their occupations are correlated with the energy of the eigenstates. Moreover, the standard deviation of the inverse participation ratio of these orbitals is maximal at the nose of the mobility edge. Also, the OPOs decay exponentially in real space, with a correlation length that increases at low disorder. In addition, we find that the probability distribution of the strength of the large-range coupling constants of the number operators generated by the OPOs approach a log-uniform distribution at strong disorder.

  9. Time-local equation for exact time-dependent optimized effective potential in time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel; Chu, Shih-I.

    2017-04-01

    Solving and analyzing the exact time-dependent optimized effective potential (TDOEP) integral equation has been a longstanding challenge due to its highly nonlinear and nonlocal nature. To meet the challenge, we derive an exact time-local TDOEP equation that admits a unique real-time solution in terms of time-dependent Kohn-Sham orbitals and effective memory orbitals. For illustration, the dipole evolution dynamics of a one-dimension-model chain of hydrogen atoms is numerically evaluated and examined to demonstrate the utility of the proposed time-local formulation. Importantly, it is shown that the zero-force theorem, violated by the time-dependent Krieger-Li-Iafrate approximation, is fulfilled in the current TDOEP framework. This work was partially supported by DOE.

  10. Magnetotransport in Layered Dirac Fermion System Coupled with Magnetic Moments

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yoshiki; Morinari, Takao

    2018-03-01

    We theoretically investigate the magnetotransport of Dirac fermions coupled with localized moments to understand the physical properties of the Dirac material EuMnBi2. Using an interlayer hopping form, which simplifies the complicated interaction between the layers of Dirac fermions and the layers of magnetic moments in EuMnBi2, the theory reproduces most of the features observed in this system. The hysteresis observed in EuMnBi2 can be caused by the valley splitting that is induced by the spin-orbit coupling and the external magnetic field with the molecular field created by localized moments. Our theory suggests that the magnetotransport in EuMnBi2 is due to the interplay among Dirac fermions, localized moments, and spin-orbit coupling.

  11. Halo orbit transfer trajectory design using invariant manifold in the Sun-Earth system accounting radiation pressure and oblateness

    NASA Astrophysics Data System (ADS)

    Srivastava, Vineet K.; Kumar, Jai; Kushvah, Badam Singh

    2018-01-01

    In this paper, we study the invariant manifold and its application in transfer trajectory problem from a low Earth parking orbit to the Sun-Earth L1 and L2-halo orbits with the inclusion of radiation pressure and oblateness. Invariant manifold of the halo orbit provides a natural entrance to travel the spacecraft in the solar system along some specific paths due to its strong hyperbolic character. In this regard, the halo orbits near both collinear Lagrangian points are computed first. The manifold's approximation near the nominal halo orbit is computed using the eigenvectors of the monodromy matrix. The obtained local approximation provides globalization of the manifold by applying backward time propagation to the governing equations of motion. The desired transfer trajectory well suited for the transfer is explored by looking at a possible intersection between the Earth's parking orbit of the spacecraft and the manifold.

  12. Creation of half-metallic f -orbital Dirac fermion with superlight elements in orbital-designed molecular lattice

    NASA Astrophysics Data System (ADS)

    Cui, Bin; Huang, Bing; Li, Chong; Zhang, Xiaoming; Jin, Kyung-Hwan; Zhang, Lizhi; Jiang, Wei; Liu, Desheng; Liu, Feng

    2017-08-01

    Magnetism in solids generally originates from the localized d or f orbitals that are hosted by heavy transition-metal elements. Here, we demonstrate a mechanism for designing a half-metallic f -orbital Dirac fermion from superlight s p elements. Combining first-principles and model calculations, we show that bare and flat-band-sandwiched (FBS) Dirac bands can be created when C20 molecules are deposited into a two-dimensional hexagonal lattice, which are composed of f -molecular orbitals (MOs) derived from s p -atomic orbitals (AOs). Furthermore, charge doping of the FBS Dirac bands induces spontaneous spin polarization, converting the system into a half-metallic Dirac state. Based on this discovery, a model of a spin field effect transistor is proposed to generate and transport 100% spin-polarized carriers. Our finding illustrates a concept to realize exotic quantum states by manipulating MOs, instead of AOs, in orbital-designed molecular crystal lattices.

  13. A density functional study of atomic hydrogen and oxygen chemisorption on the relaxed (0001) surface of double hexagonal close packed americium

    NASA Astrophysics Data System (ADS)

    Dholabhai, P. P.; Atta-Fynn, R.; Ray, A. K.

    2008-02-01

    Ab initio total energy calculations within the framework of density functional theory have been performed for atomic hydrogen and oxygen chemisorption on the (0001) surface of double hexagonal packed americium using a full-potential all-electron linearized augmented plane wave plus local orbitals method. Chemisorption energies were optimized with respect to the distance of the adatom from the relaxed surface for three adsorption sites, namely top, bridge, and hollow hcp sites, the adlayer structure corresponding to coverage of a 0.25 monolayer in all cases. Chemisorption energies were computed at the scalar-relativistic level (no spin-orbit coupling NSOC) and at the fully relativistic level (with spin-orbit coupling SOC). The two-fold bridge adsorption site was found to be the most stable site for O at both the NSOC and SOC theoretical levels with chemisorption energies of 8.204 eV and 8.368 eV respectively, while the three-fold hollow hcp adsorption site was found to be the most stable site for H with chemisorption energies of 3.136 eV at the NSOC level and 3.217 eV at the SOC level. The respective distances of the H and O adatoms from the surface were found to be 1.196 Åand 1.164 Å. Overall our calculations indicate that chemisorption energies in cases with SOC are slightly more stable than the cases with NSOC in the 0.049 0.238 eV range. The work functions and net magnetic moments respectively increased and decreased in all cases compared with the corresponding quantities of bare dhcp Am (0001) surface. The partial charges inside the muffin-tins, difference charge density distributions, and the local density of states have been used to analyze the Am-adatom bond interactions in detail. The implications of chemisorption on Am 5f electron localization-delocalization are also discussed.

  14. Magnetic Local Time Dependant Low Energy Electron Flux Models at Geostationary Earth Orbit

    NASA Astrophysics Data System (ADS)

    Boynton, R.; Balikhin, M. A.; Walker, S. N.

    2017-12-01

    The low energy electron fluxes in the outer radiation belts at Geostationary Earth Orbit (GEO) can vary widely in Magnetic Local Time (MLT). This spatial variation is due to the convective and substorm-associated electric fields and can take place on short time scales. This makes it difficult to deduce a data based model of the low energy electrons. For higher energies, where there is negligible spatial variation at a particular L-star, data based models employ averaged fluxes over the orbit. This removes the diurnal variation as GEO passes through various L-star due to the structure of Earth's magnetic field. This study develops a number of models for the low energy electron fluxes measured by GOES 13 and 15 for different MLT to capture the dynamics of the spatial variations.

  15. Imaging of the outer valence orbitals of CO by electron momentum spectroscopy — Comparison with high level MRSD-CI and DFT calculations

    NASA Astrophysics Data System (ADS)

    Fan, X. W.; Chen, X. J.; Zhou, S. J.; Zheng, Y.; Brion, C. E.; Frey, R.; Davidson, E. R.

    1997-09-01

    A newly constructed energy dispersive multichannel electron momentum spectrometer has been used to image the electron density of the outer valence orbitals of CO with high precision. Binding energy spectra are obtained at a coincidence energy resolution of 1.2 eV fwhm. The measured electron density profiles in momentum space for the outer valence orbitals of CO are compared with cross sections calculated using SCF wavefunctions with basis sets of varying complexity up to near-Hartree-Fock limit in quality. The effects of correlation and electronic relaxation on the calculated momentum profiles are investigated using large MRSD-CI calculations of the full ion-neutral overlap distributions, as well as large basis set DFT calculations with local and non-local (gradient corrected) functionals.

  16. Microscopic description of orbital-selective spin ordering in BaMn2As2

    NASA Astrophysics Data System (ADS)

    Craco, L.; Carara, S. S.

    2018-05-01

    Using generalized gradient approximation+dynamical mean-field theory, we provide a microscopic description of orbital-selective spin ordering in the tetragonal manganese pnictide BaMn2As2 . We demonstrate the coexistence of local moments and small band-gap electronic states in the parent compound. We also explore the role played by electron/hole doping, showing that the Mott insulating state is rather robust to small removal of electron charge carriers similar to cuprate oxide superconductors. Good qualitative accord between theory and angle-resolved photoemission as well as electrical transport provides support to our view of orbital-selective spin ordering in BaMn2As2 . Our proposal is expected to be an important step to understanding the emergent correlated electronic structure of materials with persisting ordered localized moments coexisting with Coulomb reconstructed nonmagnetic electronic states.

  17. Survey of Galileo Plasma Observations in Jupiter's Plasma Sheet

    NASA Technical Reports Server (NTRS)

    Bagenal, Fran; Wilson, Robert J.; Siler, Scott; Paterson, William R.; Kurth, William S.

    2016-01-01

    The plasma science (PLS) Instrument on the Galileo spacecraft (orbiting Jupiter from December 1995 to September 2003) measured properties of the ions that were trapped in the magnetic field. The PLS data provide a survey of the plasma properties between approx. 5 and 30 Jupiter radii [R(sub J)] in the equatorial region. We present plasma properties derived via two analysis methods: numerical moments and forward modeling. We find that the density decreases with radial distance by nearly 5 orders of magnitude from approx. 2 to 3000 cm(exp.-3) at 6R(sub j) to approx. 0.05cm(sub -3) at 30 R(sub j). The density profile did not show major changes from orbit to orbit, suggesting that the plasma production and transport remained constant within about a factor of 2. The radial profile of ion temperature increased with distance which implied that contrary to the concept of adiabatic cooling on expansion, the plasma heats up as it expands out from Io's orbit (where TI is approx.60-80 eV) at approx. 6R(sub j) to a few keV at 30R(sub j).There does not seem to be a long-term, systematic variation in ion temperature with either local time or longitude. This latter finding differs from earlier analysis of Galileo PLS data from a selection of orbits. Further examination of all data from all Galileo orbits suggests that System Ill variations are transitory on timescales of weeks, consistent with the modeling of Cassini Ultraviolet Imaging Spectrograph observations. The plasma flow is dominated by azimuthal flow that is between 80% and 100% of corotation out to 25 R(sub j).

  18. Characterizing Longitude-Dependent Orbital Debris Congestion in the Geosynchronous Orbit Regime

    NASA Astrophysics Data System (ADS)

    Anderson, Paul V.

    The geosynchronous orbit (GEO) is a unique commodity of the satellite industry that is becoming increasingly contaminated with orbital debris, but is heavily populated with high-value assets from the civil, commercial, and defense sectors. The GEO arena is home to hundreds of communications, data transmission, and intelligence satellites collectively insured for an estimated 18.3 billion USD. As the lack of natural cleansing mechanisms at the GEO altitude renders the lifetimes of GEO debris essentially infinite, conjunction and risk assessment must be performed to safeguard operational assets from debris collisions. In this thesis, longitude-dependent debris congestion is characterized by predicting the number of near-miss events per day for every longitude slot at GEO, using custom debris propagation tools and a torus intersection metric. Near-miss events with the present-day debris population are assigned risk levels based on GEO-relative position and speed, and this risk information is used to prioritize the population for debris removal target selection. Long-term projections of debris growth under nominal launch traffic, mitigation practices, and fragmentation events are also discussed, and latitudinal synchronization of the GEO debris population is explained via node variations arising from luni-solar gravity. In addition to characterizing localized debris congestion in the GEO ring, this thesis further investigates the conjunction risk to operational satellites or debris removal systems applying low-thrust propulsion to raise orbit altitude at end-of-life to a super-synchronous disposal orbit. Conjunction risks as a function of thrust level, miss distance, longitude, and semi-major axis are evaluated, and a guidance method for evading conjuncting debris with continuous thrust by means of a thrust heading change via single-shooting is developed.

  19. The Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-LT-RIMP2) theory method

    NASA Astrophysics Data System (ADS)

    Kjærgaard, Thomas

    2017-01-01

    The divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-RI-MP2) theory method introduced in Baudin et al. [J. Chem. Phys. 144, 054102 (2016)] is significantly improved by introducing the Laplace transform of the orbital energy denominator in order to construct the double amplitudes directly in the local basis. Furthermore, this paper introduces the auxiliary reduction procedure, which reduces the set of the auxiliary functions employed in the individual fragments. The resulting Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation method is applied to the insulin molecule where we obtain a factor 9.5 speedup compared to the DEC-RI-MP2 method.

  20. A Method of Trajectory Design for Manned Asteroids Exploration

    NASA Astrophysics Data System (ADS)

    Gan, Q. B.; Zhang, Y.; Zhu, Z. F.; Han, W. H.; Dong, X.

    2014-11-01

    A trajectory optimization method of the nuclear propulsion manned asteroids exploration is presented. In the case of launching between 2035 and 2065, based on the Lambert transfer orbit, the phases of departure from and return to the Earth are searched at first. Then the optimal flight trajectory in the feasible regions is selected by pruning the flight sequences. Setting the nuclear propulsion flight plan as propel-coast-propel, and taking the minimal mass of aircraft departure as the index, the nuclear propulsion flight trajectory is separately optimized using a hybrid method. With the initial value of the optimized local parameters of each three phases, the global parameters are jointedly optimized. At last, the minimal departure mass trajectory design result is given.

  1. A model of plasma current through a hole of Rogowski probe including sheath effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furui, H., E-mail: furui@fusion.k.u-tokyo.ac.jp; Ejiri, A.; Takase, Y.

    2016-04-15

    In TST-2 Ohmic discharges, local current is measured using a Rogowski probe by changing the angle between the local magnetic field and the direction of the hole of the Rogowski probe. The angular dependence shows a peak when the direction of the hole is almost parallel to the local magnetic field. The obtained width of the peak was broader than that of the theoretical curve expected from the probe geometry. In order to explain this disagreement, we consider the effect of sheath in the vicinity of the Rogowski probe. A sheath model was constructed and electron orbits were numerically calculated.more » From the calculation, it was found that the electron orbit is affected by E × B drift due to the sheath electric field. Such orbit causes the broadening of the peak in the angular dependence and the dependence agrees with the experimental results. The dependence of the broadening on various plasma parameters was studied numerically and explained qualitatively by a simplified analytical model.« less

  2. An experimental and theoretical study of the valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine

    NASA Astrophysics Data System (ADS)

    Holland, D. M. P.; Powis, I.; Trofimov, A. B.; Menzies, R. C.; Potts, A. W.; Karlsson, L.; Badsyuk, I. L.; Moskovskaya, T. E.; Gromov, E. V.; Schirmer, J.

    2017-10-01

    The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20-100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green's function, the outer valence Green's function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σN LP) has been found to be different to that for the corresponding chlorine lone-pair (σCl LP). For the σN LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine πCl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σCl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the experimental spectra. The theoretical work also highlights the formation of satellite states, due to the breakdown of the single particle model of ionization, in the inner valence region.

  3. Self-calibration of cone-beam CT geometry using 3D–2D image registration

    PubMed Central

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-01-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory. PMID:26961687

  4. An experimental and theoretical study of the valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine.

    PubMed

    Holland, D M P; Powis, I; Trofimov, A B; Menzies, R C; Potts, A W; Karlsson, L; Badsyuk, I L; Moskovskaya, T E; Gromov, E V; Schirmer, J

    2017-10-28

    The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20-100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green's function, the outer valence Green's function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σ N LP ) has been found to be different to that for the corresponding chlorine lone-pair (σ Cl LP ). For the σ N LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine π Cl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σ Cl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the experimental spectra. The theoretical work also highlights the formation of satellite states, due to the breakdown of the single particle model of ionization, in the inner valence region.

  5. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional calibration is not feasible, such as complex non-circular CBCT orbits and systems with irreproducible source-detector trajectory.

  6. Subdaily alias and draconitic errors in the IGS orbits

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Ray, J.

    2011-12-01

    Harmonic signals with a fundamental period near the GPS draconitic year (351.2 d) and overtones up to the 8th multiple have been observed in the power spectra of nearly all products of the International GNSS Service (IGS), including station position time series [Ray et al., 2008; Collilieux et al., 2007; Santamaría-Gómez et al., 2011], apparent geocenter motions [Hugentobler et al., 2008], and orbit jumps between successive days and midnight discontinuities in Earth orientation parameter (EOP) rates [Ray and Griffiths, 2009]. Ray et al. [2008] suggested two mechanisms for the harmonics: mismodeling of orbit dynamics and aliasing of near-sidereal local station multipath effects. King and Watson [2010] have studied the propagation of local multipath errors into draconitic position variations, but orbit-related processes have been less well examined. Here we elaborate our earlier analysis of GPS orbit jumps [Griffiths and Ray, 2009; Gendt et al., 2010] where we observed some draconitic features as well as prominent spectral bands near 29, 14, 9, and 7 d periods. Finer structures within the sub-seasonal bands fall close to the expected alias frequencies of subdaily EOP tide lines but do not coincide precisely. While once-per-rev empirical orbit parameters should strongly absorb any subdaily EOP tide errors due to near-resonance of their respective periods, the observed differences require explanation. This has been done by simulating known EOP tidal errors and checking their impact on a long series of daily GPS orbits. Indeed, simulated tidal aliases are found to be very similar to the observed orbital features in the sub-seasonal bands. Moreover and unexpectedly, some low draconitic harmonics were also stimulated, potentially a source for the widespread errors in most IGS products.

  7. The Gravity Field of Mars From MGS, Mars Odyssey, and MRO Radio Science

    NASA Technical Reports Server (NTRS)

    Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.

    2015-01-01

    The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have enabled NASA to conduct reconnaissance and exploration of Mars from orbit for sixteen consecutive years. These radio systems on these spacecraft enabled radio science in orbit around Mars to improve the knowledge of the static structure of the Martian gravitational field. The continuity of the radio tracking data, which cover more than a solar cycle, also provides useful information to characterize the temporal variability of the gravity field, relevant to the planet's internal dynamics and the structure and dynamics of the atmosphere [1]. MGS operated for more than 7 years, between 1999 and 2006, in a frozen sun-synchronous, near-circular, polar orbit with the periapsis at approximately 370 km altitude. ODY and MRO have been orbiting Mars in two separate sun-synchronous orbits at different local times and altitudes. ODY began its mapping phase in 2002 with the periapis at approximately 390 km altitude and 4-5pm Local Solar Time (LST), whereas the MRO science mission started in November 2006 with the periapis at approximately 255 km altitude and 3pm LST. The 16 years of radio tracking data provide useful information on the atmospheric density in the Martian upper atmosphere. We used ODY and MRO radio data to recover the long-term periodicity of the major atmospheric constituents -- CO2, O, and He -- at the orbit altitudes of these two spacecraft [2]. The improved atmospheric model provides a better prediction of the annual and semi-annual variability of the dominant species. Therefore, the inclusion of the recovered model leads to improved orbit determination and an improved gravity field model of Mars with MGS, ODY, and MRO radio tracking data.

