Causal localizations in relativistic quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castrigiano, Domenico P. L., E-mail: castrig@ma.tum.de; Leiseifer, Andreas D., E-mail: andreas.leiseifer@tum.de
2015-07-15
Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a meremore » consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.« less
Causal localizations in relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Castrigiano, Domenico P. L.; Leiseifer, Andreas D.
2015-07-01
Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.
Localization Based on Magnetic Markers for an All-Wheel Steering Vehicle
Byun, Yeun Sub; Kim, Young Chol
2016-01-01
Real-time continuous localization is a key technology in the development of intelligent transportation systems. In these systems, it is very important to have accurate information about the position and heading angle of the vehicle at all times. The most widely implemented methods for positioning are the global positioning system (GPS), vision-based system, and magnetic marker system. Among these methods, the magnetic marker system is less vulnerable to indoor and outdoor environment conditions; moreover, it requires minimal maintenance expenses. In this paper, we present a position estimation scheme based on magnetic markers and odometry sensors for an all-wheel-steering vehicle. The heading angle of the vehicle is determined by using the position coordinates of the last two detected magnetic markers and odometer data. The instant position and heading angle of the vehicle are integrated with an extended Kalman filter to estimate the continuous position. GPS data with the real-time kinematics mode was obtained to evaluate the performance of the proposed position estimation system. The test results show that the performance of the proposed localization algorithm is accurate (mean error: 3 cm; max error: 9 cm) and reliable under unexpected missing markers or incorrect markers. PMID:27916827
Indoor Pedestrian Localization Using iBeacon and Improved Kalman Filter.
Sung, Kwangjae; Lee, Dong Kyu 'Roy'; Kim, Hwangnam
2018-05-26
The reliable and accurate indoor pedestrian positioning is one of the biggest challenges for location-based systems and applications. Most pedestrian positioning systems have drift error and large bias due to low-cost inertial sensors and random motions of human being, as well as unpredictable and time-varying radio-frequency (RF) signals used for position determination. To solve this problem, many indoor positioning approaches that integrate the user's motion estimated by dead reckoning (DR) method and the location data obtained by RSS fingerprinting through Bayesian filter, such as the Kalman filter (KF), unscented Kalman filter (UKF), and particle filter (PF), have recently been proposed to achieve higher positioning accuracy in indoor environments. Among Bayesian filtering methods, PF is the most popular integrating approach and can provide the best localization performance. However, since PF uses a large number of particles for the high performance, it can lead to considerable computational cost. This paper presents an indoor positioning system implemented on a smartphone, which uses simple dead reckoning (DR), RSS fingerprinting using iBeacon and machine learning scheme, and improved KF. The core of the system is the enhanced KF called a sigma-point Kalman particle filter (SKPF), which localize the user leveraging both the unscented transform of UKF and the weighting method of PF. The SKPF algorithm proposed in this study is used to provide the enhanced positioning accuracy by fusing positional data obtained from both DR and fingerprinting with uncertainty. The SKPF algorithm can achieve better positioning accuracy than KF and UKF and comparable performance compared to PF, and it can provide higher computational efficiency compared with PF. iBeacon in our positioning system is used for energy-efficient localization and RSS fingerprinting. We aim to design the localization scheme that can realize the high positioning accuracy, computational efficiency, and energy efficiency through the SKPF and iBeacon indoors. Empirical experiments in real environments show that the use of the SKPF algorithm and iBeacon in our indoor localization scheme can achieve very satisfactory performance in terms of localization accuracy, computational cost, and energy efficiency.
Canedo-Rodriguez, Adrian; Rodriguez, Jose Manuel; Alvarez-Santos, Victor; Iglesias, Roberto; Regueiro, Carlos V
2015-04-30
In wireless positioning systems, the transmitter's power is usually fixed. In this paper, we explore the use of varying transmission powers to increase the performance of a wireless localization system. To this extent, we have designed a robot positioning system based on wireless motes. Our motes use an inexpensive, low-power sub-1-GHz system-on-chip (CC1110) working in the 433-MHz ISM band. Our localization algorithm is based on a particle filter and infers the robot position by: (1) comparing the power received with the expected one; and (2) integrating the robot displacement. We demonstrate that the use of transmitters that vary their transmission power over time improves the performance of the wireless positioning system significantly, with respect to a system that uses fixed power transmitters. This opens the door for applications where the robot can localize itself actively by requesting the transmitters to change their power in real time.
Canedo-Rodriguez, Adrian; Rodriguez, Jose Manuel; Alvarez-Santos, Victor; Iglesias, Roberto; Regueiro, Carlos V.
2015-01-01
In wireless positioning systems, the transmitter's power is usually fixed. In this paper, we explore the use of varying transmission powers to increase the performance of a wireless localization system. To this extent, we have designed a robot positioning system based on wireless motes. Our motes use an inexpensive, low-power sub-1-GHz system-on-chip (CC1110) working in the 433-MHz ISM band. Our localization algorithm is based on a particle filter and infers the robot position by: (1) comparing the power received with the expected one; and (2) integrating the robot displacement. We demonstrate that the use of transmitters that vary their transmission power over time improves the performance of the wireless positioning system significantly, with respect to a system that uses fixed power transmitters. This opens the door for applications where the robot can localize itself actively by requesting the transmitters to change their power in real time. PMID:25942641
The effect of transponder motion on the accuracy of the Calypso Electromagnetic localization system.
Murphy, Martin J; Eidens, Richard; Vertatschitsch, Edward; Wright, J Nelson
2008-09-01
To determine position and velocity-dependent effects in the overall accuracy of the Calypso Electromagnetic localization system, under conditions that emulate transponder motion during normal free breathing. Three localization transponders were mounted on a remote-controlled turntable that could move the transponders along a circular trajectory at speeds up to 3 cm/s. A stationary calibration established the coordinates of multiple points on each transponder's circular path. Position measurements taken while the transponders were in motion at a constant speed were then compared with the stationary coordinates. No statistically significant changes in the transponder positions in (x,y,z) were detected when the transponders were in motion. The accuracy of the localization system is unaffected by transponder motion.
The Design and Implementation of Indoor Localization System Using Magnetic Field Based on Smartphone
NASA Astrophysics Data System (ADS)
Liu, J.; Jiang, C.; Shi, Z.
2017-09-01
Sufficient signal nodes are mostly required to implement indoor localization in mainstream research. Magnetic field take advantage of high precision, stable and reliability, and the reception of magnetic field signals is reliable and uncomplicated, it could be realized by geomagnetic sensor on smartphone, without external device. After the study of indoor positioning technologies, choose the geomagnetic field data as fingerprints to design an indoor localization system based on smartphone. A localization algorithm that appropriate geomagnetic matching is designed, and present filtering algorithm and algorithm for coordinate conversion. With the implement of plot geomagnetic fingerprints, the indoor positioning of smartphone without depending on external devices can be achieved. Finally, an indoor positioning system which is based on Android platform is successfully designed, through the experiments, proved the capability and effectiveness of indoor localization algorithm.
A wireless sensor network based personnel positioning scheme in coal mines with blind areas.
Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing
2010-01-01
This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures.
A Wireless Sensor Network Based Personnel Positioning Scheme in Coal Mines with Blind Areas
Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing
2010-01-01
This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures. PMID:22163446
Two-UAV Intersection Localization System Based on the Airborne Optoelectronic Platform
Bai, Guanbing; Liu, Jinghong; Song, Yueming; Zuo, Yujia
2017-01-01
To address the limitation of the existing UAV (unmanned aerial vehicles) photoelectric localization method used for moving objects, this paper proposes an improved two-UAV intersection localization system based on airborne optoelectronic platforms by using the crossed-angle localization method of photoelectric theodolites for reference. This paper introduces the makeup and operating principle of intersection localization system, creates auxiliary coordinate systems, transforms the LOS (line of sight, from the UAV to the target) vectors into homogeneous coordinates, and establishes a two-UAV intersection localization model. In this paper, the influence of the positional relationship between UAVs and the target on localization accuracy has been studied in detail to obtain an ideal measuring position and the optimal localization position where the optimal intersection angle is 72.6318°. The result shows that, given the optimal position, the localization root mean square error (RMS) will be 25.0235 m when the target is 5 km away from UAV baselines. Finally, the influence of modified adaptive Kalman filtering on localization results is analyzed, and an appropriate filtering model is established to reduce the localization RMS error to 15.7983 m. Finally, An outfield experiment was carried out and obtained the optimal results: σB=1.63×10−4 (°), σL=1.35×10−4 (°), σH=15.8 (m), σsum=27.6 (m), where σB represents the longitude error, σL represents the latitude error, σH represents the altitude error, and σsum represents the error radius. PMID:28067814
Two-UAV Intersection Localization System Based on the Airborne Optoelectronic Platform.
Bai, Guanbing; Liu, Jinghong; Song, Yueming; Zuo, Yujia
2017-01-06
To address the limitation of the existing UAV (unmanned aerial vehicles) photoelectric localization method used for moving objects, this paper proposes an improved two-UAV intersection localization system based on airborne optoelectronic platforms by using the crossed-angle localization method of photoelectric theodolites for reference. This paper introduces the makeup and operating principle of intersection localization system, creates auxiliary coordinate systems, transforms the LOS (line of sight, from the UAV to the target) vectors into homogeneous coordinates, and establishes a two-UAV intersection localization model. In this paper, the influence of the positional relationship between UAVs and the target on localization accuracy has been studied in detail to obtain an ideal measuring position and the optimal localization position where the optimal intersection angle is 72.6318°. The result shows that, given the optimal position, the localization root mean square error (RMS) will be 25.0235 m when the target is 5 km away from UAV baselines. Finally, the influence of modified adaptive Kalman filtering on localization results is analyzed, and an appropriate filtering model is established to reduce the localization RMS error to 15.7983 m. Finally, An outfield experiment was carried out and obtained the optimal results: σ B = 1.63 × 10 - 4 ( ° ) , σ L = 1.35 × 10 - 4 ( ° ) , σ H = 15.8 ( m ) , σ s u m = 27.6 ( m ) , where σ B represents the longitude error, σ L represents the latitude error, σ H represents the altitude error, and σ s u m represents the error radius.
Passive Sensor Integration for Vehicle Self-Localization in Urban Traffic Environment †
Gu, Yanlei; Hsu, Li-Ta; Kamijo, Shunsuke
2015-01-01
This research proposes an accurate vehicular positioning system which can achieve lane-level performance in urban canyons. Multiple passive sensors, which include Global Navigation Satellite System (GNSS) receivers, onboard cameras and inertial sensors, are integrated in the proposed system. As the main source for the localization, the GNSS technique suffers from Non-Line-Of-Sight (NLOS) propagation and multipath effects in urban canyons. This paper proposes to employ a novel GNSS positioning technique in the integration. The employed GNSS technique reduces the multipath and NLOS effects by using the 3D building map. In addition, the inertial sensor can describe the vehicle motion, but has a drift problem as time increases. This paper develops vision-based lane detection, which is firstly used for controlling the drift of the inertial sensor. Moreover, the lane keeping and changing behaviors are extracted from the lane detection function, and further reduce the lateral positioning error in the proposed localization system. We evaluate the integrated localization system in the challenging city urban scenario. The experiments demonstrate the proposed method has sub-meter accuracy with respect to mean positioning error. PMID:26633420
DOT National Transportation Integrated Search
2000-07-01
This report summarizes Global Positioning System (GPS) technology and its augmentation-related activities within State and local transportation agencies. In general, the following items are addressed for each State that participated in this investiga...
An INS/WiFi Indoor Localization System Based on the Weighted Least Squares.
Chen, Jian; Ou, Gang; Peng, Ao; Zheng, Lingxiang; Shi, Jianghong
2018-05-07
For smartphone indoor localization, an INS/WiFi hybrid localization system is proposed in this paper. Acceleration and angular velocity are used to estimate step lengths and headings. The problem with INS is that positioning errors grow with time. Using radio signal strength as a fingerprint is a widely used technology. The main problem with fingerprint matching is mismatching due to noise. Taking into account the different shortcomings and advantages, inertial sensors and WiFi from smartphones are integrated into indoor positioning. For a hybrid localization system, pre-processing techniques are used to enhance the WiFi signal quality. An inertial navigation system limits the range of WiFi matching. A Multi-dimensional Dynamic Time Warping (MDTW) is proposed to calculate the distance between the measured signals and the fingerprint in the database. A MDTW-based weighted least squares (WLS) is proposed for fusing multiple fingerprint localization results to improve positioning accuracy and robustness. Using four modes (calling, dangling, handheld and pocket), we carried out walking experiments in a corridor, a study room and a library stack room. Experimental results show that average localization accuracy for the hybrid system is about 2.03 m.
An INS/WiFi Indoor Localization System Based on the Weighted Least Squares
Chen, Jian; Ou, Gang; Zheng, Lingxiang; Shi, Jianghong
2018-01-01
For smartphone indoor localization, an INS/WiFi hybrid localization system is proposed in this paper. Acceleration and angular velocity are used to estimate step lengths and headings. The problem with INS is that positioning errors grow with time. Using radio signal strength as a fingerprint is a widely used technology. The main problem with fingerprint matching is mismatching due to noise. Taking into account the different shortcomings and advantages, inertial sensors and WiFi from smartphones are integrated into indoor positioning. For a hybrid localization system, pre-processing techniques are used to enhance the WiFi signal quality. An inertial navigation system limits the range of WiFi matching. A Multi-dimensional Dynamic Time Warping (MDTW) is proposed to calculate the distance between the measured signals and the fingerprint in the database. A MDTW-based weighted least squares (WLS) is proposed for fusing multiple fingerprint localization results to improve positioning accuracy and robustness. Using four modes (calling, dangling, handheld and pocket), we carried out walking experiments in a corridor, a study room and a library stack room. Experimental results show that average localization accuracy for the hybrid system is about 2.03 m. PMID:29735960
NASA Astrophysics Data System (ADS)
Haeffner, Melissa; Jackson-Smith, Douglas; Flint, Courtney G.
2018-02-01
How well city leaders represent their constituents and meet their needs are key concerns in transitioning to local sustainable water governance. To date, however, there is little research documenting the influence of social position between elected leaders who make policy, career staff water managers who design and operate systems and implement policies, and the members of the public whose individual water use behaviors are important drivers of water sustainability outcomes. In this study, we ask: "How does social position explain variation in water perceptions and concerns between different actors in a socio-hydrological system?" Using a mixed method approach with survey and interview data, we explore the ways that positioning within the governance system, geographic context, and citizen engagement in local government mediate perceptions of the urban water system. Regardless of local biophysical water supply conditions, residents showed most concern about future water shortages and high water costs, while their leaders were consistently most concerned about deteriorating local water infrastructure. Further, constituents who received water-related information directly from public utility mailings or served on community committees and boards had perceptions that were more aligned with leaders' concerns. The importance of social structure over natural and built environments in shaping water issue perceptions underscores the value of social analysis in socio-hydrology studies. Further, practitioners looking to increase consensus for a transition to sustainable water governance might work to develop institutional mechanisms to increase opportunities for water user involvement in local water system governance.
Monaural Sound Localization Based on Structure-Induced Acoustic Resonance
Kim, Keonwook; Kim, Youngwoong
2015-01-01
A physical structure such as a cylindrical pipe controls the propagated sound spectrum in a predictable way that can be used to localize the sound source. This paper designs a monaural sound localization system based on multiple pyramidal horns around a single microphone. The acoustic resonance within the horn provides a periodicity in the spectral domain known as the fundamental frequency which is inversely proportional to the radial horn length. Once the system accurately estimates the fundamental frequency, the horn length and corresponding angle can be derived by the relationship. The modified Cepstrum algorithm is employed to evaluate the fundamental frequency. In an anechoic chamber, localization experiments over azimuthal configuration show that up to 61% of the proper signal is recognized correctly with 30% misfire. With a speculated detection threshold, the system estimates direction 52% in positive-to-positive and 34% in negative-to-positive decision rate, on average. PMID:25668214
Kocur, Dušan; Švecová, Mária; Rovňáková, Jana
2013-01-01
In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered. PMID:24021968
Kocur, Dušan; Svecová, Mária; Rovňáková, Jana
2013-09-09
In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.
Towards a Decentralized Magnetic Indoor Positioning System
Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg
2015-01-01
Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters. PMID:26690145
Towards a Decentralized Magnetic Indoor Positioning System.
Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg
2015-12-04
Decentralized magnetic indoor localization is a sophisticated method for processing sampled magnetic data directly on a mobile station (MS), thereby decreasing or even avoiding the need for communication with the base station. In contrast to central-oriented positioning systems, which transmit raw data to a base station, decentralized indoor localization pushes application-level knowledge into the MS. A decentralized position solution has thus a strong feasibility to increase energy efficiency and to prolong the lifetime of the MS. In this article, we present a complete architecture and an implementation for a decentralized positioning system. Furthermore, we introduce a technique for the synchronization of the observed magnetic field on the MS with the artificially-generated magnetic field from the coils. Based on real-time clocks (RTCs) and a preemptive operating system, this method allows a stand-alone control of the coils and a proper assignment of the measured magnetic fields on the MS. A stand-alone control and synchronization of the coils and the MS have an exceptional potential to implement a positioning system without the need for wired or wireless communication and enable a deployment of applications for rescue scenarios, like localization of miners or firefighters.
Improving IMES Localization Accuracy by Integrating Dead Reckoning Information
Fujii, Kenjiro; Arie, Hiroaki; Wang, Wei; Kaneko, Yuto; Sakamoto, Yoshihiro; Schmitz, Alexander; Sugano, Shigeki
2016-01-01
Indoor positioning remains an open problem, because it is difficult to achieve satisfactory accuracy within an indoor environment using current radio-based localization technology. In this study, we investigate the use of Indoor Messaging System (IMES) radio for high-accuracy indoor positioning. A hybrid positioning method combining IMES radio strength information and pedestrian dead reckoning information is proposed in order to improve IMES localization accuracy. For understanding the carrier noise ratio versus distance relation for IMES radio, the signal propagation of IMES radio is modeled and identified. Then, trilateration and extended Kalman filtering methods using the radio propagation model are developed for position estimation. These methods are evaluated through robot localization and pedestrian localization experiments. The experimental results show that the proposed hybrid positioning method achieved average estimation errors of 217 and 1846 mm in robot localization and pedestrian localization, respectively. In addition, in order to examine the reason for the positioning accuracy of pedestrian localization being much lower than that of robot localization, the influence of the human body on the radio propagation is experimentally evaluated. The result suggests that the influence of the human body can be modeled. PMID:26828492
User evaluation of photovoltaic-powered vaccine refrigerator/freezer systems
NASA Technical Reports Server (NTRS)
Ratajczak, Anthony F.
1987-01-01
The NASA Lewis Research Center has concluded a project to develop and field test photovoltaic-powered refrigerator/freezers for vaccine storage in remote areas of developing countries. As a conclusion to this project, questionnaires were sent to the in-country administrators for each test site probing user acceptance of the systems and attitudes regarding procurement of additional systems. Responses indicate that the systems had a positive effect on the local communities, that they made a positive impression on the local health authorities, and that system cost and scarcity of funds are the major barriers to procurements of additional systems.
User evaluation of photovoltaic-powered vaccine refrigerator/freezer systems
NASA Astrophysics Data System (ADS)
Ratajczak, Anthony F.
1987-03-01
The NASA Lewis Research Center has concluded a project to develop and field test photovoltaic-powered refrigerator/freezers for vaccine storage in remote areas of developing countries. As a conclusion to this project, questionnaires were sent to the in-country administrators for each test site probing user acceptance of the systems and attitudes regarding procurement of additional systems. Responses indicate that the systems had a positive effect on the local communities, that they made a positive impression on the local health authorities, and that system cost and scarcity of funds are the major barriers to procurements of additional systems.
Accuracy improvement in the TDR-based localization of water leaks
NASA Astrophysics Data System (ADS)
Cataldo, Andrea; De Benedetto, Egidio; Cannazza, Giuseppe; Monti, Giuseppina; Demitri, Christian
A time domain reflectometry (TDR)-based system for the localization of water leaks has been recently developed by the authors. This system, which employs wire-like sensing elements to be installed along the underground pipes, has proven immune to the limitations that affect the traditional, acoustic leak-detection systems. Starting from the positive results obtained thus far, in this work, an improvement of this TDR-based system is proposed. More specifically, the possibility of employing a low-cost, water-absorbing sponge to be placed around the sensing element for enhancing the accuracy in the localization of the leak is addressed. To this purpose, laboratory experiments were carried out mimicking a water leakage condition, and two sensing elements (one embedded in a sponge and one without sponge) were comparatively used to identify the position of the leak through TDR measurements. Results showed that, thanks to the water retention capability of the sponge (which maintains the leaked water more localized), the sensing element embedded in the sponge leads to a higher accuracy in the evaluation of the position of the leak.
Precision enhancement of pavement roughness localization with connected vehicles
NASA Astrophysics Data System (ADS)
Bridgelall, R.; Huang, Y.; Zhang, Z.; Deng, F.
2016-02-01
Transportation agencies rely on the accurate localization and reporting of roadway anomalies that could pose serious hazards to the traveling public. However, the cost and technical limitations of present methods prevent their scaling to all roadways. Connected vehicles with on-board accelerometers and conventional geospatial position receivers offer an attractive alternative because of their potential to monitor all roadways in real-time. The conventional global positioning system is ubiquitous and essentially free to use but it produces impractically large position errors. This study evaluated the improvement in precision achievable by augmenting the conventional geo-fence system with a standard speed bump or an existing anomaly at a pre-determined position to establish a reference inertial marker. The speed sensor subsequently generates position tags for the remaining inertial samples by computing their path distances relative to the reference position. The error model and a case study using smartphones to emulate connected vehicles revealed that the precision in localization improves from tens of metres to sub-centimetre levels, and the accuracy of measuring localized roughness more than doubles. The research results demonstrate that transportation agencies will benefit from using the connected vehicle method to achieve precision and accuracy levels that are comparable to existing laser-based inertial profilers.
Glavatskiy, K S
2015-10-28
Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muralidhar, K Raja; Pangam, Suresh; Ponaganti, Srinivas
2016-06-15
Purpose: 1. online verification of patient position during treatment using calypso electromagnetic localization and tracking system. 2. Verification and comparison of positional accuracy between cone beam computed tomography and calypso system. 3. Presenting the advantage of continuation localization in Stereotactic radiosurgery treatments. Methods: Ten brain tumor cases were taken for this study. Patients with head mask were under gone Computed Tomography (CT). Before scanning, mask was cut on the fore head area to keep surface beacons on the skin. Slice thickness of 0.65 mm were taken for this study. x, y, z coordinates of these beacons in TPS were enteredmore » into tracking station. Varian True Beam accelerator, equipped with On Board Imager was used to take Cone beam Computed Tomography (CBCT) to localize the patient. Simultaneously Surface beacons were used to localize and track the patient throughout the treatment. The localization values were compared in both systems. For localization CBCT considered as reference. Tracking was done throughout the treatment using Calypso tracking system using electromagnetic array. This array was in tracking position during imaging and treatment. Flattening Filter free beams of 6MV photons along with Volumetric Modulated Arc Therapy was used for the treatment. The patient movement was observed throughout the treatment ranging from 2 min to 4 min. Results: The average variation observed between calypso system and CBCT localization was less than 0.5 mm. These variations were due to manual errors while keeping beacon on the patient. Less than 0.05 cm intra-fraction motion was observed throughout the treatment with the help of continuous tracking. Conclusion: Calypso target localization system is one of the finest tools to perform radiosurgery in combination with CBCT. This non radiographic method of tracking is a real beneficial method to treat patients confidently while observing real-time motion information of the patient.« less
Teleoperated position control of a PUMA robot
NASA Technical Reports Server (NTRS)
Austin, Edmund; Fong, Chung P.
1987-01-01
A laboratory distributed computer control teleoperator system is developed to support NASA's future space telerobotic operation. This teleoperator system uses a universal force-reflecting hand controller in the local iste as the operator's input device. In the remote site, a PUMA controller recieves the Cartesian position commands and implements PID control laws to position the PUMA robot. The local site uses two microprocessors while the remote site uses three. The processors communicate with each other through shared memory. The PUMA robot controller was interfaced through custom made electronics to bypass VAL. The development status of this teleoperator system is reported. The execution time of each processor is analyzed, and the overall system throughput rate is reported. Methods to improve the efficiency and performance are discussed.
Local markets and systems: hospital consolidations in metropolitan areas.
Luke, R D; Ozcan, Y A; Olden, P C
1995-10-01
This study examines the formation of local hospital systems (LHSs) in urban markets by the end of 1992. We argue that a primary reason why hospitals join LHSs is to achieve improved positions of market power relative to threatening rivals. The study draws from a unique database of LHSs located in and around metropolitan statistical areas (MSAs). Data were obtained from the 1991 AHA Annual Hospital Survey, updated to the year 1992 using information obtained from multiple sources (telephone contacts of systems, systems lists of hospitals, published changes in ownership, etc.). Other measures were obtained from a variety of sources, principally the 1989 Area Resources File. The study presents cross-sectional analyses of rival threats and other factors bearing on LHS formation. Three characteristics of LHS formation are examined: LHS penetration of urban areas, LHS size, and number of LHS members located just outside the urban boundaries. LHS penetration is analyzed across urban markets, and LHS size and rural partners are examined across the LHSs. Major hypothesized findings are: (1) with the exception of the number of rural partners, all dependent variables are positively associated with the number of hospitals in the markets; the rural partner measure is negatively associated with the number of hospitals; (2) the number of doctors per capita is positively associated with all but the rural penetration measure; and (3) the percentage of the population in HMOs is positively associated with local cluster penetration and negatively associated with rural system partners. Other findings: (1) average income in the markets is negatively associated with all but the rural penetration measure; (2) LHS size and rural partners are both positively associated with nonprofit system ownership; and (3) they are also both negatively associated with the degree to which their multihospital systems are geographically concentrated in a single state. The findings generally support the argument that LHS formation is the product of hospital providers attempting to improve positions of power in their local markets.
Medizade, Masoud [San Luis Obispo, CA; Ridgely, John Robert [Los Osos, CA
2009-12-15
An arrangement which utilizes an inexpensive flap valve/flow transducer combination and a simple local supervisory control system to monitor and/or control the operation of a positive displacement pump used to extract petroleum from geologic strata. The local supervisory control system controls the operation of an electric motor which drives a reciprocating positive displacement pump so as to maximize the volume of petroleum extracted from the well per pump stroke while minimizing electricity usage and pump-off situations. By reducing the electrical demand and pump-off (i.e., "pounding" or "fluid pound") occurrences, operating and maintenance costs should be reduced sufficiently to allow petroleum recovery from marginally productive petroleum fields. The local supervisory control system includes one or more applications to at least collect flow signal data generated during operation of the positive displacement pump. No flow, low flow and flow duration are easily evaluated using the flap valve/flow transducer arrangement.
NASA directory of observation station locations, volume 1
NASA Technical Reports Server (NTRS)
1973-01-01
Geodetic information for NASA tracking stations and for observation stations cooperating in NASA geodetic satellite programs is presented. A Geodetic Data Sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums and on selected world geodetic systems. The principal tracking facilities used by NASA, including the Spaceflight Tracking and Data Network, the Deep Space Network, and several large radio telescopes are discussed. Positions of these facilities are tabulated on their local or national datums, the Mercury Spheroid 1960, the Modified Mercury Datum 1968, and the Spaceflight Tracking and Data Network System. Observation stations in the NASA Geodetic Satellites Program are included along with stations participating in the National Geodetic Satellite Program. Positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968.
NASA Astrophysics Data System (ADS)
Larson, Robert Sherman
An Unmanned Aerial Vehicle (UAV) and a manned aircraft are tracked using ADS-B transponders and the Local Area Multilateration System (LAMS) in simulated GPS-degraded and GPS-denied environments. Several position estimation and fusion algorithms are developed for use with the Autonomous Flight Systems Laboratory (AFSL) TRansponder based Position Information System (TRAPIS) software. At the lowest level, these estimation and fusion algorithms use raw information from ADS-B and LAMS data streams to provide aircraft position estimates to the ground station user. At the highest level, aircraft position is estimated using a discrete time Kalman filter with real-time covariance updates and fusion involving weighted averaging of ADS-B and LAMS positions. Simulation and flight test results are provided, demonstrating the feasibility of incorporating an ADS-B transponder on a commercially-available UAS and maintaining situational awareness of aircraft positions in GPS-degraded and GPS-denied environments.
Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles.
Xing, Boyang; Zhu, Quanmin; Pan, Feng; Feng, Xiaoxue
2018-05-25
A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland). Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB) beacon and lidar) to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV) visual localization and robotics control.
Maximally-localized position, Euclidean path-integral, and thermodynamics in GUP quantum mechanics
NASA Astrophysics Data System (ADS)
Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.
2018-04-01
In dealing with quantum mechanics at very high energies, it is essential to adapt to a quasiposition representation using the maximally-localized states because of the generalized uncertainty principle. In this paper, we look at maximally-localized states as eigenstates of the operator ξ = X + iβP that we refer to as the maximally-localized position. We calculate the overlap between maximally-localized states and show that the identity operator can be expressed in terms of the maximally-localized states. Furthermore, we show that the maximally-localized position is diagonal in momentum-space and that the maximally-localized position and its adjoint satisfy commutation and anti-commutation relations reminiscent of the harmonic oscillator commutation and anti-commutation relations. As application, we use the maximally-localized position in developing the Euclidean path-integral and introduce the compact form of the propagator for maximal localization. The free particle momentum-space propagator and the propagator for maximal localization are analytically evaluated up to quadratic-order in β. Finally, we obtain a path-integral expression for the partition function of a thermodynamic system using the maximally-localized states. The partition function of a gas of noninteracting particles is evaluated. At temperatures exceeding the Planck energy, we obtain the gas' maximum internal energy N / 2 β and recover the zero heat capacity of an ideal gas.
Experimental Evaluation of UWB Indoor Positioning for Sport Postures
Defraye, Jense; Steendam, Heidi; Gerlo, Joeri; De Clercq, Dirk; De Poorter, Eli
2018-01-01
Radio frequency (RF)-based indoor positioning systems (IPSs) use wireless technologies (including Wi-Fi, Zigbee, Bluetooth, and ultra-wide band (UWB)) to estimate the location of persons in areas where no Global Positioning System (GPS) reception is available, for example in indoor stadiums or sports halls. Of the above-mentioned forms of radio frequency (RF) technology, UWB is considered one of the most accurate approaches because it can provide positioning estimates with centimeter-level accuracy. However, it is not yet known whether UWB can also offer such accurate position estimates during strenuous dynamic activities in which moves are characterized by fast changes in direction and velocity. To answer this question, this paper investigates the capabilities of UWB indoor localization systems for tracking athletes during their complex (and most of the time unpredictable) movements. To this end, we analyze the impact of on-body tag placement locations and human movement patterns on localization accuracy and communication reliability. Moreover, two localization algorithms (particle filter and Kalman filter) with different optimizations (bias removal, non-line-of-sight (NLoS) detection, and path determination) are implemented. It is shown that although the optimal choice of optimization depends on the type of movement patterns, some of the improvements can reduce the localization error by up to 31%. Overall, depending on the selected optimization and on-body tag placement, our algorithms show good results in terms of positioning accuracy, with average errors in position estimates of 20 cm. This makes UWB a suitable approach for tracking dynamic athletic activities. PMID:29315267
ERIC Educational Resources Information Center
Ruedel, Kristin; Nelson, Gena; Bailey, Tessie; Pierce, Jennifer
2018-01-01
Data show that effective and ongoing communication and evaluation can have a positive impact on local and statewide systems change. Local and statewide systems change requires ongoing communication and evaluation. The Nevada Department of Education (NDE) used a communication protocol to support implementation of the Assess-Plan-Teach (APT) model.…
Díaz-Reviriego, Isabel; Fernández-Llamazares, Álvaro; Salpeteur, Matthieu; Howard, Patricia L; Reyes-García, Victoria
2016-12-01
Local medical systems are key elements of social-ecological systems as they provide culturally appropriate and locally accessible health care options, especially for populations with scarce access to biomedicine. The adaptive capacity of local medical systems generally rests on two pillars: species diversity and a robust local knowledge system, both threatened by local and global environmental change. We first present a conceptual framework to guide the assessment of knowledge diversity and redundancy in local medicinal knowledge systems through a gender lens. Then, we apply this conceptual framework to our research on the local medicinal plant knowledge of the Tsimane' Amerindians. Our results suggest that Tsimane' medicinal plant knowledge is gendered and that the frequency of reported ailments and the redundancy of knowledge used to treat them are positively associated. We discuss the implications of knowledge diversity and redundancy for local knowledge systems' adaptive capacity, resilience, and health sovereignty.
Prototyping the E-ELT M1 local control system communication infrastructure
NASA Astrophysics Data System (ADS)
Argomedo, J.; Kornweibel, N.; Grudzien, T.; Dimmler, M.; Andolfato, L.; Barriga, P.
2016-08-01
The primary mirror of the E-ELT is composed of 798 hexagonal segments of about 1.45 meters across. Each segment can be moved in piston and tip-tilt using three position actuators. Inductive edge sensors are used to provide feedback for global reconstruction of the mirror shape. The E-ELT M1 Local Control System will provide a deterministic infrastructure for collecting edge sensor and actuators readings and distribute the new position actuators references while at the same time providing failure detection, isolation and notification, synchronization, monitoring and configuration management. The present paper describes the prototyping activities carried out to verify the feasibility of the E-ELT M1 local control system communication architecture design and assess its performance and potential limitations.
A single camera photogrammetry system for multi-angle fast localization of EEG electrodes.
Qian, Shuo; Sheng, Yang
2011-11-01
Photogrammetry has become an effective method for the determination of electroencephalography (EEG) electrode positions in three dimensions (3D). Capturing multi-angle images of the electrodes on the head is a fundamental objective in the design of photogrammetry system for EEG localization. Methods in previous studies are all based on the use of either a rotating camera or multiple cameras, which are time-consuming or not cost-effective. This study aims to present a novel photogrammetry system that can realize simultaneous acquisition of multi-angle head images in a single camera position. Aligning two planar mirrors with the angle of 51.4°, seven views of the head with 25 electrodes are captured simultaneously by the digital camera placed in front of them. A complete set of algorithms for electrode recognition, matching, and 3D reconstruction is developed. It is found that the elapsed time of the whole localization procedure is about 3 min, and camera calibration computation takes about 1 min, after the measurement of calibration points. The positioning accuracy with the maximum error of 1.19 mm is acceptable. Experimental results demonstrate that the proposed system provides a fast and cost-effective method for the EEG positioning.
A Modular Localization System as a Positioning Service for Road Transport
Brida, Peter; Machaj, Juraj; Benikovsky, Jozef
2014-01-01
In recent times smart devices have attracted a large number of users. Since many of these devices allow position estimation using Global Navigation Satellite Systems (GNSS) signals, a large number of location-based applications and services have emerged, especially in transport systems. However GNSS signals are affected by the environment and are not always present, especially in dense urban environment or indoors. In this work firstly a Modular Localization Algorithm is proposed to allow seamless switching between different positioning modules. This helps us develop a positioning system that is able to provide position estimates in both indoor and outdoor environments without any user interaction. Since the proposed system can run as a service on any smart device, it could allow users to navigate not only in outdoor environments, but also indoors, e.g., underground garages, tunnels etc. Secondly we present the proposal of a 2-phase map reduction algorithm which allows one to significantly reduce the complexity of position estimation processes in case that positioning is performed using a fingerprinting framework. The proposed 2-phase map reduction algorithm can also improve the accuracy of the position estimates by filtering out reference points that are far from the mobile device. Both algorithms were implemented into a positioning system and tested in real world conditions in both indoor and outdoor environments. PMID:25353979
Efficient atom localization via probe absorption in an inverted-Y atomic system
NASA Astrophysics Data System (ADS)
Wu, Jianchun; Wu, Bo; Mao, Jiejian
2018-06-01
The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glavatskiy, K. S.
Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can bemore » derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.« less
van Dam, Peter M; Boyle, Noel G; Laks, Michael M; Tung, Roderick
2016-12-01
The precise localization of the site of origin of a premature ventricular contraction (PVC) prior to ablation can facilitate the planning and execution of the electrophysiological procedure. In clinical practice, the targeted ablation site is estimated from the standard 12-lead ECG. The accuracy of this qualitative estimation has limitations, particularly in the localization of PVCs originating from the papillary muscles. Clinical available electrocardiographic imaging (ECGi) techniques that incorporate patient-specific anatomy may improve the localization of these PVCs, but require body surface maps with greater specificity for the epicardium. The purpose of this report is to demonstrate that a novel cardiac isochrone positioning system (CIPS) program can accurately detect the specific location of the PVC on the papillary muscle using only a 12-lead ECG. Cardiac isochrone positioning system uses three components: (i) endocardial and epicardial cardiac anatomy and torso geometry derived from MRI, (ii) the patient-specific electrode positions derived from an MRI model registered 3D image, and (iii) the 12-lead ECG. CIPS localizes the PVC origin by matching the anatomical isochrone vector with the ECG vector. The predicted PVC origin was compared with the site of successful ablation or stimulation. Three patients who underwent electrophysiological mapping and ablation of PVCs originating from the papillary muscles were studied. CIPS localized the PVC origin for all three patients to the correct papillary muscle and specifically to the base, mid, or apical region. A simplified form of ECGi utilizing only 12 standard electrocardiographic leads may facilitate accurate localization of the origin of papillary muscle PVCs. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Guan, Weipeng; Wu, Yuxiang; Xie, Canyu; Chen, Hao; Cai, Ye; Chen, Yingcong
2017-10-01
An indoor positioning algorithm based on visible light communication (VLC) is presented. This algorithm is used to calculate a three-dimensional (3-D) coordinate of an indoor optical wireless environment, which includes sufficient orders of multipath reflections from reflecting surfaces of the room. Leveraging the global optimization ability of the genetic algorithm (GA), an innovative framework for 3-D position estimation based on a modified genetic algorithm is proposed. Unlike other techniques using VLC for positioning, the proposed system can achieve indoor 3-D localization without making assumptions about the height or acquiring the orientation angle of the mobile terminal. Simulation results show that an average localization error of less than 1.02 cm can be achieved. In addition, in most VLC-positioning systems, the effect of reflection is always neglected and its performance is limited by reflection, which makes the results not so accurate for a real scenario and the positioning errors at the corners are relatively larger than other places. So, we take the first-order reflection into consideration and use artificial neural network to match the model of a nonlinear channel. The studies show that under the nonlinear matching of direct and reflected channels the average positioning errors of four corners decrease from 11.94 to 0.95 cm. The employed algorithm is emerged as an effective and practical method for indoor localization and outperform other existing indoor wireless localization approaches.
Global positioning method based on polarized light compass system
NASA Astrophysics Data System (ADS)
Liu, Jun; Yang, Jiangtao; Wang, Yubo; Tang, Jun; Shen, Chong
2018-05-01
This paper presents a global positioning method based on a polarized light compass system. A main limitation of polarization positioning is the environment such as weak and locally destroyed polarization environments, and the solution to the positioning problem is given in this paper which is polarization image de-noising and segmentation. Therefore, the pulse coupled neural network is employed for enhancing positioning performance. The prominent advantages of the present positioning technique are as follows: (i) compared to the existing position method based on polarized light, better sun tracking accuracy can be achieved and (ii) the robustness and accuracy of positioning under weak and locally destroyed polarization environments, such as cloudy or building shielding, are improved significantly. Finally, some field experiments are given to demonstrate the effectiveness and applicability of the proposed global positioning technique. The experiments have shown that our proposed method outperforms the conventional polarization positioning method, the real time longitude and latitude with accuracy up to 0.0461° and 0.0911°, respectively.
Solin, Lawrence J; Gray, Robert; Goldstein, Lori J; Recht, Abram; Baehner, Frederick L; Shak, Steven; Badve, Sunil; Perez, Edith A; Shulman, Lawrence N; Martino, Silvana; Davidson, Nancy E; Sledge, George W; Sparano, Joseph A
2012-07-01
The present study was performed to evaluate the significance of biologic subtype and 21-gene recurrence score relative to local recurrence and local-regional recurrence after breast conservation treatment with radiation. Eastern Cooperative Oncology Group E2197 was a prospective randomized clinical trial that compared two adjuvant systemic chemotherapy regimens for patients with operable breast carcinoma with 1-3 positive lymph nodes or negative lymph nodes with tumor size >1.0 cm. The study population was a subset of 388 patients with known 21-gene recurrence score and treated with breast conservation surgery, systemic chemotherapy, and definitive radiation treatment. Median follow-up was 9.7 years (range = 3.7-11.6 years). The 10-year rates of local recurrence and local-regional recurrence were 5.4 % and 6.6 %, respectively. Neither biologic subtype nor 21-gene Recurrence Score was associated with local recurrence or local-regional recurrence on univariate or multivariate analyses (all P ≥ 0.12). The 10-year rates of local recurrence were 4.9 % for hormone receptor positive, HER2-negative tumors, 6.0 % for triple negative tumors, and 6.4 % for HER2-positive tumors (P = 0.76), and the 10-year rates of local-regional recurrence were 6.3, 6.9, and 7.2 %, respectively (P = 0.79). For hormone receptor-positive tumors, the 10-year rates of local recurrence were 3.2, 2.9, and 10.1 % for low, intermediate, and high 21-gene recurrence score, respectively (P = 0.17), and the 10-year rates of local-regional recurrence were 3.8, 5.1, and 12.0 %, respectively (P = 0.12). For hormone receptor-positive tumors, the 21-gene recurrence score evaluated as a continuous variable was significant for local-regional recurrence (hazard ratio 2.66; P = 0.03). The 10-year rates of local recurrence and local-regional recurrence were reasonably low in all subsets of patients. Neither biologic subtype nor 21-gene recurrence score should preclude breast conservation treatment with radiation.
Unsupervised Indoor Localization Based on Smartphone Sensors, iBeacon and Wi-Fi.
Chen, Jing; Zhang, Yi; Xue, Wei
2018-04-28
In this paper, we propose UILoc, an unsupervised indoor localization scheme that uses a combination of smartphone sensors, iBeacons and Wi-Fi fingerprints for reliable and accurate indoor localization with zero labor cost. Firstly, compared with the fingerprint-based method, the UILoc system can build a fingerprint database automatically without any site survey and the database will be applied in the fingerprint localization algorithm. Secondly, since the initial position is vital to the system, UILoc will provide the basic location estimation through the pedestrian dead reckoning (PDR) method. To provide accurate initial localization, this paper proposes an initial localization module, a weighted fusion algorithm combined with a k-nearest neighbors (KNN) algorithm and a least squares algorithm. In UILoc, we have also designed a reliable model to reduce the landmark correction error. Experimental results show that the UILoc can provide accurate positioning, the average localization error is about 1.1 m in the steady state, and the maximum error is 2.77 m.
ULTRA: Underwater Localization for Transit and Reconnaissance Autonomy
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.
2013-01-01
This software addresses the issue of underwater localization of unmanned vehicles and the inherent drift in their onboard sensors. The software gives a 2 to 3 factor of improvement over the state-of-the-art underwater localization algorithms. The software determines the localization (position, heading) of an AUV (autonomous underwater vehicle) in environments where there is no GPS signal. It accomplishes this using only the commanded position, onboard gyros/accelerometers, and the bathymetry of the bottom provided by an onboard sonar system. The software does not rely on an onboard bathymetry dataset, but instead incrementally determines the position of the AUV while mapping the bottom. In order to enable long-distance underwater navigation by AUVs, a localization method called ULTRA uses registration of the bathymetry data products produced by the onboard forward-looking sonar system for hazard avoidance during a transit to derive the motion and pose of the AUV in order to correct the DR (dead reckoning) estimates. The registration algorithm uses iterative point matching (IPM) combined with surface interpolation of the Iterative Closest Point (ICP) algorithm. This method was used previously at JPL for onboard unmanned ground vehicle localization, and has been optimized for efficient computational and memory use.
Harbour surveillance with cameras calibrated with AIS data
NASA Astrophysics Data System (ADS)
Palmieri, F. A. N.; Castaldo, F.; Marino, G.
The inexpensive availability of surveillance cameras, easily connected in network configurations, suggests the deployment of this additional sensor modality in port surveillance. Vessels appearing within cameras fields of view can be recognized and localized providing to fusion centers information that can be added to data coming from Radar, Lidar, AIS, etc. Camera systems, that are used as localizers however, must be properly calibrated in changing scenarios where often there is limited choice on the position on which they are deployed. Automatic Identification System (AIS) data, that includes position, course and vessel's identity, freely available through inexpensive receivers, for some of the vessels appearing within the field of view, provide the opportunity to achieve proper camera calibration to be used for the localization of vessels not equipped with AIS transponders. In this paper we assume a pinhole model for camera geometry and propose perspective matrices computation using AIS positional data. Images obtained from calibrated cameras are then matched and pixel association is utilized for other vessel's localization. We report preliminary experimental results of calibration and localization using two cameras deployed on the Gulf of Naples coastline. The two cameras overlook a section of the harbour and record short video sequences that are synchronized offline with AIS positional information of easily-identified passenger ships. Other small vessels, not equipped with AIS transponders, are localized using camera matrices and pixel matching. Localization accuracy is experimentally evaluated as a function of target distance from the sensors.
Visible light communication technology for fine-grained indoor localization
NASA Astrophysics Data System (ADS)
Vieira, M.; Vieira, M. A.; Louro, P.; Fantoni, A.; Vieira, P.
2018-02-01
This paper focuses on designing and analysing a visible light based communication and positioning system. The indoor positioning system uses trichromatic white Light Emitting Diodes (LEDs), both for illumination purposes and as transmitters, and an optical processor, based on a-SiC:H technology, as mobile receiver. On-Off Keying (OOK) modulation scheme is used, proving a good trade-off between system performance and implementation complexity. In the following, the relationship between the transmitted data and the received output levels is decoded. LED bulbs work as transmitters, sending information together with different identifiers, IDs, related to their physical locations. Square and diamond topologies for the unit cell are analyzed, and a 2D localization design, demonstrated by a prototype implementation, is presented. Fine-grained indoor localization is tested. The received signal is used in coded multiplexing techniques for supporting communications and navigation concomitantly on the same channel. The location and motion information is found by mapping the position and estimating the location areas.
Local Positioning System Using Flickering Infrared LEDs
Raharijaona, Thibaut; Mawonou, Rodolphe; Nguyen, Thanh Vu; Colonnier, Fabien; Boyron, Marc; Diperi, Julien; Viollet, Stéphane
2017-01-01
A minimalistic optical sensing device for the indoor localization is proposed to estimate the relative position between the sensor and active markers using amplitude modulated infrared light. The innovative insect-based sensor can measure azimuth and elevation angles with respect to two small and cheap active infrared light emitting diodes (LEDs) flickering at two different frequencies. In comparison to a previous lensless visual sensor that we proposed for proximal localization (less than 30 cm), we implemented: (i) a minimalistic sensor in terms of small size (10 cm3), light weight (6 g) and low power consumption (0.4 W); (ii) an Arduino-compatible demodulator for fast analog signal processing requiring low computational resources; and (iii) an indoor positioning system for a mobile robotic application. Our results confirmed that the proposed sensor was able to estimate the position at a distance of 2 m with an accuracy as small as 2-cm at a sampling frequency of 100 Hz. Our sensor can be also suitable to be implemented in a position feedback loop for indoor robotic applications in GPS-denied environment. PMID:29099743
NASA Astrophysics Data System (ADS)
Jia, Jing; Xu, Gongming; Pei, Xi; Cao, Ruifen; Hu, Liqin; Wu, Yican
2015-03-01
An infrared based positioning and tracking (IPT) system was introduced and its accuracy and efficiency for patient setup and monitoring were tested for daily radiotherapy treatment. The IPT system consists of a pair of floor mounted infrared stereoscopic cameras, passive infrared markers and tools used for acquiring localization information as well as a custom controlled software which can perform the positioning and tracking functions. The evaluation of IPT system characteristics was conducted based on the AAPM 147 task report. Experiments on spatial drift and reproducibility as well as static and dynamic localization accuracy were carried out to test the efficiency of the IPT system. Measurements of known translational (up to 55.0 mm) set-up errors in three dimensions have been performed on a calibration phantom. The accuracy of positioning was evaluated on an anthropomorphic phantom with five markers attached to the surface; the precision of the tracking ability was investigated through a sinusoidal motion platform. For the monitoring of the respiration, three volunteers contributed to the breathing testing in real time. The spatial drift of the IPT system was 0.65 mm within 60 min to be stable. The reproducibility of position variations were between 0.01 and 0.04 mm. The standard deviation of static marker localization was 0.26 mm. The repositioning accuracy was 0.19 mm, 0.29 mm, and 0.53 mm in the left/right (L/R), superior/inferior (S/I) and anterior/posterior (A/P) directions, respectively. The measured dynamic accuracy was 0.57 mm and discrepancies measured for the respiratory motion tracking was better than 1 mm. The overall positioning accuracy of the IPT system was within 2 mm. In conclusion, the IPT system is an accurate and effective tool for assisting patient positioning in the treatment room. The characteristics of the IPT system can successfully meet the needs for real time external marker tracking and patient positioning as well as respiration monitoring during image guided radiotherapy treatments.
Ley-Bosch, Carlos; Quintana-Suárez, Miguel A.
2018-01-01
Indoor localization estimation has become an attractive research topic due to growing interest in location-aware services. Many research works have proposed solving this problem by using wireless communication systems based on radiofrequency. Nevertheless, those approaches usually deliver an accuracy of up to two metres, since they are hindered by multipath propagation. On the other hand, in the last few years, the increasing use of light-emitting diodes in illumination systems has provided the emergence of Visible Light Communication technologies, in which data communication is performed by transmitting through the visible band of the electromagnetic spectrum. This brings a brand new approach to high accuracy indoor positioning because this kind of network is not affected by electromagnetic interferences and the received optical power is more stable than radio signals. Our research focus on to propose a fingerprinting indoor positioning estimation system based on neural networks to predict the device position in a 3D environment. Neural networks are an effective classification and predictive method. The localization system is built using a dataset of received signal strength coming from a grid of different points. From the these values, the position in Cartesian coordinates (x,y,z) is estimated. The use of three neural networks is proposed in this work, where each network is responsible for estimating the position by each axis. Experimental results indicate that the proposed system leads to substantial improvements to accuracy over the widely-used traditional fingerprinting methods, yielding an accuracy above 99% and an average error distance of 0.4 mm. PMID:29601525
NASA Astrophysics Data System (ADS)
Mitilineos, Stelios A.; Argyreas, Nick D.; Thomopoulos, Stelios C. A.
2009-05-01
A fusion-based localization technique for location-based services in indoor environments is introduced herein, based on ultrasound time-of-arrival measurements from multiple off-the-shelf range estimating sensors which are used in a market-available localization system. In-situ field measurements results indicated that the respective off-the-shelf system was unable to estimate position in most of the cases, while the underlying sensors are of low-quality and yield highly inaccurate range and position estimates. An extensive analysis is performed and a model of the sensor-performance characteristics is established. A low-complexity but accurate sensor fusion and localization technique is then developed, which consists inof evaluating multiple sensor measurements and selecting the one that is considered most-accurate based on the underlying sensor model. Optimality, in the sense of a genie selecting the optimum sensor, is subsequently evaluated and compared to the proposed technique. The experimental results indicate that the proposed fusion method exhibits near-optimal performance and, albeit being theoretically suboptimal, it largely overcomes most flaws of the underlying single-sensor system resulting in a localization system of increased accuracy, robustness and availability.
Localization and Mapping Using a Non-Central Catadioptric Camera System
NASA Astrophysics Data System (ADS)
Khurana, M.; Armenakis, C.
2018-05-01
This work details the development of an indoor navigation and mapping system using a non-central catadioptric omnidirectional camera and its implementation for mobile applications. Omnidirectional catadioptric cameras find their use in navigation and mapping of robotic platforms, owing to their wide field of view. Having a wider field of view, or rather a potential 360° field of view, allows the system to "see and move" more freely in the navigation space. A catadioptric camera system is a low cost system which consists of a mirror and a camera. Any perspective camera can be used. A platform was constructed in order to combine the mirror and a camera to build a catadioptric system. A calibration method was developed in order to obtain the relative position and orientation between the two components so that they can be considered as one monolithic system. The mathematical model for localizing the system was determined using conditions based on the reflective properties of the mirror. The obtained platform positions were then used to map the environment using epipolar geometry. Experiments were performed to test the mathematical models and the achieved location and mapping accuracies of the system. An iterative process of positioning and mapping was applied to determine object coordinates of an indoor environment while navigating the mobile platform. Camera localization and 3D coordinates of object points obtained decimetre level accuracies.
Error Estimation for the Linearized Auto-Localization Algorithm
Guevara, Jorge; Jiménez, Antonio R.; Prieto, Jose Carlos; Seco, Fernando
2012-01-01
The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965
Adaptive AOA-aided TOA self-positioning for mobile wireless sensor networks.
Wen, Chih-Yu; Chan, Fu-Kai
2010-01-01
Location-awareness is crucial and becoming increasingly important to many applications in wireless sensor networks. This paper presents a network-based positioning system and outlines recent work in which we have developed an efficient principled approach to localize a mobile sensor using time of arrival (TOA) and angle of arrival (AOA) information employing multiple seeds in the line-of-sight scenario. By receiving the periodic broadcasts from the seeds, the mobile target sensors can obtain adequate observations and localize themselves automatically. The proposed positioning scheme performs location estimation in three phases: (I) AOA-aided TOA measurement, (II) Geometrical positioning with particle filter, and (III) Adaptive fuzzy control. Based on the distance measurements and the initial position estimate, adaptive fuzzy control scheme is applied to solve the localization adjustment problem. The simulations show that the proposed approach provides adaptive flexibility and robust improvement in position estimation.
Zhao, Lin; Guan, Dongxue; Landry, René Jr.; Cheng, Jianhua; Sydorenko, Kostyantyn
2015-01-01
Target positioning systems based on MEMS gyros and laser rangefinders (LRs) have extensive prospects due to their advantages of low cost, small size and easy realization. The target positioning accuracy is mainly determined by the LR’s attitude derived by the gyros. However, the attitude error is large due to the inherent noises from isolated MEMS gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the measurements from the two aiding systems. The KFs can estimate the attitude simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the redundant attitude estimates to yield globally optimal estimates. Simulation and experimental results demonstrate that the FKF-based system can improve the target positioning accuracy effectively and allow for good fault-tolerant capability. PMID:26512672
Zhong, Yan; Xu, Xiao-Quan; Pan, Xiang-Long; Zhang, Wei; Xu, Hai; Yuan, Mei; Kong, Ling-Yan; Pu, Xue-Hui; Chen, Liang; Yu, Tong-Fu
2017-09-01
To evaluate the safety and efficacy of the hook wire system in the simultaneous localizations for multiple pulmonary nodules (PNs) before video-assisted thoracoscopic surgery (VATS), and to clarify the risk factors for pneumothorax associated with the localization procedure. Between January 2010 and February 2016, 67 patients (147 nodules, Group A) underwent simultaneous localizations for multiple PNs using a hook wire system. The demographic, localization procedure-related information and the occurrence rate of pneumothorax were assessed and compared with a control group (349 patients, 349 nodules, Group B). Multivariate logistic regression analyses were used to determine the risk factors for pneumothorax during the localization procedure. All the 147 nodules were successfully localized. Four (2.7%) hook wires dislodged before VATS procedure, but all these four lesions were successfully resected according to the insertion route of hook wire. Pathological diagnoses were acquired for all 147 nodules. Compared with Group B, Group A demonstrated significantly longer procedure time (p < 0.001) and higher occurrence rate of pneumothorax (p = 0.019). Multivariate logistic regression analysis indicated that position change during localization procedure (OR 2.675, p = 0.021) and the nodules located in the ipsilateral lung (OR 9.404, p < 0.001) were independent risk factors for pneumothorax. Simultaneous localizations for multiple PNs using a hook wire system before VATS procedure were safe and effective. Compared with localization for single PN, simultaneous localizations for multiple PNs were prone to the occurrence of pneumothorax. Position change during localization procedure and the nodules located in the ipsilateral lung were independent risk factors for pneumothorax.
Real-time localization of mobile device by filtering method for sensor fusion
NASA Astrophysics Data System (ADS)
Fuse, Takashi; Nagara, Keita
2017-06-01
Most of the applications with mobile devices require self-localization of the devices. GPS cannot be used in indoor environment, the positions of mobile devices are estimated autonomously by using IMU. Since the self-localization is based on IMU of low accuracy, and then the self-localization in indoor environment is still challenging. The selflocalization method using images have been developed, and the accuracy of the method is increasing. This paper develops the self-localization method without GPS in indoor environment by integrating sensors, such as IMU and cameras, on mobile devices simultaneously. The proposed method consists of observations, forecasting and filtering. The position and velocity of the mobile device are defined as a state vector. In the self-localization, observations correspond to observation data from IMU and camera (observation vector), forecasting to mobile device moving model (system model) and filtering to tracking method by inertial surveying and coplanarity condition and inverse depth model (observation model). Positions of a mobile device being tracked are estimated by system model (forecasting step), which are assumed as linearly moving model. Then estimated positions are optimized referring to the new observation data based on likelihood (filtering step). The optimization at filtering step corresponds to estimation of the maximum a posterior probability. Particle filter are utilized for the calculation through forecasting and filtering steps. The proposed method is applied to data acquired by mobile devices in indoor environment. Through the experiments, the high performance of the method is confirmed.
NASA Astrophysics Data System (ADS)
Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu
2018-03-01
We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.
Position-dependent hearing in three species of bushcrickets (Tettigoniidae, Orthoptera)
Lakes-Harlan, Reinhard; Scherberich, Jan
2015-01-01
A primary task of auditory systems is the localization of sound sources in space. Sound source localization in azimuth is usually based on temporal or intensity differences of sounds between the bilaterally arranged ears. In mammals, localization in elevation is possible by transfer functions at the ear, especially the pinnae. Although insects are able to locate sound sources, little attention is given to the mechanisms of acoustic orientation to elevated positions. Here we comparatively analyse the peripheral hearing thresholds of three species of bushcrickets in respect to sound source positions in space. The hearing thresholds across frequencies depend on the location of a sound source in the three-dimensional hearing space in front of the animal. Thresholds differ for different azimuthal positions and for different positions in elevation. This position-dependent frequency tuning is species specific. Largest differences in thresholds between positions are found in Ancylecha fenestrata. Correspondingly, A. fenestrata has a rather complex ear morphology including cuticular folds covering the anterior tympanal membrane. The position-dependent tuning might contribute to sound source localization in the habitats. Acoustic orientation might be a selective factor for the evolution of morphological structures at the bushcricket ear and, speculatively, even for frequency fractioning in the ear. PMID:26543574
Position-dependent hearing in three species of bushcrickets (Tettigoniidae, Orthoptera).
Lakes-Harlan, Reinhard; Scherberich, Jan
2015-06-01
A primary task of auditory systems is the localization of sound sources in space. Sound source localization in azimuth is usually based on temporal or intensity differences of sounds between the bilaterally arranged ears. In mammals, localization in elevation is possible by transfer functions at the ear, especially the pinnae. Although insects are able to locate sound sources, little attention is given to the mechanisms of acoustic orientation to elevated positions. Here we comparatively analyse the peripheral hearing thresholds of three species of bushcrickets in respect to sound source positions in space. The hearing thresholds across frequencies depend on the location of a sound source in the three-dimensional hearing space in front of the animal. Thresholds differ for different azimuthal positions and for different positions in elevation. This position-dependent frequency tuning is species specific. Largest differences in thresholds between positions are found in Ancylecha fenestrata. Correspondingly, A. fenestrata has a rather complex ear morphology including cuticular folds covering the anterior tympanal membrane. The position-dependent tuning might contribute to sound source localization in the habitats. Acoustic orientation might be a selective factor for the evolution of morphological structures at the bushcricket ear and, speculatively, even for frequency fractioning in the ear.
Platform Architecture for Decentralized Positioning Systems.
Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg
2017-04-26
A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies) and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system.
Platform Architecture for Decentralized Positioning Systems
Kasmi, Zakaria; Norrdine, Abdelmoumen; Blankenbach, Jörg
2017-01-01
A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies) and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system. PMID:28445414
Local electric dipole moments for periodic systems via density functional theory embedding.
Luber, Sandra
2014-12-21
We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.
A new fault diagnosis algorithm for AUV cooperative localization system
NASA Astrophysics Data System (ADS)
Shi, Hongyang; Miao, Zhiyong; Zhang, Yi
2017-10-01
Multiple AUVs cooperative localization as a new kind of underwater positioning technology, not only can improve the positioning accuracy, but also has many advantages the single AUV does not have. It is necessary to detect and isolate the fault to increase the reliability and availability of the AUVs cooperative localization system. In this paper, the Extended Multiple Model Adaptive Cubature Kalmam Filter (EMMACKF) method is presented to detect the fault. The sensor failures are simulated based on the off-line experimental data. Experimental results have shown that the faulty apparatus can be diagnosed effectively using the proposed method. Compared with Multiple Model Adaptive Extended Kalman Filter and Multi-Model Adaptive Unscented Kalman Filter, both accuracy and timelines have been improved to some extent.
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; ...
2016-04-01
Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.
Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don, S; Cormack, R; Viswanathan, A
Purpose: To present a programmable robotic system for the accurate and fast deployment of an electromagnetic (EM) sensor for brachytherapy catheter localization. Methods: A robotic system for deployment of an EM sensor was designed and built. The system was programmed to increment the sensor position at specified time and space intervals. Sensor delivery accuracy was measured in a phantom using the localization of the EM sensor and tested in different environmental conditions. Accuracy was tested by measuring the distance between the physical locations reached by the sensor (measured by the EM tracker) and the intended programmed locations. Results: The systemmore » consisted of a stepper motor connected to drive wheels (that grip the cable to move the sensor) and a series of guides to connect to a brachytherapy transfer tube, all controlled by a programmable Arduino microprocessor. The total cost for parts was <$300. The positional accuracy of the sensor location was within 1 mm of the expected position provided by the motorized guide system. Acquisition speed to localize a brachytherapy catheter with 20 cm of active length was 10 seconds. The current design showed some cable slip and warping depending on environment temperature. Conclusion: The use of EM tracking for the localization of brachytherapy catheters has been previously demonstrated. Efficient data acquisition and artifact reduction requires fast and accurate deployment of an EM sensor in consistent, repeatable patterns, which cannot practically be achieved manually. The design of an inexpensive, programmable robot allowing for the precise deployment of stepping patterns was presented, and a prototype was built. Further engineering is necessary to ensure that the device provides efficient independent localization of brachytherapy catheters. This research was funded by the Kaye Family Award.« less
NASA Astrophysics Data System (ADS)
Mousa, Farag I. K.; Almaadeed, Noor; Busawon, Krishna; Bouridane, Ahmed; Binns, Richard; Elliot, Ian
2018-01-01
Visible light communication (VLC) based on light-emitting diodes (LEDs) technology not only provides higher data rate for indoor wireless communications and offering room illumination but also has the potential for indoor localization. VLC-based indoor positioning using the received optical power levels from emitting LEDs is investigated. We consider both scenarios of line-of-sight (LOS) and LOS with non-LOS (LOSNLOS) positioning. The performance of the proposed system is evaluated under both noisy and noiseless channel as is the impact of different location codes on positioning error. The analytical model of the system with noise and the corresponding numerical evaluation for a range of signal-to-noise ratio (SNR) are presented. The results show that an accuracy of <10 cm on average is achievable at an SNR>12 dB.
Burns, Joseph E.; Yao, Jianhua; Muñoz, Hector
2016-01-01
Purpose To design and validate a fully automated computer system for the detection and anatomic localization of traumatic thoracic and lumbar vertebral body fractures at computed tomography (CT). Materials and Methods This retrospective study was HIPAA compliant. Institutional review board approval was obtained, and informed consent was waived. CT examinations in 104 patients (mean age, 34.4 years; range, 14–88 years; 32 women, 72 men), consisting of 94 examinations with positive findings for fractures (59 with vertebral body fractures) and 10 control examinations (without vertebral fractures), were performed. There were 141 thoracic and lumbar vertebral body fractures in the case set. The locations of fractures were marked and classified by a radiologist according to Denis column involvement. The CT data set was divided into training and testing subsets (37 and 67 subsets, respectively) for analysis by means of prototype software for fully automated spinal segmentation and fracture detection. Free-response receiver operating characteristic analysis was performed. Results Training set sensitivity for detection and localization of fractures within each vertebra was 0.82 (28 of 34 findings; 95% confidence interval [CI]: 0.68, 0.90), with a false-positive rate of 2.5 findings per patient. The sensitivity for fracture localization to the correct vertebra was 0.88 (23 of 26 findings; 95% CI: 0.72, 0.96), with a false-positive rate of 1.3. Testing set sensitivity for the detection and localization of fractures within each vertebra was 0.81 (87 of 107 findings; 95% CI: 0.75, 0.87), with a false-positive rate of 2.7. The sensitivity for fracture localization to the correct vertebra was 0.92 (55 of 60 findings; 95% CI: 0.79, 0.94), with a false-positive rate of 1.6. The most common cause of false-positive findings was nutrient foramina (106 of 272 findings [39%]). Conclusion The fully automated computer system detects and anatomically localizes vertebral body fractures in the thoracic and lumbar spine on CT images with a high sensitivity and a low false-positive rate. © RSNA, 2015 Online supplemental material is available for this article. PMID:26172532
Local position control: A new concept for control of manipulators
NASA Technical Reports Server (NTRS)
Kelly, Frederick A.
1988-01-01
Resolved motion rate control is currently one of the most frequently used methods of manipulator control. It is currently used in the Space Shuttle remote manipulator system (RMS) and in prosthetic devices. Position control is predominately used in locating the end-effector of an industrial manipulator along a path with prescribed timing. In industrial applications, resolved motion rate control is inappropriate since position error accumulates. This is due to velocity being the control variable. In some applications this property is an advantage rather than a disadvantage. It may be more important for motion to end as soon as the input command is removed rather than reduce the position error to zero. Local position control is a new concept for manipulator control which retains the important properties of resolved motion rate control, but reduces the drift. Local position control can be considered to be a generalization of resolved position and resolved rate control. It places both control schemes on a common mathematical basis.
Yoon, Paul K; Zihajehzadeh, Shaghayegh; Bong-Soo Kang; Park, Edward J
2015-08-01
This paper proposes a novel indoor localization method using the Bluetooth Low Energy (BLE) and an inertial measurement unit (IMU). The multipath and non-line-of-sight errors from low-power wireless localization systems commonly result in outliers, affecting the positioning accuracy. We address this problem by adaptively weighting the estimates from the IMU and BLE in our proposed cascaded Kalman filter (KF). The positioning accuracy is further improved with the Rauch-Tung-Striebel smoother. The performance of the proposed algorithm is compared against that of the standard KF experimentally. The results show that the proposed algorithm can maintain high accuracy for position tracking the sensor in the presence of the outliers.
Detection of buried magnetic objects by a SQUID gradiometer system
NASA Astrophysics Data System (ADS)
Meyer, Hans-Georg; Hartung, Konrad; Linzen, Sven; Schneider, Michael; Stolz, Ronny; Fried, Wolfgang; Hauspurg, Sebastian
2009-05-01
We present a magnetic detection system based on superconducting gradiometric sensors (SQUID gradiometers). The system provides a unique fast mapping of large areas with a high resolution of the magnetic field gradient as well as the local position. A main part of this work is the localization and classification of magnetic objects in the ground by automatic interpretation of geomagnetic field gradients, measured by the SQUID system. In accordance with specific features the field is decomposed into segments, which allow inferences to possible objects in the ground. The global consideration of object describing properties and their optimization using error minimization methods allows the reconstruction of superimposed features and detection of buried objects. The analysis system of measured geomagnetic fields works fully automatically. By a given surface of area-measured gradients the algorithm determines within numerical limits the absolute position of objects including depth with sub-pixel accuracy and allows an arbitrary position and attitude of sources. Several SQUID gradiometer data sets were used to show the applicability of the analysis algorithm.
Wireless technology applied to GIS
NASA Astrophysics Data System (ADS)
Casademont, Jordi; Lopez-Aguilera, Elena; Paradells, Josep; Rojas, Alfonso; Calveras, Anna; Barceló, Francisco; Cotrina, Josep
2004-07-01
At present, there is a growing interest in wireless applications, due to the fact that the technology begins to support them at reasonable costs. In this paper, we present the technology currently available for use in wireless environments, focusing on Geographic Information Systems. As an example, we present a newly developed platform for the commercialization of advanced geographical information services for use in portable devices. This platform uses available mobile telephone networks and wireless local area networks, but it is completely scalable to new technologies such as third generation mobile networks. Users access the service using a vector map player that runs on a Personal Digital Assistant with wireless access facilities and a Global Positioning System receiver. Before accessing the information, the player will request authorization from the server and download the requested map from it, if necessary. The platform also includes a system for improving Global Positioning System localization with the Real Time Differential Global Positioning System, which uses short GSM messages as the transmission medium.
A versatile localization system for microscopic multiparametric analysis of cells.
Thaw, H H; Rundquist, I; Johansson, U; Svensson, I; Collins, V P
1983-03-01
A new, simple and relatively inexpensive electronic digital position readout (DPRO) system which can be applied to the rapid localization and recovery of microscopic material is described. It is based upon a commercially available digital position readout system which is routinely utilized by industry for small machine tools and measuring equipment. This has been mounted onto the stage of various microscopic instrumentation to provide X and Y coordinates relative to an arbitrary reference point. The integration of small computers interfaced to scanning interferometric, microdensitometric and fluorescence microscopes were used to demonstrate the reliability, versatility and ease of application of this system to problems of multiparametric measurements and analysis of cultured cells. The system may be expanded and applied to clinical material to obtain automatized, multiparametric measurements of cells in haematology and clinical cytology.
Yang, Dan; Xu, Bin; Rao, Kaiyou; Sheng, Weihua
2018-01-24
Indoor occupants' positions are significant for smart home service systems, which usually consist of robot service(s), appliance control and other intelligent applications. In this paper, an innovative localization method is proposed for tracking humans' position in indoor environments based on passive infrared (PIR) sensors using an accessibility map and an A-star algorithm, aiming at providing intelligent services. First the accessibility map reflecting the visiting habits of the occupants is established through the integral training with indoor environments and other prior knowledge. Then the PIR sensors, which placement depends on the training results in the accessibility map, get the rough location information. For more precise positioning, the A-start algorithm is used to refine the localization, fused with the accessibility map and the PIR sensor data. Experiments were conducted in a mock apartment testbed. The ground truth data was obtained from an Opti-track system. The results demonstrate that the proposed method is able to track persons in a smart home environment and provide a solution for home robot localization.
Yang, Dan; Xu, Bin; Rao, Kaiyou; Sheng, Weihua
2018-01-01
Indoor occupants’ positions are significant for smart home service systems, which usually consist of robot service(s), appliance control and other intelligent applications. In this paper, an innovative localization method is proposed for tracking humans’ position in indoor environments based on passive infrared (PIR) sensors using an accessibility map and an A-star algorithm, aiming at providing intelligent services. First the accessibility map reflecting the visiting habits of the occupants is established through the integral training with indoor environments and other prior knowledge. Then the PIR sensors, which placement depends on the training results in the accessibility map, get the rough location information. For more precise positioning, the A-start algorithm is used to refine the localization, fused with the accessibility map and the PIR sensor data. Experiments were conducted in a mock apartment testbed. The ground truth data was obtained from an Opti-track system. The results demonstrate that the proposed method is able to track persons in a smart home environment and provide a solution for home robot localization. PMID:29364188
Information-Driven Active Audio-Visual Source Localization
Schult, Niclas; Reineking, Thomas; Kluss, Thorsten; Zetzsche, Christoph
2015-01-01
We present a system for sensorimotor audio-visual source localization on a mobile robot. We utilize a particle filter for the combination of audio-visual information and for the temporal integration of consecutive measurements. Although the system only measures the current direction of the source, the position of the source can be estimated because the robot is able to move and can therefore obtain measurements from different directions. These actions by the robot successively reduce uncertainty about the source’s position. An information gain mechanism is used for selecting the most informative actions in order to minimize the number of actions required to achieve accurate and precise position estimates in azimuth and distance. We show that this mechanism is an efficient solution to the action selection problem for source localization, and that it is able to produce precise position estimates despite simplified unisensory preprocessing. Because of the robot’s mobility, this approach is suitable for use in complex and cluttered environments. We present qualitative and quantitative results of the system’s performance and discuss possible areas of application. PMID:26327619
1981-08-17
P. 1979b. Inertial Surveying Systems - Experience and Prognosis. Paper, presented at the FIG-Symposium on Modern Technology for Cadastre and Land... Information Systems , Ottawa, Canada, Oct. 2-5, 1979. Schwarz, K. P. 1980. Gravity Field Approximation Using Inertial Survey System . The Canadian...higher performance gyroscope; and accelerometers in the horizontal channels of Litton’s local-level inertial positioning system and the resulting
Versatile, low-cost, computer-controlled, sample positioning system for vacuum applications
NASA Technical Reports Server (NTRS)
Vargas-Aburto, Carlos; Liff, Dale R.
1991-01-01
A versatile, low-cost, easy to implement, microprocessor-based motorized positioning system (MPS) suitable for accurate sample manipulation in a Second Ion Mass Spectrometry (SIMS) system, and for other ultra-high vacuum (UHV) applications was designed and built at NASA LeRC. The system can be operated manually or under computer control. In the latter case, local, as well as remote operation is possible via the IEEE-488 bus. The position of the sample can be controlled in three linear orthogonal and one angular coordinates.
IPS - a vision aided navigation system
NASA Astrophysics Data System (ADS)
Börner, Anko; Baumbach, Dirk; Buder, Maximilian; Choinowski, Andre; Ernst, Ines; Funk, Eugen; Grießbach, Denis; Schischmanow, Adrian; Wohlfeil, Jürgen; Zuev, Sergey
2017-04-01
Ego localization is an important prerequisite for several scientific, commercial, and statutory tasks. Only by knowing one's own position, can guidance be provided, inspections be executed, and autonomous vehicles be operated. Localization becomes challenging if satellite-based navigation systems are not available, or data quality is not sufficient. To overcome this problem, a team of the German Aerospace Center (DLR) developed a multi-sensor system based on the human head and its navigation sensors - the eyes and the vestibular system. This system is called integrated positioning system (IPS) and contains a stereo camera and an inertial measurement unit for determining an ego pose in six degrees of freedom in a local coordinate system. IPS is able to operate in real time and can be applied for indoor and outdoor scenarios without any external reference or prior knowledge. In this paper, the system and its key hardware and software components are introduced. The main issues during the development of such complex multi-sensor measurement systems are identified and discussed, and the performance of this technology is demonstrated. The developer team started from scratch and transfers this technology into a commercial product right now. The paper finishes with an outlook.
Ostyn, Mark; Kim, Siyong; Yeo, Woon-Hong
2016-04-13
One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation.
NASA directory of observation station locations, volume 2
NASA Technical Reports Server (NTRS)
1971-01-01
The directory documents geodetic information for NASA tracking stations and observation stations in the NASA Geodetic Satellites Program, including stations participating in the National Geodetic Satellite Program. Station positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968. A geodetic data sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums, and on selected world geodetic systems when available information permits.
Integration of Directional Antennas in an RSS Fingerprinting-Based Indoor Localization System
Guzmán-Quirós, Raúl; Martínez-Sala, Alejandro; Gómez-Tornero, José Luis; García-Haro, Joan
2015-01-01
In this paper, the integration of directional antennas in a room-level received signal strength (RSS) fingerprinting-based indoor localization system (ILS) is studied. The sensor reader (SR), which is in charge of capturing the RSS to infer the tag position, can be attached to an omnidirectional or directional antenna. Unlike commonly-employed omnidirectional antennas, directional antennas can receive a stronger signal from the direction in which they are pointed, resulting in a different RSS distributions in space and, hence, more distinguishable fingerprints. A simulation tool and a system management software have been also developed to control the system and assist the initial antenna deployment, reducing time-consuming costs. A prototype was mounted in a real scenario, with a number of SRs with omnidirectional and directional antennas properly positioned. Different antenna configurations have been studied, evidencing a promising capability of directional antennas to enhance the performance of RSS fingerprinting-based ILS, reducing the number of required SRs and also increasing the localization success. PMID:26703620
Multidimensional Optimization of Signal Space Distance Parameters in WLAN Positioning
Brković, Milenko; Simić, Mirjana
2014-01-01
Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware. PMID:24757443
An Indoor Location-Based Control System Using Bluetooth Beacons for IoT Systems.
Huh, Jun-Ho; Seo, Kyungryong
2017-12-19
The indoor location-based control system estimates the indoor position of a user to provide the service he/she requires. The major elements involved in the system are the localization server, service-provision client, user application positioning technology. The localization server controls access of terminal devices (e.g., Smart Phones and other wireless devices) to determine their locations within a specified space first and then the service-provision client initiates required services such as indoor navigation and monitoring/surveillance. The user application provides necessary data to let the server to localize the devices or allow the user to receive various services from the client. The major technological elements involved in this system are indoor space partition method, Bluetooth 4.0, RSSI (Received Signal Strength Indication) and trilateration. The system also employs the BLE communication technology when determining the position of the user in an indoor space. The position information obtained is then used to control a specific device(s). These technologies are fundamental in achieving a "Smart Living". An indoor location-based control system that provides services by estimating user's indoor locations has been implemented in this study (First scenario). The algorithm introduced in this study (Second scenario) is effective in extracting valid samples from the RSSI dataset but has it has some drawbacks as well. Although we used a range-average algorithm that measures the shortest distance, there are some limitations because the measurement results depend on the sample size and the sample efficiency depends on sampling speeds and environmental changes. However, the Bluetooth system can be implemented at a relatively low cost so that once the problem of precision is solved, it can be applied to various fields.
An Indoor Location-Based Control System Using Bluetooth Beacons for IoT Systems
Huh, Jun-Ho; Seo, Kyungryong
2017-01-01
The indoor location-based control system estimates the indoor position of a user to provide the service he/she requires. The major elements involved in the system are the localization server, service-provision client, user application positioning technology. The localization server controls access of terminal devices (e.g., Smart Phones and other wireless devices) to determine their locations within a specified space first and then the service-provision client initiates required services such as indoor navigation and monitoring/surveillance. The user application provides necessary data to let the server to localize the devices or allow the user to receive various services from the client. The major technological elements involved in this system are indoor space partition method, Bluetooth 4.0, RSSI (Received Signal Strength Indication) and trilateration. The system also employs the BLE communication technology when determining the position of the user in an indoor space. The position information obtained is then used to control a specific device(s). These technologies are fundamental in achieving a “Smart Living”. An indoor location-based control system that provides services by estimating user’s indoor locations has been implemented in this study (First scenario). The algorithm introduced in this study (Second scenario) is effective in extracting valid samples from the RSSI dataset but has it has some drawbacks as well. Although we used a range-average algorithm that measures the shortest distance, there are some limitations because the measurement results depend on the sample size and the sample efficiency depends on sampling speeds and environmental changes. However, the Bluetooth system can be implemented at a relatively low cost so that once the problem of precision is solved, it can be applied to various fields. PMID:29257044
NASA Astrophysics Data System (ADS)
Sanghavi, Foram; Agaian, Sos
2017-05-01
The goal of this paper is to (a) test the nuclei based Computer Aided Cancer Detection system using Human Visual based system on the histopathology images and (b) Compare the results of the proposed system with the Local Binary Pattern and modified Fibonacci -p pattern systems. The system performance is evaluated using different parameters such as accuracy, specificity, sensitivity, positive predictive value, and negative predictive value on 251 prostate histopathology images. The accuracy of 96.69% was observed for cancer detection using the proposed human visual based system compared to 87.42% and 94.70% observed for Local Binary patterns and the modified Fibonacci p patterns.
Breaking the acoustic diffraction barrier with localization optoacoustic tomography
NASA Astrophysics Data System (ADS)
Deán-Ben, X. Luís.; Razansky, Daniel
2018-02-01
Diffraction causes blurring of high-resolution features in images and has been traditionally associated to the resolution limit in light microscopy and other imaging modalities. The resolution of an imaging system can be generally assessed via its point spread function, corresponding to the image acquired from a point source. However, the precision in determining the position of an isolated source can greatly exceed the diffraction limit. By combining the estimated positions of multiple sources, localization-based imaging has resulted in groundbreaking methods such as super-resolution fluorescence optical microscopy and has also enabled ultrasound imaging of microvascular structures with unprecedented spatial resolution in deep tissues. Herein, we introduce localization optoacoustic tomography (LOT) and discuss on the prospects of using localization imaging principles in optoacoustic imaging. LOT was experimentally implemented by real-time imaging of flowing particles in 3D with a recently-developed volumetric optoacoustic tomography system. Provided the particles were separated by a distance larger than the diffraction-limited resolution, their individual locations could be accurately determined in each frame of the acquired image sequence and the localization image was formed by superimposing a set of points corresponding to the localized positions of the absorbers. The presented results demonstrate that LOT can significantly enhance the well-established advantages of optoacoustic imaging by breaking the acoustic diffraction barrier in deep tissues and mitigating artifacts due to limited-view tomographic acquisitions.
A low cost indoor localization system for mobile robot experimental setup
NASA Astrophysics Data System (ADS)
Adinandra, S.; Syarif, A.
2018-04-01
Indoor localization becomes one of the most important part in mobile robot system One fundamental requirement is to provide an easy-to-use and practical localization system for real-time experiments. In this paper we propose a combination of a recent open source virtual reality (VR) tools, a simple MATLAB code and a low cost USB webcam as an indoor mobile robot localization system Using the VR tools as a server and MATLAB as a client, the proposed solution can cover up to 1.6 [m] × 3.2 [m] with the measurement position accuracy up to 1.2 [cm]. The system is insensitive to light, easy to move and can be quickly set up. A series of successful real-time experiments with three different mobile robot types has been conducted.
NASA Technical Reports Server (NTRS)
Finley, Tom D. (Inventor); Parker, Peter A. (Inventor)
2008-01-01
A positioning and calibration system are provided for use in calibrating a single or multi axis sensitive instrument, such as an inclinometer. The positioning system includes a positioner that defines six planes of tangential contact. A mounting region within the six planes is adapted to have an inclinometer coupled thereto. The positioning system also includes means for defining first and second flat surfaces that are approximately perpendicular to one another with the first surface adapted to be oriented relative to a local or induced reference field of interest to the instrument being calibrated, such as a gravitational vector. The positioner is positioned such that one of its six planes tangentially rests on the first flat surface and another of its six planes tangentially contacts the second flat surface. A calibration system is formed when the positioning system is used with a data collector and processor.
Foong, Shaohui; Sun, Zhenglong
2016-08-12
In this paper, a novel magnetic field-based sensing system employing statistically optimized concurrent multiple sensor outputs for precise field-position association and localization is presented. This method capitalizes on the independence between simultaneous spatial field measurements at multiple locations to induce unique correspondences between field and position. This single-source-multi-sensor configuration is able to achieve accurate and precise localization and tracking of translational motion without contact over large travel distances for feedback control. Principal component analysis (PCA) is used as a pseudo-linear filter to optimally reduce the dimensions of the multi-sensor output space for computationally efficient field-position mapping with artificial neural networks (ANNs). Numerical simulations are employed to investigate the effects of geometric parameters and Gaussian noise corruption on PCA assisted ANN mapping performance. Using a 9-sensor network, the sensing accuracy and closed-loop tracking performance of the proposed optimal field-based sensing system is experimentally evaluated on a linear actuator with a significantly more expensive optical encoder as a comparison.
NASA Astrophysics Data System (ADS)
Nagy, Julia; Eilert, Tobias; Michaelis, Jens
2018-03-01
Modern hybrid structural analysis methods have opened new possibilities to analyze and resolve flexible protein complexes where conventional crystallographic methods have reached their limits. Here, the Fast-Nano-Positioning System (Fast-NPS), a Bayesian parameter estimation-based analysis method and software, is an interesting method since it allows for the localization of unknown fluorescent dye molecules attached to macromolecular complexes based on single-molecule Förster resonance energy transfer (smFRET) measurements. However, the precision, accuracy, and reliability of structural models derived from results based on such complex calculation schemes are oftentimes difficult to evaluate. Therefore, we present two proof-of-principle benchmark studies where we use smFRET data to localize supposedly unknown positions on a DNA as well as on a protein-nucleic acid complex. Since we use complexes where structural information is available, we can compare Fast-NPS localization to the existing structural data. In particular, we compare different dye models and discuss how both accuracy and precision can be optimized.
Laser projection positioning of spatial contour curves via a galvanometric scanner
NASA Astrophysics Data System (ADS)
Tu, Junchao; Zhang, Liyan
2018-04-01
The technology of laser projection positioning is widely applied in advanced manufacturing fields (e.g. composite plying, parts location and installation). In order to use it better, a laser projection positioning (LPP) system is designed and implemented. Firstly, the LPP system is built by a laser galvanometric scanning (LGS) system and a binocular vision system. Applying Single-hidden Layer Feed-forward Neural Network (SLFN), the system model is constructed next. Secondly, the LGS system and the binocular system, which are respectively independent, are integrated through a datadriven calibration method based on extreme learning machine (ELM) algorithm. Finally, a projection positioning method is proposed within the framework of the calibrated SLFN system model. A well-designed experiment is conducted to verify the viability and effectiveness of the proposed system. In addition, the accuracy of projection positioning are evaluated to show that the LPP system can achieves the good localization effect.
Kitson, Alison; Silverston, Heidi; Wiechula, Rick; Zeitz, Kathryn; Marcoionni, Danni; Page, Tammy
2011-05-01
To describe the experiences of 14 clinical nursing leaders introducing a knowledge translation (KT) project into one metropolitan acute care hospital in South Australia. The study also explored team members' and service managers' experiences. KT strategies assume that local (nursing) clinical leaders have the capacity and capability to champion innovation combining positional leadership roles (ward leader) with a project lead role. There is limited evidence to support these assumptions. Semi-structured interviews of clinical nursing leaders and managers were undertaken at month 4 and 12 of the project. Data were also collected from the interdisciplinary team members (n = 28). Clinical nursing leaders identified risks and anxieties associated with taking on an additional leadership role, whereas managers acknowledged the multiple pressures on the system and the need for local level innovation. Team members generally reported positive experiences. With support, clinical nursing leaders can effectively embrace KT project leadership roles that complement their positional leadership roles. Clinical nursing leaders' experiences differed from nursing and medical managers' experiences. Managers need to be more attuned to the personal risks local leaders experience, providing support for leaders to experiment and innovate. Managers need to integrate local priorities with broader system wide agendas. © 2011 The Authors. Journal compilation © 2011 Blackwell Publishing Ltd.
Local quantum measurement and no-signaling imply quantum correlations.
Barnum, H; Beigi, S; Boixo, S; Elliott, M B; Wehner, S
2010-04-09
We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.
Drenjanac, Domagoj; Tomic, Slobodanka; Agüera, Juan; Perez-Ruiz, Manuel
2014-10-22
In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems' (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor. From these preliminary results, future work will address the use of autonomous tractor localization in the hybrid localization approach.
Comparing the Performance of Indoor Localization Systems through the EvAAL Framework.
Potortì, Francesco; Park, Sangjoon; Jiménez Ruiz, Antonio Ramón; Barsocchi, Paolo; Girolami, Michele; Crivello, Antonino; Lee, So Yeon; Lim, Jae Hyun; Torres-Sospedra, Joaquín; Seco, Fernando; Montoliu, Raul; Mendoza-Silva, Germán Martin; Pérez Rubio, Maria Del Carmen; Losada-Gutiérrez, Cristina; Espinosa, Felipe; Macias-Guarasa, Javier
2017-10-13
In recent years, indoor localization systems have been the object of significant research activity and of growing interest for their great expected social impact and their impressive business potential. Application areas include tracking and navigation, activity monitoring, personalized advertising, Active and Assisted Living (AAL), traceability, Internet of Things (IoT) networks, and Home-land Security. In spite of the numerous research advances and the great industrial interest, no canned solutions have yet been defined. The diversity and heterogeneity of applications, scenarios, sensor and user requirements, make it difficult to create uniform solutions. From that diverse reality, a main problem is derived that consists in the lack of a consensus both in terms of the metrics and the procedures used to measure the performance of the different indoor localization and navigation proposals. This paper introduces the general lines of the EvAAL benchmarking framework, which is aimed at a fair comparison of indoor positioning systems through a challenging competition under complex, realistic conditions. To evaluate the framework capabilities, we show how it was used in the 2016 Indoor Positioning and Indoor Navigation (IPIN) Competition. The 2016 IPIN competition considered three different scenario dimensions, with a variety of use cases: (1) pedestrian versus robotic navigation, (2) smartphones versus custom hardware usage and (3) real-time positioning versus off-line post-processing. A total of four competition tracks were evaluated under the same EvAAL benchmark framework in order to validate its potential to become a standard for evaluating indoor localization solutions. The experience gained during the competition and feedback from track organizers and competitors showed that the EvAAL framework is flexible enough to successfully fit the very different tracks and appears adequate to compare indoor positioning systems.
Comparing the Performance of Indoor Localization Systems through the EvAAL Framework
2017-01-01
In recent years, indoor localization systems have been the object of significant research activity and of growing interest for their great expected social impact and their impressive business potential. Application areas include tracking and navigation, activity monitoring, personalized advertising, Active and Assisted Living (AAL), traceability, Internet of Things (IoT) networks, and Home-land Security. In spite of the numerous research advances and the great industrial interest, no canned solutions have yet been defined. The diversity and heterogeneity of applications, scenarios, sensor and user requirements, make it difficult to create uniform solutions. From that diverse reality, a main problem is derived that consists in the lack of a consensus both in terms of the metrics and the procedures used to measure the performance of the different indoor localization and navigation proposals. This paper introduces the general lines of the EvAAL benchmarking framework, which is aimed at a fair comparison of indoor positioning systems through a challenging competition under complex, realistic conditions. To evaluate the framework capabilities, we show how it was used in the 2016 Indoor Positioning and Indoor Navigation (IPIN) Competition. The 2016 IPIN competition considered three different scenario dimensions, with a variety of use cases: (1) pedestrian versus robotic navigation, (2) smartphones versus custom hardware usage and (3) real-time positioning versus off-line post-processing. A total of four competition tracks were evaluated under the same EvAAL benchmark framework in order to validate its potential to become a standard for evaluating indoor localization solutions. The experience gained during the competition and feedback from track organizers and competitors showed that the EvAAL framework is flexible enough to successfully fit the very different tracks and appears adequate to compare indoor positioning systems. PMID:29027948
Localizing on-scalp MEG sensors using an array of magnetic dipole coils.
Pfeiffer, Christoph; Andersen, Lau M; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F; Oostenveld, Robert
2018-01-01
Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject's head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject's head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method.
Localizing on-scalp MEG sensors using an array of magnetic dipole coils
Andersen, Lau M.; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F.; Oostenveld, Robert
2018-01-01
Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject’s head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject’s head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method. PMID:29746486
Autonomous navigation system. [gyroscopic pendulum for air navigation
NASA Technical Reports Server (NTRS)
Merhav, S. J. (Inventor)
1981-01-01
An inertial navigation system utilizing a servo-controlled two degree of freedom pendulum to obtain specific force components in the locally level coordinate system is described. The pendulum includes a leveling gyroscope and an azimuth gyroscope supported on a two gimbal system. The specific force components in the locally level coordinate system are converted to components in the geographical coordinate system by means of a single Euler transformation. The standard navigation equations are solved to determine longitudinal and lateral velocities. Finally, vehicle position is determined by a further integration.
Wang, Zhiping; Cao, Dewei; Yu, Benli
2016-05-01
We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.
NASA Astrophysics Data System (ADS)
Siejka, Zbigniew
2014-12-01
The paper presents the method of satellite measurements, which gives users the ability of GNSS continuous precise positioning in real time, even in the case of short interruptions in receiving the correction of the local ground system of measurements support. The proposed method is a combination of two satellite positioning technologies RTN GNSS and RTX Extended. In technology RTX Extended the xFill function was used for precise positioning in real time and in the local reference system. This function provides the ability to perform measurement without the need for constant communication with the ground support satellite system. Test measurements were performed on a test basis located in Krakow, and RTN GNSS positioning was done based on the national network of reference stations of the ASGEUPOS. The solution allows for short (up to 5 minutes) interruptions in radio or internet communication. When the primary stream of RTN correction is not available, then the global corrections Trimble xFill broadcasted by satellite are used. The new technology uses in the real-time data from the global network of tracking stations and contributes significantly to improving the quality and efficiency of surveying works. At present according to the authors, technology Trimble CenterPoint RTX can guarantee repeatability of measurements not worse than 3.8 cm (Trimble Survey Division, 2012). In the paper the comparative analysis of measurement results between the two technologies was performed: RTN carried out in the classic way, which was based on the corrections of the terrestrial local network of the Polish system of active geodetic network (ASG-EUPOS) and RTK xFill technology. The results were related to the data of test network, established as error free. The research gave satisfactory results and confirmed the great potential of the use of the new technology in the geodetic work realization. By combining these two technologies of GNSS surveying the user can greatly improve the overall performance of real-time positioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Via, Riccardo, E-mail: riccardo.via@polimi.it; Fassi, Aurora; Fattori, Giovanni
Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by twomore » calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The device aims at improving state-of-the-art invasive procedures based on surgical implantation of radiopaque clips and repeated acquisition of X-ray images, with expected positive effects on treatment quality and patient outcome.« less
Via, Riccardo; Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Riboldi, Marco; Ciocca, Mario; Orecchia, Roberto; Baroni, Guido
2015-05-01
External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The device aims at improving state-of-the-art invasive procedures based on surgical implantation of radiopaque clips and repeated acquisition of X-ray images, with expected positive effects on treatment quality and patient outcome.
Modeling the long-term evolution of space debris
Nikolaev, Sergei; De Vries, Willem H.; Henderson, John R.; Horsley, Matthew A.; Jiang, Ming; Levatin, Joanne L.; Olivier, Scot S.; Pertica, Alexander J.; Phillion, Donald W.; Springer, Harry K.
2017-03-07
A space object modeling system that models the evolution of space debris is provided. The modeling system simulates interaction of space objects at simulation times throughout a simulation period. The modeling system includes a propagator that calculates the position of each object at each simulation time based on orbital parameters. The modeling system also includes a collision detector that, for each pair of objects at each simulation time, performs a collision analysis. When the distance between objects satisfies a conjunction criterion, the modeling system calculates a local minimum distance between the pair of objects based on a curve fitting to identify a time of closest approach at the simulation times and calculating the position of the objects at the identified time. When the local minimum distance satisfies a collision criterion, the modeling system models the debris created by the collision of the pair of objects.
A novel wireless local positioning system for airport (indoor) security
NASA Astrophysics Data System (ADS)
Zekavat, Seyed A.; Tong, Hui; Tan, Jindong
2004-09-01
A novel wireless local positioning system (WLPS) for airport (or indoor) security is introduced. This system is used by airport (indoor) security guards to locate all of, or a group of airport employees or passengers within the airport area. WLPS consists of two main parts: (1) a base station that is carried by security personnel; hence, introducing dynamic base station (DBS), and (2) a transponder (TRX) that is mounted on all people (including security personnel) present at the airport; thus, introducing them as active targets. In this paper, we (a) draw a futuristic view of the airport security systems, and the flow of information at the airports, (b) investigate the techniques of extending WLPS coverage area beyond the line-of-sight (LoS), and (c) study the performance of this system via standard transceivers, and direct sequence code division multiple access (DS-CDMA) systems with and without antenna arrays and conventional beamforming (BF).
Hellmers, Hendrik; Kasmi, Zakaria; Norrdine, Abdelmoumen; Eichhorn, Andreas
2018-01-04
In recent years, a variety of real-time applications benefit from services provided by localization systems due to the advent of sensing and communication technologies. Since the Global Navigation Satellite System (GNSS) enables localization only outside buildings, applications for indoor positioning and navigation use alternative technologies. Ultra Wide Band Signals (UWB), Wireless Local Area Network (WLAN), ultrasonic or infrared are common examples. However, these technologies suffer from fading and multipath effects caused by objects and materials in the building. In contrast, magnetic fields are able to pass through obstacles without significant propagation errors, i.e. in Non-Line of Sight Scenarios (NLoS). The aim of this work is to propose a novel indoor positioning system based on artificially generated magnetic fields in combination with Inertial Measurement Units (IMUs). In order to reach a better coverage, multiple coils are used as reference points. A basic algorithm for three-dimensional applications is demonstrated as well as evaluated in this article. The established system is then realized by a sensor fusion principle as well as a kinematic motion model on the basis of a Kalman filter. Furthermore, a pressure sensor is used in combination with an adaptive filtering method to reliably estimate the platform's altitude.
NASA Astrophysics Data System (ADS)
Weinkauf, Rainer; Lehrer, Florian
1998-12-01
Molecules consisting of a flexible tail and an aromatic chromophore are used as model systems to understand the situation of a single chromophore in a small peptide. Their S0-S1 resonant multiphoton ionization (REMPI) spectra show, that in neutral molecules the tail-chromophore interaction is weak and electronic excitation is localized at the chromophore. For molecules, where the ionization energy of the tail is considerable higher than that of the chromophore, by high resolution REMPI photoelectron spectroscopy we find the charge to be localized on the aromatic chromophore. This scheme also in suitable peptides allows local ionization at the aromatic chromophore. An estimate for various charge positions in peptide chains, however, shows, that for most of the amino acids electron hole positions in the nitrogen and oxygen "lone pair" orbitals of the peptide bond are nearly degenerate. REMPI photoelectron spectra of phenylethylamine, which as a model system contains such two degenerate charge positions, show small energetic shift of the ionization energy but strong geometry changes upon electron removal. This result is interpreted as direct ionization into a mixed charge delocalized state. Consequences for the charge transfer mechanism in peptides are discussed.
Visible light communication and indoor positioning using a-SiCH device as receiver
NASA Astrophysics Data System (ADS)
Vieira, M. A.; Vieira, M.; Louro, P.; Vieira, P.; Fantoni, A.
2017-08-01
An indoor positioning system were trichromatic white LEDs are used both for illumination proposes and as transmitters and an optical processor, based on a-SiC:H technology, as mobile receiver is presented. OOK modulation scheme is used, and it provides a good trade-off between system performance and implementation complexity. The relationship between the transmitted data and the received digital output levels is decoded. The system topology for positioning is a self-positioning system in which the measuring unit is mobile. This unit receives the signals of several transmitters in known locations, and has the capability to compute its location based on the measured signals. LED bulbs work as transmitters, sending information together with different IDs related to their physical locations. A triangular topology for the unit cell is analysed. A 2D localization design, demonstrated by a prototype implementation is presented. Fine-grained indoor localization is tested. The received signal is used in coded multiplexing techniques for supporting communications and navigation concomitantly on the same channel. The position is estimated through the visible multilateration metodh using several non-collinear transmitters. The location and motion information is found by mapping position and estimates the location areas. Data analysis showed that by using a pinpin double photodiode based on a a-SiC:H heterostucture as receiver, and RBGLEDs as transmitters it is possible not only to determine the mobile target's position but also to infer the motion direction over time, along with the received information in each position.
CRPS: A contingent hypothesis with prostaglandins as crucial conversion factor.
van der Veen, Phe
2015-11-01
CRPS is an acute pain disease expressed as chronic pain with a severe loss of tissue and function. CRPS usually occurs after minor injuries and then progresses in a way that is scarcely controllable, or completely uncontrollable. This article addresses the functional control mechanism of a biological organism, a comparison of techniques, and the way the negative feedback mechanisms fail in regulated feedback systems. The measurement and regulation system is controlled at the local, regional, and central levels in a biological system. Locally generated substances such as prostaglandins and hormones, as well as the central nervous system, play important roles in this process. Prostaglandins fulfil many conversion functions and are involved in vasoactive processes, pain, and inflammation. They play an intermediating role between the activity of the autonomic nervous system and local occurrences. The insufficiently explored conversion function of prostaglandins as a ubiquitously present cofactor may be related to the development of CRPS at sites which have had minor injuries in the past. Chronic Regional Pain Syndrome (CRPS) is a moderately prevalent disease, which occurs more frequently with age. Even though there are diseases known to have a precipitating effect on the aetiology of CRPS, for example Carpal tunnel syndrome, the mechanism of onset is unknown. The disease falls under the category of chronic pain, and seldom has an effective treatment based on scientific research. The economic and psychosocial aspects of the disease are substantial. CRPS is the final position of a positive feedback measurement and control system. Homoeostasis is directed by measurement and control processes. In electronics, a rapid conversion system, which quickly adapts to changing circumstances, superimposed with a delayed conversion system, which ensures a stable basis of homoeostasis. Measured changes are compensatorily controlled. An analogy is expected for a Complex Adaptive System such as a living organism. Hormonal systems are slow systems, suitable for stabilising activity. Neural reflex systems function quickly. Prostaglandins that come from local tissue may be the link between the slow and rapid control. In electronics, negative feedback can convert into a feedback loop which results in the dysregulation, which is what prostaglandins do in biochemistry. A dysregulated feedback control mechanism only has two positions: a zero position and a final position. The process is not easily influenced by other factors. Only phase shifting and signal weakness can affect the feedback process. Theoretically, prostaglandins can also affect this process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yost, William A; Zhong, Xuan; Najam, Anbar
2015-11-01
In four experiments listeners were rotated or were stationary. Sounds came from a stationary loudspeaker or rotated from loudspeaker to loudspeaker around an azimuth array. When either sounds or listeners rotate the auditory cues used for sound source localization change, but in the everyday world listeners perceive sound rotation only when sounds rotate not when listeners rotate. In the everyday world sound source locations are referenced to positions in the environment (a world-centric reference system). The auditory cues for sound source location indicate locations relative to the head (a head-centric reference system), not locations relative to the world. This paper deals with a general hypothesis that the world-centric location of sound sources requires the auditory system to have information about auditory cues used for sound source location and cues about head position. The use of visual and vestibular information in determining rotating head position in sound rotation perception was investigated. The experiments show that sound rotation perception when sources and listeners rotate was based on acoustic, visual, and, perhaps, vestibular information. The findings are consistent with the general hypotheses and suggest that sound source localization is not based just on acoustics. It is a multisystem process.
Kinematic Localization for Global Navigation Satellite Systems: A Kalman Filtering Approach
NASA Astrophysics Data System (ADS)
Tabatabaee, Mohammad Hadi
Use of the Global Positioning System (GNSS) has expanded significantly in the past decade, especially with advances in embedded systems and the emergence of smartphones and the Internet of Things (IoT). The growing demand has stimulated research on development of GNSS techniques and programming tools. The focus of much of the research efforts have been on high-level algorithms and augmentations. This dissertation focuses on the low-level methods at the heart of GNSS systems and proposes a new methods for GNSS positioning problems based on concepts of distance geometry and the use of Kalman filters. The methods presented in this dissertation provide algebraic solutions to problems that have predominantly been solved using iterative methods. The proposed methods are highly efficient, provide accurate estimates, and exhibit a degree of robustness in the presence of unfavorable satellite geometry. The algorithm operates in two stages; an estimation of the receiver clock bias and removal of the bias from the pseudorange observables, followed by the localization of the GNSS receiver. The use of a Kalman filter in between the two stages allows for an improvement of the clock bias estimate with a noticeable impact on the position estimates. The receiver localization step has also been formulated in a linear manner allowing for the direct application of a Kalman filter without any need for linearization. The methodology has also been extended to double differential observables for high accuracy pseudorange and carrier phase position estimates.
López, Elena; García, Sergio; Barea, Rafael; Bergasa, Luis M.; Molinos, Eduardo J.; Arroyo, Roberto; Romera, Eduardo; Pardo, Samuel
2017-01-01
One of the main challenges of aerial robots navigation in indoor or GPS-denied environments is position estimation using only the available onboard sensors. This paper presents a Simultaneous Localization and Mapping (SLAM) system that remotely calculates the pose and environment map of different low-cost commercial aerial platforms, whose onboard computing capacity is usually limited. The proposed system adapts to the sensory configuration of the aerial robot, by integrating different state-of-the art SLAM methods based on vision, laser and/or inertial measurements using an Extended Kalman Filter (EKF). To do this, a minimum onboard sensory configuration is supposed, consisting of a monocular camera, an Inertial Measurement Unit (IMU) and an altimeter. It allows to improve the results of well-known monocular visual SLAM methods (LSD-SLAM and ORB-SLAM are tested and compared in this work) by solving scale ambiguity and providing additional information to the EKF. When payload and computational capabilities permit, a 2D laser sensor can be easily incorporated to the SLAM system, obtaining a local 2.5D map and a footprint estimation of the robot position that improves the 6D pose estimation through the EKF. We present some experimental results with two different commercial platforms, and validate the system by applying it to their position control. PMID:28397758
Array processing for RFID tag localization exploiting multi-frequency signals
NASA Astrophysics Data System (ADS)
Zhang, Yimin; Li, Xin; Amin, Moeness G.
2009-05-01
RFID is an increasingly valuable business and technology tool for electronically identifying, locating, and tracking products, assets, and personnel. As a result, precise positioning and tracking of RFID tags and readers have received considerable attention from both academic and industrial communities. Finding the position of RFID tags is considered an important task in various real-time locating systems (RTLS). As such, numerous RFID localization products have been developed for various applications. The majority of RFID positioning systems is based on the fusion of pieces of relevant information, such as the range and the direction-of-arrival (DOA). For example, trilateration can determine the tag position by using the range information of the tag estimated from three or more spatially separated reader antennas. Triangulation is another method to locate RFID tags that use the direction-of-arrival (DOA) information estimated at multiple spatially separated locations. The RFID tag positions can also be determined through hybrid techniques that combine the range and DOA information. The focus of this paper to study the design and performance of the localization of passive RFID tags using array processing techniques in a multipath environment, and exploiting multi-frequency CW signals. The latter are used to decorrelate the coherent multipath signals for effective DOA estimation and for the purpose of accurate range estimation. Accordingly, the spatial and frequency dimensionalities are fully utilized for robust and accurate positioning of RFID tags.
System and method for object localization
NASA Technical Reports Server (NTRS)
Kelly, Alonzo J. (Inventor); Zhong, Yu (Inventor)
2005-01-01
A computer-assisted method for localizing a rack, including sensing an image of the rack, detecting line segments in the sensed image, recognizing a candidate arrangement of line segments in the sensed image indicative of a predetermined feature of the rack, generating a matrix of correspondence between the candidate arrangement of line segments and an expected position and orientation of the predetermined feature of the rack, and estimating a position and orientation of the rack based on the matrix of correspondence.
Preventative Therapeutics for Heterotopic Ossification
2015-10-01
plastic cages and kept on a 12-hour light/dark cycle with unlimited access to food (standard rodent chow) and freshwater ad libitum. The study protocol (12...osteogenic mediators, we further propose that initiation of prophylactic local and/or systemicGram-positive antimicrobial therapy at the time of injury and...polymicrobial infections, impact of differential TLR signaling, and the evaluation of systemic and/or local antimicrobial in- terventions, is necessary
Mays, Glen P.; Mamaril, Cezar B.
2015-01-01
Objectives. We investigated changes in hospital participation in local public health systems and the delivery of public health activities over time and assessed the relationship between hospital participation and the scope of activities available in local public health systems. Methods. We used longitudinal observations from the National Longitudinal Survey of Public Health Systems to examine how hospital contributions to the delivery of core public health activities varied in 1998, 2006, and 2012. We then used multivariate regression to assess the relationship between the level of hospital contributions and the overall availability of public health activities in the system. Results. Hospital participation in public health activities increased from 37% in 1998 to 41% in 2006 and down to 39% in 2012. Regression results indicated a positive association between hospital participation in public health activities and the total availability of public health services in the systems. Conclusions. Hospital collaboration does play an important role in the overall availability of public health services in local public health systems. Efforts to increase hospital participation in public health may have a positive impact on the scope of services provided and population health in US communities. PMID:26066929
Evaluation of targeting errors in ultrasound-assisted radiotherapy
Wang, Michael; Rohling, Robert; Duzenli, Cheryl; Clark, Brenda; Archip, Neculai
2014-01-01
A method for validating the start-to-end accuracy of a 3D ultrasound-based patient positioning system for radiotherapy is described. A radiosensitive polymer gel is used to record the actual dose delivered to a rigid phantom after being positioned using 3D ultrasound guidance. Comparison of the delivered dose with the treatment plan allows accuracy of the entire radiotherapy treatment process, from simulation to 3D ultrasound guidance, and finally delivery of radiation, to be evaluated. The 3D ultrasound patient positioning system has a number of features for achieving high accuracy and reducing operator dependence. These include using tracked 3D ultrasound scans of the target anatomy acquired using a dedicated 3D ultrasound probe during both the simulation and treatment sessions, automatic 3D ultrasound-to-ultrasound registration, and use of infra-red LED (IRED) markers of the optical position sensing system for registering simulation CT to ultrasound data. The mean target localization accuracy of this system was 2.5mm for four target locations inside the phantom, compared to 1.6mm obtained using the conventional patient positioning method of laser alignment. Since the phantom is rigid, this represents the best possible set-up accuracy of the system. Thus, these results suggest that 3D ultrasound-based target localization is practically feasible and potentially capable of increasing the accuracy of patient positioning for radiotherapy in sites where day-to-day organ shifts are greater than 1mm in magnitude. PMID:18723271
Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il Dan
2018-01-10
In this paper, a new localization system utilizing afocal optical flow sensor (AOFS) based sensor fusion for indoor service robots in low luminance and slippery environment is proposed, where conventional localization systems do not perform well. To accurately estimate the moving distance of a robot in a slippery environment, the robot was equipped with an AOFS along with two conventional wheel encoders. To estimate the orientation of the robot, we adopted a forward-viewing mono-camera and a gyroscope. In a very low luminance environment, it is hard to conduct conventional feature extraction and matching for localization. Instead, the interior space structure from an image and robot orientation was assessed. To enhance the appearance of image boundary, rolling guidance filter was applied after the histogram equalization. The proposed system was developed to be operable on a low-cost processor and implemented on a consumer robot. Experiments were conducted in low illumination condition of 0.1 lx and carpeted environment. The robot moved for 20 times in a 1.5 × 2.0 m square trajectory. When only wheel encoders and a gyroscope were used for robot localization, the maximum position error was 10.3 m and the maximum orientation error was 15.4°. Using the proposed system, the maximum position error and orientation error were found as 0.8 m and within 1.0°, respectively.
Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il “Dan”
2018-01-01
In this paper, a new localization system utilizing afocal optical flow sensor (AOFS) based sensor fusion for indoor service robots in low luminance and slippery environment is proposed, where conventional localization systems do not perform well. To accurately estimate the moving distance of a robot in a slippery environment, the robot was equipped with an AOFS along with two conventional wheel encoders. To estimate the orientation of the robot, we adopted a forward-viewing mono-camera and a gyroscope. In a very low luminance environment, it is hard to conduct conventional feature extraction and matching for localization. Instead, the interior space structure from an image and robot orientation was assessed. To enhance the appearance of image boundary, rolling guidance filter was applied after the histogram equalization. The proposed system was developed to be operable on a low-cost processor and implemented on a consumer robot. Experiments were conducted in low illumination condition of 0.1 lx and carpeted environment. The robot moved for 20 times in a 1.5 × 2.0 m square trajectory. When only wheel encoders and a gyroscope were used for robot localization, the maximum position error was 10.3 m and the maximum orientation error was 15.4°. Using the proposed system, the maximum position error and orientation error were found as 0.8 m and within 1.0°, respectively. PMID:29320414
Self-localization for an autonomous mobile robot based on an omni-directional vision system
NASA Astrophysics Data System (ADS)
Chiang, Shu-Yin; Lin, Kuang-Yu; Chia, Tsorng-Lin
2013-12-01
In this study, we designed an autonomous mobile robot based on the rules of the Federation of International Robotsoccer Association (FIRA) RoboSot category, integrating the techniques of computer vision, real-time image processing, dynamic target tracking, wireless communication, self-localization, motion control, path planning, and control strategy to achieve the contest goal. The self-localization scheme of the mobile robot is based on the algorithms featured in the images from its omni-directional vision system. In previous works, we used the image colors of the field goals as reference points, combining either dual-circle or trilateration positioning of the reference points to achieve selflocalization of the autonomous mobile robot. However, because the image of the game field is easily affected by ambient light, positioning systems exclusively based on color model algorithms cause errors. To reduce environmental effects and achieve the self-localization of the robot, the proposed algorithm is applied in assessing the corners of field lines by using an omni-directional vision system. Particularly in the mid-size league of the RobotCup soccer competition, selflocalization algorithms based on extracting white lines from the soccer field have become increasingly popular. Moreover, white lines are less influenced by light than are the color model of the goals. Therefore, we propose an algorithm that transforms the omni-directional image into an unwrapped transformed image, enhancing the extraction features. The process is described as follows: First, radical scan-lines were used to process omni-directional images, reducing the computational load and improving system efficiency. The lines were radically arranged around the center of the omni-directional camera image, resulting in a shorter computational time compared with the traditional Cartesian coordinate system. However, the omni-directional image is a distorted image, which makes it difficult to recognize the position of the robot. Therefore, image transformation was required to implement self-localization. Second, we used an approach to transform the omni-directional images into panoramic images. Hence, the distortion of the white line can be fixed through the transformation. The interest points that form the corners of the landmark were then located using the features from accelerated segment test (FAST) algorithm. In this algorithm, a circle of sixteen pixels surrounding the corner candidate is considered and is a high-speed feature detector in real-time frame rate applications. Finally, the dual-circle, trilateration, and cross-ratio projection algorithms were implemented in choosing the corners obtained from the FAST algorithm and localizing the position of the robot. The results demonstrate that the proposed algorithm is accurate, exhibiting a 2-cm position error in the soccer field measuring 600 cm2 x 400 cm2.
Sánchez, Eduardo Munera; Alcobendas, Manuel Muñoz; Noguera, Juan Fco. Blanes; Gilabert, Ginés Benet; Simó Ten, José E.
2013-01-01
This paper deals with the problem of humanoid robot localization and proposes a new method for position estimation that has been developed for the RoboCup Standard Platform League environment. Firstly, a complete vision system has been implemented in the Nao robot platform that enables the detection of relevant field markers. The detection of field markers provides some estimation of distances for the current robot position. To reduce errors in these distance measurements, extrinsic and intrinsic camera calibration procedures have been developed and described. To validate the localization algorithm, experiments covering many of the typical situations that arise during RoboCup games have been developed: ranging from degradation in position estimation to total loss of position (due to falls, ‘kidnapped robot’, or penalization). The self-localization method developed is based on the classical particle filter algorithm. The main contribution of this work is a new particle selection strategy. Our approach reduces the CPU computing time required for each iteration and so eases the limited resource availability problem that is common in robot platforms such as Nao. The experimental results show the quality of the new algorithm in terms of localization and CPU time consumption. PMID:24193098
Gao, Xiang; Yan, Shenggang; Li, Bin
2017-01-01
Magnetic detection techniques have been widely used in many fields, such as virtual reality, surgical robotics systems, and so on. A large number of methods have been developed to obtain the position of a ferromagnetic target. However, the angular rotation of the target relative to the sensor is rarely studied. In this paper, a new method for localization of moving object to determine both the position and rotation angle with three magnetic sensors is proposed. Trajectory localization estimation of three magnetic sensors, which are collinear and noncollinear, were obtained by the simulations, and experimental results demonstrated that the position and rotation angle of ferromagnetic target having roll, pitch or yaw in its movement could be calculated accurately and effectively with three noncollinear vector sensors. PMID:28892006
TrackCC: A Practical Wireless Indoor Localization System Based on Less-Expensive Chips
Li, Xiaolong; Zheng, Yan; Cai, Jun; Yi, Yunfei
2017-01-01
This paper aims at proposing a new wireless indoor localization system (ILS), called TrackCC, based on a commercial type of low-power system-on-chip (SoC), nRF24LE1. This type of chip has only l output power levels and acute fluctuation for a received minimum power level in operation, which give rise to many practical challenges for designing localization algorithms. In order to address these challenges, we exploit the Markov theory to construct a (l+1)×(l+1) -sized state transition matrix to remove the fluctuation, and then propose a priority-based pattern matching algorithm to search for the most similar match in the signal map to estimate the real position of unknown nodes. The experimental results show that, compared to two existing wireless ILSs, LANDMARC and SAIL, which have meter level positioning accuracy, the proposed TrackCC can achieve the decimeter level accuracy on average in both line-of-sight (LOS) and non-line-of-sight (NLOS) senarios. PMID:28617313
Acoustic Sensor Network for Relative Positioning of Nodes
De Marziani, Carlos; Ureña, Jesus; Hernandez, Álvaro; Mazo, Manuel; García, Juan Jesús; Jimenez, Ana; Rubio, María del Carmen Pérez; Álvarez, Fernando; Villadangos, José Manuel
2009-01-01
In this work, an acoustic sensor network for a relative localization system is analyzed by reporting the accuracy achieved in the position estimation. The proposed system has been designed for those applications where objects are not restricted to a particular environment and thus one cannot depend on any external infrastructure to compute their positions. The objects are capable of computing spatial relations among themselves using only acoustic emissions as a ranging mechanism. The object positions are computed by a multidimensional scaling (MDS) technique and, afterwards, a least-square algorithm, based on the Levenberg-Marquardt algorithm (LMA), is applied to refine results. Regarding the position estimation, all the parameters involved in the computation of the temporary relations with the proposed ranging mechanism have been considered. The obtained results show that a fine-grained localization can be achieved considering a Gaussian distribution error in the proposed ranging mechanism. Furthermore, since acoustic sensors require a line-of-sight to properly work, the system has been tested by modeling the lost of this line-of-sight as a non-Gaussian error. A suitable position estimation has been achieved even if it is considered a bias of up to 25 of the line-of-sight measurements among a set of nodes. PMID:22291520
Spatiotemporal Local-Remote Senor Fusion (ST-LRSF) for Cooperative Vehicle Positioning.
Jeong, Han-You; Nguyen, Hoa-Hung; Bhawiyuga, Adhitya
2018-04-04
Vehicle positioning plays an important role in the design of protocols, algorithms, and applications in the intelligent transport systems. In this paper, we present a new framework of spatiotemporal local-remote sensor fusion (ST-LRSF) that cooperatively improves the accuracy of absolute vehicle positioning based on two state estimates of a vehicle in the vicinity: a local sensing estimate, measured by the on-board exteroceptive sensors, and a remote sensing estimate, received from neighbor vehicles via vehicle-to-everything communications. Given both estimates of vehicle state, the ST-LRSF scheme identifies the set of vehicles in the vicinity, determines the reference vehicle state, proposes a spatiotemporal dissimilarity metric between two reference vehicle states, and presents a greedy algorithm to compute a minimal weighted matching (MWM) between them. Given the outcome of MWM, the theoretical position uncertainty of the proposed refinement algorithm is proven to be inversely proportional to the square root of matching size. To further reduce the positioning uncertainty, we also develop an extended Kalman filter model with the refined position of ST-LRSF as one of the measurement inputs. The numerical results demonstrate that the proposed ST-LRSF framework can achieve high positioning accuracy for many different scenarios of cooperative vehicle positioning.
Cross-coherent vector sensor processing for spatially distributed glider networks.
Nichols, Brendan; Sabra, Karim G
2015-09-01
Autonomous underwater gliders fitted with vector sensors can be used as a spatially distributed sensor array to passively locate underwater sources. However, to date, the positional accuracy required for robust array processing (especially coherent processing) is not achievable using dead-reckoning while the gliders remain submerged. To obtain such accuracy, the gliders can be temporarily surfaced to allow for global positioning system contact, but the acoustically active sea surface introduces locally additional sensor noise. This letter demonstrates that cross-coherent array processing, which inherently mitigates the effects of local noise, outperforms traditional incoherent processing source localization methods for this spatially distributed vector sensor network.
NASA Astrophysics Data System (ADS)
Faria, Teresa; Oliveira, José J.
This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.
A RSSI-based parameter tracking strategy for constrained position localization
NASA Astrophysics Data System (ADS)
Du, Jinze; Diouris, Jean-François; Wang, Yide
2017-12-01
In this paper, a received signal strength indicator (RSSI)-based parameter tracking strategy for constrained position localization is proposed. To estimate channel model parameters, least mean squares method (LMS) is associated with the trilateration method. In the context of applications where the positions are constrained on a grid, a novel tracking strategy is proposed to determine the real position and obtain the actual parameters in the monitored region. Based on practical data acquired from a real localization system, an experimental channel model is constructed to provide RSSI values and verify the proposed tracking strategy. Quantitative criteria are given to guarantee the efficiency of the proposed tracking strategy by providing a trade-off between the grid resolution and parameter variation. The simulation results show a good behavior of the proposed tracking strategy in the presence of space-time variation of the propagation channel. Compared with the existing RSSI-based algorithms, the proposed tracking strategy exhibits better localization accuracy but consumes more calculation time. In addition, a tracking test is performed to validate the effectiveness of the proposed tracking strategy.
Particle localization, spinor two-valuedness, and Fermi quantization of tensor systems
NASA Technical Reports Server (NTRS)
Reifler, Frank; Morris, Randall
1994-01-01
Recent studies of particle localization shows that square-integrable positive energy bispinor fields in a Minkowski space-time cannot be physically distinguished from constrained tensor fields. In this paper we generalize this result by characterizing all classical tensor systems, which admit Fermi quantization, as those having unitary Lie-Poisson brackets. Examples include Euler's tensor equation for a rigid body and Dirac's equation in tensor form.
Balter, James M; Antonuk, Larry E
2008-01-01
In-room radiography is not a new concept for image-guided radiation therapy. Rapid advances in technology, however, have made this positioning method convenient, and thus radiograph-based positioning has propagated widely. The paradigms for quality assurance of radiograph-based positioning include imager performance, systems integration, infrastructure, procedure documentation and testing, and support for positioning strategy implementation.
78 FR 25406 - Proposed Modification of Class E Airspace; Twin Falls, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
...) Global Positioning System (GPS) and the Instrument Landing System (ILS) or Localizer (LOC) standard... the earth. * * * * * ANM ID E5 Twin Falls, ID [Modified] Twin Falls Joslin Field-Magic Valley Regional...
NASA Astrophysics Data System (ADS)
Jonsson, Rickard M.
2005-03-01
I present a way to visualize the concept of curved spacetime. The result is a curved surface with local coordinate systems (Minkowski systems) living on it, giving the local directions of space and time. Relative to these systems, special relativity holds. The method can be used to visualize gravitational time dilation, the horizon of black holes, and cosmological models. The idea underlying the illustrations is first to specify a field of timelike four-velocities uμ. Then, at every point, one performs a coordinate transformation to a local Minkowski system comoving with the given four-velocity. In the local system, the sign of the spatial part of the metric is flipped to create a new metric of Euclidean signature. The new positive definite metric, called the absolute metric, can be covariantly related to the original Lorentzian metric. For the special case of a two-dimensional original metric, the absolute metric may be embedded in three-dimensional Euclidean space as a curved surface.
Coordinate references for the indoor/outdoor seamless positioning
NASA Astrophysics Data System (ADS)
Ruan, Ling; Zhang, Ling; Long, Yi; Cheng, Fei
2018-05-01
Indoor positioning technologies are being developed rapidly, and seamless positioning which connected indoor and outdoor space is a new trend. The indoor and outdoor positioning are not applying the same coordinate system and different indoor positioning scenes uses different indoor local coordinate reference systems. A specific and unified coordinate reference frame is needed as the space basis and premise in seamless positioning application. Trajectory analysis of indoor and outdoor integration also requires a uniform coordinate reference. However, the coordinate reference frame in seamless positioning which can applied to various complex scenarios is lacking of research for a long time. In this paper, we proposed a universal coordinate reference frame in indoor/outdoor seamless positioning. The research focus on analysis and classify the indoor positioning scenes and put forward the coordinate reference system establishment and coordinate transformation methods in each scene. And, through some experiments, the calibration method feasibility was verified.
