Sample records for local search method

  1. A Practical, Robust and Fast Method for Location Localization in Range-Based Systems.

    PubMed

    Huang, Shiping; Wu, Zhifeng; Misra, Anil

    2017-12-11

    Location localization technology is used in a number of industrial and civil applications. Real time location localization accuracy is highly dependent on the quality of the distance measurements and efficiency of solving the localization equations. In this paper, we provide a novel approach to solve the nonlinear localization equations efficiently and simultaneously eliminate the bad measurement data in range-based systems. A geometric intersection model was developed to narrow the target search area, where Newton's Method and the Direct Search Method are used to search for the unknown position. Not only does the geometric intersection model offer a small bounded search domain for Newton's Method and the Direct Search Method, but also it can self-correct bad measurement data. The Direct Search Method is useful for the coarse localization or small target search domain, while the Newton's Method can be used for accurate localization. For accurate localization, by utilizing the proposed Modified Newton's Method (MNM), challenges of avoiding the local extrema, singularities, and initial value choice are addressed. The applicability and robustness of the developed method has been demonstrated by experiments with an indoor system.

  2. Algebraic Algorithm Design and Local Search

    DTIC Science & Technology

    1996-12-01

    method for performing algorithm design that is more purely algebraic than that of KIDS. This method is then applied to local search. Local search is a...synthesis. Our approach was to follow KIDS in spirit, but to adopt a pure algebraic formalism, supported by Kestrel’s SPECWARE environment (79), that...design was developed that is more purely algebraic than that of KIDS. This method was then applied to local search. A general theory of local search was

  3. Multi-Objective Community Detection Based on Memetic Algorithm

    PubMed Central

    2015-01-01

    Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646

  4. Multi-objective community detection based on memetic algorithm.

    PubMed

    Wu, Peng; Pan, Li

    2015-01-01

    Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels.

  5. On the Local Convergence of Pattern Search

    NASA Technical Reports Server (NTRS)

    Dolan, Elizabeth D.; Lewis, Robert Michael; Torczon, Virginia; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    We examine the local convergence properties of pattern search methods, complementing the previously established global convergence properties for this class of algorithms. We show that the step-length control parameter which appears in the definition of pattern search algorithms provides a reliable asymptotic measure of first-order stationarity. This gives an analytical justification for a traditional stopping criterion for pattern search methods. Using this measure of first-order stationarity, we analyze the behavior of pattern search in the neighborhood of an isolated local minimizer. We show that a recognizable subsequence converges r-linearly to the minimizer.

  6. Hybridization of decomposition and local search for multiobjective optimization.

    PubMed

    Ke, Liangjun; Zhang, Qingfu; Battiti, Roberto

    2014-10-01

    Combining ideas from evolutionary algorithms, decomposition approaches, and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: memetic algorithm based on decomposition (MOMAD). It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MOMAD evolves three populations: 1) population P(L) for recording the current solution to each subproblem; 2) population P(P) for storing starting solutions for Pareto local search; and 3) an external population P(E) for maintaining all the nondominated solutions found so far during the search. A problem-specific single objective heuristic can be applied to these subproblems to initialize the three populations. At each generation, a Pareto local search method is first applied to search a neighborhood of each solution in P(P) to update P(L) and P(E). Then a single objective local search is applied to each perturbed solution in P(L) for improving P(L) and P(E), and reinitializing P(P). The procedure is repeated until a stopping condition is met. MOMAD provides a generic hybrid multiobjective algorithmic framework in which problem specific knowledge, well developed single objective local search and heuristics and Pareto local search methods can be hybridized. It is a population based iterative method and thus an anytime algorithm. Extensive experiments have been conducted in this paper to study MOMAD and compare it with some other state-of-the-art algorithms on the multiobjective traveling salesman problem and the multiobjective knapsack problem. The experimental results show that our proposed algorithm outperforms or performs similarly to the best so far heuristics on these two problems.

  7. A hierarchical transition state search algorithm

    NASA Astrophysics Data System (ADS)

    del Campo, Jorge M.; Köster, Andreas M.

    2008-07-01

    A hierarchical transition state search algorithm is developed and its implementation in the density functional theory program deMon2k is described. This search algorithm combines the double ended saddle interpolation method with local uphill trust region optimization. A new formalism for the incorporation of the distance constrain in the saddle interpolation method is derived. The similarities between the constrained optimizations in the local trust region method and the saddle interpolation are highlighted. The saddle interpolation and local uphill trust region optimizations are validated on a test set of 28 representative reactions. The hierarchical transition state search algorithm is applied to an intramolecular Diels-Alder reaction with several internal rotors, which makes automatic transition state search rather challenging. The obtained reaction mechanism is discussed in the context of the experimentally observed product distribution.

  8. Search-free license plate localization based on saliency and local variance estimation

    NASA Astrophysics Data System (ADS)

    Safaei, Amin; Tang, H. L.; Sanei, S.

    2015-02-01

    In recent years, the performance and accuracy of automatic license plate number recognition (ALPR) systems have greatly improved, however the increasing number of applications for such systems have made ALPR research more challenging than ever. The inherent computational complexity of search dependent algorithms remains a major problem for current ALPR systems. This paper proposes a novel search-free method of localization based on the estimation of saliency and local variance. Gabor functions are then used to validate the choice of candidate license plate. The algorithm was applied to three image datasets with different levels of complexity and the results compared with a number of benchmark methods, particularly in terms of speed. The proposed method outperforms the state of the art methods and can be used for real time applications.

  9. Adaptive rood pattern search for fast block-matching motion estimation.

    PubMed

    Nie, Yao; Ma, Kai-Kuang

    2002-01-01

    In this paper, we propose a novel and simple fast block-matching algorithm (BMA), called adaptive rood pattern search (ARPS), which consists of two sequential search stages: 1) initial search and 2) refined local search. For each macroblock (MB), the initial search is performed only once at the beginning in order to find a good starting point for the follow-up refined local search. By doing so, unnecessary intermediate search and the risk of being trapped into local minimum matching error points could be greatly reduced in long search case. For the initial search stage, an adaptive rood pattern (ARP) is proposed, and the ARP's size is dynamically determined for each MB, based on the available motion vectors (MVs) of the neighboring MBs. In the refined local search stage, a unit-size rood pattern (URP) is exploited repeatedly, and unrestrictedly, until the final MV is found. To further speed up the search, zero-motion prejudgment (ZMP) is incorporated in our method, which is particularly beneficial to those video sequences containing small motion contents. Extensive experiments conducted based on the MPEG-4 Verification Model (VM) encoding platform show that the search speed of our proposed ARPS-ZMP is about two to three times faster than that of the diamond search (DS), and our method even achieves higher peak signal-to-noise ratio (PSNR) particularly for those video sequences containing large and/or complex motion contents.

  10. Robust hashing with local models for approximate similarity search.

    PubMed

    Song, Jingkuan; Yang, Yi; Li, Xuelong; Huang, Zi; Yang, Yang

    2014-07-01

    Similarity search plays an important role in many applications involving high-dimensional data. Due to the known dimensionality curse, the performance of most existing indexing structures degrades quickly as the feature dimensionality increases. Hashing methods, such as locality sensitive hashing (LSH) and its variants, have been widely used to achieve fast approximate similarity search by trading search quality for efficiency. However, most existing hashing methods make use of randomized algorithms to generate hash codes without considering the specific structural information in the data. In this paper, we propose a novel hashing method, namely, robust hashing with local models (RHLM), which learns a set of robust hash functions to map the high-dimensional data points into binary hash codes by effectively utilizing local structural information. In RHLM, for each individual data point in the training dataset, a local hashing model is learned and used to predict the hash codes of its neighboring data points. The local models from all the data points are globally aligned so that an optimal hash code can be assigned to each data point. After obtaining the hash codes of all the training data points, we design a robust method by employing l2,1 -norm minimization on the loss function to learn effective hash functions, which are then used to map each database point into its hash code. Given a query data point, the search process first maps it into the query hash code by the hash functions and then explores the buckets, which have similar hash codes to the query hash code. Extensive experimental results conducted on real-life datasets show that the proposed RHLM outperforms the state-of-the-art methods in terms of search quality and efficiency.

  11. Localized saddle-point search and application to temperature-accelerated dynamics

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Callahan, Nathan B.; Amar, Jacques G.

    2013-03-01

    We present a method for speeding up temperature-accelerated dynamics (TAD) simulations by carrying out a localized saddle-point (LSAD) search. In this method, instead of using the entire system to determine the energy barriers of activated processes, the calculation is localized by only including a small chunk of atoms around the atoms directly involved in the transition. Using this method, we have obtained N-independent scaling for the computational cost of the saddle-point search as a function of system size N. The error arising from localization is analyzed using a variety of model systems, including a variety of activated processes on Ag(100) and Cu(100) surfaces, as well as multiatom moves in Cu radiation damage and metal heteroepitaxial growth. Our results show significantly improved performance of TAD with the LSAD method, for the case of Ag/Ag(100) annealing and Cu/Cu(100) growth, while maintaining a negligibly small error in energy barriers.

  12. An evaluation of methods for estimating the number of local optima in combinatorial optimization problems.

    PubMed

    Hernando, Leticia; Mendiburu, Alexander; Lozano, Jose A

    2013-01-01

    The solution of many combinatorial optimization problems is carried out by metaheuristics, which generally make use of local search algorithms. These algorithms use some kind of neighborhood structure over the search space. The performance of the algorithms strongly depends on the properties that the neighborhood imposes on the search space. One of these properties is the number of local optima. Given an instance of a combinatorial optimization problem and a neighborhood, the estimation of the number of local optima can help not only to measure the complexity of the instance, but also to choose the most convenient neighborhood to solve it. In this paper we review and evaluate several methods to estimate the number of local optima in combinatorial optimization problems. The methods reviewed not only come from the combinatorial optimization literature, but also from the statistical literature. A thorough evaluation in synthetic as well as real problems is given. We conclude by providing recommendations of methods for several scenarios.

  13. Evolutionary Local Search of Fuzzy Rules through a novel Neuro-Fuzzy encoding method.

    PubMed

    Carrascal, A; Manrique, D; Ríos, J; Rossi, C

    2003-01-01

    This paper proposes a new approach for constructing fuzzy knowledge bases using evolutionary methods. We have designed a genetic algorithm that automatically builds neuro-fuzzy architectures based on a new indirect encoding method. The neuro-fuzzy architecture represents the fuzzy knowledge base that solves a given problem; the search for this architecture takes advantage of a local search procedure that improves the chromosomes at each generation. Experiments conducted both on artificially generated and real world problems confirm the effectiveness of the proposed approach.

  14. Beam angle optimization for intensity-modulated radiation therapy using a guided pattern search method

    NASA Astrophysics Data System (ADS)

    Rocha, Humberto; Dias, Joana M.; Ferreira, Brígida C.; Lopes, Maria C.

    2013-05-01

    Generally, the inverse planning of radiation therapy consists mainly of the fluence optimization. The beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) consists of selecting appropriate radiation incidence directions and may influence the quality of the IMRT plans, both to enhance better organ sparing and to improve tumor coverage. However, in clinical practice, most of the time, beam directions continue to be manually selected by the treatment planner without objective and rigorous criteria. The goal of this paper is to introduce a novel approach that uses beam’s-eye-view dose ray tracing metrics within a pattern search method framework in the optimization of the highly non-convex BAO problem. Pattern search methods are derivative-free optimization methods that require a few function evaluations to progress and converge and have the ability to better avoid local entrapment. The pattern search method framework is composed of a search step and a poll step at each iteration. The poll step performs a local search in a mesh neighborhood and ensures the convergence to a local minimizer or stationary point. The search step provides the flexibility for a global search since it allows searches away from the neighborhood of the current iterate. Beam’s-eye-view dose metrics assign a score to each radiation beam direction and can be used within the pattern search framework furnishing a priori knowledge of the problem so that directions with larger dosimetric scores are tested first. A set of clinical cases of head-and-neck tumors treated at the Portuguese Institute of Oncology of Coimbra is used to discuss the potential of this approach in the optimization of the BAO problem.

  15. A Memetic Algorithm for Global Optimization of Multimodal Nonseparable Problems.

    PubMed

    Zhang, Geng; Li, Yangmin

    2016-06-01

    It is a big challenging issue of avoiding falling into local optimum especially when facing high-dimensional nonseparable problems where the interdependencies among vector elements are unknown. In order to improve the performance of optimization algorithm, a novel memetic algorithm (MA) called cooperative particle swarm optimizer-modified harmony search (CPSO-MHS) is proposed in this paper, where the CPSO is used for local search and the MHS for global search. The CPSO, as a local search method, uses 1-D swarm to search each dimension separately and thus converges fast. Besides, it can obtain global optimum elements according to our experimental results and analyses. MHS implements the global search by recombining different vector elements and extracting global optimum elements. The interaction between local search and global search creates a set of local search zones, where global optimum elements reside within the search space. The CPSO-MHS algorithm is tested and compared with seven other optimization algorithms on a set of 28 standard benchmarks. Meanwhile, some MAs are also compared according to the results derived directly from their corresponding references. The experimental results demonstrate a good performance of the proposed CPSO-MHS algorithm in solving multimodal nonseparable problems.

  16. A new distributed systems scheduling algorithm: a swarm intelligence approach

    NASA Astrophysics Data System (ADS)

    Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi

    2011-12-01

    The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.

  17. Improved Genetic Algorithm Based on the Cooperation of Elite and Inverse-elite

    NASA Astrophysics Data System (ADS)

    Kanakubo, Masaaki; Hagiwara, Masafumi

    In this paper, we propose an improved genetic algorithm based on the combination of Bee system and Inverse-elitism, both are effective strategies for the improvement of GA. In the Bee system, in the beginning, each chromosome tries to find good solution individually as global search. When some chromosome is regarded as superior one, the other chromosomes try to find solution around there. However, since chromosomes for global search are generated randomly, Bee system lacks global search ability. On the other hand, in the Inverse-elitism, an inverse-elite whose gene values are reversed from the corresponding elite is produced. This strategy greatly contributes to diversification of chromosomes, but it lacks local search ability. In the proposed method, the Inverse-elitism with Pseudo-simplex method is employed for global search of Bee system in order to strengthen global search ability. In addition, it also has strong local search ability. The proposed method has synergistic effects of the three strategies. We confirmed validity and superior performance of the proposed method by computer simulations.

  18. D-score: a search engine independent MD-score.

    PubMed

    Vaudel, Marc; Breiter, Daniela; Beck, Florian; Rahnenführer, Jörg; Martens, Lennart; Zahedi, René P

    2013-03-01

    While peptides carrying PTMs are routinely identified in gel-free MS, the localization of the PTMs onto the peptide sequences remains challenging. Search engine scores of secondary peptide matches have been used in different approaches in order to infer the quality of site inference, by penalizing the localization whenever the search engine similarly scored two candidate peptides with different site assignments. In the present work, we show how the estimation of posterior error probabilities for peptide candidates allows the estimation of a PTM score called the D-score, for multiple search engine studies. We demonstrate the applicability of this score to three popular search engines: Mascot, OMSSA, and X!Tandem, and evaluate its performance using an already published high resolution data set of synthetic phosphopeptides. For those peptides with phosphorylation site inference uncertainty, the number of spectrum matches with correctly localized phosphorylation increased by up to 25.7% when compared to using Mascot alone, although the actual increase depended on the fragmentation method used. Since this method relies only on search engine scores, it can be readily applied to the scoring of the localization of virtually any modification at no additional experimental or in silico cost. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Multi-Start Evolutionary Local Search for the Two-Echelon Location Routing Problem

    NASA Astrophysics Data System (ADS)

    Nguyen, Viet-Phuong; Prins, Christian; Prodhon, Caroline

    This paper presents a new hybrid metaheuristic between a greedy randomized adaptive search procedure (GRASP) and an evolutionary/iterated local search (ELS/ILS), using Tabu list to solve the two-echelon location routing problem (LRP-2E). The GRASP uses in turn three constructive heuristics followed by local search to generate the initial solutions. From a solution of GRASP, an intensification strategy is carried out by a dynamic alternation between ELS and ILS. In this phase, each child is obtained by mutation and evaluated through a splitting procedure of giant tour followed by a local search. The tabu list, defined by two characteristics of solution (total cost and number of trips), is used to avoid searching a space already explored. The results show that our metaheuristic clearly outperforms all previously published methods on LRP-2E benchmark instances. Furthermore, it is competitive with the best meta-heuristic published for the single-echelon LRP.