  8. On the Determination of the Orbits of Comets

    NASA Astrophysics Data System (ADS)

    Englefield, Henry

    2013-06-01

    Preface; 1. General view of the method; 2. On the motion of the point of intersection of the radius vector and cord; 3. On the comparison of the parabolic cord with the space which answers to the mean velocity of the earth in the same time; 4. Of the reduction of the second longitude of the comet; 5. On the proportion of the three curtate distances of the comet from the earth; 6. Of the graphical declination of the orbit of the earth; 7. Of the numerical quantities to be prepared for the construction or computation of the comet's orbit; 8. Determination of the distances of the comet from the earth and the sun; 9. Determination of the elements of the orbit from the determined distances; 10. Determination of the place of the comet from the earth and sun; 11. Determination of the distances of the comet from the earth and sun; 12. Determination of the comet's orbit; 13. Determination of the place of the comet; 14. Application of the graphical method to the comet of 1769; 15. Application of the distances found; 16. Determination of the place of the comet, for another given time; 17. Application of the trigonometrical method to the comet of 1769; 18. Determination of the elements of the orbit of the comet of 1769; Example of the graphical operation for the orbit of the comet of 1769; Example of the trigonometrical operation for the orbit of the comet of 1769; Conclusion; La Place's general method for determining the orbits of comets; Determination of the two elements of the orbit; Application of La Place's method of finding the approximate perihelion distance; Application of La Place's method for correcting the orbit of a comet, to the comet of 1769; Explanation and use of the tables; Tables; Appendix; Plates.

  9. Computation of geometries and frequencies of singlet and triplet nitromethane with density functional theory byusing gaussian type orbitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jursic, B.S.

    1996-12-31

    The results of the computational study of the structures, energies, dipole moments and IR spectra for a singlet and a triplet nitromethane are presented. Five different hybrids (BHandH, BHandHLYP, B3LYP, B3P86 and B3PW91), local (SVWN), and nonlocal (BLYP) DFT methods are used with various sizes of the gaussian type of basis set. The obtained results are compared to the HF, MP2, and MCSCF ab initio calculations, as well as, to the experimental results. Becke`s three functional based hybrid DFT methods outperform the following: the ab initio (HF, MP2 and MCSCF), the Becke`s half-and-half based DFT methods, and the local (SVWNmore » or LSDA) and nonlocal (BLYP) DFT methods. The computed nitromethane geometry, the dipole moment, the energy difference, and the IR frequency are in extraordinary agreement with the experimental results. Thus, we are recommending the B3LYP and the B3PW91 as the methods of choice when the computational study of small {open_quotes}difficult{close_quotes} molecules is considered.« less

  10. A Finite-Orbit-Width Fokker-Planck solver for modeling of energetic particle interactions with waves, with application to Helicons in ITER

    NASA Astrophysics Data System (ADS)

    Petrov, Yuri V.; Harvey, R. W.

    2017-10-01

    The bounce-average (BA) finite-difference Fokker-Planck (FP) code CQL3D [1,2] now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW) ions in tokamaks. The FP equation is reformulated in terms of Constants-Of-Motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. Full-orbit, low collisionality neoclassical radial transport emerges from averaging the local friction and diffusion coefficients along guiding center orbits. Similarly, the BA of local quasilinear RF diffusion terms gives rise to additional radial transport. The local RF electric field components needed for the BA operator are usually obtained by a ray-tracing code, such as GENRAY, or in conjunction with full-wave codes. As a new, practical application, the CQL3D-FOW version is used for simulation of alpha-particle heating by high-harmonic waves in ITER. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD) scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions, such as alphas, through finite Larmor-radius effects. We investigate possibilities to reduce the fast ion heating in CD scenarios.

  11. Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor

    NASA Astrophysics Data System (ADS)

    Hogan, Erik A.; Schaub, Hanspeter

    2016-09-01

    With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.

  12. Density functional theory calculations of 95Mo NMR parameters in solid-state compounds.

    PubMed

    Cuny, Jérôme; Furet, Eric; Gautier, Régis; Le Pollès, Laurent; Pickard, Chris J; d'Espinose de Lacaillerie, Jean-Baptiste

    2009-12-21

    The application of periodic density functional theory-based methods to the calculation of (95)Mo electric field gradient (EFG) and chemical shift (CS) tensors in solid-state molybdenum compounds is presented. Calculations of EFG tensors are performed using the projector augmented-wave (PAW) method. Comparison of the results with those obtained using the augmented plane wave + local orbitals (APW+lo) method and with available experimental values shows the reliability of the approach for (95)Mo EFG tensor calculation. CS tensors are calculated using the recently developed gauge-including projector augmented-wave (GIPAW) method. This work is the first application of the GIPAW method to a 4d transition-metal nucleus. The effects of ultra-soft pseudo-potential parameters, exchange-correlation functionals and structural parameters are precisely examined. Comparison with experimental results allows the validation of this computational formalism.

  13. Analysis and modeling of localized invariant solutions in pipe flow

    NASA Astrophysics Data System (ADS)

    Ritter, Paul; Zammert, Stefan; Song, Baofang; Eckhardt, Bruno; Avila, Marc

    2018-01-01

    Turbulent spots surrounded by laminar flow are a landmark of transitional shear flows, but the dependence of their kinematic properties on spatial structure is poorly understood. We here investigate this dependence in pipe flow for Reynolds numbers between 1500 and 5000. We compute spatially localized relative periodic orbits in long pipes and show that their upstream and downstream fronts decay exponentially towards the laminar profile. This allows us to model the fronts by employing the linearized Navier-Stokes equations, and the resulting model yields the spatial decay rate and the front velocity profiles of the periodic orbits as a function of Reynolds number, azimuthal wave number, and propagation speed. In addition, when applied to a localized turbulent puff, the model is shown to accurately approximate the spatial decay rate of its upstream and downstream tails. Our study provides insight into the relationship between the kinematics and spatial structure of localized turbulence and more generally into the physics of localization.

  14. Unusual intraconal localization of orbital giant cell angiofibroma

    PubMed Central

    Ekin, Meryem Altin; Ugurlu, Seyda Karadeniz; Cakalagaoglu, Fulya

    2018-01-01

    Giant cell angiofibroma (GCA) is a recently reported rare soft-tissue tumor that can develop in various sites including orbit. Orbital GCAs were mainly located in the eyelid or extraconal regions such as lacrimal gland and conjunctiva. We report an atypical case of a GCA arising in the intraconal area of the orbit in a 65-year-old male patient. The tumor was excised in total by lateral orbitotomy. Histological and immunohistochemical features were consistent with the diagnosis of GCA. No recurrence was observed during the follow-up of over 2 years. GCA is a rare tumor that should be considered in the differential diagnosis of intraconal orbital tumors. Complete surgical removal is the current optimal treatment option. PMID:29283151

  15. L-Edge X-ray Absorption Spectroscopic Investigation of {FeNO} 6: Delocalization vs Antiferromagnetic Coupling

    DOE PAGES

    Yan, James J.; Gonzales, Margarita A.; Mascharak, Pradip K.; ...

    2016-12-22

    NO is a classic non-innocent ligand, and iron nitrosyls can have different electronic structure descriptions depending on their spin state and coordination environment. These highly covalent ligands are found in metalloproteins and are also used as models for Fe–O 2 systems. Here, this study utilizes iron L-edge X-ray absorption spectroscopy (XAS), interpreted using a valence bond configuration interaction multiplet model, to directly experimentally probe the electronic structure of the S = 0 {FeNO} 6 compound [Fe(PaPy 3)NO] 2+ (PaPy 3 = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) and the S = 0 [Fe(PaPy 3)CO] + reference compound. This method allows separation of the σ-donation andmore » π-acceptor interactions of the ligand through ligand-to-metal and metal-to-ligand charge-transfer mixing pathways. The analysis shows that the {FeNO} 6 electronic structure is best described as Fe III–NO(neutral), with no localized electron in an NO π* orbital or electron hole in an Fe dπ orbital. This delocalization comes from the large energy gap between the Fe–NO π-bonding and antibonding molecular orbitals relative to the exchange interactions between electrons in these orbitals. This study demonstrates the utility of L-edge XAS in experimentally defining highly delocalized electronic structures.« less

  16. MERCATOR: Methods and Realization for Control of the Attitude and the Orbit of spacecraft

    NASA Technical Reports Server (NTRS)

    Tavernier, Gilles; Campan, Genevieve

    1993-01-01

    Since 1974, CNES has been involved in geostationary positioning. Among different entities participating in operations and their preparation, the Flight Dynamics Center (FDC) is in charge of performing the following tasks: orbit determination; attitude determination; computation, monitoring, and calibration of orbit maneuvers; computation, monitoring, and calibration of attitude maneuvers; and operational predictions. In order to fulfill this mission, the FDC receives telemetry from the satellite and localization measurements from ground stations (e.g., CNES, NASA, INTELSAT). These data are processed by space dynamics programs integrated in the MERCATOR system which is run on SUN workstations (UNIX O.S.). The main features of MERCATOR are redundancy, modularity, and flexibility: efficient, flexible, and user friendly man-machine interface; and four identical SUN stations redundantly linked in an Ethernet network. Each workstation can perform all the tasks from data acquisition to computation results dissemination through a video network. A team of four engineers can handle the space mechanics aspects of a complete geostationary positioning from the injection into a transfer orbit to the final maneuvers in the station-keeping window. MERCATOR has been or is to be used for operations related to more than ten geostationary positionings. Initially developed for geostationary satellites, MERCATOR's methodology was also used for satellite control centers and can be applied to a wide range of satellites and to future manned missions.

  17. Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases.

    PubMed

    Zhou, Tao; Gao, Yi; Wang, Z D

    2014-06-11

    We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its critical property are investigated numerically. Physical properties of the topological superconducting phase are also explored. Moreover, the local density of states is calculated, through which the topological feature may be tested experimentally.

  18. The 1992 activities of the International GPS Geodynamics Service (IGS).

    NASA Astrophysics Data System (ADS)

    Beutler, G.

    The primary goal of the International GPS Geodynamics Service (IGS) is to give the scientific community high quality GPS orbits (and related information like earth orientation parameters) to perform regional or local GPS analyses without further orbit improvement. The declared goal of the three month 1992 IGS Test Campaign was the routine production of accurate GPS orbits using the observations of about 30 globally distributed IGS Core Sites. IGS Epoch Campaigns will be organized about every second year.

  19. Unraveling orbital hybridization of triplet emitters at the metal-organic interface.

    PubMed

    Ewen, Pascal R; Sanning, Jan; Doltsinis, Nikos L; Mauro, Matteo; Strassert, Cristian A; Wegner, Daniel

    2013-12-27

    We have investigated the structural and electronic properties of phosphorescent planar platinum(II) complexes at the interface of Au(111) with submolecular resolution using combined scanning tunneling microscopy and spectroscopy as well as density functional theory. Our analysis shows that molecule-substrate coupling and lateral intermolecular interactions are weak. While the ligand orbitals remain essentially unchanged upon contact with the substrate, we found modified electronic behavior at the Pt atom due to local hybridization and charge transfer to the substrate. Thus, this novel class of phosphorescent molecules exhibits well-defined and tunable interaction with its local environment.

  20. High-frequency electromagnetic scarring in three-dimensional axisymmetric convex cavities

    DOE PAGES

    Warne, Larry K.; Jorgenson, Roy E.

    2016-04-13

    Here, this article examines the localization of high-frequency electromagnetic fields in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. When these orbits lead to unstable localized modes, they are known as scars. This article treats the case where the opposing sides, or mirrors, are convex. Particular attention is focused on the normalization through the electromagnetic energy theorem. Both projections of the field along the scarred orbit as well as field point statistics are examined. Statistical comparisons are made with a numerical calculation of the scars run with an axisymmetric simulation.

  1. Primary Orbital Chondromyxoid Fibroma: A Rare Case.

    PubMed

    Mullen, Martin G; Somogyi, Marie; Maxwell, Sean P; Prabhu, Vikram; Yoo, David K

    A 56-year-old male with history of chronic sinusitis was found to have a 3 cm left orbital lesion on CT. Subsequent MRI demonstrated a multilobulated enhancing soft tissue lesion at the superotemporal region of the left orbit. Initial biopsy was reported as a low-grade sarcoma. On further evaluation, a consensus was made that the lesion was likely a benign mixed mesenchymal type tumor but should nonetheless be surgically removed. Left lateral orbitotomy was performed which revealed a tumor originating in the lateral orbital bone with segments eroding through the wall of the orbit. Intraoperative frozen sections revealed myoepitheliod tissue with locally aggressive features and the tumor was completely removed. The final histopathologic analysis of the tissue was consistent with a chondromyxoid fibroma. Chondomyxoid fibroma is a rare entity in the orbital bones and is more commonly seen in long bones.

  2. Induced charging of shuttle orbiter by high electron-beam currents

    NASA Technical Reports Server (NTRS)

    Liemohn, H. B.

    1977-01-01

    Emission of high-current electron beams that was proposed for some Spacelab payloads required substantial return currents to the orbiter skin in order to neutralize the beam charge. Since the outer skin of the vehicle was covered with approximately 1200 sq m of thermal insulation which has the dielectric quality of air and an electrical conductivity that was estimated by NASA at 10 to the -9 power to 10 to the -10 power mhos/m, considerable transient charging and local potential differences were anticipated across the insulation. The theory for induced charging of spacecraft due to operation of electron guns was only developed for spherical metal vehicles and constant emission currents, which were not directly applicable to the orbiter situation. Field-aligned collection of electron return current from the ambient ionosphere at orbiter altitudes provides up to approximately 150 mA on the conducting surfaces and approximately 2.4 A on the dielectric thermal insulation. Local ionization of the neutral atmosphere by energetic electron bombardment or electrical breakdown may provide somewhat more return current.

  3. Orbit computation of the TELECOM-2D satellite with a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Deleflie, Florent; Coulot, David; Vienne, Alain; Decosta, Romain; Richard, Pascal; Lasri, Mohammed Amjad

    2014-07-01

    In order to test a preliminary orbit determination method, we fit an orbit of the geostationary satellite TELECOM-2D, as if we did not know any a priori information on its trajectory. The method is based on a genetic algorithm coupled to an analytical propagator of the trajectory, that is used over a couple of days, and that uses a whole set of altazimutal data that are acquired by the tracking network made up of the two TAROT telescopes. The adjusted orbit is then compared to a numerical reference. The method is described, and the results are analyzed, as a step towards an operational method of preliminary orbit determination for uncatalogued objects.

  4. Determination of celestial bodies orbits and probabilities of their collisions with the Earth

    NASA Astrophysics Data System (ADS)

    Medvedev, Yuri; Vavilov, Dmitrii

    In this work we have developed a universal method to determine the small bodies orbits in the Solar System. In the method we consider different planes of body’s motion and pick up which is the most appropriate. Given an orbit plane we can calculate geocentric distances at time of observations and consequence determinate all orbital elements. Another technique that we propose here addresses the problem of estimation probability of collisions celestial bodies with the Earth. This technique uses the coordinate system associated with the nominal osculating orbit. We have compared proposed technique with the Monte-Carlo simulation. Results of these methods exhibit satisfactory agreement, whereas, proposed method is advantageous in time performance.

  5. Extracting More Information from Passive Optical Tracking Observations for Reliable Orbit Element Generation

    NASA Astrophysics Data System (ADS)

    Bennett, J.; Gehly, S.

    2016-09-01

    This paper presents results from a preliminary method for extracting more orbital information from low rate passive optical tracking data. An improvement in the accuracy of the observation data yields more accurate and reliable orbital elements. A comparison between the orbit propagations from the orbital element generated using the new data processing method is compared with the one generated from the raw observation data for several objects. Optical tracking data collected by EOS Space Systems, located on Mount Stromlo, Australia, is fitted to provide a new orbital element. The element accuracy is determined from a comparison between the predicted orbit and subsequent tracking data or reference orbit if available. The new method is shown to result in a better orbit prediction which has important implications in conjunction assessments and the Space Environment Research Centre space object catalogue. The focus is on obtaining reliable orbital solutions from sparse data. This work forms part of the collaborative effort of the Space Environment Management Cooperative Research Centre which is developing new technologies and strategies to preserve the space environment (www.serc.org.au).

  6. Bifurcation Analysis and Chaos Control in a Modified Finance System with Delayed Feedback

    NASA Astrophysics Data System (ADS)

    Yang, Jihua; Zhang, Erli; Liu, Mei

    2016-06-01

    We investigate the effect of delayed feedback on the finance system, which describes the time variation of the interest rate, for establishing the fiscal policy. By local stability analysis, we theoretically prove the existences of Hopf bifurcation and Hopf-zero bifurcation. By using the normal form method and center manifold theory, we determine the stability and direction of a bifurcating periodic solution. Finally, we give some numerical solutions, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable equilibrium or periodic orbit.

  7. Transfers between libration-point orbits in the elliptic restricted problem

    NASA Astrophysics Data System (ADS)

    Hiday-Johnston, L. A.; Howell, K. C.

    1994-04-01

    A strategy is formulated to design optimal time-fixed impulsive transfers between three-dimensional libration-point orbits in the vicinity of the interior L1 libration point of the Sun-Earth/Moon barycenter system. The adjoint equation in terms of rotating coordinates in the elliptic restricted three-body problem is shown to be of a distinctly different form from that obtained in the analysis of trajectories in the two-body problem. Also, the necessary conditions for a time-fixed two-impulse transfer to be optimal are stated in terms of the primer vector. Primer vector theory is then extended to nonoptimal impulsive trajectories in order to establish a criterion whereby the addition of an interior impulse reduces total fuel expenditure. The necessary conditions for the local optimality of a transfer containing additional impulses are satisfied by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses. Determination of location, orientation, and magnitude of each additional impulse is accomplished by the unconstrained minimization of the cost function using a multivariable search method. Results indicate that substantial savings in fuel can be achieved by the addition of interior impulsive maneuvers on transfers between libration-point orbits.

  8. Experimental and theoretical studies of (FT-IR, FT-Raman, UV-Visible and DFT) 4-(6-methoxynaphthalen-2-yl) butan-2-one.

    PubMed

    Govindasamy, P; Gunasekaran, S

    2015-01-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4000-50 cm(-1) and 4000-450 cm(-1) respectively for 4-(6-methoxynaphthalen-2-yl) butan-2-one (abbreviated as 4MNBO) molecule. Theoretical calculations were performed by density functional theory (DFT/B3LYP) method using 6-311G(d,p) and 6-311++G(d,p) basis sets. The difference between the observed and calculated wavenumber value of most of the fundamentals were very small. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The UV-Vis spectrum was recorded in the methanol solution. The energy, wavelength and oscillator's strength were calculated by Time Dependent Density Functional Theory (TD-DFT) and matched to the experimental findings. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Thermodynamic properties of 4MNBO at different temperature have been calculated. The molecular electrostatic potential surface (MESP) and Frontier molecular orbital's (FMO's) analysis were investigated using theoretical calculations. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Evaluation and Compensation of Detector Solenoid Effects in the JLEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Guohui; Morozov, Vasiliy; Zhang, Yuhong

    2016-05-01

    The JLEIC detector solenoid has a strong 3 T field in the IR area, and its tails extend over a range of several meters. One of the main effects of the solenoid field is coupling of the horizontal and vertical betatron motions which must be corrected in order to preserve the dynamical stability and beam spot size match at the IP. Additional effects include influence on the orbit and dispersion caused by the angle between the solenoid axis and the beam orbit. Meanwhile it affects ion polarization breaking the figure-8 spin symmetry. Crab dynamics further complicates the picture. All ofmore » these effects have to be compensated or accounted for. The proposed correction system is equivalent to the Rotating Frame Method. However, it does not involve physical rotation of elements. It provides local compensation of the solenoid effects independently for each side of the IR. It includes skew quadrupoles, dipole correctors and anti-solenoids to cancel perturbations to the orbit and linear optics. The skew quadrupoles and FFQ together generate an effect equivalent to adjustable rotation angle to do the decoupling task. Details of all of the correction systems are presented.« less

  10. Electromagnetic launch of lunar material

    NASA Technical Reports Server (NTRS)

    Snow, William R.; Kolm, Henry H.