Stability of Local Quantum Dissipative Systems
NASA Astrophysics Data System (ADS)
Cubitt, Toby S.; Lucia, Angelo; Michalakis, Spyridon; Perez-Garcia, David
2015-08-01
Open quantum systems weakly coupled to the environment are modeled by completely positive, trace preserving semigroups of linear maps. The generators of such evolutions are called Lindbladians. In the setting of quantum many-body systems on a lattice it is natural to consider Lindbladians that decompose into a sum of local interactions with decreasing strength with respect to the size of their support. For both practical and theoretical reasons, it is crucial to estimate the impact that perturbations in the generating Lindbladian, arising as noise or errors, can have on the evolution. These local perturbations are potentially unbounded, but constrained to respect the underlying lattice structure. We show that even for polynomially decaying errors in the Lindbladian, local observables and correlation functions are stable if the unperturbed Lindbladian has a unique fixed point and a mixing time that scales logarithmically with the system size. The proof relies on Lieb-Robinson bounds, which describe a finite group velocity for propagation of information in local systems. As a main example, we prove that classical Glauber dynamics is stable under local perturbations, including perturbations in the transition rates, which may not preserve detailed balance.
Effects of Bone Vibrator Position on Auditory Spatial Perception Tasks.
McBride, Maranda; Tran, Phuong; Pollard, Kimberly A; Letowski, Tomasz; McMillan, Garnett P
2015-12-01
This study assessed listeners' ability to localize spatially differentiated virtual audio signals delivered by bone conduction (BC) vibrators and circumaural air conduction (AC) headphones. Although the skull offers little intracranial sound wave attenuation, previous studies have demonstrated listeners' ability to localize auditory signals delivered by a pair of BC vibrators coupled to the mandibular condyle bones. The current study extended this research to other BC vibrator locations on the skull. Each participant listened to virtual audio signals originating from 16 different horizontal locations using circumaural headphones or BC vibrators placed in front of, above, or behind the listener's ears. The listener's task was to indicate the signal's perceived direction of origin. Localization accuracy with the BC front and BC top positions was comparable to that with the headphones, but responses for the BC back position were less accurate than both the headphones and BC front position. This study supports the conclusion of previous studies that listeners can localize virtual 3D signals equally well using AC and BC transducers. Based on these results, it is apparent that BC devices could be substituted for AC headphones with little to no localization performance degradation. BC headphones can be used when spatial auditory information needs to be delivered without occluding the ears. Although vibrator placement in front of the ears appears optimal from the localization standpoint, the top or back position may be acceptable from an operational standpoint or if the BC system is integrated into headgear. © 2015, Human Factors and Ergonomics Society.
Quigley, Martin M; Mate, Timothy P; Sylvester, John E
2009-01-01
To evaluate the accuracy, utility, and cost effectiveness of a new electromagnetic patient positioning and continuous, real-time monitoring system, which uses permanently implanted resonant transponders in the target (Calypso 4D Localization System and Beacon transponders, Seattle, WA) to continuously monitor tumor location and movement during external beam radiation therapy of the prostate. This clinical trial studied 43 patients at 5 sites. All patients were implanted with 3 transponders each. In 41 patients, the system was used for initial alignment at each therapy session. Thirty-five patients had continuous monitoring during their radiation treatment. Over 1,000 alignment comparisons were made to a commercially available kV X-ray positioning system (BrainLAB ExacTrac, Munich, Germany). Using decision analysis and Markov processes, the outcomes of patients were simulated over a 5-year period and measured in terms of costs from a payer's perspective and quality-adjusted life years (QALYs). All patients had satisfactory transponder implantations for monitoring purposes. In over 75% of the treatment sessions, the correction to conventional positioning (laser and tattoos) directed by an electromagnetic patient positioning and monitoring system was greater than 5 mm. Ninety-seven percent (34/35) of the patients who underwent continuous monitoring had target motion that exceeded preset limits at some point during the course of their radiation therapy. Exceeding preset thresholds resulted in user intervention at least once during the therapy in 80% of the patients (28/35). Compared with localization using ultrasound, electronic portal imaging devices (EPID), or computed tomography (CT), localization with the electromagnetic patient positioning and monitoring system yielded superior gains in QALYs at comparable costs. Most patients positioned with conventional tattoos and lasers for prostate radiation therapy were found by use of the electromagnetic patient positioning and monitoring system to have alignment errors exceeding 5 mm. Almost all patients undergoing external beam radiation of the prostate have been shown to have target organ movement exceeding 3 mm during radiation therapy delivery. The ability of the electromagnetic technology to monitor tumor target location during the same time as radiation therapy is being delivered allows clinicians to provide real time adaptive radiation therapy for prostate cancer. This permits clinicians to intervene when the prostate moves outside the radiation isocenter, which should decrease adverse events and improve patient outcomes. Additionally, a cost-utility analysis has demonstrated that the electromagnetic patient positioning and monitoring system offers patient outcome benefits at a cost that falls well within the payer's customary willingness to pay (WTP) threshold of $50,000 per QALY.
Evolution of a foredune and backshore river complex on a high-energy, drift-aligned beach
NASA Astrophysics Data System (ADS)
Heathfield, Derek K.; Walker, Ian J.
2015-11-01
This paper examines the multi-decadal evolution of a foredune and backshore river complex on a wave-dominated, drift-aligned coast at Wickaninnish Bay on southwestern Vancouver Island, British Columbia, Canada. Local shoreline positions are generally prograding seaward as fast as + 1.46 m a- 1 in response to rapid regional tectonic uplift and positive onshore sediment budgets. The northern end of the foredune system has extended rapidly alongshore in response to net northward littoral drift. Despite these net accretional responses, the beach-dune system experiences relatively frequent (return interval 1.53 years) erosive events when total water levels exceed a local erosional threshold elevation of 5.5 m above regional chart datum. Geomorphic recovery of the beach-dune system from erosive events is usually rapid (i.e., within a year) by way of high onshore sand transport and aeolian delivery to the upper beach. This response is complicated locally, however, by the influence of a backshore river that alters spatial-temporal patterns of both intertidal and supratidal erosion and deposition. Historic landscape changes and rates of shoreline positional change are derived from several years of aerial photography (1973, 1996, 2007, 2009, 2012) using the USGS Digital Shoreline Analysis System (DSAS). Significant volumetric changes are also estimated from aerial LiDAR-derived DEMs in 2005, 2009 and 2012, and related morphodynamics are interpreted using a statistically constrained geomorphic change detection method. Results suggest that supratidal bar development, overwash deposition and aeolian deposition on a low-lying supratidal platform, combined with alongshore extension of the foredune complex, is forcing Sandhill Creek to migrate northward in the direction of beach drift. In response, the river actively erodes (- 1.24 m a- 1) a bluff system landward of the channel, which generates substantial sediment volumes (- 0.137 m3 m- 2 a- 1) that feed a large intertidal braided channel and delta system. These local responses provide context for a conceptual model of the evolution of a wave-dominated, drift-aligned beach-foredune system that interacts with a backshore river. This model may provide useful information to local park managers as erosion and sedimentation hazards threaten visitor safety and park infrastructure.
Gray, Robert; Goldstein, Lori J.; Recht, Abram; Baehner, Frederick L.; Shak, Steven; Badve, Sunil; Perez, Edith A.; Shulman, Lawrence N.; Martino, Silvana; Davidson, Nancy E.; Sledge, George W.; Sparano, Joseph A.
2012-01-01
The present study was performed to evaluate the significance of biologic subtype and 21-gene recurrence score relative to local recurrence and local–regional recurrence after breast conservation treatment with radiation. Eastern Cooperative Oncology Group E2197 was a prospective randomized clinical trial that compared two adjuvant systemic chemotherapy regimens for patients with operable breast carcinoma with 1–3 positive lymph nodes or negative lymph nodes with tumor size >1.0 cm. The study population was a subset of 388 patients with known 21-gene recurrence score and treated with breast conservation surgery, systemic chemotherapy, and definitive radiation treatment. Median follow-up was 9.7 years (range = 3.7–11.6 years). The 10-year rates of local recurrence and local–regional recurrence were 5.4 % and 6.6 %, respectively. Neither biologic subtype nor 21-gene Recurrence Score was associated with local recurrence or local–regional recurrence on univariate or multivariate analyses (all P ≥ 0.12). The 10-year rates of local recurrence were 4.9 % for hormone receptor positive, HER2-negative tumors, 6.0 % for triple negative tumors, and 6.4 % for HER2-positive tumors (P = 0.76), and the 10-year rates of local–regional recurrence were 6.3, 6.9, and 7.2 %, respectively (P = 0.79). For hormone receptor positive tumors, the 10-year rates of local recurrence were 3.2, 2.9, and 10.1 % for low, intermediate, and high 21-gene recurrence score, respectively (P = 0.17), and the 10-year rates of local–regional recurrence were 3.8, 5.1, and 12.0 %, respectively (P = 0.12). For hormone receptor- positive tumors, the 21-gene recurrence score evaluated as a continuous variable was significant for local–regional recurrence (hazard ratio 2.66; P = 0.03). The 10-year rates of local recurrence and local–regional recurrence were reasonably low in all subsets of patients. Neither biologic subtype nor 21-gene recurrence score should preclude breast conservation treatment with radiation. PMID:22547108
Spitters, Hilde P E M; Lau, Cathrine J; Sandu, Petru; Quanjel, Marcel; Dulf, Diana; Glümer, Charlotte; van Oers, Hans A M; van de Goor, Ien A M
2017-02-03
Facilitating and enhancing interaction between stakeholders involved in the policymaking process to stimulate collaboration and use of evidence, is important to foster the development of effective Health Enhancing Physical Activity (HEPA) policies. Performing an analysis of real-world policymaking processes will help reveal the complexity of a network of stakeholders. Therefore, the main objectives were to unravel the stakeholder network in the policy process by conducting three systems analyses, and to increase insight into the similarities and differences in the policy processes of these European country cases. A systems analysis of the local HEPA policymaking process was performed in three European countries involved in the 'REsearch into POlicy to enhance Physical Activity' (REPOPA) project, resulting in three schematic models showing the main stakeholders and their relationships. The models were used to compare the systems, focusing on implications with respect to collaboration and use of evidence in local HEPA policymaking. Policy documents and relevant webpages were examined and main stakeholders were interviewed. The systems analysis in each country identified the main stakeholders involved and their position and relations in the policymaking process. The Netherlands and Denmark were the most similar and both differed most from Romania, especially at the level of accountability of the local public authorities for local HEPA policymaking. The categories of driving forces underlying the relations between stakeholders were formal relations, informal interaction and knowledge exchange. A systems analysis providing detailed descriptions of positions and relations in the stakeholder network in local level HEPA policymaking is rather unique in this area. The analyses are useful when a need arises for increased interaction, collaboration and use of knowledge between stakeholders in the local HEPA network, as they provide an overview of the stakeholders involved and their mutual relations. This information can be an important starting point to enhance the uptake of evidence and build more effective public health policies.
The Flattening of Literacy: Community Colleges and Skills Training
ERIC Educational Resources Information Center
Pennell, Michael
2011-01-01
Community colleges occupy a contradictory position in the rise of globalization. They are at once both local and global institutions. This essay examines the complicated location of community colleges in local economies through the developing community college system in Indiana. In particular, it highlights the horizontal transitions of a growing…
Drenjanac, Domagoj; Tomic, Slobodanka; Agüera, Juan; Perez-Ruiz, Manuel
2014-01-01
In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems’ (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor. From these preliminary results, future work will address the use of autonomous tractor localization in the hybrid localization approach. PMID:25340450
A Practical, Robust and Fast Method for Location Localization in Range-Based Systems.
Huang, Shiping; Wu, Zhifeng; Misra, Anil
2017-12-11
Location localization technology is used in a number of industrial and civil applications. Real time location localization accuracy is highly dependent on the quality of the distance measurements and efficiency of solving the localization equations. In this paper, we provide a novel approach to solve the nonlinear localization equations efficiently and simultaneously eliminate the bad measurement data in range-based systems. A geometric intersection model was developed to narrow the target search area, where Newton's Method and the Direct Search Method are used to search for the unknown position. Not only does the geometric intersection model offer a small bounded search domain for Newton's Method and the Direct Search Method, but also it can self-correct bad measurement data. The Direct Search Method is useful for the coarse localization or small target search domain, while the Newton's Method can be used for accurate localization. For accurate localization, by utilizing the proposed Modified Newton's Method (MNM), challenges of avoiding the local extrema, singularities, and initial value choice are addressed. The applicability and robustness of the developed method has been demonstrated by experiments with an indoor system.
An Autonomous Distributed Fault-Tolerant Local Positioning System
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
2017-01-01
We describe a fault-tolerant, GPS-independent (Global Positioning System) distributed autonomous positioning system for static/mobile objects and present solutions for providing highly-accurate geo-location data for the static/mobile objects in dynamic environments. The reliability and accuracy of a positioning system fundamentally depends on two factors; its timeliness in broadcasting signals and the knowledge of its geometry, i.e., locations and distances of the beacons. Existing distributed positioning systems either synchronize to a common external source like GPS or establish their own time synchrony using a scheme similar to a master-slave by designating a particular beacon as the master and other beacons synchronize to it, resulting in a single point of failure. Another drawback of existing positioning systems is their lack of addressing various fault manifestations, in particular, communication link failures, which, as in wireless networks, are increasingly dominating the process failures and are typically transient and mobile, in the sense that they typically affect different messages to/from different processes over time.
NASA Technical Reports Server (NTRS)
Hueschen, R. M.
1986-01-01
Five flight tests of the Digital Automated Landing System (DIALS) were conducted on the Advanced Transport Operating Systems (ATOPS) Transportation Research Vehicle (TSRV) -- a modified Boeing 737 aircraft for advanced controls and displays research. These flight tests were conducted at NASA's Wallops Flight Center using the microwave landing system (MLS) installation on runway 22. This report describes the flight software equations of the DIALS which was designed using modern control theory direct-digital design methods and employed a constant gain Kalman filter. Selected flight test performance data is presented for localizer (runway centerline) capture and track at various intercept angles, for glideslope capture and track of 3, 4.5, and 5 degree glideslopes, for the decrab maneuver, and for the flare maneuver. Data is also presented to illustrate the system performance in the presence of cross, gust, and shear winds. The mean and standard deviation of the peak position errors for localizer capture were, respectively, 24 feet and 26 feet. For mild wind conditions, glideslope and localizer tracking position errors did not exceed, respectively, 5 and 20 feet. For gusty wind conditions (8 to 10 knots), these errors were, respectively, 10 and 30 feet. Ten hands off automatic lands were performed. The standard deviation of the touchdown position and velocity errors from the mean values were, respectively, 244 feet and 0.7 feet/sec.
MRI Guided Brain Stimulation without the Use of a Neuronavigation System
Vaghefi, Ehsan; Byblow, Winston D.; Stinear, Cathy M.; Thompson, Benjamin
2015-01-01
A key issue in the field of noninvasive brain stimulation (NIBS) is the accurate localization of scalp positions that correspond to targeted cortical areas. The current gold standard is to combine structural and functional brain imaging with a commercially available “neuronavigation” system. However, neuronavigation systems are not commonplace outside of specialized research environments. Here we describe a technique that allows for the use of participant-specific functional and structural MRI data to guide NIBS without a neuronavigation system. Surface mesh representations of the head were generated using Brain Voyager and vectors linking key anatomical landmarks were drawn on the mesh. Our technique was then used to calculate the precise distances on the scalp corresponding to these vectors. These calculations were verified using actual measurements of the head and the technique was used to identify a scalp position corresponding to a brain area localized using functional MRI. PMID:26413537
Gutiérrez, Álvaro; González, Carlos; Jiménez-Leube, Javier; Zazo, Santiago; Dopico, Nelson; Raos, Ivana
2009-01-01
The improvement in the transmission range in wireless applications without the use of batteries remains a significant challenge in identification applications. In this paper, we describe a heterogeneous wireless identification network mostly powered by kinetic energy, which allows the localization of animals in open environments. The system relies on radio communications and a global positioning system. It is made up of primary and secondary nodes. Secondary nodes are kinetic-powered and take advantage of animal movements to activate the node and transmit a specific identifier, reducing the number of batteries of the system. Primary nodes are battery-powered and gather secondary-node transmitted information to provide it, along with position and time data, to a final base station in charge of the animal monitoring. The system allows tracking based on contextual information obtained from statistical data. PMID:22412344
Collaborative Localization Algorithms for Wireless Sensor Networks with Reduced Localization Error
Sahoo, Prasan Kumar; Hwang, I-Shyan
2011-01-01
Localization is an important research issue in Wireless Sensor Networks (WSNs). Though Global Positioning System (GPS) can be used to locate the position of the sensors, unfortunately it is limited to outdoor applications and is costly and power consuming. In order to find location of sensor nodes without help of GPS, collaboration among nodes is highly essential so that localization can be accomplished efficiently. In this paper, novel localization algorithms are proposed to find out possible location information of the normal nodes in a collaborative manner for an outdoor environment with help of few beacons and anchor nodes. In our localization scheme, at most three beacon nodes should be collaborated to find out the accurate location information of any normal node. Besides, analytical methods are designed to calculate and reduce the localization error using probability distribution function. Performance evaluation of our algorithm shows that there is a tradeoff between deployed number of beacon nodes and localization error, and average localization time of the network can be increased with increase in the number of normal nodes deployed over a region. PMID:22163738
A Mobile Anchor Assisted Localization Algorithm Based on Regular Hexagon in Wireless Sensor Networks
Rodrigues, Joel J. P. C.
2014-01-01
Localization is one of the key technologies in wireless sensor networks (WSNs), since it provides fundamental support for many location-aware protocols and applications. Constraints of cost and power consumption make it infeasible to equip each sensor node in the network with a global position system (GPS) unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use several mobile anchors which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. This paper proposes a mobile anchor assisted localization algorithm based on regular hexagon (MAALRH) in two-dimensional WSNs, which can cover the whole monitoring area with a boundary compensation method. Unknown nodes calculate their positions by using trilateration. We compare the MAALRH with HILBERT, CIRCLES, and S-CURVES algorithms in terms of localization ratio, localization accuracy, and path length. Simulations show that the MAALRH can achieve high localization ratio and localization accuracy when the communication range is not smaller than the trajectory resolution. PMID:25133212
A Low Complexity System Based on Multiple Weighted Decision Trees for Indoor Localization
Sánchez-Rodríguez, David; Hernández-Morera, Pablo; Quinteiro, José Ma.; Alonso-González, Itziar
2015-01-01
Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity. The localization system is built using a dataset from sensor fusion, which combines the strength of radio signals from different wireless local area network access points and device orientation information from a digital compass built-in mobile device, so that extra sensors are unnecessary. Experimental results indicate that the proposed system leads to substantial improvements on computational complexity over the widely-used traditional fingerprinting methods, and it has a better accuracy than they have. PMID:26110413
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montes-Rodríguez, María de los Ángeles, E-mail: angy24538@yahoo.com; Mitsoura, Eleni; Hernández-Bojórquez, Mariana
2014-11-07
Stereotactic Body Radiation Therapy (SBRT) requires a controlled immobilization and position monitoring of patient and target. The purpose of this work is to analyze the performance of the imaging system ExacTrac® (ETX) using infrared and fiducial markers. Materials and methods: In order to assure the accuracy of isocenter localization, a Quality Assurance procedure was applied using an infrared marker-based positioning system. Scans were acquired of an inhouse-agar gel and solid water phantom with infrared spheres. In the inner part of the phantom, three reference markers were delineated as reference and one pellet was place internally; which was assigned as themore » isocenter. The iPlan® RT Dose treatment planning system. Images were exported to the ETX console. Images were acquired with the ETX to check the correctness of the isocenter placement. Adjustments were made in 6D the reference markers were used to fuse the images. Couch shifts were registered. The procedure was repeated for verification purposes. Results: The data recorded of the verifications in translational and rotational movements showed averaged 3D spatial uncertainties of 0.31 ± 0.42 mm respectively 0.82° ± 0.46° in the phantom and the first correction of these uncertainties were of 1.51 ± 1.14 mm respectively and 1.37° ± 0.61°. Conclusions: This study shows a high accuracy and repeatability in positioning the selected isocenter. The ETX-system for verifying the treatment isocenter position has the ability to monitor the tracing position of interest, making it possible to be used for SBRT positioning within uncertainty ≤1mm.« less
Kleine-Tebbe, Jörg; Heinatz, Anja; Gräser, Inken; Dautel, Hans; Hansen, Gitte Nordskov; Kespohl, Sabine; Rihs, Hans-Peter; Raulf-Heimsoth, Monika; Vater, Günther; Rytter, Manfred; Haustein, Uwe-Fritjof
2006-01-01
Local and systemic reactions can occur after bites of Argas reflexus (Argas), a soft tick parasitizing pigeons. Risk assessment of IgE-mediated sensitizations and systemic reactions after Argas bites. Case histories, skin prick tests (SPTs) with a whole-body extract of Argas containing major allergen Arg r 1, and common inhalants and specific IgE measurements were obtained from 148 subjects who had had Argas bites and 20 volunteers as a control group. Systemic reactions (urticaria, angioedema, dyspnea, cardiovascular dysregulation, unconsciousness) were reported in 12 of 148 (8%); 146 of 148 (99%) had local reactions. Atopy was found in 37 of 146 (25%) with local reactions and 3 of 12 (25%) with systemic reactions. SPT to Argas was positive in 24 of 148 (16%) with a high proportion of atopics 10 of 24 (42%); specific IgE to Argas was detectable in 12 of 135 (8% of 148) with moderate concordance to systemic reactions. No positive SPT or specific IgE results to Argas were obtained in the control group. Immunoblotting of 23 sera revealed an IgE-binding protein in 19 of 23 sera (82%) at 22 kd, indicating a major allergen of Argas. Severe anaphylactic reactions were infrequently (approximately 8%) found after bites of the soft tick Argas reflexus. Atopy is a risk factor for skin sensitizations to Argas, but not for systemic reactions after bites by Argas. Using a whole-body extract of Argas, diagnosis through SPT and specific IgE is hampered by false-negative and irrelevant positive results, particularly in atopy.
Three dimensional single molecule localization using a phase retrieved pupilfunction
Liu, Sheng; Kromann, Emil B.; Krueger, Wesley D.; Bewersdorf, Joerg; Lidke, Keith A.
2013-01-01
Localization-based superresolution imaging is dependent on finding the positions of individualfluorophores in a sample by fitting the observed single-molecule intensity pattern to the microscopepoint spread function (PSF). For three-dimensional imaging, system-specific aberrations of theoptical system can lead to inaccurate localizations when the PSF model does not account for theseaberrations. Here we describe the use of phase-retrieved pupil functions to generate a more accuratePSF and therefore more accurate 3D localizations. The complex-valued pupil function containsinformation about the system-specific aberrations and can thus be used to generate the PSF forarbitrary defocus. Further, it can be modified to include depth dependent aberrations. We describethe phase retrieval process, the method for including depth dependent aberrations, and a fastfitting algorithm using graphics processing units. The superior localization accuracy of the pupilfunction generated PSF is demonstrated with dual focal plane 3D superresolution imaging ofbiological structures. PMID:24514501
Duecker, Daniel-André; Geist, A. René; Hengeler, Michael; Kreuzer, Edwin; Pick, Marc-André; Rausch, Viktor; Solowjow, Eugen
2017-01-01
Self-localization is one of the most challenging problems for deploying micro autonomous underwater vehicles (μAUV) in confined underwater environments. This paper extends a recently-developed self-localization method that is based on the attenuation of electro-magnetic waves, to the μAUV domain. We demonstrate a compact, low-cost architecture that is able to perform all signal processing steps present in the original method. The system is passive with one-way signal transmission and scales to possibly large μAUV fleets. It is based on the spherical localization concept. We present results from static and dynamic position estimation experiments and discuss the tradeoffs of the system. PMID:28445419
Ultra wide-band localization and SLAM: a comparative study for mobile robot navigation.
Segura, Marcelo J; Auat Cheein, Fernando A; Toibero, Juan M; Mut, Vicente; Carelli, Ricardo
2011-01-01
In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work.
Duecker, Daniel-André; Geist, A René; Hengeler, Michael; Kreuzer, Edwin; Pick, Marc-André; Rausch, Viktor; Solowjow, Eugen
2017-04-26
Self-localization is one of the most challenging problems for deploying micro autonomous underwater vehicles ( μ AUV) in confined underwater environments. This paper extends a recently-developed self-localization method that is based on the attenuation of electro-magnetic waves, to the μ AUV domain. We demonstrate a compact, low-cost architecture that is able to perform all signal processing steps present in the original method. The system is passive with one-way signal transmission and scales to possibly large μ AUV fleets. It is based on the spherical localization concept. We present results from static and dynamic position estimation experiments and discuss the tradeoffs of the system.
An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars.
Huang, Jiyan; Zhang, Ying; Luo, Shan
2017-12-15
Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer-Rao lower bound (CRLB) are derived. The simulation results verified the proposed method.
An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars
Zhang, Ying; Luo, Shan
2017-01-01
Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer–Rao lower bound (CRLB) are derived. The simulation results verified the proposed method. PMID:29244727
Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M; Kim, Euntai
2017-01-13
Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort.
Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M.; Kim, Euntai
2017-01-01
Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort. PMID:28098773
Status of E-ELT M5 scale-one demonstrator
NASA Astrophysics Data System (ADS)
Barriga, Pablo; Sedghi, Babak; Dimmler, Martin; Kornweibel, Nick
2014-07-01
The fifth mirror of the European Extremely Large Telescope optical train is a field stabilization tip/tilt unit responsible for correcting the dynamical tip and tilt caused mainly by wind load on the telescope. A scale-one prototype including the inclined support, the fixed frame and a basic control system was designed and manufactured by NTE-SENER (Spain) and CSEM (Switzerland) as part of the prototyping and design activities. All interfaces to the mirror have been reproduced on a dummy structure reproducing the inertial characteristics of the optical element. The M5 unit is required to have sufficient bandwidth for tip/tilt reference commands coming from the wavefront control system. Such a bandwidth can be achieved using local active damping loop to damp the low frequency mechanical modes before closing a position loop. Prototyping on the M5 unit has been undertaken in order to demonstrate the E-ELT control system architecture, concepts and development standards and to further study active damping strategies. The control system consists of two nested loops: a local damping loop and a position loop. The development of this control system was undertaken following the E-ELT control system development standards in order to determine their applicability and performance and includes hardware selection, communication, synchronization, configuration, and data logging. In this paper we present the current status of the prototype M5 control system and the latest results on the active damping control strategy, in particular the promising results obtained with the method of positive position feedback.
Spatiotemporal Local-Remote Senor Fusion (ST-LRSF) for Cooperative Vehicle Positioning
Bhawiyuga, Adhitya
2018-01-01
Vehicle positioning plays an important role in the design of protocols, algorithms, and applications in the intelligent transport systems. In this paper, we present a new framework of spatiotemporal local-remote sensor fusion (ST-LRSF) that cooperatively improves the accuracy of absolute vehicle positioning based on two state estimates of a vehicle in the vicinity: a local sensing estimate, measured by the on-board exteroceptive sensors, and a remote sensing estimate, received from neighbor vehicles via vehicle-to-everything communications. Given both estimates of vehicle state, the ST-LRSF scheme identifies the set of vehicles in the vicinity, determines the reference vehicle state, proposes a spatiotemporal dissimilarity metric between two reference vehicle states, and presents a greedy algorithm to compute a minimal weighted matching (MWM) between them. Given the outcome of MWM, the theoretical position uncertainty of the proposed refinement algorithm is proven to be inversely proportional to the square root of matching size. To further reduce the positioning uncertainty, we also develop an extended Kalman filter model with the refined position of ST-LRSF as one of the measurement inputs. The numerical results demonstrate that the proposed ST-LRSF framework can achieve high positioning accuracy for many different scenarios of cooperative vehicle positioning. PMID:29617341
Using Learning Labs for Culturally Responsive Positive Behavioral Interventions and Supports
ERIC Educational Resources Information Center
Bal, Aydin; Schrader, Elizabeth M.; Afacan, Kemal; Mawene, Dian
2016-01-01
Culturally responsive positive behavioral interventions and supports (CRPBIS) is a statewide research project designed to renovate behavioral support systems to become more inclusive, adaptive, and supportive for all. The CRPBIS methodology, called "learning lab," provides a research-based process to bring together local stakeholders and…
2011-03-24
6 2.4.1 Reference Frames . . . . . . . . . . . . . . . . . 6 2.4.2 Line and Feature Extraction . . . . . . . . . . . 7 2.4.3 SLAM ...Positioning System . . . . . . . . . . . . . . . . . . 1 LADAR Laser Radar . . . . . . . . . . . . . . . . . . . . . . . . . . 1 LiDAR Light Detection and...Ranging . . . . . . . . . . . . . . . . 2 SLAM Simultaneous Localization and Mapping . . . . . . . . . . 2 ANT Advanced Navigation Technology
Jepsen, H; Gaehtgens, P
1993-09-01
Laser-Doppler (LD) fluxmetry was performed in the palmar finger skin of healthy subjects to study the mechanisms contributing to the postural vascular response. Local transmural pressure in the skin blood vessels of the region studied was altered for 1 min in two experimental series either by passive movement of the arm to different vertical hand positions relative to heart level or by application of external pressure (-120-180 mmHg) to the finger. Heart and respiratory rate, arterial blood pressure, and LD flux in the contralateral finger (kept at heart level) were measured. The measurements suggest a compound reaction of local (myogenic) and systemic (neurogenic) mechanisms: the local regulatory component appears as a graded active vascular response elicited by passive vessel distension or compression. A systemic component, associated with a single deep inspiration, is frequently observed during the actual movement of the arm. In addition, prolonged holding of the test hand in a given vertical position also elicits a delayed vascular response in the control hand at heart level, which may be generated by volume receptors in the intrathoracic low-pressure system.
Wang, Hua; Wen, Yingyou; Zhao, Dazhe
2017-07-20
Medical applications have begun to benefit from Internet of Things (IoT) technology through the introduction of wearable devices. Several medical applications require accurate patient location as various changes affect pressure parameters inside the body. This study aims to develop a system to measure indoor altitude for IoT medical applications. We propose a differential barometric-based positioning system to estimate the altitude between a reference sensor and a localizing sensor connected to the human body. The differential barometric altimetry model is introduced to estimate indoor elevations and eliminate environmental artifacts. In addition, a Gaussian filter processing is adopted to remove noise from the elevation measurements. The proposed system is then investigated through extensive experiments, using various evaluation criteria. The results indicate that the proposed system yielded good accuracy with reduced implementation complexity and fewer costs. The proposed system is resilient compared to other indoor localization approaches, even when numerous environmental artifacts in indoor environments are present.
Zhao, Yubin; Li, Xiaofan; Zhang, Sha; Meng, Tianhui; Zhang, Yiwen
2016-08-23
In practical localization system design, researchers need to consider several aspects to make the positioning efficiently and effectively, e.g., the available auxiliary information, sensing devices, equipment deployment and the environment. Then, these practical concerns turn out to be the technical problems, e.g., the sequential position state propagation, the target-anchor geometry effect, the Non-line-of-sight (NLOS) identification and the related prior information. It is necessary to construct an efficient framework that can exploit multiple available information and guide the system design. In this paper, we propose a scalable method to analyze system performance based on the Cramér-Rao lower bound (CRLB), which can fuse all of the information adaptively. Firstly, we use an abstract function to represent all of the wireless localization system model. Then, the unknown vector of the CRLB consists of two parts: the first part is the estimated vector, and the second part is the auxiliary vector, which helps improve the estimation accuracy. Accordingly, the Fisher information matrix is divided into two parts: the state matrix and the auxiliary matrix. Unlike the theoretical analysis, our CRLB can be a practical fundamental limit to denote the system that fuses multiple information in the complicated environment, e.g., recursive Bayesian estimation based on the hidden Markov model, the map matching method and the NLOS identification and mitigation methods. Thus, the theoretical results are approaching the real case more. In addition, our method is more adaptable than other CRLBs when considering more unknown important factors. We use the proposed method to analyze the wireless sensor network-based indoor localization system. The influence of the hybrid LOS/NLOS channels, the building layout information and the relative height differences between the target and anchors are analyzed. It is demonstrated that our method exploits all of the available information for the indoor localization systems and serves as an indicator for practical system evaluation.
LQC control for the Mini-Mast experiment
NASA Technical Reports Server (NTRS)
Montgomery, R. C.; Ghosh, D.
1988-01-01
The Mini-Mast system is briefly reviewed, and results of a simulation study of the LQG control for the Mini-Mast experiment are reported. In particular, attention is given to problems and limitations related to the testing of control laws using reaction mass actuators, such as accounting for force and stroke limits of these devices. The local controller used in the study and the algorithm for converting the force commands of the LQG algorithm to position commands for the reaction mass device are described. It is shown that the LQG generated damping is reduced when a local controller is used and the position command is not saturated; it drops still further when the position command is saturated.
NASA Astrophysics Data System (ADS)
Fernandes, Rigel P.; Ramos, António L. L.; Apolinário, José A.
2017-05-01
Shooter localization systems have been subject of a growing attention lately owing to its wide span of possible applications, e.g., civil protection, law enforcement, and support to soldiers in missions where snipers might pose a serious threat. These devices are based on the processing of electromagnetic or acoustic signatures associated with the firing of a gun. This work is concerned with the latter, where the shooter's position can be obtained based on the estimation of the direction-of-arrival (DoA) of the acoustic components of a gunshot signal (muzzle blast and shock wave). A major limitation of current commercially available acoustic sniper localization systems is the impossibility of finding the shooter's position when one of these acoustic signatures is not detected. This is very likely to occur in real-life situations, especially when the microphones are not in the field of view of the shockwave or when the presence of obstacles like buildings can prevent a direct-path to sensors. This work addresses the problem of DoA estimation of the muzzle blast using a planar array of sensors deployed in a drone. Results supported by actual gunshot data from a realistic setup are very promising and pave the way for the development of enhanced sniper localization systems featuring two main advantages over stationary ones: (1) wider surveillance area; and (2) increased likelihood of a direct-path detection of at least one of the gunshot signals, thereby adding robustness and reliability to the system.
Evolution of local facilitation in arid ecosystems.
Kéfi, Sonia; van Baalen, Minus; Rietkerk, Max; Loreau, Michel
2008-07-01
In harsh environments, sessile organisms can make their habitat more hospitable by buffering environmental stress or increasing resource availability. Although the ecological significance of such local facilitation is widely established, the evolutionary aspects have been seldom investigated. Yet addressing the evolutionary aspects of local facilitation is important because theoretical studies show that systems with such positive interactions can exhibit alternative stable states and that such systems may suddenly become extinct when they evolve (evolutionary suicide). Arid ecosystems currently experience strong changes in climate and human pressures, but little is known about the effects of these changes on the selective pressures exerted on the vegetation. Here, we focus on the evolution of local facilitation in arid ecosystems, using a lattice-structured model explicitly considering local interactions among plants. We found that the evolution of local facilitation depends on the seed dispersal strategy. In systems characterized by short-distance seed dispersal, adaptation to a more stressful environment leads to high local facilitation, allowing the population to escape extinction. In contrast, systems characterized by long-distance seed dispersal become extinct under increased stress even when allowed to adapt. In this case, adaptation in response to climate change and human pressures could give the final push to the desertification of arid ecosystems.
Espinet, Anthony J; Emmerton, Mark T
2009-01-01
Intralipid has been proposed as a treatment option for local anesthetic (LA) toxicity, which does not respond to traditional resuscitation methods. This paper presents a case report of a patient who developed signs of local anesthetic toxicity and was subsequently treated with 20% Intralipid with a positive response. Some background and practical applications regarding this treatment are discussed.
Cooperative Localization for Multi-AUVs Based on GM-PHD Filters and Information Entropy Theory
Zhang, Lichuan; Wang, Tonghao; Xu, Demin
2017-01-01
Cooperative localization (CL) is considered a promising method for underwater localization with respect to multiple autonomous underwater vehicles (multi-AUVs). In this paper, we proposed a CL algorithm based on information entropy theory and the probability hypothesis density (PHD) filter, aiming to enhance the global localization accuracy of the follower. In the proposed framework, the follower carries lower cost navigation systems, whereas the leaders carry better ones. Meanwhile, the leaders acquire the followers’ observations, including both measurements and clutter. Then, the PHD filters are utilized on the leaders and the results are communicated to the followers. The followers then perform weighted summation based on all received messages and obtain a final positioning result. Based on the information entropy theory and the PHD filter, the follower is able to acquire a precise knowledge of its position. PMID:28991191
NASA Astrophysics Data System (ADS)
Bick, Christian; Martens, Erik A.
2015-03-01
Coupled phase oscillators model a variety of dynamical phenomena in nature and technological applications. Non-local coupling gives rise to chimera states which are characterized by a distinct part of phase-synchronized oscillators while the remaining ones move incoherently. Here, we apply the idea of control to chimera states: using gradient dynamics to exploit drift of a chimera, it will attain any desired target position. Through control, chimera states become functionally relevant; for example, the controlled position of localized synchrony may encode information and perform computations. Since functional aspects are crucial in (neuro-)biology and technology, the localized synchronization of a chimera state becomes accessible to develop novel applications. Based on gradient dynamics, our control strategy applies to any suitable observable and can be generalized to arbitrary dimensions. Thus, the applicability of chimera control goes beyond chimera states in non-locally coupled systems.
Cellular Localization of Aquaporin-1 in the Human and Mouse Trigeminal Systems
Gu, Minxia; Marshall, Charles; Ding, Jiong; Hu, Gang; Xiao, Ming
2012-01-01
Previous studies reported that a subpopulation of mouse and rat trigeminal neurons express water channel aquaporin-1 (AQP1). In this study we make a comparative investigation of AQP1 localization in the human and mouse trigeminal systems. Immunohistochemistry and immunofluorescence results showed that AQP1 was localized to the cytoplasm and cell membrane of some medium and small-sized trigeminal neurons. Additionally, AQP1 was found in numerous peripheral trigeminal axons of humans and mice. In the central trigeminal root and brain stem, AQP1 was specifically expressed in astrocytes of humans, but was restricted to nerve fibers within the central trigeminal root and spinal trigeminal tract and nucleus in mice. Furthermore, AQP1 positive nerve fibers were present in the mucosal and submucosal layers of human and mouse oral tissues, but not in the muscular and subcutaneous layers. Fluorogold retrograde tracing demonstrated that AQP1 positive trigeminal neurons innervate the mucosa but not skin of cheek. These results reveal there are similarities and differences in the cellular localization of AQP1 between the human and mouse trigeminal systems. Selective expression of AQP1 in the trigeminal neurons innervating the oral mucosa indicates an involvement of AQP1 in oral sensory transduction. PMID:23029502
Higashiyama, Hiroyuki; Billin, Andrew N; Okamoto, Yuji; Kinoshita, Mine; Asano, Satoshi
2007-05-01
Peroxisome proliferator-activated receptor-delta (PPAR-delta) is known as a transcription factor involved in the regulation of fatty acid oxidation and mitochondrial biogenesis in several tissues, such as skeletal muscle, liver and adipose tissues. In this study, to elucidate systemic physiological functions of PPAR-delta, we examined the tissue distribution and localization of PPAR-delta in adult mouse tissues using tissue microarray (TMA)-based immunohistochemistry. PPAR-delta positive signals were observed on variety of tissues/cells in multiple systems including cardiovascular, urinary, respiratory, digestive, endocrine, nervous, hematopoietic, immune, musculoskeletal, sensory and reproductive organ systems. In these organs, PPAR-delta immunoreactivity was generally localized on the nucleus, although cytoplasmic localization was observed on several cell types including neurons in the nervous system and cells of the islet of Langerhans. These expression profiling data implicate various physiological roles of PPAR-delta in multiple organ systems. TMA-based immunohistochemistry enables to profile comprehensive protein localization and distribution in a high-throughput manner.
Buchheit, Martin; Allen, Adam; Poon, Tsz Kit; Modonutti, Mattia; Gregson, Warren; Di Salvo, Valter
2014-12-01
Abstract During the past decade substantial development of computer-aided tracking technology has occurred. Therefore, we aimed to provide calibration equations to allow the interchangeability of different tracking technologies used in soccer. Eighty-two highly trained soccer players (U14-U17) were monitored during training and one match. Player activity was collected simultaneously with a semi-automatic multiple-camera (Prozone), local position measurement (LPM) technology (Inmotio) and two global positioning systems (GPSports and VX). Data were analysed with respect to three different field dimensions (small, <30 m 2 to full-pitch, match). Variables provided by the systems were compared, and calibration equations (linear regression models) between each system were calculated for each field dimension. Most metrics differed between the 4 systems with the magnitude of the differences dependant on both pitch size and the variable of interest. Trivial-to-small between-system differences in total distance were noted. However, high-intensity running distance (>14.4 km · h -1 ) was slightly-to-moderately greater when tracked with Prozone, and accelerations, small-to-very largely greater with LPM. For most of the equations, the typical error of the estimate was of a moderate magnitude. Interchangeability of the different tracking systems is possible with the provided equations, but care is required given their moderate typical error of the estimate.
Hamilton, Daniel G; McKenzie, Dean P; Perkins, Anne E
2017-09-01
The aim of this study was to evaluate the differences in target localization between Calypso ® , kV orthogonal imaging and cone-beam computed tomography (CBCT) for combined translations and rotations of an anthropomorphic pelvic phantom. The phantom was localized using all three systems in 50 different positions, with applied translational and rotational offsets randomly sampled from representative normal distributions of prostate motion. Lin's concordance correlation coefficient (ρc) and 95% confidence intervals were calculated to assess the agreement between the localization systems. Mean differences and difference vectors between the three systems were also calculated. Agreement between systems for lateral, vertical, and longitudinal translations was excellent, with ρc values of greater than 0.98 between all three systems in all axes. There was excellent agreement between the systems for rotations around the lateral axis (pitch) (ρc > 0.99), and around the vertical axis (yaw) (ρc > 0.97). However, somewhat poorer agreement for rotations around the longitudinal axis (roll) was observed, with the lowest correlation observed between Calypso and kV orthogonal imaging (ρc = 0.895). Mean differences between the phantom position reported by Calypso and the radiographic systems were less than 1 mm and 1° for all translations and rotations. The results for translations are consistent with the publications of previous authors. There is no comparable published data for rotations. While there is lower correlation between the three systems for roll than for the other angles, the mean differences in reported rotations are not clinically significant. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Evaluation of the new respiratory gating system
Shi, Chengyu; Tang, Xiaoli; Chan, Maria
2018-01-01
Objective The newly released Respiratory Gating for Scanners (RGSC; Varian Medical Systems, Palo Alto, CA, USA) system has limited existing quality assurance (QA) protocols and pertinent publications. Herein, we report our experiences of the RGSC system acceptance and QA. Methods The RGSC system integration was tested with peripheral equipment, spatial reproducibility, and dynamic localization accuracy for regular and irregular breathing patterns, respectively. A QUASAR Respiratory Motion Phantom and a mathematical fitting method were used for data acquisition and analysis. Results The results showed that the RGSC system could accurately measure regular motion periods of 3–10 s. For irregular breathing patterns, differences from the existing Real-time Position Management (RPM; Varian Medical Systems, Palo Alto, CA) system were observed. For dynamic localization measurements, the RGSC system showed 76% agreement with the programmed test data within ±5% tolerance in terms of fitting period. As s comparison, the RPM system showed 66% agreement within ±5% tolerance, and 65% for the RGSC versus RPM measurements. Conclusions New functions and positioning accuracy improve the RGSC system’s ability to achieve higher dynamic treatment precision. A 4D phantom is helpful for the QA tests. Further investigation is required for the whole RGSC system performance QA. PMID:29722356
1989-08-01
and the local horizontal plane, measured positive above the horizontal plane. The local horizontal plane is defined as a plane normal to the geocentric ...preparation instructions for Format 1000. LOCATION: Enter the areas or locations that are to be staffed with medical personnel, i.e., Vandenberg AFB
Modeling, Simulation, and Characterization of Distributed Multi-Agent Systems
2012-01-01
capabilities (vision, LIDAR , differential global positioning, ultrasonic proximity sensing, etc.), the agents comprising a MAS tend to have somewhat lesser...on the simultaneous localization and mapping ( SLAM ) problem [19]. SLAM acknowledges that externally-provided localization information is not...continually-updated mapping databases, generates a comprehensive representation of the spatial and spectral environment. Many times though, inherent SLAM
Akazawa, Yuko; Matsuda, Katsuya; Isomoto, Hajime; Matsushima, Kayoko; Kido, Yoko; Urabe, Shigetoshi; Yamaghchi, Naoyuki; Ohnita, Ken; Takeshima, Fuminao; Kondo, Hisayoshi; Tsugawa, Hitoshi; Suzuki, Hidekazu; Moss, Joel; Nakao, Kazuhiko; Nakashima, Masahiro
2015-01-01
BH3-only protein, Bim, is a pro-apoptotic protein that mediates mitochondria-dependent cell death. However, the role of Bim in Helicobacter pylori-associated gastritis remains unclear. This study aimed to assess the cellular localization of Bim and its possible role in H. pylori-induced gastritis. The study was conducted on biopsy specimens obtained from 80 patients who underwent upper gastrointestinal endoscopy (H. pylori-negative: n = 30, positive: n = 50). Association between Bim mRNA expression and severity of gastritis was evaluated and the localization of Bim was examined by immunofluorescence. Bim mRNA expression was positively correlated with the degree of gastritis, as defined by the Sydney system. Immunohistochemical analysis confirmed increased Bim expression in H. pylori-infected gastric mucosa compared with uninfected mucosa in both humans and mice. Bim localized in myeloperoxidase- and CD138-positive cells of H. pylori-infected lamina propria and submucosa of the gastric tract, indicating that this protein is predominantly expressed in neutrophils and plasma cells. In contrast, Bim did not localize in CD20-, CD3-, or CD68-positive cells. Bim was expressed in the mitochondria, where it partially co-localized with activated Bax and cleaved-PARP. In conclusion, Bim is expressed in neutrophils and plasma cells in H. pylori-associated gastritis, where it may participate in the termination of inflammatory response by causing mitochondria-mediated apoptosis in specific leucocytes. PMID:26197709
Matsuya, Iwao; Katamura, Ryuta; Sato, Maya; Iba, Miroku; Kondo, Hideaki; Kanekawa, Kiyoshi; Takahashi, Motoichi; Hatada, Tomohiko; Nitta, Yoshihiro; Tanii, Takashi; Shoji, Shuichi; Nishitani, Akira; Ohdomari, Iwao
2010-01-01
We propose a novel sensor system for monitoring the structural health of a building. The system optically measures the relative-story displacement during earthquakes for detecting any deformations of building elements. The sensor unit is composed of three position sensitive detectors (PSDs) and lenses capable of measuring the relative-story displacement precisely, even if the PSD unit was inclined in response to the seismic vibration. For verification, laboratory tests were carried out using an Xθ-stage and a shaking table. The static experiment verified that the sensor could measure the local inclination angle as well as the lateral displacement. The dynamic experiment revealed that the accuracy of the sensor was 150 μm in the relative-displacement measurement and 100 μrad in the inclination angle measurement. These results indicate that the proposed sensor system has sufficient accuracy for the measurement of relative-story displacement in response to the seismic vibration.
Lightweight, Miniature Inertial Measurement System
NASA Technical Reports Server (NTRS)
Tang, Liang; Crassidis, Agamemnon
2012-01-01
A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.
NASA Astrophysics Data System (ADS)
Husson, V. S.; Long, J. L.; Pearlman, M.
2001-12-01
By the end of 2000, 94% of ILRS stations had completed station and site information forms (i.e. site logs). These forms contain six types of information. These six categories include site identifiers, contact information, approximate coordinates, system configuration history, system ranging capabilities, and local survey ties. The ILRS Central Bureau, in conjunction with the ILRS Networks and Engineering Working Group, has developed procedures to quality control site log contents. Part of this verification entails data integrity checks of local site ties and is the primary focus of this paper. Local survey ties are critical to the combination of space geodetic network coordinate solutions (i.e. GPS, SLR, VLBI, DORIS) of the International Terrestrial Reference Frame (ITRF). Approximately 90% of active SLR sites are collocated with at least one other space geodetic technique. The process used to verify these SLR ties, at collocated sites, is identical to the approach used in ITRF2000. Local vectors (X, Y, Z) from each ILRS site log are differenced from its corresponding ITRF2000 position vectors (i.e. no transformations). These X, Y, and Z deltas are converted into North, East, and Up. Any deltas, in any component, larger than 5 millimeter is flagged for investigation. In the absence of ITRF2000 SLR positions, CSR positions were used. To further enhance this comparison and to fill gaps in information, local ties contained in site logs from the other space geodetic services (i.e. IGS, IVS, IDS) were used in addition to ITRF2000 ties. Case studies of two collocated sites (McDonald/Ft. Davis and Hartebeeshtoek) will be explored in-depth. Recommendations on how local site surveys should be conducted and how this information should be managed will also be presented.
Ultra Wide-Band Localization and SLAM: A Comparative Study for Mobile Robot Navigation
Segura, Marcelo J.; Auat Cheein, Fernando A.; Toibero, Juan M.; Mut, Vicente; Carelli, Ricardo
2011-01-01
In this work, a comparative study between an Ultra Wide-Band (UWB) localization system and a Simultaneous Localization and Mapping (SLAM) algorithm is presented. Due to its high bandwidth and short pulses length, UWB potentially allows great accuracy in range measurements based on Time of Arrival (TOA) estimation. SLAM algorithms recursively estimates the map of an environment and the pose (position and orientation) of a mobile robot within that environment. The comparative study presented here involves the performance analysis of implementing in parallel an UWB localization based system and a SLAM algorithm on a mobile robot navigating within an environment. Real time results as well as error analysis are also shown in this work. PMID:22319397
Continuous monitoring of prostate position using stereoscopic and monoscopic kV image guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, M. Tynan R.; Parsons, Dave D.; Robar, James L.
2016-05-15
Purpose: To demonstrate continuous kV x-ray monitoring of prostate motion using both stereoscopic and monoscopic localizations, assess the spatial accuracy of these techniques, and evaluate the dose delivered from the added image guidance. Methods: The authors implemented both stereoscopic and monoscopic fiducial localizations using a room-mounted dual oblique x-ray system. Recently developed monoscopic 3D position estimation techniques potentially overcome the issue of treatment head interference with stereoscopic imaging at certain gantry angles. To demonstrate continuous position monitoring, a gold fiducial marker was placed in an anthropomorphic phantom and placed on the Linac couch. The couch was used as a programmablemore » translation stage. The couch was programmed with a series of patient prostate motion trajectories exemplifying five distinct categories: stable prostate, slow drift, persistent excursion, transient excursion, and high frequency excursions. The phantom and fiducial were imaged using 140 kVp, 0.63 mAs per image at 1 Hz for a 60 s monitoring period. Both stereoscopic and monoscopic 3D localization accuracies were assessed by comparison to the ground-truth obtained from the Linac log file. Imaging dose was also assessed, using optically stimulated luminescence dosimeter inserts in the phantom. Results: Stereoscopic localization accuracy varied between 0.13 ± 0.05 and 0.33 ± 0.30 mm, depending on the motion trajectory. Monoscopic localization accuracy varied from 0.2 ± 0.1 to 1.1 ± 0.7 mm. The largest localization errors were typically observed in the left–right direction. There were significant differences in accuracy between the two monoscopic views, but which view was better varied from trajectory to trajectory. The imaging dose was measured to be between 2 and 15 μGy/mAs, depending on location in the phantom. Conclusions: The authors have demonstrated the first use of monoscopic localization for a room-mounted dual x-ray system. Three-dimensional position estimation from monoscopic imaging permits continuous, uninterrupted intrafraction motion monitoring even in the presence of gantry rotation, which may block kV sources or imagers. This potentially allows for more accurate treatment delivery, by ensuring that the prostate does not deviate substantially from the initial setup position.« less
NASA Astrophysics Data System (ADS)
Wagner, Jenny; Liesenborgs, Jori; Tessore, Nicolas
2018-04-01
Context. Local gravitational lensing properties, such as convergence and shear, determined at the positions of multiply imaged background objects, yield valuable information on the smaller-scale lensing matter distribution in the central part of galaxy clusters. Highly distorted multiple images with resolved brightness features like the ones observed in CL0024 allow us to study these local lensing properties and to tighten the constraints on the properties of dark matter on sub-cluster scale. Aim. We investigate to what precision local magnification ratios, J, ratios of convergences, f, and reduced shears, g = (g1, g2), can be determined independently of a lens model for the five resolved multiple images of the source at zs = 1.675 in CL0024. We also determine if a comparison to the respective results obtained by the parametric modelling tool Lenstool and by the non-parametric modelling tool Grale can detect biases in the models. For these lens models, we analyse the influence of the number and location of the constraints from multiple images on the lens properties at the positions of the five multiple images of the source at zs = 1.675. Methods: Our model-independent approach uses a linear mapping between the five resolved multiple images to determine the magnification ratios, ratios of convergences, and reduced shears at their positions. With constraints from up to six multiple image systems, we generate Lenstool and Grale models using the same image positions, cosmological parameters, and number of generated convergence and shear maps to determine the local values of J, f, and g at the same positions across all methods. Results: All approaches show strong agreement on the local values of J, f, and g. We find that Lenstool obtains the tightest confidence bounds even for convergences around one using constraints from six multiple-image systems, while the best Grale model is generated only using constraints from all multiple images with resolved brightness features and adding limited small-scale mass corrections. Yet, confidence bounds as large as the values themselves can occur for convergences close to one in all approaches. Conclusions: Our results agree with previous findings, support the light-traces-mass assumption, and the merger hypothesis for CL0024. Comparing the different approaches can detect model biases. The model-independent approach determines the local lens properties to a comparable precision in less than one second.
Renewing America's Progress: A Positive Solution to School Reform.
ERIC Educational Resources Information Center
Genck, Fredric H.
This book was designed to help citizens evaluate and improve their local schools. It contends that the solution to the potential end of America's progress is through positive school reform--the public management of schools. It presents a system of participative and results-oriented management that is implemented by boards, administrators, and…
Resonance fluorescence based two- and three-dimensional atom localization
NASA Astrophysics Data System (ADS)
Wahab, Abdul; Rahmatullah; Qamar, Sajid
2016-06-01
Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.
Localization Algorithm Based on a Spring Model (LASM) for Large Scale Wireless Sensor Networks.
Chen, Wanming; Mei, Tao; Meng, Max Q-H; Liang, Huawei; Liu, Yumei; Li, Yangming; Li, Shuai
2008-03-15
A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM) method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1) for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.
Physiological correlates of sound localization in a parasitoid fly, Ormia ochracea
NASA Astrophysics Data System (ADS)
Oshinsky, Michael Lee
A major focus of research in the nervous system is the investigation of neural circuits. The question of how neurons connect to form functional units has driven modern neuroscience research from its inception. From the beginning, the neural circuits of the auditory system and specifically sound localization were used as a model system for investigating neural connectivity and computation. Sound localization lends itself to this task because there is no mapping of spatial information on a receptor sheet as in vision. With only one eye, an animal would still have positional information for objects. Since the receptor sheet in the ear is frequency oriented and not spatially oriented, positional information for a sound source does not exist with only one ear. The nervous system computes the location of a sound source based on differences in the physiology of the two ears. In this study, I investigated the neural circuits for sound localization in a fly, Ormia ochracea (Diptera, Tachinidae, Ormiini), which is a parasitoid of crickets. This fly possess a unique mechanically coupled hearing organ. The two ears are contained in one air sac and a cuticular bridge, that has a flexible spring-like structure at its center, connects them. This mechanical coupling preprocesses the sound before it is detected by the nervous system and provides the fly with directional information. The subject of this study is the neural coding of the location of sound stimuli by a mechanically coupled auditory system. In chapter 1, I present the natural history of an acoustic parasitoid and I review the peripheral processing of sound by the Ormian ear. In chapter 2, I describe the anatomy and physiology of the auditory afferents. I present this physiology in the context of sound localization. In chapter 3, I describe the directional dependent physiology for the thoracic local and ascending acoustic interneurons. In chapter 4, I quantify the threshold and I detail the kinematics of the phonotactic walking behavior in Ormia ochracea. I also quantify the angular resolution of the phonotactic turning behavior. Using a model, I show that the temporal coding properties of the afferents provide most of the information required by the fly to localize a singing cricket.
Localization of a microtubule organizing center by kinesin motors
NASA Astrophysics Data System (ADS)
Arita, Chikashi; Bosche, Jonas; Lück, Alexander; Santen, Ludger
2017-12-01
Molecular motors are proteins which bind to a polarized cytoskeletal filament and move steadily along it. Molecular motors of the kinesin family move along microtubules (MTs), which are a component of the cytoskeleton. A very processive kinesin motor Kip3p, is known to promote catastrophes and pausing of MT, in particular on cortical contact. These properties play an important role in positioning the mitotic spindle in budding yeast. We present a theoretical approach to positioning of MT networks under confinement. In order to explore a localization mechanism of a microtubule organizing center (MTOC), we introduce an idealized system of two MTs connected by a MTOC. The dynamics of Kip3p is modeled by interacting stochastic particles, which allows us to study the effects of motor-induced depolymerization in a finite volume. We find that localization in the middle of the cavity is realized in a parameter regime where the motor densities on the MTs are increasing with the distance from the MTOC. Localization at an asymmetric position is also possible by tuning model parameters.
On State Complexes and Special Cube Complexes
ERIC Educational Resources Information Center
Peterson, Valerie J.
2009-01-01
This thesis presents the first steps toward a classification of non-positively curved cube complexes called state complexes. A "state complex" is a configuration space for a "reconfigurable system," i.e., an abstract system in which local movements occur in some discrete manner. Reconfigurable systems can be used to describe, for example,…
Dynamical emergence of Markovianity in local time scheme.
Jeknić-Dugić, J; Arsenijević, M; Dugić, M
2016-06-01
Recently we pointed out the so-called local time scheme as a novel approach to quantum foundations that solves the preferred pointer-basis problem. In this paper, we introduce and analyse in depth a rather non-standard dynamical map that is imposed by the scheme. On the one hand, the map does not allow for introducing a properly defined generator of the evolution nor does it represent a quantum channel. On the other hand, the map is linear, positive, trace preserving and unital as well as completely positive, but is not divisible and therefore non-Markovian. Nevertheless, we provide quantitative criteria for dynamical emergence of time-coarse-grained Markovianity, for exact dynamics of an open system, as well as for operationally defined approximation of a closed or open many-particle system. A closed system never reaches a steady state, whereas an open system may reach a unique steady state given by the Lüders-von Neumann formula; where the smaller the open system, the faster a steady state is attained. These generic findings extend the standard open quantum systems theory and substantially tackle certain cosmological issues.
Desplanques, Maxime; Tagaste, Barbara; Fontana, Giulia; Pella, Andrea; Riboldi, Marco; Fattori, Giovanni; Donno, Andrea; Baroni, Guido; Orecchia, Roberto
2013-01-01
The synergy between in-room imaging and optical tracking, in co-operation with highly accurate robotic patient handling represents a concept for patient-set-up which has been implemented at CNAO (Centro Nazionale di Adroterapia Oncologica). In-room imaging is based on a double oblique X-ray projection system; optical tracking consists of the detection of the position of spherical markers placed directly on the patient's skin or on the immobilization devices. These markers are used as external fiducials during patient positioning and dose delivery. This study reports the results of a comparative analysis between in-room imaging and optical tracking data for patient positioning within the framework of high-precision particle therapy. Differences between the optical tracking system (OTS) and the imaging system (IS) were on average within the expected localization accuracy. On the first 633 fractions for head and neck (H&N) set-up procedures, the corrections applied by the IS, after patient positioning using the OTS only, were for the mostly sub-millimetric regarding the translations (0.4±1.1 mm) and sub-gradual regarding the rotations (0.0°±0.8°). On the first 236 fractions for pelvis localizations the amplitude of the corrections applied by the IS after preliminary optical set-up correction were moderately higher and more dispersed (translations: 1.3±2.9 mm, rotations 0.1±0.9°). Although the indication of the OTS cannot replace information provided by in-room imaging devices and 2D-3D image registration, the reported data show that OTS preliminary correction might greatly support image-based patient set-up refinement and also provide a secondary, independent verification system for patient positioning. PMID:23824116
Dagamseh, Ahmad; Wiegerink, Remco; Lammerink, Theo; Krijnen, Gijs
2013-01-01
In Nature, fish have the ability to localize prey, school, navigate, etc., using the lateral-line organ. Artificial hair flow sensors arranged in a linear array shape (inspired by the lateral-line system (LSS) in fish) have been applied to measure airflow patterns at the sensor positions. Here, we take advantage of both biomimetic artificial hair-based flow sensors arranged as LSS and beamforming techniques to demonstrate dipole-source localization in air. Modelling and measurement results show the artificial lateral-line ability to image the position of dipole sources accurately with estimation error of less than 0.14 times the array length. This opens up possibilities for flow-based, near-field environment mapping that can be beneficial to, for example, biologists and robot guidance applications. PMID:23594816
Mo, Yun; Zhang, Zhongzhao; Meng, Weixiao; Ma, Lin; Wang, Yao
2014-01-01
Indoor positioning systems based on the fingerprint method are widely used due to the large number of existing devices with a wide range of coverage. However, extensive positioning regions with a massive fingerprint database may cause high computational complexity and error margins, therefore clustering methods are widely applied as a solution. However, traditional clustering methods in positioning systems can only measure the similarity of the Received Signal Strength without being concerned with the continuity of physical coordinates. Besides, outage of access points could result in asymmetric matching problems which severely affect the fine positioning procedure. To solve these issues, in this paper we propose a positioning system based on the Spatial Division Clustering (SDC) method for clustering the fingerprint dataset subject to physical distance constraints. With the Genetic Algorithm and Support Vector Machine techniques, SDC can achieve higher coarse positioning accuracy than traditional clustering algorithms. In terms of fine localization, based on the Kernel Principal Component Analysis method, the proposed positioning system outperforms its counterparts based on other feature extraction methods in low dimensionality. Apart from balancing online matching computational burden, the new positioning system exhibits advantageous performance on radio map clustering, and also shows better robustness and adaptability in the asymmetric matching problem aspect. PMID:24451470
Decoherence in quantum systems in a static gravitational field
NASA Astrophysics Data System (ADS)
Shariati, Ahmad; Khorrami, Mohammad; Loran, Farhang
2016-09-01
A small quantum system is studied which is a superposition of states localized in different positions in a static gravitational field. The time evolution of the correlation between different positions is investigated, and it is seen that there are two time scales for such an evolution (decoherence). Both time scales are inversely proportional to the red shift difference between the two points. These time scales correspond to decoherences which are linear and quadratic, respectively, in time.