  20. On computing the global time-optimal motions of robotic manipulators in the presence of obstacles

    NASA Technical Reports Server (NTRS)

    Shiller, Zvi; Dubowsky, Steven

    1991-01-01

    A method for computing the time-optimal motions of robotic manipulators is presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem is reduced to a search for the time-optimal path in the n-dimensional position space. A small set of near-optimal paths is first efficiently selected from a grid, using a branch and bound search and a series of lower bound estimates on the traveling time along a given path. These paths are further optimized with a local path optimization to yield the global optimal solution. Obstacles are considered by eliminating the collision points from the tessellated space and by adding a penalty function to the motion time in the local optimization. The computational efficiency of the method stems from the reduced dimensionality of the searched spaced and from combining the grid search with a local optimization. The method is demonstrated in several examples for two- and six-degree-of-freedom manipulators with obstacles.

  1. Local motion compensation in image sequences degraded by atmospheric turbulence: a comparative analysis of optical flow vs. block matching methods

    NASA Astrophysics Data System (ADS)

    Huebner, Claudia S.

    2016-10-01

    As a consequence of fluctuations in the index of refraction of the air, atmospheric turbulence causes scintillation, spatial and temporal blurring as well as global and local image motion creating geometric distortions. To mitigate these effects many different methods have been proposed. Global as well as local motion compensation in some form or other constitutes an integral part of many software-based approaches. For the estimation of motion vectors between consecutive frames simple methods like block matching are preferable to more complex algorithms like optical flow, at least when challenged with near real-time requirements. However, the processing power of commercially available computers continues to increase rapidly and the more powerful optical flow methods have the potential to outperform standard block matching methods. Therefore, in this paper three standard optical flow algorithms, namely Horn-Schunck (HS), Lucas-Kanade (LK) and Farnebäck (FB), are tested for their suitability to be employed for local motion compensation as part of a turbulence mitigation system. Their qualitative performance is evaluated and compared with that of three standard block matching methods, namely Exhaustive Search (ES), Adaptive Rood Pattern Search (ARPS) and Correlation based Search (CS).

  2. Evolutionary-inspired probabilistic search for enhancing sampling of local minima in the protein energy surface

    PubMed Central

    2012-01-01

    Background Despite computational challenges, elucidating conformations that a protein system assumes under physiologic conditions for the purpose of biological activity is a central problem in computational structural biology. While these conformations are associated with low energies in the energy surface that underlies the protein conformational space, few existing conformational search algorithms focus on explicitly sampling low-energy local minima in the protein energy surface. Methods This work proposes a novel probabilistic search framework, PLOW, that explicitly samples low-energy local minima in the protein energy surface. The framework combines algorithmic ingredients from evolutionary computation and computational structural biology to effectively explore the subspace of local minima. A greedy local search maps a conformation sampled in conformational space to a nearby local minimum. A perturbation move jumps out of a local minimum to obtain a new starting conformation for the greedy local search. The process repeats in an iterative fashion, resulting in a trajectory-based exploration of the subspace of local minima. Results and conclusions The analysis of PLOW's performance shows that, by navigating only the subspace of local minima, PLOW is able to sample conformations near a protein's native structure, either more effectively or as well as state-of-the-art methods that focus on reproducing the native structure for a protein system. Analysis of the actual subspace of local minima shows that PLOW samples this subspace more effectively that a naive sampling approach. Additional theoretical analysis reveals that the perturbation function employed by PLOW is key to its ability to sample a diverse set of low-energy conformations. This analysis also suggests directions for further research and novel applications for the proposed framework. PMID:22759582

  3. Localization Versus Abstraction: A Comparison of Two Search Reduction Techniques

    NASA Technical Reports Server (NTRS)

    Lansky, Amy L.

    1992-01-01

    There has been much recent work on the use of abstraction to improve planning behavior and cost. Another technique for dealing with the inherently explosive cost of planning is localization. This paper compares the relative strengths of localization and abstraction in reducing planning search cost. In particular, localization is shown to subsume abstraction. Localization techniques can model the various methods of abstraction that have been used, but also provide a much more flexible framework, with a broader range of benefits.

  4. Analytic Guided-Search Model of Human Performance Accuracy in Target- Localization Search Tasks

    NASA Technical Reports Server (NTRS)

    Eckstein, Miguel P.; Beutter, Brent R.; Stone, Leland S.

    2000-01-01

    Current models of human visual search have extended the traditional serial/parallel search dichotomy. Two successful models for predicting human visual search are the Guided Search model and the Signal Detection Theory model. Although these models are inherently different, it has been difficult to compare them because the Guided Search model is designed to predict response time, while Signal Detection Theory models are designed to predict performance accuracy. Moreover, current implementations of the Guided Search model require the use of Monte-Carlo simulations, a method that makes fitting the model's performance quantitatively to human data more computationally time consuming. We have extended the Guided Search model to predict human accuracy in target-localization search tasks. We have also developed analytic expressions that simplify simulation of the model to the evaluation of a small set of equations using only three free parameters. This new implementation and extension of the Guided Search model will enable direct quantitative comparisons with human performance in target-localization search experiments and with the predictions of Signal Detection Theory and other search accuracy models.

  5. Shape regularized active contour based on dynamic programming for anatomical structure segmentation

    NASA Astrophysics Data System (ADS)

    Yu, Tianli; Luo, Jiebo; Singhal, Amit; Ahuja, Narendra

    2005-04-01

    We present a method to incorporate nonlinear shape prior constraints into segmenting different anatomical structures in medical images. Kernel space density estimation (KSDE) is used to derive the nonlinear shape statistics and enable building a single model for a class of objects with nonlinearly varying shapes. The object contour is coerced by image-based energy into the correct shape sub-distribution (e.g., left or right lung), without the need for model selection. In contrast to an earlier algorithm that uses a local gradient-descent search (susceptible to local minima), we propose an algorithm that iterates between dynamic programming (DP) and shape regularization. DP is capable of finding an optimal contour in the search space that maximizes a cost function related to the difference between the interior and exterior of the object. To enforce the nonlinear shape prior, we propose two shape regularization methods, global and local regularization. Global regularization is applied after each DP search to move the entire shape vector in the shape space in a gradient descent fashion to the position of probable shapes learned from training. The regularized shape is used as the starting shape for the next iteration. Local regularization is accomplished through modifying the search space of the DP. The modified search space only allows a certain amount of deformation of the local shape from the starting shape. Both regularization methods ensure the consistency between the resulted shape with the training shapes, while still preserving DP"s ability to search over a large range and avoid local minima. Our algorithm was applied to two different segmentation tasks for radiographic images: lung field and clavicle segmentation. Both applications have shown that our method is effective and versatile in segmenting various anatomical structures under prior shape constraints; and it is robust to noise and local minima caused by clutter (e.g., blood vessels) and other similar structures (e.g., ribs). We believe that the proposed algorithm represents a major step in the paradigm shift to object segmentation under nonlinear shape constraints.

  6. Initialization and Restart in Stochastic Local Search: Computing a Most Probable Explanation in Bayesian Networks

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan

    2010-01-01

    For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.

  7. A Practical Guide to Calibration of a GSSHA Hydrologic Model Using ERDC Automated Model Calibration Software - Efficient Local Search

    DTIC Science & Technology

    2012-02-01

    use the ERDC software implementation of the secant LM method that accommodates the PEST model independent interface to calibrate a GSSHA...how the method works. We will also demonstrate how our LM/SLM implementation compares with its counterparts as implemented in the popular PEST ...function values and total model calls for local search to converge) associated with Examples 1 and 3 using the PEST LM/SLM implementations

  8. Reliable Transition State Searches Integrated with the Growing String Method.

    PubMed

    Zimmerman, Paul

    2013-07-09

    The growing string method (GSM) is highly useful for locating reaction paths connecting two molecular intermediates. GSM has often been used in a two-step procedure to locate exact transition states (TS), where GSM creates a quality initial structure for a local TS search. This procedure and others like it, however, do not always converge to the desired transition state because the local search is sensitive to the quality of the initial guess. This article describes an integrated technique for simultaneous reaction path and exact transition state search. This is achieved by implementing an eigenvector following optimization algorithm in internal coordinates with Hessian update techniques. After partial convergence of the string, an exact saddle point search begins under the constraint that the maximized eigenmode of the TS node Hessian has significant overlap with the string tangent near the TS. Subsequent optimization maintains connectivity of the string to the TS as well as locks in the TS direction, all but eliminating the possibility that the local search leads to the wrong TS. To verify the robustness of this approach, reaction paths and TSs are found for a benchmark set of more than 100 elementary reactions.

  9. A bio-inspired swarm robot coordination algorithm for multiple target searching

    NASA Astrophysics Data System (ADS)

    Meng, Yan; Gan, Jing; Desai, Sachi

    2008-04-01

    The coordination of a multi-robot system searching for multi targets is challenging under dynamic environment since the multi-robot system demands group coherence (agents need to have the incentive to work together faithfully) and group competence (agents need to know how to work together well). In our previous proposed bio-inspired coordination method, Local Interaction through Virtual Stigmergy (LIVS), one problem is the considerable randomness of the robot movement during coordination, which may lead to more power consumption and longer searching time. To address these issues, an adaptive LIVS (ALIVS) method is proposed in this paper, which not only considers the travel cost and target weight, but also predicting the target/robot ratio and potential robot redundancy with respect to the detected targets. Furthermore, a dynamic weight adjustment is also applied to improve the searching performance. This new method a truly distributed method where each robot makes its own decision based on its local sensing information and the information from its neighbors. Basically, each robot only communicates with its neighbors through a virtual stigmergy mechanism and makes its local movement decision based on a Particle Swarm Optimization (PSO) algorithm. The proposed ALIVS algorithm has been implemented on the embodied robot simulator, Player/Stage, in a searching target. The simulation results demonstrate the efficiency and robustness in a power-efficient manner with the real-world constraints.

  10. Taboo Search: An Approach to the Multiple Minima Problem

    NASA Astrophysics Data System (ADS)

    Cvijovic, Djurdje; Klinowski, Jacek

    1995-02-01

    Described here is a method, based on Glover's taboo search for discrete functions, of solving the multiple minima problem for continuous functions. As demonstrated by model calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimization, this procedure is generally applicable, easy to implement, derivative-free, and conceptually simple.

  11. A human-machine cooperation route planning method based on improved A* algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengsheng; Cai, Chao

    2011-12-01

    To avoid the limitation of common route planning method to blindly pursue higher Machine Intelligence and autoimmunization, this paper presents a human-machine cooperation route planning method. The proposed method includes a new A* path searing strategy based on dynamic heuristic searching and a human cooperated decision strategy to prune searching area. It can overcome the shortage of A* algorithm to fall into a local long term searching. Experiments showed that this method can quickly plan a feasible route to meet the macro-policy thinking.

  12. Local weather is associated with rates of online searches for musculoskeletal pain symptoms.

    PubMed

    Telfer, Scott; Obradovich, Nick

    2017-01-01

    Weather conditions are commonly believed to influence musculoskeletal pain, however the evidence for this is mixed. This study aimed to examine the relationship between local meteorological conditions and online search trends for terms related to knee pain, hip pain, and arthritis. Five years of relative online search volumes for these terms were obtained for the 50 most populous cities in the contiguous United States, along with corresponding local weather data for temperature, relative humidity, barometric pressure, and precipitation. Methods from the climate econometrics literature were used to assess the casual impact of these meteorological variables on the relative volumes of searches for pain. For temperatures between -5°C and 30°C, search volumes for hip pain increased by 12 index points, and knee pain increased by 18 index points. Precipitation had a negative effect on search volumes for these terms. At temperatures >30°C, search volumes for arthritis related pain decreased by 7 index points. These patterns were not seen for pain searches unrelated to the musculoskeletal system. In summary, selected local weather conditions are significantly associated with online search volumes for specific musculoskeletal pain symptoms. We believe the predominate driver for this to be the relative changes in physical activity levels associated with meteorological conditions.

  13. Genetic Algorithms and Local Search

    NASA Technical Reports Server (NTRS)

    Whitley, Darrell

    1996-01-01

    The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.

  14. Least Median of Squares Filtering of Locally Optimal Point Matches for Compressible Flow Image Registration

    PubMed Central

    Castillo, Edward; Castillo, Richard; White, Benjamin; Rojo, Javier; Guerrero, Thomas

    2012-01-01

    Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. PMID:22797602

  15. Methods and Results of a Search for Gravitational Waves Associated with Gamma-Ray Bursts Using the GEO 600, LIGO, and Virgo Detectors

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Blackburn, Lindy L.; hide

    2013-01-01

    In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz-1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties such as the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well-localized, due to the corrections required for the difference in arrival time between detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of O(10) for GBM events. Furthermore, we demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected by the GBM, if a high-frequency GW signal is observed in coincidence. We use the linear search grid method in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had not been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO600 while the detector was using squeezed-light states to improve its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW signals, either with any individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, assuming a fixed GW emission energy of 10(exp -2)Stellar Mass sq c, with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will enable rapid searches for GWs associated with Fermi GBM events in the Advanced detector era.

  16. GIRAF: a method for fast search and flexible alignment of ligand binding interfaces in proteins at atomic resolution

    PubMed Central

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Comparison and classification of protein structures are fundamental means to understand protein functions. Due to the computational difficulty and the ever-increasing amount of structural data, however, it is in general not feasible to perform exhaustive all-against-all structure comparisons necessary for comprehensive classifications. To efficiently handle such situations, we have previously proposed a method, now called GIRAF. We herein describe further improvements in the GIRAF protein structure search and alignment method. The GIRAF method achieves extremely efficient search of similar structures of ligand binding sites of proteins by exploiting database indexing of structural features of local coordinate frames. In addition, it produces refined atom-wise alignments by iterative applications of the Hungarian method to the bipartite graph defined for a pair of superimposed structures. By combining the refined alignments based on different local coordinate frames, it is made possible to align structures involving domain movements. We provide detailed accounts for the database design, the search and alignment algorithms as well as some benchmark results. PMID:27493524

  17. Iterative repair for scheduling and rescheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Deale, Michael

    1991-01-01

    An iterative repair search method is described called constraint based simulated annealing. Simulated annealing is a hill climbing search technique capable of escaping local minima. The utility of the constraint based framework is shown by comparing search performance with and without the constraint framework on a suite of randomly generated problems. Results are also shown of applying the technique to the NASA Space Shuttle ground processing problem. These experiments show that the search methods scales to complex, real world problems and reflects interesting anytime behavior.

  18. Ant Colony Optimization With Local Search for Dynamic Traveling Salesman Problems.

    PubMed

    Mavrovouniotis, Michalis; Muller, Felipe M; Yang, Shengxiang

    2016-06-13

    For a dynamic traveling salesman problem (DTSP), the weights (or traveling times) between two cities (or nodes) may be subject to changes. Ant colony optimization (ACO) algorithms have proved to be powerful methods to tackle such problems due to their adaptation capabilities. It has been shown that the integration of local search operators can significantly improve the performance of ACO. In this paper, a memetic ACO algorithm, where a local search operator (called unstring and string) is integrated into ACO, is proposed to address DTSPs. The best solution from ACO is passed to the local search operator, which removes and inserts cities in such a way that improves the solution quality. The proposed memetic ACO algorithm is designed to address both symmetric and asymmetric DTSPs. The experimental results show the efficiency of the proposed memetic algorithm for addressing DTSPs in comparison with other state-of-the-art algorithms.

  19. Exploration Opportunity Search of Near-earth Objects Based on Analytical Gradients

    NASA Astrophysics Data System (ADS)

    Ren, Yuan; Cui, Ping-Yuan; Luan, En-Jie

    2008-07-01

    The problem of search of opportunity for the exploration of near-earth minor objects is investigated. For rendezvous missions, the analytical gradients of the performance index with respect to the free parameters are derived using the variational calculus and the theory of state-transition matrix. After generating randomly some initial guesses in the search space, the performance index is optimized, guided by the analytical gradients, leading to the local minimum points representing the potential launch opportunities. This method not only keeps the global-search property of the traditional method, but also avoids the blindness in the latter, thereby increasing greatly the computing speed. Furthermore, with this method, the searching precision could be controlled effectively.

  20. Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Augustus, H.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Croce, R. P.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fazi, D.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Ha, J.; Hall, E. D.; Hamilton, W.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Holt, K.; Hopkins, P.; Horrom, T.; Hoske, D.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Ingram, D. R.; Inta, R.; Islas, G.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, S.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, D. Nanda; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lam, P. K.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, P. J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lopez, E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Ma, Y.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N. M.; Mansell, G.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, A.; Meyer, M. S.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Omar, S.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Recchia, S.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Reula, O.; Rhoades, E.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S. B.; Rogstad, S.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sankar, S.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schilman, M.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, J.; Tarabrin, S. P.; Taylor, R.; Tellez, G.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Trias, M.; Tse, M.; Tshilumba, D.; Tuennermann, H.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wolovick, N.; Worden, J.; Wu, Y.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-06-01

    In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz-1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties, for example the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well localized, due to the corrections required for the difference in arrival time between detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of O(10) for GBM events. Furthermore, we demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected by the GBM, if a high-frequency GW signal is observed in coincidence. We use the method of the linear grid in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had not been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO 600 while the detector was using squeezed-light states to improve its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW signals, either with any individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, under an assumption of a fixed GW emission energy of 10-2M⊙c2, with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will enable rapid searches for GWs associated with Fermi GBM events once the advanced LIGO and Virgo detectors begin operation.