    1992-01-01

    Lunar soil can become a source of relatively inexpensive oxygen propellant for vehicles going from low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) and beyond. This lunar oxygen could replace the oxygen propellant that, in current plans for these missions, is launched from the Earth's surface and amounts to approximately 75 percent of the total mass. The reason for considering the use of oxygen produced on the Moon is that the cost for the energy needed to transport things from the lunar surface to LEO is approximately 5 percent the cost from the surface of the Earth to LEO. Electromagnetic launchers, in particular the superconducting quenchgun, provide a method of getting this lunar oxygen off the lunar surface at minimal cost. This cost savings comes from the fact that the superconducting quenchgun gets its launch energy from locally supplied, solar- or nuclear-generated electrical power. We present a preliminary design to show the main features and components of a lunar-based superconducting quenchgun for use in launching 1-ton containers of liquid oxygen, one every 2 hours. At this rate, nearly 4400 tons of liquid oxygen would be launched into low lunar orbit in a year.

  11. Spin and charge controlled by antisymmetric spin-orbit coupling in a triangular-triple-quantum-dot Kondo system

    NASA Astrophysics Data System (ADS)

    Koga, M.; Matsumoto, M.; Kusunose, H.

    2018-05-01

    We study a local antisymmetric spin-orbit (ASO) coupling effect on a triangular-triple-quantum-dot (TTQD) system as a theoretical proposal for a new application of the Kondo physics to nanoscale devices. The electric polarization induced by the Kondo effect is strongly correlated with the spin configurations and molecular orbital degrees of freedom in the TTQD. In particular, an abrupt sign reversal of the emergent electric polarization is associated with a quantum critical point in a magnetic field, which can also be controlled by the ASO coupling that changes the mixing weight of different orbital components in the TTQD ground state.

  12. Photoelectron spectroscopy and density functional theory studies of (FeS)mH- (m = 2-4) cluster anions: effects of the single hydrogen.

    PubMed

    Yin, Shi; Bernstein, Elliot R

    2017-12-20

    Single hydrogen containing iron hydrosulfide cluster anions (FeS) m H - (m = 2-4) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by Density Functional Theory (DFT) calculations. The structural properties, relative energies of different spin states and isomers, and the first calculated vertical detachment energies (VDEs) of different spin states for these (FeS) m H - (m = 2-4) cluster anions are investigated at various reasonable theory levels. Two types of structural isomers are found for these (FeS) m H - (m = 2-4) clusters: (1) the single hydrogen atom bonds to a sulfur site (SH-type); and (2) the single hydrogen atom bonds to an iron site (FeH-type). Experimental and theoretical results suggest such available different SH- and FeH-type structural isomers should be considered when evaluating the properties and behavior of these single hydrogen containing iron sulfide clusters in real chemical and biological systems. Compared to their related, respective pure iron sulfur (FeS) m - clusters, the first VDE trend of the diverse type (FeS) m H 0,1 - (m = 1-4) clusters can be understood through (1) the different electron distribution properties of their highest singly occupied molecular orbital employing natural bond orbital analysis (NBO/HSOMO), and (2) the partial charge distribution on the NBO/HSOMO localized sites of each cluster anion. Generally, the properties of the NBO/HSOMOs play the principal role with regard to the physical and chemical properties of all the anions. The change of cluster VDE from low to high is associated with the change in nature of their NBO/HSOMO from a dipole bound and valence electron mixed character, to a valence p orbital on S, to a valence d orbital on Fe, and to a valence p orbital on Fe or an Fe-Fe delocalized valence bonding orbital. For clusters having the same properties for NBO/HSOMOs, the partial charge distributions at the NBO/HSOMO localized sites additionally affect their VDEs: a more negative or less positive localized charge distribution is correlated with a lower first VDE. The single hydrogen in these (FeS) m H - (m = 2-4) cluster anions is suggested to affect their first VDEs through the different structure types (SH- or FeH-), the nature of the NBO/HSOMOs at the local site, and the value of partial charge number at the local site of the NBO/HSOMO.

  13. A method of initial orbit determination from three or more observations on a short arc. (Russian Title: Метод определения первоначальной орбиты по трем и более наблюдениям на короткой дуге)

    NASA Astrophysics Data System (ADS)

    Shefer, V. A.

    2010-12-01

    A new method is suggested for computing the initial orbit of a small celestial body from its three or more pairs of angular measurements at three times. The method is based on using the approach that we previously developed for constructing the intermediate orbit from minimal number of observations. This intermediate orbit allows for most of the perturbations in the motion of the body under study. The method proposed uses the Herget's algorithmic scheme that makes it possible to involve additional observations as well. The methodical error of orbit computation by the proposed method is two orders smaller than the corresponding error of the Herget's approach based on the construction of the unperturbed Keplerian orbit. The new method is especially efficient if applied to high-accuracy observational data covering short orbital arcs.

  14. A new method of preliminary orbit determination from three or more observations on a short arc. (Russian Title: Новый метод определения предварительной орбиты по трем и более наблюдениям на короткой дуге)

    NASA Astrophysics Data System (ADS)

    Shefer, V. A.

    2011-07-01

    A new method is suggested for finding the preliminary orbit of a small celestial body from its three or more pairs of angular measurements at three times. The method is based on using the approach that we previously developed for constructing the intermediate orbit from minimal number of observations. This intermediate orbit allows for most of the perturbations in the motion of the body under study. The method proposed uses the Herget's algorithmic scheme that makes it possible to involve additional observations as well. The methodical error of orbit computation by the proposed method is two orders smaller than the corresponding error of the commonly used approach based on the construction of the unperturbed Keplerian orbit. The new method is especially efficient if applied to high-accuracy observational data covering short orbital arcs.

  15. Star Formation Histories of Local Group Dwarf Galaxies. (Ludwig Biermann Award Lecture 1996)

    NASA Astrophysics Data System (ADS)

    Grebel, E. K.

    The star formation histories of dwarf galaxies in the Local Group are reviewed. First the question of Local Group membership is considered based on various criteria. The properties of 31 (36) galaxies are consistent with likely (potential) Local Group membership. To study the star formation histories of these galaxies, a multi-parameter problem needs to be solved: Ages, metallicities, population fractions, and spatial variations must be determined, which depend crucially on the knowledge of reddening and distance. The basic methods for studying resolvable stellar populations are summarized. One method is demonstrated using the Fornax dwarf spheroidal galaxy. A comprehensive compilation of the star formation histories of dwarf irregulars, dwarf ellipticals, and dwarf spheroidals in the Local Group is presented and visualized through Hodge's population boxes. All galaxies appear to have differing fractions of old and intermediate-age populations, and those sufficiently massive and undisturbed to retain and recycle their gas are still forming stars today. Star formation has occurred either in distinct episodes or continuously over long periods of time. Metallicities and enrichment vary widely. Constraints on merger and remnant scenarios are discussed, and a unified picture based on the current knowledge is presented. Primary goals for future observations are: accurate age determinations based on turnoff photometry, detection of subpopulations distinct in age, metallicity, and/or spatial distribution; improved distances; and astrometric studies to derive orbits and constrain past and future interactions.

  16. Relative Stabilities and Reactivities of Isolated Versus Conjugated Alkenes: Reconciliation Via a Molecular Orbital Approach

    NASA Astrophysics Data System (ADS)

    Sotiriou-Leventis, Chariklia; Hanna, Samir B.; Leventis, Nicholas

    1996-04-01

    The well-accepted practice of generating a pair of molecular orbitals, one of lower energy and another of higher energy than the original pair of overlapping atomic orbitals, and the concept of a particle in a one-dimensional box are implemented in a simplified, nonmathematical method that explains the relative stabilities and reactivities of alkenes with conjugated versus isolated double bonds. In this method, Huckel-type MO's of higher polyenes are constructed by energy rules of linear combination of atomic orbitals. One additional rule is obeyed: bonding molecular orbitals overlap only with bonding molecular orbitals, and antibonding molecular orbitals overlap only with antibonding molecular orbitals.

  17. Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Hsu, Danley C.; Ford, Eric B.; Ragozzine, Darin; Morehead, Robert C.

    2018-05-01

    We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period as our model and apply our algorithm to estimate occurrence rates for Q1–Q16 planet candidates orbiting solar-type stars. We arrive at significantly increased planet occurrence rates for small planet candidates (R p < 1.25 R ⊕) at larger orbital periods (P > 80 day) compared to the rates estimated by the more common inverse detection efficiency method (IDEM). Our improved methodology estimates that the occurrence rate density of small planet candidates in the habitable zone of solar-type stars is {1.6}-0.5+1.2 per factor of 2 in planet radius and orbital period. Additionally, we observe a local minimum in the occurrence rate for strong planet candidates marginalized over orbital period between 1.5 and 2 R ⊕ that is consistent with previous studies. For future improvements, the forward modeling approach of ABC is ideally suited to incorporating multiple populations, such as planets, astrophysical false positives, and pipeline false alarms, to provide accurate planet occurrence rates and uncertainties. Furthermore, ABC provides a practical statistical framework for answering complex questions (e.g., frequency of different planetary architectures) and providing sound uncertainties, even in the face of complex selection effects, observational biases, and follow-up strategies. In summary, ABC offers a powerful tool for accurately characterizing a wide variety of astrophysical populations.

  18. Orbital Magnetism in Band Structure Calculations

    NASA Astrophysics Data System (ADS)

    Solovyev, I. V.; Liechtenstein, A. I.; Terakura, K.

    1997-03-01

    We discuss abilities of the exact Fock exchange EX to deal with the phenomenon of the orbital magnetism in the density functional theories. The essence of our approach is to decompose the density matrix in terms of invariant (Rwidehatρ_i=widehatρ_i) and noninvariant (Rwidehatρ_n=-widehatρ_n) parts under the time reversal operation R. Stressing the short-range electron-electron interactions, we analyze the exchange enhancement of the orbital magnetization given by E_X[widehatρ_n]. For p-electrons it leads to the Stoner-like orbital exchange E_X[widehatρ_n]=-(1/4)Usum_α < widehatL_α >^2 driven by on-site Coulomb interaction U. More generally, E_X[widehatρ_n] can be expressed in terms of expectation values of the irreducible set of operators being odd order products of widehatL_x, widehatLy and widehatL_z. Local enhancement of the crystal field effects in E_X[widehatρ_i] as well as Hartree term E_H[widehatρ_i] relevant to the quenching of the orbital moments is driven by the same parameter (U) and should be considered on an equal footing with E_X[widehatρ_n]. We have implemented this formalism in the spirit of rotationally invariant LDA+U approach^1 in the fully relativistic LMTO method. Applications for Fe, Co and Ni as well as FeO and CoO will be given. - The work is partly supported by NEDO. ^1 I.V.Solovyev et al., Phys. Rev. B 50, 16861 (1994), A.I.Liechtenstein et al., Phys. Rev. B 52, R5467 (1995).

  19. Theoretical study of the dependence of single impurity Anderson model on various parameters within distributional exact diagonalization method

    NASA Astrophysics Data System (ADS)

    Syaina, L. P.; Majidi, M. A.

    2018-04-01

    Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.

  20. Searching for co-orbital planets by combining transit and radial-velocity measurements

    NASA Astrophysics Data System (ADS)

    Robutel, p.; Leleu, A.; Correia, A.; Lillo-Box, J.

    2017-09-01

    Co-orbital planetary systems consist of two planets orbiting with the same period a central star. If co-orbital bodies are common in the solar system and are also a natural output of planetary formation models, so far none have been found in extrasolar systems. This lack may be due to observational biases, since the main detection methods are unable to spot co-orbital companions when they are small or near the Lagrangian equilibrium points. We propose a simple method, based on an idea from Ford & Gaudi (2006), that allows the detection of co-orbital companions, and relies on a single parameter proportional to the mass ratio of the two planets. This method is applied to archival radial velocity data of 46 close-in transiting planets among which a few are strong candidates to harbor a co-orbital companion.

  1. DOS cones along atomic chains

    NASA Astrophysics Data System (ADS)

    Kwapiński, Tomasz

    2017-03-01

    The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin-orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears.

  2. Seawifs Technical Report Series. Volume 2: Analysis of Orbit Selection for Seawifs: Ascending Versus Descending Node

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Gregg, Watson W.

    1992-01-01

    Due to range safety considerations, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color instrument may be required to be launched into a near-noon descending node, as opposed to the ascending node used by the predecessor sensor, the Coastal Zone Color Scanner (CZCS). The relative importance of ascending versus descending near-noon orbits was assessed here to determine if descending node will meet the scientific requirements of SeaWiFS. Analyses focused on ground coverage, local times of coverage, solar and viewing geometries (zenith and azimuth angles), and sun glint. Differences were found in the areas covered by individual orbits, but were not important when taken over a 16 day repeat time. Local time of coverage was also different: for ascending node orbits the Northern Hemisphere was observed in the morning and the Southern Hemisphere in the afternoon, while for descending node orbits the Northern Hemisphere was observed in the afternoon and the Southern in the morning. There were substantial differences in solar azimuth and spacecraft azimuth angles both at equinox and at the Northern Hemisphere summer solstice. Negligible differences in solar and spacecraft zenith angles, relative azimuth angles, and sun glint were obtained at the equinox. However, large differences were found in solar zenith angles, relative azimuths, and sun glint for the solstice. These differences appeared to compensate across the scan, however, an increase in sun glint in descending node over that in ascending node on the western part of the scan was compensated by a decrease on the eastern part of the scan. Thus, no advantage or disadvantage could be conferred upon either ascending node or descending node for noon orbits. Analyses were also performed for ascending and descending node orbits that deviated from a noon equator crossing time. For ascending node, afternoon orbits produced the lowest mean solar zenith angles in the Northern Hemisphere, and morning orbits produced the lowest angles for the Southern Hemisphere. For descending node, morning orbits produced the lowest mean solar zenith angles for the Northern Hemisphere; afternoon orbits produced the lowest angles for the Southern Hemisphere.

  3. Exchange potential from the common energy denominator approximation for the Kohn-Sham Green's function: Application to (hyper)polarizabilities of molecular chains

    NASA Astrophysics Data System (ADS)

    Grüning, M.; Gritsenko, O. V.; Baerends, E. J.

    2002-04-01

    An approximate Kohn-Sham (KS) exchange potential vxσCEDA is developed, based on the common energy denominator approximation (CEDA) for the static orbital Green's function, which preserves the essential structure of the density response function. vxσCEDA is an explicit functional of the occupied KS orbitals, which has the Slater vSσ and response vrespσCEDA potentials as its components. The latter exhibits the characteristic step structure with "diagonal" contributions from the orbital densities |ψiσ|2, as well as "off-diagonal" ones from the occupied-occupied orbital products ψiσψj(≠1)σ*. Comparison of the results of atomic and molecular ground-state CEDA calculations with those of the Krieger-Li-Iafrate (KLI), exact exchange (EXX), and Hartree-Fock (HF) methods show, that both KLI and CEDA potentials can be considered as very good analytical "closure approximations" to the exact KS exchange potential. The total CEDA and KLI energies nearly coincide with the EXX ones and the corresponding orbital energies ɛiσ are rather close to each other for the light atoms and small molecules considered. The CEDA, KLI, EXX-ɛiσ values provide the qualitatively correct order of ionizations and they give an estimate of VIPs comparable to that of the HF Koopmans' theorem. However, the additional off-diagonal orbital structure of vxσCEDA appears to be essential for the calculated response properties of molecular chains. KLI already considerably improves the calculated (hyper)polarizabilities of the prototype hydrogen chains Hn over local density approximation (LDA) and standard generalized gradient approximations (GGAs), while the CEDA results are definitely an improvement over the KLI ones. The reasons of this success are the specific orbital structures of the CEDA and KLI response potentials, which produce in an external field an ultranonlocal field-counteracting exchange potential.

  4. A single molecule rectifier with strong push-pull coupling

    NASA Astrophysics Data System (ADS)

    Saraiva-Souza, Aldilene; Macedo de Souza, Fabricio; Aleixo, Vicente F. P.; Girão, Eduardo Costa; Filho, Josué Mendes; Meunier, Vincent; Sumpter, Bobby G.; Souza Filho, Antônio Gomes; Del Nero, Jordan

    2008-11-01

    We theoretically investigate the electronic charge transport in a molecular system composed of a donor group (dinitrobenzene) coupled to an acceptor group (dihydrophenazine) via a polyenic chain (unsaturated carbon bridge). Ab initio calculations based on the Hartree-Fock approximations are performed to investigate the distribution of electron states over the molecule in the presence of an external electric field. For small bridge lengths (n =0-3) we find a homogeneous distribution of the frontier molecular orbitals, while for n >3 a strong localization of the lowest unoccupied molecular orbital is found. The localized orbitals in between the donor and acceptor groups act as conduction channels when an external electric field is applied. We also calculate the rectification behavior of this system by evaluating the charge accumulated in the donor and acceptor groups as a function of the external electric field. Finally, we propose a phenomenological model based on nonequilibrium Green's function to rationalize the ab initio findings.

  5. Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY

    NASA Astrophysics Data System (ADS)

    Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi

    2015-03-01

    Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.

  6. Theoretical studies of the electronic properties of ceramic materials

    NASA Astrophysics Data System (ADS)

    Ching, W. Y.

    1990-11-01

    The first-principles orthogonalized linear combination of atomic orbitals (OLCAO) method for electronic structure studies has been applied to a variety of complex inorganic crystals. The theory and the practice of the OLCAO method in the local density approximation are discussed in detail. Recent progress in the study of electronic and optical properties of a large list of ceramic systems are summarized. Eight selected topics on different ceramic crystals focusing on specific points of interest are presented as examples. The materials discussed are AlN, Cu2O, beta-Si3N4, Y2O3, LiB3O5, ferroelectric crystals, Fe-B compounds, and the YBa2Cu3O7 superconductor.

  7. Evaluation of the molecular polarizability using the IPPP-CLOPPA-INDO/S method. Application to molecules of biological interest.

    PubMed

    Botek, Edith; Giribet, Claudia; Ruiz de Azúa, Martín; Martín Negri, Ricardo; Bernik, Delia

    2008-07-31

    The IPPP-CLOPPA-INDO/S method is introduced to investigate the static molecular polarizability in macromolecules. As an example of application, the polarizability of phospholipidic compounds, with and without the presence of water molecules has been estimated. The IPPP technique was employed to calculate the polarizability of the polar head and the hydrocarbon chains separately to analyze the feasibility of evaluating the total polarizability of the molecule by addition of these two projected results. INDO/S dipole moments of different fragments of the complex molecule were obtained by means of localized molecular orbitals in order to evaluate the charge transfer in the system.

  8. Spin-orbit coupled systems in the atomic limit: rhenates, osmates, iridates

    NASA Astrophysics Data System (ADS)

    Paramekanti, Arun; Singh, David J.; Yuan, Bo; Casa, Diego; Said, Ayman; Kim, Young-June; Christianson, A. D.