Local Geoid Determination Using the Global Positioning System
1988-09-01
Positioning System by Ma, Wei-Ming September 1988 Co-Advisor: Kandiah Jeyapalan Co-Advisor: Stevens P. Tucker Approved for public release; distribution is... Jeyapalan and Stevens P. Tucker, my thesis advisors, for their dedicated assistance and guidance during the study. Without their encouragement...method of collocation is [ Jeyapalan , 1977]: x = A*X+S +n +O.S q q P where x the vector of the observation (x = Ah - N0(X,Y,Z) - H) A a given rectangular
Position Estimation and Local Mapping Using Omnidirectional Images and Global Appearance Descriptors
Berenguer, Yerai; Payá, Luis; Ballesta, Mónica; Reinoso, Oscar
2015-01-01
This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown) position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images) taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods. PMID:26501289
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C; Lin, H; Chuang, K
2016-06-15
Purpose: To monitor the activity distribution and needle position during and after implantation in operating rooms. Methods: Simulation studies were conducted to assess the feasibility of measurement activity distribution and seed localization using the DuPECT system. The system consists of a LaBr3-based probe and planar detection heads, a collimation system, and a coincidence circuit. The two heads can be manipulated independently. Simplified Yb-169 brachytherapy seeds were used. A water-filled cylindrical phantom with a 40-mm diameter and 40-mm length was used to model a simplified prostate of the Asian man. Two simplified seeds were placed at a radial distance of 10more » mm and tangential distance of 10 mm from the center of the phantom. The probe head was arranged perpendicular to the planar head. Results of various imaging durations were analyzed and the accuracy of the seed localization was assessed by calculating the centroid of the seed. Results: The reconstructed images indicate that the DuPECT can measure the activity distribution and locate the seeds dwelt in different positions intraoperatively. The calculated centroid on average turned out to be accurate within the pixel size of 0.5 mm. The two sources were identified when the duration is longer than 15 s. The sensitivity measured in water was merely 0.07 cps/MBq. Conclusion: Preliminary results show that the measurement of the activity distribution and seed localization are feasible using the DuPECT system intraoperatively. It indicates the DuPECT system has potential to be an approach for dose-distribution-validation. The efficacy of acvtivity distribution measurement and source localization using the DuPECT system will evaluated in more realistic phantom studies (e.g., various attenuation materials and greater number of seeds) in the future investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supanich, M; Bevins, N
Purpose: This review of scanners from 4 major manufacturers examines the clinical impact of performing CT scans that extend into areas of the body that were not acquired in the CT localizer radiograph. Methods: Anthropomorphic chest and abdomen phantoms were positioned together on the tables of CT scanners from 4 different vendors. All of the scanners offered an Automatic Exposure Control (AEC) option with both lateral and axial tube current modulation. A localizer radiograph was taken covering the entire extent of both phantoms and then the scanner's Chest-Abdomen-Pelvis (CAP) study was performed with the clinical AEC settings employed and themore » scan and reconstruction range extending from the superior portion of the chest phantom through the inferior portion of the abdomen phantom. A new study was then initiated with a localizer radiograph extending the length of the chest phantom (not covering the abdomen phantom). The same CAP protocol and AEC settings were then used to scan and reconstruct the entire length of both phantoms. Scan parameters at specific locations in the abdomen phantom from both studies were investigated using the information contained in the DICOM metadata of the reconstructed images. Results: The AEC systems on all scanners utilized different tube current settings in the abdomen phantom for the scan completed without the full localizer radiograph. The AEC system behavior was also scanner dependent with the default manual tube current, the maximum tube current and the tube current at the last known position observed as outcomes. Conclusion: The behavior of the AEC systems of CT scanners in regions not covered by the localizer radiograph is vendor dependent. To ensure optimal image quality and radiation exposure it is important to include the entire planned scan region in the localizer radiograph.« less
Dual modality surgical guidance of non-palpable breast lesions
NASA Astrophysics Data System (ADS)
Judy, Patricia Goodale
Although breast conserving therapy has some advantages over the traditional mastectomy procedure, the biggest disadvantage is the chance of local re-occurrence in which a second surgery is often required. Adequate surgical removal of breast tumors requires accurate tumor localization in order to ensure a balance between optimal cosmetic results and minimization of the risk for local re-occurrence. These challenges have motivated the search for alternative, more accurate methods for intraoperative localization of non-palpable breast lesions. The overall goal of this project was to develop an innovative technique for radioguided localization of non-palpable breast lesions that is more accurate, easier for the breast surgeon, and more comfortable for the patient than the current practice of wire localization. The technique uses a dual modality breast imaging system to place a marker composed of radiolabeled albumin (99mTc-MAA or 111ln-MAA) into the lesion. Preliminary studies were made to evaluate the localization accuracy of the system, which showed that the dual modality breast scanner is capable of accurate 3-dimensional localization using either X-ray or gamma ray imaging. A 3-axis needle positioning system was built and integrated into the dual modality breast scanner and its accuracy tested. A pilot clinical trial to evaluate the dual-modality surgical guidance technique was designed and preliminary clinical data collected. Detailed results were presented on the first three subjects; although a total of seven subjects have been recruited to the study to date. So far, it has been demonstrated that the radioguided surgery technique can be performed with approximately 10 times less radiomarker activity than is currently being used by other researchers employing 99mTc-MAA as a radiomarker, while maintaining comparable localization accuracy. Although the DMSG technique has not been tested in a large cohort of subjects, the preliminary data on the first few are encouraging. Feedback on the technique from the surgeons, for this limited population, has been positive. Recruitment to the study is ongoing.
Hedrick, Chris; Ndiaye, Youssoupha; Linn, Annē
2014-01-01
Background: There is abundant evidence of the affordable, life-saving interventions effective at the local primary health care level in low- and middle-income countries (LMICs). However, the understanding of how to deliver those interventions in diverse settings is limited. Primary healthcare services implementation research is needed to elucidate the contextual factors that can influence the outcomes of interventions, especially at the local level. US universities commonly collaborate with LMIC universities, communities, and health system partners for health services research but common barriers exist. Current challenges include the capacity to establish an ongoing presence in local settings in order to facilitate close collaboration and communication. The Peace Corps is an established development organization currently aligned with local health services in many LMICs and is well-positioned to facilitate research partnerships. This article explores the potential of a community–Peace Corps–academic partnership approach to conduct local primary healthcare services implementation research. Discussion: The Peace Corps is well positioned to offer insights into local contextual factors because volunteers work closely with local leaders, have extensive trust within local communities, and have an ongoing, constant, well-integrated presence. However, the Peace Corps does not routinely conduct primary healthcare services implementation research. Universities, within the United States and locally, could benefit from the established resources and trust of the Peace Corps to conduct health services implementation research to advance access to local health services and further the knowledge of real world application of local health services in a diversity of settings. The proposed partnership would consist of (1) a local community advisory board and local health system leaders, (2) Peace Corps volunteers, and (3) a US-LMIC academic institutional collaboration. Within the proposed partnership approach, the contributions of each partner are as follows: the local community and health system leadership guides the work in consideration of local priorities and context; the Peace Corps provides logistical support, community expertise, and local trust; and the academic institutions offer professional technical and public health educational and training resources and research support. Conclusion: The Peace Corps offers the opportunity to enhance a community-academic partnership in LMICs through community-level guidance, logistical assistance, and research support for community based participatory primary health-care services implementation research that addresses local primary healthcare priorities. PMID:25568819
Dykens, Andrew; Hedrick, Chris; Ndiaye, Youssoupha; Linn, Annē
2014-09-01
There is abundant evidence of the affordable, life-saving interventions effective at the local primary health care level in low- and middle-income countries (LMICs). However, the understanding of how to deliver those interventions in diverse settings is limited. Primary healthcare services implementation research is needed to elucidate the contextual factors that can influence the outcomes of interventions, especially at the local level. US universities commonly collaborate with LMIC universities, communities, and health system partners for health services research but common barriers exist. Current challenges include the capacity to establish an ongoing presence in local settings in order to facilitate close collaboration and communication. The Peace Corps is an established development organization currently aligned with local health services in many LMICs and is well-positioned to facilitate research partnerships. This article explores the potential of a community-Peace Corps-academic partnership approach to conduct local primary healthcare services implementation research. The Peace Corps is well positioned to offer insights into local contextual factors because volunteers work closely with local leaders, have extensive trust within local communities, and have an ongoing, constant, well-integrated presence. However, the Peace Corps does not routinely conduct primary healthcare services implementation research. Universities, within the United States and locally, could benefit from the established resources and trust of the Peace Corps to conduct health services implementation research to advance access to local health services and further the knowledge of real world application of local health services in a diversity of settings. The proposed partnership would consist of (1) a local community advisory board and local health system leaders, (2) Peace Corps volunteers, and (3) a US-LMIC academic institutional collaboration. Within the proposed partnership approach, the contributions of each partner are as follows: the local community and health system leadership guides the work in consideration of local priorities and context; the Peace Corps provides logistical support, community expertise, and local trust; and the academic institutions offer professional technical and public health educational and training resources and research support. The Peace Corps offers the opportunity to enhance a community-academic partnership in LMICs through community-level guidance, logistical assistance, and research support for community based participatory primary health-care services implementation research that addresses local primary healthcare priorities.
Tullo, E; Fontana, I; Gottardo, D; Sloth, K H; Guarino, M
2016-09-01
Current farm sizes do not allow the precise identification and tracking of individual cows and their health and behavioral records. Currently, the application of information technology within intensive dairy farming takes a key role in proper routine management to improve animal welfare and to enhance the comfort of dairy cows. An existing application based on information technology is represented by the GEA CowView system (GEA Farm Technologies, Bönen, Germany). This system is able to detect and monitor animal behavioral activities based on positioning, through the creation of a virtual map of the barn that outlines all the areas where cows have access. The aim of this study was to validate the accuracy, sensitivity, and specificity of data provided by the CowView system. The validation was performed by comparing data automatically obtained from the CowView system with those obtained by a manual labeling procedure performed on video recordings. Data used for the comparisons were represented by the zone-related activities performed by the selected dairy cows and were classified into 2 categories: activity and localization. The duration in seconds of each of the activities/localizations detected both with the manual labeling and with the automated system were used to evaluate the correlation coefficients among data; and subsequently the accuracy, sensitivity, specificity, and positive and negative predictive values of the automated monitoring system were calculated. The results of this validation study showed that the CowView automated monitoring system is able to identify the cow localization/position (alley, trough, cubicles) with high reliability in relation to the zone-related activities performed by dairy cows (accuracy higher than 95%). The results obtained support the CowView system as an innovative potential solution for the easier management of dairy cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pseudorange error analysis for precise indoor positioning system
NASA Astrophysics Data System (ADS)
Pola, Marek; Bezoušek, Pavel
2017-05-01
There is a currently developed system of a transmitter indoor localization intended for fire fighters or members of rescue corps. In this system the transmitter of an ultra-wideband orthogonal frequency-division multiplexing signal position is determined by the time difference of arrival method. The position measurement accuracy highly depends on the directpath signal time of arrival estimation accuracy which is degraded by severe multipath in complicated environments such as buildings. The aim of this article is to assess errors in the direct-path signal time of arrival determination caused by multipath signal propagation and noise. Two methods of the direct-path signal time of arrival estimation are compared here: the cross correlation method and the spectral estimation method.
The relationship between local hospital IT capabilities and physician EMR adoption.
Menachemi, Nir; Matthews, Michael; Ford, Eric W; Hikmet, Neset; Brooks, Robert G
2009-10-01
In light of new federal policies allowing hospitals to subsidize the cost of information systems for physicians, we examine the relationship between local hospital investments in information technology (IT) and physician EMR adoption. Data from two Florida surveys were combined with secondary data from the State of Florida and the Area Resource File (ARF). Hierarchal logistic regression was used to examine the effect of hospital adoption of clinical information systems on physician adoption of EMR systems after controlling for confounders. In multivariate analysis, each additional clinical IT application adopted by a local hospital was associated with an 8% increase in the odds of EMR adoption by physicians practicing in that county. Given this existing relationship between hospital IT capabilities and physician adoption patterns, federal policies designed to encourage this more directly will positively promote the proliferation of EMR systems.
Dynamics of localized structures in reaction-diffusion systems induced by delayed feedback
NASA Astrophysics Data System (ADS)
Gurevich, Svetlana V.
2013-05-01
We are interested in stability properties of a single localized structure in a three-component reaction-diffusion system subjected to the time-delayed feedback. We shall show that variation in the product of the delay time and the feedback strength leads to complex dynamical behavior of the system, including formation of target patterns, spontaneous motion, and spontaneous breathing as well as various complex structures, arising from combination of different oscillatory instabilities. In the case of spontaneous motion, we provide a bifurcation analysis of the delayed system and derive an order parameter equation for the position of the localized structure, explicitly describing its temporal evolution in the vicinity of the bifurcation point. This equation is a subject to a nonlinear delay differential equation, which can be transformed to the normal form of the pitchfork drift bifurcation.
Real-time data collection of scour at bridges
Mueller, David S.; Landers, Mark N.
1994-01-01
The record flood on the Mississippi River during the summer of 1993 provided a rare opportunity to collect data on scour of the streambed at bridges and to test data collection equipment under extreme hydraulic conditions. Detailed bathymetric and hydraulic information were collected at two bridges crossing the Mississippi River during the rising limb, near the peak, and during the recession of the flood. Bathymetric data were collected using a digital echo sounder. Three-dimensional velocities were collected using Broadband Acoustic Doppler Current Profilers (BB-ADCP) operating at 300 kilohertz (kHz), 600 kHz, and 1,200 kHz. Positioning of the data collected was measured using a range-azimuth tracking system and two global positioning systems (GPS). Although differential GPS was able to provide accurate positions and tracking information during approach- and exit-reach data collection, it was unable to maintain lock on a sufficient number of satellites when the survey vessel was under the bridge or near the piers. The range-azimuth tracking system was used to collect position and tracking information for detailed data collection near the bridge piers. These detailed data indicated local scour ranging from 3 to 8 meters and will permit a field-based evaluation of the ability of various numerical models to compute the hydraulics, depth, geometry, and time-dependent development of local scour.
NASA Astrophysics Data System (ADS)
Glaser, Evan R.
Far-infrared measurements of intersubband absorption spectra and dc electrical transport studies of n-inversion layers in (100) Si. Metal-Oxide-Semiconductor-Field-Effect-Transistors (MOSFETs) with mobile positive ions in the oxide are performed at temperatures between 1.7 and 80K. The results provide evidence for the existence of impurity bands and for screening of these localized states in this quasi two-dimensional electronic system. The properties of the elec- tronic states in the sub-micron (<10('-6)m) conducting layer of the MOS devices are probed in detail by conductance, capacitance and trans- conductance measurements and by optical absorption measure- ments with the aid of a Far-Infrared Fourier Transform Spectrometer. Data are obtained with positive oxide charge density as a parameter, varied by the drifting at room temperature of controlled amounts of. positive ions ((DELTA)N(,ox)) to the oxide-semiconductor interface (1.3 x 10('11) (LESSTHEQ) (DELTA)N(,ox) (LESSTHEQ) 7.0 x 10('11) cm('-2)) in the presence of positive gate voltages. (3-7V). In addition, high mobility devices in which no positive impurity ions had been purposely introduced are investigated to provide a basis for comparison with the corresponding results from poor mobil- ity devices. Studies are carried out for a wide range of net interfacial. oxide charge densities (2 x 10('10) cm('-2) (LESSTHEQ) N(,ox) (LESSTHEQ) 1 x 10('12) cm('-2)), and substrate source bias voltages (-9V (LESSTHEQ) V(,S) (LESSTHEQ) 1V) with the goal of. attaining a better understanding of the nature of localization effects (e.g., two-dimensional carrier localization), interface scattering, and many-body Coulombic interactions (e.g., screening effects) in these structures. The present measurements provide evidence for the existence of impurity bands and long band tails at low electron densities (n(,s) (LESSTHEQ) N(,ox)) associated with subbands due to both the inequivalent conduction-band valleys and for screening of these. localized states at high electron densities (n(,s) >(, )N(,ox)). In addition, at high inversion layer electron densities the intersubband resonance linewidths at 4.2K as a function of positive oxide charge density are found to be correlated with the corresponding scattering rates determined from the low temperature effective mobilities. The results of these studies are compared with recent experimental investigations of this and similar systems and with predictions of available theoretical models.
Zacharias, Christos; Kokkodis, Marios; Lappas, Theodoros
2017-01-01
During the last years the number of cities that have installed and started operating shared bike systems has significantly increased. These systems provide an alternative and sustainable mean of transportation to the city dwellers. Apart from the energy sustainability benefits, shared bike systems can have a positive effect on residents’ health, air quality and the overall condition of the currently crumbling road network infrastructure. Anecdotal stories and survey studies have also identified that bike lanes have a positive impact on local businesses. In this study, driven by the rapid adoption of shared bike systems by city governments and their potential positive effects on a number of urban life facets we opt to study and quantify the value of these systems. We focus on a specific aspect of this value and use evidence from the real estate market in the city of Pittsburgh to analyze the effect on dwellers’ properties of the shared bike system installed in the city in June 2015. We use quasi-experimental techniques and find that the shared bike system led to an increase in the housing prices (both sales and rental prices) in the zip codes where shared bike stations were installed. We further bring into the light potential negative consequences of this impact (i.e., gentrification) and discuss/propose two public policies that can exploit the impact of the system for the benefit of both the local government as well as the city dwellers. PMID:28859121
Pelechrinis, Konstantinos; Zacharias, Christos; Kokkodis, Marios; Lappas, Theodoros
2017-01-01
During the last years the number of cities that have installed and started operating shared bike systems has significantly increased. These systems provide an alternative and sustainable mean of transportation to the city dwellers. Apart from the energy sustainability benefits, shared bike systems can have a positive effect on residents' health, air quality and the overall condition of the currently crumbling road network infrastructure. Anecdotal stories and survey studies have also identified that bike lanes have a positive impact on local businesses. In this study, driven by the rapid adoption of shared bike systems by city governments and their potential positive effects on a number of urban life facets we opt to study and quantify the value of these systems. We focus on a specific aspect of this value and use evidence from the real estate market in the city of Pittsburgh to analyze the effect on dwellers' properties of the shared bike system installed in the city in June 2015. We use quasi-experimental techniques and find that the shared bike system led to an increase in the housing prices (both sales and rental prices) in the zip codes where shared bike stations were installed. We further bring into the light potential negative consequences of this impact (i.e., gentrification) and discuss/propose two public policies that can exploit the impact of the system for the benefit of both the local government as well as the city dwellers.
2001-09-01
43 4. GPS ......................................................................................................44 E. POWER SUPPLY HARDWARE...44 Figure 5.6 Earthmate GPS Receiver ........................................................................................45...and 5Watts at 25 Ft Effective Range Minimum range of wireless link is 5 miles. Positional awareness System requires GPS input to determine
Legal Rights of Women Seeking Administrative Positions in Local School Districts.
ERIC Educational Resources Information Center
Marshall, Catherine; Grey, Richard
1982-01-01
Outlines legal provisions relating to sex discrimination in employment generally and in education in particular, and examines limitations of these laws for changing school systems. Evaluates the impact of antidiscrimination legislation on the organizational systems of incentives, supports, recruitment, sponsorship, and exclusion. (Author/GC)
Weighted least squares techniques for improved received signal strength based localization.
Tarrío, Paula; Bernardos, Ana M; Casar, José R
2011-01-01
The practical deployment of wireless positioning systems requires minimizing the calibration procedures while improving the location estimation accuracy. Received Signal Strength localization techniques using propagation channel models are the simplest alternative, but they are usually designed under the assumption that the radio propagation model is to be perfectly characterized a priori. In practice, this assumption does not hold and the localization results are affected by the inaccuracies of the theoretical, roughly calibrated or just imperfect channel models used to compute location. In this paper, we propose the use of weighted multilateration techniques to gain robustness with respect to these inaccuracies, reducing the dependency of having an optimal channel model. In particular, we propose two weighted least squares techniques based on the standard hyperbolic and circular positioning algorithms that specifically consider the accuracies of the different measurements to obtain a better estimation of the position. These techniques are compared to the standard hyperbolic and circular positioning techniques through both numerical simulations and an exhaustive set of real experiments on different types of wireless networks (a wireless sensor network, a WiFi network and a Bluetooth network). The algorithms not only produce better localization results with a very limited overhead in terms of computational cost but also achieve a greater robustness to inaccuracies in channel modeling.
Sleep: A synchrony of cell activity-driven small network states
Krueger, James M.; Huang, Yanhua; Rector, David M.; Buysse, Daniel J.
2013-01-01
We posit a bottom-up sleep regulatory paradigm in which state changes are initiated within small networks as a consequence of local cell activity. Bottom-up regulatory mechanisms are prevalent throughout nature, occurring in vastly different systems and levels of organization. Synchronization of state without top-down regulation is a fundamental property of large collections of small semi-autonomous entities. We posit that such synchronization mechanisms are sufficient and necessary for whole organism sleep onset. Within brain we posit that small networks of highly interconnected neurons and glia, e.g. cortical columns, are semi-autonomous units oscillating between sleep-like and wake-like states. We review evidence showing that cells, small networks, and regional areas of brain share sleep-like properties with whole animal sleep. A testable hypothesis focused on how sleep is initiated within local networks is presented. We posit that the release of cell activity-dependent molecules, such as ATP and nitric oxide, into the extracellular space initiates state changes within the local networks where they are produced. We review mechanisms of ATP induction of sleep regulatory substances (SRS) and their actions on receptor trafficking. Finally, we provide an example of how such local metabolic and state changes provide mechanistic explanations for clinical conditions such as insomnia. PMID:23651209
Weighted Least Squares Techniques for Improved Received Signal Strength Based Localization
Tarrío, Paula; Bernardos, Ana M.; Casar, José R.
2011-01-01
The practical deployment of wireless positioning systems requires minimizing the calibration procedures while improving the location estimation accuracy. Received Signal Strength localization techniques using propagation channel models are the simplest alternative, but they are usually designed under the assumption that the radio propagation model is to be perfectly characterized a priori. In practice, this assumption does not hold and the localization results are affected by the inaccuracies of the theoretical, roughly calibrated or just imperfect channel models used to compute location. In this paper, we propose the use of weighted multilateration techniques to gain robustness with respect to these inaccuracies, reducing the dependency of having an optimal channel model. In particular, we propose two weighted least squares techniques based on the standard hyperbolic and circular positioning algorithms that specifically consider the accuracies of the different measurements to obtain a better estimation of the position. These techniques are compared to the standard hyperbolic and circular positioning techniques through both numerical simulations and an exhaustive set of real experiments on different types of wireless networks (a wireless sensor network, a WiFi network and a Bluetooth network). The algorithms not only produce better localization results with a very limited overhead in terms of computational cost but also achieve a greater robustness to inaccuracies in channel modeling. PMID:22164092
On the use of particle filters for electromagnetic tracking in high dose rate brachytherapy.
Götz, Th I; Lahmer, G; Brandt, T; Kallis, K; Strnad, V; Bert, Ch; Hensel, B; Tomé, A M; Lang, E W
2017-09-12
Modern radiotherapy of female breast cancers often employs high dose rate brachytherapy, where a radioactive source is moved inside catheters, implanted in the female breast, according to a prescribed treatment plan. Source localization relative to the patient's anatomy is determined with solenoid sensors whose spatial positions are measured with an electromagnetic tracking system. Precise sensor dwell position determination is of utmost importance to assure irradiation of the cancerous tissue according to the treatment plan. We present a hybrid data analysis system which combines multi-dimensional scaling with particle filters to precisely determine sensor dwell positions in the catheters during subsequent radiation treatment sessions. Both techniques are complemented with empirical mode decomposition for the removal of superimposed breathing artifacts. We show that the hybrid model robustly and reliably determines the spatial positions of all catheters used during the treatment and precisely determines any deviations of actual sensor dwell positions from the treatment plan. The hybrid system only relies on sensor positions measured with an EMT system and relates them to the spatial positions of the implanted catheters as initially determined with a computed x-ray tomography.
Lunar rovers and local positioning system
NASA Astrophysics Data System (ADS)
Avery, James; Su, Renjeng
1991-11-01
Telerobotic rovers equipped with adequate actuators and sensors are clearly necessary for extraterrestrial construction. They will be employed as substitutes for humans, to perform jobs like surveying, sensing, signaling, manipulating, and the handling of small materials. Important design criteria for these rovers include versatility and robustness. They must be easily programmed and reprogrammed to perform a wide variety of different functions, and they must be robust so that construction work will not be jeopardized by parts failures. The key qualities and functions necessary for these rovers to achieve the required versatility and robustness are modularity, redundancy, and coordination. Three robotic rovers are being built by CSC as a test bed to implement the concepts of modularity and coordination. The specific goal of the design and construction of these robots is to demonstrate the software modularity and multirobot control algorithms required for the physical manipulation of constructible elements. Each rover consists of a transporter platform, bus manager, simple manipulator, and positioning receivers. These robots will be controlled from a central control console via a radio-frequency local area network (LAN). To date, one prototype transporter platform frame was built with batteries, motors, a prototype single-motor controller, and two prototype internal LAN boards. Software modules were developed in C language for monitor functions, i/o, and parallel port usage in each computer board. Also completed are the fabrication of half of the required number of computer boards, the procurement of 19.2 Kbaud RF modems for inter-robot communications, and the simulation of processing requirements for positioning receivers. In addition to the robotic platform, the fabrication of a local positioning system based on infrared signals is nearly completed. This positioning system will make the rovers into a moving reference system capable of performing site surveys. In addition, a four degree mechanical manipulator especially suited for coordinated teleoperation was conceptually designed and is currently being analyzed. This manipulator will be integrated into the rovers as their end effector. Twenty internal LAN cards fabricated by a commercial firm are being used, a prototype manipulator and a range finder for a positioning system were built, a prototype two-motor controller was designed, and one of the robots is performing its first telerobotic motion. In addition, the robots' internal LAN's were coordinated and tested, hardware design upgrades based on fabrication and fit experience were completed, and the positioning system is running.
Lunar rovers and local positioning system
NASA Technical Reports Server (NTRS)
Avery, James; Su, Renjeng
1991-01-01
Telerobotic rovers equipped with adequate actuators and sensors are clearly necessary for extraterrestrial construction. They will be employed as substitutes for humans, to perform jobs like surveying, sensing, signaling, manipulating, and the handling of small materials. Important design criteria for these rovers include versatility and robustness. They must be easily programmed and reprogrammed to perform a wide variety of different functions, and they must be robust so that construction work will not be jeopardized by parts failures. The key qualities and functions necessary for these rovers to achieve the required versatility and robustness are modularity, redundancy, and coordination. Three robotic rovers are being built by CSC as a test bed to implement the concepts of modularity and coordination. The specific goal of the design and construction of these robots is to demonstrate the software modularity and multirobot control algorithms required for the physical manipulation of constructible elements. Each rover consists of a transporter platform, bus manager, simple manipulator, and positioning receivers. These robots will be controlled from a central control console via a radio-frequency local area network (LAN). To date, one prototype transporter platform frame was built with batteries, motors, a prototype single-motor controller, and two prototype internal LAN boards. Software modules were developed in C language for monitor functions, i/o, and parallel port usage in each computer board. Also completed are the fabrication of half of the required number of computer boards, the procurement of 19.2 Kbaud RF modems for inter-robot communications, and the simulation of processing requirements for positioning receivers. In addition to the robotic platform, the fabrication of a local positioning system based on infrared signals is nearly completed. This positioning system will make the rovers into a moving reference system capable of performing site surveys. In addition, a four degree mechanical manipulator especially suited for coordinated teleoperation was conceptually designed and is currently being analyzed. This manipulator will be integrated into the rovers as their end effector. Twenty internal LAN cards fabricated by a commercial firm are being used, a prototype manipulator and a range finder for a positioning system were built, a prototype two-motor controller was designed, and one of the robots is performing its first telerobotic motion. In addition, the robots' internal LAN's were coordinated and tested, hardware design upgrades based on fabrication and fit experience were completed, and the positioning system is running. The rover system is able to perform simple tasks such as sensing and signaling; coordination systems which allow construction tasks to begin were established, and soon coordinated teams of robots in the laboratory will be able to manipulate common objects.
Shilpapriya, Mangalampally; Jayanthi, Mungara; Reddy, Venumbaka Nilaya; Sakthivel, Rajendran; Selvaraju, Girija; Vijayakumar, Poornima
2015-01-01
Pain is highly subjective and it is neurologically proven that stimulation of larger diameter fibers - e.g., using appropriate coldness, warmth, rubbing, pressure or vibration - can close the neural "gate" so that the central perception of itch and pain is reduced. This fact is based upon "gate control" theory of Melzack and Wall. The present study was carried out to investigate the effects of vibration stimuli on pain experienced during local anesthetic injections. Thirty patients aged 6-12 years old of both the genders with Frankel's behavior rating scale as positive and definitely positive requiring bilateral local anesthesia injections for dental treatment were included in the split-mouth cross over design. Universal pain assessment tool was used to assess the pain with and without vibration during the administration of local anesthesia and the results obtained were tabulated and statistically analyzed. Local anesthetic administration with vibration resulted in significantly less pain (P = 0.001) compared to the injections without the use of vibe. The results suggest that vibration can be used as an effective method to decrease pain during dental local anesthetic administration.
de Vries, W H K; Veeger, H E J; Cutti, A G; Baten, C; van der Helm, F C T
2010-07-20
Inertial Magnetic Measurement Systems (IMMS) are becoming increasingly popular by allowing for measurements outside the motion laboratory. The latest models enable long term, accurate measurement of segment motion in terms of joint angles, if initial segment orientations can accurately be determined. The standard procedure for definition of segmental orientation is based on the measurement of positions of bony landmarks (BLM). However, IMMS do not deliver position information, so an alternative method to establish IMMS based, anatomically understandable segment orientations is proposed. For five subjects, IMMS recordings were collected in a standard anatomical position for definition of static axes, and during a series of standardized motions for the estimation of kinematic axes of rotation. For all axes, the intra- and inter-individual dispersion was estimated. Subsequently, local coordinate systems (LCS) were constructed on the basis of the combination of IMMS axes with the lowest dispersion and compared with BLM based LCS. The repeatability of the method appeared to be high; for every segment at least two axes could be determined with a dispersion of at most 3.8 degrees. Comparison of IMMS based with BLM based LCS yielded compatible results for the thorax, but less compatible results for the humerus, forearm and hand, where differences in orientation rose to 17.2 degrees. Although different from the 'gold standard' BLM based LCS, IMMS based LCS can be constructed repeatable, enabling the estimation of segment orientations outside the laboratory. A procedure for the definition of local reference frames using IMMS is proposed. 2010 Elsevier Ltd. All rights reserved.
Kawashima, Takayuki; Sato, Takao
2012-01-01
When a second sound follows a long first sound, its location appears to be perceived away from the first one (the localization/lateralization aftereffect). This aftereffect has often been considered to reflect an efficient neural coding of sound locations in the auditory system. To understand determinants of the localization aftereffect, the current study examined whether it is induced by an interaural temporal difference (ITD) in the amplitude envelope of high frequency transposed tones (over 2 kHz), which is known to function as a sound localization cue. In Experiment 1, participants were required to adjust the position of a pointer to the perceived location of test stimuli before and after adaptation. Test and adapter stimuli were amplitude modulated (AM) sounds presented at high frequencies and their positional differences were manipulated solely by the envelope ITD. Results showed that the adapter's ITD systematically affected the perceived position of test sounds to the directions expected from the localization/lateralization aftereffect when the adapter was presented at ±600 µs ITD; a corresponding significant effect was not observed for a 0 µs ITD adapter. In Experiment 2, the observed adapter effect was confirmed using a forced-choice task. It was also found that adaptation to the AM sounds at high frequencies did not significantly change the perceived position of pure-tone test stimuli in the low frequency region (128 and 256 Hz). The findings in the current study indicate that ITD in the envelope at high frequencies induces the localization aftereffect. This suggests that ITD in the high frequency region is involved in adaptive plasticity of auditory localization processing.
VeLoc: Finding Your Car in Indoor Parking Structures.
Gao, Ruipeng; He, Fangpu; Li, Teng
2018-05-02
While WiFi-based indoor localization is attractive, there are many indoor places without WiFi coverage with a strong demand for localization capability. This paper describes a system and associated algorithms to address the indoor vehicle localization problem without the installation of additional infrastructure. In this paper, we propose VeLoc, which utilizes the sensor data of smartphones in the vehicle together with the floor map of the parking structure to track the vehicle in real time. VeLoc simultaneously harnesses constraints imposed by the map and environment sensing. All these cues are codified into a novel augmented particle filtering framework to estimate the position of the vehicle. Experimental results show that VeLoc performs well when even the initial position and the initial heading direction of the vehicle are completely unknown.
Multimodal Spatial Calibration for Accurately Registering EEG Sensor Positions
Chen, Shengyong; Xiao, Gang; Li, Xiaoli
2014-01-01
This paper proposes a fast and accurate calibration method to calibrate multiple multimodal sensors using a novel photogrammetry system for fast localization of EEG sensors. The EEG sensors are placed on human head and multimodal sensors are installed around the head to simultaneously obtain all EEG sensor positions. A multiple views' calibration process is implemented to obtain the transformations of multiple views. We first develop an efficient local repair algorithm to improve the depth map, and then a special calibration body is designed. Based on them, accurate and robust calibration results can be achieved. We evaluate the proposed method by corners of a chessboard calibration plate. Experimental results demonstrate that the proposed method can achieve good performance, which can be further applied to EEG source localization applications on human brain. PMID:24803954
Desclaux, Alice; Alfieri, Chiara
2009-09-01
As part of prevention of HIV mother-to-child transmission (PMTCT) strategies, HIV-positive women are asked to choose between two options regarding infant feeding: replacement feeding or exclusive breastfeeding with early weaning. Health services must offer women counseling, guidance, and support to enable them to make an informed choice. This article aims to shed light on the content of counseling and its adaptation to local situations, including women's perceptions, in three resource-poor countries with different infant feeding patterns (Burkina Faso, Cambodia, and Cameroon). The qualitative study included observations in health facilities and interviews with HIV-positive mothers and health workers. The results show that counseling practices vary, including prescriptive counseling proposing only one option to all women, an option based on the mother's economic level assessed by health care providers, and the choice between options. While health workers consider economic aspects first, women mostly consider social aspects related to the risk of being stigmatized as a "bad mother'" or as HIV-positive. Overall trends identify some limits to counseling effectiveness when considering women's perceptions and needs, such as: the content of information provided by health care providers, duration and timing of counseling, discrepancies between information provided during counseling and from the health system, and ranking of preventive options by health workers. Women's agency for feeding choices is related to local practices and local authorities' abilities to provide more or less comprehensive counseling based on the organization of the health and aid system. Local practices also depend on institutions' interpretations of international recommendations based on public health considerations regarding standard of care and women's and the health system's respective responsibilities. Beyond structural constraints that hinder the adoption of preventive infant feeding patterns, addressing these issues may help improve counseling practices.
Akazawa, Yuko; Matsuda, Katsuya; Isomoto, Hajime; Matsushima, Kayoko; Kido, Yoko; Urabe, Shigetoshi; Yamaghchi, Naoyuki; Ohnita, Ken; Takeshima, Fuminao; Kondo, Hisayoshi; Tsugawa, Hitoshi; Suzuki, Hidekazu; Moss, Joel; Nakao, Kazuhiko; Nakashima, Masahiro
2015-09-01
BH3-only protein, Bim, is a pro-apoptotic protein that mediates mitochondria-dependent cell death. However, the role of Bim in Helicobacter pylori-associated gastritis remains unclear. This study aimed to assess the cellular localization of Bim and its possible role in H. pylori-induced gastritis. The study was conducted on biopsy specimens obtained from 80 patients who underwent upper gastrointestinal endoscopy (H. pylori-negative: n=30, positive: n=50). Association between Bim mRNA expression and severity of gastritis was evaluated and the localization of Bim was examined by immunofluorescence. Bim mRNA expression was positively correlated with the degree of gastritis, as defined by the Sydney system. Immunohistochemical analysis confirmed increased Bim expression in H. pylori-infected gastric mucosa compared with uninfected mucosa in both humans and mice. Bim localized in myeloperoxidase- and CD138-positive cells of H. pylori-infected lamina propria and submucosa of the gastric tract, indicating that this protein is predominantly expressed in neutrophils and plasma cells. In contrast, Bim did not localize in CD20-, CD3-, or CD68-positive cells. Bim was expressed in the mitochondria, where it was partially co-localized with activated Bax and cleaved-PARP. In conclusion, Bim is expressed in neutrophils and plasma cells in H. pylori-associated gastritis, where it may participate in the termination of inflammatory response by causing mitochondria-mediated apoptosis in specific leucocytes. Copyright © 2015 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, Gregory N., E-mail: gregory.gan@ucdenver.edu; Weickhardt, Andrew J.; Scheier, Benjamin
Purpose: To analyze the durability and toxicity of radiotherapeutic local ablative therapy (LAT) applied to extra-central nervous system (eCNS) disease progression in anaplastic lymphoma kinase-positive non-small cell lung cancer (NSCLC) patients. Methods and Materials: Anaplastic lymphoma kinase-positive NSCLC patients receiving crizotinib and manifesting ≤4 discrete sites of eCNS progression were classified as having oligoprogressive disease (OPD). If subsequent progression met OPD criteria, additional courses of LAT were considered. Crizotinib was continued until eCNS progression was beyond OPD criteria or otherwise not suitable for further LAT. Results: Of 38 patients, 33 progressed while taking crizotinib. Of these, 14 had eCNS progressionmore » meeting OPD criteria suitable for radiotherapeutic LAT. Patients with eCNS OPD received 1-3 courses of LAT with radiation therapy. The 6- and 12-month actuarial local lesion control rates with radiation therapy were 100% and 86%, respectively. The 12-month local lesion control rate with single-fraction equivalent dose >25 Gy versus ≤25 Gy was 100% versus 60% (P=.01). No acute or late grade >2 radiation therapy-related toxicities were observed. Median overall time taking crizotinib among those treated with LAT versus those who progressed but were not suitable for LAT was 28 versus 10.1 months, respectively. Patients continuing to take crizotinib for >12 months versus ≤12 months had a 2-year overall survival rate of 72% versus 12%, respectively (P<.0001). Conclusions: Local ablative therapy safely and durably eradicated sites of individual lesion progression in anaplastic lymphoma kinase-positive NSCLC patients receiving crizotinib. A dose–response relationship for local lesion control was observed. The suppression of OPD by LAT in patients taking crizotinib allowed an extended duration of exposure to crizotinib, which was associated with longer overall survival.« less
How do I deal with the axilla in patients with a positive sentinel lymph node?
Falkson, Conrad B
2011-12-01
Optimal management of the axilla in a patient with a positive sentinel node biopsy is not yet defined.These patients usually have Breast Conserving Surgery and receive adjuvant systemic therapy and whole breast radiation.Treatment options for the axilla include: no further surgery with or without radiation completion axillary nodal dissection with or without radiation Radiation options in addition to whole breast radiation include axillary and supraclavicular nodal irradiation regional nodal irradiationincludes supraclavicular and internal mammary nodes Completion axillary dissection has been standard practice in patients with positive sentinel nodes. the number of involved nodes provides prognostic information. theoretically improves local control, but may be obviated by systemic chemotherapy. but avoidance of dissection may not adversely affect locoregional control or survival. dissection has significant morbidity so safe avoidance is desirable. There is little worldwide concordance on the use of radiation: whole breast radiation (commonly used after breast conserving surgery) may radiate the lower axilla supraclavicular radiation is most commonly recommended for patients with four or more nodes but may confer a survival benefit on patients with lower risk disease. adding nodal irradiation reduces local recurrence with only modest toxicity. Adjuvant systemic therapy provides a survival benefit for patients with nodal disease. Most will receive cytostatic chemotherapy containing an anthracycline and a taxane. Hormone therapy is appropriate for estrogen receptor positive disease. The extent to which systemic therapy controls microscopic nodal disease is unknown. Node positive patients should generally receive adjuvant chemotherapy.A small group of patients benefit from specific nodal therapy. Further studies are needed to better identify these patients.
Localization of α1-2 Fucose Glycan in the Mouse Olfactory Pathway.
Kondoh, Daisuke; Kamikawa, Akihiro; Sasaki, Motoki; Kitamura, Nobuo
2017-01-01
Glycoconjugates in the olfactory system play critical roles in neuronal formation, and α1-2 fucose (α1-2Fuc) glycan mediates neurite outgrowth and synaptic plasticity. Histochemical findings of α1-2Fuc glycan in the mouse olfactory system detected using Ulex europaeus agglutinin-I (UEA-I) vary. This study histochemically assessed the main olfactory and vomeronasal pathways in male and female ICR and C57BL/6J mice aged 3-4 months using UEA-I. Ulex europaeus agglutinin-I reacted with most receptor cells arranged mainly at the basal region of the olfactory epithelium. The olfactory nerve layer and glomerular layer of the main olfactory bulb were speckled with positive UEA-I staining, and positive fibers were scattered from the glomerular to the internal plexiform layer. The lateral olfactory tract and rostral migratory stream were also positive for UEA-I. We identified superficial short-axon cells, interneurons of the external plexiform layer, external, middle and internal tufted cells, mitral cells and granule cells as the origins of the UEA-I-positive fibers in the main olfactory bulb. The anterior olfactory nucleus, anterior piriform cortex and olfactory tubercle were negative for UEA-I. Most receptor cells in the vomeronasal epithelium and most glomeruli of the accessory olfactory bulb were positive for UEA-I. Our findings indicated that α1-2Fuc glycan is located within the primary and secondary, but not the ternary, pathways of the main olfactory system, in local circuits of the main olfactory bulb and within the primary, but not secondary, pathway of the vomeronasal system. © 2016 S. Karger AG, Basel.
Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC.
Mohammed, Nazmi A; Elkarim, Mohammed Abd
2015-08-10
This work explores and evaluates the effect of diffuse light reflection on the accuracy of indoor localization systems based on visible light communication (VLC) in a high reflectivity environment using a received signal strength indication (RSSI) technique. The effect of the essential receiver (Rx) and transmitter (Tx) parameters on the localization error with different transmitted LED power and wall reflectivity factors is investigated at the worst Rx coordinates for a directed/overall link. Since this work assumes harsh operating conditions (i.e., a multipath model, high reflectivity surfaces, worst Rx position), an error of ≥ 1.46 m is found. To achieve a localization error in the range of 30 cm under these conditions with moderate LED power (i.e., P = 0.45 W), low reflectivity walls (i.e., ρ = 0.1) should be used, which would enable a localization error of approximately 7 mm at the room's center.
Optimal Decay of Wannier functions in Chern and Quantum Hall Insulators
NASA Astrophysics Data System (ADS)
Monaco, Domenico; Panati, Gianluca; Pisante, Adriano; Teufel, Stefan
2018-01-01
We investigate the localization properties of independent electrons in a periodic background, possibly including a periodic magnetic field, as e. g. in Chern insulators and in quantum Hall systems. Since, generically, the spectrum of the Hamiltonian is absolutely continuous, localization is characterized by the decay, as {|x| → ∞} , of the composite (magnetic) Wannier functions associated to the Bloch bands below the Fermi energy, which is supposed to be in a spectral gap. We prove the validity of a localization dichotomy in the following sense: either there exist exponentially localized composite Wannier functions, and correspondingly the system is in a trivial topological phase with vanishing Hall conductivity, or the decay of any composite Wannier function is such that the expectation value of the squared position operator, or equivalently of the Marzari-Vanderbilt localization functional, is {+ ∞} . In the latter case, the Bloch bundle is topologically non-trivial, and one expects a non-zero Hall conductivity.
Correlation Between Fracture Network Properties and Stress Variability in Geological Media
NASA Astrophysics Data System (ADS)
Lei, Qinghua; Gao, Ke
2018-05-01
We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.
Localization Strategies in WSNs as applied to Landslide Monitoring (Invited)
NASA Astrophysics Data System (ADS)
Massa, A.; Robol, F.; Polo, A.; Giarola, E.; Viani, F.
2013-12-01
In the last years, heterogeneous integrated smart systems based on wireless sensor network (WSN) technology have been developed at the ELEDIA Research Center of the University of Trento [1]. One of the key features of WSNs as applied to distributed monitoring is that, while the capabilities of each single sensor node is limited, the implementation of cooperative schemes throughout the whole network enables the solution of even complex tasks, as the landslide monitoring. The capability of localizing targets respect to the position of the sensor nodes turns out to be fundamental in those application fields where relative movements arise. The main properties like the target typology, the movement characteristics, and the required localization resolution are different changing the reference scenario. However, the common key issue is still the localization of moving targets within the area covered by the sensor network. Many experiences were preparatory for the challenging activities in the field of landslide monitoring where the basic idea is mostly that of detecting slight soil movements. Among them, some examples of WSN-based systems experimentally applied to the localization of people [2] and wildlife [3] have been proposed. More recently, the WSN backbone as well as the investigated sensing technologies have been customized for monitoring superficial movements of the soil. The relative positions of wireless sensor nodes deployed where high probability of landslide exists is carefully monitored to forecast dangerous events. Multiple sensors like ultrasound, laser, high precision GPS, for the precise measurement of relative distances between the nodes of the network and the absolute positions respect to reference targets have been integrated in a prototype system. The millimeter accuracy in the position estimation enables the detection of small soil modifications and to infer the superficial evolution profile of the landslide. This information locally acquired also represent a fine tuning of large scale satellite acquisitions, usually adopted for remote sensing of landslides. The integration of dense and frequent WSN data within satellite image analysis will enhance the sensing capabilities leading to a multi-resolution and an highly space-time calibrated system. The WSN-based system has been preliminary tested in controlled environments in the ELEDIA laboratories and is now installed in a real test site where an active landslide is evolving. Preliminary data are here presented to assess the feasibility of the investigated solution in landslide monitoring and event forecasting. REFERENCES [1] M. Benedetti, L. Ioriatti, M. Martinelli, and F. Viani, 'Wireless sensor network: a pervasive technology for earth observation,' in IEEE Journal of Selected Topics in App. Earth Obs. And Remote Sens., vol. 3, no. 4, pp. 488-497, 2010. [2] F. Viani, M. Donelli, P. Rocca, G. Oliveri, D. Trinchero, and A. Massa, 'Localization, tracking and imaging of targets in wireless sensor networks,' Radio Science, vol. 46, no. 5, 2011. [3] F. Viani, F. Robol, M. Salucci, E. Giarola, S. De Vigili, M. Rocca, F. Boldrini, G. Benedetti, and A. Massa, 'WSN-based early alert system for preventing wildlife-vehicle collisions in Alps regions - From the laboratory test to the real-world implementation,' 7th European Conference on Antennas and Propagation 2013 (EUCAP2013), Gothenburg, Sweden, April 8-12, 2013.
Mackintosh, Maureen; Mugwagwa, Julius; Banda, Geoffrey; Tibandebage, Paula; Tunguhole, Jires; Wangwe, Samuel; Karimi Njeru, Mercy
2018-01-01
Abstract The benefits of local production of pharmaceuticals in Africa for local access to medicines and to effective treatment remain contested. There is scepticism among health systems experts internationally that production of pharmaceuticals in sub-Saharan Africa (SSA) can provide competitive prices, quality and reliability of supply. Meanwhile low-income African populations continue to suffer poor access to a broad range of medicines, despite major international funding efforts. A current wave of pharmaceutical industry investment in SSA is associated with active African government promotion of pharmaceuticals as a key sector in industrialization strategies. We present evidence from interviews in 2013–15 and 2017 in East Africa that health system actors perceive these investments in local production as an opportunity to improve access to medicines and supplies. We then identify key policies that can ensure that local health systems benefit from the investments. We argue for a ‘local health’ policy perspective, framed by concepts of proximity and positionality, which works with local priorities and distinct policy time scales and identifies scope for incentive alignment to generate mutually beneficial health–industry linkages and strengthening of both sectors. We argue that this local health perspective represents a distinctive shift in policy framing: it is not necessarily in conflict with ‘global health’ frameworks but poses a challenge to some of its underlying assumptions. PMID:29562286
The RMI Space Weather and Navigation Systems (SWANS) Project
NASA Astrophysics Data System (ADS)
Warnant, Rene; Lejeune, Sandrine; Wautelet, Gilles; Spits, Justine; Stegen, Koen; Stankov, Stan
The SWANS (Space Weather and Navigation Systems) research and development project (http://swans.meteo.be) is an initiative of the Royal Meteorological Institute (RMI) under the auspices of the Belgian Solar-Terrestrial Centre of Excellence (STCE). The RMI SWANS objectives are: research on space weather and its effects on GNSS applications; permanent mon-itoring of the local/regional geomagnetic and ionospheric activity; and development/operation of relevant nowcast, forecast, and alert services to help professional GNSS/GALILEO users in mitigating space weather effects. Several SWANS developments have already been implemented and available for use. The K-LOGIC (Local Operational Geomagnetic Index K Calculation) system is a nowcast system based on a fully automated computer procedure for real-time digital magnetogram data acquisition, data screening, and calculating the local geomagnetic K index. Simultaneously, the planetary Kp index is estimated from solar wind measurements, thus adding to the service reliability and providing forecast capabilities as well. A novel hybrid empirical model, based on these ground-and space-based observations, has been implemented for nowcasting and forecasting the geomagnetic index, issuing also alerts whenever storm-level activity is indicated. A very important feature of the nowcast/forecast system is the strict control on the data input and processing, allowing for an immediate assessment of the output quality. The purpose of the LIEDR (Local Ionospheric Electron Density Reconstruction) system is to acquire and process data from simultaneous ground-based GNSS TEC and digital ionosonde measurements, and subsequently to deduce the vertical electron density distribution. A key module is the real-time estimation of the ionospheric slab thickness, offering additional infor-mation on the local ionospheric dynamics. The RTK (Real Time Kinematic) status mapping provides a quick look at the small-scale ionospheric effects on the RTK precision for several GPS stations in Belgium. The service assesses the effect of small-scale ionospheric irregularities by monitoring the high-frequency TEC rate of change at any given station. This assessment results in a (colour) code assigned to each station, code ranging from "quiet" (green) to "extreme" (red) and referring to the local ionospheric conditions. Alerts via e-mail are sent to subscribed users when disturbed conditions are observed. SoDIPE (Software for Determining the Ionospheric Positioning Error) estimates the position-ing error due to the ionospheric conditions only (called "ionospheric error") in high-precision positioning applications (RTK in particular). For each of the Belgian Active Geodetic Network (AGN) baselines, SoDIPE computes the ionospheric error and its median value (every 15 min-utes). Again, a (colour) code is assigned to each baseline, ranging from "nominal" (green) to "extreme" (red) error level. Finally, all available baselines (drawn in colour corresponding to error level) are displayed on a map of Belgium. The future SWANS work will focus on regional ionospheric monitoring and developing various other nowcast and forecast services.
A Context-Recognition-Aided PDR Localization Method Based on the Hidden Markov Model
Lu, Yi; Wei, Dongyan; Lai, Qifeng; Li, Wen; Yuan, Hong
2016-01-01
Indoor positioning has recently become an important field of interest because global navigation satellite systems (GNSS) are usually unavailable in indoor environments. Pedestrian dead reckoning (PDR) is a promising localization technique for indoor environments since it can be implemented on widely used smartphones equipped with low cost inertial sensors. However, the PDR localization severely suffers from the accumulation of positioning errors, and other external calibration sources should be used. In this paper, a context-recognition-aided PDR localization model is proposed to calibrate PDR. The context is detected by employing particular human actions or characteristic objects and it is matched to the context pre-stored offline in the database to get the pedestrian’s location. The Hidden Markov Model (HMM) and Recursive Viterbi Algorithm are used to do the matching, which reduces the time complexity and saves the storage. In addition, the authors design the turn detection algorithm and take the context of corner as an example to illustrate and verify the proposed model. The experimental results show that the proposed localization method can fix the pedestrian’s starting point quickly and improves the positioning accuracy of PDR by 40.56% at most with perfect stability and robustness at the same time. PMID:27916922
Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure
NASA Astrophysics Data System (ADS)
Liu, Chun; Li, Zhengning; Zhou, Yuan
2016-06-01
Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.
Ma, Lin; Xu, Yubin
2015-01-01
Green WLAN is a promising technique for accessing future indoor Internet services. It is designed not only for high-speed data communication purposes but also for energy efficiency. The basic strategy of green WLAN is that all the access points are not always powered on, but rather work on-demand. Though powering off idle access points does not affect data communication, a serious asymmetric matching problem will arise in a WLAN indoor positioning system due to the fact the received signal strength (RSS) readings from the available access points are different in their offline and online phases. This asymmetry problem will no doubt invalidate the fingerprint algorithm used to estimate the mobile device location. Therefore, in this paper we propose a green WLAN indoor positioning system, which can recover RSS readings and achieve good localization performance based on singular value thresholding (SVT) theory. By solving the nuclear norm minimization problem, SVT recovers not only the radio map, but also online RSS readings from a sparse matrix by sensing only a fraction of the RSS readings. We have implemented the method in our lab and evaluated its performances. The experimental results indicate the proposed system could recover the RSS readings and achieve good localization performance. PMID:25587977
Sound localization by echolocating bats
NASA Astrophysics Data System (ADS)
Aytekin, Murat
Echolocating bats emit ultrasonic vocalizations and listen to echoes reflected back from objects in the path of the sound beam to build a spatial representation of their surroundings. Important to understanding the representation of space through echolocation are detailed studies of the cues used for localization, the sonar emission patterns and how this information is assembled. This thesis includes three studies, one on the directional properties of the sonar receiver, one on the directional properties of the sonar transmitter, and a model that demonstrates the role of action in building a representation of auditory space. The general importance of this work to a broader understanding of spatial localization is discussed. Investigations of the directional properties of the sonar receiver reveal that interaural level difference and monaural spectral notch cues are both dependent on sound source azimuth and elevation. This redundancy allows flexibility that an echolocating bat may need when coping with complex computational demands for sound localization. Using a novel method to measure bat sonar emission patterns from freely behaving bats, I show that the sonar beam shape varies between vocalizations. Consequently, the auditory system of a bat may need to adapt its computations to accurately localize objects using changing acoustic inputs. Extra-auditory signals that carry information about pinna position and beam shape are required for auditory localization of sound sources. The auditory system must learn associations between extra-auditory signals and acoustic spatial cues. Furthermore, the auditory system must adapt to changes in acoustic input that occur with changes in pinna position and vocalization parameters. These demands on the nervous system suggest that sound localization is achieved through the interaction of behavioral control and acoustic inputs. A sensorimotor model demonstrates how an organism can learn space through auditory-motor contingencies. The model also reveals how different aspects of sound localization, such as experience-dependent acquisition, adaptation, and extra-auditory influences, can be brought together under a comprehensive framework. This thesis presents a foundation for understanding the representation of auditory space that builds upon acoustic cues, motor control, and learning dynamic associations between action and auditory inputs.
Feltus, F Alex
2014-06-01
Understanding the control of any trait optimally requires the detection of causal genes, gene interaction, and mechanism of action to discover and model the biochemical pathways underlying the expressed phenotype. Functional genomics techniques, including RNA expression profiling via microarray and high-throughput DNA sequencing, allow for the precise genome localization of biological information. Powerful genetic approaches, including quantitative trait locus (QTL) and genome-wide association study mapping, link phenotype with genome positions, yet genetics is less precise in localizing the relevant mechanistic information encoded in DNA. The coupling of salient functional genomic signals with genetically mapped positions is an appealing approach to discover meaningful gene-phenotype relationships. Techniques used to define this genetic-genomic convergence comprise the field of systems genetics. This short review will address an application of systems genetics where RNA profiles are associated with genetically mapped genome positions of individual genes (eQTL mapping) or as gene sets (co-expression network modules). Both approaches can be applied for knowledge independent selection of candidate genes (and possible control mechanisms) underlying complex traits where multiple, likely unlinked, genomic regions might control specific complex traits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Mapping AIS coverage for trusted surveillance
NASA Astrophysics Data System (ADS)
Lapinski, Anna-Liesa S.; Isenor, Anthony W.
2010-10-01
Automatic Identification System (AIS) is an unattended vessel reporting system developed for collision avoidance. Shipboard AIS equipment automatically broadcasts vessel positional data at regular intervals. The real-time position and identity data from a vessel is received by other vessels in the area thereby assisting with local navigation. As well, AIS broadcasts are beneficial to those concerned with coastal and harbour security. Land-based AIS receiving stations can also collect the AIS broadcasts. However, reception at the land station is dependent upon the ship's position relative to the receiving station. For AIS to be used as a trusted surveillance system, the characteristics of the AIS coverage area in the vicinity of the station (or stations) should be understood. This paper presents some results of a method being investigated at DRDC Atlantic, Canada) to map the AIS coverage characteristics of a dynamic AIS reception network. The method is shown to clearly distinguish AIS reception edges from those edges caused by vessel traffic patterns. The method can also be used to identify temporal changes in the coverage area, an important characteristic for local maritime security surveillance activities. Future research using the coverage estimate technique is also proposed to support surveillance activities.
N2 triplet band systems and atomic oxygen in the dayglow
NASA Astrophysics Data System (ADS)
Broadfoot, A. L.; Hatfield, D. B.; Anderson, E. R.; Stone, T. C.; Sandel, B. R.; Gardner, J. A.; Murad, E.; Knecht, D. J.; Pike, C. P.; Viereck, R. A.
1997-06-01
New spectrographic observations of the Earth's dayglow have been acquired by the Arizona Airglow Experiment (GLO) flown on the space shuttle. GLO is an imaging spectrograph that records simultaneous vertical profiles of prominent Earth limb emissions occurring at wavelengths between 115 and 900 nm. This study addresses the measured emissions from the N2 triplet states (first positive, second positive, and Vegard-Kaplan band systems) and their excitation by the local photoelectron flux. The triplet state population distributions modeled for aurora by Cartwright [1978] are modified for dayglow conditions by changing to a photoelectron-flux energy distribution and including resonance scattering by the first positive system. Modeled and observed intensities are in excellent agreement, in contrast to the well-studied auroral case. This work concentrates on dayglow conditions at 200 km altitude near the subsolar point. Parameters to infer the local photoelectron flux from the emission band intensities are provided. Several atomic oxygen dayglow emission features were analyzed to complement the N2 analysis. The photoelectron-excited O I(135.6, 777.4 nm) lines were found to be 3 to 4 times weaker than predicted while the O I(630.0, 844.6 nm) lines were in close agreement with the model prediction.
Optimal Correlations in Many-Body Quantum Systems
NASA Astrophysics Data System (ADS)
Amico, L.; Rossini, D.; Hamma, A.; Korepin, V. E.
2012-06-01
Information and correlations in a quantum system are closely related through the process of measurement. We explore such relation in a many-body quantum setting, effectively bridging between quantum metrology and condensed matter physics. To this aim we adopt the information-theory view of correlations and study the amount of correlations after certain classes of positive-operator-valued measurements are locally performed. As many-body systems, we consider a one-dimensional array of interacting two-level systems (a spin chain) at zero temperature, where quantum effects are most pronounced. We demonstrate how the optimal strategy to extract the correlations depends on the quantum phase through a subtle interplay between local interactions and coherence.
Iris recognition using possibilistic fuzzy matching on local features.
Tsai, Chung-Chih; Lin, Heng-Yi; Taur, Jinshiuh; Tao, Chin-Wang
2012-02-01
In this paper, we propose a novel possibilistic fuzzy matching strategy with invariant properties, which can provide a robust and effective matching scheme for two sets of iris feature points. In addition, the nonlinear normalization model is adopted to provide more accurate position before matching. Moreover, an effective iris segmentation method is proposed to refine the detected inner and outer boundaries to smooth curves. For feature extraction, the Gabor filters are adopted to detect the local feature points from the segmented iris image in the Cartesian coordinate system and to generate a rotation-invariant descriptor for each detected point. After that, the proposed matching algorithm is used to compute a similarity score for two sets of feature points from a pair of iris images. The experimental results show that the performance of our system is better than those of the systems based on the local features and is comparable to those of the typical systems.
Local Positioning Systems in (Game) Sports
Leser, Roland; Baca, Arnold; Ogris, Georg
2011-01-01
Position data of players and athletes are widely used in sports performance analysis for measuring the amounts of physical activities as well as for tactical assessments in game sports. However, positioning sensing systems are applied in sports as tools to gain objective information of sports behavior rather than as components of intelligent spaces (IS). The paper outlines the idea of IS for the sports context with special focus to game sports and how intelligent sports feedback systems can benefit from IS. Henceforth, the most common location sensing techniques used in sports and their practical application are reviewed, as location is among the most important enabling techniques for IS. Furthermore, the article exemplifies the idea of IS in sports on two applications. PMID:22163725
Frenetic Bounds on the Entropy Production
NASA Astrophysics Data System (ADS)
Maes, Christian
2017-10-01
We give a systematic derivation of positive lower bounds for the expected entropy production (EP) rate in classical statistical mechanical systems obeying a dynamical large deviation principle. The logic is the same for the return to thermodynamic equilibrium as it is for steady nonequilibria working under the condition of local detailed balance. We recover there recently studied "uncertainty" relations for the EP, appearing in studies about the effectiveness of mesoscopic machines. In general our refinement of the positivity of the expected EP rate is obtained in terms of a positive and even function of the expected current(s) which measures the dynamical activity in the system, a time-symmetric estimate of the changes in the system's configuration. Also underdamped diffusions can be included in the analysis.
NASA Astrophysics Data System (ADS)
Bejuri, Wan Mohd Yaakob Wan; Mohamad, Mohd Murtadha
2014-11-01
This paper introduces a new grey-world-based feature detection and matching algorithm, intended for use with mobile positioning systems. This approach uses a combination of a wireless local area network (WLAN) and a mobile phone camera to determine positioning in an illumination environment using a practical and pervasive approach. The signal combination is based on retrieved signal strength from the WLAN access point and the image processing information from the building hallways. The results show our method can handle information better than Harlan Hile's method relative to the illumination environment, producing lower illumination error in five (5) different environments.
Multiple positive normalized solutions for nonlinear Schrödinger systems
NASA Astrophysics Data System (ADS)
Gou, Tianxiang; Jeanjean, Louis
2018-05-01
We consider the existence of multiple positive solutions to the nonlinear Schrödinger systems set on , under the constraint Here are prescribed, , and the frequencies are unknown and will appear as Lagrange multipliers. Two cases are studied, the first when , the second when In both cases, assuming that is sufficiently small, we prove the existence of two positive solutions. The first one is a local minimizer for which we establish the compactness of the minimizing sequences and also discuss the orbital stability of the associated standing waves. The second solution is obtained through a constrained mountain pass and a constrained linking respectively.