  1. A weighted sampling algorithm for the design of RNA sequences with targeted secondary structure and nucleotide distribution.

    PubMed

    Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme

    2013-07-01

    The design of RNA sequences folding into predefined secondary structures is a milestone for many synthetic biology and gene therapy studies. Most of the current software uses similar local search strategies (i.e. a random seed is progressively adapted to acquire the desired folding properties) and more importantly do not allow the user to control explicitly the nucleotide distribution such as the GC-content in their sequences. However, the latter is an important criterion for large-scale applications as it could presumably be used to design sequences with better transcription rates and/or structural plasticity. In this article, we introduce IncaRNAtion, a novel algorithm to design RNA sequences folding into target secondary structures with a predefined nucleotide distribution. IncaRNAtion uses a global sampling approach and weighted sampling techniques. We show that our approach is fast (i.e. running time comparable or better than local search methods), seedless (we remove the bias of the seed in local search heuristics) and successfully generates high-quality sequences (i.e. thermodynamically stable) for any GC-content. To complete this study, we develop a hybrid method combining our global sampling approach with local search strategies. Remarkably, our glocal methodology overcomes both local and global approaches for sampling sequences with a specific GC-content and target structure. IncaRNAtion is available at csb.cs.mcgill.ca/incarnation/. Supplementary data are available at Bioinformatics online.

  2. Parameterizing sorption isotherms using a hybrid global-local fitting procedure.

    PubMed

    Matott, L Shawn; Singh, Anshuman; Rabideau, Alan J

    2017-05-01

    Predictive modeling of the transport and remediation of groundwater contaminants requires an accurate description of the sorption process, which is usually provided by fitting an isotherm model to site-specific laboratory data. Commonly used calibration procedures, listed in order of increasing sophistication, include: trial-and-error, linearization, non-linear regression, global search, and hybrid global-local search. Given the considerable variability in fitting procedures applied in published isotherm studies, we investigated the importance of algorithm selection through a series of numerical experiments involving 13 previously published sorption datasets. These datasets, considered representative of state-of-the-art for isotherm experiments, had been previously analyzed using trial-and-error, linearization, or non-linear regression methods. The isotherm expressions were re-fit using a 3-stage hybrid global-local search procedure (i.e. global search using particle swarm optimization followed by Powell's derivative free local search method and Gauss-Marquardt-Levenberg non-linear regression). The re-fitted expressions were then compared to previously published fits in terms of the optimized weighted sum of squared residuals (WSSR) fitness function, the final estimated parameters, and the influence on contaminant transport predictions - where easily computed concentration-dependent contaminant retardation factors served as a surrogate measure of likely transport behavior. Results suggest that many of the previously published calibrated isotherm parameter sets were local minima. In some cases, the updated hybrid global-local search yielded order-of-magnitude reductions in the fitness function. In particular, of the candidate isotherms, the Polanyi-type models were most likely to benefit from the use of the hybrid fitting procedure. In some cases, improvements in fitness function were associated with slight (<10%) changes in parameter values, but in other cases significant (>50%) changes in parameter values were noted. Despite these differences, the influence of isotherm misspecification on contaminant transport predictions was quite variable and difficult to predict from inspection of the isotherms. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Inferring Mechanisms of Compensation from E-MAP and SGA Data Using Local Search Algorithms for Max Cut

    NASA Astrophysics Data System (ADS)

    Leiserson, Mark D. M.; Tatar, Diana; Cowen, Lenore J.; Hescott, Benjamin J.

    A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome.

  4. Inferring mechanisms of compensation from E-MAP and SGA data using local search algorithms for max cut.

    PubMed

    Leiserson, Mark D M; Tatar, Diana; Cowen, Lenore J; Hescott, Benjamin J

    2011-11-01

    A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods, which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome.

  5. A novel directional asymmetric sampling search algorithm for fast block-matching motion estimation

    NASA Astrophysics Data System (ADS)

    Li, Yue-e.; Wang, Qiang

    2011-11-01

    This paper proposes a novel directional asymmetric sampling search (DASS) algorithm for video compression. Making full use of the error information (block distortions) of the search patterns, eight different direction search patterns are designed for various situations. The strategy of local sampling search is employed for the search of big-motion vector. In order to further speed up the search, early termination strategy is adopted in procedure of DASS. Compared to conventional fast algorithms, the proposed method has the most satisfactory PSNR values for all test sequences.

  6. Adaptively Reevaluated Bayesian Localization (ARBL). A Novel Technique for Radiological Source Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; Robinson, Sean M.; Anderson, Kevin K.

    2015-01-19

    Here we present a novel technique for the localization of radiological sources in urban or rural environments from an aerial platform. The technique is based on a Bayesian approach to localization, in which measured count rates in a time series are compared with predicted count rates from a series of pre-calculated test sources to define likelihood. Furthermore, this technique is expanded by using a localized treatment with a limited field of view (FOV), coupled with a likelihood ratio reevaluation, allowing for real-time computation on commodity hardware for arbitrarily complex detector models and terrain. In particular, detectors with inherent asymmetry ofmore » response (such as those employing internal collimation or self-shielding for enhanced directional awareness) are leveraged by this approach to provide improved localization. Our results from the localization technique are shown for simulated flight data using monolithic as well as directionally-aware detector models, and the capability of the methodology to locate radioisotopes is estimated for several test cases. This localization technique is shown to facilitate urban search by allowing quick and adaptive estimates of source location, in many cases from a single flyover near a source. In particular, this method represents a significant advancement from earlier methods like full-field Bayesian likelihood, which is not generally fast enough to allow for broad-field search in real time, and highest-net-counts estimation, which has a localization error that depends strongly on flight path and cannot generally operate without exhaustive search« less

  7. Scene analysis for effective visual search in rough three-dimensional-modeling scenes

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Hu, Xiaopeng

    2016-11-01

    Visual search is a fundamental technology in the computer vision community. It is difficult to find an object in complex scenes when there exist similar distracters in the background. We propose a target search method in rough three-dimensional-modeling scenes based on a vision salience theory and camera imaging model. We give the definition of salience of objects (or features) and explain the way that salience measurements of objects are calculated. Also, we present one type of search path that guides to the target through salience objects. Along the search path, when the previous objects are localized, the search region of each subsequent object decreases, which is calculated through imaging model and an optimization method. The experimental results indicate that the proposed method is capable of resolving the ambiguities resulting from distracters containing similar visual features with the target, leading to an improvement of search speed by over 50%.

  8. Recent developments in imaging system assessment methodology, FROC analysis and the search model.

    PubMed

    Chakraborty, Dev P

    2011-08-21

    A frequent problem in imaging is assessing whether a new imaging system is an improvement over an existing standard. Observer performance methods, in particular the receiver operating characteristic (ROC) paradigm, are widely used in this context. In ROC analysis lesion location information is not used and consequently scoring ambiguities can arise in tasks, such as nodule detection, involving finding localized lesions. This paper reviews progress in the free-response ROC (FROC) paradigm in which the observer marks and rates suspicious regions and the location information is used to determine whether lesions were correctly localized. Reviewed are FROC data analysis, a search-model for simulating FROC data, predictions of the model and a method for estimating the parameters. The search model parameters are physically meaningful quantities that can guide system optimization.

  9. Inferring Mechanisms of Compensation from E-MAP and SGA Data Using Local Search Algorithms for Max Cut

    PubMed Central

    Leiserson, Mark D.M.; Tatar, Diana; Cowen, Lenore J.

    2011-01-01

    Abstract A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods, which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome. PMID:21882903

  10. Advances in metaheuristics for gene selection and classification of microarray data.

    PubMed

    Duval, Béatrice; Hao, Jin-Kao

    2010-01-01

    Gene selection aims at identifying a (small) subset of informative genes from the initial data in order to obtain high predictive accuracy for classification. Gene selection can be considered as a combinatorial search problem and thus be conveniently handled with optimization methods. In this article, we summarize some recent developments of using metaheuristic-based methods within an embedded approach for gene selection. In particular, we put forward the importance and usefulness of integrating problem-specific knowledge into the search operators of such a method. To illustrate the point, we explain how ranking coefficients of a linear classifier such as support vector machine (SVM) can be profitably used to reinforce the search efficiency of Local Search and Evolutionary Search metaheuristic algorithms for gene selection and classification.

  11. SGO: A fast engine for ab initio atomic structure global optimization by differential evolution

    NASA Astrophysics Data System (ADS)

    Chen, Zhanghui; Jia, Weile; Jiang, Xiangwei; Li, Shu-Shen; Wang, Lin-Wang

    2017-10-01

    As the high throughout calculations and material genome approaches become more and more popular in material science, the search for optimal ways to predict atomic global minimum structure is a high research priority. This paper presents a fast method for global search of atomic structures at ab initio level. The structures global optimization (SGO) engine consists of a high-efficiency differential evolution algorithm, accelerated local relaxation methods and a plane-wave density functional theory code running on GPU machines. The purpose is to show what can be achieved by combining the superior algorithms at the different levels of the searching scheme. SGO can search the global-minimum configurations of crystals, two-dimensional materials and quantum clusters without prior symmetry restriction in a relatively short time (half or several hours for systems with less than 25 atoms), thus making such a task a routine calculation. Comparisons with other existing methods such as minima hopping and genetic algorithm are provided. One motivation of our study is to investigate the properties of magnetic systems in different phases. The SGO engine is capable of surveying the local minima surrounding the global minimum, which provides the information for the overall energy landscape of a given system. Using this capability we have found several new configurations for testing systems, explored their energy landscape, and demonstrated that the magnetic moment of metal clusters fluctuates strongly in different local minima.

  12. Method of particle trajectory recognition in particle flows of high particle concentration using a candidate trajectory tree process with variable search areas

    DOEpatents

    Shaffer, Franklin D.

    2013-03-12

    The application relates to particle trajectory recognition from a Centroid Population comprised of Centroids having an (x, y, t) or (x, y, f) coordinate. The method is applicable to visualization and measurement of particle flow fields of high particle. In one embodiment, the centroids are generated from particle images recorded on camera frames. The application encompasses digital computer systems and distribution mediums implementing the method disclosed and is particularly applicable to recognizing trajectories of particles in particle flows of high particle concentration. The method accomplishes trajectory recognition by forming Candidate Trajectory Trees and repeated searches at varying Search Velocities, such that initial search areas are set to a minimum size in order to recognize only the slowest, least accelerating particles which produce higher local concentrations. When a trajectory is recognized, the centroids in that trajectory are removed from consideration in future searches.

  13. An efficient interior-point algorithm with new non-monotone line search filter method for nonlinear constrained programming

    NASA Astrophysics Data System (ADS)

    Wang, Liwei; Liu, Xinggao; Zhang, Zeyin

    2017-02-01

    An efficient primal-dual interior-point algorithm using a new non-monotone line search filter method is presented for nonlinear constrained programming, which is widely applied in engineering optimization. The new non-monotone line search technique is introduced to lead to relaxed step acceptance conditions and improved convergence performance. It can also avoid the choice of the upper bound on the memory, which brings obvious disadvantages to traditional techniques. Under mild assumptions, the global convergence of the new non-monotone line search filter method is analysed, and fast local convergence is ensured by second order corrections. The proposed algorithm is applied to the classical alkylation process optimization problem and the results illustrate its effectiveness. Some comprehensive comparisons to existing methods are also presented.

  14. A Novel Harmony Search Algorithm Based on Teaching-Learning Strategies for 0-1 Knapsack Problems

    PubMed Central

    Tuo, Shouheng; Yong, Longquan; Deng, Fang'an

    2014-01-01

    To enhance the performance of harmony search (HS) algorithm on solving the discrete optimization problems, this paper proposes a novel harmony search algorithm based on teaching-learning (HSTL) strategies to solve 0-1 knapsack problems. In the HSTL algorithm, firstly, a method is presented to adjust dimension dynamically for selected harmony vector in optimization procedure. In addition, four strategies (harmony memory consideration, teaching-learning strategy, local pitch adjusting, and random mutation) are employed to improve the performance of HS algorithm. Another improvement in HSTL method is that the dynamic strategies are adopted to change the parameters, which maintains the proper balance effectively between global exploration power and local exploitation power. Finally, simulation experiments with 13 knapsack problems show that the HSTL algorithm can be an efficient alternative for solving 0-1 knapsack problems. PMID:24574905

  15. A novel harmony search algorithm based on teaching-learning strategies for 0-1 knapsack problems.

    PubMed

    Tuo, Shouheng; Yong, Longquan; Deng, Fang'an

    2014-01-01

    To enhance the performance of harmony search (HS) algorithm on solving the discrete optimization problems, this paper proposes a novel harmony search algorithm based on teaching-learning (HSTL) strategies to solve 0-1 knapsack problems. In the HSTL algorithm, firstly, a method is presented to adjust dimension dynamically for selected harmony vector in optimization procedure. In addition, four strategies (harmony memory consideration, teaching-learning strategy, local pitch adjusting, and random mutation) are employed to improve the performance of HS algorithm. Another improvement in HSTL method is that the dynamic strategies are adopted to change the parameters, which maintains the proper balance effectively between global exploration power and local exploitation power. Finally, simulation experiments with 13 knapsack problems show that the HSTL algorithm can be an efficient alternative for solving 0-1 knapsack problems.

  16. Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer.

    PubMed

    Castelli, Mauro; Trujillo, Leonardo; Vanneschi, Leonardo

    2015-01-01

    Energy consumption forecasting (ECF) is an important policy issue in today's economies. An accurate ECF has great benefits for electric utilities and both negative and positive errors lead to increased operating costs. The paper proposes a semantic based genetic programming framework to address the ECF problem. In particular, we propose a system that finds (quasi-)perfect solutions with high probability and that generates models able to produce near optimal predictions also on unseen data. The framework blends a recently developed version of genetic programming that integrates semantic genetic operators with a local search method. The main idea in combining semantic genetic programming and a local searcher is to couple the exploration ability of the former with the exploitation ability of the latter. Experimental results confirm the suitability of the proposed method in predicting the energy consumption. In particular, the system produces a lower error with respect to the existing state-of-the art techniques used on the same dataset. More importantly, this case study has shown that including a local searcher in the geometric semantic genetic programming system can speed up the search process and can result in fitter models that are able to produce an accurate forecasting also on unseen data.

  17. An efficient and practical approach to obtain a better optimum solution for structural optimization

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Yu; Huang, Jyun-Hao

    2013-08-01

    For many structural optimization problems, it is hard or even impossible to find the global optimum solution owing to unaffordable computational cost. An alternative and practical way of thinking is thus proposed in this research to obtain an optimum design which may not be global but is better than most local optimum solutions that can be found by gradient-based search methods. The way to reach this goal is to find a smaller search space for gradient-based search methods. It is found in this research that data mining can accomplish this goal easily. The activities of classification, association and clustering in data mining are employed to reduce the original design space. For unconstrained optimization problems, the data mining activities are used to find a smaller search region which contains the global or better local solutions. For constrained optimization problems, it is used to find the feasible region or the feasible region with better objective values. Numerical examples show that the optimum solutions found in the reduced design space by sequential quadratic programming (SQP) are indeed much better than those found by SQP in the original design space. The optimum solutions found in a reduced space by SQP sometimes are even better than the solution found using a hybrid global search method with approximate structural analyses.

  18. Hybridisations of Variable Neighbourhood Search and Modified Simplex Elements to Harmony Search and Shuffled Frog Leaping Algorithms for Process Optimisations

    NASA Astrophysics Data System (ADS)

    Aungkulanon, P.; Luangpaiboon, P.