    2018-06-01

    Motivated by RIXS experiments on a wide range of complex heavy oxides, including rhenates, osmates, and iridates, we discuss the theory of RIXS for site-localized t2 g orbital systems with strong spin-orbit coupling. For such systems, we present exact diagonalization results for the spectrum at different electron fillings, showing that it accesses "single-particle" and "multiparticle" excitations. This leads to a simple picture for the energies and intensities of the RIXS spectra in Mott insulators such as double perovskites which feature highly localized electrons, and yields estimates of the spin-orbit coupling and Hund's coupling in correlated 5 d oxides. We present new higher resolution RIXS data at the Re L3 edge in Ba2YReO6 which finds a previously unresolved peak splitting, providing further confirmation of our theoretical predictions. Using ab initio electronic structure calculations on Ba2M ReO6 (with M =Re , Os, Ir) we show that while the atomic limit yields a reasonable effective Hamiltonian description of the experimental observations, effects such as t2 g-eg interactions and hybridization with oxygen are important. Our ab initio estimate for the strength of the intersite exchange coupling shows that, compared to the d3 systems, the exchange is one or two orders of magnitude weaker in the d2 and d4 materials, which may partly explain the suppression of long-range magnetic order in the latter compounds. As a way to interpolate between the site-localized picture and our electronic structure band calculations, we discuss the spin-orbital levels of the M O6 cluster. This suggests a possible role for intracluster excitons in Ba2YIrO6 which may lead to a weak breakdown of the atomic Jeff=0 picture and to small magnetic moments.

  9. Unitary group adapted state specific multireference perturbation theory: Formulation and pilot applications.

    PubMed

    Sen, Avijit; Sen, Sangita; Samanta, Pradipta Kumar; Mukherjee, Debashis

    2015-04-05

    We present here a comprehensive account of the formulation and pilot applications of the second-order perturbative analogue of the recently proposed unitary group adapted state-specific multireference coupled cluster theory (UGA-SSMRCC), which we call as the UGA-SSMRPT2. We also discuss the essential similarities and differences between the UGA-SSMRPT2 and the allied SA-SSMRPT2. Our theory, like its parent UGA-SSMRCC formalism, is size-extensive. However, because of the noninvariance of the theory with respect to the transformation among the active orbitals, it requires the use of localized orbitals to ensure size-consistency. We have demonstrated the performance of the formalism with a set of pilot applications, exploring (a) the accuracy of the potential energy surface (PES) of a set of small prototypical difficult molecules in their various low-lying states, using natural, pseudocanonical and localized orbitals and compared the respective nonparallelity errors (NPE) and the mean average deviations (MAD) vis-a-vis the full CI results with the same basis; (b) the efficacy of localized active orbitals to ensure and demonstrate manifest size-consistency with respect to fragmentation. We found that natural orbitals lead to the best overall PES, as evidenced by the NPE and MAD values. The MRMP2 results for individual states and of the MCQDPT2 for multiple states displaying avoided curve crossings are uniformly poorer as compared with the UGA-SSMRPT2 results. The striking aspect of the size-consistency check is the complete insensitivity of the sum of fragment energies with given fragment spin-multiplicities, which are obtained as the asymptotic limit of super-molecules with different coupled spins. © 2015 Wiley Periodicals, Inc.

  10. Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions

    NASA Astrophysics Data System (ADS)

    Seth, Priyanka; Hansmann, Philipp; van Roekeghem, Ambroise; Vaugier, Loig; Biermann, Silke

    2017-08-01

    The determination of the effective Coulomb interactions to be used in low-energy Hamiltonians for materials with strong electronic correlations remains one of the bottlenecks for parameter-free electronic structure calculations. We propose and benchmark a scheme for determining the effective local Coulomb interactions for charge-transfer oxides and related compounds. Intershell interactions between electrons in the correlated shell and ligand orbitals are taken into account in an effective manner, leading to a reduction of the effective local interactions on the correlated shell. Our scheme resolves inconsistencies in the determination of effective interactions as obtained by standard methods for a wide range of materials, and allows for a conceptual understanding of the relation of cluster model and dynamical mean field-based electronic structure calculations.

  11. Towards a First-Principles Determination of Effective Coulomb Interactions in Correlated Electron Materials: Role of Intershell Interactions.

    PubMed

    Seth, Priyanka; Hansmann, Philipp; van Roekeghem, Ambroise; Vaugier, Loig; Biermann, Silke

    2017-08-04

    The determination of the effective Coulomb interactions to be used in low-energy Hamiltonians for materials with strong electronic correlations remains one of the bottlenecks for parameter-free electronic structure calculations. We propose and benchmark a scheme for determining the effective local Coulomb interactions for charge-transfer oxides and related compounds. Intershell interactions between electrons in the correlated shell and ligand orbitals are taken into account in an effective manner, leading to a reduction of the effective local interactions on the correlated shell. Our scheme resolves inconsistencies in the determination of effective interactions as obtained by standard methods for a wide range of materials, and allows for a conceptual understanding of the relation of cluster model and dynamical mean field-based electronic structure calculations.

  12. Local spin density functional investigations of a manganite with perovskite-type derived structures

    NASA Astrophysics Data System (ADS)

    Matar, S. F.; Studer, F.; Siberchicot, B.; Subramanian, M. A.; Demazeau, G.; Etourneau, J.

    1998-11-01

    The electronic and magnetic structures of the perovskite CaMnO3 are self-consistently calculated assuming two crystal structures at the same formula unit volume within the local spin density functional theory and the augmented spherical wave (ASW) method. From the comparisons of energy differences between the different magnetic states the ground state configuration is an insulator with G-type ordering. This result together with the magnitudes of the magnetic moments are in agreement with experiment. The influence of mixing between Mn and O is found spin dependent from the analysis of the crystal orbital overlap population (COOP) which enable to describe the chemical bond. The calculations underline a feature of a half metallic ferromagnet which could be connected with the colossal magnetoresistance (CMR) property of related compounds.

  13. Effect of local atomic and electronic structures on thermoelectric properties of chemically substituted CoSi

    NASA Astrophysics Data System (ADS)

    Hsu, C. C.; Pao, C. W.; Chen, J. L.; Chen, C. L.; Dong, C. L.; Liu, Y. S.; Lee, J. F.; Chan, T. S.; Chang, C. L.; Kuo, Y. K.; Lue, C. S.

    2014-05-01

    We report the effects of Ge partial substitution for Si on local atomic and electronic structures of thermoelectric materials in binary compound cobalt monosilicides (\\text{CoSi}_{1-x}\\text{Ge}_{x}\\text{:}\\ 0 \\le x \\le 0.15 ). Correlations between local atomic/electronic structure and thermoelectric properties are investigated by means of X-ray absorption spectroscopy. The spectroscopic results indicate that as Ge is partially substituted onto Si sites at x \\le 0.05 , Co in CoSi1-xGex gains a certain amount of charge in its 3d orbitals. Contrarily, upon further replacing Si with Ge at x \\ge 0.05 , the Co 3d orbitals start to lose some of their charge. Notably, thermopower is strongly correlated with charge redistribution in the Co 3d orbital, and the observed charge transfer between Ge and Co is responsible for the variation of Co 3d occupancy number. In addition to Seebeck coefficient, which can be modified by tailoring the Co 3d states, local lattice disorder may also be beneficial in enhancing the thermoelectric properties. Extended X-ray absorption fine structure spectrum results further demonstrate that the lattice phonons can be enhanced by Ge doping, which results in the formation of the disordered Co-Co pair. Improvements in the thermoelectric properties are interpreted based on the variation of local atomic and electronic structure induced by lattice distortion through chemical substitution.

  14. Pressure dependence of electron density distribution and d-p-π hybridization in titanate perovskite ferroelectrics

    NASA Astrophysics Data System (ADS)

    Yamanaka, Takamitsu; Nakamoto, Yuki; Ahart, Muhtar; Mao, Ho-kwang

    2018-04-01

    Electron density distributions of PbTi O3 , BaTi O3 , and SrTi O3 were determined by synchrotron x-ray powder diffraction up to 55 GPa at 300 K and ab initio quantum chemical molecular orbital (MO) calculations, together with a combination of maximum entropy method calculations. The intensity profiles of Bragg peaks reveal split atoms in both ferroelectric PbTi O3 and BaTi O3 , reflecting the two possible positions occupied by the Ti atom. The experimentally obtained atomic structure factor was used for the determination of the deformation in electron density and the d-p-π hybridization between dx z (and dy z) of Ti and px (and py) of O in the Ti-O bond. Ab initio MO calculations proved the change of the molecular orbital coupling and of Mulliken charges with a structure transformation. The Mulliken charge of Ti in the Ti O6 octahedron increased in the ionicity with increasing pressure in the cubic phase. The bonding nature is changed with a decrease in the hybridization of the Ti-O bond and the localization of the electron density with increasing pressure. The hybridization decreases with pressure and disappears in the cubic paraelectric phase, which has a much more localized electron density distribution.

  15. Characteristics of satellite accelerometer measurements of thermospheric neutral winds at high latitudes

    NASA Astrophysics Data System (ADS)

    Doornbos, E.; Ridley, A. J.; Cnossen, I.; Aruliah, A. L.; Foerster, M.

    2015-12-01

    Thermospheric neutral winds play an important part in the coupled thermosphere-ionosphere system at high latitudes. Neutral wind speeds have been derived from the CHAMP and GOCE satellites, which carried precise accelerometers in low Earth orbits. Due to the need to simultaneously determine thermosphere neutral density from the accelerometer in-track measurements, only information on the wind component in the cross-track direction, perpendicular to the flight direction can be derived. However, contrary to ground-based Fabry-Perot interferometer and scanning Doppler imager observations of the thermosphere wind, these satellite-based measurements provide equally distributed coverage over both hemispheres. The sampling of seasonal and local time variations depend on the precession rate of the satellite's orbital plane, with CHAMP covering about 28 cycles of 24-hour local solar time coverage, during its 10 year mission (2000-2010), while the near sun-synchronous orbit of GOCE resulted in a much more limited local time coverage ranging from 6:20 to 8:00 (am and pm), during a science mission duration of 4 years (2009-2013). For this study, the wind data from both CHAMP and GOCE have been analysed in terms of seasonal variations and geographic and geomagnetic local solar time and latitude coordinates, in order to make statistical comparisons for both the Northern and Southern polar areas. The wind data from both satellites were studied independently and in combination, in order to investigate how the strengths and weaknesses of the instruments and orbit parameters of these missions affect investigations of interhemispheric differences. Finally, the data have been compared with results from coupled ionosphere-thermosphere models and from ground-based FPI and SDI measurements.

  16. Unilateral localized conjunctival amyloidosis in a patient with a history of contralateral orbit/eyelid lymphoma.

    PubMed

    Byers, Joshua T; Qing, Xin; Lo, Christopher; French, Samuel W; Ji, Ping

    2018-04-01

    Amyloidosis is a disorder characterized by the deposition of insoluble abnormal proteins in the extracellular space. It may occur as a localized lesion or as a systemic disease involving multiple organs and systems. Localized conjunctival amyloidosis is rare and is less frequently associated with systemic involvement. Although amyloidosis itself is a benign lesion involvement of multiple organs and systems is associated with poor prognosis. Diagnosis of amyloidosis is made on biopsy specimens with Congo red staining for the appearance of apple-green birefringence under polarized light microscopy. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) is much more sensitive in diagnosing amyloidosis and can determine the type of amyloid deposit. Here we reported a case of conjunctival amyloidosis in a 52 year-old male patient who was presented with left lower eyelid swelling to our medical center. He has a complicated past medical history of anti-phospholipid antibody syndrome, Buerger's disease (thromboangitis obliterans), and small cell lymphoma (SLL) of the right orbit/eyelid. The patient received radiation to the right orbit to treat SLL with therapy completed one and a half years prior to presentation. Physical examination revealed a firm, raised yellowish colored lesion in the left lower conjunctiva. The conjunctival lesion was biopsied, and tissue sections were examined with Congo red stains and LC-MS/MS analysis. The biopsy showed amyloid deposits without evidence of malignancy, and the type of proteins in the deposit was immunoglobulin light chain (AL) of kappa type. A complete work up was taken for possible systemic involvement of amyloidosis and results were all negative. To our knowledge, this is the first case of localized conjunctival amyloidosis with a history of contralateral orbit/eyelid SLL. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Role of degeneracy, hybridization, and nesting in the properties of multiorbital systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Andrew D; Liu, Jia-Ming; Ge, Weihao

    2011-01-01

    To understand the role that degeneracy, hybridization, and nesting play in the magnetic and pairing properties of multiorbital Hubbard models we here study numerically two types of two-orbital models, both with holelike and electron-like Fermi surfaces (FS s) that are related by nesting vectors ( ,0) and (0, ). In one case the bands that determine the FS s arise from strongly hybridized degenerate dxz and dyz orbitals, while in the other the two bands are determined by nondegenerate and nonhybridized s-like orbitals. Using a variety of techniques, in the weak-coupling regime it is shown that only the model withmore » hybridized bands develops metallic magnetic order, while the other model exhibits an ordered excitonic orbital-transverse spin state that is insulating and does not have a local magnetization. However, both models display similar insulating magnetic stripe ordering in the strong-coupling limit. These results indicate that nesting is a necessary but not sufficient condition for the development of ordered states with finite local magnetization in multiorbital Hubbard systems; the additional ingredient appears to be that the nested portions of the bands need to have the same orbital flavor. This condition can be achieved via strong hybridization of the orbitals in weak coupling or via the FS reconstruction induced by the Coulomb interactions in the strong-coupling regime. This effect also affects the pairing symmetry as demonstrated by the study of the dominant pairing channels for the two models.« less

  18. KENNEDY SPACE CENTER, FLA. - Emergency crew members lower a volunteer “astronaut” from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer “astronauts” who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.

    NASA Image and Video Library

    2004-02-18

    KENNEDY SPACE CENTER, FLA. - Emergency crew members lower a volunteer “astronaut” from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer “astronauts” who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.

  19. Rigorous symmetry adaptation of multiorbital rotationally invariant slave-boson theory with application to Hund's rules physics

    NASA Astrophysics Data System (ADS)

    Piefke, Christoph; Lechermann, Frank

    2018-03-01

    The theory of correlated electron systems on a lattice proves notoriously complicated because of the exponential growth of Hilbert space. Mean-field approaches provide valuable insight when the self-energy has a dominant local structure. Additionally, the extraction of effective low-energy theories from the generalized many-body representation is highly desirable. In this respect, the rotational-invariant slave-boson (RISB) approach in its mean-field formulation enables versatile access to correlated lattice problems. However, in its original form, due to numerical complexity, the RISB approach is limited to about three correlated orbitals per lattice site. We thus present a thorough symmetry-adapted advancement of RISB theory, suited to efficiently deal with multiorbital Hubbard Hamiltonians for complete atomic-shell manifolds. It is utilized to study the intriguing problem of Hund's physics for three- and especially five-orbital manifolds on the correlated lattice, including crystal-field terms as well as spin-orbit interaction. The well-known Janus-face phenomenology, i.e., strengthening of correlations at smaller-to-intermediate Hubbard U accompanied by a shift of the Mott transition to a larger U value, has a stronger signature and more involved multiplet resolution for five-orbital problems. Spin-orbit interaction effectively reduces the critical local interaction strength and weakens the Janus-face behavior. Application to the realistic challenge of Fe chalcogenides underlines the subtle interplay of the orbital degrees of freedom in these materials.

  20. Terrestrial planet formation in a protoplanetary disk with a local mass depletion: A successful scenario for the formation of Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izidoro, A.; Winter, O. C.; Haghighipour, N.

    Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodiesmore » in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50%-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.« less

  1. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition

    NASA Astrophysics Data System (ADS)

    Parrish, Robert M.; Sherrill, C. David

    2014-07-01

    We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in systems with up to 220 atoms and 2845 basis functions.

  2. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parrish, Robert M.; Sherrill, C. David, E-mail: sherrill@gatech.edu

    2014-07-28

    We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work throughmore » the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in systems with up to 220 atoms and 2845 basis functions.« less

  3. The application of generalized, cyclic, and modified numerical integration algorithms to problems of satellite orbit computation

    NASA Technical Reports Server (NTRS)

    Chesler, L.; Pierce, S.

    1971-01-01

    Generalized, cyclic, and modified multistep numerical integration methods are developed and evaluated for application to problems of satellite orbit computation. Generalized methods are compared with the presently utilized Cowell methods; new cyclic methods are developed for special second-order differential equations; and several modified methods are developed and applied to orbit computation problems. Special computer programs were written to generate coefficients for these methods, and subroutines were written which allow use of these methods with NASA's GEOSTAR computer program.

  4. Method and apparatus for relative navigation using reflected GPS signals

    NASA Technical Reports Server (NTRS)

    Cohen, Ian R. (Inventor); Boegner, Jr., Gregory J. (Inventor)

    2010-01-01

    A method and system to passively navigate an orbiting moving body towards an orbiting target using reflected GPS signals. A pair of antennas is employed to receive both direct signals from a plurality of GPS satellites and a second antenna to receive GPS signals reflected off an orbiting target. The direct and reflected signals are processed and compared to determine the relative distance and position of the orbiting moving body relative to the orbiting target.

  5. A simple method to design non-collision relative orbits for close spacecraft formation flying

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Li, JunFeng; Jiang, FangHua; Bernelli-Zazzera, Franco

    2018-05-01

    A set of linearized relative motion equations of spacecraft flying on unperturbed elliptical orbits are specialized for particular cases, where the leader orbit is circular or equatorial. Based on these extended equations, we are able to analyze the relative motion regulation between a pair of spacecraft flying on arbitrary unperturbed orbits with the same semi-major axis in close formation. Given the initial orbital elements of the leader, this paper presents a simple way to design initial relative orbital elements of close spacecraft with the same semi-major axis, thus preventing collision under non-perturbed conditions. Considering the mean influence of J 2 perturbation, namely secular J 2 perturbation, we derive the mean derivatives of orbital element differences, and then expand them to first order. Thus the first order expansion of orbital element differences can be added to the relative motion equations for further analysis. For a pair of spacecraft that will never collide under non-perturbed situations, we present a simple method to determine whether a collision will occur when J 2 perturbation is considered. Examples are given to prove the validity of the extended relative motion equations and to illustrate how the methods presented can be used. The simple method for designing initial relative orbital elements proposed here could be helpful to the preliminary design of the relative orbital elements between spacecraft in a close formation, when collision avoidance is necessary.

  6. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone.

    PubMed

    Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan

    2016-08-01

    Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Primary orbital melanoma without ocular involvement in a Balinese cat

    PubMed Central

    2006-01-01

    Abstract A 6.5-year-old spayed female Balinese cat was diagnosed with a large and locally invasive primary orbital melanoma, without ocular involvement or detectable metastatic disease. Advanced imaging and immunohistochemical studies helped in obtaining the diagnosis. Because of advanced unresectable disease and ensuing poor quality of life, the cat was euthanized. PMID:16604977

  8. A simplex method for the orbit determination of maneuvering satellites

    NASA Astrophysics Data System (ADS)

    Chen, JianRong; Li, JunFeng; Wang, XiJing; Zhu, Jun; Wang, DanNa

    2018-02-01

    A simplex method of orbit determination (SMOD) is presented to solve the problem of orbit determination for maneuvering satellites subject to small and continuous thrust. The objective function is established as the sum of the nth powers of the observation errors based on global positioning satellite (GPS) data. The convergence behavior of the proposed method is analyzed using a range of initial orbital parameter errors and n values to ensure the rapid and accurate convergence of the SMOD. For an uncontrolled satellite, the orbit obtained by the SMOD provides a position error compared with GPS data that is commensurate with that obtained by the least squares technique. For low Earth orbit satellite control, the precision of the acceleration produced by a small pulse thrust is less than 0.1% compared with the calibrated value. The orbit obtained by the SMOD is also compared with weak GPS data for a geostationary Earth orbit satellite over several days. The results show that the position accuracy is within 12.0 m. The working efficiency of the electric propulsion is about 67% compared with the designed value. The analyses provide the guidance for subsequent satellite control. The method is suitable for orbit determination of maneuvering satellites subject to small and continuous thrust.