Chen, Guoliang; Meng, Xiaolin; Wang, Yunjia; Zhang, Yanzhe; Tian, Peng; Yang, Huachao
2015-09-23
Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone's acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals.
Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization
Chen, Guoliang; Meng, Xiaolin; Wang, Yunjia; Zhang, Yanzhe; Tian, Peng; Yang, Huachao
2015-01-01
Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone’s acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals. PMID:26404314
Efficient Implementation of an Optimal Interpolator for Large Spatial Data Sets
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.
2007-01-01
Scattered data interpolation is a problem of interest in numerous areas such as electronic imaging, smooth surface modeling, and computational geometry. Our motivation arises from applications in geology and mining, which often involve large scattered data sets and a demand for high accuracy. The method of choice is ordinary kriging. This is because it is a best unbiased estimator. Unfortunately, this interpolant is computationally very expensive to compute exactly. For n scattered data points, computing the value of a single interpolant involves solving a dense linear system of size roughly n x n. This is infeasible for large n. In practice, kriging is solved approximately by local approaches that are based on considering only a relatively small'number of points that lie close to the query point. There are many problems with this local approach, however. The first is that determining the proper neighborhood size is tricky, and is usually solved by ad hoc methods such as selecting a fixed number of nearest neighbors or all the points lying within a fixed radius. Such fixed neighborhood sizes may not work well for all query points, depending on local density of the point distribution. Local methods also suffer from the problem that the resulting interpolant is not continuous. Meyer showed that while kriging produces smooth continues surfaces, it has zero order continuity along its borders. Thus, at interface boundaries where the neighborhood changes, the interpolant behaves discontinuously. Therefore, it is important to consider and solve the global system for each interpolant. However, solving such large dense systems for each query point is impractical. Recently a more principled approach to approximating kriging has been proposed based on a technique called covariance tapering. The problems arise from the fact that the covariance functions that are used in kriging have global support. Our implementations combine, utilize, and enhance a number of different approaches that have been introduced in literature for solving large linear systems for interpolation of scattered data points. For very large systems, exact methods such as Gaussian elimination are impractical since they require 0(n(exp 3)) time and 0(n(exp 2)) storage. As Billings et al. suggested, we use an iterative approach. In particular, we use the SYMMLQ method, for solving the large but sparse ordinary kriging systems that result from tapering. The main technical issue that need to be overcome in our algorithmic solution is that the points' covariance matrix for kriging should be symmetric positive definite. The goal of tapering is to obtain a sparse approximate representation of the covariance matrix while maintaining its positive definiteness. Furrer et al. used tapering to obtain a sparse linear system of the form Ax = b, where A is the tapered symmetric positive definite covariance matrix. Thus, Cholesky factorization could be used to solve their linear systems. They implemented an efficient sparse Cholesky decomposition method. They also showed if these tapers are used for a limited class of covariance models, the solution of the system converges to the solution of the original system. Matrix A in the ordinary kriging system, while symmetric, is not positive definite. Thus, their approach is not applicable to the ordinary kriging system. Therefore, we use tapering only to obtain a sparse linear system. Then, we use SYMMLQ to solve the ordinary kriging system. We show that solving large kriging systems becomes practical via tapering and iterative methods, and results in lower estimation errors compared to traditional local approaches, and significant memory savings compared to the original global system. We also developed a more efficient variant of the sparse SYMMLQ method for large ordinary kriging systems. This approach adaptively finds the correct local neighborhood for each query point in the interpolation process.
Localization of organ-specific antigens in the nervous system of the rat.
Weinrauder, H; Lach, B
1977-08-16
Localization of organ-specific brain antigens in the central nervous system of the rat has been studied by means of indirect immunofluorescence. Rabbit antiserum against homogenate of rat brain, previously absorbed with normal serum and homogenates of rat organs (kidney, liver, spleen), reacted with the water-soluble antigens of rat brain prepared by extraction with phosphate buffer (pH 7.3) and ultracentrifugation at 50 000 X g to give one band in the immunodiffusion test and 2--3 precipitation arcs in immunoelectrophoresis. There was also a positive reaction with peripheral nerve. The antigen was detectable in all regions of the CNS. Cells with distinct cytoplasmic immunofluorescence were most frequently observed in cerebellar white matter, pons, cerebellar pedunculi, longitudinal tracts of the brain stem. Positive immunofluorecence reaction has appeared in the outer plexiform layer and granular layer of the retina, satelite cells of the spinal root ganglia and Schwann cells. A similar reaction was observed in human, mouse and guinea pig brain slices. Both the morphological and immunochemical reactions are indicative of glial localization of this antigen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amstutz, Christoph A., E-mail: christoph.amstutz@usz.ch; Bechrakis, Nikolaos E.; Foerster, Michael H.
2012-03-15
Purpose: External beam proton radiation therapy has been used since 1975 to treat choroidal melanoma. For tumor location determination during proton radiation treatment, surgical tantalum clips are registered with image data. This report introduces the intraoperative application of an opto-electronic navigation system to determine with high precision the position of the tantalum markers and their spatial relationship to the tumor and anatomical landmarks. The application of the technique in the first 4 patients is described. Methods and Materials: A navigated reference base was attached noninvasively to the eye, and a navigated pointer device was used to record the spatial positionmore » of the tantalum markers, the tumor, and anatomical landmarks. Measurement accuracy was assessed on ex vivo porcine eye specimen by repetitive recording of the tantalum marker positions. The method was applied intraoperatively on 4 patients undergoing routine tantalum clip surgery. The spatial position information delivered by the navigation system was compared to the geometric data generated by the EYEPLAN software. Results: In the ex vivo experiments, the maximum repetition error was 0.34 mm. For the intraoperative application, the root mean square error of paired-points matching of the marker positions from the navigation system and from the EYEPLAN software was 0.701-1.25 mm. Conclusions: Navigation systems are a feasible tool for accurate localization of tantalum markers and anatomic landmarks. They can provide additional geometric information, and therefore have the potential to increase the reliability and accuracy of external beam proton radiation therapy for choroidal melanoma.« less
Aerial vehicles collision avoidance using monocular vision
NASA Astrophysics Data System (ADS)
Balashov, Oleg; Muraviev, Vadim; Strotov, Valery
2016-10-01
In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.
Luteberget, Live S.; Spencer, Matt; Gilgien, Matthias
2018-01-01
Aim: The aim of the present study was to determine the validity of position, distance traveled and instantaneous speed of team sport players as measured by a commercially available local positioning system (LPS) during indoor use. In addition, the study investigated how the placement of the field of play relative to the anchor nodes and walls of the building affected the validity of the system. Method: The LPS (Catapult ClearSky T6, Catapult Sports, Australia) and the reference system [Qualisys Oqus, Qualisys AB, Sweden, (infra-red camera system)] were installed around the field of play to capture the athletes' motion. Athletes completed five tasks, all designed to imitate team-sports movements. The same protocol was completed in two sessions, one with an assumed optimal geometrical setup of the LPS (optimal condition), and once with a sub-optimal geometrical setup of the LPS (sub-optimal condition). Raw two-dimensional position data were extracted from both the LPS and the reference system for accuracy assessment. Position, distance and speed were compared. Results: The mean difference between the LPS and reference system for all position estimations was 0.21 ± 0.13 m (n = 30,166) in the optimal setup, and 1.79 ± 7.61 m (n = 22,799) in the sub-optimal setup. The average difference in distance was below 2% for all tasks in the optimal condition, while it was below 30% in the sub-optimal condition. Instantaneous speed showed the largest differences between the LPS and reference system of all variables, both in the optimal (≥35%) and sub-optimal condition (≥74%). The differences between the LPS and reference system in instantaneous speed were speed dependent, showing increased differences with increasing speed. Discussion: Measures of position, distance, and average speed from the LPS show low errors, and can be used confidently in time-motion analyses for indoor team sports. The calculation of instantaneous speed from LPS raw data is not valid. To enhance instantaneous speed calculation the application of appropriate filtering techniques to enhance the validity of such data should be investigated. For all measures, the placement of anchor nodes and the field of play relative to the walls of the building influence LPS output to a large degree. PMID:29670530
Metrology Camera System Using Two-Color Interferometry
NASA Technical Reports Server (NTRS)
Dubovitsky, Serge; Liebe, Carl Christian; Peters, Robert; Lay, Oliver
2007-01-01
A metrology system that contains no moving parts simultaneously measures the bearings and ranges of multiple reflective targets in its vicinity, enabling determination of the three-dimensional (3D) positions of the targets with submillimeter accuracy. The system combines a direction-measuring metrology camera and an interferometric range-finding subsystem. Because the system is based partly on a prior instrument denoted the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor and because of its 3D capability, the system is denoted the MSTAR3D. Developed for use in measuring the shape (for the purpose of compensating for distortion) of large structures like radar antennas, it can also be used to measure positions of multiple targets in the course of conventional terrestrial surveying. A diagram of the system is shown in the figure. One of the targets is a reference target having a known, constant distance with respect to the system. The system comprises a laser for generating local and target beams at a carrier frequency; a frequency shifting unit to introduce a frequency shift offset between the target and local beams; a pair of high-speed modulators that apply modulation to the carrier frequency in the local and target beams to produce a series of modulation sidebands, the highspeed modulators having modulation frequencies of FL and FM; a target beam launcher that illuminates the targets with the target beam; optics and a multipixel photodetector; a local beam launcher that launches the local beam towards the multi-pixel photodetector; a mirror for projecting to the optics a portion of the target beam reflected from the targets, the optics being configured to focus the portion of the target beam at the multi-pixel photodetector; and a signal-processing unit connected to the photodetector. The portion of the target beam reflected from the targets produces spots on the multi-pixel photodetector corresponding to the targets, respectively, and the signal-processing unit centroids the spots to determine bearings of the targets, respectively. As the spots oscillate in intensity because they are mixed with the local laser beam that is flood illuminating the focal plane, the phase of oscillation of each spot is measured, the phase of sidebands in the oscillation of each spot being proportional to a distance to the corresponding target relative to the reference target A.
Myklebust, Lars Henrik; Sørgaard, Knut; Wynn, Rolf
2015-01-01
In the last few decades, there has been a restructuring of the psychiatric services in many countries. The complexity of these systems may represent a challenge to patients that suffer from serious psychiatric disorders. We examined whether local integration of inpatient and outpatient services in contrast to centralized institutions strengthened continuity of care. Two different service-systems were compared. Service-utilization over a 4-year period for 690 inpatients was extracted from the patient registries. The results were controlled for demographic variables, model of service-system, central inpatient admission or local inpatient admission, diagnoses, and duration of inpatient stays. The majority of inpatients in the area with local integration of inpatient and outpatient services used both types of care. In the area that did not have beds locally, many patients that had been hospitalized did not receive outpatient follow-up. Predictors of inpatients' use of outpatient psychiatric care were: Model of service-system (centralized vs decentralized), a diagnosis of affective disorder, central inpatient admission only, and duration of inpatient stays. Psychiatric centers with local inpatient units may positively affect continuity of care for patients with severe psychiatric disorders, probably because of a high functional integration of inpatient and outpatient care.
Myklebust, Lars Henrik; Sørgaard, Knut; Wynn, Rolf
2015-01-01
Objectives In the last few decades, there has been a restructuring of the psychiatric services in many countries. The complexity of these systems may represent a challenge to patients that suffer from serious psychiatric disorders. We examined whether local integration of inpatient and outpatient services in contrast to centralized institutions strengthened continuity of care. Methods Two different service-systems were compared. Service-utilization over a 4-year period for 690 inpatients was extracted from the patient registries. The results were controlled for demographic variables, model of service-system, central inpatient admission or local inpatient admission, diagnoses, and duration of inpatient stays. Results The majority of inpatients in the area with local integration of inpatient and outpatient services used both types of care. In the area that did not have beds locally, many patients that had been hospitalized did not receive outpatient follow-up. Predictors of inpatients’ use of outpatient psychiatric care were: Model of service-system (centralized vs decentralized), a diagnosis of affective disorder, central inpatient admission only, and duration of inpatient stays. Conclusion Psychiatric centers with local inpatient units may positively affect continuity of care for patients with severe psychiatric disorders, probably because of a high functional integration of inpatient and outpatient care. PMID:26604843
78 FR 45848 - Amendment of Class E Airspace; Salt Lake City, UT
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... Salt Lake City, UT, to accommodate aircraft using Area Navigation (RNAV) Global Positioning System (GPS) and Instrument Landing System (ILS) or Localizer (LOC) standard instrument approach procedures at Salt..., and makes a minor change to the legal description of Class E airspace extending upward from 1,200 feet...
The Sky's the Limit: Integrating Geospatial Tools with Pre-College Youth Education
ERIC Educational Resources Information Center
McGee, John; Kirwan, Jeff
2010-01-01
Geospatial tools, which include global positioning systems (GPS), geographic information systems (GIS), and remote sensing, are increasingly driving a variety of applications. Local governments and private industry are embracing these tools, and the public is beginning to demand geospatial services. The U.S. Department of Labor (DOL) reported that…
DOT National Transportation Integrated Search
1994-09-01
INTELLIGENT VEHICLE HIGHWAY SYSTEMS (IVHS) HAVE THE POTENTIAL TO SUBSTANTIALLY CHANGE TRANSPORTATION'S IMPACT ON URBAN AIR QUALITY AND OTHER ENVIRONMENTAL ASPECTS. WHETHER THIS IMPACT IS POSITIVE DEPENDS ON HOW THESE TECHNOLOGIES ARE DEPLOYED. THIS S...
Interface colloidal robotic manipulator
Aronson, Igor; Snezhko, Oleksiy
2015-08-04
A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.
Computer-assisted neurosurgical navigational system for transsphenoidal surgery--technical note.
Onizuka, M; Tokunaga, Y; Shibayama, A; Miyazaki, H
2001-11-01
Transsphenoidal surgery carries the risk of carotid artery injury even for very experienced neurosurgeons. The computer-assisted neurosurgical (CANS) navigational system was used to obtain more precise guidance, based on the axial and coronal images during the transsphenoidal approach for nine pituitary adenomas. The CANS navigator consists of a three-dimensional digitizer, a computer, and a graphic unit, which utilizes electromagnetic coupling technology to detect the spatial position of a suction tube attached to a magnetic sensor. Preoperatively, the magnetic resonance images are transferred and stored in the computer and the tip of the suction tube is shown on a real-time basis superimposed on the preoperative images. The CANS navigation system correctly displayed the surgical orientation and provided localization in all nine patients. No intraoperative complications were associated with the use of this system. However, outflow of cerebrospinal fluid during tumor removal may affect the accuracy, so the position of the probe when the tumor is removed must be accurately determined. The CANS navigator enables precise localization of the suction tube during the transsphenoidal approach and allows safer and less-invasive surgery.
Design of laser monitoring and sound localization system
NASA Astrophysics Data System (ADS)
Liu, Yu-long; Xu, Xi-ping; Dai, Yu-ming; Qiao, Yang
2013-08-01
In this paper, a novel design of laser monitoring and sound localization system is proposed. It utilizes laser to monitor and locate the position of the indoor conversation. In China most of the laser monitors no matter used in labor in an instrument uses photodiode or phototransistor as a detector at present. At the laser receivers of those facilities, light beams are adjusted to ensure that only part of the window in photodiodes or phototransistors received the beams. The reflection would deviate from its original path because of the vibration of the detected window, which would cause the changing of imaging spots in photodiode or phototransistor. However, such method is limited not only because it could bring in much stray light in receivers but also merely single output of photocurrent could be obtained. Therefore a new method based on quadrant detector is proposed. It utilizes the relation of the optical integral among quadrants to locate the position of imaging spots. This method could eliminate background disturbance and acquired two-dimensional spots vibrating data pacifically. The principle of this whole system could be described as follows. Collimated laser beams are reflected from vibrate-window caused by the vibration of sound source. Therefore reflected beams are modulated by vibration source. Such optical signals are collected by quadrant detectors and then are processed by photoelectric converters and corresponding circuits. Speech signals are eventually reconstructed. In addition, sound source localization is implemented by the means of detecting three different reflected light sources simultaneously. Indoor mathematical models based on the principle of Time Difference Of Arrival (TDOA) are established to calculate the twodimensional coordinate of sound source. Experiments showed that this system is able to monitor the indoor sound source beyond 15 meters with a high quality of speech reconstruction and to locate the sound source position accurately.
NASA Astrophysics Data System (ADS)
Shahbazi, M.; Sattari, M.; Homayouni, S.; Saadatseresht, M.
2012-07-01
Recent advances in positioning techniques have made it possible to develop Mobile Mapping Systems (MMS) for detection and 3D localization of various objects from a moving platform. On the other hand, automatic traffic sign recognition from an equipped mobile platform has recently been a challenging issue for both intelligent transportation and municipal database collection. However, there are several inevitable problems coherent to all the recognition methods completely relying on passive chromatic or grayscale images. This paper presents the implementation and evaluation of an operational MMS. Being distinct from the others, the developed MMS comprises one range camera based on Photonic Mixer Device (PMD) technology and one standard 2D digital camera. The system benefits from certain algorithms to detect, recognize and localize the traffic signs by fusing the shape, color and object information from both range and intensity images. As the calibrating stage, a self-calibration method based on integrated bundle adjustment via joint setup with the digital camera is applied in this study for PMD camera calibration. As the result, an improvement of 83 % in RMS of range error and 72 % in RMS of coordinates residuals for PMD camera, over that achieved with basic calibration is realized in independent accuracy assessments. Furthermore, conventional photogrammetric techniques based on controlled network adjustment are utilized for platform calibration. Likewise, the well-known Extended Kalman Filtering (EKF) is applied to integrate the navigation sensors, namely GPS and INS. The overall acquisition system along with the proposed techniques leads to 90 % true positive recognition and the average of 12 centimetres 3D positioning accuracy.
NASA Astrophysics Data System (ADS)
Shahbazi, M.; Sattari, M.; Homayouni, S.; Saadatseresht, M.
2012-07-01
Recent advances in positioning techniques have made it possible to develop Mobile Mapping Systems (MMS) for detection and 3D localization of various objects from a moving platform. On the other hand, automatic traffic sign recognition from an equipped mobile platform has recently been a challenging issue for both intelligent transportation and municipal database collection. However, there are several inevitable problems coherent to all the recognition methods completely relying on passive chromatic or grayscale images. This paper presents the implementation and evaluation of an operational MMS. Being distinct from the others, the developed MMS comprises one range camera based on Photonic Mixer Device (PMD) technology and one standard 2D digital camera. The system benefits from certain algorithms to detect, recognize and localize the traffic signs by fusing the shape, color and object information from both range and intensity images. As the calibrating stage, a self-calibration method based on integrated bundle adjustment via joint setup with the digital camera is applied in this study for PMD camera calibration. As the result, an improvement of 83% in RMS of range error and 72% in RMS of coordinates residuals for PMD camera, over that achieved with basic calibration is realized in independent accuracy assessments. Furthermore, conventional photogrammetric techniques based on controlled network adjustment are utilized for platform calibration. Likewise, the well-known Extended Kalman Filtering (EKF) is applied to integrate the navigation sensors, namely GPS and INS. The overall acquisition system along with the proposed techniques leads to 90% true positive recognition and the average of 12 centimetres 3D positioning accuracy.
Pomorska-Mól, M; Kwit, K; Markowska-Daniel, I; Kowalski, C; Pejsak, Z
2014-10-01
Local and systemic immune responses in pigs intranasally (IN) and intratracheally (IT) inoculated with swine influenza virus (SIV) were studied. No clinical signs were observed in IN-inoculated pigs, while IT-inoculated pigs developed typical signs of influenza. Significantly higher titres of specific antibodies and changes of haematological parameters were found only in IT-inoculated pigs. Because positive correlations between viral titre, local cytokine concentration, and lung pathology have been observed, we hypothesise that both viral load and the local secretion of cytokines play a role in the induction of lung lesions. It could be that a higher replication of SIV stimulates immune cells to secrete higher amounts of cytokines. The results of the present study indicate that pathogenesis of SIV is dependent on both, the damage caused to the lung parenchyma directly by virus, and the effects on the cells of the host's immune system. Copyright © 2014 Elsevier Ltd. All rights reserved.
On the use of particle filters for electromagnetic tracking in high dose rate brachytherapy
NASA Astrophysics Data System (ADS)
Götz, Th I.; Lahmer, G.; Brandt, T.; Kallis, K.; Strnad, V.; Bert, Ch; Hensel, B.; Tomé, A. M.; Lang, E. W.
2017-10-01
Modern radiotherapy of female breast cancers often employs high dose rate brachytherapy, where a radioactive source is moved inside catheters, implanted in the female breast, according to a prescribed treatment plan. Source localization relative to the patient’s anatomy is determined with solenoid sensors whose spatial positions are measured with an electromagnetic tracking system. Precise sensor dwell position determination is of utmost importance to assure irradiation of the cancerous tissue according to the treatment plan. We present a hybrid data analysis system which combines multi-dimensional scaling with particle filters to precisely determine sensor dwell positions in the catheters during subsequent radiation treatment sessions. Both techniques are complemented with empirical mode decomposition for the removal of superimposed breathing artifacts. We show that the hybrid model robustly and reliably determines the spatial positions of all catheters used during the treatment and precisely determines any deviations of actual sensor dwell positions from the treatment plan. The hybrid system only relies on sensor positions measured with an EMT system and relates them to the spatial positions of the implanted catheters as initially determined with a computed x-ray tomography.
Chaine, M; Gubbels, S; Voldstedlund, M; Kristensen, B; Nielsen, J; Andersen, L P; Ellermann-Eriksen, S; Engberg, J; Holm, A; Olesen, B; Schønheyder, H C; Østergaard, C; Ethelberg, S; Mølbak, K
2017-09-01
The surveillance of Clostridium difficile (CD) in Denmark consists of laboratory based data from Departments of Clinical Microbiology (DCMs) sent to the National Registry of Enteric Pathogens (NREP). We validated a new surveillance system for CD based on the Danish Microbiology Database (MiBa). MiBa automatically collects microbiological test results from all Danish DCMs. We built an algorithm to identify positive test results for CD recorded in MiBa. A CD case was defined as a person with a positive culture for CD or PCR detection of toxin A and/or B and/or binary toxin. We compared CD cases identified through the MiBa-based surveillance with those reported to NREP and locally in five DCMs representing different Danish regions. During 2010-2014, NREP reported 13 896 CD cases, and the MiBa-based surveillance 21 252 CD cases. There was a 99·9% concordance between the local datasets and the MiBa-based surveillance. Surveillance based on MiBa was superior to the current surveillance system, and the findings show that the number of CD cases in Denmark hitherto has been under-reported. There were only minor differences between local data and the MiBa-based surveillance, showing the completeness and validity of CD data in MiBa. This nationwide electronic system can greatly strengthen surveillance and research in various applications.
Tian, Qinglin; Salcic, Zoran; Wang, Kevin I-Kai; Pan, Yun
2015-12-05
Pedestrian dead reckoning is a common technique applied in indoor inertial navigation systems that is able to provide accurate tracking performance within short distances. Sensor drift is the main bottleneck in extending the system to long-distance and long-term tracking. In this paper, a hybrid system integrating traditional pedestrian dead reckoning based on the use of inertial measurement units, short-range radio frequency systems and particle filter map matching is proposed. The system is a drift-free pedestrian navigation system where position error and sensor drift is regularly corrected and is able to provide long-term accurate and reliable tracking. Moreover, the whole system is implemented on a commercial off-the-shelf smartphone and achieves real-time positioning and tracking performance with satisfactory accuracy.
Subwavelength atom localization via coherent manipulation of the Raman gain process
NASA Astrophysics Data System (ADS)
Qamar, Sajid; Mehmood, Asad; Qamar, Shahid
2009-03-01
We present a simple scheme of atom localization in a subwavelength domain via manipulation of Raman gain process. We consider a four-level system with a pump and a weak probe field. In addition, we apply a coherent field to control the gain process. The system is similar to the one used by Agarwal and Dasgupta [Phys. Rev. A 70, 023802 (2004)] for the superluminal pulse propagation through Raman gain medium. For atom localization, we consider both pump and control fields to be the standing-wave fields of the cavity. We show that a much precise position of an atom passing through the standing-wave fields can be determined by measuring the gain spectrum of the probe field.
The Portland Basin: A (big) river runs through it
Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.
2009-01-01
Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.
[Hypersensitivity to mosquito bite manifested as Skeeter síndrome].
Pérez-Vanzzini, Rafael; González-Díaz, Sandra Nora; Arias-Cruz, Alfredo; Palma-Gómez, Samuel; Yong-Rodríguez, Adrián; Gutiérrez-Mujica, José Julio; García-Calderín, Diego; Ibarra, Jesús Arturo
2015-01-01
The reactions to mosquito bites are immunological reactions with involvement of IgE, IgG and T cells mediated hypersensitivity. These reactions are common and range from small local reactions, large local reactions to systemic allergic reactions. Skeeter syndrome is defined as a large local induced inflammatory reaction to mosquito bite and sometimes accompanied by systemic symptoms such as fever and vomiting. Diagnosis is based on clinical history and physical examination, supported by the identification of specific IgE by skin testing. Treatment includes prevention, antihistamines and steroids in some cases. Specific immunotherapy still requires further study. This paper reports two cases of patients with hypersensitivity reactions to mosquito bites, which were evaluated in our center presenting positive skin tests.
Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.
2003-10-21
A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.
Analysis of continuous GPS measurements from southern Victoria Land, Antarctica
Willis, Michael J.
2007-01-01
Several years of continuous data have been collected at remote bedrock Global Positioning System (GPS) sites in southern Victoria Land, Antarctica. Annual to sub-annual variations are observed in the position time-series. An atmospheric pressure loading (APL) effect is calculated from pressure field anomalies supplied by the European Centre for Medium-Range Weather Forecasts (ECMWF) model loading an elastic Earth model. The predicted APL signal has a moderate correlation with the vertical position time-series at McMurdo, Ross Island (International Global Navigation Satellite System Service (IGS) station MCM4), produced using a global solution. In contrast, a local solution in which MCM4 is the fiducial site generates a vertical time series for a remote site in Victoria Land (Cape Roberts, ROB4) which exhibits a low, inverse correlation with the predicted atmospheric pressure loading signal. If, in the future, known and well modeled geophysical loads can be separated from the time-series, then local hydrological loading, of interest for glaciological and climate applications, can potentially be extracted from the GPS time-series.
Coherent detection of position errors in inter-satellite laser communications
NASA Astrophysics Data System (ADS)
Xu, Nan; Liu, Liren; Liu, De'an; Sun, Jianfeng; Luan, Zhu
2007-09-01
Due to the improved receiver sensitivity and wavelength selectivity, coherent detection became an attractive alternative to direct detection in inter-satellite laser communications. A novel method to coherent detection of position errors information is proposed. Coherent communication system generally consists of receive telescope, local oscillator, optical hybrid, photoelectric detector and optical phase lock loop (OPLL). Based on the system composing, this method adds CCD and computer as position error detector. CCD captures interference pattern while detection of transmission data from the transmitter laser. After processed and analyzed by computer, target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signal of PAT subsystem drive the receiver telescope to keep tracking to the target. Theoretical deviation and analysis is presented. The application extends to coherent laser rang finder, in which object distance and position information can be obtained simultaneously.
The Effect of Global and Local Damping on the Perception of Hardness.
van Beek, Femke Elise; Heck, Dennis J F; Nijmeijer, Henk; Bergmann Tiest, Wouter M; Kappers, Astrid M L
2016-01-01
In tele-operation systems, damping is often injected to guarantee system stability during contact with hard objects. In this study, we used psychophysical experiments to assess the effect of adding damping on the user's perception of object hardness. In Experiments 1 and 2, combinations of stiffness and damping were tested to assess their effect on perceived hardness. In both experiments, two tasks were used: an in-contact task, starting at the object's surface, and a contact-transition task, including a free-air movement. In Experiment 3, the difference between inserting damping globally (equally throughout the workspace) and locally (inside the object only) was tested. In all experiments, the correlation between the participant's perceptual decision and force and position data was also investigated. Experiments 1 and 2 show that when injecting damping globally, perceived hardness slightly increased for an in-contact task, while it decreased considerably for a contact-transition task. Experiment 3 shows that this effect was mainly due to inserting damping globally, since there was a large perceptual difference between inserting damping globally and locally. The force and position parameters suggest that participants used the same force profile during the two movements of one trial and assessed the system's reaction to this force to perceive hardness.
NASA directory of observation station locations, volume 1
NASA Technical Reports Server (NTRS)
1971-01-01
Geodetic information is presented for NASA tracking stations and observation stations in the NASA geodetic satellites program. A geodetic data sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums, and on selected world geodetic systems when available information permits.
Arias Cruz, Alfredo; Monsiváis Toscano, Gina; Gallardo Martínez, Gabriela; González Díaz, Sandra Nora; Galindo Rodríguez, Gabriela
2007-01-01
The reported prevalence of allergic systemic reactions to hymenoptera venom occur in up to 3.3% and large local reactions occur in 17% in the general population. To investigate the prevalence of hymenoptera sting allergy in a group of veterinary medicine students from Monterrey, Nuevo Leon, Mexico. A transverse and observational study was done with 64 students of veterinary medicine. We conducted a questionnaire about the students' history of insect allergy and atopy. Skin test with allergenic extracts of bee and ant were practiced to all subjects. We performed aeroallergen skin prick test to the subjets with suspected atopy. Students age ranged from 17 to 25 years (mean 20.2) and 37 were males. Twenty students (31.3%) had clinical history of atopy and positive skin tests to aeroallergens. On the other hand, 5 students (7.8%), including 2 atopic, had suffered large local reactions, but none of them had suffered systemic reactions. Bee and ant skin tests were positive in 15.6% and 31.3% of the students respectively. There was no difference in the prevalence of hymenoptera allergy between atopic and non atopic subjects (p < 0.05). Further, the frequency of atopy in subjects with positive skin tests for bee and ant was 50%. The prevalence of large local reactions and hymenoptera sensitization found in this group was similar to that found in other epidemiologic studies.
Kinematic Repulsions Between Inertial Systems in AN Expanding Inflationary Universe
NASA Astrophysics Data System (ADS)
Savickas, D.
2013-09-01
The cosmological background radiation is observed to be isotropic only within a coordinate system that is at rest relative to its local Hubble drift. This indicates that the Hubble motion describes the recessional motion of an inertial system that is at rest relative to its local Hubble drift. It is shown that when the Hubble parameter is kinematically defined directly in terms of the positions and velocities of mass particles in the universe, it then also defines inertial systems themselves in terms of the distribution and motion of mass particles. It is independent of the velocity of photons because photons always have a speed c relative to the inertial system in which they are located. Therefore the definition of their velocity depends on the definition of the Hubble parameter itself and cannot be used to define H. The derivative of the kinematically defined Hubble parameter with respect to time is shown to always be positive and highly repulsive at the time of the origin of the universe. A model is used which describes a universe that is balanced at the time of its origin so that H approaches zero as the universe expands to infinity.
Localization of a Robotic Crawler for CANDU Fuel Channel Inspection
NASA Astrophysics Data System (ADS)
Manning, Mark
This thesis discusses the design and development of a pipe crawling robot for the purpose of CANDU fuel channel inspection. The pipe crawling robot shall be capable of deploying the existing CIGAR (Channel Inspection and Gauging Apparatus for Reactors) sensor head. The main focus of this thesis is the design of the localization system for this robot and the many tests that were completed to demonstrate its accuracy. The proposed localization system consists of three redundant resolver wheels mounted to the robot's frame and two resolvers that are mounted inside a custom made cable drum. This cable drum shall be referred to in this thesis as the emergency retrieval device. This device serves the dual-purpose of providing absolute position measurements (via the cable that is tethered to the robot) as well as retrieving the robot if it is inoperable. The estimated accuracy of the proposed design is demonstrated with the use of a proof-of-concept prototype and a custom made test bench that uses a vision system to provide a more accurate estimate of the robot's position. The only major difference between the proof-of-concept prototype and the proposed solution is that the more expensive radiation hardened components were not used in the proof-of-concept prototype design. For example, the proposed solution shall use radiation hardened resolver wheels, whereas the proof-of-concept prototype used encoder wheels. These encoder wheels provide the same specified accuracy as the radiation hardened resolvers for the most realistic results possible. The rationale behind the design of the proof-of-concept prototype, the proposed final design, the design of the localization system test bench, and the test plan for developing all of the components of the design related to the robot's localization system are discussed in the thesis. The test plan provides a step by step guide to the configuration and optimization of an Unscented Kalman Filter (UKF). The UKF was selected as the ideal sensor fusion algorithm for use in this application. Benchmarking was completed to compare the accuracy achieved by the UKF algorithm to other data fusion algorithms. When compared to other algorithms, the UKF demonstrated the best accuracy when considering all likely sources of error such as sensor failure and surface unevenness. The test results show that the localization system is able to achieve a worst case positional accuracy of +/- 3.6 mm for the robot crawler over the full 6350 mm distance that the robot travels inside the pressure tube. This is extrapolated from the test results completed over the shorter length test bench with simulated surface unevenness. The key benefits of the pipe crawling robot when compared to the current system include: reduced dosage to workers and the reduced outage time. The advantages are due to the fact that the robot can be automated and multiple inspection robots can be deployed simultaneously. The current inspection system is only able to complete one inspection at a time.
Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile Positioning
NASA Astrophysics Data System (ADS)
Evennou, Frédéric; Marx, François
2006-12-01
This paper presents an aided dead-reckoning navigation structure and signal processing algorithms for self localization of an autonomous mobile device by fusing pedestrian dead reckoning and WiFi signal strength measurements. WiFi and inertial navigation systems (INS) are used for positioning and attitude determination in a wide range of applications. Over the last few years, a number of low-cost inertial sensors have become available. Although they exhibit large errors, WiFi measurements can be used to correct the drift weakening the navigation based on this technology. On the other hand, INS sensors can interact with the WiFi positioning system as they provide high-accuracy real-time navigation. A structure based on a Kalman filter and a particle filter is proposed. It fuses the heterogeneous information coming from those two independent technologies. Finally, the benefits of the proposed architecture are evaluated and compared with the pure WiFi and INS positioning systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianjun
2014-03-15
We consider the Schrödinger-Poisson system: −ε{sup 2}Δu + V(x)u + ϕ(x)u = f(u),−Δϕ = u{sup 2} in R{sup 3}, where the nonlinear term f is of critical growth. In this paper, we construct a solution (u{sub ε}, ϕ{sub ε}) of the above elliptic system, which concentrates at an isolated component of positive locally minimum points of V as ε → 0 under certain conditions on f. In particular, the monotonicity of (f(s))/(s{sup 3}) and the so-called Ambrosetti-Rabinowitz condition are not required.
Non-cooperative Fisher-KPP systems: traveling waves and long-time behavior
NASA Astrophysics Data System (ADS)
Girardin, Léo
2018-01-01
This paper is concerned with non-cooperative parabolic reaction-diffusion systems which share structural similarities with the scalar Fisher-KPP equation. These similarities make it possible to prove, among other results, an extinction and persistence dichotomy and, when persistence occurs, the existence of a positive steady state, the existence of traveling waves with a half-line of possible speeds and a positive minimal speed and the equality between this minimal speed and the spreading speed for the Cauchy problem. Non-cooperative KPP systems can model various phenomena where the following three mechanisms occur: local diffusion in space, linear cooperation and superlinear competition.
González Diaz, Sandra Nora; Cruz, Alfredo Arias; Sedó Mejía, Giovanni A; Rojas Lozano, Antonio A; Valenzuela, Enrique Avitia; Vidaurri Ojeda, Alma C
2010-01-01
although systemic reactions resulting from hymenoptera stings have been studied extensively, the prevalence of allergic reactions to mosquitoes is unknown. to investigate the prevalence of allergic reactions to Aedes aegypti bites in patients seeking treatment at the Allergy and Clinical Immunology Regional Center of Jose E Gonzalez University Hospital in Monterrey, Mexico. we carried out a cross-sectional, descriptive study that included patients receiving skin tests for aeroallergens; skin sensitivity to mosquito bites was also tested. A questionnaire was used to obtain information about previous allergic reactions to mosquito bites. a total of 482 patients between 2 and 60 years of age were included; 53% were female, 407 (84.4%) had a history of local reactions to mosquito bites. Twelve patients (2.4%) stated a history of large local reaction; three (0.6%) of them with a positive skin prick test, one (0.2%) of those had systemic reaction history to mosquito. Eighty five (17.6%) patients had a positive mosquito skin test and 307 (63.6%) had a positive skin test for at least one aeroallergen. Seventy-eight (91.7%) of the 85 patients with a positive mosquito skin test had a history of local skin reactions to mosquito bite (odds ratio: 2.303 [confidence interval (CI) 1.037-5.10]. There was no statistically significance association between allergic diseases and mosquito allergy. adverse reactions and allergic reactions to mosquito bites occur frequently. However mosquito allergy is low. Further studies are required to determine the prevalence of mosquito allergy in the general population.
Security applications of magnetic sensors
NASA Astrophysics Data System (ADS)
Ripka, Pavel
2013-06-01
Magnetic sensors are often used for security and military applications such as detection, discrimination and localization of ferromagnetic and conducting objects, navigation, position tracking and antitheft systems. We give only general overview, few remarks and some interesting references on these applications.
Synthesis on GPS/AVL equipment used for winter maintenance : final report.
DOT National Transportation Integrated Search
2016-07-01
This project gathered information about available Global Positioning Systems/Automatic Vehicle Location (GPS/AVL) equipment and vendors to gain an understanding of their use by state and local agencies for winter maintenance activities. Depending on ...
Li, Luyang; Liu, Yun-Hui; Jiang, Tianjiao; Wang, Kai; Fang, Mu
2018-02-01
Despite tremendous efforts made for years, trajectory tracking control (TC) of a nonholonomic mobile robot (NMR) without global positioning system remains an open problem. The major reason is the difficulty to localize the robot by using its onboard sensors only. In this paper, a newly designed adaptive trajectory TC method is proposed for the NMR without its position, orientation, and velocity measurements. The controller is designed on the basis of a novel algorithm to estimate position and velocity of the robot online from visual feedback of an omnidirectional camera. It is theoretically proved that the proposed algorithm yields the TC errors to asymptotically converge to zero. Real-world experiments are conducted on a wheeled NMR to validate the feasibility of the control system.
A three-dimensional optimal sawing system for small sawmills in central Appalachia
Wenshu Lin; Jingxin Wang; R. Edward. Thomas
2011-01-01
A three-dimensional (3D) log sawing optimization system was developed to perform 3D log generation, opening face determination, sawing simulation, and lumber grading. Superficial characteristics of logs such as length, large-end and small-end diameters, and external defects were collected from local sawmills. Internal log defect positions and shapes were predicted...
Prebio, Michael; Katz-Papatheophilou, Elfriede; Heindl, Werner; Gelbmann, Herbert; Burghuber, Otto C
2005-02-01
Prone positioning in patients with adult respiratory distress syndrome is a well-known method to improve oxygenation. The aim of our study was to evaluate a new device for prone positioning, the prone-head support system (PHS system), with regard to reduction of cutaneous pressure sores. In a pilot study we randomized 8 patients with ARDS in two groups: 180 degrees standard prone positioning (group without mask) and prone positioning with the PHS system (group with mask). The PHS system consists of a facemask support, which is connected to an adapted air suspension bed. The patients of both groups were intermittently proned for several days. We evaluated the pressure sores on head and neck before turning the patients prone for the first time and after each period of prone positioning. We documented the quantity, the size, the type and the localization of the pressure sores. There was no significant difference in the mean duration of prone positioning (27.1+/-14.7 hours in the group with mask versus 24.5+/-18.7 h in the group without mask). In the group with mask there were 1.5+/-0.8 new pressure sores by each proning, whereas in the group without mask there were 2.37+/-1.6 new pressure sores, which was lower, but not significantly. The overall area of pressure sores (798 mm2 versus 3184 mm2, p=0.004), the area of pressure sores per patient (199.5+/-104.7 mm2 versus 796+/-478 mm2, p=0.03) and the increase of the area of pressure sores per proning (79.8+/-52.0 mm2 versus 398.0+/-214.3 mm2, p=0.004) were significantly lower in the group with mask in comparison to the group without mask. The lips were the most effected localization in both groups. The pressure sores in the group with mask were less severe and showed a homogenous distribution in comparison to the group without mask. Blisters dominated in the group with mask in comparison to erosions, necrosis and ulcers in the group without mask. The PHS system with its face mask is able to reduce the extent and the severity of pressure sores in patients ventilated in prone position. Controlled randomized studies with large study populations seem justified.
Origin of the Livelihood Dilemma for Local Fisherman in Poyang Lake Wetland: a Ramsar Site in China
NASA Astrophysics Data System (ADS)
Xie, Dongming; Zhou, Guohong; Zhou, Yangming; Chen, Yayun; Jia, Junsong
2018-01-01
Poyang Lake is one of the first Ramsar sites in China; it has plenty of natural resources that support the survival of local residents. However, local fisherman have encountered a livelihood dilemma, as natural resources have declined, obviously because of the change in the ecological environment and anthropic disturbance. We seek to explain what lead to livelihood dilemma to the local fishermen, so semi-structured interviews, questionnaire surveys, Geographic information system (GIS), Remote sensing (RS), Global position system (GPS), and department data were used to analyze the internal and external factors for these dilemmas. The results explained the external factors including the exhaustion of natural resources, the drying up of wetlands, landscape fragmentation, water contamination, and disturbance through anthropic behavior; the internal factors included the ageing of fishermen, poor cultural quality, conservative ideas, and unreasonable fishing practices. Eco-compensation, industry transformation, and capacity innovation may help to resolve livelihood dilemmas for the local fisherman of the Poyang Lake wetlands.
Local synchronization of chaotic neural networks with sampled-data and saturating actuators.
Wu, Zheng-Guang; Shi, Peng; Su, Hongye; Chu, Jian
2014-12-01
This paper investigates the problem of local synchronization of chaotic neural networks with sampled-data and actuator saturation. A new time-dependent Lyapunov functional is proposed for the synchronization error systems. The advantage of the constructed Lyapunov functional lies in the fact that it is positive definite at sampling times but not necessarily between sampling times, and makes full use of the available information about the actual sampling pattern. A local stability condition of the synchronization error systems is derived, based on which a sampled-data controller with respect to the actuator saturation is designed to ensure that the master neural networks and slave neural networks are locally asymptotically synchronous. Two optimization problems are provided to compute the desired sampled-data controller with the aim of enlarging the set of admissible initial conditions or the admissible sampling upper bound ensuring the local synchronization of the considered chaotic neural networks. A numerical example is used to demonstrate the effectiveness of the proposed design technique.
Optical bullet-tracking algorithms for weapon localization in urban environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, R S; Breitfeller, E F
2006-03-31
Localization of the sources of small-arms fire, mortars, and rocket propelled grenades is an important problem in urban combat. Weapons of this type produce characteristic signatures, such as muzzle flashes, that are visible in the infrared. Indeed, several systems have been developed that exploit the infrared signature of muzzle flash to locate the positions of shooters. However, systems based on muzzle flash alone can have difficulty localizing weapons if the muzzle flash is obscured or suppressed. Moreover, optical clutter can be problematic to systems that rely on muzzle flash alone. Lawrence Livermore National Laboratory (LLNL) has developed a projectile trackingmore » system that detects and localizes sources of small-arms fire, mortars and similar weapons using the thermal signature of the projectile rather than a muzzle flash. The thermal signature of a projectile, caused by friction as the projectile travels along its trajectory, cannot be concealed and is easily discriminated from optical clutter. The LLNL system was recently demonstrated at the MOUT facility of the Aberdeen Test Center [1]. In the live-fire demonstration, shooters armed with a variety of small-arms, including M-16s, AK-47s, handguns, mortars and rockets, were arranged at several positions in around the facility. Experiments ranged from a single-weapon firing a single-shot to simultaneous fire of all weapons on full automatic. The LLNL projectile tracking system was demonstrated to localize multiple shooters at ranges up to 400m, far greater than previous demonstrations. Furthermore, the system was shown to be immune to optical clutter that is typical in urban combat. This paper describes the image processing and localization algorithms designed to exploit the thermal signature of projectiles for shooter localization. The paper begins with a description of the image processing that extracts projectile information from a sequence of infrared images. Key to the processing is an adaptive spatio-temporal filter developed to suppress scene clutter. The filtered image sequence is further processed to produce a set of parameterized regions, which are classified using several discriminate functions. Regions that are classified as projectiles are passed to a data association algorithm that matches features from these regions with existing tracks, or initializes new tracks as needed. A Kalman filter is used to smooth and extrapolate existing tracks. Shooter locations are determined by solving a combinatorial least-squares solution for all bullet tracks. It also provides an error ellipse for each shooter, quantifying the uncertainty of shooter location. The paper concludes with examples from the live-fire exercise at the Aberdeen Test Center.« less
FFT-local gravimetric geoid computation
NASA Technical Reports Server (NTRS)
Nagy, Dezso; Fury, Rudolf J.
1989-01-01
Model computations show that changes of sampling interval introduce only 0.3 cm changes, whereas zero padding provides an improvement of more than 5 cm in the fast Fourier transformation (FFT) generated geoid. For the Global Positioning System (GPS) survey of Franklin County, Ohio, the parameters selected as a result of model computations, allow large reduction in local data requirements while still retaining the cm accuracy when tapering and padding is applied. The results are shown in tables.
Fisheye-Based Method for GPS Localization Improvement in Unknown Semi-Obstructed Areas
Moreau, Julien; Ambellouis, Sébastien; Ruichek, Yassine
2017-01-01
A precise GNSS (Global Navigation Satellite System) localization is vital for autonomous road vehicles, especially in cluttered or urban environments where satellites are occluded, preventing accurate positioning. We propose to fuse GPS (Global Positioning System) data with fisheye stereovision to face this problem independently to additional data, possibly outdated, unavailable, and needing correlation with reality. Our stereoscope is sky-facing with 360° × 180° fisheye cameras to observe surrounding obstacles. We propose a 3D modelling and plane extraction through following steps: stereoscope self-calibration for decalibration robustness, stereo matching considering neighbours epipolar curves to compute 3D, and robust plane fitting based on generated cartography and Hough transform. We use these 3D data with GPS raw data to estimate NLOS (Non Line Of Sight) reflected signals pseudorange delay. We exploit extracted planes to build a visibility mask for NLOS detection. A simplified 3D canyon model allows to compute reflections pseudorange delays. In the end, GPS positioning is computed considering corrected pseudoranges. With experimentations on real fixed scenes, we show generated 3D models reaching metric accuracy and improvement of horizontal GPS positioning accuracy by more than 50%. The proposed procedure is effective, and the proposed NLOS detection outperforms CN0-based methods (Carrier-to-receiver Noise density). PMID:28106746
Casbon, Amy-Jo; Allen, Lee-Ann H; Dunn, Kenneth W; Dinauer, Mary C
2009-02-15
Flavocytochrome b(558), the catalytic core of the phagocytic NADPH oxidase, mediates the transfer of electrons from NADPH to molecular oxygen to generate superoxide for host defense. Flavocytochrome b is a membrane heterodimer consisting of a large subunit gp91(phox) (NOX2) and a smaller subunit, p22(phox). Although in neutrophils flavocytochrome b has been shown to localize to the plasma membrane and specific granules, little is known about its distribution in macrophages. Using immunofluorescent staining and live cell imaging of fluorescently tagged gp91(phox) and p22(phox), we demonstrate in a Chinese hamster ovary cell model system and in RAW 264.7 and primary murine bone marrow-derived macrophages that flavocytochrome b is found in the Rab11-positive recycling endocytic compartment, as well as in Rab5-positive early endosomes and plasma membrane. Additionally, we show that unassembled p22(phox) and gp91(phox) subunits localize to the endoplasmic reticulum, which redistribute to the cell surface and endosomal compartments following heterodimer formation. These studies show for the first time that flavocytochrome b localizes to intracellular compartments in macrophages that recycle to the plasma membrane, which may act as a reservoir to deliver flavocytochrome b to the cell surface and phagosome membranes.
A Non-invasive Real-time Localization System for Enhanced Efficacy in Nasogastric Intubation.
Sun, Zhenglong; Foong, Shaohui; Maréchal, Luc; Tan, U-Xuan; Teo, Tee Hui; Shabbir, Asim
2015-12-01
Nasogastric (NG) intubation is one of the most commonly performed clinical procedures. Real-time localization and tracking of the NG tube passage at the larynx region into the esophagus is crucial for safety, but is lacking in current practice. In this paper, we present the design, analysis and evaluation of a non-invasive real-time localization system using passive magnetic tracking techniques to improve efficacy of the clinical NG intubation process. By embedding a small permanent magnet at the insertion tip of the NG tube, a wearable system containing embedded sensors around the neck can determine the absolute position of the NG tube inside the body in real-time to assist in insertion. In order to validate the feasibility of the proposed system in detecting erroneous tube placement, typical reference intubation trajectories are first analyzed using anatomically correct models and localization accuracy of the system are evaluated using a precise robotic platform. It is found that the root-mean-squared tracking accuracy is within 5.3 mm for both the esophagus and trachea intubation pathways. Experiments were also designed and performed to demonstrate that the system is capable of tracking the NG tube accurately in biological environments even in presence of stationary ferromagnetic objects (such as clinical instruments). With minimal physical modification to the NG tube and clinical process, this system allows accurate and efficient localization and confirmation of correct NG tube placement without supplemental radiographic methods which is considered the current clinical standard.
NASA Astrophysics Data System (ADS)
Chow, J. C. K.
2017-09-01
In the absence of external reference position information (e.g. surveyed targets or Global Navigation Satellite Systems) Simultaneous Localization and Mapping (SLAM) has proven to be an effective method for indoor navigation. The positioning drift can be reduced with regular loop-closures and global relaxation as the backend, thus achieving a good balance between exploration and exploitation. Although vision-based systems like laser scanners are typically deployed for SLAM, these sensors are heavy, energy inefficient, and expensive, making them unattractive for wearables or smartphone applications. However, the concept of SLAM can be extended to non-optical systems such as magnetometers. Instead of matching features such as walls and furniture using some variation of the Iterative Closest Point algorithm, the local magnetic field can be matched to provide loop-closure and global trajectory updates in a Gaussian Process (GP) SLAM framework. With a MEMS-based inertial measurement unit providing a continuous trajectory, and the matching of locally distinct magnetic field maps, experimental results in this paper show that a drift-free navigation solution in an indoor environment with millimetre-level accuracy can be achieved. The GP-SLAM approach presented can be formulated as a maximum a posteriori estimation problem and it can naturally perform loop-detection, feature-to-feature distance minimization, global trajectory optimization, and magnetic field map estimation simultaneously. Spatially continuous features (i.e. smooth magnetic field signatures) are used instead of discrete feature correspondences (e.g. point-to-point) as in conventional vision-based SLAM. These position updates from the ambient magnetic field also provide enough information for calibrating the accelerometer bias and gyroscope bias in-use. The only restriction for this method is the need for magnetic disturbances (which is typically not an issue for indoor environments); however, no assumptions are required for the general motion of the sensor (e.g. static periods).
Cai, Jun; Deng, Yun; Yang, Junfeng; Zhou, Xinmin; Tan, Lina
2018-01-01
Reducing costs is a pragmatic method for promoting the widespread usage of indoor localization technology. Conventional indoor localization systems (ILSs) exploit relatively expensive wireless chips to measure received signal strength for positioning. Our work is based on a cheap and widely-used commercial off-the-shelf (COTS) wireless chip, i.e., the Nordic Semiconductor nRF24LE1, which has only several output power levels, and proposes a new power level based-ILS, called Plils. The localization procedure incorporates two phases: an offline training phase and an online localization phase. In the offline training phase, a self-organizing map (SOM) is utilized for dividing a target area into k subregions, wherein their grids in the same subregion have similar fingerprints. In the online localization phase, the support vector machine (SVM) and back propagation (BP) neural network methods are adopted to identify which subregion a tagged object is located in, and calculate its exact location, respectively. The reasonable value for k has been discussed as well. Our experiments show that Plils achieves 75 cm accuracy on average, and is robust to indoor obstacles. PMID:29329226
Li, Xiaolong; Yang, Yifu; Cai, Jun; Deng, Yun; Yang, Junfeng; Zhou, Xinmin; Tan, Lina
2018-01-12
Reducing costs is a pragmatic method for promoting the widespread usage of indoor localization technology. Conventional indoor localization systems (ILSs) exploit relatively expensive wireless chips to measure received signal strength for positioning. Our work is based on a cheap and widely-used commercial off-the-shelf (COTS) wireless chip, i.e., the Nordic Semiconductor nRF24LE1, which has only several output power levels, and proposes a new power level based-ILS, called Plils. The localization procedure incorporates two phases: an offline training phase and an online localization phase. In the offline training phase, a self-organizing map (SOM) is utilized for dividing a target area into k subregions, wherein their grids in the same subregion have similar fingerprints. In the online localization phase, the support vector machine (SVM) and back propagation (BP) neural network methods are adopted to identify which subregion a tagged object is located in, and calculate its exact location, respectively. The reasonable value for k has been discussed as well. Our experiments show that Plils achieves 75 cm accuracy on average, and is robust to indoor obstacles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeling, V; Jin, H; Hossain, S
2014-06-15
Purpose: To evaluate setup accuracy and quantify individual systematic and random errors for the various hardware and software components of the frameless 6D-BrainLAB ExacTrac system. Methods: 35 patients with cranial lesions, some with multiple isocenters (50 total lesions treated in 1, 3, 5 fractions), were investigated. All patients were simulated with a rigid head-and-neck mask and the BrainLAB localizer. CT images were transferred to the IPLAN treatment planning system where optimized plans were generated using stereotactic reference frame based on the localizer. The patients were setup initially with infrared (IR) positioning ExacTrac system. Stereoscopic X-ray images (XC: X-ray Correction) weremore » registered to their corresponding digitally-reconstructed-radiographs, based on bony anatomy matching, to calculate 6D-translational and rotational (Lateral, Longitudinal, Vertical, Pitch, Roll, Yaw) shifts. XC combines systematic errors of the mask, localizer, image registration, frame, and IR. If shifts were below tolerance (0.7 mm translational and 1 degree rotational), treatment was initiated; otherwise corrections were applied and additional X-rays were acquired to verify patient position (XV: X-ray Verification). Statistical analysis was used to extract systematic and random errors of the different components of the 6D-ExacTrac system and evaluate the cumulative setup accuracy. Results: Mask systematic errors (translational; rotational) were the largest and varied from one patient to another in the range (−15 to 4mm; −2.5 to 2.5degree) obtained from mean of XC for each patient. Setup uncertainty in IR positioning (0.97,2.47,1.62mm;0.65,0.84,0.96degree) was extracted from standard-deviation of XC. Combined systematic errors of the frame and localizer (0.32,−0.42,−1.21mm; −0.27,0.34,0.26degree) was extracted from mean of means of XC distributions. Final patient setup uncertainty was obtained from the standard deviations of XV (0.57,0.77,0.67mm,0.39,0.35,0.30degree). Conclusion: Statistical analysis was used to calculate cumulative and individual systematic errors from the different hardware and software components of the 6D-ExacTrac-system. Patients were treated with cumulative errors (<1mm,<1degree) with XV image guidance.« less
Measuring levee elevation heights in North Louisiana.
DOT National Transportation Integrated Search
2010-01-01
The primary goals of this research are to measure the elevation and centerline coordinates of the top of federal and local levees and also to ensure that the resulting global positioning system (GPS) measurement data is within a precision interval of...
Su, Zhong; Zhang, Lisha; Ramakrishnan, V; Hagan, Michael; Anscher, Mitchell
2011-05-01
To evaluate both the Calypso Systems' (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters' reading accuracy in the presence of wireless electromagnetic transponders inside a phantom. A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with/without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with/without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit. Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum clinical localization resolution of 0.5 mm. For hypothesis 2, analysis of variance indicated that there was no statistically significant difference between the dosimeter readings with and without the presence of transponders. Both orthogonal and parallel configurations had difference of polynomial-fit dose to measured dose values within 1.75%. The phantom study indicated that the Calypso System's localization accuracy was not affected clinically due to the presence of DVS wireless MOSFET dosimeters and the dosimeter-measured doses were not affected by the presence of transponders. Thus, the same patients could be implanted with both transponders and dosimeters to benefit from improved accuracy of radiotherapy treatments offered by conjunctional use of the two systems.
Semi-classical approach to transitionless quantum driving: Explicitness and Locality
NASA Astrophysics Data System (ADS)
Loewe, Benjamin; Hipolito, Rafael; Goldbart, Paul M.
Berry has shown that, via a reverse engineering strategy, non-adiabatic transitions in time-dependent quantum systems can be stifled through the introduction of a specific auxiliary hamiltonian. This hamiltonian comes, however, expressed as a formal sum of outer products of the original instantaneous eigenstates and their time-derivatives. Generically, how to create such an operator in the laboratory is thus not evident. Furthermore, the operator may be non- local. By following a semi-classical approach, we obtain a recipe that yields the auxiliary hamiltonian explicitly in terms of the fundamental operators of the system (e.g., position and momentum). By using this formalism, we are able to ascertain criteria for the locality of the auxiliary hamiltonian, and also to determine its exact form in certain special cases.
Local, regional and national interoperability in hospital-level systems architecture.
Mykkänen, J; Korpela, M; Ripatti, S; Rannanheimo, J; Sorri, J
2007-01-01
Interoperability of applications in health care is faced with various needs by patients, health professionals, organizations and policy makers. A combination of existing and new applications is a necessity. Hospitals are in a position to drive many integration solutions, but need approaches which combine local, regional and national requirements and initiatives with open standards to support flexible processes and applications on a local hospital level. We discuss systems architecture of hospitals in relation to various processes and applications, and highlight current challenges and prospects using a service-oriented architecture approach. We also illustrate these aspects with examples from Finnish hospitals. A set of main services and elements of service-oriented architectures for health care facilities are identified, with medium-term focus which acknowledges existing systems as a core part of service-oriented solutions. The services and elements are grouped according to functional and interoperability cohesion. A transition towards service-oriented architecture in health care must acknowledge existing health information systems and promote the specification of central processes and software services locally and across organizations. Software industry best practices such as SOA must be combined with health care knowledge to respond to central challenges such as continuous change in health care. A service-oriented approach cannot entirely rely on common standards and frameworks but it must be locally adapted and complemented.
New horizons in local anesthesia.
Lackey, A D
1998-08-01
The computer-controlled local anesthesia system and the TEA system present 21st-century alternatives to the traditional syringe. The TEA system is a non-invasive form of anesthesia that blocks pain electronically, using the same cellular mechanism as local chemical anesthesia. Targeted electronic anesthesia provides pain control for restorative dental procedures without the use of needles or postoperative discomfort, numbness, and swelling. The computer-assisted system outperforms syringes for traditional injections. This new system generates a precisely controlled anesthetic flow rate that eliminates the need for the operator to use thumb pressure to administer the injection. The lightweight pen-grasp handle results in greater tactile feedback, precision, operator ease, and patient comfort. The greatest advantage may be in the new techniques that it makes available. With these techniques, a dentist can target the teeth to achieve profound pulpal anesthesia, often without the annoying side effects of facial numbness. With this new advanced system in the maxillary arch, the AMSA injection offers clinical advantages over traditional anesthesia techniques, according to Dr. Mark Friedman, whom I consulted with earlier this year. In the mandibular arch, a safe and predictable PDL injection technique may replace the need for an inferior alveolar block in numerous clinical situations. The use of these modified injection techniques can have a positive influence on patient safety, patient comfort, and office productivity. Both of these systems take the fear and anxiety out of dental injections. They offer exciting advanced technology for local pain control. Significantly, if patient stress and anxiety are reduced, the operator immediately benefits. New horizons in local anesthesia offer improved opportunities for patient comfort using computer-controlled local anesthetic systems and TEA.
Automatic identification of cochlear implant electrode arrays for post-operative assessment
NASA Astrophysics Data System (ADS)
Noble, Jack H.; Schuman, Theodore A.; Wright, Charles G.; Labadie, Robert F.; Dawant, Benoit M.
2011-03-01
Cochlear implantation is a procedure performed to treat profound hearing loss. Accurately determining the postoperative position of the implant in vivo would permit studying the correlations between implant position and hearing restoration. To solve this problem, we present an approach based on parametric Gradient Vector Flow snakes to segment the electrode array in post-operative CT. By combining this with existing methods for localizing intra-cochlear anatomy, we have developed a system that permits accurate assessment of the implant position in vivo. The system is validated using a set of seven temporal bone specimens. The algorithms were run on pre- and post-operative CTs of the specimens, and the results were compared to histological images. It was found that the position of the arrays observed in the histological images is in excellent agreement with the position of their automatically generated 3D reconstructions in the CT scans.
Data preprocessing for a vehicle-based localization system used in road traffic applications
NASA Astrophysics Data System (ADS)
Patelczyk, Timo; Löffler, Andreas; Biebl, Erwin
2016-09-01
This paper presents a fixed-point implementation of the preprocessing using a field programmable gate array (FPGA), which is required for a multipath joint angle and delay estimation (JADE) used in road traffic applications. This paper lays the foundation for many model-based parameter estimation methods. Here, a simulation of a vehicle-based localization system application for protecting vulnerable road users, which were equipped with appropriate transponders, is considered. For such safety critical applications, the robustness and real-time capability of the localization is particularly important. Additionally, a motivation to use a fixed-point implementation for the data preprocessing is a limited computing power of the head unit of a vehicle. This study aims to process the raw data provided by the localization system used in this paper. The data preprocessing applied includes a wideband calibration of the physical localization system, separation of relevant information from the received sampled signal, and preparation of the incoming data via further processing. Further, a channel matrix estimation was implemented to complete the data preprocessing, which contains information on channel parameters, e.g., the positions of the objects to be located. In the presented case of a vehicle-based localization system application we assume an urban environment, in which multipath propagation occurs. Since most methods for localization are based on uncorrelated signals, this fact must be addressed. Hence, a decorrelation of incoming data stream in terms of a further localization is required. This decorrelation was accomplished by considering several snapshots in different time slots. As a final aspect of the use of fixed-point arithmetic, quantization errors are considered. In addition, the resources and runtime of the presented implementation are discussed; these factors are strongly linked to a practical implementation.