    2010-10-01

    Nowadays, the engineering problem systems are large and complicated. An effective finite sequence of instructions for solving these problems can be categorised into optimisation and meta-heuristic algorithms. Though the best decision variable levels from some sets of available alternatives cannot be done, meta-heuristics is an alternative for experience-based techniques that rapidly help in problem solving, learning and discovery in the hope of obtaining a more efficient or more robust procedure. All meta-heuristics provide auxiliary procedures in terms of their own tooled box functions. It has been shown that the effectiveness of all meta-heuristics depends almost exclusively on these auxiliary functions. In fact, the auxiliary procedure from one can be implemented into other meta-heuristics. Well-known meta-heuristics of harmony search (HSA) and shuffled frog-leaping algorithms (SFLA) are compared with their hybridisations. HSA is used to produce a near optimal solution under a consideration of the perfect state of harmony of the improvisation process of musicians. A meta-heuristic of the SFLA, based on a population, is a cooperative search metaphor inspired by natural memetics. It includes elements of local search and global information exchange. This study presents solution procedures via constrained and unconstrained problems with different natures of single and multi peak surfaces including a curved ridge surface. Both meta-heuristics are modified via variable neighbourhood search method (VNSM) philosophy including a modified simplex method (MSM). The basic idea is the change of neighbourhoods during searching for a better solution. The hybridisations proceed by a descent method to a local minimum exploring then, systematically or at random, increasingly distant neighbourhoods of this local solution. The results show that the variant of HSA with VNSM and MSM seems to be better in terms of the mean and variance of design points and yields.

  19. Solving Capacitated Closed Vehicle Routing Problem with Time Windows (CCVRPTW) using BRKGA with local search

    NASA Astrophysics Data System (ADS)

    Prasetyo, H.; Alfatsani, M. A.; Fauza, G.

    2018-05-01

    The main issue in vehicle routing problem (VRP) is finding the shortest route of product distribution from the depot to outlets to minimize total cost of distribution. Capacitated Closed Vehicle Routing Problem with Time Windows (CCVRPTW) is one of the variants of VRP that accommodates vehicle capacity and distribution period. Since the main problem of CCVRPTW is considered a non-polynomial hard (NP-hard) problem, it requires an efficient and effective algorithm to solve the problem. This study was aimed to develop Biased Random Key Genetic Algorithm (BRKGA) that is combined with local search to solve the problem of CCVRPTW. The algorithm design was then coded by MATLAB. Using numerical test, optimum algorithm parameters were set and compared with the heuristic method and Standard BRKGA to solve a case study on soft drink distribution. Results showed that BRKGA combined with local search resulted in lower total distribution cost compared with the heuristic method. Moreover, the developed algorithm was found to be successful in increasing the performance of Standard BRKGA.

  20. Accelerated Profile HMM Searches

    PubMed Central

    Eddy, Sean R.

    2011-01-01

    Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the “multiple segment Viterbi” (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call “sparse rescaling”. These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches. PMID:22039361

  1. Curved-line search algorithm for ab initio atomic structure relaxation

    NASA Astrophysics Data System (ADS)

    Chen, Zhanghui; Li, Jingbo; Li, Shushen; Wang, Lin-Wang

    2017-09-01

    Ab initio atomic relaxations often take large numbers of steps and long times to converge, especially when the initial atomic configurations are far from the local minimum or there are curved and narrow valleys in the multidimensional potentials. An atomic relaxation method based on on-the-flight force learning and a corresponding curved-line search algorithm is presented to accelerate this process. Results demonstrate the superior performance of this method for metal and magnetic clusters when compared with the conventional conjugate-gradient method.

  2. Local-search based prediction of medical image registration error

    NASA Astrophysics Data System (ADS)

    Saygili, Görkem

    2018-03-01

    Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.

  3. Mobile Visual Search Based on Histogram Matching and Zone Weight Learning

    NASA Astrophysics Data System (ADS)

    Zhu, Chuang; Tao, Li; Yang, Fan; Lu, Tao; Jia, Huizhu; Xie, Xiaodong

    2018-01-01

    In this paper, we propose a novel image retrieval algorithm for mobile visual search. At first, a short visual codebook is generated based on the descriptor database to represent the statistical information of the dataset. Then, an accurate local descriptor similarity score is computed by merging the tf-idf weighted histogram matching and the weighting strategy in compact descriptors for visual search (CDVS). At last, both the global descriptor matching score and the local descriptor similarity score are summed up to rerank the retrieval results according to the learned zone weights. The results show that the proposed approach outperforms the state-of-the-art image retrieval method in CDVS.

  4. Path Searching Based Fault Automated Recovery Scheme for Distribution Grid with DG

    NASA Astrophysics Data System (ADS)

    Xia, Lin; Qun, Wang; Hui, Xue; Simeng, Zhu

    2016-12-01

    Applying the method of path searching based on distribution network topology in setting software has a good effect, and the path searching method containing DG power source is also applicable to the automatic generation and division of planned islands after the fault. This paper applies path searching algorithm in the automatic division of planned islands after faults: starting from the switch of fault isolation, ending in each power source, and according to the line load that the searching path traverses and the load integrated by important optimized searching path, forming optimized division scheme of planned islands that uses each DG as power source and is balanced to local important load. Finally, COBASE software and distribution network automation software applied are used to illustrate the effectiveness of the realization of such automatic restoration program.

  5. When Gravity Fails: Local Search Topology

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Cheeseman, Peter; Stutz, John; Lau, Sonie (Technical Monitor)

    1997-01-01

    Local search algorithms for combinatorial search problems frequently encounter a sequence of states in which it is impossible to improve the value of the objective function; moves through these regions, called {\\em plateau moves), dominate the time spent in local search. We analyze and characterize {\\em plateaus) for three different classes of randomly generated Boolean Satisfiability problems. We identify several interesting features of plateaus that impact the performance of local search algorithms. We show that local minima tend to be small but occasionally may be very large. We also show that local minima can be escaped without unsatisfying a large number of clauses, but that systematically searching for an escape route may be computationally expensive if the local minimum is large. We show that plateaus with exits, called benches, tend to be much larger than minima, and that some benches have very few exit states which local search can use to escape. We show that the solutions (i.e. global minima) of randomly generated problem instances form clusters, which behave similarly to local minima. We revisit several enhancements of local search algorithms and explain their performance in light of our results. Finally we discuss strategies for creating the next generation of local search algorithms.

  6. A Wireless Sensor Network with Soft Computing Localization Techniques for Track Cycling Applications.

    PubMed

    Gharghan, Sadik Kamel; Nordin, Rosdiadee; Ismail, Mahamod

    2016-08-06

    In this paper, we propose two soft computing localization techniques for wireless sensor networks (WSNs). The two techniques, Neural Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN), focus on a range-based localization method which relies on the measurement of the received signal strength indicator (RSSI) from the three ZigBee anchor nodes distributed throughout the track cycling field. The soft computing techniques aim to estimate the distance between bicycles moving on the cycle track for outdoor and indoor velodromes. In the first approach the ANFIS was considered, whereas in the second approach the ANN was hybridized individually with three optimization algorithms, namely Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Backtracking Search Algorithm (BSA). The results revealed that the hybrid GSA-ANN outperforms the other methods adopted in this paper in terms of accuracy localization and distance estimation accuracy. The hybrid GSA-ANN achieves a mean absolute distance estimation error of 0.02 m and 0.2 m for outdoor and indoor velodromes, respectively.

  7. A Wireless Sensor Network with Soft Computing Localization Techniques for Track Cycling Applications

    PubMed Central

    Gharghan, Sadik Kamel; Nordin, Rosdiadee; Ismail, Mahamod

    2016-01-01

    In this paper, we propose two soft computing localization techniques for wireless sensor networks (WSNs). The two techniques, Neural Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN), focus on a range-based localization method which relies on the measurement of the received signal strength indicator (RSSI) from the three ZigBee anchor nodes distributed throughout the track cycling field. The soft computing techniques aim to estimate the distance between bicycles moving on the cycle track for outdoor and indoor velodromes. In the first approach the ANFIS was considered, whereas in the second approach the ANN was hybridized individually with three optimization algorithms, namely Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), and Backtracking Search Algorithm (BSA). The results revealed that the hybrid GSA-ANN outperforms the other methods adopted in this paper in terms of accuracy localization and distance estimation accuracy. The hybrid GSA-ANN achieves a mean absolute distance estimation error of 0.02 m and 0.2 m for outdoor and indoor velodromes, respectively. PMID:27509495

  8. MIP models and hybrid algorithms for simultaneous job splitting and scheduling on unrelated parallel machines.

    PubMed

    Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.

  9. Implementation of an effective hybrid GA for large-scale traveling salesman problems.

    PubMed

    Nguyen, Hung Dinh; Yoshihara, Ikuo; Yamamori, Kunihito; Yasunaga, Moritoshi

    2007-02-01

    This correspondence describes a hybrid genetic algorithm (GA) to find high-quality solutions for the traveling salesman problem (TSP). The proposed method is based on a parallel implementation of a multipopulation steady-state GA involving local search heuristics. It uses a variant of the maximal preservative crossover and the double-bridge move mutation. An effective implementation of the Lin-Kernighan heuristic (LK) is incorporated into the method to compensate for the GA's lack of local search ability. The method is validated by comparing it with the LK-Helsgaun method (LKH), which is one of the most effective methods for the TSP. Experimental results with benchmarks having up to 316228 cities show that the proposed method works more effectively and efficiently than LKH when solving large-scale problems. Finally, the method is used together with the implementation of the iterated LK to find a new best tour (as of June 2, 2003) for a 1904711-city TSP challenge.

  10. Modification Site Localization in Peptides.

    PubMed

    Chalkley, Robert J

    2016-01-01

    There are a large number of search engines designed to take mass spectrometry fragmentation spectra and match them to peptides from proteins in a database. These peptides could be unmodified, but they could also bear modifications that were added biologically or during sample preparation. As a measure of reliability for the peptide identification, software normally calculates how likely a given quality of match could have been achieved at random, most commonly through the use of target-decoy database searching (Elias and Gygi, Nat Methods 4(3): 207-214, 2007). Matching the correct peptide but with the wrong modification localization is not a random match, so results with this error will normally still be assessed as reliable identifications by the search engine. Hence, an extra step is required to determine site localization reliability, and the software approaches to measure this are the subject of this part of the chapter.

  11. An extended continuous estimation of distribution algorithm for solving the permutation flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Shao, Zhongshi; Pi, Dechang; Shao, Weishi

    2017-11-01

    This article proposes an extended continuous estimation of distribution algorithm (ECEDA) to solve the permutation flow-shop scheduling problem (PFSP). In ECEDA, to make a continuous estimation of distribution algorithm (EDA) suitable for the PFSP, the largest order value rule is applied to convert continuous vectors to discrete job permutations. A probabilistic model based on a mixed Gaussian and Cauchy distribution is built to maintain the exploration ability of the EDA. Two effective local search methods, i.e. revolver-based variable neighbourhood search and Hénon chaotic-based local search, are designed and incorporated into the EDA to enhance the local exploitation. The parameters of the proposed ECEDA are calibrated by means of a design of experiments approach. Simulation results and comparisons based on some benchmark instances show the efficiency of the proposed algorithm for solving the PFSP.

  12. Assessing the search for information on Three Rs methods, and their subsequent implementation: a national survey among scientists in the Netherlands.

    PubMed

    van Luijk, Judith; Cuijpers, Yvonne; van der Vaart, Lilian; Leenaars, Marlies; Ritskes-Hoitinga, Merel

    2011-10-01

    A local survey conducted among scientists into the current practice of searching for information on Three Rs (i.e. Replacement, Reduction and Refinement) methods has highlighted the gap between the statutory requirement to apply Three Rs methods and the lack of criteria to search for them. To verify these findings on a national level, we conducted a survey among scientists throughout The Netherlands. Due to the low response rate, the results give an impression of opinions, rather than being representative of The Netherlands as a whole. The findings of both surveys complement each other, and indicate that there is room for improvement. Scientists perceive searching the literature for information on Three Rs methods to be a difficult task, and specific Three Rs search skills and knowledge of Three Rs databases are limited. Rather than using a literature search, many researchers obtain information on these methods through personal communication, which means that published information on possible Three Rs methods often remains unfound and unused. A solution might be to move beyond the direct search for information on Three Rs methods and choose another approach. One approach that seems rather appropriate is that of systematic review. This provides insight into the necessity for any new animal studies, as well as optimal implementation of available data and the prevention of unnecessary animal use in the future. 2011 FRAME.

  13. The Tunneling Method for Global Optimization in Multidimensional Scaling.

    ERIC Educational Resources Information Center

    Groenen, Patrick J. F.; Heiser, Willem J.

    1996-01-01

    A tunneling method for global minimization in multidimensional scaling is introduced and adjusted for multidimensional scaling with general Minkowski distances. The method alternates a local search step with a tunneling step in which a different configuration is sought with the same STRESS implementation. (SLD)

  14. A hybrid neural learning algorithm using evolutionary learning and derivative free local search method.

    PubMed

    Ghosh, Ranadhir; Yearwood, John; Ghosh, Moumita; Bagirov, Adil

    2006-06-01

    In this paper we investigate a hybrid model based on the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. Also we discuss different variants for hybrid models using the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. The Discrete Gradient method has the advantage of being able to jump over many local minima and find very deep local minima. However, earlier research has shown that a good starting point for the discrete gradient method can improve the quality of the solution point. Evolutionary algorithms are best suited for global optimisation problems. Nevertheless they are cursed with longer training times and often unsuitable for real world application. For optimisation problems such as weight optimisation for ANNs in real world applications the dimensions are large and time complexity is critical. Hence the idea of a hybrid model can be a suitable option. In this paper we propose different fusion strategies for hybrid models combining the evolutionary strategy with the discrete gradient method to obtain an optimal solution much quicker. Three different fusion strategies are discussed: a linear hybrid model, an iterative hybrid model and a restricted local search hybrid model. Comparative results on a range of standard datasets are provided for different fusion hybrid models.

  15. A Hybrid Search Algorithm for Swarm Robots Searching in an Unknown Environment

    PubMed Central

    Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao

    2014-01-01

    This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency. PMID:25386855

  16. A hybrid search algorithm for swarm robots searching in an unknown environment.

    PubMed

    Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao

    2014-01-01

    This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.

  17. PIPI: PTM-Invariant Peptide Identification Using Coding Method.

    PubMed

    Yu, Fengchao; Li, Ning; Yu, Weichuan

    2016-12-02

    In computational proteomics, the identification of peptides with an unlimited number of post-translational modification (PTM) types is a challenging task. The computational cost associated with database search increases exponentially with respect to the number of modified amino acids and linearly with respect to the number of potential PTM types at each amino acid. The problem becomes intractable very quickly if we want to enumerate all possible PTM patterns. To address this issue, one group of methods named restricted tools (including Mascot, Comet, and MS-GF+) only allow a small number of PTM types in database search process. Alternatively, the other group of methods named unrestricted tools (including MS-Alignment, ProteinProspector, and MODa) avoids enumerating PTM patterns with an alignment-based approach to localizing and characterizing modified amino acids. However, because of the large search space and PTM localization issue, the sensitivity of these unrestricted tools is low. This paper proposes a novel method named PIPI to achieve PTM-invariant peptide identification. PIPI belongs to the category of unrestricted tools. It first codes peptide sequences into Boolean vectors and codes experimental spectra into real-valued vectors. For each coded spectrum, it then searches the coded sequence database to find the top scored peptide sequences as candidates. After that, PIPI uses dynamic programming to localize and characterize modified amino acids in each candidate. We used simulation experiments and real data experiments to evaluate the performance in comparison with restricted tools (i.e., Mascot, Comet, and MS-GF+) and unrestricted tools (i.e., Mascot with error tolerant search, MS-Alignment, ProteinProspector, and MODa). Comparison with restricted tools shows that PIPI has a close sensitivity and running speed. Comparison with unrestricted tools shows that PIPI has the highest sensitivity except for Mascot with error tolerant search and ProteinProspector. These two tools simplify the task by only considering up to one modified amino acid in each peptide, which results in a higher sensitivity but has difficulty in dealing with multiple modified amino acids. The simulation experiments also show that PIPI has the lowest false discovery proportion, the highest PTM characterization accuracy, and the shortest running time among the unrestricted tools.

  18. Determination of hyporheic travel time distributions and other parameters from concurrent conservative and reactive tracer tests by local-in-global optimization

    NASA Astrophysics Data System (ADS)

    Knapp, Julia L. A.; Cirpka, Olaf A.

    2017-06-01

    The complexity of hyporheic flow paths requires reach-scale models of solute transport in streams that are flexible in their representation of the hyporheic passage. We use a model that couples advective-dispersive in-stream transport to hyporheic exchange with a shape-free distribution of hyporheic travel times. The model also accounts for two-site sorption and transformation of reactive solutes. The coefficients of the model are determined by fitting concurrent stream-tracer tests of conservative (fluorescein) and reactive (resazurin/resorufin) compounds. The flexibility of the shape-free models give rise to multiple local minima of the objective function in parameter estimation, thus requiring global-search algorithms, which is hindered by the large number of parameter values to be estimated. We present a local-in-global optimization approach, in which we use a Markov-Chain Monte Carlo method as global-search method to estimate a set of in-stream and hyporheic parameters. Nested therein, we infer the shape-free distribution of hyporheic travel times by a local Gauss-Newton method. The overall approach is independent of the initial guess and provides the joint posterior distribution of all parameters. We apply the described local-in-global optimization method to recorded tracer breakthrough curves of three consecutive stream sections, and infer section-wise hydraulic parameter distributions to analyze how hyporheic exchange processes differ between the stream sections.