  9. Symmetry and equivalence restrictions in electronic structure calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1988-01-01

    A simple method for obtaining MCSCF orbitals and CI natural orbitals adapted to degenerate point groups, with full symmetry and equivalnece restrictions, is described. Among several advantages accruing from this method are the ability to perform atomic SCF calculations on states for which the SCF energy expression cannot be written in terms of Coulomb and exchange integrals over real orbitals, and the generation of symmetry-adapted atomic natural orbitals for use in a recently proposed method for basis set contraction.

  10. Outstanding performance of configuration interaction singles and doubles using exact exchange Kohn-Sham orbitals in real-space numerical grid method

    NASA Astrophysics Data System (ADS)

    Lim, Jaechang; Choi, Sunghwan; Kim, Jaewook; Kim, Woo Youn

    2016-12-01

    To assess the performance of multi-configuration methods using exact exchange Kohn-Sham (KS) orbitals, we implemented configuration interaction singles and doubles (CISD) in a real-space numerical grid code. We obtained KS orbitals with the exchange-only optimized effective potential under the Krieger-Li-Iafrate (KLI) approximation. Thanks to the distinctive features of KLI orbitals against Hartree-Fock (HF), such as bound virtual orbitals with compact shapes and orbital energy gaps similar to excitation energies; KLI-CISD for small molecules shows much faster convergence as a function of simulation box size and active space (i.e., the number of virtual orbitals) than HF-CISD. The former also gives more accurate excitation energies with a few dominant configurations than the latter, even with many more configurations. The systematic control of basis set errors is straightforward in grid bases. Therefore, grid-based multi-configuration methods using exact exchange KS orbitals provide a promising new way to make accurate electronic structure calculations.

  11. Computational fluid dynamics (CFD) insights into agitation stress methods in biopharmaceutical development.

    PubMed

    Bai, Ge; Bee, Jared S; Biddlecombe, James G; Chen, Quanmin; Leach, W Thomas

    2012-02-28

    Agitation of small amounts of liquid is performed routinely in biopharmaceutical process, formulation, and packaging development. Protein degradation commonly results from agitation, but the specific stress responsible or degradation mechanism is usually not well understood. Characterization of the agitation stress methods is critical to identifying protein degradation mechanisms or specific sensitivities. In this study, computational fluid dynamics (CFD) was used to model agitation of 1 mL of fluid by four types of common laboratory agitation instruments, including a rotator, orbital shaker, magnetic stirrer and vortex mixer. Fluid stresses in the bulk liquid and near interfaces were identified, quantified and compared. The vortex mixer provides the most intense stresses overall, while the stir bar system presented locally intense shear proximal to the hydrophobic stir bar surface. The rotator provides gentler fluid stresses, but the air-water interfacial area and surface stresses are relatively high given its low rotational frequency. The orbital shaker provides intermediate-level stresses but with the advantage of a large stable platform for consistent vial-to-vial homogeneity. Selection of experimental agitation methods with targeted types and intensities of stresses can facilitate better understanding of protein degradation mechanisms and predictability for "real world" applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Comparison of orbital volume obtained by tomography and rapid prototyping.

    PubMed

    Roça, Guilherme Berto; Foggiatto, José Aguiomar; Ono, Maria Cecilia Closs; Ono, Sergio Eiji; da Silva Freitas, Renato

    2013-11-01

    This study aims to compare orbital volume obtained by helical tomography and rapid prototyping. The study sample was composed of 6 helical tomography scans. Eleven healthy orbits were identified to have their volumes measured. The volumetric analysis with the helical tomography utilized the same protocol developed by the Plastic Surgery Unit of the Federal University of Paraná. From the CT images, 11 prototypes were created, and their respective volumes were analyzed in 2 ways: using software by SolidWorks and by direct analysis, when the prototype was filled with saline solution. For statistical analysis, the results of the volumes of the 11 orbits were considered independent. The average orbital volume measurements obtained by the method of Ono et al was 20.51 cm, the average obtained by the SolidWorks program was 20.64 cm, and the average measured using the prototype method was 21.81 cm. The 3 methods demonstrated a strong correlation between the measurements. The right and left orbits of each patient had similar volumes. The tomographic method for the analysis of orbital volume using the Ono protocol yielded consistent values, and by combining this method with rapid prototyping, both reliability validations of results were enhanced.

  13. KENNEDY SPACE CENTER, FLA. - A rescue team carries an “injured” astronaut toward the helicopter for transportation to a local hospital. They are all taking part in a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.

    NASA Image and Video Library

    2004-02-18

    KENNEDY SPACE CENTER, FLA. - A rescue team carries an “injured” astronaut toward the helicopter for transportation to a local hospital. They are all taking part in a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.

  14. Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul

    2005-01-01

    An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.

  15. Low-Dose Radiation Therapy (2 Gy × 2) in the Treatment of Orbital Lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasola, Carolina E.; Jones, Jennifer C.; Huang, Derek D.

    2013-08-01

    Purpose: Low-dose radiation has become increasingly used in the management of indolent non-Hodgkin lymphoma (NHL), but has not been studied specifically for cases of ocular adnexal involvement. The objective of this study is to investigate the effectiveness of low-dose radiation in the treatment of NHL of the ocular adnexa. Methods and Materials: We reviewed the records of 20 NHL patients with 27 sites of ocular adnexal involvement treated with low-dose radiation consisting of 2 successive fractions of 2 Gy at our institution between 2005 and 2011. The primary endpoint of this study is freedom from local relapse (FFLR). Results: Atmore » a median follow-up time of 26 months (range 7-92), the overall response rate for the 27 treated sites was 96%, with a complete response (CR) rate of 85% (n=23) and a partial response rate of 11% (n=3). Among all treated sites with CR, the 2-year FFLR was 100%, with no in-treatment field relapses. The 2-year freedom from regional relapse rate was 96% with 1 case of relapse within the ipsilateral orbit (outside of the treatment field). This patient underwent additional treatment with low-dose radiation of 4 Gy to the area of relapse achieving a CR and no evidence of disease at an additional 42 months of follow-up. Orbital radiation was well tolerated with only mild acute side effects (dry eye, conjunctivitis, transient periorbital edema) in 30% of treated sites without any reports of long-term toxicity. Conclusions: Low-dose radiation with 2 Gy × 2 is effective and well tolerated in the treatment of indolent NHL of the ocular adnexa with high response rates and durable local control with the option of reirradiation in the case of locoregional relapse.« less

  16. Orbital effects in cobaltites by neutron scattering

    NASA Astrophysics Data System (ADS)

    Louca, Despina

    2005-03-01

    The orbital degree of freedom can play a central role in the physics of transition metal perovskite oxides because of its intricate coupling with other degrees of freedom such as spin, charge and lattice. In this talk the case of La1-xSrxCoO3 will be presented. Using elastic and inelastic neutron scattering, we investigated the thermal evolution of the local atomic structure and lattice dynamics in the pure sample and with the addition of charge carriers as the system crosses over from a paramagnetic insulator to a ferromagnetic metal. In LaCoO3, the thermal activation of the Co ions from a nonmagnetic ground state to an intermediate spin state gives rise to orbital degeneracy. This leads to Jahn-Teller distortions that are dynamical in nature. Doping stabilizes the intermediate spin configuration of the Co ions in the paramagnetic insulating phase. Evidence for local static Jahn-Teller distortions is observed but without long-range ordering. The size of the JT lattice is proportional to the amount of charge. However, with cooling to the metallic phase, static JT distortions disappear for x <= 30 %, the percolation limit. This coincides with narrowing of two modes at φ=22,nd,4,eV in the phonon spectrum in which we argue is due to localized dynamical JT fluctuations^1. The implications of the orbital effects to the structural and magnetic properties will be discussed. ^1D. Louca and J. L. Sarrao, Phys. Rev. Lett. 91, 155501 (2003).

  17. Transfers between libration-point orbits in the elliptic restricted problem

    NASA Astrophysics Data System (ADS)

    Hiday, L. A.; Howell, K. C.

    The present time-fixed impulsive transfers between 3D libration point orbits in the vicinity of the interior L(1) libration point of the sun-earth-moon barycenter system are 'optimal' in that the total characteristic velocity required for implementation of the transfer exhibits a local minimum. The conditions necessary for a time-fixed, two-impulse transfer trajectory to be optimal are stated in terms of the primer vector, and the conditions necessary for satisfying the local optimality of a transfer trajectory containing additional impulses are addressed by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses.

  18. Radio Sounding Science at High Powers

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Reinisch, B. W.; Song, P.; Fung, S. F.; Benson, R. F.; Taylor, W. W. L.; Cooper, J. F.; Garcia, L.; Markus, T.; Gallagher, D. L.

    2004-01-01

    Future space missions like the Jupiter Icy Moons Orbiter (JIMO) planned to orbit Callisto, Ganymede, and Europa can fully utilize a variable power radio sounder instrument. Radio sounding at 1 kHz to 10 MHz at medium power levels (10 W to kW) will provide long-range magnetospheric sounding (several Jovian radii) like those first pioneered by the radio plasma imager instrument on IMAGE at low power (less than l0 W) and much shorter distances (less than 5 R(sub E)). A radio sounder orbiting a Jovian icy moon would be able to globally measure time-variable electron densities in the moon ionosphere and the local magnetospheric environment. Near-spacecraft resonance and guided echoes respectively allow measurements of local field magnitude and local field line geometry, perturbed both by direct magnetospheric interactions and by induced components from subsurface oceans. JIMO would allow radio sounding transmissions at much higher powers (approx. 10 kW) making subsurface sounding of the Jovian icy moons possible at frequencies above the ionosphere peak plasma frequency. Subsurface variations in dielectric properties, can be probed for detection of dense and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts.

  19. Collision broadened resonance localization in tokamaks excited with ICRF waves

    NASA Astrophysics Data System (ADS)

    Kerbel, G. D.; McCoy, M. G.

    1985-08-01

    Advanced wave models used to evaluate ICRH in tokamaks typically use warm plasma theory and allow inhomogeneity in one dimension. The authors have developed a bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits. Each wave-particle resonance has its own specific interaction amplitude within any given volume element. These data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. Collisions affect the absorption of RF energy by two quite distinct processes: In addition to the usual relaxation towards the Maxwellian distribution creating velocity gradients which drive quasilinear diffusion, collisions also affect the wave-particle resonance through the mechanism of gyro-phase diffusion. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.

  20. Resonance localization in tokamaks excited with ICRF waves

    NASA Astrophysics Data System (ADS)

    Kerbel, G. D.; McCoy, M. G.

    1985-06-01

    Advanced wave model used to evaluate ICRH in tokamaks typically used warm plasma theory and allow inhomogeneity in one dimension. The majority of these calculations neglect the fact that gyrocenters experience the inhomogeneity via their motion parallel to the magnetic field. In strongly driven systems, wave damping can distort the particle distribution function supporting the wave and this produces changes in the absorption. A bounce-averaged Fokker-Planck quasilinear computational model which evolves the population of particles on more realistic orbits is presented. Each wave-particle resonance has its own specific interaction amplitude within any given volume element; these data need only be generated once, and appropriately stored for efficient retrieval. The wave-particle resonant interaction then serves as a mechanism by which the diffusion of particle populations can proceed among neighboring orbits. The local specific spectral energy absorption rate is directly calculable once the orbit geometry and populations are determined. The code is constructed in such fashion as to accommodate wave propagation models which provide the wave spectral energy density on a poloidal cross-section. Information provided by the calculation includes the local absorption properties of the medium which can then be exploited to evolve the wave field.

  1. Proceedings of Workshop on Atmospheric Density and Aerodynamic Drag Models for Air Force Operations Held at Air Force Geophysics Laboratory on 20-22 October 1987. Volume 2

    DTIC Science & Technology

    1990-02-13

    spacecraft had near-polar orbits except for AE-C (680) and AE-E (190). This exten- sive lower thermosphere data set has been obtained over a wide...two satellite data sets is believed due mainly to uncertainties in the ballistic coefficients used to convert orbital drag measurements to atmospheric...eccentricity sun-synchronous orbit (1400/0200 LT) would provide data in local time-latitude regions not covered by the present data set . Coordination with

  2. Determination of the orbital moment and crystal-field splitting in LaTiO3.

    PubMed

    Haverkort, M W; Hu, Z; Tanaka, A; Ghiringhelli, G; Roth, H; Cwik, M; Lorenz, T; Schüssler-Langeheine, C; Streltsov, S V; Mylnikova, A S; Anisimov, V I; de Nadai, C; Brookes, N B; Hsieh, H H; Lin, H-J; Chen, C T; Mizokawa, T; Taguchi, Y; Tokura, Y; Khomskii, D I; Tjeng, L H

    2005-02-11

    Utilizing a sum rule in a spin-resolved photoelectron spectroscopic experiment with circularly polarized light, we show that the orbital moment in LaTiO3 is strongly reduced from its ionic value, both below and above the Ne el temperature. Using Ti L2,3 x-ray absorption spectroscopy as a local probe, we found that the crystal-field splitting in the t2g subshell is about 0.12-0.30 eV. This large splitting does not facilitate the formation of an orbital liquid.

  3. Clostridium septicum gas gangrene in the orbit: a case report.

    PubMed

    Fejes, I; Dégi, R; Végh, M

    2013-02-01

    Our report presents a case of Clostridium septicum gas gangrene in an unusual, orbital localization. The predisposing factors are typical: colon tumour and lymphatic malignancy. Most probably bacteria from the intestinal flora entered the bloodstream through the compromised intestinal wall and settled in the orbit resulting in the development of an abscess containing gas. At the site of the gas gangrene, an indolent B cell lymphoma was present. After surgery and antibiotic treatment, the patient healed from the C. septicum infection; but subsequently died as a consequence of the tumour.

  4. True orbit simulation of piecewise linear and linear fractional maps of arbitrary dimension using algebraic numbers

    NASA Astrophysics Data System (ADS)

    Saito, Asaki; Yasutomi, Shin-ichi; Tamura, Jun-ichi; Ito, Shunji

    2015-06-01

    We introduce a true orbit generation method enabling exact simulations of dynamical systems defined by arbitrary-dimensional piecewise linear fractional maps, including piecewise linear maps, with rational coefficients. This method can generate sufficiently long true orbits which reproduce typical behaviors (inherent behaviors) of these systems, by properly selecting algebraic numbers in accordance with the dimension of the target system, and involving only integer arithmetic. By applying our method to three dynamical systems—that is, the baker's transformation, the map associated with a modified Jacobi-Perron algorithm, and an open flow system—we demonstrate that it can reproduce their typical behaviors that have been very difficult to reproduce with conventional simulation methods. In particular, for the first two maps, we show that we can generate true orbits displaying the same statistical properties as typical orbits, by estimating the marginal densities of their invariant measures. For the open flow system, we show that an obtained true orbit correctly converges to the stable period-1 orbit, which is inherently possessed by the system.

  5. Diagnostic imaging in ophthalmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, C.F.; Becker, M.H.; Flanagan, J.C.

    There are three sections in the book. The first section is a discussion of imaging techniques, which includes plain film radiography and multidirectional tomography of the orbit, computed tomography (CT) of the orbit and its use in the evaluation of ocular motility disorders, ultrasonography of the eye and orbit, investigation of the orbit by contrast techniques (which includes a brief review of angiography), the lachrimal drainage system, foreign body localization, and magnetic resonance imaging of the eye and orbit. There is extensive discussion of CT throughout the book. The second section is devoted to the role of these imaging methodsmore » in the evaluation of ophthalmic disorders. A discussion of congenital anomalies is useful for those centers that are exposed to unusual congenital anomalies and syndromes. Also included is evaluation of exophthalmous and thyroid ophthamalopathy, orbital tumors, lesions involving the visual pathways, CT assessment of paraorbital pathology (including basal and squamous cell tumors of the face), infection of the orbit, and orbital trauma. The third section is an overview of radiation therapy and malignant intraoccular tumors.« less

  6. Bilateral orbital emphysema and pneumocephalus as a result of accidental compressed air exposure.

    PubMed

    Yuksel, Murvet; Yuksel, K Zafer; Ozdemir, Gokhan; Ugur, Tuncay

    2007-01-01

    Orbital emphysema is a rare condition in the absence of trauma or sinus disease. A 22-year-old man suffering from left orbital trauma due to sudden exposure to compressed air tube was admitted with severe pain in the left eye, swelling, and mild periorbital ecchymosis. Physical examination revealed a large conjunctival laceration in the left orbit. Multislice computed tomographic scanning of the head and orbits showed extensive radiolucencies consistent with the air in both orbits, more prominent in the left. There was also subcutaneous air in the left periorbital soft tissue extending through fronto-temporal and zygomatic areas. Air was also demonstrated adjacent to the left optic canal and within the subarachnoid space intracranially. There was no evidence of any orbital, paranasal sinus, or cranial fracture. Visual acuity was minimally decreased bilaterally. The conjunctiva was sutured under local anesthesia. After 3 weeks of follow-up, the patient completely recovered without visual loss. Bilateral orbital emphysema with pneumocephalus can occur from a high-pressure compressed air injury after unilateral conjunctival trauma without any evidence of fracture.

  7. [Juvenile nasopharyngeal angiofibroma with orbital extension].

    PubMed

    Hervás Ontiveros, A; España Gregori, E; Climent Vallano, L; Rivas Rodero, S; Alamar Velázquez, A; Simal Julián, J A

    2015-01-01

    The case is presented of a 21 year-old male with a history of left proptosis and diplopia of two weeks of onset. The MRI showed an ethmoid-orbital vascular lesion with anterior skull base invasion and orbital extension. Biopsy of the ethmoid confirmed fibrovascular tissue, which supported the diagnosis of angiofibroma. It is a benign neoplasm with local characteristics of malignancy due to its ability to invade adjacent areas. In this case, the debut presented with manifestations of orbital extension. A broad and multidisciplinary approach is needed in order to improve prognosis. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  8. Highly Anisotropic Magnon Dispersion in Ca_{2}RuO_{4}: Evidence for Strong Spin Orbit Coupling.

    PubMed

    Kunkemöller, S; Khomskii, D; Steffens, P; Piovano, A; Nugroho, A A; Braden, M

    2015-12-11

    The magnon dispersion in Ca_{2}RuO_{4} has been determined by inelastic neutron scattering on single crytals containing 1% of Ti. The dispersion is well described by a conventional Heisenberg model suggesting a local moment model with nearest neighbor interaction of J=8  meV. Nearest and next-nearest neighbor interaction as well as interlayer coupling parameters are required to properly describe the entire dispersion. Spin-orbit coupling induces a very large anisotropy gap in the magnetic excitations in apparent contrast with a simple planar magnetic model. Orbital ordering breaking tetragonal symmetry, and strong spin-orbit coupling can thus be identified as important factors in this system.

  9. A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer

    NASA Technical Reports Server (NTRS)

    Ikenaga, Toshinori; Hashida, Yoshi; Unwin, Martin

    2007-01-01

    In the present day, orbit determination by Global Positioning System (GPS) is not unusual. Especially for low-cost small satellites, position determination by an on-board GPS receiver provides a cheap, reliable and precise method. However, the original purpose of GPS is for ground users, so the transmissions from all of the GPS satellites are directed toward the Earth s surface. Hence there are some restrictions for users above the GPS constellation to detect those signals. On the other hand, a desire for precise orbit determination for users in orbits higher than GPS constellation exists. For example, the next Japanese Very Long Baseline Interferometry (VLBI) mission "ASTRO-G" is trying to determine its orbit in an accuracy of a few centimeters at apogee. The use of GPS is essential for such ultra accurate orbit determination. This study aims to construct a method for precise orbit determination for such high orbit users, especially in High Elliptical Orbits (HEOs). There are several approaches for this objective. In this study, a hybrid method with GPS and an accelerometer is chosen. Basically, while the position cannot be determined by an on-board GPS receiver or other Range and Range Rate (RARR) method, all we can do to estimate the user satellite s position is to propagate the orbit along with the force model, which is not perfectly correct. However if it has an accelerometer (ACC), the coefficients of the air drag and the solar radiation pressure applied to the user satellite can be updated and then the propagation along with the "updated" force model can improve the fitting accuracy of the user satellite s orbit. In this study, it is assumed to use an accelerometer available in the present market. The effects by a bias error of an accelerometer will also be discussed in this paper.