McGary, John E; Xiong, Zubiao; Chen, Ji
2013-07-01
TomoTherapy systems lack real-time, tumor tracking. A possible solution is to use electromagnetic markers; however, eddy-current magnetic fields generated in response to a magnetic source can be comparable to the signal, thus degrading the localization accuracy. Therefore, the tracking system must be designed to account for the eddy fields created along the inner bore conducting surfaces. The aim of this work is to investigate localization accuracy using magnetic field gradients to determine feasibility toward TomoTherapy applications. Electromagnetic models are used to simulate magnetic fields created by a source and its simultaneous generation of eddy currents within a conducting cylinder. The source position is calculated using a least-squares fit of simulated sensor data using the dipole equation as the model equation. To account for field gradients across the sensor area (≈ 25 cm(2)), an iterative method is used to estimate the magnetic field at the sensor center. Spatial gradients are calculated with two arrays of uniaxial, paired sensors that form a gradiometer array, where the sensors are considered ideal. Experimental measurements of magnetic fields within the TomoTherapy bore are shown to be 1%-10% less than calculated with the electromagnetic model. Localization results using a 5 × 5 array of gradiometers are, in general, 2-4 times more accurate than a planar array of sensors, depending on the solenoid orientation and position. Simulation results show that the localization accuracy using a gradiometer array is within 1.3 mm over a distance of 20 cm from the array plane. In comparison, localization errors using single array are within 5 mm. The results indicate that the gradiometer method merits further studies and work due to the accuracy achieved with ideal sensors. Future studies should include realistic sensor models and extensive numerical studies to estimate the expected magnetic tracking accuracy within a TomoTherapy system before proceeding with prototype development.
SU-F-P-40: Analysis of Pelvic Lymph Node Margin Using Prostate Fiducial Markers, for SBRT Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torres, J; Castro Pena, P; Garrigo, E
2016-06-15
Purpose: The use of fiducials markers in prostate treatment allows a precise localization of this volume. Typical prostate SBRT margins with fiducials markers are 5mm in all directions, except toward the rectum, where 3mm is used. For some patients nearby pelvic lymph nodes with 5mm margin need to be irradiate assuming that its localization is linked to the prostate fiducial markers instead of bony anatomy. The purpose of this work was to analyze the geometric impact of locate the lymph node regions through the patient positioning by prostate fiducial markers. Methods: 10 patients with prostate SBRT with lymph nodes irradiationmore » were selected. Each patient had 5 implanted titanium fiducial markers. A Novalis TX (BrainLAB-Varian) with ExacTrac and aSi1000 portal image was used. Treatment plan uses 11 beams with a dose prescription (D95%) of 40Gy to the prostate and 25Gy to the lymph node in 5 fractions. Daily positioning was carried out by ExacTrac system based on the implanted fiducials as the reference treatment position; further position verification was performed using the ExacTrac and two portal images (gantry angle 0 and 90) based on bony structures. Comparison between reference position with bony based ExacTrac and portal image localization, was done for each treatment fraction Results: A total of 50 positioning analysis were done. The average discrepancy between reference treatment position and ExacTrac based on bony anatomy (pubic area) was 4.2mm [0.3; 11.2]. The discrepancy was <5mm in 61% of the cases and <9mm in 92%. Using portal images the average discrepancy was 3.7mm [0.0; 11.1]. The discrepancy was <5mm in 69% of the cases and <9mm in 96%. Conclusion: Localizing lymph node by prostate fiducial markers may produce large discrepancy as large as 11mm compared to bony based localization. Dosimetric impact of this discrepancy should be studied.« less
A positional code and anisotropic forces control tissue remodeling in Drosophila
NASA Astrophysics Data System (ADS)
Zallen, Jennifer
A major challenge in developmental biology is to understand how tissue-scale changes in organism structure arise from events that occur on a cellular and molecular level. We are using cell biological, biophysical, and quantitative live-embryo imaging approaches to understand how genes encode the forces that shape tissues, and to identify the mechanisms that modulate cell behavior in response to local forces. In many animals, the elongated head-to-tail body axis is achieved by rapid and coordinated movements of hundreds of cells. We found that in the fruit fly, these cell movements are regulated by subcellular asymmetries in the localization of proteins that generate contractile and adhesive forces between cells. Asymmetries in the force-generating machinery are in turn controlled by a positional code of spatial information provided by an ancient family of Toll-related receptors that are widely used for pathogen recognition by the innate immune system. I will describe how this spatial system systematically orients local cell movements and collective rosette-like clusters in the Drosophila embryo. Rosettes have now also been shown to shape the body axis in chicks, frogs, and mice, demonstrating that rosette behaviors are a general mechanism linking cellular asymmetry to tissue reorganization.
Pathogenesis and diagnosis of otitis media with ANCA-associated vasculitis.
Yoshida, Naohiro; Iino, Yukiko
2014-12-01
Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is histologically characterized by systemic necrotizing vasculitis and is clinically classified into two phases, systemic or localized. Recently, otological symptoms such as otitis media and hearing loss, not previously often associated with AAV, have been reported in AAV cases. In these cases we propose a diagnosis of otitis media with AAV (OMAAV). The ANCA titer is important for the diagnosis of OMAAV, and in most cases rapid progressive hearing loss is observed as localized AAV. Peripheral facial nerve palsy or hypertrophic pachymeningitis are coupled with 25% of cases and 18% of cases respectively. Proteinase 3-ANCA (PR3-ANCA) positive otitis media causes granulomatous formation or middle ear effusion in the middle ear, on the other hand myeloperoxidase-ANCA (MPO-ANCA) positive otitis media predominantly presents as otitis media with effusion. The early diagnosed case and the sensorineural hearing loss not progressed deaf could be recovered by the immunosuppressive therapy. Delayed diagnosis of AAV occasionally leads to progression to the irreversible phase; therefore, diagnosis at the early-localized stage is important for treating AAV. In this review, we discuss the current understanding of this newly proposed concept of OMAAV.
Accuracy of magnetic resonance imaging stereotactic coordinates with the cosman-roberts-wells frame.
Carter, D A; Parsai, E I; Ayyangar, K M
1999-01-01
Quality assessment on the accuracy of a Cosman-Roberts-Wells (CRW) magnetic resonance imaging (MRI) stereotactic ring which had nonferrous stainless steel screws and positioning posts and a localizer with petroleum jelly in the fiducials, purchased in 1994, revealed errors of greater than 4 mm with targets in phantoms. Image fusion of objects within the phantom indicated the central area was accurately depicted by CT or MRI. We then tested a newer CRW- MRI ring (MRIA-IHR with titanium screws and posts) and localizer (MRIA-2-LF with fiducials filled with copper sulfate) and found that the MRI stereotactically calculated target coordinates matched both the known position of these targets in the phantom as well as the CT stereotactically calculated coordinates within approximately 1 mm. We also describe excellent superimposition of CT and MRI stereotactically determined surfaces in a recent clinical case using the new hardware. This shows that recent modifications to the CRW-MRI stereotactic system can make it accurate for small targets, but we emphasize that all systems need to undergo ongoing local quality assessment to ensure acceptable accuracy in practice. Copyright 2000 S. Karger AG, Basel
Position-dependent effects of polylysine on Sec protein transport.
Liang, Fu-Cheng; Bageshwar, Umesh K; Musser, Siegfried M
2012-04-13
The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or "pause sites," were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport.
Position-dependent Effects of Polylysine on Sec Protein Transport*
Liang, Fu-Cheng; Bageshwar, Umesh K.; Musser, Siegfried M.
2012-01-01
The bacterial Sec protein translocation system catalyzes the transport of unfolded precursor proteins across the cytoplasmic membrane. Using a recently developed real time fluorescence-based transport assay, the effects of the number and distribution of positive charges on the transport time and transport efficiency of proOmpA were examined. As expected, an increase in the number of lysine residues generally increased transport time and decreased transport efficiency. However, the observed effects were highly dependent on the polylysine position in the mature domain. In addition, a string of consecutive positive charges generally had a more significant effect on transport time and efficiency than separating the charges into two or more charged segments. Thirty positive charges distributed throughout the mature domain resulted in effects similar to 10 consecutive charges near the N terminus of the mature domain. These data support a model in which the local effects of positive charge on the translocation kinetics dominate over total thermodynamic constraints. The rapid translocation kinetics of some highly charged proOmpA mutants suggest that the charge is partially shielded from the electric field gradient during transport, possibly by the co-migration of counter ions. The transport times of precursors with multiple positively charged sequences, or “pause sites,” were fairly well predicted by a local effect model. However, the kinetic profile predicted by this local effect model was not observed. Instead, the transport kinetics observed for precursors with multiple polylysine segments support a model in which translocation through the SecYEG pore is not the rate-limiting step of transport. PMID:22367204
The wave attenuation mechanism of the periodic local resonant metamaterial
NASA Astrophysics Data System (ADS)
Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying
2018-01-01
This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.
Ghezzi, Diego; Menegon, Andrea; Pedrocchi, Alessandra; Valtorta, Flavia; Ferrigno, Giancarlo
2008-10-30
Optical stimulation is a promising approach to investigate the local dynamic responses of cultured neurons. In particular, flash photolysis of caged compounds offers the advantage of allowing the rapid change of concentration of either extracellular or intracellular molecules, such as neurotransmitters or second messengers, for the stimulation or modulation of neuronal activity. We describe here the use of an ultra-violet (UV) laser diode coupled to an optical fibre for the local activation of caged compounds combined with a Micro-Electrode Array (MEA) device. Local uncaging was achieved by UV irradiation through the optical fibre previously positioned by using a red laser diode. The size of the stimulation was determined using caged fluorescein, whereas its efficacy was tested by studying the effect of uncaging the neurotransmitter glutamate. Uncaged glutamate evoked neuronal responses that were recorded using either fluorescence measurements or electrophysiological recordings with MEAs, thus showing the ability of our system to induce local neuronal excitation. This method allows overcoming the limitations of the MEA system related to unfocused electrical stimulation and induction of electrical artefacts. In addition, the coupling of a UV laser diode to an optical fibre allows a precise local stimulation and a quick change of the stimulation point.
Bone effects of biologic drugs in rheumatoid arthritis.
Corrado, Addolorata; Neve, Anna; Maruotti, Nicola; Cantatore, Francesco Paolo
2013-01-01
Biologic agents used in the treatment of rheumatoid arthritis (RA) are able to reduce both disease activity and radiographic progression of joint disease. These drugs are directed against several proinflammatory cytokines (TNF α , IL-6, and IL-1) which are involved both in the pathogenesis of chronic inflammation and progression of joint structural damage and in systemic and local bone loss typically observed in RA. However, the role of biologic drugs in preventing bone loss in clinical practice has not yet clearly assessed. Many clinical studies showed a trend to a positive effect of biologic agents in preventing systemic bone loss observed in RA. Although the suppression of inflammation is the main goal in the treatment of RA and the anti-inflammatory effects of biologic drugs exert a positive effect on bone metabolism, the exact relationship between the prevention of bone loss and control of inflammation has not been clearly established, and if the available biologic drugs against TNF α , IL-1, and IL-6 can exert their effect on systemic and local bone loss also through a direct mechanism on bone cell metabolism is still to be clearly defined.
Optical and Acoustic Sensor-Based 3D Ball Motion Estimation for Ball Sport Simulators †.
Seo, Sang-Woo; Kim, Myunggyu; Kim, Yejin
2018-04-25
Estimation of the motion of ball-shaped objects is essential for the operation of ball sport simulators. In this paper, we propose an estimation system for 3D ball motion, including speed and angle of projection, by using acoustic vector and infrared (IR) scanning sensors. Our system is comprised of three steps to estimate a ball motion: sound-based ball firing detection, sound source localization, and IR scanning for motion analysis. First, an impulsive sound classification based on the mel-frequency cepstrum and feed-forward neural network is introduced to detect the ball launch sound. An impulsive sound source localization using a 2D microelectromechanical system (MEMS) microphones and delay-and-sum beamforming is presented to estimate the firing position. The time and position of a ball in 3D space is determined from a high-speed infrared scanning method. Our experimental results demonstrate that the estimation of ball motion based on sound allows a wider activity area than similar camera-based methods. Thus, it can be practically applied to various simulations in sports such as soccer and baseball.
Ravankar, Abhijeet; Ravankar, Ankit A.; Kobayashi, Yukinori; Emaru, Takanori
2017-01-01
Hitchhiking is a means of transportation gained by asking other people for a (free) ride. We developed a multi-robot system which is the first of its kind to incorporate hitchhiking in robotics, and discuss its advantages. Our method allows the hitchhiker robot to skip redundant computations in navigation like path planning, localization, obstacle avoidance, and map update by completely relying on the driver robot. This allows the hitchhiker robot, which performs only visual servoing, to save computation while navigating on the common path with the driver robot. The driver robot, in the proposed system performs all the heavy computations in navigation and updates the hitchhiker about the current localized positions and new obstacle positions in the map. The proposed system is robust to recover from ‘driver-lost’ scenario which occurs due to visual servoing failure. We demonstrate robot hitchhiking in real environments considering factors like service-time and task priority with different start and goal configurations of the driver and hitchhiker robots. We also discuss the admissible characteristics of the hitchhiker, when hitchhiking should be allowed and when not, through experimental results. PMID:28809803
Ravankar, Abhijeet; Ravankar, Ankit A; Kobayashi, Yukinori; Emaru, Takanori
2017-08-15
Hitchhiking is a means of transportation gained by asking other people for a (free) ride. We developed a multi-robot system which is the first of its kind to incorporate hitchhiking in robotics, and discuss its advantages. Our method allows the hitchhiker robot to skip redundant computations in navigation like path planning, localization, obstacle avoidance, and map update by completely relying on the driver robot. This allows the hitchhiker robot, which performs only visual servoing, to save computation while navigating on the common path with the driver robot. The driver robot, in the proposed system performs all the heavy computations in navigation and updates the hitchhiker about the current localized positions and new obstacle positions in the map. The proposed system is robust to recover from `driver-lost' scenario which occurs due to visual servoing failure. We demonstrate robot hitchhiking in real environments considering factors like service-time and task priority with different start and goal configurations of the driver and hitchhiker robots. We also discuss the admissible characteristics of the hitchhiker, when hitchhiking should be allowed and when not, through experimental results.
Real-time endovascular guidewire position simulation using shortest path algorithms.
Schafer, Sebastian; Singh, Vikas; Noël, Peter B; Walczak, Alan M; Xu, Jinhui; Hoffmann, Kenneth R
2009-11-01
Treatment of vascular disease often involves endovascular interventions which use the vascular system for delivering treatment devices via a previously inserted guidewire to the diseased site. Previous studies show relative reproducibility of guidewire position after insertion, indicating that the guidewire position is constrained and could be represented by an energy minimization approach. Such representation would support the surgeon's decision process in guidewire selection. In this paper, we determine the guidewire position using a k-level graph based on 3D vessel information. Guidewire properties are incorporated into the graph as edge weights given by the local bending energy related to the local bending angle. The optimal path through this weighted directed graph is determined using a shortest path algorithm. Volumetric data of two different internal carotid artery phantoms (Ø 3.5-4.6 mm) was acquired. Two guidewires (Ø 0.33 mm) of different material properties (stainless steel, plastic-coated steel core) were inserted into the phantoms. The average RMS distance between actual and simulated guidewire positions varies from 0.9 mm (plastic coated) to 1.3 mm (stainless steel); the computation time to determine the position was <2s. The results indicate that the proposed technique yields reproducible and accurate guidewire positions within a short, clinically relevant time frame. These calculated positions may be useful in facilitating neurovascular interventions.
An image guidance system for positioning robotic cochlear implant insertion tools
NASA Astrophysics Data System (ADS)
Bruns, Trevor L.; Webster, Robert J.
2017-03-01
Cochlear implants must be inserted carefully to avoid damaging the delicate anatomical structures of the inner ear. This has motivated several approaches to improve the safety and efficacy of electrode array insertion by automating the process with specialized robotic or manual insertion tools. When such tools are used, they must be positioned at the entry point to the cochlea and aligned with the desired entry vector. This paper presents an image guidance system capable of accurately positioning a cochlear implant insertion tool. An optical tracking system localizes the insertion tool in physical space while a graphical user interface incorporates this with patient- specific anatomical data to provide error information to the surgeon in real-time. Guided by this interface, novice users successfully aligned the tool with an mean accuracy of 0.31 mm.
A Unified Model for BDS Wide Area and Local Area Augmentation Positioning Based on Raw Observations.
Tu, Rui; Zhang, Rui; Lu, Cuixian; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun
2017-03-03
In this study, a unified model for BeiDou Navigation Satellite System (BDS) wide area and local area augmentation positioning based on raw observations has been proposed. Applying this model, both the Real-Time Kinematic (RTK) and Precise Point Positioning (PPP) service can be realized by performing different corrections at the user end. This algorithm was assessed and validated with the BDS data collected at four regional stations from Day of Year (DOY) 080 to 083 of 2016. When the users are located within the local reference network, the fast and high precision RTK service can be achieved using the regional observation corrections, revealing a convergence time of about several seconds and a precision of about 2-3 cm. For the users out of the regional reference network, the global broadcast State-Space Represented (SSR) corrections can be utilized to realize the global PPP service which shows a convergence time of about 25 min for achieving an accuracy of 10 cm. With this unified model, it can not only integrate the Network RTK (NRTK) and PPP into a seamless positioning service, but also recover the ionosphere Vertical Total Electronic Content (VTEC) and Differential Code Bias (DCB) values that are useful for the ionosphere monitoring and modeling.
A Unified Model for BDS Wide Area and Local Area Augmentation Positioning Based on Raw Observations
Tu, Rui; Zhang, Rui; Lu, Cuixian; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun
2017-01-01
In this study, a unified model for BeiDou Navigation Satellite System (BDS) wide area and local area augmentation positioning based on raw observations has been proposed. Applying this model, both the Real-Time Kinematic (RTK) and Precise Point Positioning (PPP) service can be realized by performing different corrections at the user end. This algorithm was assessed and validated with the BDS data collected at four regional stations from Day of Year (DOY) 080 to 083 of 2016. When the users are located within the local reference network, the fast and high precision RTK service can be achieved using the regional observation corrections, revealing a convergence time of about several seconds and a precision of about 2–3 cm. For the users out of the regional reference network, the global broadcast State-Space Represented (SSR) corrections can be utilized to realize the global PPP service which shows a convergence time of about 25 min for achieving an accuracy of 10 cm. With this unified model, it can not only integrate the Network RTK (NRTK) and PPP into a seamless positioning service, but also recover the ionosphere Vertical Total Electronic Content (VTEC) and Differential Code Bias (DCB) values that are useful for the ionosphere monitoring and modeling. PMID:28273814
Indoor localization using FM radio and DTMB signals
NASA Astrophysics Data System (ADS)
Wu, H.; Wang, Q.; Zhao, Y.; Ma, X.; Yang, M.; Liu, B.; Tang, R.; Xu, X.
2016-07-01
Indoor localization systems based on Wi-Fi signal strength fingerprinting techniques are widely used in office buildings. However, a general problem of these systems pertains to Wi-Fi signal degradation due to the environmental factors. And also, these systems cannot be used in the environments not covered with Wi-Fi signals or the environments with only a single Wi-Fi access point. In this paper, a new indoor location fingerprinting system using both FM radio and Digital Television Terrestrial Multimedia Broadcasting (DTMB) signals is proposed. First, the indoor location fingerprinting using FM radio and DTMB signals is theoretically analyzed to confirm its feasibility. Then, a specially designed combined strength fingerprinting location algorithm is proposed for the location system, which is achieved on the USRP2 platform. Finally, the system is tested in a typical indoor environment. The theoretical analysis and the tests show that the indoor location fingerprinting system using FM radio and DTMB signals has a similar localization accuracy to the Wi-Fi signal strength fingerprinting location system, while it has a wider coverage area, a lower maintenance cost, and more stable signal strength, which makes it a practical indoor positioning method.
Analysis of TMT primary mirror control-structure interaction
NASA Astrophysics Data System (ADS)
MacMynowski, Douglas G.; Thompson, Peter M.; Sirota, Mark J.
2008-07-01
The primary mirror control system (M1CS) keeps the 492 segments of the Thirty Meter Telescope primary mirror aligned in the presence of disturbances. A global position control loop uses feedback from inter-segment edge sensors to three actuators behind each segment that control segment piston, tip and tilt. If soft force actuators are used (e.g. voice-coil), then in addition to the global position loop there will be a local servo loop to provide stiffness. While the M1 control system at Keck compensates only for slow disturbances such as gravity and thermal variations, the M1CS for TMT will need to provide some compensation for higher frequency wind disturbances in order to meet stringent error budget targets. An analysis of expected high-wavenumber wind forces on M1 suggests that a 1Hz control bandwidth is required for the global feedback of segment edge-sensorbased position information in order to minimize high spatial frequency segment response for both seeing-limited and adaptive optics performance. A much higher bandwidth is required from the local servo loop to provide adequate stiffness to wind or acoustic disturbances. A related paper presents the control designs for the local actuator servo loops. The disturbance rejection requirements would not be difficult to achieve for a single segment, but the structural coupling between segments mounted on a flexible mirror cell results in controlstructure interaction (CSI) that limits the achievable bandwidth. Using a combination of simplified modeling to build intuition and the full telescope finite element model for verification, we present designs and analysis for both the local servo loop and global loop demonstrating sufficient bandwidth and resulting wind-disturbance rejection despite the presence of CSI.
Invasive Electrical Impedance Tomography for Blood Vessel Detection
Martinsen, Ørjan G.; Kalvøy, Håvard; Grimnes, Sverre; Nordbotten, Bernt; Hol, Per Kristian; Fosse, Erik; Myklebust, Helge; Becker, Lance B
2010-01-01
We present a novel method for localization of large blood vessels using a bioimpedance based needle positioning system on an array of ten monopolar needle electrodes. The purpose of the study is to develop a portable, low cost tool for rapid vascular access for cooling and controlled reperfusion of cardiac arrest patients. Preliminary results show that localization of blood vessels is feasible with this method, but larger studies are necessary to improve the technology. PMID:21611140
Relative receiver autonomous integrity monitoring for future GNSS-based aircraft navigation
NASA Astrophysics Data System (ADS)
Gratton, Livio Rafael
The Global Positioning System (GPS) has enabled reliable, safe, and practical aircraft positioning for en-route and non-precision phases of flight for more than a decade. Intense research is currently devoted to extending the use of Global Navigation Satellite Systems (GNSS), including GPS, to precision approach and landing operations. In this context, this work is focused on the development, analysis, and verification of the concept of Relative Receiver Autonomous Integrity Monitoring (RRAIM) and its potential applications to precision approach navigation. RRAIM fault detection algorithms are developed, and associated mathematical bounds on position error are derived. These are investigated as possible solutions to some current key challenges in precision approach navigation, discussed below. Augmentation systems serving continent-size areas (like the Wide Area Augmentation System or WAAS) allow certain precision approach operations within the covered region. More and better satellites, with dual frequency capabilities, are expected to be in orbit in the mid-term future, which will potentially allow WAAS-like capabilities worldwide with a sparse ground station network. Two main challenges in achieving this goal are (1) ensuring that navigation fault detection functions are fast enough to alert worldwide users of hazardously misleading information, and (2) minimizing situations in which navigation is unavailable because the user's local satellite geometry is insufficient for safe position estimation. Local augmentation systems (implemented at individual airports, like the Local Area Augmentation System or LAAS) have the potential to allow precision approach and landing operations by providing precise corrections to user-satellite range measurements. An exception to these capabilities arises during ionospheric storms (caused by solar activity), when hazardous situations can exist with residual range errors several orders of magnitudes higher than nominal. Until dual frequency civil GPS signals are available, the ability to provide integrity during ionospheric storms, without excessive loss of availability is a major challenge. For all users, with or without augmentation, some situations cause short duration losses of satellites in view. Two examples are aircraft banking during turns and ionospheric scintillation. The loss of range signals can translate into gaps in good satellite geometry, and the resulting challenge is to ensure navigation continuity by bridging these gaps, while simultaneously maintaining high integrity. It is shown that the RRAIM methods developed in this research can be applied to mitigate each of these obstacles to safe and reliable precision aircraft navigation.
Propulsion System with Pneumatic Artificial Muscles for Powering Ankle-Foot Orthosis
NASA Astrophysics Data System (ADS)
Veneva, Ivanka; Vanderborght, Bram; Lefeber, Dirk; Cherelle, Pierre
2013-12-01
The aim of this paper is to present the design of device for control of new propulsion system with pneumatic artificial muscles. The propulsion system can be used for ankle joint articulation, for assisting and rehabilitation in cases of injured ankle-foot complex, stroke patients or elderly with functional weakness. Proposed device for control is composed by microcontroller, generator for muscles contractions and sensor system. The microcontroller receives the control signals from sensors and modulates ankle joint flex- ion and extension during human motion. The local joint control with a PID (Proportional-Integral Derivative) position feedback directly calculates desired pressure levels and dictates the necessary contractions. The main goal is to achieve an adaptation of the system and provide the necessary joint torque using position control with feedback.
Matsushita, Takashi; Hasegawa, Minoru; Matsushita, Yukiyo; Echigo, Takeshi; Wayaku, Takamasa; Horikawa, Mayuka; Ogawa, Fumihide; Takehara, Kazuhiko; Sato, Shinichi
2007-02-01
Serum levels of B-cell activating factor belonging to the tumor necrosis factor family (BAFF), a potent B-cell survival factor, are elevated in patients with systemic autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis and systemic sclerosis (SSc). The objective of this study was to determine serum BAFF levels and relate the results to the clinical features in patients with organ-specific autoimmune diseases of the skin, such as localized scleroderma and autoimmune bullous diseases. Serum BAFF levels were examined by enzyme-linked immunosorbent assay in 44 patients with localized scleroderma, 20 with pemphigus vulgaris/pemphigus foliaceus, 20 with bullous pemphigoid and 30 healthy controls. Twenty patients with SSc and 20 with SLE were also examined as disease controls. Serum BAFF levels were elevated in localized scleroderma patients compared with healthy controls. Concerning localized scleroderma subgroups, patients with generalized morphea, the severest form of localized scleroderma, had higher serum BAFF levels than linear scleroderma or morphea patients. The BAFF levels of generalized morphea were comparable with those of SSc or SLE. Furthermore, serum BAFF levels correlated positively with antihistone antibody levels and the severity of skin lesion as well as the number of skin lesions. By contrast, serum BAFF levels were not significantly elevated in patients with pemphigus or pemphigoid. These results suggest that BAFF may be contributing to autoimmunity and disease development in localized scleroderma.
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-15
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics.
Electronic and optical properties of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems
NASA Astrophysics Data System (ADS)
Amini, M.; Soleimani, M.; Ehsani, M. H.
2017-12-01
We numerically investigated the optical rectification coefficients (ORCs), transmission coefficient, energy levels and corresponding eigen-functions of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems (FO-MQWs) in the presence of an external electric field. In our calculations, two different methods, including transfer matrix and finite-difference have been used. It has been illustrated that with three types of the FO-MQWs, presented here, localization of the wave-function in any position of the structure is possible. Therefore, managing the electron distribution within the system is easier now. Finally, using the presented structures we could tune the position and amplitude of the ORCs.
Heredia, Guillermo; Caballero, Fernando; Maza, Iván; Merino, Luis; Viguria, Antidio; Ollero, Aníbal
2009-01-01
This paper presents a method to increase the reliability of Unmanned Aerial Vehicle (UAV) sensor Fault Detection and Identification (FDI) in a multi-UAV context. Differential Global Positioning System (DGPS) and inertial sensors are used for sensor FDI in each UAV. The method uses additional position estimations that augment individual UAV FDI system. These additional estimations are obtained using images from the same planar scene taken from two different UAVs. Since accuracy and noise level of the estimation depends on several factors, dynamic replanning of the multi-UAV team can be used to obtain a better estimation in case of faults caused by slow growing errors of absolute position estimation that cannot be detected by using local FDI in the UAVs. Experimental results with data from two real UAVs are also presented.
Evidence of horizontal and vertical interactions in health care spending in the Philippines.
Kelekar, Uma; Llanto, Gilberto
2015-09-01
This article examines whether within a decentralized system of health care spending, local government units in developing countries have any incentive to compete with one another. The existence of spatial competition, whether horizontal or vertical, is tested in the case of Philippines using local government health expenditures data. Results indicate that health spending is characterized by a strong positive interaction between municipalities, consistent with the existence of a horizontal fiscal interaction. However, the results provide less support for the existence of vertical externalities, with the interaction of municipalities with provinces being positive and marginally significant. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2014; all rights reserved.
Guo, Lili; Qi, Junwei; Xue, Wei
2018-01-01
This article proposes a novel active localization method based on the mixed polarization multiple signal classification (MP-MUSIC) algorithm for positioning a metal target or an insulator target in the underwater environment by using a uniform circular antenna (UCA). The boundary element method (BEM) is introduced to analyze the boundary of the target by use of a matrix equation. In this method, an electric dipole source as a part of the locating system is set perpendicularly to the plane of the UCA. As a result, the UCA can only receive the induction field of the target. The potential of each electrode of the UCA is used as spatial-temporal localization data, and it does not need to obtain the field component in each direction compared with the conventional fields-based localization method, which can be easily implemented in practical engineering applications. A simulation model and a physical experiment are constructed. The simulation and the experiment results provide accurate positioning performance, with the help of verifying the effectiveness of the proposed localization method in underwater target locating. PMID:29439495
Kitanishi, Tsuyoshi; Aimi, Yoshinari; Kitano, Hiroya; Suzuki, Mikio; Kimura, Hiroshi; Saito, Atsushi; Shimizu, Takeshi; Tooyama, Ikuo
2013-10-30
We previously discovered a splice variant of choline acetyltransferase (ChAT) mRNA, and designated the variant protein pChAT because of its preferential expression in peripheral neuronal structures. In this study, we examined the immunohistochemical localization of pChAT in rat cochlea and compared the distribution pattern to those of common ChAT (cChAT) and acetylcholinesterase. Some neuronal cell bodies and fibers in the spiral ganglia showed immunoreactivity for pChAT, predominantly the small spiral ganglion cells, indicating outer hair cell type II neurons. In contrast, cChAT- and acetylcholinesterase-positive structures were localized to fibers and not apparent in ganglion cells. After ablation of the cochlear nuclei, many pChAT-positive cochlear nerve fibers became clearly visible, whereas fibers immunopositive for cChAT and acetylcholine esterase disappeared. These results suggested that pChAT and cChAT are localized in different systems of the rat cochlea; pChAT in the afferent and cChAT in the efferent structures.
Kitanishi, Tsuyoshi; Aimi, Yoshinari; Kitano, Hiroya; Suzuki, Mikio; Kimura, Hiroshi; Saito, Atsushi; Shimizu, Takeshi; Tooyama, Ikuo
2013-01-01
We previously discovered a splice variant of choline acetyltransferase (ChAT) mRNA, and designated the variant protein pChAT because of its preferential expression in peripheral neuronal structures. In this study, we examined the immunohistochemical localization of pChAT in rat cochlea and compared the distribution pattern to those of common ChAT (cChAT) and acetylcholinesterase. Some neuronal cell bodies and fibers in the spiral ganglia showed immunoreactivity for pChAT, predominantly the small spiral ganglion cells, indicating outer hair cell type II neurons. In contrast, cChAT- and acetylcholinesterase-positive structures were localized to fibers and not apparent in ganglion cells. After ablation of the cochlear nuclei, many pChAT-positive cochlear nerve fibers became clearly visible, whereas fibers immunopositive for cChAT and acetylcholine esterase disappeared. These results suggested that pChAT and cChAT are localized in different systems of the rat cochlea; pChAT in the afferent and cChAT in the efferent structures. PMID:24194628
Wegener, Jessica; Raine, Kim D; Hanning, Rhona M
2012-11-12
Government actors have an important role to play in creating healthy public policies and supportive environments to facilitate access to safe, affordable, nutritious food. The purpose of this research was to examine Waterloo Region (Ontario, Canada) as a case study for "what works" with respect to facilitating access to healthy, local food through regional food system policy making. Policy and planning approaches were explored through multi-sectoral perspectives of: (a) the development and adoption of food policies as part of the comprehensive planning process; (b) barriers to food system planning; and (c) the role and motivation of the Region's public health and planning departments in food system policy making. Forty-seven in-depth interviews with decision makers, experts in public health and planning, and local food system stakeholders provided rich insight into strategic government actions, as well as the local and historical context within which food system policies were developed. Grounded theory methods were used to identify key overarching themes including: "strategic positioning", "partnerships" and "knowledge transfer" and related sub-themes ("aligned agendas", "issue framing", "visioning" and "legitimacy"). A conceptual framework to illustrate the process and features of food system policy making is presented and can be used as a starting point to engage multi-sectoral stakeholders in plans and actions to facilitate access to healthy food.
Survey on the Performance of Source Localization Algorithms.
Fresno, José Manuel; Robles, Guillermo; Martínez-Tarifa, Juan Manuel; Stewart, Brian G
2017-11-18
The localization of emitters using an array of sensors or antennas is a prevalent issue approached in several applications. There exist different techniques for source localization, which can be classified into multilateration, received signal strength (RSS) and proximity methods. The performance of multilateration techniques relies on measured time variables: the time of flight (ToF) of the emission from the emitter to the sensor, the time differences of arrival (TDoA) of the emission between sensors and the pseudo-time of flight (pToF) of the emission to the sensors. The multilateration algorithms presented and compared in this paper can be classified as iterative and non-iterative methods. Both standard least squares (SLS) and hyperbolic least squares (HLS) are iterative and based on the Newton-Raphson technique to solve the non-linear equation system. The metaheuristic technique particle swarm optimization (PSO) used for source localisation is also studied. This optimization technique estimates the source position as the optimum of an objective function based on HLS and is also iterative in nature. Three non-iterative algorithms, namely the hyperbolic positioning algorithms (HPA), the maximum likelihood estimator (MLE) and Bancroft algorithm, are also presented. A non-iterative combined algorithm, MLE-HLS, based on MLE and HLS, is further proposed in this paper. The performance of all algorithms is analysed and compared in terms of accuracy in the localization of the position of the emitter and in terms of computational time. The analysis is also undertaken with three different sensor layouts since the positions of the sensors affect the localization; several source positions are also evaluated to make the comparison more robust. The analysis is carried out using theoretical time differences, as well as including errors due to the effect of digital sampling of the time variables. It is shown that the most balanced algorithm, yielding better results than the other algorithms in terms of accuracy and short computational time, is the combined MLE-HLS algorithm.
Survey on the Performance of Source Localization Algorithms
2017-01-01
The localization of emitters using an array of sensors or antennas is a prevalent issue approached in several applications. There exist different techniques for source localization, which can be classified into multilateration, received signal strength (RSS) and proximity methods. The performance of multilateration techniques relies on measured time variables: the time of flight (ToF) of the emission from the emitter to the sensor, the time differences of arrival (TDoA) of the emission between sensors and the pseudo-time of flight (pToF) of the emission to the sensors. The multilateration algorithms presented and compared in this paper can be classified as iterative and non-iterative methods. Both standard least squares (SLS) and hyperbolic least squares (HLS) are iterative and based on the Newton–Raphson technique to solve the non-linear equation system. The metaheuristic technique particle swarm optimization (PSO) used for source localisation is also studied. This optimization technique estimates the source position as the optimum of an objective function based on HLS and is also iterative in nature. Three non-iterative algorithms, namely the hyperbolic positioning algorithms (HPA), the maximum likelihood estimator (MLE) and Bancroft algorithm, are also presented. A non-iterative combined algorithm, MLE-HLS, based on MLE and HLS, is further proposed in this paper. The performance of all algorithms is analysed and compared in terms of accuracy in the localization of the position of the emitter and in terms of computational time. The analysis is also undertaken with three different sensor layouts since the positions of the sensors affect the localization; several source positions are also evaluated to make the comparison more robust. The analysis is carried out using theoretical time differences, as well as including errors due to the effect of digital sampling of the time variables. It is shown that the most balanced algorithm, yielding better results than the other algorithms in terms of accuracy and short computational time, is the combined MLE-HLS algorithm. PMID:29156565
Nkengfack, Germaine N; Torimiro, Judith N; Englert, Heike
2012-02-01
In sub-Sahara Africa, micronutrient deficiency, especially of antioxidant micronutrients including vitamins A, C, and E, beta-carotene, selenium, zinc, and polyphenols is very common in HIV-positive patients. Amongst adults, women are the most vulnerable. Antioxidants are known to play a vital role in the immune system, reducing oxidative stress. Oxidative stress is induced by excess production of reactive oxygen species (ROS), due to the HIV infection. Such damage may be prevented or moderated through adequate oral intake of antioxidants, scavenging ROS, as well as protecting cells and tissues against oxidative stress. Antioxidants can be provided to the body through locally available antioxidant rich-diets such as fruit-and-vegetable-based diets and/or dietary supplements. Provision of antioxidants through local diets or dietary supplements exercise beneficial effects on biological markers of the immune system (CD4 and viral load). However, while dietary supplements represent a costly and short-term strategy to limiting antioxidant deficiency, local diets, combined with adequate nutritional education, can provide a low-cost and long-term strategy to reduce oxidative stress, prevent micronutrient deficiency, and slow down HIV disease progression. The former can be applicable in countries around the West, Central, and South coast of Africa, which are rich in natural food resources. In contrast with significant evidence that dietary supplements confer benefits in HIV patients, fewer data are available relating to the benefits of local diets. Thus the need to do more research in this area arises. This review compares available data on effects of antioxidants on CD4 and viral load in HIV-positive women noneligible for antiretroviral therapy. Intake of antioxidants though dietary supplements and local diet, associated with nutritional education, is compared. Studies conducted in sub-Sahara Africa are considered.
Location estimation in wireless sensor networks using spring-relaxation technique.
Zhang, Qing; Foh, Chuan Heng; Seet, Boon-Chong; Fong, A C M
2010-01-01
Accurate and low-cost autonomous self-localization is a critical requirement of various applications of a large-scale distributed wireless sensor network (WSN). Due to its massive deployment of sensors, explicit measurements based on specialized localization hardware such as the Global Positioning System (GPS) is not practical. In this paper, we propose a low-cost WSN localization solution. Our design uses received signal strength indicators for ranging, light weight distributed algorithms based on the spring-relaxation technique for location computation, and the cooperative approach to achieve certain location estimation accuracy with a low number of nodes with known locations. We provide analysis to show the suitability of the spring-relaxation technique for WSN localization with cooperative approach, and perform simulation experiments to illustrate its accuracy in localization.
NASA Astrophysics Data System (ADS)
Goh, Shu Ting
Spacecraft formation flying navigation continues to receive a great deal of interest. The research presented in this dissertation focuses on developing methods for estimating spacecraft absolute and relative positions, assuming measurements of only relative positions using wireless sensors. The implementation of the extended Kalman filter to the spacecraft formation navigation problem results in high estimation errors and instabilities in state estimation at times. This is due to the high nonlinearities in the system dynamic model. Several approaches are attempted in this dissertation aiming at increasing the estimation stability and improving the estimation accuracy. A differential geometric filter is implemented for spacecraft positions estimation. The differential geometric filter avoids the linearization step (which is always carried out in the extended Kalman filter) through a mathematical transformation that converts the nonlinear system into a linear system. A linear estimator is designed in the linear domain, and then transformed back to the physical domain. This approach demonstrated better estimation stability for spacecraft formation positions estimation, as detailed in this dissertation. The constrained Kalman filter is also implemented for spacecraft formation flying absolute positions estimation. The orbital motion of a spacecraft is characterized by two range extrema (perigee and apogee). At the extremum, the rate of change of a spacecraft's range vanishes. This motion constraint can be used to improve the position estimation accuracy. The application of the constrained Kalman filter at only two points in the orbit causes filter instability. Two variables are introduced into the constrained Kalman filter to maintain the stability and improve the estimation accuracy. An extended Kalman filter is implemented as a benchmark for comparison with the constrained Kalman filter. Simulation results show that the constrained Kalman filter provides better estimation accuracy as compared with the extended Kalman filter. A Weighted Measurement Fusion Kalman Filter (WMFKF) is proposed in this dissertation. In wireless localizing sensors, a measurement error is proportional to the distance of the signal travels and sensor noise. In this proposed Weighted Measurement Fusion Kalman Filter, the signal traveling time delay is not modeled; however, each measurement is weighted based on the measured signal travel distance. The obtained estimation performance is compared to the standard Kalman filter in two scenarios. The first scenario assumes using a wireless local positioning system in a GPS denied environment. The second scenario assumes the availability of both the wireless local positioning system and GPS measurements. The simulation results show that the WMFKF has similar accuracy performance as the standard Kalman Filter (KF) in the GPS denied environment. However, the WMFKF maintains the position estimation error within its expected error boundary when the WLPS detection range limit is above 30km. In addition, the WMFKF has a better accuracy and stability performance when GPS is available. Also, the computational cost analysis shows that the WMFKF has less computational cost than the standard KF, and the WMFKF has higher ellipsoid error probable percentage than the standard Measurement Fusion method. A method to determine the relative attitudes between three spacecraft is developed. The method requires four direction measurements between the three spacecraft. The simulation results and covariance analysis show that the method's error falls within a three sigma boundary without exhibiting any singularity issues. A study of the accuracy of the proposed method with respect to the shape of the spacecraft formation is also presented.
HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments.
Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes
2015-12-24
Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization.
HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments
Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes
2015-01-01
Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization. PMID:26712755
Bin Mustafa, Ammar Safwan; Ishii, Takashi; Matsunaga, Yoshiki; Nakadate, Ryu; Ishii, Hiroyuki; Ogawa, Kouji; Saito, Akiko; Sugawara, Motoaki; Niki, Kiyomi; Takanishi, Atsuo
2013-01-01
Physicians use ultrasound scans to obtain real-time images of internal organs, because such scans are safe and inexpensive. However, people in remote areas face difficulties to be scanned due to aging society and physician's shortage. Hence, it is important to develop an autonomous robotic system to perform remote ultrasound scans. Previously, we developed a robotic system for automatic ultrasound scan focusing on human's liver. In order to make it a completely autonomous system, we present in this paper a way to autonomously localize the epigastric region as the starting position for the automatic ultrasound scan. An image processing algorithm marks the umbilicus and mammary papillae on a digital photograph of the patient's abdomen. Then, we made estimation for the location of the epigastric region using the distances between these landmarks. A supporting algorithm distinguishes rib position from epigastrium using the relationship between force and displacement. We implemented these algorithms with the automatic scanning system into an apparatus: a Mitsubishi Electric's MELFA RV-1 six axis manipulator. Tests on 14 healthy male subjects showed the apparatus located the epigastric region with a success rate of 94%. The results suggest that image recognition was effective in localizing a human body part.
Probe Scanning Support System by a Parallel Mechanism for Robotic Echography
NASA Astrophysics Data System (ADS)
Aoki, Yusuke; Kaneko, Kenta; Oyamada, Masami; Takachi, Yuuki; Masuda, Kohji
We propose a probe scanning support system based on force/visual servoing control for robotic echography. First, we have designed and formulated its inverse kinematics the construction of mechanism. Next, we have developed a scanning method of the ultrasound probe on body surface to construct visual servo system based on acquired echogram by the standalone medical robot to move the ultrasound probe on patient abdomen in three-dimension. The visual servo system detects local change of brightness in time series echogram, which is stabilized the position of the probe by conventional force servo system in the robot, to compensate not only periodical respiration motion but also body motion. Then we integrated control method of the visual servo with the force servo as a hybrid control in both of position and force. To confirm the ability to apply for actual abdomen, we experimented the total system to follow the gallbladder as a moving target to keep its position in the echogram by minimizing variation of reaction force on abdomen. As the result, the system has a potential to be applied to automatic detection of human internal organ.
Mobile Robot Localization by Remote Viewing of a Colored Cylinder
NASA Technical Reports Server (NTRS)
Volpe, R.; Litwin, T.; Matthies, L.
1995-01-01
A system was developed for the Mars Pathfinder rover in which the rover checks its position by viewing the angle back to a colored cylinder with different colors for different angles. The rover determines distance by the apparent size of the cylinder.
Ungi, Tamas; Gauvin, Gabrielle; Lasso, Andras; Yeo, Caitlin T; Pezeshki, Padina; Vaughan, Thomas; Carter, Kaci; Rudan, John; Engel, C Jay; Fichtinger, Gabor
2016-03-01
Lumpectomy, breast conserving tumor excision, is the standard surgical treatment in early stage breast cancer. A common problem with lumpectomy is that the tumor may not be completely excised, and additional surgery becomes necessary. We investigated if a surgical navigation system using intraoperative ultrasound improves the outcomes of lumpectomy and if such a system can be implemented in the clinical environment. Position sensors were applied on the tumor localization needle, the ultrasound probe, and the cautery, and 3-D navigation views were generated using real-time tracking information. The system was tested against standard wire-localization procedures on phantom breast models by eight surgical residents. Clinical safety and feasibility was tested in six palpable tumor patients undergoing lumpectomy by two experienced surgical oncologists. Navigation resulted in significantly less tissue excised compared to control procedures (10.3 ± 4.4 versus 18.6 ± 8.7 g, p = 0.01) and lower number of tumor-positive margins (1/8 versus 4/8) in the phantom experiments. Excision-tumor distance was also more consistently outside the tumor margins with navigation in phantoms. The navigation system has been successfully integrated in an operating room, and user experience was rated positively by surgical oncologists. Electromagnetic navigation may improve the outcomes of lumpectomy by making the tumor excision more accurate. Breast cancer is the most common cancer in women, and lumpectomy is its first choice treatment. Therefore, the improvement of lumpectomy outcomes has a significant impact on a large patient population.
Localized disruption of Narp in medial prefrontal cortex blocks reinforcer devaluation performance
Johnson, Alexander W.; Han, Sungho; Blouin, Ashley M.; Saini, Jasjit; Worley, Paul F.; During, Matthew J.; Holland, Peter C.; Baraban, Jay M.; Reti, Irving M.
2010-01-01
Neuronal activity regulated pentraxin (Narp) is a secreted protein that regulates α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPAR) aggregation and synaptogenesis. Mapping of Narp-positive neurons in brain has revealed it is prominently expressed in several limbic system projection pathways. Consistent with this localization pattern, Narp knockout mice show deficits in using the current value of a reinforcer to guide behavior, a critical function of the limbic system. To help assess whether this behavioral deficit is due to impairment of synaptogenesis during development or in modulating synaptic signaling in the mature brain, we have used a dominant negative Narp viral construct which blocks trafficking of endogenous Narp to axons. Focal injection of this viral construct into the medial prefrontal cortex (mPFC) of adult mice, a region containing Narp-positive projection neurons, blocked reinforcer devaluation. Thus, these results indicate that Narp released from mPFC neurons plays a key role in mediating synaptic changes underlying instrumental reinforcer devaluation. PMID:21127001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalilian, Jaafar, E-mail: JaafarJalilian@gmail.com; Kanjouri, Faramarz, E-mail: kanjouri@khu.ac.ir
2016-11-15
Using spin-polarized density functional theory calculations, we demonstrated that carbon doped boron nitride nanowire (C-doped BNNW) has diverse electronic and magnetic properties depending on position of carbon atoms and their percentages. Our results show that only when one carbon atom is situated on the edge of the nanowire, C-doped BNNW is transformed into half-metal. The calculated electronic structure of the C-doped BNNW suggests that doping carbon can induce localized edge states around the Fermi level, and the interaction among localized edge states leads to semiconductor to half-metal transition. Overall, the bond reconstruction causes of appearance of different electronic behavior suchmore » as semiconducting, half-metallicity, nonmagnetic metallic, and ferromagnetic metallic characters. The formation energy of the system shows that when a C atom is doped on surface boron site, system is more stable than the other positions of carbon impurity. Our calculations show that C-doped BNNW may offer unique opportunities for developing nanoscale spintronic materials.« less
Self-organization of meaning and the reflexive communication of information
Leydesdorff, Loet; Petersen, Alexander M.; Ivanova, Inga
2017-01-01
Following a suggestion from Warren Weaver, we extend the Shannon model of communication piecemeal into a complex systems model in which communication is differentiated both vertically and horizontally. This model enables us to bridge the divide between Niklas Luhmann’s theory of the self-organization of meaning in communications and empirical research using information theory. First, we distinguish between communication relations and correlations among patterns of relations. The correlations span a vector space in which relations are positioned and can be provided with meaning. Second, positions provide reflexive perspectives. Whereas the different meanings are integrated locally, each instantiation opens global perspectives – ‘horizons of meaning’ – along eigenvectors of the communication matrix. These next-order codifications of meaning can be expected to generate redundancies when interacting in instantiations. Increases in redundancy indicate new options and can be measured as local reduction of prevailing uncertainty (in bits). The systemic generation of new options can be considered as a hallmark of the knowledge-based economy. PMID:28232771
Olney, Cynthia A.; Backus, Joyce E. B.; Klein, Lori J.
2010-01-01
Objectives: Through interviews with the National Library of Medicine's MedlinePlus Go Local collaborators, an evaluation team sought to identify process characteristics that are critical for long-term sustainability of Go Local projects and to describe the impact that Go Local projects have on sponsoring institutions. Methods: Go Local project coordinators (n = 44) at 31 sponsor institutions participated in semi-structured interviews about their experiences developing and maintaining Go Local sites. Interviews were summarized, checked for accuracy by the participating librarians, and analyzed using a general inductive methodology. Results: Institutional factors that support Go Local projects were identified through the interviews, as well as strategies for staffing and partnerships with external organizations. Positive outcomes for sponsoring institutions also were identified. Conclusions: The findings may influence the National Library of Medicine team's decisions about improvements to its Go Local system and the support it provides to sponsoring institutions. The findings may benefit current sponsoring institutions as well as those considering or planning a Go Local project. PMID:20098657
Analysis of DGPS/INS and MLS/INS final approach navigation errors and control performance data
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.; Spitzer, Cary R.
1992-01-01
Flight tests were conducted jointly by NASA Langley Research Center and Honeywell, Inc., on a B-737 research aircraft to record a data base for evaluating the performance of a differential DGPS/inertial navigation system (INS) which used GPS Course/Acquisition code receivers. Estimates from the DGPS/INS and a Microwave Landing System (MLS)/INS, and various aircraft parameter data were recorded in real time aboard the aircraft while flying along the final approach path to landing. This paper presents the mean and standard deviation of the DGPS/INS and MLS/INS navigation position errors computed relative to the laser tracker system and of the difference between the DGPS/INS and MLS/INS velocity estimates. RMS errors are presented for DGPS/INS and MLS/INS guidance errors (localizer and glideslope). The mean navigation position errors and standard deviation of the x position coordinate of the DGPS/INS and MLS/INS systems were found to be of similar magnitude while the standard deviation of the y and z position coordinate errors were significantly larger for DGPS/INS compared to MLS/INS.
Local Anesthetic-Induced Neurotoxicity
Verlinde, Mark; Hollmann, Markus W.; Stevens, Markus F.; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp
2016-01-01
This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor. PMID:26959012
Local Anesthetic-Induced Neurotoxicity.
Verlinde, Mark; Hollmann, Markus W; Stevens, Markus F; Hermanns, Henning; Werdehausen, Robert; Lirk, Philipp
2016-03-04
This review summarizes current knowledge concerning incidence, risk factors, and mechanisms of perioperative nerve injury, with focus on local anesthetic-induced neurotoxicity. Perioperative nerve injury is a complex phenomenon and can be caused by a number of clinical factors. Anesthetic risk factors for perioperative nerve injury include regional block technique, patient risk factors, and local anesthetic-induced neurotoxicity. Surgery can lead to nerve damage by use of tourniquets or by direct mechanical stress on nerves, such as traction, transection, compression, contusion, ischemia, and stretching. Current literature suggests that the majority of perioperative nerve injuries are unrelated to regional anesthesia. Besides the blockade of sodium channels which is responsible for the anesthetic effect, systemic local anesthetics can have a positive influence on the inflammatory response and the hemostatic system in the perioperative period. However, next to these beneficial effects, local anesthetics exhibit time and dose-dependent toxicity to a variety of tissues, including nerves. There is equivocal experimental evidence that the toxicity varies among local anesthetics. Even though the precise order of events during local anesthetic-induced neurotoxicity is not clear, possible cellular mechanisms have been identified. These include the intrinsic caspase-pathway, PI3K-pathway, and MAPK-pathways. Further research will need to determine whether these pathways are non-specifically activated by local anesthetics, or whether there is a single common precipitating factor.
Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.
Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta
2010-01-01
This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.
Next-Generation Telemetry Workstation
NASA Technical Reports Server (NTRS)
2008-01-01
A next-generation telemetry workstation has been developed to replace the one currently used to test and control Range Safety systems. Improving upon the performance of the original system, the new telemetry workstation uses dual-channel telemetry boards for better synchronization of the two uplink telemetry streams. The new workstation also includes an Interrange Instrumentation Group/Global Positioning System (IRIG/GPS) time code receiver board for independent, local time stamping of return-link data. The next-generation system will also record and play back return-link data for postlaunch analysis.
NASA Astrophysics Data System (ADS)
Noda, Masafumi; Takahashi, Tomokazu; Deguchi, Daisuke; Ide, Ichiro; Murase, Hiroshi; Kojima, Yoshiko; Naito, Takashi
In this study, we propose a method for detecting road markings recorded in an image captured by an in-vehicle camera by using a position-dependent classifier. Road markings are symbols painted on the road surface that help in preventing traffic accidents and in ensuring traffic smooth. Therefore, driver support systems for detecting road markings, such as a system that provides warning in the case when traffic signs are overlooked, and supporting the stopping of a vehicle are required. It is difficult to detect road markings because their appearance changes with the actual traffic conditions, e. g. the shape and resolution change. The variation in these appearances depend on the positional relation between the vehicle and the road markings, and on the vehicle posture. Although these variations are quite large in an entire image, they are relatively small in a local area of the image. Therefore, we try to improve the detection performance by taking into account the local variations in these appearances. We propose a method in which a position-dependent classifier is used to detect road markings recorded in images captured by an in-vehicle camera. Further, to train the classifier efficiently, we propose a generative learning method that takes into consideration the positional relation between the vehicle and road markings, and also the vehicle posture. Experimental results showed that the detection performance when the proposed method was used was better than when a method involving a single classifier was used.
NASA Astrophysics Data System (ADS)
Opshaug, Guttorm Ringstad
There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position errors never exceeded 16 cm during these field tests.
Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems
NASA Technical Reports Server (NTRS)
Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)
2004-01-01
An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.
Challenges in Securing the Interface Between the Cloud and Pervasive Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagesse, Brent J
2011-01-01
Cloud computing presents an opportunity for pervasive systems to leverage computational and storage resources to accomplish tasks that would not normally be possible on such resource-constrained devices. Cloud computing can enable hardware designers to build lighter systems that last longer and are more mobile. Despite the advantages cloud computing offers to the designers of pervasive systems, there are some limitations of leveraging cloud computing that must be addressed. We take the position that cloud-based pervasive system must be secured holistically and discuss ways this might be accomplished. In this paper, we discuss a pervasive system utilizing cloud computing resources andmore » issues that must be addressed in such a system. In this system, the user's mobile device cannot always have network access to leverage resources from the cloud, so it must make intelligent decisions about what data should be stored locally and what processes should be run locally. As a result of these decisions, the user becomes vulnerable to attacks while interfacing with the pervasive system.« less
Multisite Testing of the Discrete Address Beacon System (DABS).
1981-07-01
downlink messages from an airborne distributed computer system containing , transponder in addition to performing 36 minicomputers, most of which are...the lockout function. organized into groups (or ensembles) of four computers interfaced to a local Each sensor may provide surveillance and data bus...position and velocity. Depending upon computer subsystem, which monitors the means used for scenario generation, in real time all communication and aircraft
Brownian motion surviving in the unstable cubic potential and the role of Maxwell's demon
NASA Astrophysics Data System (ADS)
Ornigotti, Luca; Ryabov, Artem; Holubec, Viktor; Filip, Radim
2018-03-01
The trajectories of an overdamped particle in a highly unstable potential diverge so rapidly, that the variance of position grows much faster than its mean. A description of the dynamics by moments is therefore not informative. Instead, we propose and analyze local directly measurable characteristics, which overcome this limitation. We discuss the most probable particle position (position of the maximum of the probability density) and the local uncertainty in an unstable cubic potential, V (x ) ˜x3 , both in the transient regime and in the long-time limit. The maximum shifts against the acting force as a function of time and temperature. Simultaneously, the local uncertainty does not increase faster than the observable shift. In the long-time limit, the probability density naturally attains a quasistationary form. We interpret this process as a stabilization via the measurement-feedback mechanism, the Maxwell demon, which works as an entropy pump. The rules for measurement and feedback naturally arise from the basic properties of the unstable dynamics. All reported effects are inherent in any unstable system. Their detailed understanding will stimulate the development of stochastic engines and amplifiers and, later, their quantum counterparts.
Development of a BPM Lock-In Diagnostic System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard Dickson
2003-05-12
A system has been developed for the acquisition and analysis of high rate, time coherent BPM data across the Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF). This system will allow the acquisition of Beam Position Monitor (BPM) position and intensity information at a rate in excess 7 KHz for approximately 200 BPMs in a time synchronous manner. By inducing minute sinusoidal transverse beam motion in the CEBAF injector, with known phase relative to the synchronized BPM acquisition, it is possible to derive several types of useful information. Analysis of the BPM intensity data, which is proportional to beam current,more » by beating the signal with an in-phase sinusoidal representation of the transverse kick can localize beam scraping to a particular BPM. Similarly, real-time optics information may be deduced with an analysis of BPM position data. This paper will detail the frequency lock-in technique applied and present status.« less
Application of a movable active vibration control system on a floating raft
NASA Astrophysics Data System (ADS)
Wang, Zhen; Mak, Cheuk Ming
2018-02-01
This paper presents a theoretical study of an inertial actuator connected to an accelerometer by a local feedback loop for active vibration control on a floating raft. On the criterion of the minimum power transmission from the vibratory machines to the flexible foundation in the floating raft, the best mounting positions for the inertial actuator on the intermediate mass of the floating raft are investigated. Simulation results indicate that the best mounting positions for the inertial actuator vary with frequency. To control time-varying excitations of vibratory machines on a floating raft effectively, an automatic control system based on real-time measurement of a cost function and automatically searching the best mounting position of the inertial actuator is proposed. To the best of our knowledge, it is the first time that an automatic control system is proposed to move an actuator automatically for controlling a time-varying excitation.
LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments
Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha
2015-01-01
A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies—INS and LiDAR SLAM—into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform—NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment. PMID:26184206
LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.
Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha
2015-07-10
A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.
Blackhall, Fiona; Ross Camidge, D; Shaw, Alice T; Soria, Jean-Charles; Solomon, Benjamin J; Mok, Tony; Hirsh, Vera; Jänne, Pasi A; Shi, Yuankai; Yang, Pan-Chyr; Pas, Tommaso De; Hida, Toyoaki; Carpeño, Javier De Castro; Lanzalone, Silvana; Polli, Anna; Iyer, Shrividya; Reisman, Arlene; Wilner, Keith D; Kim, Dong-Wan
2017-01-01
Purpose Crizotinib is a potent, orally administered tyrosine kinase inhibitor approved for the treatment of anaplastic lymphoma kinase (ALK)-positive advanced non-small-cell lung cancer (NSCLC). We report final results from PROFILE 1005, the largest clinical trial to date for an ALK inhibitor in ALK-positive NSCLC. Patients and methods PROFILE 1005 (NCT00932451) was a multicenter, single-arm phase 2 trial of the efficacy, safety and tolerability of crizotinib (250 mg twice daily; 3 week continuous treatment cycles) in patients with ALK-positive NSCLC after failure of ≥1 lines of systemic treatment for locally advanced/metastatic disease. Patients’ tumour ALK status was initially determined by a central laboratory until a protocol amendment permitted enrolment of patients based on locally determined ALK status. Co-primary endpoints were objective response rate (ORR), evaluated using Response Evaluation Criteria in Solid Tumours V.1.1 and adverse events (AEs). Cancer-specific patient-reported outcomes (PROs) were also assessed using the European Organisation for the Research and Treatment of Cancer QLQ-C30 and its lung cancer module QLQ-LC13. Results 1069 patients were enrolled; 1066 received crizotinib. The as-treated population comprised 908 and 158 patients, in whom tumour positive ALK-status was determined centrally (± locally) or locally only, respectively. At baseline, a majority of patients were <65 years (84%), 66% were never smokers and 46% were Asian. Derived investigator-assessed ORR was 54% (95% CI 51 to 57) and 41% (95% CI 33 to 49) in the central-testing and local-testing subgroups, respectively. The most common treatment-related AEs in the overall population (any grade) were vision disorder (58%), nausea (51%), diarrhoea (47%) and vomiting (47%). PRO scores demonstrated clinically meaningful improvement in lung cancer symptoms and global quality of life. Conclusion The efficacy, safety and PRO profiles of crizotinib in this cohort of 1066 patients with ALK-positive NSCLC are consistent with previous reports. Trial registration number Phase 2 trial (NCT00932451); Results. PMID:29209525
Decentralized control experiments on NASA's flexible grid
NASA Technical Reports Server (NTRS)
Ozguner, U.; Yurkowich, S.; Martin, J., III; Al-Abbass, F.
1986-01-01
Methods arising from the area of decentralized control are emerging for analysis and control synthesis for large flexible structures. In this paper the control strategy involves a decentralized model reference adaptive approach using a variable structure control. Local models are formulated based on desired damping and response time in a model-following scheme for various modal configurations. Variable structure controllers are then designed employing co-located angular rate and position feedback. In this scheme local control forces the system to move on a local sliding mode in some local error space. An important feature of this approach is that the local subsystem is made insensitive to dynamical interactions with other subsystems once the sliding surface is reached. Experiments based on the above have been performed for NASA's flexible grid experimental apparatus. The grid is designed to admit appreciable low-frequency structural dynamics, and allows for implementation of distributed computing components, inertial sensors, and actuation devices. A finite-element analysis of the grid provides the model for control system design and simulation; results of several simulations are reported on here, and a discussion of application experiments on the apparatus is presented.