  19. The q-G method : A q-version of the Steepest Descent method for global optimization.

    PubMed

    Soterroni, Aline C; Galski, Roberto L; Scarabello, Marluce C; Ramos, Fernando M

    2015-01-01

    In this work, the q-Gradient (q-G) method, a q-version of the Steepest Descent method, is presented. The main idea behind the q-G method is the use of the negative of the q-gradient vector of the objective function as the search direction. The q-gradient vector, or simply the q-gradient, is a generalization of the classical gradient vector based on the concept of Jackson's derivative from the q-calculus. Its use provides the algorithm an effective mechanism for escaping from local minima. The q-G method reduces to the Steepest Descent method when the parameter q tends to 1. The algorithm has three free parameters and it is implemented so that the search process gradually shifts from global exploration in the beginning to local exploitation in the end. We evaluated the q-G method on 34 test functions, and compared its performance with 34 optimization algorithms, including derivative-free algorithms and the Steepest Descent method. Our results show that the q-G method is competitive and has a great potential for solving multimodal optimization problems.

  20. An adaptive random search for short term generation scheduling with network constraints.

    PubMed

    Marmolejo, J A; Velasco, Jonás; Selley, Héctor J

    2017-01-01

    This paper presents an adaptive random search approach to address a short term generation scheduling with network constraints, which determines the startup and shutdown schedules of thermal units over a given planning horizon. In this model, we consider the transmission network through capacity limits and line losses. The mathematical model is stated in the form of a Mixed Integer Non Linear Problem with binary variables. The proposed heuristic is a population-based method that generates a set of new potential solutions via a random search strategy. The random search is based on the Markov Chain Monte Carlo method. The main key of the proposed method is that the noise level of the random search is adaptively controlled in order to exploring and exploiting the entire search space. In order to improve the solutions, we consider coupling a local search into random search process. Several test systems are presented to evaluate the performance of the proposed heuristic. We use a commercial optimizer to compare the quality of the solutions provided by the proposed method. The solution of the proposed algorithm showed a significant reduction in computational effort with respect to the full-scale outer approximation commercial solver. Numerical results show the potential and robustness of our approach.

  1. Small-Tip-Angle Spokes Pulse Design Using Interleaved Greedy and Local Optimization Methods

    PubMed Central

    Grissom, William A.; Khalighi, Mohammad-Mehdi; Sacolick, Laura I.; Rutt, Brian K.; Vogel, Mika W.

    2013-01-01

    Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods. PMID:22392822

  2. Visual Tracking via Sparse and Local Linear Coding.

    PubMed

    Wang, Guofeng; Qin, Xueying; Zhong, Fan; Liu, Yue; Li, Hongbo; Peng, Qunsheng; Yang, Ming-Hsuan

    2015-11-01

    The state search is an important component of any object tracking algorithm. Numerous algorithms have been proposed, but stochastic sampling methods (e.g., particle filters) are arguably one of the most effective approaches. However, the discretization of the state space complicates the search for the precise object location. In this paper, we propose a novel tracking algorithm that extends the state space of particle observations from discrete to continuous. The solution is determined accurately via iterative linear coding between two convex hulls. The algorithm is modeled by an optimal function, which can be efficiently solved by either convex sparse coding or locality constrained linear coding. The algorithm is also very flexible and can be combined with many generic object representations. Thus, we first use sparse representation to achieve an efficient searching mechanism of the algorithm and demonstrate its accuracy. Next, two other object representation models, i.e., least soft-threshold squares and adaptive structural local sparse appearance, are implemented with improved accuracy to demonstrate the flexibility of our algorithm. Qualitative and quantitative experimental results demonstrate that the proposed tracking algorithm performs favorably against the state-of-the-art methods in dynamic scenes.

  3. A protein-dependent side-chain rotamer library.

    PubMed

    Bhuyan, Md Shariful Islam; Gao, Xin

    2011-12-14

    Protein side-chain packing problem has remained one of the key open problems in bioinformatics. The three main components of protein side-chain prediction methods are a rotamer library, an energy function and a search algorithm. Rotamer libraries summarize the existing knowledge of the experimentally determined structures quantitatively. Depending on how much contextual information is encoded, there are backbone-independent rotamer libraries and backbone-dependent rotamer libraries. Backbone-independent libraries only encode sequential information, whereas backbone-dependent libraries encode both sequential and locally structural information. However, side-chain conformations are determined by spatially local information, rather than sequentially local information. Since in the side-chain prediction problem, the backbone structure is given, spatially local information should ideally be encoded into the rotamer libraries. In this paper, we propose a new type of backbone-dependent rotamer library, which encodes structural information of all the spatially neighboring residues. We call it protein-dependent rotamer libraries. Given any rotamer library and a protein backbone structure, we first model the protein structure as a Markov random field. Then the marginal distributions are estimated by the inference algorithms, without doing global optimization or search. The rotamers from the given library are then re-ranked and associated with the updated probabilities. Experimental results demonstrate that the proposed protein-dependent libraries significantly outperform the widely used backbone-dependent libraries in terms of the side-chain prediction accuracy and the rotamer ranking ability. Furthermore, without global optimization/search, the side-chain prediction power of the protein-dependent library is still comparable to the global-search-based side-chain prediction methods.

  4. The Search Conference as a Method in Planning Community Health Promotion Actions

    PubMed Central

    Magnus, Eva; Knudtsen, Margunn Skjei; Wist, Guri; Weiss, Daniel; Lillefjell, Monica

    2016-01-01

    Aims: The aim of this article is to describe and discuss how the search conference can be used as a method for planning health promotion actions in local communities. Design and methods: The article draws on experiences with using the method for an innovative project in health promotion in three Norwegian municipalities. The method is described both in general and how it was specifically adopted for the project. Results and conclusions: The search conference as a method was used to develop evidence-based health promotion action plans. With its use of both bottom-up and top-down approaches, this method is a relevant strategy for involving a community in the planning stages of health promotion actions in line with political expectations of participation, ownership, and evidence-based initiatives. Significance for public health This article describe and discuss how the Search conference can be used as a method when working with knowledge based health promotion actions in local communities. The article describe the sequences of the conference and shows how this have been adapted when planning and prioritizing health promotion actions in three Norwegian municipalities. The significance of the article is that it shows how central elements in the planning of health promotion actions, as participation and involvements as well as evidence was a fundamental thinking in how the conference were accomplished. The article continue discussing how the method function as both a top-down and a bottom-up strategy, and in what way working evidence based can be in conflict with a bottom-up strategy. The experiences described can be used as guidance planning knowledge based health promotion actions in communities. PMID:27747199

  5. Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory.

    PubMed

    Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Aramo, C; Aranda, V M; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Awal, N; Badescu, A M; Barber, K B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Bridgeman, A; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Curutiu, A; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; Almeida, R M de; Domenico, M De; Jong, S J de; Neto, J R T de Mello; Mitri, I De; Oliveira, J de; Souza, V de; Peral, L Del; Deligny, O; Dembinski, H; Dhital, N; Giulio, C Di; Matteo, A Di; Diaz, J C; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Hasankiadeh, Q Dorosti; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fernandes, M; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fox, B D; Fratu, O; Fröhlich, U; Fuchs, B; Fujii, T; Gaior, R; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gate, F; Gemmeke, H; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Glaser, C; Glass, H; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Grebe, S; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; Oliveira, M A Leigui de; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Malacari, M; Maldera, S; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Melissas, M; Melo, D; Menshikov, A; Messina, S; Meyhandan, R; Mićanović, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Münchmeyer, M; Mussa, R; Navarra, G; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Ochilo, L; Olinto, A; Oliveira, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Purrello, V; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rizi, V; Carvalho, W Rodrigues de; Cabo, I Rodriguez; Fernandez, G Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Ros, G; Rosado, J; Rossler, T; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Sánchez, F; Sanchez-Lucas, P; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, D; Schröder, F G; Scholten, O; Schoorlemmer, H; Schovánek, P; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; Kowski, A Śmiał; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Squartini, R; Srivastava, Y N; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Taborda, O A; Tapia, A; Tartare, M; Tepe, A; Theodoro, V M; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Aar, G van; Bodegom, P van; Berg, A M van den; Velzen, S van; Vliet, A van; Varela, E; Vargas Cárdenas, B; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Widom, A; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yamamoto, T; Yapici, T; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M; Zuccarello, F

    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with [Formula: see text] eV by analyzing cosmic rays with energies above [Formula: see text] eV arriving within an angular separation of approximately 15[Formula: see text]. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.

  6. Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    DOE PAGES

    Aab, Alexander

    2015-06-20

    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×10 19 eV by analyzing cosmic rays with energies above E ≥ 5×10 18 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis.more » As a result, the comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.« less

  7. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zheng, E-mail: 19994035@sina.com; Wang, Jun; Zhou, Bihua

    2014-03-15

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented tomore » tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.« less

  8. MinFinder: Locating all the local minima of a function

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Lagaris, Isaac E.

    2006-01-01

    A new stochastic clustering algorithm is introduced that aims to locate all the local minima of a multidimensional continuous and differentiable function inside a bounded domain. The accompanying software (MinFinder) is written in ANSI C++. However, the user may code his objective function either in C++, C or Fortran 77. We compare the performance of this new method to the performance of Multistart and Topographical Multilevel Single Linkage Clustering on a set of benchmark problems. Program summaryTitle of program:MinFinder Catalogue identifier:ADWU Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWU Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which is has been tested:The tool is designed to be portable in all systems running the GNU C++ compiler Installation:University of Ioannina, Greece Programming language used:GNU-C++, GNU-C, GNU Fortran 77 Memory required to execute with typical data:200 KB No. of bits in a word:32 No. of processors used:1 Has the code been vectorized or parallelized?:no No. of lines in distributed program, including test data, etc.:5797 No. of bytes in distributed program, including test data, etc.:588 121 Distribution format:gzipped tar file Nature of the physical problem:A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques can be trapped in any local minimum. Global optimization is then the appropriate tool. For example, solving a non-linear system of equations via optimization, employing a "least squares" type of objective, one may encounter many local minima that do not correspond to solutions, i.e. they are far from zero. Method of solution:Using a uniform pdf, points are sampled from the rectangular search domain. A clustering technique, based on a typical distance and a gradient criterion, is used to decide from which points a local search should be started. The employed local procedure is a BFGS version due to Powell. Further searching is terminated when all the local minima inside the search domain are thought to be found. This is accomplished via the double-box rule. Typical running time:Depending on the objective function

  9. MIP Models and Hybrid Algorithms for Simultaneous Job Splitting and Scheduling on Unrelated Parallel Machines

    PubMed Central

    Ozmutlu, H. Cenk

    2014-01-01

    We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204

  10. Experimental implementation of local adiabatic evolution algorithms by an NMR quantum information processor.

    PubMed

    Mitra, Avik; Ghosh, Arindam; Das, Ranabir; Patel, Apoorva; Kumar, Anil

    2005-12-01

    Quantum adiabatic algorithm is a method of solving computational problems by evolving the ground state of a slowly varying Hamiltonian. The technique uses evolution of the ground state of a slowly varying Hamiltonian to reach the required output state. In some cases, such as the adiabatic versions of Grover's search algorithm and Deutsch-Jozsa algorithm, applying the global adiabatic evolution yields a complexity similar to their classical algorithms. However, using the local adiabatic evolution, the algorithms given by J. Roland and N.J. Cerf for Grover's search [J. Roland, N.J. Cerf, Quantum search by local adiabatic evolution, Phys. Rev. A 65 (2002) 042308] and by Saurya Das, Randy Kobes, and Gabor Kunstatter for the Deutsch-Jozsa algorithm [S. Das, R. Kobes, G. Kunstatter, Adiabatic quantum computation and Deutsh's algorithm, Phys. Rev. A 65 (2002) 062301], yield a complexity of order N (where N=2(n) and n is the number of qubits). In this paper, we report the experimental implementation of these local adiabatic evolution algorithms on a 2-qubit quantum information processor, by Nuclear Magnetic Resonance.

  11. Fault diagnosis of rolling element bearings with a spectrum searching method

    NASA Astrophysics Data System (ADS)

    Li, Wei; Qiu, Mingquan; Zhu, Zhencai; Jiang, Fan; Zhou, Gongbo

    2017-09-01

    Rolling element bearing faults in rotating systems are observed as impulses in the vibration signals, which are usually buried in noise. In order to effectively detect faults in bearings, a novel spectrum searching method is proposed in this paper. The structural information of the spectrum (SIOS) on a predefined frequency grid is constructed through a searching algorithm, such that the harmonics of the impulses generated by faults can be clearly identified and analyzed. Local peaks of the spectrum are projected onto certain components of the frequency grid, and then the SIOS can interpret the spectrum via the number and power of harmonics projected onto components of the frequency grid. Finally, bearings can be diagnosed based on the SIOS by identifying its dominant or significant components. The mathematical formulation is developed to guarantee the correct construction of the SIOS through searching. The effectiveness of the proposed method is verified with both simulated and experimental bearing signals.

  12. Aerodynamic Optimization of Rocket Control Surface Geometry Using Cartesian Methods and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nelson, Andrea; Aftosmis, Michael J.; Nemec, Marian; Pulliam, Thomas H.

    2004-01-01

    Aerodynamic design is an iterative process involving geometry manipulation and complex computational analysis subject to physical constraints and aerodynamic objectives. A design cycle consists of first establishing the performance of a baseline design, which is usually created with low-fidelity engineering tools, and then progressively optimizing the design to maximize its performance. Optimization techniques have evolved from relying exclusively on designer intuition and insight in traditional trial and error methods, to sophisticated local and global search methods. Recent attempts at automating the search through a large design space with formal optimization methods include both database driven and direct evaluation schemes. Databases are being used in conjunction with surrogate and neural network models as a basis on which to run optimization algorithms. Optimization algorithms are also being driven by the direct evaluation of objectives and constraints using high-fidelity simulations. Surrogate methods use data points obtained from simulations, and possibly gradients evaluated at the data points, to create mathematical approximations of a database. Neural network models work in a similar fashion, using a number of high-fidelity database calculations as training iterations to create a database model. Optimal designs are obtained by coupling an optimization algorithm to the database model. Evaluation of the current best design then gives either a new local optima and/or increases the fidelity of the approximation model for the next iteration. Surrogate methods have also been developed that iterate on the selection of data points to decrease the uncertainty of the approximation model prior to searching for an optimal design. The database approximation models for each of these cases, however, become computationally expensive with increase in dimensionality. Thus the method of using optimization algorithms to search a database model becomes problematic as the number of design variables is increased.

  13. Study on Multi-stage Logistics System Design Problem with Inventory Considering Demand Change by Hybrid Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Inoue, Hisaki; Gen, Mitsuo

    The logistics model used in this study is 3-stage model employed by an automobile company, which aims to solve traffic problems at a total minimum cost. Recently, research on the metaheuristics method has advanced as an approximate means for solving optimization problems like this model. These problems can be solved using various methods such as the genetic algorithm (GA), simulated annealing, and tabu search. GA is superior in robustness and adjustability toward a change in the structure of these problems. However, GA has a disadvantage in that it has a slightly inefficient search performance because it carries out a multi-point search. A hybrid GA that combines another method is attracting considerable attention since it can compensate for a fault to a partial solution that early convergence gives a bad influence on a result. In this study, we propose a novel hybrid random key-based GA(h-rkGA) that combines local search and parameter tuning of crossover rate and mutation rate; h-rkGA is an improved version of the random key-based GA (rk-GA). We attempted comparative experiments with spanning tree-based GA, priority based GA and random key-based GA. Further, we attempted comparative experiments with “h-GA by only local search” and “h-GA by only parameter tuning”. We reported the effectiveness of the proposed method on the basis of the results of these experiments.

  14. A Telescopic Binary Learning Machine for Training Neural Networks.

    PubMed

    Brunato, Mauro; Battiti, Roberto

    2017-03-01

    This paper proposes a new algorithm based on multiscale stochastic local search with binary representation for training neural networks [binary learning machine (BLM)]. We study the effects of neighborhood evaluation strategies, the effect of the number of bits per weight and that of the maximum weight range used for mapping binary strings to real values. Following this preliminary investigation, we propose a telescopic multiscale version of local search, where the number of bits is increased in an adaptive manner, leading to a faster search and to local minima of better quality. An analysis related to adapting the number of bits in a dynamic way is presented. The control on the number of bits, which happens in a natural manner in the proposed method, is effective to increase the generalization performance. The learning dynamics are discussed and validated on a highly nonlinear artificial problem and on real-world tasks in many application domains; BLM is finally applied to a problem requiring either feedforward or recurrent architectures for feedback control.