  10. Air content and O2/N2 tuned chronologies on local insolation signatures in the Vostok ice core are similar

    NASA Astrophysics Data System (ADS)

    Lipenkov, V.; Raynaud, D.; Loutre, M.-F.; Duval, P.; Lemieux-Dudon, B.

    2009-04-01

    An accurate chronology of ice cores is needed for interpreting the paleoclimatic record and understanding the relation between insolation and climate. A new domain of research in this area has been initially stimulated by the work of M. Bender (2002) linking the record of O2/N2 ratio in the air trapped in the Vostok ice with the local insolation. More recently, it has been proposed that the long-term changes in air content, V, recorded in ice from the high Antarctic plateau is also dominantly imprinted by the local summer insolation (Raynaud et al., 2007). The present paper presents a new V record from Vostok, which is compared with the published Vostok O2/N2 record for the same period of time (150-400 ka BP) by using the same spectral analysis methods. The spectral differences between the two properties and the possible mechanisms linking them with insolation through the surface snow structure and the close-off processes are discussed. The main result of our study is that the two experimentally independent local insolation proxies lead to absolute (orbital) time scales, which agree together within a standard deviation of 0.6 ka. This result strongly adds credibility to the air content of ice and the O2 to N2 ratio of the air trapped in ice as equally reliable and complementary tools for accurate dating of existing and future deep ice cores. References: M. Bender, Orbital tuning chronology for the Vostok climate record supported by trapped gas composition, Earth and Planetary Science Letters 204(2002) 275-289. D. Raynaud, V. Lipenkov, B. Lemieux-Dudon, P. Duval, M.F. Loutre, N. Lhomme, The local insolation signature of air content in Antarctic ice: a new step toward an absolute dating of ice records, Earth and Planetary Science Letters 261(2007) 337-349.

  11. Nontraditional method for determining unperturbed orbits of unknown space objects using incomplete optical observational data

    NASA Astrophysics Data System (ADS)

    Perov, N. I.

    1985-02-01

    A physical-geometrical method for computing the orbits of earth satellites on the basis of an inadequate number of angular observations (N3) was developed. Specifically, a new method has been developed for calculating the elements of Keplerian orbits of unidentified artificial satellites using two angular observations (alpha sub k, S sub k, k = 1). The first section gives procedures for determining the topocentric distance to AES on the basis of one optical observation. This is followed by description of a very simple method for determining unperturbed orbits using two satellite position vectors and a time interval which is applicable even in the case of antiparallel AED position vectors, a method designated the R sub 2 iterations method.

  12. Quantum chemical investigation of attractive non-covalent interactions between halomethanes and rare gases.

    PubMed

    McAllister, Linda J; Bruce, Duncan W; Karadakov, Peter B

    2012-11-01

    The interaction between rare gas atoms and trifluoromethylhalides and iodomethane is investigated using ab initio and density functional theory (DFT) methods: MP2, CCSD, B3LYP, M06, M06-L, M06-2X, M06-HF, X3LYP, PBE, B97-D, B3LYP-D3, and M06-L-D3, in combination with the aug-cc-pVTZ and aug-cc-pVTZ-PP basis sets. A weakly attractive interaction is observed for all complexes, whose strength increases as the rare gas and halogen bond donor become more polarizable, and as the group bound to the halogen bond donor becomes more electron-withdrawing. The separation between iodine and krypton in the complex CF(3)I···Kr, calculated at the MP2 and B3LYP-D3 levels of theory, agrees very well with recent experimental results (Stephens, S. L.; Walker, N. R.; Legon, A. C. J. Chem. Phys. 2011, 135, 224309). Analysis of the ability of theoretical methods to account for the dispersion interaction present in these complexes leads to the conclusion that MP2 and B3LYP-D3, which produce very similar results, are the better performing methods, followed by B97-D and the M06 suite of functionals; the popular B3LYP as well as X3LYP perform poorly and significantly underestimate the interaction strength. The orbitals responsible for the interaction are identified through Edmiston-Ruedenberg localization; it is shown that, by combining the key orbitals, it is possible to observe a molecular orbital picture of a σ-hole interaction.

  13. Performance assessment of density functional methods with Gaussian and Slater basis sets using 7σ orbital momentum distributions of N2O

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Pang, Wenning; Duffy, Patrick

    2012-12-01

    Performance of a number of commonly used density functional methods in chemistry (B3LYP, Bhandh, BP86, PW91, VWN, LB94, PBe0, SAOP and X3LYP and the Hartree-Fock (HF) method) has been assessed using orbital momentum distributions of the 7σ orbital of nitrous oxide (NNO), which models electron behaviour in a chemically significant region. The density functional methods are combined with a number of Gaussian basis sets (Pople's 6-31G*, 6-311G**, DGauss TZVP and Dunning's aug-cc-pVTZ as well as even-tempered Slater basis sets, namely, et-DZPp, et-QZ3P, et-QZ+5P and et-pVQZ). Orbital momentum distributions of the 7σ orbital in the ground electronic state of NNO, which are obtained from a Fourier transform into momentum space from single point electronic calculations employing the above models, are compared with experimental measurement of the same orbital from electron momentum spectroscopy (EMS). The present study reveals information on performance of (a) the density functional methods, (b) Gaussian and Slater basis sets, (c) combinations of the density functional methods and basis sets, that is, the models, (d) orbital momentum distributions, rather than a group of specific molecular properties and (e) the entire region of chemical significance of the orbital. It is found that discrepancies of this orbital between the measured and the calculated occur in the small momentum region (i.e. large r region). In general, Slater basis sets achieve better overall performance than the Gaussian basis sets. Performance of the Gaussian basis sets varies noticeably when combining with different Vxc functionals, but Dunning's augcc-pVTZ basis set achieves the best performance for the momentum distributions of this orbital. The overall performance of the B3LYP and BP86 models is similar to newer models such as X3LYP and SAOP. The present study also demonstrates that the combinations of the density functional methods and the basis sets indeed make a difference in the quality of the calculated orbitals.

  14. Research on orbit prediction for solar-based calibration proper satellite

    NASA Astrophysics Data System (ADS)

    Chen, Xuan; Qi, Wenwen; Xu, Peng

    2018-03-01

    Utilizing the mathematical model of the orbit mechanics, the orbit prediction is to forecast the space target's orbit information of a certain time based on the orbit of the initial moment. The proper satellite radiometric calibration and calibration orbit prediction process are introduced briefly. On the basis of the research of the calibration space position design method and the radiative transfer model, an orbit prediction method for proper satellite radiometric calibration is proposed to select the appropriate calibration arc for the remote sensor and to predict the orbit information of the proper satellite and the remote sensor. By analyzing the orbit constraint of the proper satellite calibration, the GF-1solar synchronous orbit is chose as the proper satellite orbit in order to simulate the calibration visible durance for different satellites to be calibrated. The results of simulation and analysis provide the basis for the improvement of the radiometric calibration accuracy of the satellite remote sensor, which lays the foundation for the high precision and high frequency radiometric calibration.

  15. A Multidisciplinary Orbit-Sparing Treatment Approach That Includes Proton Therapy for Epithelial Tumors of the Orbit and Ocular Adnexa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holliday, Emma B.; Esmaeli, Bita; Pinckard, Jamie

    Purpose: Postoperative radiation is often indicated in the treatment of malignant epithelial tumors of the orbit and ocular adnexa. We present details of radiation technique and toxicity data after orbit-sparing surgery followed by adjuvant proton radiation therapy. Methods and Materials: Twenty patients underwent orbit-sparing surgery followed by proton therapy for newly diagnosed malignant epithelial tumors of the lacrimal gland (n=7), lacrimal sac/nasolacrimal duct (n=10), or eyelid (n=3). Tumor characteristics, treatment details, and visual outcomes were obtained from medical records. Acute and chronic toxicity were prospectively scored using Common Terminology Criteria for Adverse Events version 4.0. Results: The median radiation dosemore » was 60 Gy(RBE) (relative biological effectiveness; [range 50-70 Gy]); 11 patients received concurrent chemotherapy. Dose to ipsilateral anterior optic structures was reduced in 13 patients by having them gaze away from the target during treatment. At a median follow-up time of 27.1 months (range 2.6-77.2 months), no patient had experienced local recurrence; 1 had regional and 1 had distant recurrence. Three patients developed chronic grade 3 epiphora, and 3 developed grade 3 exposure keratopathy. Four patients experienced a decrease in visual acuity from baseline but maintained vision sufficient to perform all activities of daily living without difficulty. Patients with grade ≥3 chronic ocular toxicity had higher maximum dose to the ipsilateral cornea (median 46.3 Gy[RBE], range 36.6-52.7 Gy[RBE] vs median 37.4 Gy[RBE], range 9.0-47.3 Gy(RBE); P=.017). Conclusions: Orbit-sparing surgery for epithelial tumors of the orbit and ocular adnexa followed by proton therapy successfully achieved disease control and was well tolerated. No patient required orbital exenteration or enucleation. Chronic grade 3 toxicity was associated with high maximum dose to the cornea. An eye-deviation technique can be used to limit the maximum corneal dose to <35 Gy(RBE).« less

  16. Method of determining the orbits of the small bodies in the solar system based on an exhaustive search of orbital planes

    NASA Astrophysics Data System (ADS)

    Bondarenko, Yu. S.; Vavilov, D. E.; Medvedev, Yu. D.

    2014-05-01

    A universal method of determining the orbits of newly discovered small bodies in the Solar System using their positional observations has been developed. The proposed method suggests determining geocentric distances of a small body by means of an exhaustive search for heliocentric orbital planes and subsequent determination of the distance between the observer and the points at which the chosen plane intersects with the vectors pointing to the object. Further, the remaining orbital elements are determined using the classical Gauss method after eliminating those heliocentric distances that have a fortiori low probabilities. The obtained sets of elements are used to determine the rms between the observed and calculated positions. The sets of elements with the least rms are considered to be most probable for newly discovered small bodies. Afterwards, these elements are improved using the differential method.

  17. Wavelets in electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Modisette, Jason Perry

    1997-09-01

    Ab initio calculations of the electronic structure of bulk materials and large clusters are not possible on today's computers using current techniques. The storage and diagonalization of the Hamiltonian matrix are the limiting factors in both memory and execution time. The scaling of both quantities with problem size can be reduced by using approximate diagonalization or direct minimization of the total energy with respect to the density matrix in conjunction with a localized basis. Wavelet basis members are much more localized than conventional bases such as Gaussians or numerical atomic orbitals. This localization leads to sparse matrices of the operators that arise in SCF multi-electron calculations. We have investigated the construction of the one-electron Hamiltonian, and also the effective one- electron Hamiltonians that appear in density-functional and Hartree-Fock theories. We develop efficient methods for the generation of the kinetic energy and potential matrices, the Hartree and exchange potentials, and the local exchange-correlation potential of the LDA. Test calculations are performed on one-electron problems with a variety of potentials in one and three dimensions.

  18. Strong competition between orbital ordering and itinerancy in a frustrated spinel vanadate

    DOE PAGES

    Ma, Jie; Lee, Jun Hee; Hahn, Steven E.; ...

    2015-01-26

    In this study, the crossover from localized to itinerant electron regimes in the geometrically frustrated spinel system Mn 1-xCo xV 2O 4 is explored by neutron-scattering measurements, first-principles calculations, and spin models. At low Co doping, the orbital ordering (OO) of the localized V 3+ spins suppresses magnetic frustration by triggering a tetragonal distortion. At high Co doping levels, however, electronic itinerancy melts the OO and lessens the structural and magnetic anisotropies, thus increasing the amount of geometric frustration for the V-site pyrochlore lattice. Contrary to the predicted paramagentism induced by chemical pressure, the measured noncollinear spin states in themore » Co-rich region of the phase diagram provide a unique platform where localized spins and electronic itinerancy compete in a geometrically frustrated spinel.« less

  19. Orbital Reconstruction: Patient-Specific Orbital Floor Reconstruction Using a Mirroring Technique and a Customized Titanium Mesh.

    PubMed

    Tarsitano, Achille; Badiali, Giovanni; Pizzigallo, Angelo; Marchetti, Claudio

    2016-10-01

    Enophthalmos is a severe complication of primary reconstruction of orbital floor fractures. The goal of secondary reconstruction procedures is to restore symmetrical globe positions to recover function and aesthetics. The authors propose a new method of orbital floor reconstruction using a mirroring technique and a customized titanium mesh, printed using a direct metal laser-sintering method. This reconstructive protocol involves 4 steps: mirroring of the healthy orbit at the affected site, virtual design of a patient-specific orbital floor mesh, CAM procedures for direct laser-sintering of the customized titanium mesh, and surgical insertion of the device. Using a computed tomography data set, the normal, uninjured side of the craniofacial skeleton was reflected onto the contralateral injured side, and a reconstructive orbital floor mesh was designed virtually on the mirrored orbital bone surface. The solid-to-layer files of the mesh were then manufactured using direct metal laser sintering, which resolves the shaping and bending biases inherent in the indirect method. An intraoperative navigation system ensured accuracy of the entire procedure. Clinical outcomes were assessed using 3dMD photogrammetry and computed tomography data in 7 treated patients. The technique described here appears to be a viable method to correct complex orbital floor defects needing delayed reconstruction. This study represents the first step in the development of a wider experimental protocol for orbital floor reconstruction using computer-assisted design-computer-assisted manufacturing technology.

  20. Energetics using the single point IMOMO (integrated molecular orbital+molecular orbital) calculations: Choices of computational levels and model system

    NASA Astrophysics Data System (ADS)

    Svensson, Mats; Humbel, Stéphane; Morokuma, Keiji

    1996-09-01

    The integrated MO+MO (IMOMO) method, recently proposed for geometry optimization, is tested for accurate single point calculations. The principle idea of the IMOMO method is to reproduce results of a high level MO calculation for a large ``real'' system by dividing it into a small ``model'' system and the rest and applying different levels of MO theory for the two parts. Test examples are the activation barrier of the SN2 reaction of Cl-+alkyl chlorides, the C=C double bond dissociation of olefins and the energy of reaction for epoxidation of benzene. The effects of basis set and method in the lower level calculation as well as the effects of the choice of model system are investigated in detail. The IMOMO method gives an approximation to the high level MO energetics on the real system, in most cases with very small errors, with a small additional cost over the low level calculation. For instance, when the MP2 (Møller-Plesset second-order perturbation) method is used as the lower level method, the IMOMO method reproduces the results of very high level MO method within 2 kcal/mol, with less than 50% of additional computer time, for the first two test examples. When the HF (Hartree-Fock) method is used as the lower level method, it is less accurate and depends more on the choice of model system, though the improvement over the HF energy is still very significant. Thus the IMOMO single point calculation provides a method for obtaining reliable local energetics such as bond energies and activation barriers for a large molecular system.

  1. A mission-oriented orbit design method of remote sensing satellite for region monitoring mission based on evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Zhang, Jing; Yao, Huang

    2015-12-01

    Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.

  2. Extending density functional embedding theory for covalently bonded systems.

    PubMed

    Yu, Kuang; Carter, Emily A

    2017-12-19

    Quantum embedding theory aims to provide an efficient solution to obtain accurate electronic energies for systems too large for full-scale, high-level quantum calculations. It adopts a hierarchical approach that divides the total system into a small embedded region and a larger environment, using different levels of theory to describe each part. Previously, we developed a density-based quantum embedding theory called density functional embedding theory (DFET), which achieved considerable success in metals and semiconductors. In this work, we extend DFET into a density-matrix-based nonlocal form, enabling DFET to study the stronger quantum couplings between covalently bonded subsystems. We name this theory density-matrix functional embedding theory (DMFET), and we demonstrate its performance in several test examples that resemble various real applications in both chemistry and biochemistry. DMFET gives excellent results in all cases tested thus far, including predicting isomerization energies, proton transfer energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps for local chromophores. Here, we show that DMFET systematically improves the quality of the results compared with the widely used state-of-the-art methods, such as the simple capped cluster model or the widely used ONIOM method.

  3. Experimental and theoretical study of p-nitroacetanilide

    NASA Astrophysics Data System (ADS)

    Gnanasambandan, T.; Gunasekaran, S.; Seshadri, S.

    2014-01-01

    The spectroscopic properties of the p-nitroacetanilide (PNA) were examined by FT-IR, FT-Raman and UV-Vis techniques. FT-IR and FT-Raman spectra in solid state were observed in the region 4000-400 cm-1 and 3500-100 cm-1, respectively. The UV-Vis absorption spectrum of the compound that dissolved in ethanol was recorded in the range of 200-400 nm. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional theory (DFT) employing B3LYP methods with the 6-31G(d,p) and 6-311+G(d,p) basis sets. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear optical (NLO) properties such as electric dipole moment and first hyperpolarizability have been computed using B3LYP quantum chemical calculation.

  4. The optimized effective potential and the self-interaction correction in density functional theory: Application to molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.

    2000-05-08

    The Krieger, Li, and Iafrate approximation to the optimized effective potential including the self-interaction correction for density functional theory has been implemented in a molecular code, NWChem, that uses Gaussian functions to represent the Kohn and Sham spin-orbitals. The differences between the implementation of the self-interaction correction in codes where planewaves are used with an optimized effective potential are discussed. The importance of the localization of the spin-orbitals to maximize the exchange-correlation of the self-interaction correction is discussed. We carried out exchange-only calculations to compare the results obtained with these approximations, and those obtained with the local spin density approximation,more » the generalized gradient approximation and Hartree-Fock theory. Interesting results for the energy difference (GAP) between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, (spin-orbital energies of closed shell atoms and molecules) using the optimized effective potential and the self-interaction correction have been obtained. The effect of the diffuse character of the basis set on the HOMO and LUMO eigenvalues at the various levels is discussed. Total energies obtained with the optimized effective potential and the self-interaction correction show that the exchange energy with these approximations is overestimated and this will be an important topic for future work. (c) 2000 American Institute of Physics.« less

  5. Wannier-function-based constrained DFT with nonorthogonality-correcting Pulay forces in application to the reorganization effects in graphene-adsorbed pentacene

    NASA Astrophysics Data System (ADS)

    Roychoudhury, Subhayan; O'Regan, David D.; Sanvito, Stefano

    2018-05-01

    Pulay terms arise in the Hellmann-Feynman forces in electronic-structure calculations when one employs a basis set made of localized orbitals that move with their host atoms. If the total energy of the system depends on a subspace population defined in terms of the localized orbitals across multiple atoms, then unconventional Pulay terms will emerge due to the variation of the orbital nonorthogonality with ionic translation. Here, we derive the required exact expressions for such terms, which cannot be eliminated by orbital orthonormalization. We have implemented these corrected ionic forces within the linear-scaling density functional theory (DFT) package onetep, and we have used constrained DFT to calculate the reorganization energy of a pentacene molecule adsorbed on a graphene flake. The calculations are performed by including ensemble DFT, corrections for periodic boundary conditions, and empirical Van der Waals interactions. For this system we find that tensorially invariant population analysis yields an adsorbate subspace population that is very close to integer-valued when based upon nonorthogonal Wannier functions, and also but less precisely so when using pseudoatomic functions. Thus, orbitals can provide a very effective population analysis for constrained DFT. Our calculations show that the reorganization energy of the adsorbed pentacene is typically lower than that of pentacene in the gas phase. We attribute this effect to steric hindrance.