Modeling and stability of segmented reflector telescopes - A decentralized approach
NASA Technical Reports Server (NTRS)
Ryaciotaki-Boussalis, Helen A.; Ih, Che-Hang Charles
1990-01-01
The decentralization of a segmented reflector telescope based on a finite-element model of its structure is considered. The decentralization of the system at the panel level is considered. Each panel is originally treated as an isolated subsystem so that the controller design is performed independently at the local level, and then applied to the composite system for stability analysis. The panel-level control laws were designed by means of pole placement using local output feedback. Simulation results show a better 1000:1 vibration attenuation in panel position when compared to the open-loop system. It is shown that the overall closed-loop system is exponentially stable provided that certain conditions are met. The advantage to the decentralized approach is that the design is performed in terms of the low-dimensionality subsystems, thus drastically reducing the design computational complexities.
Early time evolution of a localized nonlinear excitation in the β-FPUT chain
NASA Astrophysics Data System (ADS)
Kashyap, Rahul; Westley, Alexandra; Datta, Amitava; Sen, Surajit
2017-04-01
We present the detailed dynamics of the particles in the β-Fermi-Pasta-Ulam-Tsingou (FPUT) chain after the initiation of a localized nonlinear excitation (LNE) by squeezing a central bond in the monodispersed chain at time t = 0 while all other particles remain in their original relaxed positions. In the absence of phonons in the system, the LNE appears to initiate its relaxation process by symmetrically emitting two very weak solitary waves. The next stage involves the spreading of the LNE and the formation of nonsolitary wave-like objects to broaden the excitation region until a stage is reached when many weak solitary wave-like objects can be emitted as the system begins its journey to quasi-equilibrium and then to equilibrium. In addition to being of fundamental interest, these systems may be realized using cantilever systems and could well hold the key to constructing the next generation of broadband energy harvesting systems.
Hao, Lijie; Yang, Zhuoqin; Lei, Jinzhi
2018-01-01
Long-term potentiation (LTP) is a specific form of activity-dependent synaptic plasticity that is a leading mechanism of learning and memory in mammals. The properties of cooperativity, input specificity, and associativity are essential for LTP; however, the underlying mechanisms are unclear. Here, based on experimentally observed phenomena, we introduce a computational model of synaptic plasticity in a pyramidal cell to explore the mechanisms responsible for the cooperativity, input specificity, and associativity of LTP. The model is based on molecular processes involved in synaptic plasticity and integrates gene expression involved in the regulation of neuronal activity. In the model, we introduce a local positive feedback loop of protein synthesis at each synapse, which is essential for bimodal response and synapse specificity. Bifurcation analysis of the local positive feedback loop of brain-derived neurotrophic factor (BDNF) signaling illustrates the existence of bistability, which is the basis of LTP induction. The local bifurcation diagram provides guidance for the realization of LTP, and the projection of whole system trajectories onto the two-parameter bifurcation diagram confirms the predictions obtained from bifurcation analysis. Moreover, model analysis shows that pre- and postsynaptic components are required to achieve the three properties of LTP. This study provides insights into the mechanisms underlying the cooperativity, input specificity, and associativity of LTP, and the further construction of neural networks for learning and memory.
Iris Location Algorithm Based on the CANNY Operator and Gradient Hough Transform
NASA Astrophysics Data System (ADS)
Zhong, L. H.; Meng, K.; Wang, Y.; Dai, Z. Q.; Li, S.
2017-12-01
In the iris recognition system, the accuracy of the localization of the inner and outer edges of the iris directly affects the performance of the recognition system, so iris localization has important research meaning. Our iris data contain eyelid, eyelashes, light spot and other noise, even the gray transformation of the images is not obvious, so the general methods of iris location are unable to realize the iris location. The method of the iris location based on Canny operator and gradient Hough transform is proposed. Firstly, the images are pre-processed; then, calculating the gradient information of images, the inner and outer edges of iris are coarse positioned using Canny operator; finally, according to the gradient Hough transform to realize precise localization of the inner and outer edge of iris. The experimental results show that our algorithm can achieve the localization of the inner and outer edges of the iris well, and the algorithm has strong anti-interference ability, can greatly reduce the location time and has higher accuracy and stability.
NASA Astrophysics Data System (ADS)
Galisteo-López, Juan F.
2017-02-01
Controlling the emission of a light source demands acting on its local photonic environment via the local density of states (LDOS). Approaches to exert such control on large scale samples, commonly relying on self-assembly methods, usually lack from a precise positioning of the emitter within the material. Alternatively expensive and time consuming techniques can be used to produce samples of small dimensions where a deterministic control on emitter position can be achieved. In this work we present a full solution process approach to fabricate photonic architectures containing nano-emitters which position can be controlled with nanometer precision over squared milimiter regions. By a combination of spin and dip coating we fabricate one-dimensional (1D) nanoporous photonic crystals, which potential in different fields such as photovoltaics or sensing has been previously reported, containing monolayers of luminescent polymeric nanospheres. We demonstrate how, by modifying the position of the emitters within the photonic crystal, their emission properties (photoluminescence intensity and angular distribution) can be deterministically modified. Further, the nano-emitters can be used as a probe to study the LDOS distribution within these systems with a spatial resolution of 25 nm (provided by the probe size) carrying out macroscopic measurements over squared milimiter regions. Routes to enhance light-matter interaction in this kind of systems by combining them with metallic surfaces are finally discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeling, V; Jin, H; Hossain, S
2015-06-15
Purpose: To evaluate patient setup accuracy and quantify individual and cumulative positioning uncertainties associated with different hardware and software components of the stereotactic radiotherapy (SRS/SRT) with the frameless-6D-ExacTrac system. Methods: A statistical model was used to evaluate positioning uncertainties of the different components of SRS/SRT treatment with the BrainLAB 6D-ExacTrac system using the positioning shifts of 35 patients having cranial lesions (49 total lesions treated in 1, 3, 5 fractions). All these patients were immobilized with rigid head-and-neck masks, simulated with BrainLAB-localizer and planned with iPlan treatment planning system. Infrared imaging (IR) was used initially to setup patients. Then, stereoscopicmore » x-ray images (XC) were acquired and registered to corresponding digitally-reconstructed-radiographs using bony-anatomy matching to calculate 6D-translational and rotational shifts. When the shifts were within tolerance (0.7mm and 1°), treatment was initiated. Otherwise corrections were applied and additional x-rays were acquired (XV) to verify that patient position was within tolerance. Results: The uncertainties from the mask, localizer, IR-frame, x-ray imaging, MV and kV isocentricity were quantified individually. Mask uncertainty (Translational: Lateral, Longitudinal, Vertical; Rotational: Pitch, Roll, Yaw) was the largest and varied with patients in the range (−1.05−1.50mm, −5.06–3.57mm, −5.51−3.49mm; −1.40−2.40°, −1.24−1.74°, and −2.43−1.90°) obtained from mean of XC shifts for each patient. Setup uncertainty in IR positioning (0.88,2.12,1.40mm, and 0.64,0.83,0.96°) was extracted from standard-deviation of XC. Systematic uncertainties of the localizer (−0.03,−0.01,0.03mm, and −0.03,0.00,−0.01°) and frame (0.18,0.25,−1.27mm,−0.32,0.18, and 0.47°) were extracted from means of all XV setups and mean of all XC distributions, respectively. Uncertainties in isocentricity of the MV radiotherapy machine were (0.27,0.24,0.34mm) and kV-imager (0.15,−0.4,0.21mm). Conclusion: A statistical model was developed to evaluate the individual and cumulative systematic and random uncertainties induced by the different hardware and software components of the 6D-ExacTrac-system. The immobilization mask was associated with the largest positioning uncertainty.« less
Adaptation, Growth, and Resilience in Biological Distribution Networks
NASA Astrophysics Data System (ADS)
Ronellenfitsch, Henrik; Katifori, Eleni
Highly optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is nonconvex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that such an optimal state is slowly achieved through natural selection. However, general coarse grained models for flow networks with local positive feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. We show how the growth of the underlying tissue, coupled to the dynamical equations for network development, can drive the system to a dramatically improved optimal state. This general model provides a surprisingly simple explanation for the appearance of highly optimized transport networks in biology such as plant and animal vasculature. In addition, we show how the incorporation of spatially collective fluctuating sources yields a minimal model of realistic reticulation in distribution networks and thus resilience against damage.
Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system.
Kuo, Nathanael; Kang, Hyun Jae; Song, Danny Y; Kang, Jin U; Boctor, Emad M
2012-06-01
Prostate brachytherapy is a popular prostate cancer treatment option that involves the permanent implantation of radioactive seeds into the prostate. However, contemporary brachytherapy procedure is limited by the lack of an imaging system that can provide real-time seed-position feedback. While many other imaging systems have been proposed, photoacoustic imaging has emerged as a potential ideal modality to address this need, since it could easily be incorporated into the current ultrasound system used in the operating room. We present such a photoacoustic imaging system built around a clinical ultrasound system to achieve the task of visualizing and localizing seeds. We performed several experiments to analyze the effects of various parameters on the appearance of brachytherapy seeds in photoacoustic images. We also imaged multiple seeds in an ex vivo dog prostate phantom to demonstrate the possibility of using this system in a clinical setting. Although still in its infancy, these initial results of a photoacoustic imaging system for the application of prostate brachytherapy seed localization are highly promising.
Mapping of local argon impingement on a virtual surface: an insight for gas injection during FEBID
NASA Astrophysics Data System (ADS)
Wanzenboeck, H. D.; Hochleitner, G.; Mika, J.; Shawrav, M. M.; Gavagnin, M.; Bertagnolli, E.
2014-12-01
During the last decades, focused electron beam induced deposition (FEBID) has become a successful approach for direct-write fabrication of nanodevices. Such a deposition technique relies on the precursor supply to the sample surface which is typically accomplished by a gas injection system using a tube-shaped injector nozzle. This precursor injection strategy implies a position-dependent concentration gradient on the surface, which affects the geometry and chemistry of the final nanodeposit. Although simulations already proposed the local distribution of nozzle-borne gas molecules impinging on the surface, this isolated step in the FEBID process has never been experimentally measured yet. This work experimentally investigates the local distribution of impinging gas molecules on the sample plane, isolating the direct impingement component from surface diffusion or precursor depletion by deposition. The experimental setup used in this work maps and quantifies the local impinging rate of argon gas over the sample plane. This setup simulates the identical conditions for a precursor molecule during FEBID. Argon gas was locally collected with a sniffer tube, which is directly connected to a residual gas analyzer for quantification. The measured distribution of impinging gas molecules showed a strong position dependence. Indeed, a 300-µm shift of the deposition area to a position further away from the impingement center spot resulted in a 50 % decrease in the precursor impinging rate on the surface area. With the same parameters, the precursor distribution was also simulated by a Monte Carlo software by Friedli and Utke and showed a good correlation between the empirical and the simulated precursor distribution. The results hereby presented underline the importance of controlling the local precursor flux conditions in order to obtain reproducible and comparable deposition results in FEBID.
Interference techniques in fluorescence microscopy
NASA Astrophysics Data System (ADS)
Dogan, Mehmet
We developed a set of interference-based optical microscopy techniques to study biological structures through nanometer-scale axial localization of fluorescent biomarkers. Spectral self-interference fluorescence microscopy (SSFM) utilizes interference of direct and reflected waves emitted from fluorescent molecules in the vicinity of planar reflectors to reveal the axial position of the molecules. A comprehensive calculation algorithm based on Green's function formalism is presented to verify the validity of approximations used in a far-field approach that describes the emission of fluorescent markers near interfaces. Using the validated model, theoretical limits of axial localization were determined with emphasis given to numerical aperture (NA) dependence of localization uncertainty. SSFM was experimentally demonstrated in conformational analysis of nucleoproteins. In particular, interaction between surface-tethered 75-mer double strand DNA and integration host factor (IHF) protein was probed on Si-SiO2 substrates by determining the axial position of fluorescent labels attached to the free ends of DNA molecules. Despite its sub-nanometer precision axial localization capability, SSFM lacks high lateral resolution due to the low-NA requirement for planar reflectors. We developed a second technique, 4Pi-SSFM, which improves the lateral resolution of a conventional SSFM system by an order of magnitude while achieving nanometer-scale axial localization precision. Using two opposing high-NA objectives, fluorescence signal is interferometrically collected and spectral interference pattern is recorded. Axial position of emitters is found from analysis of the spectra. The 4Pi-SSFM technique was experimentally demonstrated by determining the surface profiles of fabricated glass surfaces and outer membranes of Shigella, a type of Gram-negative bacteria. A further discussion is presented to localize surface O antigen, which is an important oligosaccharide structure in the virulence mechanism of the Gram-negative bacteria, including E. coli and Shigella.
Magnetic localization and orientation of the capsule endoscope based on a random complex algorithm.
He, Xiaoqi; Zheng, Zizhao; Hu, Chao
2015-01-01
The development of the capsule endoscope has made possible the examination of the whole gastrointestinal tract without much pain. However, there are still some important problems to be solved, among which, one important problem is the localization of the capsule. Currently, magnetic positioning technology is a suitable method for capsule localization, and this depends on a reliable system and algorithm. In this paper, based on the magnetic dipole model as well as magnetic sensor array, we propose nonlinear optimization algorithms using a random complex algorithm, applied to the optimization calculation for the nonlinear function of the dipole, to determine the three-dimensional position parameters and two-dimensional direction parameters. The stability and the antinoise ability of the algorithm is compared with the Levenberg-Marquart algorithm. The simulation and experiment results show that in terms of the error level of the initial guess of magnet location, the random complex algorithm is more accurate, more stable, and has a higher "denoise" capacity, with a larger range for initial guess values.
Balanced bridge feedback control system
NASA Technical Reports Server (NTRS)
Lurie, Boris J. (Inventor)
1990-01-01
In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.
Counts, Jacqueline; Gillam, Rebecca; Garstka, Teri A; Urbach, Ember
2018-01-01
The challenge of maximizing the well-being of children, youth, and families is recognizing that change occurs within complex social systems. Organizations dedicated to improving practice, advancing knowledge, and informing policy for the betterment of all must have the right approach, structure, and personnel to work in these complex systems. The University of Kansas Center for Public Partnerships and Research cultivates a portfolio of innovation, research, and data science approaches positioned to help move social service fields locally, regionally, and nationally. Mission, leadership, and smart growth guide our work and drive our will to affect positive change in the world.
NASA Technical Reports Server (NTRS)
Lampton, M.; Malina, R. F.
1976-01-01
A position-sensitive event-counting electronic readout system for microchannel plates (MCPs) is described that offers the advantages of high spatial resolution and fast time resolution. The technique relies upon a four-quadrant electron-collecting anode located behind the output face of the microchannel plate, so that the electron cloud from each detected event is partly intercepted by each of the four quadrants. The relative amounts of charge collected by each quadrant depend on event position, permitting each event to be localized with two ratio circuits. A prototype quadrant anode system for ion, electron, and extreme ultraviolet imaging is described. The spatial resolution achieved, about 10 microns, allows individual MCP channels to be distinguished.
Automation of Precise Time Reference Stations (PTRS)
NASA Astrophysics Data System (ADS)
Wheeler, P. J.
1985-04-01
The U.S. Naval Observatory is presently engaged in a program of automating precise time stations (PTS) and precise time reference stations (PTBS) by using a versatile mini-computer controlled data acquisition system (DAS). The data acquisition system is configured to monitor locally available PTTI signals such as LORAN-C, OMEGA, and/or the Global Positioning System. In addition, the DAS performs local standard intercomparison. Computer telephone communications provide automatic data transfer to the Naval Observatory. Subsequently, after analysis of the data, results and information can be sent back to the precise time reference station to provide automatic control of remote station timing. The DAS configuration is designed around state of the art standard industrial high reliability modules. The system integration and software are standardized but allow considerable flexibility to satisfy special local requirements such as stability measurements, performance evaluation and printing of messages and certificates. The DAS operates completely independently and may be queried or controlled at any time with a computer or terminal device (control is protected for use by authorized personnel only). Such DAS equipped PTS are operational in Hawaii, California, Texas and Florida.
Orona, Nadia S; Ferraro, Sebastián A; Astort, Francisco; Morales, Celina; Brites, Fernando; Boero, Laura; Tiscornia, Gisela; Maglione, Guillermo A; Saldiva, Paulo H N; Yakisich, Sebastian; Tasat, Deborah R
2016-01-01
Exposure to air particulate matter (PM) is associated with increased cardiovascular morbimortality. However, PM doesn't affect equally to all people, being the old cohort the most susceptible and studied. We hypothesized that another specific life phase, the middle-aged subpopulation, may be negatively affected. Therefore, the aim of this study was to analyze in vivo the acute biological impact of two environmental particles, Urban Air Particles from Buenos Aires and Residual Oil Fly Ash, on the cardiorespiratory system of middle-aged mice, evaluating oxidative metabolism and inflammation. Both PM provoked a local and systemic inflammatory response, leading to a reduced alveolar area in the lung, an epicard inflammation in the heart, an increment of IL-6, and a reduction on PON 1 activity in serum of middle-aged animals. The positive correlation of local parameters with systemic markers of oxidative stress and inflammation could be responsible for associations of cardiovascular morbimortality in this subpopulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Applications of Fermi-Lowdin-Orbital Self-Interaction Correction Scheme to Organic Systems
NASA Astrophysics Data System (ADS)
Baruah, Tunna; Kao, Der-You; Yamamoto, Yoh
Recent progress in treating the self-interaction errors by means of local, Lowdin-orthogonalized Fermi Orbitals offers a promising route to study the effect of self-interaction errors in the electronic structure of molecules. The Fermi orbitals depend on the location of the electronic positions, called as Fermi orbital descriptors. One advantage of using the Fermi orbitals is that the corrected Hamiltonian is unitarily invariant. Minimization of the corrected energies leads to an optimized set of centroid positions. Here we discuss the applications of this method to various systems from constituent atoms to several medium size molecules such as Mg-porphyrin, C60, pentacene etc. The applications to the ionic systems will also be discussed. De-SC0002168, NSF-DMR 125302.
Umbral Calculus and Holonomic Modules in Positive Characteristic
NASA Astrophysics Data System (ADS)
Kochubei, Anatoly N.
2006-03-01
In the framework of analysis over local fields of positive characteristic, we develop algebraic tools for introducing and investigating various polynomial systems. In this survey paper we describe a function field version of umbral calculus developed on the basis of a relation of binomial type satisfied by the Carlitz polynomials. We consider modules over the Weyl-Carlitz ring, a function field counterpart of the Weyl algebra. It is shown that some basic objects of function field arithmetic, like the Carlitz module, Thakur's hypergeometric polynomials, and analogs of binomial coefficients arising in the positive characteristic version of umbral calculus, generate holonomic modules.
Local Pressure Application Effects on Discomfort, Temperature, and Limb Oxygenation.
Games, Kenneth E; Lakin, Joni M; Quindry, John C; Weimar, Wendi H; Sefton, JoEllen M
2016-08-01
Despite significant investment into the development and improvement of military helicopter seat systems, military aviators continue to report seat system related pain and discomfort during prolonged missions. Using a factorial repeated measures design, 15 healthy subjects completed the study, in which focal pressure was applied to two locations on the sitting surfaces of the body (ischial tuberosity and middle of the posterior thigh). Pressure was applied using a purpose-built pressure application system allowing subjects to sit in a position mimicking the sitting position in the UH-60 Black Hawk helicopter. The researchers measured pain using the Category Partitioning Scale and McGill Pain Questionnaire and vascular function using dynamic infrared thermography in the lower leg and pulse oximetry at the great toe. Data were collected before and during a 10-min application of focal pressure applied to either the ischial tuberosity or middle of the posterior thigh and at two different pressure magnitudes (36 or 44 kPa). We found that during a 10-min pressure application, superficial skin temperature increased by 0.61°C, suggesting a decreased venous return during pressure application. We found that lower extremity blood oxygenation remained unchanged during pressure application. Subjects' reported pain increased during pressure application and was greater with 44 kPa of application compared to 36 kPa. These results support the hypothesis that locally high pressure creates symptoms of discomfort and paresthesia. Research examining the effects of local pressure application on physiological and neurological function is needed. Games KE, Lakin JM, Quindry JC, Weimar WH, Sefton JM. Local pressure application effects on discomfort, temperature, and limb oxygenation. Aerosp Med Hum Perform. 2016; 87(8):697-703.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Deng, Zhiqun; Carlson, Thomas J.
2012-10-19
Tidal power has been identified as one of the most potential commercial-scale renewable energy sources. Puget Sound, Washington, is a potential site to deploy tidal power generating devices. The risk of injury for killer whales needs to be managed before the deployment of these types of devices can be approved by regulating authorities. A passive acoustic system consisting of two star arrays, each with four hydrophones, was designed and implemented for the detection and localization of Southern Resident killer whales. Deployment of the passive acoustic system was conducted at Sequim Bay, Washington. A total of nine test locations were chosen,more » within a radius of 250 m around the star arrays, to test our localization approach. For the localization algorithm, a least square solver was applied to obtain a bearing location from each star array. The final source location was determined by the intersection of the bearings given by each of the two star arrays. Bearing and distance errors were obtained to conduct comparison between the calculated and true (from Global Positioning System) locations. The results indicated that bearing errors were within 1.04º for eight of the test locations; one location had bearing errors slightly larger than expected due to the strong background noise at that position. For the distance errors, six of the test locations were within the range of 1.91 to 32.36 m. The other two test locations were near the intersection line between the centers of the two star arrays, which were expected to have large errors from the theoretical sensitivity analysis performed.« less
Machine-learning approach for local classification of crystalline structures in multiphase systems
NASA Astrophysics Data System (ADS)
Dietz, C.; Kretz, T.; Thoma, M. H.
2017-07-01
Machine learning is one of the most popular fields in computer science and has a vast number of applications. In this work we will propose a method that will use a neural network to locally identify crystal structures in a mixed phase Yukawa system consisting of fcc, hcp, and bcc clusters and disordered particles similar to plasma crystals. We compare our approach to already used methods and show that the quality of identification increases significantly. The technique works very well for highly disturbed lattices and shows a flexible and robust way to classify crystalline structures that can be used by only providing particle positions. This leads to insights into highly disturbed crystalline structures.
On the dynamical and geometrical symmetries of Keplerian motion
NASA Astrophysics Data System (ADS)
Wulfman, Carl E.
2009-05-01
The dynamical symmetries of classical, relativistic and quantum-mechanical Kepler systems are considered to arise from geometric symmetries in PQET phase space. To establish their interconnection, the symmetries are related with the aid of a Lie-algebraic extension of Dirac's correspondence principle, a canonical transformation containing a Cunningham-Bateman inversion, and a classical limit involving a preliminary canonical transformation in ET space. The Lie-algebraic extension establishes the conditions under which the uncertainty principle allows the local dynamical symmetry of a quantum-mechanical system to be the same as the geometrical phase-space symmetry of its classical counterpart. The canonical transformation converts Poincaré-invariant free-particle systems into ISO(3,1) invariant relativistic systems whose classical limit produces Keplerian systems. Locally Cartesian relativistic PQET coordinates are converted into a set of eight conjugate position and momentum coordinates whose classical limit contains Fock projective momentum coordinates and the components of Runge-Lenz vectors. The coordinate systems developed via the transformations are those in which the evolution and degeneracy groups of the classical system are generated by Poisson-bracket operators that produce ordinary rotation, translation and hyperbolic motions in phase space. The way in which these define classical Keplerian symmetries and symmetry coordinates is detailed. It is shown that for each value of the energy of a Keplerian system, the Poisson-bracket operators determine two invariant functions of positions and momenta, which together with its regularized Hamiltonian, define the manifold in six-dimensional phase space upon which motions evolve.
Hayden, Melvin R.; Sowers, Kurt M.; Pulakat, Lakshmi; Joginpally, Tejaswini; Krueger, Bennett; Whaley-Connell, Adam; Sowers, James R.
2011-01-01
The role of local tissue renin-angiotensin system (tRAS) activation in the cardiorenal metabolic syndrome (CRS) and type 2 diabetes mellitus (T2DM) is not well understood. To this point, we posit that early redox stress-mediated injury to tissues and organs via accumulation of excessive reactive oxygen species (ROS) and associated wound healing responses might serve as a paradigm to better understand how tRAS is involved. There are at least five common categories responsible for generating ROS that may result in a positive feedback ROS-tRAS axis. These mechanisms include metabolic substrate excess, hormonal excess, hypoxia-ischemia/reperfusion, trauma, and inflammation. Because ROS are toxic to proteins, lipids, and nucleic acids they may be the primary instigator, serving as the injury nidus to initiate the wound healing process. Insulin resistance is central to the development of the CRS and T2DM, and there are now thought to be four major organ systems important in their development. In states of overnutrition and tRAS activation, adipose tissue, skeletal muscle (SkM), islet tissues, and liver (the quadrumvirate) are individually and synergistically related to the development of insulin resistance, CRS, and T2DM. The obesity epidemic is thought to be the driving force behind the CRS and T2DM, which results in the impairment of multiple end-organs, including the cardiovascular system, pancreas, kidney, retina, liver, adipose tissue, SkM, and nervous system. A better understanding of the complex mechanisms leading to local tRAS activation and increases in tissue ROS may lead to new therapies emphasizing global risk reduction of ROS resulting in decreased morbidity and mortality. PMID:22096455
Avery, George H; Zabriskie-Timmerman, Jennifer
2009-06-01
Using the 2005 National Association of County and City Health Officers Profile of Local Health Departments data set, bivariate probit and Heckman selection models were used to test the hypothesis that the level of federal funding received for bioterrorism preparedness is related to the preparedness activities undertaken by local health departments. Overall budget, leadership, and crisis experience are found to be the most important determinants of local preparedness activity, but Centers for Disease Control and Prevention preparedness funding plays a mediating role by building capacity through the hiring of one key leadership position, the emergency preparedness coordinator. Additional research is needed to determine the potential impact of these funds on other aspects of the local public health system, such as the scope of services delivered, to determine secondary effects of the program.
Near-Field Sound Localization Based on the Small Profile Monaural Structure
Kim, Youngwoong; Kim, Keonwook
2015-01-01
The acoustic wave around a sound source in the near-field area presents unconventional properties in the temporal, spectral, and spatial domains due to the propagation mechanism. This paper investigates a near-field sound localizer in a small profile structure with a single microphone. The asymmetric structure around the microphone provides a distinctive spectral variation that can be recognized by the dedicated algorithm for directional localization. The physical structure consists of ten pipes of different lengths in a vertical fashion and rectangular wings positioned between the pipes in radial directions. The sound from an individual direction travels through the nearest open pipe, which generates the particular fundamental frequency according to the acoustic resonance. The Cepstral parameter is modified to evaluate the fundamental frequency. Once the system estimates the fundamental frequency of the received signal, the length of arrival and angle of arrival (AoA) are derived by the designed model. From an azimuthal distance of 3–15 cm from the outer body of the pipes, the extensive acoustic experiments with a 3D-printed structure show that the direct and side directions deliver average hit rates of 89% and 73%, respectively. The closer positions to the system demonstrate higher accuracy, and the overall hit rate performance is 78% up to 15 cm away from the structure body. PMID:26580618
Dall'Aglio, Cecilia; Polisca, Angela; Cappai, Maria Grazia; Mercati, Francesca; Troisi, Alessandro; Pirino, Carolina; Scocco, Paola; Maranesi, Margherita
2017-03-07
At present, data on the endocannabinoid system expression and distribution in the pancreatic gland appear scarce and controversial as descriptions are limited to humans and laboratory animals. Since the bovine pancreas is very similar to the human in endocrine portion development and control, studies on the fetal gland could prove to be very interesting, as an abnormal maternal condition during late pregnancy may be a predisposing trigger for adult metabolic disorders. The present investigation studied cannabinoid receptor type 2 presence and distribution in the bovine fetal pancreas towards the end of gestation. Histological analyses revealed numerous endocrinal cell clusters or islets which were distributed among exocrine adenomeri in connectival tissue. Immunohistochemistry showed that endocrine-islets contained some CB2-positive cells with a very peculiar localization that is a few primarily localized at the edges of islets and some of them also scattered in the center of the cluster. Characteristically, also the epithelium of the excretory ducts and the smooth muscle layers of the smaller arteries, in the interlobular glandular septa, tested positive for the CB2 endocannabinoid receptor. Conse - quently, the endocannabinoid system, via the cannabinoid receptor type 2, was hypothesized to play a major role in controlling pancreas function from normal fetal development to correct metabolic functioning in adulthood.
Azcona, Juan Diego; Li, Ruijiang; Mok, Edward; Hancock, Steven; Xing, Lei
2013-03-01
Real-time tracking of implanted fiducials in cine megavoltage (MV) imaging during volumetric modulated arc therapy (VMAT) delivery is complicated due to the inherent low contrast of MV images and potential blockage of dynamic leaves configurations. The purpose of this work is to develop a clinically practical autodetection algorithm for motion management during VMAT. The expected field-specific segments and the planned fiducial position from the Eclipse (Varian Medical Systems, Palo Alto, CA) treatment planning system were projected onto the MV images. The fiducials were enhanced by applying a Laplacian of Gaussian filter in the spatial domain for each image, with a blob-shaped object as the impulse response. The search of implanted fiducials was then performed on a region of interest centered on the projection of the fiducial when it was within an open field including the case when it was close to the field edge or partially occluded by the leaves. A universal template formula was proposed for template matching and normalized cross correlation was employed for its simplicity and computational efficiency. The search region for every image was adaptively updated through a prediction model that employed the 3D position of the fiducial estimated from the localized positions in previous images. This prediction model allowed the actual fiducial position to be tracked dynamically and was used to initialize the search region. The artifacts caused by electronic interference during the acquisition were effectively removed. A score map was computed by combining both morphological information and image intensity. The pixel location with the highest score was selected as the detected fiducial position. The sets of cine MV images taken during treatment were analyzed with in-house developed software written in MATLAB (The Mathworks, Inc., Natick, MA). Five prostate patients were analyzed to assess the algorithm performance by measuring their positioning accuracy during treatment. The algorithm was able to accurately localize the fiducial position on MV images with success rates of more than 90% per case. The percentage of images in which each fiducial was localized in the studied cases varied between 23% and 65%, with at least one fiducial having been localized between 40% and 95% of the images. This depended mainly on the modulation of the plan and fiducial blockage. The prostate movement in the presented cases varied between 0.8 and 3.5 mm (mean values). The maximum displacement detected among all patients was of 5.7 mm. An algorithm for automatic detection of fiducial markers in cine MV images has been developed and tested with five clinical cases. Despite the challenges posed by complex beam aperture shapes, fiducial localization close to the field edge, partial occlusion of fiducials, fast leaf and gantry movement, and inherently low MV image quality, good localization results were achieved in patient images. This work provides a technique for enabling real-time accurate fiducial detection and tumor tracking during VMAT treatments without the use of extra imaging dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azcona, Juan Diego; Li Ruijiang; Mok, Edward
2013-03-15
Purpose: Real-time tracking of implanted fiducials in cine megavoltage (MV) imaging during volumetric modulated arc therapy (VMAT) delivery is complicated due to the inherent low contrast of MV images and potential blockage of dynamic leaves configurations. The purpose of this work is to develop a clinically practical autodetection algorithm for motion management during VMAT. Methods: The expected field-specific segments and the planned fiducial position from the Eclipse (Varian Medical Systems, Palo Alto, CA) treatment planning system were projected onto the MV images. The fiducials were enhanced by applying a Laplacian of Gaussian filter in the spatial domain for each image,more » with a blob-shaped object as the impulse response. The search of implanted fiducials was then performed on a region of interest centered on the projection of the fiducial when it was within an open field including the case when it was close to the field edge or partially occluded by the leaves. A universal template formula was proposed for template matching and normalized cross correlation was employed for its simplicity and computational efficiency. The search region for every image was adaptively updated through a prediction model that employed the 3D position of the fiducial estimated from the localized positions in previous images. This prediction model allowed the actual fiducial position to be tracked dynamically and was used to initialize the search region. The artifacts caused by electronic interference during the acquisition were effectively removed. A score map was computed by combining both morphological information and image intensity. The pixel location with the highest score was selected as the detected fiducial position. The sets of cine MV images taken during treatment were analyzed with in-house developed software written in MATLAB (The Mathworks, Inc., Natick, MA). Five prostate patients were analyzed to assess the algorithm performance by measuring their positioning accuracy during treatment. Results: The algorithm was able to accurately localize the fiducial position on MV images with success rates of more than 90% per case. The percentage of images in which each fiducial was localized in the studied cases varied between 23% and 65%, with at least one fiducial having been localized between 40% and 95% of the images. This depended mainly on the modulation of the plan and fiducial blockage. The prostate movement in the presented cases varied between 0.8 and 3.5 mm (mean values). The maximum displacement detected among all patients was of 5.7 mm. Conclusions: An algorithm for automatic detection of fiducial markers in cine MV images has been developed and tested with five clinical cases. Despite the challenges posed by complex beam aperture shapes, fiducial localization close to the field edge, partial occlusion of fiducials, fast leaf and gantry movement, and inherently low MV image quality, good localization results were achieved in patient images. This work provides a technique for enabling real-time accurate fiducial detection and tumor tracking during VMAT treatments without the use of extra imaging dose.« less
Experimental studies of high-accuracy RFID localization with channel impairments
NASA Astrophysics Data System (ADS)
Pauls, Eric; Zhang, Yimin D.
2015-05-01
Radio frequency identification (RFID) systems present an incredibly cost-effective and easy-to-implement solution to close-range localization. One of the important applications of a passive RFID system is to determine the reader position through multilateration based on the estimated distances between the reader and multiple distributed reference tags obtained from, e.g., the received signal strength indicator (RSSI) readings. In practice, the achievable accuracy of passive RFID reader localization suffers from many factors, such as the distorted RSSI reading due to channel impairments in terms of the susceptibility to reader antenna patterns and multipath propagation. Previous studies have shown that the accuracy of passive RFID localization can be significantly improved by properly modeling and compensating for such channel impairments. The objective of this paper is to report experimental study results that validate the effectiveness of such approaches for high-accuracy RFID localization. We also examine a number of practical issues arising in the underlying problem that limit the accuracy of reader-tag distance measurements and, therefore, the estimated reader localization. These issues include the variations in tag radiation characteristics for similar tags, effects of tag orientations, and reader RSS quantization and measurement errors. As such, this paper reveals valuable insights of the issues and solutions toward achieving high-accuracy passive RFID localization.
A Capstone Learning Experience for Students in the Management of Natural Resources.
ERIC Educational Resources Information Center
Bell, Sidney; Lowe, Roger; Edwards, M. Craig
2002-01-01
High school students in a forestry and wildlife management course learned the use of global positioning software, geographic information systems, and other computer programs. They applied these skills in a capstone multimedia presentation for the community of maps they had made of a local arboretum. (JOW)
Global Positioning System Multipath Reduction with Correlator Beamforming
2014-03-14
Collins (Member) Date //signed// 14 March 2014 Maj Marshall E. Haker (Member) Date AFIT-ENG-14-M-10 Abstract This research effort investigates the...Ohio Univerisity, 2007. 6. Haker , Marshall E. Modeling the Effects of the Local Environment on a Received GNSS Signal. Ph.D. thesis, Air Force Institute
Standardized Evaluation for Multi-National Development Programs.
ERIC Educational Resources Information Center
Farrell, W. Timothy
This paper takes the position that standardized evaluation formats and procedures for multi-national development programs are not only desirable but possible in diverse settings. The key is the localization of standard systems, which involves not only the technical manipulation of items and scales, but also the contextual interpretation of…
Localized Disruption of Narp in Medial Prefrontal Cortex Blocks Reinforcer Devaluation Performance
ERIC Educational Resources Information Center
Johnson, Alexander W.; Han, Sungho; Blouin, Ashley M.; Saini, Jasjit; Worley, Paul F.; During, Matthew J.; Holland, Peter C.; Baraban, Jay M.; Reti, Irving M.
2010-01-01
Neuronal activity regulated pentraxin (Narp) is a secreted protein that regulates [alpha]-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPAR) aggregation and synaptogenesis. Mapping of Narp-positive neurons in brain has revealed it is prominently expressed in several limbic system projection pathways. Consistent with this…
K-12 and University Partnerships: Bridging the Advocacy Gap
ERIC Educational Resources Information Center
Bryan, Charity; Sims, Sandra
2011-01-01
Research has cited numerous advantages and benefits of K-12 collaborations with the larger university community (Castle, Fox, & Souder, 2006; Crocco, Faithfull, & Schwartz, 2003). Departments of kinesiology across the country are well positioned to establish partnerships with local school systems in order to advocate for quality, daily physical…
Zou, Han; Lu, Xiaoxuan; Jiang, Hao; Xie, Lihua
2015-01-01
Nowadays, developing indoor positioning systems (IPSs) has become an attractive research topic due to the increasing demands on location-based service (LBS) in indoor environments. WiFi technology has been studied and explored to provide indoor positioning service for years in view of the wide deployment and availability of existing WiFi infrastructures in indoor environments. A large body of WiFi-based IPSs adopt fingerprinting approaches for localization. However, these IPSs suffer from two major problems: the intensive costs of manpower and time for offline site survey and the inflexibility to environmental dynamics. In this paper, we propose an indoor localization algorithm based on an online sequential extreme learning machine (OS-ELM) to address the above problems accordingly. The fast learning speed of OS-ELM can reduce the time and manpower costs for the offline site survey. Meanwhile, its online sequential learning ability enables the proposed localization algorithm to adapt in a timely manner to environmental dynamics. Experiments under specific environmental changes, such as variations of occupancy distribution and events of opening or closing of doors, are conducted to evaluate the performance of OS-ELM. The simulation and experimental results show that the proposed localization algorithm can provide higher localization accuracy than traditional approaches, due to its fast adaptation to various environmental dynamics. PMID:25599427
Fusion-based multi-target tracking and localization for intelligent surveillance systems
NASA Astrophysics Data System (ADS)
Rababaah, Haroun; Shirkhodaie, Amir
2008-04-01
In this paper, we have presented two approaches addressing visual target tracking and localization in complex urban environment. The two techniques presented in this paper are: fusion-based multi-target visual tracking, and multi-target localization via camera calibration. For multi-target tracking, the data fusion concepts of hypothesis generation/evaluation/selection, target-to-target registration, and association are employed. An association matrix is implemented using RGB histograms for associated tracking of multi-targets of interests. Motion segmentation of targets of interest (TOI) from the background was achieved by a Gaussian Mixture Model. Foreground segmentation, on other hand, was achieved by the Connected Components Analysis (CCA) technique. The tracking of individual targets was estimated by fusing two sources of information, the centroid with the spatial gating, and the RGB histogram association matrix. The localization problem is addressed through an effective camera calibration technique using edge modeling for grid mapping (EMGM). A two-stage image pixel to world coordinates mapping technique is introduced that performs coarse and fine location estimation of moving TOIs. In coarse estimation, an approximate neighborhood of the target position is estimated based on nearest 4-neighbor method, and in fine estimation, we use Euclidean interpolation to localize the position within the estimated four neighbors. Both techniques were tested and shown reliable results for tracking and localization of Targets of interests in complex urban environment.
Predators modify biogeographic constraints on species distributions in an insect metacommunity.
Grainger, Tess Nahanni; Germain, Rachel M; Jones, Natalie T; Gilbert, Benjamin
2017-03-01
Theory describing the positive effects of patch size and connectivity on diversity in fragmented systems has stimulated a large body of empirical work, yet predicting when and how local species interactions mediate these responses remains challenging. We used insects that specialize on milkweed plants as a model metacommunity to investigate how local predation alters the effects of biogeographic constraints on species distributions. Species-specific dispersal ability and susceptibility to predation were used to predict when patch size and connectivity should shape species distributions, and when these should be modified by local predator densities. We surveyed specialist herbivores and their predators in milkweed patches in two matrix types, a forest and an old field. Predator-resistant species showed the predicted direct positive effects of patch size and connectivity on occupancy rates. For predator-susceptible species, predators consistently altered the impact of biogeographic constraints, rather than acting independently. Finally, differences between matrix types in species' responses and overall occupancy rates indicate a potential role of the inter-patch environment in mediating the joint effects of predators and spatial drivers. Together, these results highlight the importance of local top-down pressure in mediating classic biogeographic relationships, and demonstrate how species-specific responses to local and regional constraints can be used to predict these effects. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; Carlson, Thomas J.
2016-04-01
Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.
3D vision system for intelligent milking robot automation
NASA Astrophysics Data System (ADS)
Akhloufi, M. A.
2013-12-01
In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.
Using GPS and leveling data in local precise geoid determination and case study
NASA Astrophysics Data System (ADS)
Erol, B.; Çelik, R. N.; Erol, S.
2003-04-01
As an important result of developments in high technology, satellite based positioning system has become to use in geodesy and surveying professions. These developments made the measurement works more accurate, more practical and more economic. Today, one of the most recent used satellite based positioning system is GPS (Global Positioning System) and it serves to a very wide range of geodetic applications from monitoring earth crustal deformations till building the basis for a GIS (Geographical Information Systems). The most efficient way to utilize GPS measurement system for mentioned aims is having a reliable geodetic infrastructure in working area. Geodetic infrastructure is a extraterrestrial and time system and involved 4D geodetic reference networks. The forth element of mentioned geodetic reference system is time because having an accurate and reliable geodetic infrastructure is needed to up-date according to physical realities of the region. By the help of a well designed geodetic infrastructure accurate and reliable coordinates of a point can be generated economically every time in a global and up-to-date system. Geoid is one of the important parts of a geodetic infrastructure. As it is well known, geoid is the equipotential surface of the Earth's gravity field which best fits, in a least squares sense, global mean sea level and it is reference for physical height systems like orthometric and normal heights. In the most of the applications, vertical position of a point is expressed with orthometric or normal height. Orthometric or normal height is a physical concept and gives vertical position of a point uniquely. On the other hand, vertical position of a point is derived in a geometrical system according to GPS measurements. GPS datum is WGS84 and in this system, an ellipsoidal height of a point is calculated according to WGS84 ellipsoid. So, it is an necessity to transform the ellipsoidal heights to orthometric heights and this procedure is managed with the fundamental mathematical equation; N=h-H. In the equation, "h" is the ellipsoidal height of a point P, "H" is the orthometric height of the same point and "N" is "geoid undulation" value. Normally, "H" orthometric height derived from leveling measurements but these measurements are tiring applications. So, while having a geoid model in the region as the essential part of geodetic infrastructure, number leveling measurements can be reduced from the procedure and by this way time and labor is saved. Geoid determination is modeling of the data in such a way that geoid height can be obtained digital or analog at a point whose horizontal position is known. Geoid models can be developed for local, regional or global regions. Using satellite techniques, especially GPS, in geodetic measurements are increased importance of geoid. Because geoid is a natural tie between high precision geodetic coordinates and coordinates which obtained from satellites. There are several geoid determination methods according to used data and models. GPS/Leveling method, which is also known as geometric method, is one of these methods. This method is appropriate for local precise geoid determination in respectively small areas. In this paper, it is going to be given information about GPS/Leveling geoid determination method and mathematical models, which are used in geoid determination with this method. And Izmir local geoid model will be presented as a case study. Izmir is one of the west metropolitan cities of Turkey and located near Aegean Sea. The topography is extremely rough in the region. There are two different geoid determination studies which were carried out in 1996 and 2001 in Izmir. Both models were accomplished according to GPS/Leveling method. Those two geoid models of Izmir Metropolitan region are investigated in here, the conflict of them were discussed. The relation between distribution of common reference points and differences of geoid undulation values, which are calculated from both models separately, were analyzed and also effects of topography on conflict of both geoid model was investigated. The results of the study and suggestions are going to be given in the paper.
Order out of Randomness: Self-Organization Processes in Astrophysics
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.; Scholkmann, Felix; Béthune, William; Schmutz, Werner; Abramenko, Valentina; Cheung, Mark C. M.; Müller, Daniel; Benz, Arnold; Chernov, Guennadi; Kritsuk, Alexei G.; Scargle, Jeffrey D.; Melatos, Andrew; Wagoner, Robert V.; Trimble, Virginia; Green, William H.
2018-03-01
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous " order out of randomness", during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.
NASA Technical Reports Server (NTRS)
Conway, Lynn; Volz, Richard; Walker, Michael W.
1989-01-01
There is a growing need for humans to perform complex remote operations and to extend the intelligence and experience of experts to distant applications. It is asserted that a blending of human intelligence, modern information technology, remote control, and intelligent autonomous systems is required, and have coined the term tele-autonomous technology, or tele-automation, for methods producing intelligent action at a distance. Tele-automation goes beyond autonomous control by blending in human intelligence. It goes beyond tele-operation by incorporating as much autonomy as possible and/or reasonable. A new approach is discussed for solving one of the fundamental problems facing tele-autonomous systems: The need to overcome time delays due to telemetry and signal propagation. New concepts are introduced called time and position clutches, that allow the time and position frames between the local user control and the remote device being controlled, to be desynchronized respectively. The design and implementation of these mechanisms are described in detail. It is demonstrated that these mechanisms lead to substantial telemanipulation performance improvements, including the result of improvements even in the absence of time delays. The new controls also yield a simple protocol for control handoffs of manipulation tasks between local operators and remote systems.
Diversity of key players in the microbial ecosystems of the human body
Jordán, Ferenc; Lauria, Mario; Scotti, Marco; Nguyen, Thanh-Phuong; Praveen, Paurush; Morine, Melissa; Priami, Corrado
2015-01-01
Coexisting bacteria form various microbial communities in human body parts. In these ecosystems they interact in various ways and the properties of the interaction network can be related to the stability and functional diversity of the local bacterial community. In this study, we analyze the interaction network among bacterial OTUs in 11 locations of the human body. These belong to two major groups. One is the digestive system and the other is the female genital tract. In each local ecosystem we determine the key species, both the ones being in key positions in the interaction network and the ones that dominate by frequency. Beyond identifying the key players and discussing their biological relevance, we also quantify and compare the properties of the 11 networks. The interaction networks of the female genital system and the digestive system show totally different architecture. Both the topological properties and the identity of the key groups differ. Key groups represent four phyla of prokaryotes. Some groups appear in key positions in several locations, while others are assigned only to a single body part. The key groups of the digestive and the genital tracts are totally different. PMID:26514870
Diversity of key players in the microbial ecosystems of the human body.
Jordán, Ferenc; Lauria, Mario; Scotti, Marco; Nguyen, Thanh-Phuong; Praveen, Paurush; Morine, Melissa; Priami, Corrado
2015-10-30
Coexisting bacteria form various microbial communities in human body parts. In these ecosystems they interact in various ways and the properties of the interaction network can be related to the stability and functional diversity of the local bacterial community. In this study, we analyze the interaction network among bacterial OTUs in 11 locations of the human body. These belong to two major groups. One is the digestive system and the other is the female genital tract. In each local ecosystem we determine the key species, both the ones being in key positions in the interaction network and the ones that dominate by frequency. Beyond identifying the key players and discussing their biological relevance, we also quantify and compare the properties of the 11 networks. The interaction networks of the female genital system and the digestive system show totally different architecture. Both the topological properties and the identity of the key groups differ. Key groups represent four phyla of prokaryotes. Some groups appear in key positions in several locations, while others are assigned only to a single body part. The key groups of the digestive and the genital tracts are totally different.
Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.
Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan
2016-12-01
The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.
Noguchi, Yasuki; Tomoike, Kouta
2016-01-12
Recent studies argue that strongly-motivated positive emotions (e.g. desire) narrow a scope of attention. This argument is mainly based on an observation that, while humans normally respond faster to global than local information of a visual stimulus (global advantage), positive affects eliminated the global advantage by selectively speeding responses to local (but not global) information. In other words, narrowing of attentional scope was indirectly evidenced by the elimination of global advantage (the same speed of processing between global and local information). No study has directly shown that strongly-motivated positive affects induce faster responses to local than global information while excluding a bias for global information (global advantage) in a baseline (emotionally-neutral) condition. In the present study, we addressed this issue by eliminating the global advantage in a baseline (neutral) state. Induction of positive affects under this state resulted in faster responses to local than global information. Our results provided direct evidence that positive affects in high motivational intensity narrow a scope of attention.
Open source GIS for HIV/AIDS management
Vanmeulebrouk, Bas; Rivett, Ulrike; Ricketts, Adam; Loudon, Melissa
2008-01-01
Background Reliable access to basic services can improve a community's resilience to HIV/AIDS. Accordingly, work is being done to upgrade the physical infrastructure in affected areas, often employing a strategy of decentralised service provision. Spatial characteristics are one of the major determinants in implementing services, even in the smaller municipal areas, and good quality spatial information is needed to inform decision making processes. However, limited funds, technical infrastructure and human resource capacity result in little or no access to spatial information for crucial infrastructure development decisions at local level. This research investigated whether it would be possible to develop a GIS for basic infrastructure planning and management at local level. Given the resource constraints of the local government context, particularly in small municipalities, it was decided that open source software should be used for the prototype system. Results The design and development of a prototype system illustrated that it is possible to develop an open source GIS system that can be used within the context of local information management. Usability tests show a high degree of usability for the system, which is important considering the heavy workload and high staff turnover that characterises local government in South Africa. Local infrastructure management stakeholders interviewed in a case study of a South African municipality see the potential for the use of GIS as a communication tool and are generally positive about the use of GIS for these purposes. They note security issues that may arise through the sharing of information, lack of skills and resource constraints as the major barriers to adoption. Conclusion The case study shows that spatial information is an identified need at local level. Open source GIS software can be used to develop a system to provide local-level stakeholders with spatial information. However, the suitability of the technology is only a part of the system – there are wider information and management issues which need to be addressed before the implementation of a local-level GIS for infrastructure management can be successful. PMID:18945338
The role of the vestibular system in manual target localization
NASA Technical Reports Server (NTRS)
Barry, Susan R.; Mueller, S. Alyssa
1995-01-01
Astronauts experience perceptual and sensory-motor disturbances during spaceflight and immediately after return to the 1-g environment of Earth. During spaceflight, sensory information from the eyes, limbs and vestibular organs is reinterpreted by the central nervous system so that astronauts can produce appropriate body movements in microgravity. Alterations in sensory-motor function may affect eye-head-hand coordination and, thus, the crewmember's ability to manually locate objects in extrapersonal space. Previous reports have demonstrated that crewmembers have difficulty in estimating joint and limb position and in pointing to memorized target positions on orbit and immediately postflight. One set of internal cues that may assist in the manual localization of objects is information from the vestibular system. This system contributes to our sense of the body's position in space by providing information on head position and movement and the orientation of the body with respect to gravity. Research on the vestibular system has concentrated on its role in oculo-motor control. Little is known about the role that vestibular information plays in manual motor control, such as reaching and pointing movements. Since central interpretation of vestibular information is altered in microgravity, it is important to determine its role in this process. This summer, we determined the importance of vestibular information in a subject's ability to point accurately toward a target in extrapersonal space. Subjects were passively rotated across the earth-vertical axis and then asked to point back to a previously-seen target. In the first paradigm, the subjects used both visual and vestibular cues for the pointing response, while, in the second paradigm, subjects used only vestibular information. Subjects were able to point with 85 percent accuracy to a target using vestibular information alone. We infer from this result that vestibular input plays a role in the spatial programming of manual responses.
Decentralization and health resource allocation: a case study at the district level in Indonesia.
Abdullah, Asnawi; Stoelwinder, Johannes
2008-01-01
Health resource allocation has been an issue of political debate in many health systems. However, the debate has tended to concentrate on vertical allocation from the national to regional level. Allocation within regions or institutions has been largely ignored. This study was conducted to contribute analysis to this gap. The objective was to investigate health resource allocation within District Health Offices (DHOs) and to compare the trends and patterns of several budget categories before and after decentralization. The study was conducted in three districts in the Province of Nanggroe Aceh Darussalam. Six fiscal year budgets, two before decentralization and four after, were studied. Data was collected from the Local Government Planning Office and DHOs. Results indicated that in the first year of implementing a decentralization policy, the local government budget rose sharply, particularly in the wealthiest district. In contrast, in relatively poor districts the budget was only boosted slightly. Increasing total local government budgets had a positive impact on increasing the health budget. The absolute amount of health budgets increased significantly, but by percentage did not change very much. Budgets for several projects and budget items increased significantly, but others, such as health promotion, monitoring and evaluation, and public-goods-related activities, decreased. This study concluded that decentralization in Indonesia had made a positive impact on district government fiscal capacity and had affected DHO budgets positively. However, an imbalanced budget allocation between projects and budget items was obvious, and this needs serious attention from policy makers. Otherwise, decentralization will not significantly improve the health system in Indonesia.
Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer.
Castelli, Mauro; Trujillo, Leonardo; Vanneschi, Leonardo
2015-01-01
Energy consumption forecasting (ECF) is an important policy issue in today's economies. An accurate ECF has great benefits for electric utilities and both negative and positive errors lead to increased operating costs. The paper proposes a semantic based genetic programming framework to address the ECF problem. In particular, we propose a system that finds (quasi-)perfect solutions with high probability and that generates models able to produce near optimal predictions also on unseen data. The framework blends a recently developed version of genetic programming that integrates semantic genetic operators with a local search method. The main idea in combining semantic genetic programming and a local searcher is to couple the exploration ability of the former with the exploitation ability of the latter. Experimental results confirm the suitability of the proposed method in predicting the energy consumption. In particular, the system produces a lower error with respect to the existing state-of-the art techniques used on the same dataset. More importantly, this case study has shown that including a local searcher in the geometric semantic genetic programming system can speed up the search process and can result in fitter models that are able to produce an accurate forecasting also on unseen data.
Research on the position estimation of human movement based on camera projection
NASA Astrophysics Data System (ADS)
Yi, Zhang; Yuan, Luo; Hu, Huosheng
2005-06-01
During the rehabilitation process of the post-stroke patients is conducted, their movements need to be localized and learned so that incorrect movement can be instantly modified or tuned. Therefore, tracking these movement becomes vital and necessary for the rehabilitative course. During human movement tracking, the position estimation of human movement is very important. In this paper, the character of the human movement system is first analyzed. Next, camera and inertial sensor are used to respectively measure the position of human movement, and the Kalman filter algorithm is proposed to fuse the two measurement to get a optimization estimation of the position. In the end, the performance of the method is analyzed.
Breitenbach, Heiko H.; Wenig, Marion; Wittek, Finni; Jordá, Lucia; Maldonado-Alconada, Ana M.; Sarioglu, Hakan; Colby, Thomas; Knappe, Claudia; Bichlmeier, Marlies; Pabst, Elisabeth; Mackey, David; Parker, Jane E.; Vlot, A. Corina
2014-01-01
Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Here, we show that Arabidopsis (Arabidopsis thaliana) EDS1 is required for both SAR signal generation in primary infected leaves and SAR signal perception in systemic uninfected tissues. In contrast to SAR signal generation, local resistance remains intact in eds1 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. We utilized the SAR-specific phenotype of the eds1 mutant to identify new SAR regulatory proteins in plants conditionally expressing AvrRpm1. Comparative proteomic analysis of apoplast-enriched extracts from AvrRpm1-expressing wild-type and eds1 mutant plants led to the identification of 12 APOPLASTIC, EDS1-DEPENDENT (AED) proteins. The genes encoding AED1, a predicted aspartyl protease, and another AED, LEGUME LECTIN-LIKE PROTEIN1 (LLP1), were induced locally and systemically during SAR signaling and locally by salicylic acid (SA) or its functional analog, benzo 1,2,3-thiadiazole-7-carbothioic acid S-methyl ester. Because conditional overaccumulation of AED1-hemagglutinin inhibited SA-induced resistance and SAR but not local resistance, the data suggest that AED1 is part of a homeostatic feedback mechanism regulating systemic immunity. In llp1 mutant plants, SAR was compromised, whereas the local resistance that is normally associated with EDS1 and SA as well as responses to exogenous SA appeared largely unaffected. Together, these data indicate that LLP1 promotes systemic rather than local immunity, possibly in parallel with SA. Our analysis reveals new positive and negative components of SAR and reinforces the notion that SAR represents a distinct phase of plant immunity beyond local resistance. PMID:24755512
Topological framework for local structure analysis in condensed matter
Lazar, Emanuel A.; Han, Jian; Srolovitz, David J.
2015-01-01
Physical systems are frequently modeled as sets of points in space, each representing the position of an atom, molecule, or mesoscale particle. As many properties of such systems depend on the underlying ordering of their constituent particles, understanding that structure is a primary objective of condensed matter research. Although perfect crystals are fully described by a set of translation and basis vectors, real-world materials are never perfect, as thermal vibrations and defects introduce significant deviation from ideal order. Meanwhile, liquids and glasses present yet more complexity. A complete understanding of structure thus remains a central, open problem. Here we propose a unified mathematical framework, based on the topology of the Voronoi cell of a particle, for classifying local structure in ordered and disordered systems that is powerful and practical. We explain the underlying reason why this topological description of local structure is better suited for structural analysis than continuous descriptions. We demonstrate the connection of this approach to the behavior of physical systems and explore how crystalline structure is compromised at elevated temperatures. We also illustrate potential applications to identifying defects in plastically deformed polycrystals at high temperatures, automating analysis of complex structures, and characterizing general disordered systems. PMID:26460045
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harush-Frenkel, Oshrat; Bivas-Benita, Maytal; Nassar, Taher
Nanoparticle (NP) based drug delivery systems provide promising opportunities in the treatment of lung diseases. Here we examined the safety and tolerability of pulmonary delivered NPs consisting of PEG-PLA as a function of particle surface charge. The rationale for such a comparison should be attributed to the differential pulmonary toxicity of positively and negatively charged PEG-PLA NP. Thus, the local and systemic effects of pulmonary administered NPs were investigated following 5 days of daily endotracheal instillation to BALB/c mice that were euthanized on the eighth or nineteenth day of the experiment. We collected bronchoalveolar lavages and studied hematological as wellmore » as histochemistry parameters. Notably, the cationic stearylamine based PEG-PLA NPs elicited increased local and systemic toxic effects both on the eighth and nineteenth day. In contrast, anionic NPs of similar size were much better tolerated with local inflammatory effects observed only on the eighth experimental day after pulmonary instillation. No systemic toxicity effect was observed although a moderate change was noted in the platelet count that was not considered to be of clinical significance. No pathological observations were detected in the internal organs following instillation of anionic NPs. Overall these observations suggest that anionic PEG-PLA NPs are useful pulmonary drug carriers that should be considered as a promising therapeutic drug delivery system.« less
Initial Development of a Spatially Separated Speech-in-Noise and Localization Training Program
Tyler, Richard S.; Witt, Shelley A.; Dunn, Camille C.; Wang, Wenjun
2010-01-01
Objective This article describes the initial development of a novel approach for training hearing-impaired listeners to improve their ability to understand speech in the presence of background noise and to also improve their ability to localize sounds. Design Most people with hearing loss, even those well fit with hearing devices, still experience significant problems understanding speech in noise. Prior research suggests that at least some subjects can experience improved speech understanding with training. However, all training systems that we are aware of have one basic, critical limitation. They do not provide spatial separation of the speech and noise, therefore ignoring the potential benefits of training binaural hearing. In this paper we describe our initial experience with a home-based training system that includes spatially separated speech-in-noise and localization training. Results Throughout the development of this system patient input, training and preliminary pilot data from individuals with bilateral cochlear implants were utilized. Positive feedback from subjective reports indicated that some individuals were engaged in the treatment, and formal testing showed benefit. Feedback and practical issues resulted from the reduction of an eight-loudspeaker to a two-loudspeaker system. Conclusions These preliminary findings suggest we have successfully developed a viable spatial hearing training system that can improve binaural hearing in noise and localization. Applications include, but are not limited to, hearing with hearing aids and cochlear implants. PMID:20701836
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
Zhang, Gaigong; Lin, Lin; Hu, Wei; ...
2017-01-27
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Gaigong; Lin, Lin; Hu, Wei
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less
NASA Astrophysics Data System (ADS)
Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.
2017-04-01
Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.
Variability of African Farming Systems from Phenological Analysis of NDVI Time Series
NASA Technical Reports Server (NTRS)
Vrieling, Anton; deBeurs, K. M.; Brown, Molly E.
2011-01-01
Food security exists when people have access to sufficient, safe and nutritious food at all times to meet their dietary needs. The natural resource base is one of the many factors affecting food security. Its variability and decline creates problems for local food production. In this study we characterize for sub-Saharan Africa vegetation phenology and assess variability and trends of phenological indicators based on NDVI time series from 1982 to 2006. We focus on cumulated NDVI over the season (cumNDVI) which is a proxy for net primary productivity. Results are aggregated at the level of major farming systems, while determining also spatial variability within farming systems. High temporal variability of cumNDVI occurs in semiarid and subhumid regions. The results show a large area of positive cumNDVI trends between Senegal and South Sudan. These correspond to positive CRU rainfall trends found and relate to recovery after the 1980's droughts. We find significant negative cumNDVI trends near the south-coast of West Africa (Guinea coast) and in Tanzania. For each farming system, causes of change and variability are discussed based on available literature (Appendix A). Although food security comprises more than the local natural resource base, our results can perform an input for food security analysis by identifying zones of high variability or downward trends. Farming systems are found to be a useful level of analysis. Diversity and trends found within farming system boundaries underline that farming systems are dynamic.
EnEx-RANGE - Robust autonomous Acoustic Navigation in Glacial icE
NASA Astrophysics Data System (ADS)
Heinen, Dirk; Eliseev, Dmitry; Henke, Christoph; Jeschke, Sabina; Linder, Peter; Reuter, Sebastian; Schönitz, Sebastian; Scholz, Franziska; Weinstock, Lars Steffen; Wickmann, Stefan; Wiebusch, Christopher; Zierke, Simon
2017-03-01
Within the Enceladus Explorer Initiative of the DLR Space Administration navigation technologies for a future space mission are in development. Those technologies are the basis for the search for extraterrestrial life on the Saturn moon Enceladus. An autonomous melting probe, the EnEx probe, aims to extract a liquid sample from a water reservoir below the icy crust. A first EnEx probe was developed and demonstrated in a terrestrial scenario at the Bloodfalls, Taylor Glacier, Antarctica in November 2014. To enable navigation in glacier ice two acoustic systems were integrated into the probe in addition to conventional navigation technologies. The first acoustic system determines the position of the probe during the run based on propagation times of acoustic signals from emitters at reference positions at the glacier surface to receivers in the probe. The second system provides information about the forefield of the probe. It is based on sonographic principles with phased array technology integrated in the probe's melting head. Information about obstacles or sampling regions in the probe's forefield can be acquired. The development of both systems is now continued in the project EnEx-RANGE. The emitters of the localization system are replaced by a network of intelligent acoustic enabled melting probes. These localize each other by means of acoustic signals and create the reference system for the EnEx probe. This presentation includes the discussion of the intelligent acoustic network, the acoustic navigation systems of the EnEx probe and results of terrestrial tests.