  15. Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features.

    PubMed

    Youji Feng; Lixin Fan; Yihong Wu

    2016-01-01

    The essence of image-based localization lies in matching 2D key points in the query image and 3D points in the database. State-of-the-art methods mostly employ sophisticated key point detectors and feature descriptors, e.g., Difference of Gaussian (DoG) and Scale Invariant Feature Transform (SIFT), to ensure robust matching. While a high registration rate is attained, the registration speed is impeded by the expensive key point detection and the descriptor extraction. In this paper, we propose to use efficient key point detectors along with binary feature descriptors, since the extraction of such binary features is extremely fast. The naive usage of binary features, however, does not lend itself to significant speedup of localization, since existing indexing approaches, such as hierarchical clustering trees and locality sensitive hashing, are not efficient enough in indexing binary features and matching binary features turns out to be much slower than matching SIFT features. To overcome this, we propose a much more efficient indexing approach for approximate nearest neighbor search of binary features. This approach resorts to randomized trees that are constructed in a supervised training process by exploiting the label information derived from that multiple features correspond to a common 3D point. In the tree construction process, node tests are selected in a way such that trees have uniform leaf sizes and low error rates, which are two desired properties for efficient approximate nearest neighbor search. To further improve the search efficiency, a probabilistic priority search strategy is adopted. Apart from the label information, this strategy also uses non-binary pixel intensity differences available in descriptor extraction. By using the proposed indexing approach, matching binary features is no longer much slower but slightly faster than matching SIFT features. Consequently, the overall localization speed is significantly improved due to the much faster key point detection and descriptor extraction. It is empirically demonstrated that the localization speed is improved by an order of magnitude as compared with state-of-the-art methods, while comparable registration rate and localization accuracy are still maintained.

  16. Ambiguity resolving based on cosine property of phase differences for 3D source localization with uniform circular array

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wang, Shuhong; Liu, Zhen; Wei, Xizhang

    2017-07-01

    Localization of a source whose half-wavelength is smaller than the array aperture would suffer from serious phase ambiguity problem, which also appears in recently proposed phase-based algorithms. In this paper, by using the centro-symmetry of fixed uniform circular array (UCA) with even number of sensors, the source's angles and range can be decoupled and a novel ambiguity resolving approach is addressed for phase-based algorithms of source's 3-D localization (azimuth angle, elevation angle, and range). In the proposed method, by using the cosine property of unambiguous phase differences, ambiguity searching and actual-value matching are first employed to obtain actual phase differences and corresponding source's angles. Then, the unambiguous angles are utilized to estimate the source's range based on a one dimension multiple signal classification (1-D MUSIC) estimator. Finally, simulation experiments investigate the influence of step size in search and SNR on performance of ambiguity resolution and demonstrate the satisfactory estimation performance of the proposed method.

  17. G-Hash: Towards Fast Kernel-based Similarity Search in Large Graph Databases.

    PubMed

    Wang, Xiaohong; Smalter, Aaron; Huan, Jun; Lushington, Gerald H

    2009-01-01

    Structured data including sets, sequences, trees and graphs, pose significant challenges to fundamental aspects of data management such as efficient storage, indexing, and similarity search. With the fast accumulation of graph databases, similarity search in graph databases has emerged as an important research topic. Graph similarity search has applications in a wide range of domains including cheminformatics, bioinformatics, sensor network management, social network management, and XML documents, among others.Most of the current graph indexing methods focus on subgraph query processing, i.e. determining the set of database graphs that contains the query graph and hence do not directly support similarity search. In data mining and machine learning, various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models for supervised learning, graph kernel functions have (i) high computational complexity and (ii) non-trivial difficulty to be indexed in a graph database.Our objective is to bridge graph kernel function and similarity search in graph databases by proposing (i) a novel kernel-based similarity measurement and (ii) an efficient indexing structure for graph data management. Our method of similarity measurement builds upon local features extracted from each node and their neighboring nodes in graphs. A hash table is utilized to support efficient storage and fast search of the extracted local features. Using the hash table, a graph kernel function is defined to capture the intrinsic similarity of graphs and for fast similarity query processing. We have implemented our method, which we have named G-hash, and have demonstrated its utility on large chemical graph databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Most importantly, the new similarity measurement and the index structure is scalable to large database with smaller indexing size, faster indexing construction time, and faster query processing time as compared to state-of-the-art indexing methods such as C-tree, gIndex, and GraphGrep.

  18. Clustering methods for the optimization of atomic cluster structure

    NASA Astrophysics Data System (ADS)

    Bagattini, Francesco; Schoen, Fabio; Tigli, Luca

    2018-04-01

    In this paper, we propose a revised global optimization method and apply it to large scale cluster conformation problems. In the 1990s, the so-called clustering methods were considered among the most efficient general purpose global optimization techniques; however, their usage has quickly declined in recent years, mainly due to the inherent difficulties of clustering approaches in large dimensional spaces. Inspired from the machine learning literature, we redesigned clustering methods in order to deal with molecular structures in a reduced feature space. Our aim is to show that by suitably choosing a good set of geometrical features coupled with a very efficient descent method, an effective optimization tool is obtained which is capable of finding, with a very high success rate, all known putative optima for medium size clusters without any prior information, both for Lennard-Jones and Morse potentials. The main result is that, beyond being a reliable approach, the proposed method, based on the idea of starting a computationally expensive deep local search only when it seems worth doing so, is capable of saving a huge amount of searches with respect to an analogous algorithm which does not employ a clustering phase. In this paper, we are not claiming the superiority of the proposed method compared to specific, refined, state-of-the-art procedures, but rather indicating a quite straightforward way to save local searches by means of a clustering scheme working in a reduced variable space, which might prove useful when included in many modern methods.

  19. Automatic programming via iterated local search for dynamic job shop scheduling.

    PubMed

    Nguyen, Su; Zhang, Mengjie; Johnston, Mark; Tan, Kay Chen

    2015-01-01

    Dispatching rules have been commonly used in practice for making sequencing and scheduling decisions. Due to specific characteristics of each manufacturing system, there is no universal dispatching rule that can dominate in all situations. Therefore, it is important to design specialized dispatching rules to enhance the scheduling performance for each manufacturing environment. Evolutionary computation approaches such as tree-based genetic programming (TGP) and gene expression programming (GEP) have been proposed to facilitate the design task through automatic design of dispatching rules. However, these methods are still limited by their high computational cost and low exploitation ability. To overcome this problem, we develop a new approach to automatic programming via iterated local search (APRILS) for dynamic job shop scheduling. The key idea of APRILS is to perform multiple local searches started with programs modified from the best obtained programs so far. The experiments show that APRILS outperforms TGP and GEP in most simulation scenarios in terms of effectiveness and efficiency. The analysis also shows that programs generated by APRILS are more compact than those obtained by genetic programming. An investigation of the behavior of APRILS suggests that the good performance of APRILS comes from the balance between exploration and exploitation in its search mechanism.

  20. Local production of medical technologies and its effect on access in low and middle income countries: a systematic review of the literature

    PubMed Central

    Kaplan, Warren Allan; Ritz, Lindsay Sarah; Vitello, Marie

    2011-01-01

    Objectives: The objective of this study was to assess the existing theoretical and empirical literature examining the link between "local production" of pharmaceuticals and medical devices and increased local access to these products. Our preliminary hypothesis is that studies showing a robust relationship between local production and access to medical products are sparse, at best. Methods: An extensive literature search was conducted using a wide variety of databases and search terms intending to capture as many different aspects of this issue as possible. The results of the search were reviewed and categorized according to their relevance to the research question. The literature was also reviewed to determine the rigor used to examine the effects of local production and what implications these experiences hold for other developing countries. Results: Literature addressing the benefits of local production and the link between it and access to medical products is sparse, mainly descriptive and lacking empirical evidence. Of the literature we reviewed that addressed comparative economics and strategic planning of multinational and domestic firms, there are few dealing with emerging markets and lower-middle income countries and even fewer that compare local biomedical producers with multinational corporations in terms of a reasonable metric. What comparisons exist mainly relate to prices of local versus foreign/multinational produced medicines. Conclusions: An assessment of the existing theoretical and empirical literature examining the link between "local production" of pharmaceuticals and medical devices and increased local access to these products reveals a paucity of literature explicitly dealing with this issue. Of the literature that does exist, methods used to date are insufficient to prove a robust relationship between local production of medical products and access to these products. There are mixed messages from various studies, and although the studies may correctly depict specific situations in specific countries with reference to specific products, such evidence cannot be generalized. Our review strongly supports the need for further research in understanding the dynamic link between local production and access to medical products PMID:23093883

  1. Underwater sonar image detection: A combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm.

    PubMed

    Wang, Xingmei; Liu, Shu; Liu, Zhipeng

    2017-01-01

    This paper proposes a combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm to detect underwater objects in sonar images. Specifically, for the first time, the problem of inappropriate filtering degree parameter which commonly occurs in non-local spatial information and seriously affects the denoising performance in sonar images, was solved with the method utilizing a novel filtering degree parameter. Then, a quantum-inspired shuffled frog leaping algorithm based on new search mechanism (QSFLA-NSM) is proposed to precisely and quickly detect sonar images. Each frog individual is directly encoded by real numbers, which can greatly simplify the evolution process of the quantum-inspired shuffled frog leaping algorithm (QSFLA). Meanwhile, a fitness function combining intra-class difference with inter-class difference is adopted to evaluate frog positions more accurately. On this basis, recurring to an analysis of the quantum-behaved particle swarm optimization (QPSO) and the shuffled frog leaping algorithm (SFLA), a new search mechanism is developed to improve the searching ability and detection accuracy. At the same time, the time complexity is further reduced. Finally, the results of comparative experiments using the original sonar images, the UCI data sets and the benchmark functions demonstrate the effectiveness and adaptability of the proposed method.

  2. Underwater sonar image detection: A combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm

    PubMed Central

    Liu, Zhipeng

    2017-01-01

    This paper proposes a combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm to detect underwater objects in sonar images. Specifically, for the first time, the problem of inappropriate filtering degree parameter which commonly occurs in non-local spatial information and seriously affects the denoising performance in sonar images, was solved with the method utilizing a novel filtering degree parameter. Then, a quantum-inspired shuffled frog leaping algorithm based on new search mechanism (QSFLA-NSM) is proposed to precisely and quickly detect sonar images. Each frog individual is directly encoded by real numbers, which can greatly simplify the evolution process of the quantum-inspired shuffled frog leaping algorithm (QSFLA). Meanwhile, a fitness function combining intra-class difference with inter-class difference is adopted to evaluate frog positions more accurately. On this basis, recurring to an analysis of the quantum-behaved particle swarm optimization (QPSO) and the shuffled frog leaping algorithm (SFLA), a new search mechanism is developed to improve the searching ability and detection accuracy. At the same time, the time complexity is further reduced. Finally, the results of comparative experiments using the original sonar images, the UCI data sets and the benchmark functions demonstrate the effectiveness and adaptability of the proposed method. PMID:28542266

  3. Towards enhancement of performance of K-means clustering using nature-inspired optimization algorithms.

    PubMed

    Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.

  4. Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

    PubMed Central

    Deb, Suash; Yang, Xin-She

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730

  5. Adaptive Grouping Cloud Model Shuffled Frog Leaping Algorithm for Solving Continuous Optimization Problems

    PubMed Central

    Liu, Haorui; Yi, Fengyan; Yang, Heli

    2016-01-01

    The shuffled frog leaping algorithm (SFLA) easily falls into local optimum when it solves multioptimum function optimization problem, which impacts the accuracy and convergence speed. Therefore this paper presents grouped SFLA for solving continuous optimization problems combined with the excellent characteristics of cloud model transformation between qualitative and quantitative research. The algorithm divides the definition domain into several groups and gives each group a set of frogs. Frogs of each region search in their memeplex, and in the search process the algorithm uses the “elite strategy” to update the location information of existing elite frogs through cloud model algorithm. This method narrows the searching space and it can effectively improve the situation of a local optimum; thus convergence speed and accuracy can be significantly improved. The results of computer simulation confirm this conclusion. PMID:26819584

  6. Local search heuristic for the discrete leader-follower problem with multiple follower objectives

    NASA Astrophysics Data System (ADS)

    Kochetov, Yury; Alekseeva, Ekaterina; Mezmaz, Mohand

    2016-10-01

    We study a discrete bilevel problem, called as well as leader-follower problem, with multiple objectives at the lower level. It is assumed that constraints at the upper level can include variables of both levels. For such ill-posed problem we define feasible and optimal solutions for pessimistic case. A central point of this work is a two stage method to get a feasible solution under the pessimistic case, given a leader decision. The target of the first stage is a follower solution that violates the leader constraints. The target of the second stage is a pessimistic feasible solution. Each stage calls a heuristic and a solver for a series of particular mixed integer programs. The method is integrated inside a local search based heuristic that is designed to find near-optimal leader solutions.

  7. Texture-based approach to palmprint retrieval for personal identification

    NASA Astrophysics Data System (ADS)

    Li, Wenxin; Zhang, David; Xu, Z.; You, J.

    2000-12-01

    This paper presents a new approach to palmprint retrieval for personal identification. Three key issues in image retrieval are considered - feature selection, similarity measures and dynamic search for the best matching of the sample in the image database. We propose a texture-based method for palmprint feature representation. The concept of texture energy is introduced to define a palm print's global and local features, which are characterized with high convergence of inner-palm similarities and good dispersion of inter-palm discrimination. The search is carried out in a layered fashion: first global features are used to guide the fast selection of a small set of similar candidates from the database from the database and then local features are used to decide the final output within the candidate set. The experimental results demonstrate the effectiveness and accuracy of the proposed method.

  8. Texture-based approach to palmprint retrieval for personal identification

    NASA Astrophysics Data System (ADS)

    Li, Wenxin; Zhang, David; Xu, Z.; You, J.

    2001-01-01

    This paper presents a new approach to palmprint retrieval for personal identification. Three key issues in image retrieval are considered - feature selection, similarity measures and dynamic search for the best matching of the sample in the image database. We propose a texture-based method for palmprint feature representation. The concept of texture energy is introduced to define a palm print's global and local features, which are characterized with high convergence of inner-palm similarities and good dispersion of inter-palm discrimination. The search is carried out in a layered fashion: first global features are used to guide the fast selection of a small set of similar candidates from the database from the database and then local features are used to decide the final output within the candidate set. The experimental results demonstrate the effectiveness and accuracy of the proposed method.

  9. Predicting protein complexes using a supervised learning method combined with local structural information.

    PubMed

    Dong, Yadong; Sun, Yongqi; Qin, Chao

    2018-01-01

    The existing protein complex detection methods can be broadly divided into two categories: unsupervised and supervised learning methods. Most of the unsupervised learning methods assume that protein complexes are in dense regions of protein-protein interaction (PPI) networks even though many true complexes are not dense subgraphs. Supervised learning methods utilize the informative properties of known complexes; they often extract features from existing complexes and then use the features to train a classification model. The trained model is used to guide the search process for new complexes. However, insufficient extracted features, noise in the PPI data and the incompleteness of complex data make the classification model imprecise. Consequently, the classification model is not sufficient for guiding the detection of complexes. Therefore, we propose a new robust score function that combines the classification model with local structural information. Based on the score function, we provide a search method that works both forwards and backwards. The results from experiments on six benchmark PPI datasets and three protein complex datasets show that our approach can achieve better performance compared with the state-of-the-art supervised, semi-supervised and unsupervised methods for protein complex detection, occasionally significantly outperforming such methods.

  10. Global optimization methods for engineering design

    NASA Technical Reports Server (NTRS)

    Arora, Jasbir S.

    1990-01-01

    The problem is to find a global minimum for the Problem P. Necessary and sufficient conditions are available for local optimality. However, global solution can be assured only under the assumption of convexity of the problem. If the constraint set S is compact and the cost function is continuous on it, existence of a global minimum is guaranteed. However, in view of the fact that no global optimality conditions are available, a global solution can be found only by an exhaustive search to satisfy Inequality. The exhaustive search can be organized in such a way that the entire design space need not be searched for the solution. This way the computational burden is reduced somewhat. It is concluded that zooming algorithm for global optimizations appears to be a good alternative to stochastic methods. More testing is needed; a general, robust, and efficient local minimizer is required. IDESIGN was used in all numerical calculations which is based on a sequential quadratic programming algorithm, and since feasible set keeps on shrinking, a good algorithm to find an initial feasible point is required. Such algorithms need to be developed and evaluated.