  6. DCS: A global satellite environmental data collection system study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Cost analysis and technical feasibility data are presented on five medium orbiting and six geosynchronous satellite data collection systems with varying degrees of spacecraft and local user terminal complexity. Data are also provided on system approaches, user requirements, and user classes. Systems considered include orbiting ERTS and EOS type satellites and geosynchronous SmS and SEOS type data collectors.

  7. Static Footprint Local Forces, Areas, and Aspect Ratios for Three Type 7 Aircraft Tires

    NASA Technical Reports Server (NTRS)

    Howell, William E.; Perez, Sharon E.; Vogler, William A.

    1991-01-01

    The National Tire Modeling Program (NTMP) is a joint NASA/industry effort to improve the understanding of tire mechanics and develop accurate analytical design tools. This effort includes fundamental analytical and experimental research on the structural mechanics of tires. Footprint local forces, areas, and aspect ratios were measured. Local footprint forces in the vertical, lateral, and drag directions were measured with a special footprint force transducer. Measurements of the local forces in the footprint were obtained by positioning the transducer at specified locations within the footprint and externally loading the tires. Three tires were tested: (1) one representative of those used on the main landing gear of B-737 and DC-9 commercial transport airplanes, (2) a nose landing gear tire for the Space Shuttle Orbiter, and (3) a main landing gear tire for the Space Shuttle Orbiter. Data obtained for various inflation pressures and vertical loads are presented for two aircraft tires. The results are presented in graphical and tabulated forms.

  8. Identification and Characterization of Molecular Bonding Structures by ab initio Quasi-Atomic Orbital Analyses.

    PubMed

    West, Aaron C; Duchimaza-Heredia, Juan J; Gordon, Mark S; Ruedenberg, Klaus

    2017-11-22

    The quasi-atomic analysis of ab initio electronic wave functions in full valence spaces, which was developed in preceding papers, yields oriented quasi-atomic orbitals in terms of which the ab initio molecular wave function and energy can be expressed. These oriented quasi-atomic orbitals are the rigorous ab initio counterparts to the conceptual bond forming atomic hybrid orbitals of qualitative chemical reasoning. In the present work, the quasi-atomic orbitals are identified as bonding orbitals, lone pair orbitals, radical orbitals, vacant orbitals and orbitals with intermediate character. A program determines the bonding characteristics of all quasi-atomic orbitals in a molecule on the basis of their occupations, bond orders, kinetic bond orders, hybridizations and local symmetries. These data are collected in a record and provide the information for a comprehensive understanding of the synergism that generates the bonding structure that holds the molecule together. Applications to a series of molecules exhibit the complete bonding structures that are embedded in their ab initio wave functions. For the strong bonds in a molecule, the quasi-atomic orbitals provide quantitative ab initio amplifications of the Lewis dot symbols. Beyond characterizing strong bonds, the quasi-atomic analysis also yields an understanding of the weak interactions, such as vicinal, hyperconjugative and radical stabilizations, which can make substantial contributions to the molecular bonding structure.

  9. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Method for calculation of electrical and optical properties of laser active media

    NASA Astrophysics Data System (ADS)

    Aleksandrov, D. G.; Filipov, F. I.

    1988-11-01

    A method is proposed for calculation of the electron band structure of multicomponent semiconductor solid solutions. Use is made of virtual atomic orbitals formed from real orbitals. The method represents essentially an approximation of a multicomponent solid solution by a binary one. The matrix elements of the Hamiltonian are obtained in the methods of linear combinations of atomic and bound orbitals. Some approximations used in these methods are described.

  10. Application of Numerical Integration and Data Fusion in Unit Vector Method

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2012-01-01

    The Unit Vector Method (UVM) is a series of orbit determination methods which are designed by Purple Mountain Observatory (PMO) and have been applied extensively. It gets the conditional equations for different kinds of data by projecting the basic equation to different unit vectors, and it suits for weighted process for different kinds of data. The high-precision data can play a major role in orbit determination, and accuracy of orbit determination is improved obviously. The improved UVM (PUVM2) promoted the UVM from initial orbit determination to orbit improvement, and unified the initial orbit determination and orbit improvement dynamically. The precision and efficiency are improved further. In this thesis, further research work has been done based on the UVM: Firstly, for the improvement of methods and techniques for observation, the types and decision of the observational data are improved substantially, it is also asked to improve the decision of orbit determination. The analytical perturbation can not meet the requirement. So, the numerical integration for calculating the perturbation has been introduced into the UVM. The accuracy of dynamical model suits for the accuracy of the real data, and the condition equations of UVM are modified accordingly. The accuracy of orbit determination is improved further. Secondly, data fusion method has been introduced into the UVM. The convergence mechanism and the defect of weighted strategy have been made clear in original UVM. The problem has been solved in this method, the calculation of approximate state transition matrix is simplified and the weighted strategy has been improved for the data with different dimension and different precision. Results of orbit determination of simulation and real data show that the work of this thesis is effective: (1) After the numerical integration has been introduced into the UVM, the accuracy of orbit determination is improved obviously, and it suits for the high-accuracy data of available observation apparatus. Compare with the classical differential improvement with the numerical integration, its calculation speed is also improved obviously. (2) After data fusion method has been introduced into the UVM, weighted distribution accords rationally with the accuracy of different kinds of data, all data are fully used and the new method is also good at numerical stability and rational weighted distribution.

  11. Mars Reconnaissance Orbiter Operational Aerobraking Phase Assessment

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Striepe, Scott A.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) was inserted into orbit around Mars on March 10, 2005. After a brief delay, it began the process of aerobraking - using the atmospheric drag on the vehicle to reduce orbital period. The aerobraking phase lasted approximately 5 months (April 4 to August 30, 2006), during which teams from the Jet Propulsion Laboratory, Lockheed Martin Space Systems Corporation, and NASA Langley Research Center worked together to monitor and maneuver the spacecraft such that thermal margin on the solar arrays was maintained while schedule margin was upheld to provide a final local mean solar time (LMST) at ascending node of 3:00pm on the final aerobraking orbit. This paper will focus on the contribution of the flight mechanics team at NASA Langley Research Center (LaRC) during the aerobraking phase of the MRO mission.

  12. Two approaches for the gravitational self-force in black hole spacetime: Comparison of numerical results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sago, Norichika; Barack, Leor; Detweiler, Steven

    2008-12-15

    Recently, two independent calculations have been presented of finite-mass ('self-force') effects on the orbit of a point mass around a Schwarzschild black hole. While both computations are based on the standard mode-sum method, they differ in several technical aspects, which makes comparison between their results difficult--but also interesting. Barack and Sago [Phys. Rev. D 75, 064021 (2007)] invoke the notion of a self-accelerated motion in a background spacetime, and perform a direct calculation of the local self-force in the Lorenz gauge (using numerical evolution of the perturbation equations in the time domain); Detweiler [Phys. Rev. D 77, 124026 (2008)] describesmore » the motion in terms a geodesic orbit of a (smooth) perturbed spacetime, and calculates the metric perturbation in the Regge-Wheeler gauge (using frequency-domain numerical analysis). Here we establish a formal correspondence between the two analyses, and demonstrate the consistency of their numerical results. Specifically, we compare the value of the conservative O({mu}) shift in u{sup t} (where {mu} is the particle's mass and u{sup t} is the Schwarzschild t component of the particle's four-velocity), suitably mapped between the two orbital descriptions and adjusted for gauge. We find that the two analyses yield the same value for this shift within mere fractional differences of {approx}10{sup -5}-10{sup -7} (depending on the orbital radius)--comparable with the estimated numerical error.« less

  13. Many-body quantum dynamics in the decay of bent dark solitons of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Katsimiga, G. C.; Mistakidis, S. I.; Koutentakis, G. M.; Kevrekidis, P. G.; Schmelcher, P.

    2017-12-01

    The beyond mean-field (MF) dynamics of a bent dark soliton (BDS) embedded in a two-dimensional repulsively interacting Bose-Einstein condensate is explored. We examine the case of a single BDS comparing the MF dynamics to a correlated approach, the multi-configuration time-dependent Hartree method for bosons. Dynamical snaking of this bent structure is observed, signaling the onset of fragmentation which becomes significant during the vortex nucleation. In contrast to the MF approximation ‘filling’ of the vortex core is observed, leading in turn to the formation of filled-core vortices, instead of the MF vortex-antivortex pairs. The resulting smearing effect in the density is a rather generic feature, occurring when solitonic structures are exposed to quantum fluctuations. Here, we show that this filling owes its existence to the dynamical building of an antidark structure developed in the next-to-leading order orbital. We further demonstrate that the aforementioned beyond MF dynamics can be experimentally detected using the variance of single shot measurements. Additionally, a variety of excitations including vortices, oblique dark solitons, and open ring dark soliton-like structures building upon higher-lying orbitals is observed. We demonstrate that signatures of the higher-lying orbital excitations emerge in the total density, and can be clearly captured by inspecting the one-body coherence. In the latter context, the localization of one-body correlations exposes the existence of the multi-orbital vortex-antidark structure.

  14. Stern-Gerlach-like approach to electron orbital angular momentum measurement

    DOE PAGES

    Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.

    2017-02-28

    Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less

  15. Stern-Gerlach-like approach to electron orbital angular momentum measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.

    Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less

  16. KENNEDY SPACE CENTER, FLA. - Emergency crew members on the ground take hold of a volunteer “astronaut” lowered from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.

    NASA Image and Video Library

    2004-02-18

    KENNEDY SPACE CENTER, FLA. - Emergency crew members on the ground take hold of a volunteer “astronaut” lowered from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.

  17. KENNEDY SPACE CENTER, FLA. - Emergency crew members help a volunteer “astronaut” onto the ground after being lowered from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.

    NASA Image and Video Library

    2004-02-18

    KENNEDY SPACE CENTER, FLA. - Emergency crew members help a volunteer “astronaut” onto the ground after being lowered from the top of the orbiter crew compartment mock-up that is the scene of a “Mode VII” emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.

  18. Spacecraft formation control using analytical finite-duration approaches

    NASA Astrophysics Data System (ADS)

    Ben Larbi, Mohamed Khalil; Stoll, Enrico

    2018-03-01

    This paper derives a control concept for formation flight (FF) applications assuming circular reference orbits. The paper focuses on a general impulsive control concept for FF which is then extended to the more realistic case of non-impulsive thrust maneuvers. The control concept uses a description of the FF in relative orbital elements (ROE) instead of the classical Cartesian description since the ROE provide a direct insight into key aspects of the relative motion and are particularly suitable for relative orbit control purposes and collision avoidance analysis. Although Gauss' variational equations have been first derived to offer a mathematical tool for processing orbit perturbations, they are suitable for several different applications. If the perturbation acceleration is due to a control thrust, Gauss' variational equations show the effect of such a control thrust on the Keplerian orbital elements. Integrating the Gauss' variational equations offers a direct relation between velocity increments in the local vertical local horizontal frame and the subsequent change of Keplerian orbital elements. For proximity operations, these equations can be generalized from describing the motion of single spacecraft to the description of the relative motion of two spacecraft. This will be shown for impulsive and finite-duration maneuvers. Based on that, an analytical tool to estimate the error induced through impulsive maneuver planning is presented. The resulting control schemes are simple and effective and thus also suitable for on-board implementation. Simulations show that the proposed concept improves the timing of the thrust maneuver executions and thus reduces the residual error of the formation control.

  19. Practical method to identify orbital anomaly as spacecraft breakup in the geostationary region

    NASA Astrophysics Data System (ADS)

    Hanada, Toshiya; Uetsuhara, Masahiko; Nakaniwa, Yoshitaka

    2012-07-01

    Identifying a spacecraft breakup is an essential issue to define the current orbital debris environment. This paper proposes a practical method to identify an orbital anomaly, which appears as a significant discontinuity in the observation data, as a spacecraft breakup. The proposed method is applicable to orbital anomalies in the geostationary region. Long-term orbital evolutions of breakup fragments may conclude that their orbital planes will converge into several corresponding regions in inertial space even if the breakup epoch is not specified. This empirical method combines the aforementioned conclusion with the search strategy developed at Kyushu University, which can identify origins of observed objects as fragments released from a specified spacecraft. This practical method starts with selecting a spacecraft that experienced an orbital anomaly, and formulates a hypothesis to generate fragments from the anomaly. Then, the search strategy is applied to predict the behavior of groups of fragments hypothetically generated. Outcome of this predictive analysis specifies effectively when, where and how we should conduct optical measurements using ground-based telescopes. Objects detected based on the outcome are supposed to be from the anomaly, so that we can confirm the anomaly as a spacecraft breakup to release the detected objects. This paper also demonstrates observation planning for a spacecraft anomaly in the geostationary region.

  20. A new method of intermediate orbit determination based on range and range rate measurements at three times. (Russian Title: Новый метод определения промежуточной орбиты по измерениям дальности и скорости ее изменения в три момента времени)

    NASA Astrophysics Data System (ADS)

    Shefer, V. A.

    2013-12-01

    A new method is proposed for computing the preliminary orbit of a small celestial body from three pairs of range and range rate observations. The method is based on using the superosculating intermediate orbit with a fourth-order tangency that we previously constructed. This intermediate orbit allows for most of the perturbations in the motion of the body under study. The methodical error of orbit determination by the proposed method is three orders smaller than the corresponding error of the commonly used approach based on the construction of the unperturbed Keplerian orbit. Using the examples of finding the orbits of artificial Earth satellites, the results obtained by the procedure implementing the traditional approach and the new method are compared. The comparison shows that the new method is a highly efficient means for studying perturbed motion.

  1. Vibrational, NMR spectrum and orbital analysis of 3,3',5,5'-tetrabromobisphenol A: a combined experimental and computational study.

    PubMed

    Qiu, Shanshan; Wei, Jin; Pan, Feng; Liu, Jingping; Zhang, Aiqian

    2013-03-15

    In the present work, the experimental and theoretical studies on the structure, vibrations, NMR and HOMO-LUMO analysis of 3,3',5,5'-tetrabromobisphenol A (TBBPA) are presented. The FT-IR (400-4000 cm(-1)) and FT-Raman (100-4000 cm(-1)) spectra of TBBPA were recorded. The molecular geometry, vibrational frequencies were calculated by using density functional theory (DFT) method with the 6-31G(d) basis set. The optimized geometric properties, scaled vibrational wavenumbers, IR intensities, Raman activities show good agreement with the experimental data. The assigned vibrational modes of the IR and Raman spectra were compared with the corresponding properties of the polybrominated diphenyl ethers (PBDEs). Comparative analysis indicated that the red shift of C-Br vibration could probably be ascribed to the further electronic density equalization due to the p-π conjugation between O atom and the benzene. The natural bonding orbital (NBO) analysis demonstrated that the intermolecular hyperconjugative interactions are mainly formed by the orbital overlap between σ (O-H), σ(*) (C-C), π (C-C), π(*) (C-C) bond orbitals. Compared to the higher E((2)) value (33.65-34.82 kcal/mol) originated from LP(2)O to π(*) (C-C), the one (E((2)): 8.23-9.73 kcal/mol) from LP(3)Br and π(*) (C-C) contributes to the preferential tendency of C-Br breakage to the C-O breakage in the transformation. The calculated NMR results obtained on the 6-31G(d) level proves good agreement with the experimental data (r(2)=0.999). Analysis of isosurface of the related orbital shows that all the main excitation exhibit π-π(*) character localized on the benzene rings. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Mechanism of intramolecular electron transfer in the photoexcited Zn-substituted cytochrome c: theoretical and experimental perspective.

    PubMed

    Tokita, Yuichi; Shimura, Jusuke; Nakajima, Hiroshi; Goto, Yoshio; Watanabe, Yoshihito

    2008-04-16

    Photoinduced electron transfer (ET) in zinc-substituted cytochrome c (Zn-cyt c) has been utilized in many studies on the long-range ET in protein. Attempting to understand its ET mechanism in terms of electronic structure of the molecule, we have calculated an all-electron wave function for the ground-state of Zn-cyt c on the basis of density functional theory (DFT). The four molecular orbitals (MOs) responsible for excitation by UV-vis light (Gouterman's 4-orbitals) are assigned on the basis of the excited states of chromophore model for Zn-porphine complex calculated with the time-dependent DFT method. ET rates between each Gouterman's 4-orbitals and other MOs were estimated using Fermi's golden rule. It appeared that the two occupied MOs of the 4-orbitals show exclusively higher ET rate from/to particular MOs that localize on outermost amino acid residues (Lys 7 or Asn 54), respectively, whereas ET rates involving the two unoccupied MOs of the 4-orbitals are much slower. These results imply that the intramolecular ET in photoexcited Zn-cyt c is governed by the hole transfer through occupied MOs. The couplings of MOs between zinc porphyrin core and specific amino acid residues on the protein surface have been demonstrated in Zn-cyt c immobilized on an Au electrode via carboxylic acid group-terminated self-assembled monolayer. The Zn-cyt c-modified electrode showed photocurrents responsible for photoillumination. The action spectrum of the photocurrent was identical with the absorption spectrum of Zn-cyt c, indicating photoinduced electron conduction via occupied MOs. The voltage dependence of the photocurrent appeared to be linear and bidirectional like a photoconductor, which strongly supports the intramolecular ET mechanism in Zn-cyt c proposed on the basis of the theoretical calculations.

  3. Ballistic magnetotransport and spin-orbit interaction in indium antimonide and indium arsenide quantum wells

    NASA Astrophysics Data System (ADS)

    Peters, John Archibald

    While charge transport in a two-dimensional electron system (2DES) is fairly well understood, many open experimental and theoretical questions related to the spin of electrons remain. The standard 2DES embedded in Alx Ga1-xAs/GaAs heterostructures is most likely not the optimal candidate for such investigations, since spin effects as well as spin-orbit interactions are small perturbations compared to other effects. This has brought InSb- and InAs-based material systems into focus due to the possibility of large spin-orbit interactions. By utilizing elastic scattering off a lithographic barrier, we investigate the consequence of spin on different electron trajectories observed in InSb and InAs quantum wells. We focus on the physical properties of spin-dependent reflection in a 2DES and we present experimental results demonstrating a method to create spin-polarized beams of ballistic electrons in the presence of a lateral potential barrier. Spatial separation of electron spins using cyclotron motion in a weak magnetic is also achieved via transverse magnetic focusing. We also explore electrostatic gating effects in InSb/InAlSb heterostructures and demonstrate the effective use of polymethylglutarimide (PMGI) as a gate dielectric for InSb. The dependence on temperature and on front gate voltage of mobility and density are also examined, revealing a strong dependence of mobility on density. As regards front gate action, there is saturation in the density once it reaches a limiting value. Further, we investigate antidot lattices patterned on InSb/InAlSb and InAs/AlGaSb heterostructures. At higher magnetic fields, ballistic commensurability features are displayed while at smaller magnetic fields localization and quantized oscillatory phenomena appear, with marked differences between InSb and InAs. Interesting localization behavior is exhibited in InSb, with the strength of the localization peak decreasing exponentially with temperature between 0.4 K and 50 K. InAs on the other hand show a strikingly modified antilocalization behavior, with small-period oscillations in magnetic field superposed. We also observe Altshuler-Aronov-Spivak oscillations in InSb and InAs antidot lattices and extract the phase and spin coherence lengths in InAs. Our experimental results are discussed in the light of localization and anti localization as probes of disorder and of spin dephasing mechanisms, modified by the artificial potential of the antidot lattice.