Passafiume, Marco; Maddio, Stefano; Cidronali, Alessandro
2017-03-29
Assuming a reliable and responsive spatial contextualization service is a must-have in IEEE 802.11 and 802.15.4 wireless networks, a suitable approach consists of the implementation of localization capabilities, as an additional application layer to the communication protocol stack. Considering the applicative scenario where satellite-based positioning applications are denied, such as indoor environments, and excluding data packet arrivals time measurements due to lack of time resolution, received signal strength indicator (RSSI) measurements, obtained according to IEEE 802.11 and 802.15.4 data access technologies, are the unique data sources suitable for indoor geo-referencing using COTS devices. In the existing literature, many RSSI based localization systems are introduced and experimentally validated, nevertheless they require periodic calibrations and significant information fusion from different sensors that dramatically decrease overall systems reliability and their effective availability. This motivates the work presented in this paper, which introduces an approach for an RSSI-based calibration-free and real-time indoor localization. While switched-beam array-based hardware (compliant with IEEE 802.15.4 router functionality) has already been presented by the author, the focus of this paper is the creation of an algorithmic layer for use with the pre-existing hardware capable to enable full localization and data contextualization over a standard 802.15.4 wireless sensor network using only RSSI information without the need of lengthy offline calibration phase. System validation reports the localization results in a typical indoor site, where the system has shown high accuracy, leading to a sub-metrical overall mean error and an almost 100% site coverage within 1 m localization error.
Passafiume, Marco; Maddio, Stefano; Cidronali, Alessandro
2017-01-01
Assuming a reliable and responsive spatial contextualization service is a must-have in IEEE 802.11 and 802.15.4 wireless networks, a suitable approach consists of the implementation of localization capabilities, as an additional application layer to the communication protocol stack. Considering the applicative scenario where satellite-based positioning applications are denied, such as indoor environments, and excluding data packet arrivals time measurements due to lack of time resolution, received signal strength indicator (RSSI) measurements, obtained according to IEEE 802.11 and 802.15.4 data access technologies, are the unique data sources suitable for indoor geo-referencing using COTS devices. In the existing literature, many RSSI based localization systems are introduced and experimentally validated, nevertheless they require periodic calibrations and significant information fusion from different sensors that dramatically decrease overall systems reliability and their effective availability. This motivates the work presented in this paper, which introduces an approach for an RSSI-based calibration-free and real-time indoor localization. While switched-beam array-based hardware (compliant with IEEE 802.15.4 router functionality) has already been presented by the author, the focus of this paper is the creation of an algorithmic layer for use with the pre-existing hardware capable to enable full localization and data contextualization over a standard 802.15.4 wireless sensor network using only RSSI information without the need of lengthy offline calibration phase. System validation reports the localization results in a typical indoor site, where the system has shown high accuracy, leading to a sub-metrical overall mean error and an almost 100% site coverage within 1 m localization error. PMID:28353676
An Energy-Efficient Underground Localization System Based on Heterogeneous Wireless Networks
Yuan, Yazhou; Chen, Cailian; Guan, Xinping; Yang, Qiuling
2015-01-01
A precision positioning system with energy efficiency is of great necessity for guaranteeing personnel safety in underground mines. The location information of the miners' should be transmitted to the control center timely and reliably; therefore, a heterogeneous network with the backbone based on high speed Industrial Ethernet is deployed. Since the mobile wireless nodes are working in an irregular tunnel, a specific wireless propagation model cannot fit all situations. In this paper, an underground localization system is designed to enable the adaptation to kinds of harsh tunnel environments, but also to reduce the energy consumption and thus prolong the lifetime of the network. Three key techniques are developed and implemented to improve the system performance, including a step counting algorithm with accelerometers, a power control algorithm and an adaptive packets scheduling scheme. The simulation study and experimental results show the effectiveness of the proposed algorithms and the implementation. PMID:26016918
Decoherence by spontaneous emission: A single-atom analog of superradiance
NASA Astrophysics Data System (ADS)
Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia
2016-12-01
We show that the decoherence of the atomic center-of-mass induced by spontaneous emission involves interferences corresponding to a single-atom analog of superradiance. We use a decomposition of the stationary decoherence rate as a sum of local and nonlocal contributions obtained to second order in the interaction by the influence functional method. These terms are respectively related to the strength of the coupling between system and environment, and to the quality of the information about the system leaking into the environment. While the local contribution always yields a positive decoherence rate, the nonlocal one may lead to recoherence when only partial information about the system is obtained from the disturbed environment. The nonlocal contribution contains interferences between different quantum amplitudes leading to oscillations of the decoherence rate reminiscent of superradiance. These concepts, illustrated here in the framework of atom interferometry within a trap, may be applied to a variety of quantum systems.
Global stability and tumor clearance conditions for a cancer chemotherapy system
NASA Astrophysics Data System (ADS)
Valle, Paul A.; Starkov, Konstantin E.; Coria, Luis N.
2016-11-01
In this paper we study the global dynamics of a cancer chemotherapy system presented by de Pillis et al. (2007). This mathematical model describes the interaction between tumor cells, effector-immune cells, circulating lymphocytes and chemotherapy treatment. By applying the localization method of compact invariant sets, we find lower and upper bounds for these three cells populations. Further, we define a bounded domain in R+,04 where all compact invariant sets of the system are located and provide conditions under which this domain is positively invariant. We apply LaSalle's invariance principle and one result concerning two-dimensional competitive systems in order to derive sufficient conditions for tumor clearance and global asymptotic stability of the tumor-free equilibrium point. These conditions are computed by using bounds of the localization domain and they are given in terms of the chemotherapy treatment. Finally, we perform numerical simulations in order to illustrate our results.
Smith, Rosanna C G; Price, Stephen R
2014-01-01
Sound source localization is critical to animal survival and for identification of auditory objects. We investigated the acuity with which humans localize low frequency, pure tone sounds using timing differences between the ears. These small differences in time, known as interaural time differences or ITDs, are identified in a manner that allows localization acuity of around 1° at the midline. Acuity, a relative measure of localization ability, displays a non-linear variation as sound sources are positioned more laterally. All species studied localize sounds best at the midline and progressively worse as the sound is located out towards the side. To understand why sound localization displays this variation with azimuthal angle, we took a first-principles, systemic, analytical approach to model localization acuity. We calculated how ITDs vary with sound frequency, head size and sound source location for humans. This allowed us to model ITD variation for previously published experimental acuity data and determine the distribution of just-noticeable differences in ITD. Our results suggest that the best-fit model is one whereby just-noticeable differences in ITDs are identified with uniform or close to uniform sensitivity across the physiological range. We discuss how our results have several implications for neural ITD processing in different species as well as development of the auditory system.
Scan statistics with local vote for target detection in distributed system
NASA Astrophysics Data System (ADS)
Luo, Junhai; Wu, Qi
2017-12-01
Target detection has occupied a pivotal position in distributed system. Scan statistics, as one of the most efficient detection methods, has been applied to a variety of anomaly detection problems and significantly improves the probability of detection. However, scan statistics cannot achieve the expected performance when the noise intensity is strong, or the signal emitted by the target is weak. The local vote algorithm can also achieve higher target detection rate. After the local vote, the counting rule is always adopted for decision fusion. The counting rule does not use the information about the contiguity of sensors but takes all sensors' data into consideration, which makes the result undesirable. In this paper, we propose a scan statistics with local vote (SSLV) method. This method combines scan statistics with local vote decision. Before scan statistics, each sensor executes local vote decision according to the data of its neighbors and its own. By combining the advantages of both, our method can obtain higher detection rate in low signal-to-noise ratio environment than the scan statistics. After the local vote decision, the distribution of sensors which have detected the target becomes more intensive. To make full use of local vote decision, we introduce a variable-step-parameter for the SSLV. It significantly shortens the scan period especially when the target is absent. Analysis and simulations are presented to demonstrate the performance of our method.
Design of a Base Station for MEMS CCR Localization in an Optical Sensor Network
Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon
2014-01-01
This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR. PMID:24815681
Design of a base station for MEMS CCR localization in an optical sensor network.
Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon
2014-05-08
This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR.
Brown, B.L.; Swan, C.M.; Auerbach, D.A.; Campbell, Grant E.H.; Hitt, N.P.; Maloney, K.O.; Patrick, C.
2011-01-01
Explaining the mechanisms underlying patterns of species diversity and composition in riverine networks is challenging. Historically, community ecologists have conceived of communities as largely isolated entities and have focused on local environmental factors and interspecific interactions as the major forces determining species composition. However, stream ecologists have long embraced a multiscale approach to studying riverine ecosystems and have studied both local factors and larger-scale regional factors, such as dispersal and disturbance. River networks exhibit a dendritic spatial structure that can constrain aquatic organisms when their dispersal is influenced by or confined to the river network. We contend that the principles of metacommunity theory would help stream ecologists to understand how the complex spatial structure of river networks mediates the relative influences of local and regional control on species composition. From a basic ecological perspective, the concept is attractive because new evidence suggests that the importance of regional processes (dispersal) depends on spatial structure of habitat and on connection to the regional species pool. The role of local factors relative to regional factors will vary with spatial position in a river network. From an applied perspective, the long-standing view in ecology that local community composition is an indicator of habitat quality may not be uniformly applicable across a river network, but the strength of such bioassessment approaches probably will depend on spatial position in the network. The principles of metacommunity theory are broadly applicable across taxa and systems but seem of particular consequence to stream ecology given the unique spatial structure of riverine systems. By explicitly embracing processes at multiple spatial scales, metacommunity theory provides a foundation on which to build a richer understanding of stream communities.
Estimating Local Chlamydia Incidence and Prevalence Using Surveillance Data
White, Peter J.
2017-01-01
Background: Understanding patterns of chlamydia prevalence is important for addressing inequalities and planning cost-effective control programs. Population-based surveys are costly; the best data for England come from the Natsal national surveys, which are only available once per decade, and are nationally representative but not powered to compare prevalence in different localities. Prevalence estimates at finer spatial and temporal scales are required. Methods: We present a method for estimating local prevalence by modeling the infection, testing, and treatment processes. Prior probability distributions for parameters describing natural history and treatment-seeking behavior are informed by the literature or calibrated using national prevalence estimates. By combining them with surveillance data on numbers of chlamydia tests and diagnoses, we obtain estimates of local screening rates, incidence, and prevalence. We illustrate the method by application to data from England. Results: Our estimates of national prevalence by age group agree with the Natsal-3 survey. They could be improved by additional information on the number of diagnosed cases that were asymptomatic. There is substantial local-level variation in prevalence, with more infection in deprived areas. Incidence in each sex is strongly correlated with prevalence in the other. Importantly, we find that positivity (the proportion of tests which were positive) does not provide a reliable proxy for prevalence. Conclusion: This approach provides local chlamydia prevalence estimates from surveillance data, which could inform analyses to identify and understand local prevalence patterns and assess local programs. Estimates could be more accurate if surveillance systems recorded additional information, including on symptoms. See video abstract at, http://links.lww.com/EDE/B211. PMID:28306613
Development of a car-borne γ-ray survey system, KURAMA
NASA Astrophysics Data System (ADS)
Tanigaki, M.; Okumura, R.; Takamiya, K.; Sato, N.; Yoshino, H.; Yamana, H.
2013-10-01
A compact radiometric survey system, named KURAMA (Kyoto University RAdiation MApping system), has been developed as a response to the nuclear disaster of Fukushima Daiichi nuclear power plant. KURAMA is based on GPS (Global Positioning System) and network technology, and intended for the realtime data accumulation of multiple mobile monitoring stations, such as monitoring cars. KURAMA now serves for the car-borne surveys in Fukushima and surrounding prefectures by the Japanese Government and local authorities. An outline of KURAMA and discussions on car-borne γ-ray surveys using KURAMA are introduced.
A Simple Method to Improve Autonomous GPS Positioning for Tractors
Gomez-Gil, Jaime; Alonso-Garcia, Sergio; Gómez-Gil, Francisco Javier; Stombaugh, Tim
2011-01-01
Error is always present in the GPS guidance of a tractor along a desired trajectory. One way to reduce GPS guidance error is by improving the tractor positioning. The most commonly used ways to do this are either by employing more precise GPS receivers and differential corrections or by employing GPS together with some other local positioning systems such as electronic compasses or Inertial Navigation Systems (INS). However, both are complex and expensive solutions. In contrast, this article presents a simple and low cost method to improve tractor positioning when only a GPS receiver is used as the positioning sensor. The method is based on placing the GPS receiver ahead of the tractor, and on applying kinematic laws of tractor movement, or a geometric approximation, to obtain the midpoint position and orientation of the tractor rear axle more precisely. This precision improvement is produced by the fusion of the GPS data with tractor kinematic control laws. Our results reveal that the proposed method effectively reduces the guidance GPS error along a straight trajectory. PMID:22163917
Wei, Wang; Yuan-Yuan, Jin; Ci, Yan; Ahan, Alayi; Ming-Qin, Cao
2016-10-06
The spatial interplay between socioeconomic factors and tuberculosis (TB) cases contributes to the understanding of regional tuberculosis burdens. Historically, local Poisson Geographically Weighted Regression (GWR) has allowed for the identification of the geographic disparities of TB cases and their relevant socioeconomic determinants, thereby forecasting local regression coefficients for the relations between the incidence of TB and its socioeconomic determinants. Therefore, the aims of this study were to: (1) identify the socioeconomic determinants of geographic disparities of smear positive TB in Xinjiang, China (2) confirm if the incidence of smear positive TB and its associated socioeconomic determinants demonstrate spatial variability (3) compare the performance of two main models: one is Ordinary Least Square Regression (OLS), and the other local GWR model. Reported smear-positive TB cases in Xinjiang were extracted from the TB surveillance system database during 2004-2010. The average number of smear-positive TB cases notified in Xinjiang was collected from 98 districts/counties. The population density (POPden), proportion of minorities (PROmin), number of infectious disease network reporting agencies (NUMagen), proportion of agricultural population (PROagr), and per capita annual gross domestic product (per capita GDP) were gathered from the Xinjiang Statistical Yearbook covering a period from 2004 to 2010. The OLS model and GWR model were then utilized to investigate socioeconomic determinants of smear-positive TB cases. Geoda 1.6.7, and GWR 4.0 software were used for data analysis. Our findings indicate that the relations between the average number of smear-positive TB cases notified in Xinjiang and their socioeconomic determinants (POPden, PROmin, NUMagen, PROagr, and per capita GDP) were significantly spatially non-stationary. This means that in some areas more smear-positive TB cases could be related to higher socioeconomic determinant regression coefficients, but in some areas more smear-positive TB cases were found to do with lower socioeconomic determinant regression coefficients. We also found out that the GWR model could be better exploited to geographically differentiate the relationships between the average number of smear-positive TB cases and their socioeconomic determinants, which could interpret the dataset better (adjusted R 2 = 0.912, AICc = 1107.22) than the OLS model (adjusted R 2 = 0.768, AICc = 1196.74). POPden, PROmin, NUMagen, PROagr, and per capita GDP are socioeconomic determinants of smear-positive TB cases. Comprehending the spatial heterogeneity of POPden, PROmin, NUMagen, PROagr, per capita GDP, and smear-positive TB cases could provide valuable information for TB precaution and control strategies.
An automated single ion hit at JAERI heavy ion microbeam to observe individual radiation damage
NASA Astrophysics Data System (ADS)
Kamiya, Tomihiro; Sakai, Takuro; Naitoh, Yutaka; Hamano, Tsuyoshi; Hirao, Toshio
1999-10-01
Microbeam scanning and a single ion hit technique have been combined to establish an automated beam positioning and single ion hit system at the JAERI Takasaki heavy ion microbeam system. Single ion irradiation on preset points of a sample in various patterns can be performed automatically in a short period. The reliability of the system was demonstrated using CR-39 nuclear track detectors. Single ion hit patterns were achieved with a positioning accuracy of 2 μm or less. In measurement of single event transient current using this system, the reduction of the pulse height by accumulation of radiation damages was observed by single ion injection to the same local areas. This technique showed a possibility to get some quantitative information about the lateral displacement of an individual radiation effect in silicon PIN photodiodes. This paper will give details of the irradiation system and present results from several experiments.
Koonin, Lisa M.; Kohl, Katrin S.; Cetron, Martin
2012-01-01
Shortly after the influenza A (H1N1) 2009 pandemic began, the U.S. government provided guidance to state and local authorities to assist decision-making for the use of nonpharmaceutical strategies to minimize influenza spread. This guidance included recommendations for flexible decision-making based on outbreak severity, and it allowed for uncertainty and course correction as the pandemic progressed. These recommendations build on a foundation of local, collaborative planning and posit a series of questions regarding epidemiology, the impact on the health-care system, and locally determined feasibility and acceptability of nonpharmaceutical strategies. This article describes -recommendations and key questions for decision makers. PMID:23115381
Pascucci, Anabella; Lynch, Peter J; Fazel, Nasim
2016-05-01
Overlap syndromes are known to occur with connective-tissue diseases (CTDs). Rarely, the overlap occurs at the same tissue site. We report the case of a patient with clinical and histopathologic findings consistent with the presence of discoid lupus erythematosus (DLE) and localized scleroderma within the same lesions. Based on our case and other reported cases in the literature, the following features are common in patients with an overlap of lupus erythematosus (LE) and localized scleroderma: predilection for young women, photodistributed lesions, DLE, linear morphology clinically, and positivity along the dermoepidermal junction on direct immunofluorescence. Most patients showed good response to antimalarials, topical steroids, or systemic steroids.
Vision-Based SLAM System for Unmanned Aerial Vehicles
Munguía, Rodrigo; Urzua, Sarquis; Bolea, Yolanda; Grau, Antoni
2016-01-01
The present paper describes a vision-based simultaneous localization and mapping system to be applied to Unmanned Aerial Vehicles (UAVs). The main contribution of this work is to propose a novel estimator relying on an Extended Kalman Filter. The estimator is designed in order to fuse the measurements obtained from: (i) an orientation sensor (AHRS); (ii) a position sensor (GPS); and (iii) a monocular camera. The estimated state consists of the full state of the vehicle: position and orientation and their first derivatives, as well as the location of the landmarks observed by the camera. The position sensor will be used only during the initialization period in order to recover the metric scale of the world. Afterwards, the estimated map of landmarks will be used to perform a fully vision-based navigation when the position sensor is not available. Experimental results obtained with simulations and real data show the benefits of the inclusion of camera measurements into the system. In this sense the estimation of the trajectory of the vehicle is considerably improved, compared with the estimates obtained using only the measurements from the position sensor, which are commonly low-rated and highly noisy. PMID:26999131
Towards high-throughput automated targeted femtosecond laser-based transfection of adherent cells
NASA Astrophysics Data System (ADS)
Antkowiak, Maciej; Torres-Mapa, Maria Leilani; Gunn-Moore, Frank; Dholakia, Kishan
2011-03-01
Femtosecond laser induced cell membrane poration has proven to be an attractive alternative to the classical methods of drug and gene delivery. It is a selective, sterile, non-contact technique that offers a highly localized operation, low toxicity and consistent performance. However, its broader application still requires the development of robust, high-throughput and user-friendly systems. We present a system capable of unassisted enhanced targeted optoinjection and phototransfection of adherent mammalian cells with a femtosecond laser. We demonstrate the advantages of a dynamic diffractive optical element, namely a spatial light modulator (SLM) for precise three dimensional positioning of the beam. It enables the implementation of a "point-and-shoot" system in which using the software interface a user simply points at the cell and a predefined sequence of precisely positioned doses can be applied. We show that irradiation in three axial positions alleviates the problem of exact beam positioning on the cell membrane and doubles the number of viably optoinjected cells when compared with a single dose. The presented system enables untargeted raster scan irradiation which provides transfection of adherent cells at the throughput of 1 cell per second.
Tropheryma whipplei Infection (Whipple Disease) in the USA.
Hujoel, Isabel A; Johnson, David H; Lebwohl, Benjamin; Leffler, Daniel; Kupfer, Sonia; Wu, Tsung-Teh; Murray, Joseph A; Rubio-Tapia, Alberto
2018-03-23
Whipple disease (WD) is an infection caused by the bacterium Tropheryma whipplei (TW). Few cases have been reported in the USA. To report on the demographics, clinical manifestations, diagnostic findings, treatment, and outcomes of TW infection. Cases of TW infection diagnosed from 1995 to 2010 were identified in three US referral centers and from 1995 to 2015 in one. Definite classic WD was defined by positive periodic acid-Schiff (PAS) staining and probable WD by specific positive TW polymerase chain reaction (PCR) of intestinal specimens. Localized infections were defined by a positive TW PCR result from samples of other tissues/body fluids. Among the 33 cases of TW infections, 27 (82%) were male. Median age at diagnosis was 53 years (range 11-75). Diagnosis was supported by a positive TW PCR in 29 (88%) and/or a positive PAS in 16 (48%) patients. Classic WD was the most frequent presentation (n = 18, 55%), with 14 definite and 4 probable cases. Localized infections (n = 15, 45%) affected the central nervous system (n = 7), joints (n = 4), heart (n = 2), eye (n = 1), and skeletal muscle (n = 1). Blood PCR was negative in 9 of 17 (53%) cases at diagnosis. Ceftriaxone intravenously followed by trimethoprim and sulfamethoxazole orally was the most common regimen (n = 23, 70%). Antibiotic therapy resulted in clinical response in 24 (73%). TW infection can present as intestinal or localized disease. Negative small bowel PAS and PCR do not exclude the diagnosis of TW infection, and blood PCR is insensitive for active infection.
Kang, Yeon Hee; Song, Sang-Kee; Schiefelbein, John; Lee, Myeong Min
2013-01-01
Cell fate determination and differentiation are central processes in the development of multicellular organisms, and the Arabidopsis (Arabidopsis thaliana) root epidermis provides a model system to study the molecular basis of these processes. A lateral inhibition mechanism mediated by an R3 single-repeat MYB protein, CAPRICE (CPC), has been proposed to explain the specification of the two types of root epidermal cells (hair cells and nonhair cells). However, it is not clear how CPC acts preferentially in the H-position cells, rather than the N-position cells, where its gene is expressed. To explore this issue, we examined the effect of misexpressed CPC on cell fate specification and CPC localization in the root epidermis. We show that CPC is able to move readily within the root epidermis when its expression level is high and that CPC can induce the hair cell fate in a cell-autonomous manner. We provide evidence that CPC is capable of moving from the stele tissue in the center of the root to the outermost epidermal layer, where it can induce the hair cell fate. In addition, we show that CPC protein accumulates primarily in the nuclei of H-position cells in the early meristematic region, and this localization requires the H-cell-expressed ENHANCER OF GLABRA3 (EGL3) basic helix-loop-helix transcription factor. These results suggest that cell-cell movement of CPC occurs readily within the meristematic region of the root and that EGL3 preferentially traps the CPC protein in the H-position cells of the epidermis. PMID:23832626
Vision Based Localization in Urban Environments
NASA Technical Reports Server (NTRS)
McHenry, Michael; Cheng, Yang; Matthies, Larry
2005-01-01
As part of DARPA's MARS2020 program, the Jet Propulsion Laboratory developed a vision-based system for localization in urban environments that requires neither GPS nor active sensors. System hardware consists of a pair of small FireWire cameras and a standard Pentium-based computer. The inputs to the software system consist of: 1) a crude grid-based map describing the positions of buildings, 2) an initial estimate of robot location and 3) the video streams produced by each camera. At each step during the traverse the system: captures new image data, finds image features hypothesized to lie on the outside of a building, computes the range to those features, determines an estimate of the robot's motion since the previous step and combines that data with the map to update a probabilistic representation of the robot's location. This probabilistic representation allows the system to simultaneously represent multiple possible locations, For our testing, we have derived the a priori map manually using non-orthorectified overhead imagery, although this process could be automated. The software system consists of two primary components. The first is the vision system which uses binocular stereo ranging together with a set of heuristics to identify features likely to be part of building exteriors and to compute an estimate of the robot's motion since the previous step. The resulting visual features and the associated range measurements are software component, a particle-filter based localization system. This system uses the map and the then fed to the second primary most recent results from the vision system to update the estimate of the robot's location. This report summarizes the design of both the hardware and software and will include the results of applying the system to the global localization of a robot over an approximately half-kilometer traverse across JPL'S Pasadena campus.
Quantum Entanglement of Matter and Geometry in Large Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Craig J.
2014-12-04
Standard quantum mechanics and gravity are used to estimate the mass and size of idealized gravitating systems where position states of matter and geometry become indeterminate. It is proposed that well-known inconsistencies of standard quantum field theory with general relativity on macroscopic scales can be reconciled by nonstandard, nonlocal entanglement of field states with quantum states of geometry. Wave functions of particle world lines are used to estimate scales of geometrical entanglement and emergent locality. Simple models of entanglement predict coherent fluctuations in position of massive bodies, of Planck scale origin, measurable on a laboratory scale, and may account formore » the fact that the information density of long lived position states in Standard Model fields, which is determined by the strong interactions, is the same as that determined holographically by the cosmological constant.« less
Cirulli, Elizabeth T; Noor, Mohamed A F
2007-01-01
Ectopic exchange between transposable elements or other repetitive sequences along a chromosome can produce chromosomal inversions. As a result, genome sequence studies typically find sequence similarity between corresponding inversion breakpoint regions. Here, we identify and investigate the breakpoint regions of the X chromosome inversion distinguishing Drosophila mojavensis and Drosophila arizonae. We localize one inversion breakpoint to 13.7 kb and localize the other to a 1-Mb interval. Using this localization and assuming microsynteny between Drosophila melanogaster and D. arizonae, we pinpoint likely positions of the inversion breakpoints to windows of less than 3000 bp. These breakpoints define the size of the inversion to approximately 11 Mb. However, in contrast to many other studies, we fail to find significant sequence similarity between the 2 breakpoint regions. The localization of these inversion breakpoints will facilitate future genetic and molecular evolutionary studies in this species group, an emerging model system for ecological genetics.
NASA Astrophysics Data System (ADS)
Zamorano, Lucia J.; Dujovny, Manuel
1991-05-01
A unit is presented that provides the neurosurgeon with CT, MRI, x-ray, DA, and DSA compatible headholder and multimodality image localization as well as freedom of choice for surgical approach on patient's intraoperative positioning. The unit consists of a carbon fiber ring-shaped headholder which allows free selection for location of three or four fixation pins, avoiding interference with the flap sites or craniotomy. The base ring is mounted intraoperatively on a special adapter that allows any patient positioning including supine, lateral, prone, 3/4 prone, sitting, etc. Surgical draping can be performed given a completely sterile field. An arc/quadrant localizing device can be mounted on any four alternative positions according to the neurosurgeon's preference. A PC compatible software gives the setting for any possible mounting. Intraoperative the localizing unit can be used in a 'fixed' permanent setting or as a 'non-fixed' system to provide intraoperative three-dimensional orientation. Different are adapted instruments which give the unit further capabilities, especially 'bayonet' type brain retractors (cylinders and speculum) that allows the neurosurgeon to keep the surgical corridor unobstructed from the arc. As an alternative, in the 'non-fixed' setting, self-retaining arms are fixed to the base ring and brain retractors and conventional microsurgical technique can be used without any mechanical obstruction. This article presents the unit details, methodology and the clinical experience in 103 consecutive cases of 'open stereotaxis' for resection or internal decompression of deep seated or near eloquent area lesions.
NASA Astrophysics Data System (ADS)
Morita, Hiroshi; Hatanaka, Ayumu; Yokosuka, Toshiyuki; Seki, Yoshitaka; Tsumuraya, Yoshiaki; Doi, Motomichi
The measurement system of the surface electrostatic potential on a solid insulation board in vacuum has been developed. We used this system to measure the electrostatic potential distribution of the surface of a borosilicate glass plate applied a high voltage. A local increase in the electric field was observed. It is considered that this phenomenon is caused by a positive electrostatic charge generated by a secondary emission of field emission electrons from an electrode. On the other hand, a local increase in the electric field was not observed on a glass plate coated with silica particles and a glass plate roughened by sandblast. We reasoned that this could be because the electrons were trapped by the roughness of the surface. It is considered that these phenomena make many types of equipment using the vacuum insulation more reliable.
Unique Applications for Artificial Neural Networks. Phase 1
1991-08-08
significance. For the VRP, a problem that has received considerable attention in the literature, the new NGO-VRP methodology generates better solutions...represent the stop assignments of each route. The effect of the genetic recombinations is to make simple local exchanges to the relative positions of the...technique for representing a computer-based associative memory [Arbib, 1987]. In our routing system, the basic job of the neural network system is to accept
Strong solutions for an incompressible Navier-Stokes/Allen-Cahn system with different densities
NASA Astrophysics Data System (ADS)
Li, Yinghua; Huang, Mingxia
2018-06-01
In this paper, we investigate a coupled Navier-Stokes/Allen-Cahn system describing a diffuse interface model for two-phase flow of viscous incompressible fluids with different densities in a bounded domain Ω \\subset R^N(N=2,3). We prove the existence and uniqueness of local strong solutions to the initial boundary value problem when the initial density function ρ _0 has a positive lower bound.
USA Education Policy in Transnationalization of Higher Education
ERIC Educational Resources Information Center
Avshenyuk, Nataliya
2018-01-01
The analysis of American experience of higher education transnationalization, as well as influence of these processes on various spheres of social development has been done. The main factor is the desire to improve the quality of higher education national system, which leads to positive competition between local and foreign universities and serves…
Laying a Solid Foundation: Strategies for Effective Program Replication
ERIC Educational Resources Information Center
Summerville, Geri
2009-01-01
The replication of proven social programs is a cost-effective and efficient way to achieve large-scale, positive social change. Yet there has been little guidance available about how to approach program replication and limited development of systems--at local, state or federal levels--to support replication efforts. "Laying a Solid Foundation:…
Teacher Retirement Ponzi Schemes. Conference Paper 2009-02
ERIC Educational Resources Information Center
Kotlikoff, Laurence J.
2009-01-01
This paper is about the funding status of teachers' retirement pension schemes. Its goal is to relate the accounting for the funding of these pension obligations to the endemic, systematic, and fundamentally fraudulent system of accounting our country uses to assess the financial positions of federal, state, and local government as well as many…
Promoting and Sustaining an Institutional Climate of Academic Integrity
ERIC Educational Resources Information Center
Academic Senate for California Community Colleges, 2007
2007-01-01
This Academic Senate paper is in response to two resolutions from Fall 2005 concerning academic dishonesty. One resolution, 14.02, "Student Cheating," sought clarification on a System Office legal position that limits the ability of local faculty to fail a student for a single incident of academic dishonesty, and pending the result of…
Directional Communication in Evolved Multiagent Teams
2013-06-10
decentralized localization proposed by Franchi et al. [9]. Overall, the significant advantage of directional communication over non- directional...reception benefits the evolution of communicating autonomous agents because it simplifies the language required to express positional information, which...systems. This paper hypothesizes that such directional reception benefits the evolution of communicating autonomous agents because it simplifies the
5 CFR 532.317 - Use of data from the nearest similar area.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATIONS PREVAILING RATE SYSTEMS Determining Rates for Principal Types of Positions § 532.317 Use of data... of Defense, the lead agency shall, in establishing the regular schedule under the provisions of this... obtained from inside the local wage survey area. The regular schedule for Department of Defense prevailing...
5 CFR 532.317 - Use of data from the nearest similar area.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATIONS PREVAILING RATE SYSTEMS Determining Rates for Principal Types of Positions § 532.317 Use of data... of Defense, the lead agency shall, in establishing the regular schedule under the provisions of this... obtained from inside the local wage survey area. The regular schedule for Department of Defense prevailing...
NASA Astrophysics Data System (ADS)
Yousefi Lalimi, F.; Silvestri, S.; Moore, L. J.; Marani, M.
2017-01-01
Vegetation plays a key role in stabilizing coastal dunes and barrier islands by mediating sand transport, deposition, and erosion. Dune topography, in turn, affects vegetation growth, by determining local environmental conditions. However, our understanding of vegetation and dune topography as coupled and spatially extensive dynamical systems is limited. Here we develop and use remote sensing analyses to quantitatively characterize coastal dune ecotopographic patterns by simultaneously identifying the spatial distribution of topographic elevation and vegetation biomass. Lidar-derived leaf area index and hyperspectral-derived normalized difference vegetation index patterns yield vegetation distributions at the whole-system scale which are in agreement with each other and with field observations. Lidar-derived concurrent quantifications of biomass and topography show that plants more favorably develop on the landward side of the foredune crest and that the foredune crestline marks the position of an ecotone, which is interpreted as the result of a sheltering effect sharply changing local environmental conditions. We conclude that the position of the foredune crestline is a chief ecomorphodynamic feature resulting from the two-way interaction between vegetation and topography.
Target tracking and pointing for arrays of phase-locked lasers
NASA Astrophysics Data System (ADS)
Macasaet, Van P.; Hughes, Gary B.; Lubin, Philip; Madajian, Jonathan; Zhang, Qicheng; Griswold, Janelle; Kulkarni, Neeraj; Cohen, Alexander; Brashears, Travis
2016-09-01
Arrays of phase-locked lasers are envisioned for planetary defense and exploration systems. High-energy beams focused on a threatening asteroid evaporate surface material, creating a reactionary thrust that alters the asteroid's orbit. The same system could be used to probe an asteroid's composition, to search for unknown asteroids, and to propel interplanetary and interstellar spacecraft. Phased-array designs are capable of producing high beam intensity, and allow beam steering and beam profile manipulation. Modular designs allow ongoing addition of emitter elements to a growing array. This paper discusses pointing control for extensible laser arrays. Rough pointing is determined by spacecraft attitude control. Lateral movement of the laser emitter tips behind the optical elements provides intermediate pointing adjustment for individual array elements and beam steering. Precision beam steering and beam formation is accomplished by coordinated phase modulation across the array. Added cells are incorporated into the phase control scheme by precise alignment to local mechanical datums using fast, optical relative position sensors. Infrared target sensors are also positioned within the datum scheme, and provide information about the target vector relative to datum coordinates at each emitter. Multiple target sensors allow refined determination of the target normal plane, providing information to the phase controller for each emitter. As emitters and sensors are added, local position data allows accurate prediction of the relative global position of emitters across the array, providing additional constraints to the phase controllers. Mechanical design and associated phase control that is scalable for target distance and number of emitters is presented.
The feasibility and stability of large complex biological networks: a random matrix approach.
Stone, Lewi
2018-05-29
In the 70's, Robert May demonstrated that complexity creates instability in generic models of ecological networks having random interaction matrices A. Similar random matrix models have since been applied in many disciplines. Central to assessing stability is the "circular law" since it describes the eigenvalue distribution for an important class of random matrices A. However, despite widespread adoption, the "circular law" does not apply for ecological systems in which density-dependence operates (i.e., where a species growth is determined by its density). Instead one needs to study the far more complicated eigenvalue distribution of the community matrix S = DA, where D is a diagonal matrix of population equilibrium values. Here we obtain this eigenvalue distribution. We show that if the random matrix A is locally stable, the community matrix S = DA will also be locally stable, providing the system is feasible (i.e., all species have positive equilibria D > 0). This helps explain why, unusually, nearly all feasible systems studied here are locally stable. Large complex systems may thus be even more fragile than May predicted, given the difficulty of assembling a feasible system. It was also found that the degree of stability, or resilience of a system, depended on the minimum equilibrium population.
Enhancing innovation between scientific and indigenous knowledge: pioneer NGOs in India.
Torri, Maria-Costanza; Laplante, Julie
2009-10-22
Until recently, little attention has been paid to local innovation capacity as well as management practices and institutions developed by communities and other local actors based on their traditional knowledge. This paper doesn't focus on the results of scientific research into innovation systems, but rather on how local communities, in a network of supportive partnerships, draw knowledge for others, combine it with their own knowledge and then innovate in their local practices. Innovation, as discussed in this article, is the capacity of local stakeholders to play an active role in innovative knowledge creation in order to enhance local health practices and further environmental conservation. In this article, the innovative processes through which this capacity is created and reinforced will be defined as a process of "ethnomedicine capacity". The field study undertaken by the first author took place in India, in the State of Tamil Nadu, over a period of four months in 2007. The data was collected through individual interviews and focus groups and was complemented by participant observations. The research highlights the innovation capacity related to ethnomedical knowledge. As seen, the integration of local and scientific knowledge is crucial to ensure the practices anchor themselves in daily practices. The networks created are clearly instrumental to enhancing the innovation capacity that allows the creation, dissemination and utilization of 'traditional' knowledge. However, these networks have evolved in very different forms and have become entities that can fit into global networks. The ways in which the social capital is enhanced at the village and network levels are thus important to understand how traditional knowledge can be used as an instrument for development and innovation. The case study analyzed highlights examples of innovation systems in a developmental context. They demonstrate that networks comprised of several actors from different levels can synergistically forge linkages between local knowledge and formal sciences and generate positive and negative impacts. The positive impact is the revitalization of perceived traditions while the negative impacts pertain to the transformation of these traditions into health commodities controlled by new elites, due to unequal power relations.
Enhancing innovation between scientific and indigenous knowledge: pioneer NGOs in India
Torri, Maria-Costanza; Laplante, Julie
2009-01-01
Background Until recently, little attention has been paid to local innovation capacity as well as management practices and institutions developed by communities and other local actors based on their traditional knowledge. This paper doesn't focus on the results of scientific research into innovation systems, but rather on how local communities, in a network of supportive partnerships, draw knowledge for others, combine it with their own knowledge and then innovate in their local practices. Innovation, as discussed in this article, is the capacity of local stakeholders to play an active role in innovative knowledge creation in order to enhance local health practices and further environmental conservation. In this article, the innovative processes through which this capacity is created and reinforced will be defined as a process of "ethnomedicine capacity". Methods The field study undertaken by the first author took place in India, in the State of Tamil Nadu, over a period of four months in 2007. The data was collected through individual interviews and focus groups and was complemented by participant observations. Results The research highlights the innovation capacity related to ethnomedical knowledge. As seen, the integration of local and scientific knowledge is crucial to ensure the practices anchor themselves in daily practices. The networks created are clearly instrumental to enhancing the innovation capacity that allows the creation, dissemination and utilization of 'traditional' knowledge. However, these networks have evolved in very different forms and have become entities that can fit into global networks. The ways in which the social capital is enhanced at the village and network levels are thus important to understand how traditional knowledge can be used as an instrument for development and innovation. Conclusion The case study analyzed highlights examples of innovation systems in a developmental context. They demonstrate that networks comprised of several actors from different levels can synergistically forge linkages between local knowledge and formal sciences and generate positive and negative impacts. The positive impact is the revitalization of perceived traditions while the negative impacts pertain to the transformation of these traditions into health commodities controlled by new elites, due to unequal power relations. PMID:19849851
Assessment of local GNSS baselines at co-location sites
NASA Astrophysics Data System (ADS)
Herrera Pinzón, Iván; Rothacher, Markus
2018-01-01
As one of the major contributors to the realisation of the International Terrestrial Reference System (ITRS), the Global Navigation Satellite Systems (GNSS) are prone to suffer from irregularities and discontinuities in time series. While often associated with hardware/software changes and the influence of the local environment, these discrepancies constitute a major threat for ITRS realisations. Co-located GNSS at fundamental sites, with two or more available instruments, provide the opportunity to mitigate their influence while improving the accuracy of estimated positions by examining data breaks, local biases, deformations, time-dependent variations and the comparison of GNSS baselines with existing local tie measurements. With the use of co-located GNSS data from a subset sites of the International GNSS Service network, this paper discusses a global multi-year analysis with the aim of delivering homogeneous time series of coordinates to analyse system-specific error sources in the local baselines. Results based on the comparison of different GNSS-based solutions with the local survey ties show discrepancies of up to 10 mm despite GNSS coordinate repeatabilities at the sub-mm level. The discrepancies are especially large for the solutions using the ionosphere-free linear combination and estimating tropospheric zenith delays, thus corresponding to the processing strategy used for global solutions. Snow on the antennas causes further problems and seasonal variations of the station coordinates. These demonstrate the need for a permanent high-quality monitoring of the effects present in the short GNSS baselines at fundamental sites.
Development of a bio-magnetic measurement system and sensor configuration analysis for rats
NASA Astrophysics Data System (ADS)
Kim, Ji-Eun; Kim, In-Seon; Kim, Kiwoong; Lim, Sanghyun; Kwon, Hyukchan; Kang, Chan Seok; Ahn, San; Yu, Kwon Kyu; Lee, Yong-Ho
2017-04-01
Magnetoencephalography (MEG) based on superconducting quantum interference devices enables the measurement of very weak magnetic fields (10-1000 fT) generated from the human or animal brain. In this article, we introduce a small MEG system that we developed specifically for use with rats. Our system has the following characteristics: (1) variable distance between the pick-up coil and outer Dewar bottom (˜5 mm), (2) small pick-up coil (4 mm) for high spatial resolution, (3) good field sensitivity (45 ˜ 80 fT /cm/√{Hz} ) , (4) the sensor interval satisfies the Nyquist spatial sampling theorem, and (5) small source localization error for the region to be investigated. To reduce source localization error, it is necessary to establish an optimal sensor layout. To this end, we simulated confidence volumes at each point on a grid on the surface of a virtual rat head. In this simulation, we used locally fitted spheres as model rat heads. This enabled us to consider more realistic volume currents. We constrained the model such that the dipoles could have only four possible orientations: the x- and y-axes from the original coordinates, and two tangentially layered dipoles (local x- and y-axes) in the locally fitted spheres. We considered the confidence volumes according to the sensor layout and dipole orientation and positions. We then conducted a preliminary test with a 4-channel MEG system prior to manufacturing the multi-channel system. Using the 4-channel MEG system, we measured rat magnetocardiograms. We obtained well defined P-, QRS-, and T-waves in rats with a maximum value of 15 pT/cm. Finally, we measured auditory evoked fields and steady state auditory evoked fields with maximum values 400 fT/cm and 250 fT/cm, respectively.
Cicmil, Nela; Bridge, Holly; Parker, Andrew J.; Woolrich, Mark W.; Krug, Kristine
2014-01-01
Magnetoencephalography (MEG) allows the physiological recording of human brain activity at high temporal resolution. However, spatial localization of the source of the MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution and additional prior assumptions must be enforced. An adequate source reconstruction method for investigating the human visual system should place the sources of early visual activity in known locations in the occipital cortex. We localized sources of retinotopic MEG signals from the human brain with contrasting reconstruction approaches (minimum norm, multiple sparse priors, and beamformer) and compared these to the visual retinotopic map obtained with fMRI in the same individuals. When reconstructing brain responses to visual stimuli that differed by angular position, we found reliable localization to the appropriate retinotopic visual field quadrant by a minimum norm approach and by beamforming. Retinotopic map eccentricity in accordance with the fMRI map could not consistently be localized using an annular stimulus with any reconstruction method, but confining eccentricity stimuli to one visual field quadrant resulted in significant improvement with the minimum norm. These results inform the application of source analysis approaches for future MEG studies of the visual system, and indicate some current limits on localization accuracy of MEG signals. PMID:24904268
The endocannabinoid system and multiple sclerosis.
Baker, David; Pryce, Gareth
2008-01-01
Multiple sclerosis (MS) is a neurodegenerative disease that is characterised by repeated inflammatory/demyelinating events within the central nervous system (CNS). In addition to relapsing-remitting neurological insults, leading to loss of function, patients are often left with residual, troublesome symptoms such as spasticity and pain. These greatly diminish "quality of life" and have prompted some patients to self-medicate with and perceive benefit from cannabis. Recent advances in cannabinoid biology are beginning to support these anecdotal observations, notably the demonstration that spasticity is tonically regulated by the endogenous cannabinoid system. Recent clinical trials may indeed suggest that cannabis has some potential to relieve, pain, spasms and spasticity in MS. However, because the CB(1) cannabinoid receptor mediates both the positive and adverse effects of cannabis, therapy will invariably be associated with some unwanted, psychoactive effects. In an experimental model of MS, and in MS tissue, there are local perturbations of the endocannabinoid system in lesional areas. Stimulation of endocannabinoid activity in these areas either through increase of synthesis or inhibition of endocannabinoid degradation offers the positive therapeutic potential of the cannabinoid system whilst limiting adverse events by locally targeting the lesion. In addition, CB(1) and CB(2) cannabinoid receptor stimulation may also have anti-inflammatory and neuroprotective potential as the endocannabinoid system controls the level of neurodegeneration that occurs as a result of the inflammatory insults. Therefore cannabinoids may not only offer symptom control but may also slow the neurodegenerative disease progression that ultimately leads to the accumulation of disability.
Kamomae, Takeshi; Monzen, Hajime; Nakayama, Shinichi; Mizote, Rika; Oonishi, Yuuichi; Kaneshige, Soichiro; Sakamoto, Takashi
2015-01-01
Movement of the target object during cone-beam computed tomography (CBCT) leads to motion blurring artifacts. The accuracy of manual image matching in image-guided radiotherapy depends on the image quality. We aimed to assess the accuracy of target position localization using free-breathing CBCT during stereotactic lung radiotherapy. The Vero4DRT linear accelerator device was used for the examinations. Reference point discrepancies between the MV X-ray beam and the CBCT system were calculated using a phantom device with a centrally mounted steel ball. The precision of manual image matching between the CBCT and the averaged intensity (AI) images restructured from four-dimensional CT (4DCT) was estimated with a respiratory motion phantom, as determined in evaluations by five independent operators. Reference point discrepancies between the MV X-ray beam and the CBCT image-guidance systems, categorized as left-right (LR), anterior-posterior (AP), and superior-inferior (SI), were 0.33 ± 0.09, 0.16 ± 0.07, and 0.05 ± 0.04 mm, respectively. The LR, AP, and SI values for residual errors from manual image matching were -0.03 ± 0.22, 0.07 ± 0.25, and -0.79 ± 0.68 mm, respectively. The accuracy of target position localization using the Vero4DRT system in our center was 1.07 ± 1.23 mm (2 SD). This study experimentally demonstrated the sufficient level of geometric accuracy using the free-breathing CBCT and the image-guidance system mounted on the Vero4DRT. However, the inter-observer variation and systematic localization error of image matching substantially affected the overall geometric accuracy. Therefore, when using the free-breathing CBCT images, careful consideration of image matching is especially important.
PSD microscopy: a new technique for adaptive local scanning of microscale objects.
Rahimi, Mehdi; Shen, Yantao
2017-01-01
A position-sensitive detector/device (PSD) is a sensor that is capable of tracking the location of a laser beam on its surface. PSDs are used in many scientific instruments and technical applications including but not limited to atomic force microscopy, human eye movement monitoring, mirrors or machine tool alignment, vibration analysis, beam position control and so on. This work intends to propose a new application using the PSD. That is a new microscopy system called scanning PSD microscopy. The working mechanism is about putting an object on the surface of the PSD and fast scanning its area with a laser beam. To achieve a high degree of accuracy and precision, a reliable framework was designed using the PSD. In this work, we first tried to improve the PSD reading and its measurement performance. This was done by minimizing the effects of noise, distortion and other disturbing parameters. After achieving a high degree of confidence, the microscopy system can be implemented based on the improved PSD measurement performance. Later to improve the scanning efficiency, we developed an adaptive local scanning system to scan the whole area of the PSD in a short matter of time. It was validated that our comprehensive and adaptive local scanning method can shorten the scanning time in order of hundreds of times in comparison with the traditional raster scanning without losing any important information about the scanned 2D objects. Methods are also introduced to scan very complicated objects with bifurcations and crossings. By incorporating all these methods, the new microscopy system is capable of scanning very complicated objects in the matter of a few seconds with a resolution that is in order of a few micrometers.
Scher, Howard I; Graf, Ryon P; Schreiber, Nicole A; McLaughlin, Brigit; Lu, David; Louw, Jessica; Danila, Daniel C; Dugan, Lyndsey; Johnson, Ann; Heller, Glenn; Fleisher, Martin; Dittamore, Ryan
2017-06-01
Circulating tumor cells (CTCs) expressing AR-V7 protein localized to the nucleus (nuclear-specific) identify metastatic castration-resistant prostate cancer (mCRPC) patients with improved overall survival (OS) on taxane therapy relative to the androgen receptor signaling inhibitors (ARSi) abiraterone acetate, enzalutamide, and apalutamide. To evaluate if expanding the positivity criteria to include both nuclear and cytoplasmic AR-V7 localization ("nuclear-agnostic") identifies more patients who would benefit from a taxane over an ARSi. The study used a cross-sectional cohort. Between December 2012 and March 2015, 193 pretherapy blood samples, 191 of which were evaluable, were collected and processed from 161 unique mCRPC patients before starting a new line of systemic therapy for disease progression at the Memorial Sloan Kettering Cancer Center. The association between two AR-V7 scoring criteria, post-therapy prostate-specific antigen (PSA) change (PTPC) and OS following ARSi or taxane treatment, was explored. One criterion required nuclear-specific AR-V7 localization, and the other required an AR-V7 signal but was agnostic to protein localization in CTCs. Correlation of AR-V7 status to PTPC and OS was investigated. Relationships with survival were analyzed using multivariable Cox regression and log-rank analyses. A total of 34 (18%) samples were AR-V7-positive using nuclear-specific criteria, and 56 (29%) were AR-V7-positive using nuclear-agnostic criteria. Following ARSi treatment, none of the 16 nuclear-specific AR-V7-positive samples and six of the 32 (19%) nuclear-agnostic AR-V7-positive samples had ≥50% PTPC at 12 weeks. The strongest baseline factor influencing OS was the interaction between the presence of nuclear-specific AR-V7-positive CTCs and treatment with a taxane (hazard ratio 0.24, 95% confidence interval 0.078-0.79; p=0.019). This interaction was not significant when nuclear-agnostic criteria were used. To reliably inform treatment selection using an AR-V7 protein biomarker in CTCs, nuclear-specific localization is required. We analyzed outcomes for patients with metastatic castration-resistant prostate cancer on androgen receptor signaling inhibitors and standard chemotherapy. Patients with circulating tumor cells that had AR-V7 protein in the cellular nuclei were very likely to survive longer on taxane-based chemotherapy, and tests unable to distinguish where the protein is located in the cell are not as predictive of benefit. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
The Social Dynamics of Mathematics Coursetaking in High School1
Frank, Kenneth A.; Muller, Chandra; Schiller, Kathryn S.; Riegle-Crumb, Catherine; Mueller, Anna Strassmann; Crosnoe, Robert; Pearson, Jennifer
2010-01-01
This study examines how high school boys’ and girls’ academic effort, in the form of math coursetaking, is influenced by members of their social contexts. The authors argue that adolescents’ social contexts are defined, in part, by clusters of students (termed “local positions”) who take courses that differentiate them from others. Using course transcript data from the recent Adolescent Health and Academic Achievement Study, the authors employ a new network algorithm to identify local positions in 78 high schools in the National Longitudinal Study of Adolescent Health. Incorporating the local positions into multilevel models of math coursetaking, the authors find that girls are highly responsive to the social norms in their local positions, which contributes to homogeneity within and heterogeneity between local positions. PMID:21031147
A BLE-Based Pedestrian Navigation System for Car Searching in Indoor Parking Garages
Wang, Sheng-Shih
2018-01-01
The continuous global increase in the number of cars has led to an increase in parking issues, particularly with respect to the search for available parking spaces and finding cars. In this paper, we propose a navigation system for car owners to find their cars in indoor parking garages. The proposed system comprises a car-searching mobile app and a positioning-assisting subsystem. The app guides car owners to their cars based on a “turn-by-turn” navigation strategy, and has the ability to correct the user’s heading orientation. The subsystem uses beacon technology for indoor positioning, supporting self-guidance of the car-searching mobile app. This study also designed a local coordinate system to support the identification of the locations of parking spaces and beacon devices. We used Android as the platform to implement the proposed car-searching mobile app, and used Bytereal HiBeacon devices to implement the proposed positioning-assisting subsystem. We also deployed the system in a parking lot in our campus for testing. The experimental results verified that the proposed system not only works well, but also provides the car owner with the correct route guidance information. PMID:29734753
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, C; Sodickson, A; Hamberg, L
2016-06-15
Purpose: Apparent patient size in CT localizers varies with localizer type and patient positioning, resulting in variation in effective mAs as guided by Tube Current Modulation (TCM). Our aim was to investigate the effects of vertical off-centering on CTDI-vol when using different localizer types and TCM strengths. Methods: A CTDI body phantom was scanned using an abdominal protocol with three TCM strengths (Siemens Definition AS40, CAREDose4D; very weak, average, very strong). Data was acquired at 11 table height positions; with phantom center at isocenter and at 10 other positions between 142mm below and 53mm above. At each position, scans weremore » acquired using 5 different localizer types: PA, AP, Lateral, PA+Lateral, and Lateral+PA. CTDI-vol was recorded for the 165 combinations of table height, localizer type, and TCM strength, and magnification factors measured from localizer images. Results: Magnification factors from AP and PA localizers ranged from 0.79–1.11 and 1.35–0.91, respectively from lowest to highest positions (highest with phantom located closest to X-ray tube), with a smaller impact when using Lateral, PA+Lateral, Lateral+PA localizer types, all of which behaved similarly. For an average TCM strength and PA localizer, CTDI-vol ranged from 75% higher to 12% lower than the isocenter value for the lowest to highest table positions, respectively. For table positions ranging from lowest to highest, CTDI-vol ranged from −23% to 17% for AP, from −8% to 0.3% for lateral and from −7% to 1% for a combination of PA and Lateral in either order. Similar behavior was found for different TCM strengths, but effects were more pronounced for very strong compared with very weak modulation strengths. Conclusion: Patient off-centering substantially impacts radiation dose, which depends on the amount of vertical offcentering and type of the localizer used. The combination of PA and Lateral localizers is most robust against effects of patient off-centering.« less
PDR with a Foot-Mounted IMU and Ramp Detection
Jiménez, Antonio R.; Seco, Fernando; Zampella, Francisco; Prieto, José C.; Guevara, Jorge
2011-01-01
The localization of persons in indoor environments is nowadays an open problem. There are partial solutions based on the deployment of a network of sensors (Local Positioning Systems or LPS). Other solutions only require the installation of an inertial sensor on the person’s body (Pedestrian Dead-Reckoning or PDR). PDR solutions integrate the signals coming from an Inertial Measurement Unit (IMU), which usually contains 3 accelerometers and 3 gyroscopes. The main problem of PDR is the accumulation of positioning errors due to the drift caused by the noise in the sensors. This paper presents a PDR solution that incorporates a drift correction method based on detecting the access ramps usually found in buildings. The ramp correction method is implemented over a PDR framework that uses an Inertial Navigation algorithm (INS) and an IMU attached to the person’s foot. Unlike other approaches that use external sensors to correct the drift error, we only use one IMU on the foot. To detect a ramp, the slope of the terrain on which the user is walking, and the change in height sensed when moving forward, are estimated from the IMU. After detection, the ramp is checked for association with one of the existing in a database. For each associated ramp, a position correction is fed into the Kalman Filter in order to refine the INS-PDR solution. Drift-free localization is achieved with positioning errors below 2 meters for 1,000-meter-long routes in a building with a few ramps. PMID:22163701
The Strengths and Challenges of Implementing EBP in Healthcare Systems.
Warren, Joan I; McLaughlin, Maureen; Bardsley, Joan; Eich, Joanne; Esche, Carol Ann; Kropkowski, Lola; Risch, Stephen
2016-02-01
Multihospital healthcare system leaders and individual nurses are challenged to integrate standardized evidence-based practices that support continuous performance improvement in their systems. This study was undertaken to evaluate the strength of and the opportunities for implementing evidence-based nursing practice across a diverse 9-hospital system located in the mid-Atlantic region. A cross-sectional survey of 6,800 registered nurses (RNs), with a 24% response rate, was conducted to learn about their attitudes, beliefs, and perceptions toward organizational readiness and implementation of EBP. Although respondents' beliefs about EBP were positive, they reported their ability to implement EBP as extremely low. More than one third (36%) of the respondents worked at two of the system's Magnet designated hospitals. Magnet RNs reported more resources and held more positive beliefs about their hospital's organizational readiness for EBP. Nurses who possess advanced nursing degrees, certification, and who serve in leadership roles were favorable toward EBP. Younger RNs with fewer years in practice were more likely to have positive beliefs toward EBP and embedding it into the organizational culture. Findings mirror previous research where nurses internationally favor EBP yet struggle with similar barriers for implementation. Strategies to link this evidence to action can be taken at local and global levels. Locally, transformational nurse leaders within each hospital can share the vision for implementing EBP and embrace Magnet principles. At the system level, transformational nurse leaders can collectively allocate resources to create a system-wide online EBP education plan with EBP competencies and tool kit to increase RN exposure to EBP and standardize practice. Globally, promoting free and accessible EBP massive open online courses (MOOC) and sharing best practices online and at international forums such as Magnet conferences will help to lead, educate, and mentor nurses with strategies to systematically increase EBP uptake. © 2016 Sigma Theta Tau International.
Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT
Bowsher, James; Yan, Susu; Roper, Justin; Giles, William; Yin, Fang-Fang
2014-01-01
Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min scan times. PMID:24387490
Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang
2014-01-15
Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinholemore » SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min scan times.« less
Hydrodynamic Equations for Flocking Models without Velocity Alignment
NASA Astrophysics Data System (ADS)
Peruani, Fernando
2017-10-01
The spontaneous emergence of collective motion patterns is usually associated with the presence of a velocity alignment mechanism that mediates the interactions among the moving individuals. Despite of this widespread view, it has been shown recently that several flocking behaviors can emerge in the absence of velocity alignment and as a result of short-range, position-based, attractive forces that act inside a vision cone. Here, we derive the corresponding hydrodynamic equations of a microscopic position-based flocking model, reviewing and extending previous reported results. In particular, we show that three distinct macroscopic collective behaviors can be observed: i) the coarsening of aggregates with no orientational order, ii) the emergence of static, elongated nematic bands, and iii) the formation of moving, locally polar structures, which we call worms. The derived hydrodynamic equations indicate that active particles interacting via position-based interactions belong to a distinct class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems.
Localized scleroderma: a clinical study at a single center in Korea.
Noh, Jung Won; Kim, Jinseok; Kim, Jae-Wang
2013-08-01
Localized scleroderma (morphea) is a rare autoimmune disease limited to the skin, characterized by cutaneous fibrosing and obstructive vasculopathy. Localized scleroderma may invade into the subcutaneous fat layer and cause permanent functional disability. Because of its rarity, there have been few clinical surveys of patients with localized scleroderma in Korea. The aim of this study was to elucidate the clinical presentation, serological data, and clinical outcomes of localized scleroderma. This was a retrospective survey conducted by reviewing available medical records during a 7 year-period from 2004 to 2010 in a single medical center in Jeju Island, South Korea. In total 43 patients with localized scleroderma were included. Localized scleroderma occurred primarily in females (female to male ratio 2.6 : 1.0). Most patients were between 10 and 29 years of age and the mean age at diagnosis was 26.2 years. Plaque (51.2%) and linear morphea (37.2%) were most common. No case was associated with systemic scleroderma (systemic sclerosis). The most common site of plaque morphea was the trunk (47.8%). In the linear type, the most common site was head-neck (52.9%). Fluorescent antinuclear antibody was positive in 23.3% of all cases. Treatment included systemic corticosteroids, colchicine, anti-malarial agents, D-penicillamine or intralesional triamcinolone injection. Clinical improvement, including significant and partial response, was seen in only 62.8% of treated patients. Localized scleroderma is a chronic inflammatory condition confined to the skin. In order to exclude other conditions, thorough history taking, physical examination, serologic studies and histopathologic examinations should be conducted. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
NASA Astrophysics Data System (ADS)
Tornga, Shawn R.
The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as localization capability. Utilizing imaging information will show signal-to-noise gains over spectroscopic algorithms alone.
Cuthbert, B N; Schupp, H T; Bradley, M M; Birbaumer, N; Lang, P J
2000-03-01
Emotionally arousing picture stimuli evoked scalp-recorded event-related potentials. A late, slow positive voltage change was observed, which was significantly larger for affective than neutral stimuli. This positive shift began 200-300 ms after picture onset, reached its maximum amplitude approximately 1 s after picture onset, and was sustained for most of a 6-s picture presentation period. The positive increase was not related to local probability of content type, but was accentuated for pictures that prompted increased autonomic responses and reports of greater affective arousal (e.g. erotic or violent content). These results suggest that the late positive wave indicates a selective processing of emotional stimuli, reflecting the activation of motivational systems in the brain.
NASA Technical Reports Server (NTRS)
Krishnan, Hariharan
1993-01-01
This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude cannot be asymptotically stabilized using continuous feedback, but a discontinuous stabilizing feedback control strategy is constructed. If the uncontrolled principal axis is an axis of symmetry, the complete spacecraft dynamics cannot be stabilized. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but again a discontinuous feedback control strategy is constructed.
Vehicle Localization by LIDAR Point Correlation Improved by Change Detection
NASA Astrophysics Data System (ADS)
Schlichting, A.; Brenner, C.
2016-06-01
LiDAR sensors are proven sensors for accurate vehicle localization. Instead of detecting and matching features in the LiDAR data, we want to use the entire information provided by the scanners. As dynamic objects, like cars, pedestrians or even construction sites could lead to wrong localization results, we use a change detection algorithm to detect these objects in the reference data. If an object occurs in a certain number of measurements at the same position, we mark it and every containing point as static. In the next step, we merge the data of the single measurement epochs to one reference dataset, whereby we only use static points. Further, we also use a classification algorithm to detect trees. For the online localization of the vehicle, we use simulated data of a vertical aligned automotive LiDAR sensor. As we only want to use static objects in this case as well, we use a random forest classifier to detect dynamic scan points online. Since the automotive data is derived from the LiDAR Mobile Mapping System, we are able to use the labelled objects from the reference data generation step to create the training data and further to detect dynamic objects online. The localization then can be done by a point to image correlation method using only static objects. We achieved a localization standard deviation of about 5 cm (position) and 0.06° (heading), and were able to successfully localize the vehicle in about 93 % of the cases along a trajectory of 13 km in Hannover, Germany.