  11. A synergetic combination of small and large neighborhood schemes in developing an effective procedure for solving the job shop scheduling problem.

    PubMed

    Amirghasemi, Mehrdad; Zamani, Reza

    2014-01-01

    This paper presents an effective procedure for solving the job shop problem. Synergistically combining small and large neighborhood schemes, the procedure consists of four components, namely (i) a construction method for generating semi-active schedules by a forward-backward mechanism, (ii) a local search for manipulating a small neighborhood structure guided by a tabu list, (iii) a feedback-based mechanism for perturbing the solutions generated, and (iv) a very large-neighborhood local search guided by a forward-backward shifting bottleneck method. The combination of shifting bottleneck mechanism and tabu list is used as a means of the manipulation of neighborhood structures, and the perturbation mechanism employed diversifies the search. A feedback mechanism, called repeat-check, detects consequent repeats and ignites a perturbation when the total number of consecutive repeats for two identical makespan values reaches a given threshold. The results of extensive computational experiments on the benchmark instances indicate that the combination of these four components is synergetic, in the sense that they collectively make the procedure fast and robust.

  12. Local CC2 response method based on the Laplace transform: analytic energy gradients for ground and excited states.

    PubMed

    Ledermüller, Katrin; Schütz, Martin

    2014-04-28

    A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.

  13. SW#db: GPU-Accelerated Exact Sequence Similarity Database Search.

    PubMed

    Korpar, Matija; Šošić, Martin; Blažeka, Dino; Šikić, Mile

    2015-01-01

    In recent years we have witnessed a growth in sequencing yield, the number of samples sequenced, and as a result-the growth of publicly maintained sequence databases. The increase of data present all around has put high requirements on protein similarity search algorithms with two ever-opposite goals: how to keep the running times acceptable while maintaining a high-enough level of sensitivity. The most time consuming step of similarity search are the local alignments between query and database sequences. This step is usually performed using exact local alignment algorithms such as Smith-Waterman. Due to its quadratic time complexity, alignments of a query to the whole database are usually too slow. Therefore, the majority of the protein similarity search methods prior to doing the exact local alignment apply heuristics to reduce the number of possible candidate sequences in the database. However, there is still a need for the alignment of a query sequence to a reduced database. In this paper we present the SW#db tool and a library for fast exact similarity search. Although its running times, as a standalone tool, are comparable to the running times of BLAST, it is primarily intended to be used for exact local alignment phase in which the database of sequences has already been reduced. It uses both GPU and CPU parallelization and was 4-5 times faster than SSEARCH, 6-25 times faster than CUDASW++ and more than 20 times faster than SSW at the time of writing, using multiple queries on Swiss-prot and Uniref90 databases.

  14. Fast optimization of binary clusters using a novel dynamic lattice searching method.

    PubMed

    Wu, Xia; Cheng, Wen

    2014-09-28

    Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd)79 clusters with DFT-fit parameters of Gupta potential.

  15. Load forecast method of electric vehicle charging station using SVR based on GA-PSO

    NASA Astrophysics Data System (ADS)

    Lu, Kuan; Sun, Wenxue; Ma, Changhui; Yang, Shenquan; Zhu, Zijian; Zhao, Pengfei; Zhao, Xin; Xu, Nan

    2017-06-01

    This paper presents a Support Vector Regression (SVR) method for electric vehicle (EV) charging station load forecast based on genetic algorithm (GA) and particle swarm optimization (PSO). Fuzzy C-Means (FCM) clustering is used to establish similar day samples. GA is used for global parameter searching and PSO is used for a more accurately local searching. Load forecast is then regressed using SVR. The practical load data of an EV charging station were taken to illustrate the proposed method. The result indicates an obvious improvement in the forecasting accuracy compared with SVRs based on PSO and GA exclusively.

  16. Parameter identification of piezoelectric hysteresis model based on improved artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Geng; Zhou, Kexin; Zhang, Yeming

    2018-04-01

    The widely used Bouc-Wen hysteresis model can be utilized to accurately simulate the voltage-displacement curves of piezoelectric actuators. In order to identify the unknown parameters of the Bouc-Wen model, an improved artificial bee colony (IABC) algorithm is proposed in this paper. A guiding strategy for searching the current optimal position of the food source is proposed in the method, which can help balance the local search ability and global exploitation capability. And the formula for the scout bees to search for the food source is modified to increase the convergence speed. Some experiments were conducted to verify the effectiveness of the IABC algorithm. The results show that the identified hysteresis model agreed well with the actual actuator response. Moreover, the identification results were compared with the standard particle swarm optimization (PSO) method, and it can be seen that the search performance in convergence rate of the IABC algorithm is better than that of the standard PSO method.

  17. Mutually beneficial relationship in optimization between search-space smoothing and stochastic search

    NASA Astrophysics Data System (ADS)

    Hasegawa, Manabu; Hiramatsu, Kotaro

    2013-10-01

    The effectiveness of the Metropolis algorithm (MA) (constant-temperature simulated annealing) in optimization by the method of search-space smoothing (SSS) (potential smoothing) is studied on two types of random traveling salesman problems. The optimization mechanism of this hybrid approach (MASSS) is investigated by analyzing the exploration dynamics observed in the rugged landscape of the cost function (energy surface). The results show that the MA can be successfully utilized as a local search algorithm in the SSS approach. It is also clarified that the optimization characteristics of these two constituent methods are improved in a mutually beneficial manner in the MASSS run. Specifically, the relaxation dynamics generated by employing the MA work effectively even in a smoothed landscape and more advantage is taken of the guiding function proposed in the idea of SSS; this mechanism operates in an adaptive manner in the de-smoothing process and therefore the MASSS method maintains its optimization function over a wider temperature range than the MA.

  18. Optoelectronic scanning system upgrade by energy center localization methods

    NASA Astrophysics Data System (ADS)

    Flores-Fuentes, W.; Sergiyenko, O.; Rodriguez-Quiñonez, J. C.; Rivas-López, M.; Hernández-Balbuena, D.; Básaca-Preciado, L. C.; Lindner, L.; González-Navarro, F. F.

    2016-11-01

    A problem of upgrading an optoelectronic scanning system with digital post-processing of the signal based on adequate methods of energy center localization is considered. An improved dynamic triangulation analysis technique is proposed by an example of industrial infrastructure damage detection. A modification of our previously published method aimed at searching for the energy center of an optoelectronic signal is described. Application of the artificial intelligence algorithm of compensation for the error of determining the angular coordinate in calculating the spatial coordinate through dynamic triangulation is demonstrated. Five energy center localization methods are developed and tested to select the best method. After implementation of these methods, digital compensation for the measurement error, and statistical data analysis, a non-parametric behavior of the data is identified. The Wilcoxon signed rank test is applied to improve the result further. For optical scanning systems, it is necessary to detect a light emitter mounted on the infrastructure being investigated to calculate its spatial coordinate by the energy center localization method.

  19. An Experience Oriented-Convergence Improved Gravitational Search Algorithm for Minimum Variance Distortionless Response Beamforming Optimum.

    PubMed

    Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin

    2016-01-01

    An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents' positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness.

  20. Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions.

    PubMed

    Hoban, Sean; Kelley, Joanna L; Lotterhos, Katie E; Antolin, Michael F; Bradburd, Gideon; Lowry, David B; Poss, Mary L; Reed, Laura K; Storfer, Andrew; Whitlock, Michael C

    2016-10-01

    Uncovering the genetic and evolutionary basis of local adaptation is a major focus of evolutionary biology. The recent development of cost-effective methods for obtaining high-quality genome-scale data makes it possible to identify some of the loci responsible for adaptive differences among populations. Two basic approaches for identifying putatively locally adaptive loci have been developed and are broadly used: one that identifies loci with unusually high genetic differentiation among populations (differentiation outlier methods) and one that searches for correlations between local population allele frequencies and local environments (genetic-environment association methods). Here, we review the promises and challenges of these genome scan methods, including correcting for the confounding influence of a species' demographic history, biases caused by missing aspects of the genome, matching scales of environmental data with population structure, and other statistical considerations. In each case, we make suggestions for best practices for maximizing the accuracy and efficiency of genome scans to detect the underlying genetic basis of local adaptation. With attention to their current limitations, genome scan methods can be an important tool in finding the genetic basis of adaptive evolutionary change.

  1. Genetic Local Search for Optimum Multiuser Detection Problem in DS-CDMA Systems

    NASA Astrophysics Data System (ADS)

    Wang, Shaowei; Ji, Xiaoyong

    Optimum multiuser detection (OMD) in direct-sequence code-division multiple access (DS-CDMA) systems is an NP-complete problem. In this paper, we present a genetic local search algorithm, which consists of an evolution strategy framework and a local improvement procedure. The evolution strategy searches the space of feasible, locally optimal solutions only. A fast iterated local search algorithm, which employs the proprietary characteristics of the OMD problem, produces local optima with great efficiency. Computer simulations show the bit error rate (BER) performance of the GLS outperforms other multiuser detectors in all cases discussed. The computation time is polynomial complexity in the number of users.

  2. Image-Based Localization Aided Indoor Pedestrian Trajectory Estimation Using Smartphones

    PubMed Central

    Zhou, Yan; Zheng, Xianwei; Chen, Ruizhi; Xiong, Hanjiang; Guo, Sheng

    2018-01-01

    Accurately determining pedestrian location in indoor environments using consumer smartphones is a significant step in the development of ubiquitous localization services. Many different map-matching methods have been combined with pedestrian dead reckoning (PDR) to achieve low-cost and bias-free pedestrian tracking. However, this works only in areas with dense map constraints and the error accumulates in open areas. In order to achieve reliable localization without map constraints, an improved image-based localization aided pedestrian trajectory estimation method is proposed in this paper. The image-based localization recovers the pose of the camera from the 2D-3D correspondences between the 2D image positions and the 3D points of the scene model, previously reconstructed by a structure-from-motion (SfM) pipeline. This enables us to determine the initial location and eliminate the accumulative error of PDR when an image is successfully registered. However, the image is not always registered since the traditional 2D-to-3D matching rejects more and more correct matches when the scene becomes large. We thus adopt a robust image registration strategy that recovers initially unregistered images by integrating 3D-to-2D search. In the process, the visibility and co-visibility information is adopted to improve the efficiency when searching for the correspondences from both sides. The performance of the proposed method was evaluated through several experiments and the results demonstrate that it can offer highly acceptable pedestrian localization results in long-term tracking, with an error of only 0.56 m, without the need for dedicated infrastructures. PMID:29342123

  3. A fast hybrid algorithm combining regularized motion tracking and predictive search for reducing the occurrence of large displacement errors.

    PubMed

    Jiang, Jingfeng; Hall, Timothy J

    2011-04-01

    A hybrid approach that inherits both the robustness of the regularized motion tracking approach and the efficiency of the predictive search approach is reported. The basic idea is to use regularized speckle tracking to obtain high-quality seeds in an explorative search that can be used in the subsequent intelligent predictive search. The performance of the hybrid speckle-tracking algorithm was compared with three published speckle-tracking methods using in vivo breast lesion data. We found that the hybrid algorithm provided higher displacement quality metric values, lower root mean squared errors compared with a locally smoothed displacement field, and higher improvement ratios compared with the classic block-matching algorithm. On the basis of these comparisons, we concluded that the hybrid method can further enhance the accuracy of speckle tracking compared with its real-time counterparts, at the expense of slightly higher computational demands. © 2011 IEEE

  4. Enhanced Approximate Nearest Neighbor via Local Area Focused Search.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzales, Antonio; Blazier, Nicholas Paul

    Approximate Nearest Neighbor (ANN) algorithms are increasingly important in machine learning, data mining, and image processing applications. There is a large family of space- partitioning ANN algorithms, such as randomized KD-Trees, that work well in practice but are limited by an exponential increase in similarity comparisons required to optimize recall. Additionally, they only support a small set of similarity metrics. We present Local Area Fo- cused Search (LAFS), a method that enhances the way queries are performed using an existing ANN index. Instead of a single query, LAFS performs a number of smaller (fewer similarity comparisons) queries and focuses onmore » a local neighborhood which is refined as candidates are identified. We show that our technique improves performance on several well known datasets and is easily extended to general similarity metrics using kernel projection techniques.« less

  5. Automated discovery of local search heuristics for satisfiability testing.

    PubMed

    Fukunaga, Alex S

    2008-01-01

    The development of successful metaheuristic algorithms such as local search for a difficult problem such as satisfiability testing (SAT) is a challenging task. We investigate an evolutionary approach to automating the discovery of new local search heuristics for SAT. We show that several well-known SAT local search algorithms such as Walksat and Novelty are composite heuristics that are derived from novel combinations of a set of building blocks. Based on this observation, we developed CLASS, a genetic programming system that uses a simple composition operator to automatically discover SAT local search heuristics. New heuristics discovered by CLASS are shown to be competitive with the best Walksat variants, including Novelty+. Evolutionary algorithms have previously been applied to directly evolve a solution for a particular SAT instance. We show that the heuristics discovered by CLASS are also competitive with these previous, direct evolutionary approaches for SAT. We also analyze the local search behavior of the learned heuristics using the depth, mobility, and coverage metrics proposed by Schuurmans and Southey.

  6. Global Search Methods for Stellarator Design

    NASA Astrophysics Data System (ADS)

    Mynick, H. E.; Pomphrey, N.

    2001-10-01

    We have implemented a new variant Stellopt-DE of the stellarator optimizer Stellopt used by the NCSX team.(A. Reiman, G. Fu, S. Hirshman, D. Monticello, et al., EPS Meeting on Controlled Fusion and Plasma Physics Research, Maastricht, the Netherlands, June 14-18, 1999, (European Physical Society, Petit-Lancy, 1999).) It is based on the ``differential evolution'' (DE) algorithm,(R. Storn, K. Price, U.C. Berkeley Technical Report TR-95-012, ICSI (March, 1995).) a global search method which is far less prone than local algorithms such as the Levenberg-Marquardt method presently used in Stellopt to become trapped in local suboptimal minima of the cost function \\chi. Explorations of stellarator configuration space z to which the DE method has been applied will be presented. Additionally, an accompanying effort to understand the results of this more global exploration has found that a wide range of Quasi-Axisymmetric Stellarators (QAS) previously studied fall into a small number of classes, and we obtain maps of \\chi(z) from which one can see the relative positions of these QAS, and the reasons for the classes into which they fall.

  7. A hybrid monkey search algorithm for clustering analysis.

    PubMed

    Chen, Xin; Zhou, Yongquan; Luo, Qifang

    2014-01-01

    Clustering is a popular data analysis and data mining technique. The k-means clustering algorithm is one of the most commonly used methods. However, it highly depends on the initial solution and is easy to fall into local optimum solution. In view of the disadvantages of the k-means method, this paper proposed a hybrid monkey algorithm based on search operator of artificial bee colony algorithm for clustering analysis and experiment on synthetic and real life datasets to show that the algorithm has a good performance than that of the basic monkey algorithm for clustering analysis.

  8. Improved Evolutionary Hybrids for Flexible Ligand Docking in Autodock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belew, R.K.; Hart, W.E.; Morris, G.M.

    1999-01-27

    In this paper we evaluate the design of the hybrid evolutionary algorithms (EAs) that are currently used to perform flexible ligand binding in the Autodock docking software. Hybrid EAs incorporate specialized operators that exploit domain-specific features to accelerate an EA's search. We consider hybrid EAs that use an integrated local search operator to reline individuals within each iteration of the search. We evaluate several factors that impact the efficacy of a hybrid EA, and we propose new hybrid EAs that provide more robust convergence to low-energy docking configurations than the methods currently available in Autodock.

  9. Multi-fidelity and multi-disciplinary design optimization of supersonic business jets

    NASA Astrophysics Data System (ADS)

    Choi, Seongim

    Supersonic jets have been drawing great attention after the end of service for the Concorde was announced on April of 2003. It is believed, however, that civilian supersonic aircraft may make a viable return in the business jet market. This thesis focuses on the design optimization of feasible supersonic business jet configurations. Preliminary design techniques for mitigation of ground sonic boom are investigated while ensuring that all relevant disciplinary constraints are satisfied (including aerodynamic performance, propulsion, stability & control and structures.) In order to achieve reasonable confidence in the resulting designs, high-fidelity simulations are required, making the entire design process both expensive and complex. In order to minimize the computational cost, surrogate/approximate models are constructed using a hierarchy of different fidelity analysis tools including PASS, A502/Panair and Euler/NS codes. Direct search methods such as Genetic Algorithms (GAs) and a nonlinear SIMPLEX are employed to designs in searches of large and noisy design spaces. A local gradient-based search method can be combined with these global search methods for small modifications of candidate optimum designs. The Mesh Adaptive Direct Search (MADS) method can also be used to explore the design space using a solution-adaptive grid refinement approach. These hybrid approaches, both in search methodology and surrogate model construction, are shown to result in designs with reductions in sonic boom and improved aerodynamic performance.