  4. SCIAMACHY In-orbit Operations until 2013

    NASA Astrophysics Data System (ADS)

    Gottwald, Manfred; Krieg, Eckhart; Lichtenberg, Günter; Noël, Stefan; Bramstedt, Klaus; Bovensmann, Heinrich

    In 2010 ENVISAT enters its next mission extension phase when a manoeuvre transfers the plat-form from its nominal into a modified orbit. This modified orbit is not only characterized by the lower altitude but also by slightly drifting parameters such as e.g. the inclination or the Mean Local Solar Time at ascending node crossing. Thus all SCIAMACHY measurements requiring an accurate pointing knowledge are affected. How the line-of-sight evolves along the orbit de-pends on orbit altitude and orbital period. Therefore adjustments to SCIAMACHY's on-board instrument configuration are necessary reflecting this orbit chance. Based on a detailed analysis simulating SCIAMACHY operations in the modified orbit until the end of 2013, the impacts on nadir, limb and solar and lunar occultation measurements when orbiting the Earth at a reduced altitude was studied. By modifying SCIAMACHY's configuration these impacts can be compensated for. Thus the current performance of instrument operations, including the pointing knowledge, can be maintained. It ensures acquisition of high quality measurement data for the entire duration of the mission. This presentation describes how the instrument will be configured for achieving successful operations until the end of 2013. In addition a brief outlook is given how the drifting modified orbit may impact an operations phase even beyond 2013 and potential corrective countermeasures.

  5. NASA Tech Briefs, May 2011

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Topics covered include: 1) Method to Estimate the Dissolved Air Content in Hydraulic Fluid; 2) Method for Measuring Collimator-Pointing Sensitivity to Temperature Changes; 3) High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence; 4)Metrology Arrangement for Measuring the Positions of Mirrors of a Submillimeter Telescope; 5) On-Wafer S-Parameter Measurements in the 325-508-GHz Band; 6) Reconfigurable Microwave Phase Delay Element for Frequency Reference and Phase-Shifter Applications; 7) High-Speed Isolation Board for Flight Hardware Testing; 8) High-Throughput, Adaptive FFT Architecture for FPGA-Based Spaceborne Data Processors; 9) 3D Orbit Visualization for Earth-Observing Missions; 10) MaROS: Web Visualization of Mars Orbiting and Landed Assets; 11) RAPID: Collaborative Commanding and Monitoring of Lunar Assets; 12) Image Segmentation, Registration, Compression, and Matching; 13) Image Calibration; 14) Rapid ISS Power Availability Simulator; 15) A Method of Strengthening Composite/Metal Joints; 16) Pre-Finishing of SiC for Optical Applications; 17) Optimization of Indium Bump Morphology for Improved Flip Chip Devices; 18) Measuring Moisture Levels in Graphite Epoxy Composite Sandwich Structures; 19) Marshall Convergent Spray Formulation Improvement for High Temperatures; 20) Real-Time Deposition Monitor for Ultrathin Conductive Films; 21) Optimized Li-Ion Electrolytes Containing Triphenyl Phosphate as a Flame-Retardant Additive; 22) Radiation-Resistant Hybrid Lotus Effect for Achieving Photoelectrocatalytic Self-Cleaning Anticontamination Coatings; 23) Improved, Low-Stress Economical Submerged Pipeline; 24) Optical Fiber Array Assemblies for Space Flight on the Lunar Reconnaissance Orbiter; 25) Local Leak Detection and Health Monitoring of Pressurized Tanks; 26) Dielectric Covered Planar Antennas at Submillimeter Wavelengths for Terahertz Imaging; 27) Automated Cryocooler Monitor and Control System; 28) Broadband Achromatic Phase Shifter for a Nulling Interferometer; 29) Super Dwarf Wheat for Growth in Confined Spaces; 30) Fine Guidance Sensing for Coronagraphic Observatories; 31) Single-Antenna Temperature- and Humidity-Sounding Microwave Receiver; 32) Multi-Wavelength, Multi-Beam, and Polarization-Sensitive Laser Transmitter for Surface Mapping; 33) Optical Communications Link to Airborne Transceiver; 34) Ascent Heating Thermal Analysis on Spacecraft Adaptor Fairings; 35) Entanglement in Self-Supervised Dynamics; 36) Prioritized LT Codes; 37) Fast Image Texture Classification Using Decision Trees; 38) Constraint Embedding Technique for Multibody System Dynamics; 39) Improved Systematic Pointing Error Model for the DSN Antennas; 40) Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks; 41) More-Accurate Model of Flows in Rocket Injectors; 42) In-Orbit Instrument-Pointing Calibration Using the Moon as a Target; 43) Reliability of Ceramic Column Grid Array Interconnect Packages Under Extreme Temperatures; 44) Six Degrees-of-Freedom Ascent Control for Small-Body Touch and Go; and 45) Optical-Path-Difference Linear Mechanism for the Panchromatic Fourier Transform Spectrometer.

  6. Model-based segmentation in orbital volume measurement with cone beam computed tomography and evaluation against current concepts.

    PubMed

    Wagner, Maximilian E H; Gellrich, Nils-Claudius; Friese, Karl-Ingo; Becker, Matthias; Wolter, Franz-Erich; Lichtenstein, Juergen T; Stoetzer, Marcus; Rana, Majeed; Essig, Harald

    2016-01-01

    Objective determination of the orbital volume is important in the diagnostic process and in evaluating the efficacy of medical and/or surgical treatment of orbital diseases. Tools designed to measure orbital volume with computed tomography (CT) often cannot be used with cone beam CT (CBCT) because of inferior tissue representation, although CBCT has the benefit of greater availability and lower patient radiation exposure. Therefore, a model-based segmentation technique is presented as a new method for measuring orbital volume and compared to alternative techniques. Both eyes from thirty subjects with no known orbital pathology who had undergone CBCT as a part of routine care were evaluated (n = 60 eyes). Orbital volume was measured with manual, atlas-based, and model-based segmentation methods. Volume measurements, volume determination time, and usability were compared between the three methods. Differences in means were tested for statistical significance using two-tailed Student's t tests. Neither atlas-based (26.63 ± 3.15 mm(3)) nor model-based (26.87 ± 2.99 mm(3)) measurements were significantly different from manual volume measurements (26.65 ± 4.0 mm(3)). However, the time required to determine orbital volume was significantly longer for manual measurements (10.24 ± 1.21 min) than for atlas-based (6.96 ± 2.62 min, p < 0.001) or model-based (5.73 ± 1.12 min, p < 0.001) measurements. All three orbital volume measurement methods examined can accurately measure orbital volume, although atlas-based and model-based methods seem to be more user-friendly and less time-consuming. The new model-based technique achieves fully automated segmentation results, whereas all atlas-based segmentations at least required manipulations to the anterior closing. Additionally, model-based segmentation can provide reliable orbital volume measurements when CT image quality is poor.

  7. Electron and positron states in HgBa2CuO4

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Jarlborg, T.

    1994-08-01

    Local-density-calculations of the electronic structure of HgBa2CuO4 have been performed with the self-consistent linear muffin-tin orbital method. The positron-density distribution and its sensitivity due to different potentials are calculated. The annihilation rates are computed in order to study the chemical bonding and to predict the Fermi-surface signal. Comparisons are made with previous calculations on other high-Tc copper oxides concerning the Fermi-surface properties and electron-positron overlap. We discuss the possibility of observing the Fermi surface associated with the Cu-O planes in positron-annihilation experiments.

  8. Intensities of K-X-ray satellite and hypersatellite target radiation in Bi83+-Xe @70 MeV/u collisions

    NASA Astrophysics Data System (ADS)

    Kozhedub, Y. S.; Bondarev, A. I.; Cai, X.; Gumberidze, A.; Hagmann, S.; Kozhuharov, C.; Maltsev, I. A.; Plunien, G.; Shabaev, V. M.; Shao, C.; Stöhlker, Th.; Tupitsyn, I. I.; Yang, B.; Yu, D.

    2017-10-01

    Non-perturbative calculations of the relativistic quantum dynamics of electrons in the Bi83+-Xe collisions at 70 AMeV are performed. A method of calculation employs an independent particle model with effective single-electron Dirac-Kohn-Sham operator. Solving of the single-electron equations is based on the coupled-channel approach with atomic-like Dirac-Sturm-Fock orbitals, localized at the ions (atoms). Special attention is paid to the inner-shell processes. Intensities of the K satellite and hypersatellite target radiation are evaluated. The role of the relativistic effects is studied.

  9. Electronic and structural properties of Lu under pressure: Relation to structural phases of the rare-earth metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, B.I.; Oguchi, T.; Jansen, H.J.F.

    1986-07-15

    Ground-state electronic and structural properties of Lu under pressure are investigated with use of the self-consistent all-electron total-energy linear muffin-tin orbital band-structure method within a local-density-functional approximation. Pressure-induced structural transitions are found to occur in the following sequence: hcp--(Sm-type)--dhcp--fcc, which is the same as that observed in the crystal structures of the trivalent rare-earth metals with decreasing atomic number. This structural transition is correlated with the increase in the number of d-italic electrons under pressure.

  10. The moduli space of vacua of $$ \\mathcal{N}=2 $$ class $$ \\mathcal{S} $$ theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Dan; Yonekura, Kazuya

    We develop a systematic method to describe the moduli space of vacua of four dimensional N=2 class S theories including Coulomb branch, Higgs branch and mixed branches. In particular, we determine the Higgs and mixed branch roots, and the dimensions of the Coulomb and Higgs components of mixed branches. They are derived by using generalized Hitchin’s equations obtained from twisted compactification of 5d maximal Super-Yang-Mills, with local degrees of freedom at punctures given by (nilpotent) orbits. The crucial thing is the holomorphic factorization of the Seiberg-Witten curve and reduction of singularity at punctures. We illustrate our method by many examplesmore » including N=2 SQCD, T N theory and Argyres-Douglas theories.« less

  11. Multimodal registration via spatial-context mutual information.

    PubMed

    Yi, Zhao; Soatto, Stefano

    2011-01-01

    We propose a method to efficiently compute mutual information between high-dimensional distributions of image patches. This in turn is used to perform accurate registration of images captured under different modalities, while exploiting their local structure otherwise missed in traditional mutual information definition. We achieve this by organizing the space of image patches into orbits under the action of Euclidean transformations of the image plane, and estimating the modes of a distribution in such an orbit space using affinity propagation. This way, large collections of patches that are equivalent up to translations and rotations are mapped to the same representative, or "dictionary element". We then show analytically that computing mutual information for a joint distribution in this space reduces to computing mutual information between the (scalar) label maps, and between the transformations mapping each patch into its closest dictionary element. We show that our approach improves registration performance compared with the state of the art in multimodal registration, using both synthetic and real images with quantitative ground truth.

  12. Phonon and magnetic structure in δ-plutonium from density-functional theory

    DOE PAGES

    Söderlind, Per; Zhou, F.; Landa, A.; ...

    2015-10-30

    We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure andmore » (ii) the disordered-local-moment (DLM) method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, However, the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments.« less

  13. Structure of the charge density wave in cuprate superconductors: Lessons from NMR

    NASA Astrophysics Data System (ADS)

    Atkinson, W. A.; Ufkes, S.; Kampf, A. P.

    2018-03-01

    Using a mix of numerical and analytic methods, we show that recent NMR 17O measurements provide detailed information about the structure of the charge-density wave (CDW) phase in underdoped YBa2Cu3O6 +x . We perform Bogoliubov-de Gennes (BdG) calculations of both the local density of states and the orbitally resolved charge density, which are closely related to the magnetic and electric quadrupole contributions to the NMR spectrum, using a microscopic model that was shown previously to agree closely with x-ray experiments. The BdG results reproduce qualitative features of the experimental spectrum extremely well. These results are interpreted in terms of a generic "hot-spot" model that allows one to trace the origins of the NMR line shapes. We find that four quantities—the orbital character of the Fermi surface at the hot spots, the Fermi surface curvature at the hot spots, the CDW correlation length, and the magnitude of the subdominant CDW component—are key in determining the line shapes.

  14. A new illusion of projected three-dimensional space

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Grunwald, Arthur

    1987-01-01

    When perspective projections of orbital trajectories plotted in local-vertical local-horizontal coordinates are viewed with certain viewing angles, their appearance becomes perceptually unstable. They often lose their trochoidal appearance and reorganize as helices. This reorganization may be due to the viewer's familiarity with coiled springs.

  15. An Economical Semi-Analytical Orbit Theory for Retarded Satellite Motion About an Oblate Planet

    NASA Technical Reports Server (NTRS)

    Gordon, R. A.

    1980-01-01

    Brouwer and Brouwer-Lyddanes' use of the Von Zeipel-Delaunay method is employed to develop an efficient analytical orbit theory suitable for microcomputers. A succinctly simple pseudo-phenomenologically conceptualized algorithm is introduced which accurately and economically synthesizes modeling of drag effects. The method epitomizes and manifests effortless efficient computer mechanization. Simulated trajectory data is employed to illustrate the theory's ability to accurately accommodate oblateness and drag effects for microcomputer ground based or onboard predicted orbital representation. Real tracking data is used to demonstrate that the theory's orbit determination and orbit prediction capabilities are favorably adaptable to and are comparable with results obtained utilizing complex definitive Cowell method solutions on satellites experiencing significant drag effects.

  16. How localized is ``local?'' Efficiency vs. accuracy of O(N) domain decomposition in local orbital based all-electron electronic structure theory

    NASA Astrophysics Data System (ADS)

    Havu, Vile; Blum, Volker; Scheffler, Matthias

    2007-03-01

    Numeric atom-centered local orbitals (NAO) are efficient basis sets for all-electron electronic structure theory. The locality of NAO's can be exploited to render (in principle) all operations of the self-consistency cycle O(N). This is straightforward for 3D integrals using domain decomposition into spatially close subsets of integration points, enabling critical computational savings that are effective from ˜tens of atoms (no significant overhead for smaller systems) and make large systems (100s of atoms) computationally feasible. Using a new all-electron NAO-based code,^1 we investigate the quantitative impact of exploiting this locality on two distinct classes of systems: Large light-element molecules [Alanine-based polypeptide chains (Ala)n], and compact transition metal clusters. Strict NAO locality is achieved by imposing a cutoff potential with an onset radius rc, and exploited by appropriately shaped integration domains (subsets of integration points). Conventional tight rc<= 3å have no measurable accuracy impact in (Ala)n, but introduce inaccuracies of 20-30 meV/atom in Cun. The domain shape impacts the computational effort by only 10-20 % for reasonable rc. ^1 V. Blum, R. Gehrke, P. Havu, V. Havu, M. Scheffler, The FHI Ab Initio Molecular Simulations (aims) Project, Fritz-Haber-Institut, Berlin (2006).

  17. Approximate analytic method for high-apogee twelve-hour orbits of artificial Earth's satellites

    NASA Astrophysics Data System (ADS)

    Vashkovyaka, M. A.; Zaslavskii, G. S.

    2016-09-01

    We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth's satellites. We describe parameters of the motion model used for the artificial Earth's satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.

  18. Chapter 5 Multiple, Localized, and Delocalized/Conjugated Bonds in the Orbital Communication Theory of Molecular Systems

    NASA Astrophysics Data System (ADS)

    Nalewajski, Roman F.

    Information theory (IT) probe of the molecular electronic structure, within the communication theory of chemical bonds (CTCB), uses the standard entropy/information descriptors of the Shannon theory of communication to characterize a scattering of the electronic probabilities and their information content throughout the system chemical bonds generated by the occupied molecular orbitals (MO). These "communications" between the basis-set orbitals are determined by the two-orbital conditional probabilities: one- and two-electron in character. They define the molecular information system, in which the electron-allocation "signals" are transmitted between various orbital "inputs" and "outputs". It is argued, using the quantum mechanical superposition principle, that the one-electron conditional probabilities are proportional to the squares of corresponding elements of the charge and bond-order (CBO) matrix of the standard LCAO MO theory. Therefore, the probability of the interorbital connections in the molecular communication system is directly related to Wiberg's quadratic covalency indices of chemical bonds. The conditional-entropy (communication "noise") and mutual-information (information capacity) descriptors of these molecular channels generate the IT-covalent and IT-ionic bond components, respectively. The former reflects the electron delocalization (indeterminacy) due to the orbital mixing, throughout all chemical bonds in the system under consideration. The latter characterizes the localization (determinacy) in the probability scattering in the molecule. These two IT indices, respectively, indicate a fraction of the input information lost in the channel output, due to the communication noise, and its surviving part, due to deterministic elements in probability scattering in the molecular network. Together, these two components generate the system overall bond index. By a straightforward output reduction (condensation) of the molecular channel, the IT indices of molecular fragments, for example, localized bonds, functional groups, and forward and back donations accompanying the bond formation, and so on, can be extracted. The flow of information in such molecular communication networks is investigated in several prototype molecules. These illustrative (model) applications of the orbital communication theory of chemical bonds (CTCB) deal with several classical issues in the electronic structure theory: atom hybridization/promotion, single and multiple chemical bonds, bond conjugation, and so on. The localized bonds in hydrides and delocalized [pi]-bonds in simple hydrocarbons, as well as the multiple bonds in CO and CO2, are diagnosed using the entropy/information descriptors of CTCB. The atom promotion in hydrides and bond conjugation in [pi]-electron systems are investigated in more detail. A major drawback of the previous two-electron approach to molecular channels, namely, two weak bond differentiation in aromatic systems, has been shown to be remedied in the one-electron approach.

  19. The orbital evolution of NEA 30825 1900 TG1

    NASA Astrophysics Data System (ADS)

    Timoshkova, E. I.

    2008-02-01

    The orbital evolution of the near-Earth asteroid (NEA) 30825 1990 TG1 has been studied by numerical integration of the equations of its motion over the 100 000-year time interval with allowance for perturbations from eight major planets and Pluto, and the variations in its osculating orbit over this time interval were determined. The numerical integrations were performed using two methods: the Bulirsch-Stoer method and the Everhart method. The comparative analysis of the two resulting orbital evolutions of motion is presented for the time interval examined. The evolution of the asteroid motion is qualitatively the same for both variants, but the rate of evolution of the orbital elements is different. Our research confirms the known fact that the application of different integrators to the study of the long-term evolution of the NEA orbit may lead to different evolution tracks.

  20. Long Term Mean Local Time of the Ascending Node Prediction

    NASA Technical Reports Server (NTRS)

    McKinley, David P.

    2007-01-01

    Significant error has been observed in the long term prediction of the Mean Local Time of the Ascending Node on the Aqua spacecraft. This error of approximately 90 seconds over a two year prediction is a complication in planning and timing of maneuvers for all members of the Earth Observing System Afternoon Constellation, which use Aqua's MLTAN as the reference for their inclination maneuvers. It was determined that the source of the prediction error was the lack of a solid Earth tide model in the operational force models. The Love Model of the solid Earth tide potential was used to derive analytic corrections to the inclination and right ascension of the ascending node of Aqua's Sun-synchronous orbit. Additionally, it was determined that the resonance between the Sun and orbit plane of the Sun-synchronous orbit is the primary driver of this error. The analytic corrections have been added to the operational force models for the Aqua spacecraft reducing the two-year 90-second error to less than 7 seconds.

Top