  10. Real-Time Ligand Binding Pocket Database Search Using Local Surface Descriptors

    PubMed Central

    Chikhi, Rayan; Sael, Lee; Kihara, Daisuke

    2010-01-01

    Due to the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of a particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two dimensional pseudo-Zernike moments or the 3D Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark study employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed. PMID:20455259

  11. Real-time ligand binding pocket database search using local surface descriptors.

    PubMed

    Chikhi, Rayan; Sael, Lee; Kihara, Daisuke

    2010-07-01

    Because of the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two-dimensional pseudo-Zernike moments or the three-dimensional Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark studies employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed.

  12. Proteomics Versus Clinical Data and Stochastic Local Search Based Feature Selection for Acute Myeloid Leukemia Patients' Classification.

    PubMed

    Chebouba, Lokmane; Boughaci, Dalila; Guziolowski, Carito

    2018-06-04

    The use of data issued from high throughput technologies in drug target problems is widely widespread during the last decades. This study proposes a meta-heuristic framework using stochastic local search (SLS) combined with random forest (RF) where the aim is to specify the most important genes and proteins leading to the best classification of Acute Myeloid Leukemia (AML) patients. First we use a stochastic local search meta-heuristic as a feature selection technique to select the most significant proteins to be used in the classification task step. Then we apply RF to classify new patients into their corresponding classes. The evaluation technique is to run the RF classifier on the training data to get a model. Then, we apply this model on the test data to find the appropriate class. We use as metrics the balanced accuracy (BAC) and the area under the receiver operating characteristic curve (AUROC) to measure the performance of our model. The proposed method is evaluated on the dataset issued from DREAM 9 challenge. The comparison is done with a pure random forest (without feature selection), and with the two best ranked results of the DREAM 9 challenge. We used three types of data: only clinical data, only proteomics data, and finally clinical and proteomics data combined. The numerical results show that the highest scores are obtained when using clinical data alone, and the lowest is obtained when using proteomics data alone. Further, our method succeeds in finding promising results compared to the methods presented in the DREAM challenge.

  13. Foraging patterns in online searches.

    PubMed

    Wang, Xiangwen; Pleimling, Michel

    2017-03-01

    Nowadays online searches are undeniably the most common form of information gathering, as witnessed by billions of clicks generated each day on search engines. In this work we describe online searches as foraging processes that take place on the semi-infinite line. Using a variety of quantities like probability distributions and complementary cumulative distribution functions of step length and waiting time as well as mean square displacements and entropies, we analyze three different click-through logs that contain the detailed information of millions of queries submitted to search engines. Notable differences between the different logs reveal an increased efficiency of the search engines. In the language of foraging, the newer logs indicate that online searches overwhelmingly yield local searches (i.e., on one page of links provided by the search engines), whereas for the older logs the foraging processes are a combination of local searches and relocation phases that are power law distributed. Our investigation of click logs of search engines therefore highlights the presence of intermittent search processes (where phases of local explorations are separated by power law distributed relocation jumps) in online searches. It follows that good search engines enable the users to find the information they are looking for through a local exploration of a single page with search results, whereas for poor search engine users are often forced to do a broader exploration of different pages.

  14. Foraging patterns in online searches

    NASA Astrophysics Data System (ADS)

    Wang, Xiangwen; Pleimling, Michel

    2017-03-01

    Nowadays online searches are undeniably the most common form of information gathering, as witnessed by billions of clicks generated each day on search engines. In this work we describe online searches as foraging processes that take place on the semi-infinite line. Using a variety of quantities like probability distributions and complementary cumulative distribution functions of step length and waiting time as well as mean square displacements and entropies, we analyze three different click-through logs that contain the detailed information of millions of queries submitted to search engines. Notable differences between the different logs reveal an increased efficiency of the search engines. In the language of foraging, the newer logs indicate that online searches overwhelmingly yield local searches (i.e., on one page of links provided by the search engines), whereas for the older logs the foraging processes are a combination of local searches and relocation phases that are power law distributed. Our investigation of click logs of search engines therefore highlights the presence of intermittent search processes (where phases of local explorations are separated by power law distributed relocation jumps) in online searches. It follows that good search engines enable the users to find the information they are looking for through a local exploration of a single page with search results, whereas for poor search engine users are often forced to do a broader exploration of different pages.

  15. UAV Mission Planning under Uncertainty

    DTIC Science & Technology

    2006-06-01

    algorithm , adapted from [13] . 57 4-5 Robust Optimization considers only a subset of the feasible region . 61 5-1 Overview of simulation with parameter...incorporates the robust optimization method suggested by Bertsimas and Sim [12], and is solved with a standard Branch- and-Cut algorithm . The chapter... algorithms , and the heuristic methods of Local Search methods and Simulated Annealing. With each method, we attempt to give a review of research that has

  16. Parameter estimation methods for gene circuit modeling from time-series mRNA data: a comparative study.

    PubMed

    Fan, Ming; Kuwahara, Hiroyuki; Wang, Xiaolei; Wang, Suojin; Gao, Xin

    2015-11-01

    Parameter estimation is a challenging computational problem in the reverse engineering of biological systems. Because advances in biotechnology have facilitated wide availability of time-series gene expression data, systematic parameter estimation of gene circuit models from such time-series mRNA data has become an important method for quantitatively dissecting the regulation of gene expression. By focusing on the modeling of gene circuits, we examine here the performance of three types of state-of-the-art parameter estimation methods: population-based methods, online methods and model-decomposition-based methods. Our results show that certain population-based methods are able to generate high-quality parameter solutions. The performance of these methods, however, is heavily dependent on the size of the parameter search space, and their computational requirements substantially increase as the size of the search space increases. In comparison, online methods and model decomposition-based methods are computationally faster alternatives and are less dependent on the size of the search space. Among other things, our results show that a hybrid approach that augments computationally fast methods with local search as a subsequent refinement procedure can substantially increase the quality of their parameter estimates to the level on par with the best solution obtained from the population-based methods while maintaining high computational speed. These suggest that such hybrid methods can be a promising alternative to the more commonly used population-based methods for parameter estimation of gene circuit models when limited prior knowledge about the underlying regulatory mechanisms makes the size of the parameter search space vastly large. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Protein structure prediction with local adjust tabu search algorithm

    PubMed Central

    2014-01-01

    Background Protein folding structure prediction is one of the most challenging problems in the bioinformatics domain. Because of the complexity of the realistic protein structure, the simplified structure model and the computational method should be adopted in the research. The AB off-lattice model is one of the simplification models, which only considers two classes of amino acids, hydrophobic (A) residues and hydrophilic (B) residues. Results The main work of this paper is to discuss how to optimize the lowest energy configurations in 2D off-lattice model and 3D off-lattice model by using Fibonacci sequences and real protein sequences. In order to avoid falling into local minimum and faster convergence to the global minimum, we introduce a novel method (SATS) to the protein structure problem, which combines simulated annealing algorithm and tabu search algorithm. Various strategies, such as the new encoding strategy, the adaptive neighborhood generation strategy and the local adjustment strategy, are adopted successfully for high-speed searching the optimal conformation corresponds to the lowest energy of the protein sequences. Experimental results show that some of the results obtained by the improved SATS are better than those reported in previous literatures, and we can sure that the lowest energy folding state for short Fibonacci sequences have been found. Conclusions Although the off-lattice models is not very realistic, they can reflect some important characteristics of the realistic protein. It can be found that 3D off-lattice model is more like native folding structure of the realistic protein than 2D off-lattice model. In addition, compared with some previous researches, the proposed hybrid algorithm can more effectively and more quickly search the spatial folding structure of a protein chain. PMID:25474708

  18. An Experience Oriented-Convergence Improved Gravitational Search Algorithm for Minimum Variance Distortionless Response Beamforming Optimum

    PubMed Central

    Darzi, Soodabeh; Tiong, Sieh Kiong; Tariqul Islam, Mohammad; Rezai Soleymanpour, Hassan; Kibria, Salehin

    2016-01-01

    An experience oriented-convergence improved gravitational search algorithm (ECGSA) based on two new modifications, searching through the best experiments and using of a dynamic gravitational damping coefficient (α), is introduced in this paper. ECGSA saves its best fitness function evaluations and uses those as the agents’ positions in searching process. In this way, the optimal found trajectories are retained and the search starts from these trajectories, which allow the algorithm to avoid the local optimums. Also, the agents can move faster in search space to obtain better exploration during the first stage of the searching process and they can converge rapidly to the optimal solution at the final stage of the search process by means of the proposed dynamic gravitational damping coefficient. The performance of ECGSA has been evaluated by applying it to eight standard benchmark functions along with six complicated composite test functions. It is also applied to adaptive beamforming problem as a practical issue to improve the weight vectors computed by minimum variance distortionless response (MVDR) beamforming technique. The results of implementation of the proposed algorithm are compared with some well-known heuristic methods and verified the proposed method in both reaching to optimal solutions and robustness. PMID:27399904

  19. Intrathecal opioids versus epidural local anesthetics for labor analgesia: a meta-analysis.

    PubMed

    Bucklin, Brenda A; Chestnut, David H; Hawkins, Joy L

    2002-01-01

    Some anesthesiologists contend that intrathecal opioid administration has advantages over conventional epidural techniques during labor. Randomized clinical trials comparing analgesia and obstetric outcome using single-injection intrathecal opioids versus epidural local anesthetics suggest that intrathecal opioids provide comparable analgesia with few serious side effects. This meta-analysis compared the analgesic efficacy, side effects, and obstetric outcome of single-injection intrathecal opioid techniques versus epidural local anesthetics in laboring women. Relevant clinical studies were identified using electronic and manual searches of the literature covering the period from 1989 to 2000. Searches used the following descriptors: intrathecal analgesia, spinal opioids, epidural analgesia, epidural local anesthetics, and analgesia for labor. Data were extracted from 7 randomized clinical trials comparing analgesic measures, incidence of motor block, pruritus, nausea, hypotension, mode of delivery, and/or Apgar scores. Combined test results indicated comparable analgesic efficacy 15 to 20 minutes after injection with single-injection intrathecal opioid administration. Intrathecal opioid injections were associated with a greater incidence of pruritus (odds ratio, 14.01; 99% confidence interval, 6.9 to 28.3), but there was no difference in the incidence of nausea or in the method of delivery. Published studies suggest that intrathecal opioids provide comparable early labor analgesia when compared with epidural local anesthetics. Intrathecal opioid administration results in a greater incidence of pruritus. The choice of technique does not appear to affect the method of delivery.

  20. A systematic literature review of pediculosis due to head lice in the Pacific Island Countries and Territories: what country specific research on head lice is needed?

    PubMed Central

    2014-01-01

    Background Lack of guidelines on control of pediculosis in the Solomon Islands led to a search for relevant evidence on head lice in the Pacific Island Countries and Territories (PICTs). The aim of this search was to systematically evaluate evidence in the peer reviewed literature on pediculosis due to head lice (Pediculus humanus var capitis) in the 22 PICTs from the perspective of its value in informing national guidelines and control strategies. Methods PubMed, Web of Science, CINAHL and Scopus were searched using the terms (pediculosis OR head lice) AND each of the 22 PICTs individually. PRISMA methodology was used. Exclusion criteria were: i) not on topic; ii) publications on pediculosis not relevant to the country of the particular search; iii) in grey literature. Results Of 24 publications identified, only 5 were included. Four related to treatment and one to epidemiology. None contained information relevant to informing national guidelines. Conclusions Current local evidence on head lice in the PICTs is minimal and totally inadequate to guide any recommendations for treatment or control. We recommend that local research is required to generate evidence on: i) epidemiology; ii) knowledge, attitudes and practices of health care providers and community members; iii) efficacy of local commercially available pharmaceutical treatments and local customary treatments; iv) acceptability, accessibility and affordability of available treatment strategies; and iv) appropriate control strategies for families, groups and institutions. We also recommend that operational research be done by local researchers based in the PICTs, supported by experienced head lice researchers, using a two way research capacity building model. PMID:24962507

  1. A coarse-to-fine kernel matching approach for mean-shift based visual tracking

    NASA Astrophysics Data System (ADS)

    Liangfu, L.; Zuren, F.; Weidong, C.; Ming, J.

    2009-03-01

    Mean shift is an efficient pattern match algorithm. It is widely used in visual tracking fields since it need not perform whole search in the image space. It employs gradient optimization method to reduce the time of feature matching and realize rapid object localization, and uses Bhattacharyya coefficient as the similarity measure between object template and candidate template. This thesis presents a mean shift algorithm based on coarse-to-fine search for the best kernel matching. This paper researches for object tracking with large motion area based on mean shift. To realize efficient tracking of such an object, we present a kernel matching method from coarseness to fine. If the motion areas of the object between two frames are very large and they are not overlapped in image space, then the traditional mean shift method can only obtain local optimal value by iterative computing in the old object window area, so the real tracking position cannot be obtained and the object tracking will be disabled. Our proposed algorithm can efficiently use a similarity measure function to realize the rough location of motion object, then use mean shift method to obtain the accurate local optimal value by iterative computing, which successfully realizes object tracking with large motion. Experimental results show its good performance in accuracy and speed when compared with background-weighted histogram algorithm in the literature.

  2. A flexible motif search technique based on generalized profiles.

    PubMed

    Bucher, P; Karplus, K; Moeri, N; Hofmann, K

    1996-03-01

    A flexible motif search technique is presented which has two major components: (1) a generalized profile syntax serving as a motif definition language; and (2) a motif search method specifically adapted to the problem of finding multiple instances of a motif in the same sequence. The new profile structure, which is the core of the generalized profile syntax, combines the functions of a variety of motif descriptors implemented in other methods, including regular expression-like patterns, weight matrices, previously used profiles, and certain types of hidden Markov models (HMMs). The relationship between generalized profiles and other biomolecular motif descriptors is analyzed in detail, with special attention to HMMs. Generalized profiles are shown to be equivalent to a particular class of HMMs, and conversion procedures in both directions are given. The conversion procedures provide an interpretation for local alignment in the framework of stochastic models, allowing for clear, simple significance tests. A mathematical statement of the motif search problem defines the new method exactly without linking it to a specific algorithmic solution. Part of the definition includes a new definition of disjointness of alignments.

  3. An effective PSO-based memetic algorithm for flow shop scheduling.

    PubMed

    Liu, Bo; Wang, Ling; Jin, Yi-Hui

    2007-02-01

    This paper proposes an effective particle swarm optimization (PSO)-based memetic algorithm (MA) for the permutation flow shop scheduling problem (PFSSP) with the objective to minimize the maximum completion time, which is a typical non-deterministic polynomial-time (NP) hard combinatorial optimization problem. In the proposed PSO-based MA (PSOMA), both PSO-based searching operators and some special local searching operators are designed to balance the exploration and exploitation abilities. In particular, the PSOMA applies the evolutionary searching mechanism of PSO, which is characterized by individual improvement, population cooperation, and competition to effectively perform exploration. On the other hand, the PSOMA utilizes several adaptive local searches to perform exploitation. First, to make PSO suitable for solving PFSSP, a ranked-order value rule based on random key representation is presented to convert the continuous position values of particles to job permutations. Second, to generate an initial swarm with certain quality and diversity, the famous Nawaz-Enscore-Ham (NEH) heuristic is incorporated into the initialization of population. Third, to balance the exploration and exploitation abilities, after the standard PSO-based searching operation, a new local search technique named NEH_1 insertion is probabilistically applied to some good particles selected by using a roulette wheel mechanism with a specified probability. Fourth, to enrich the searching behaviors and to avoid premature convergence, a simulated annealing (SA)-based local search with multiple different neighborhoods is designed and incorporated into the PSOMA. Meanwhile, an effective adaptive meta-Lamarckian learning strategy is employed to decide which neighborhood to be used in SA-based local search. Finally, to further enhance the exploitation ability, a pairwise-based local search is applied after the SA-based search. Simulation results based on benchmarks demonstrate the effectiveness of the PSOMA. Additionally, the effects of some parameters on optimization performances are also discussed.

  4. The Search for Wolf-Rayet Stars in IC10

    NASA Astrophysics Data System (ADS)

    Tehrani, Katie; Crowther, Paul; Archer, Isabelle

    2017-11-01

    We present a deep imaging and spectroscopic survey of the Local Group starburst galaxy IC10 using Gemini North/GMOS to unveil the global Wolf-Rayet population. It has previously been suggested that for IC10 to follow the WC/WN versus metallicity dependence seen in other Local Group galaxies, a large WN population must remain undiscovered. Our search revealed 3 new WN stars, and 5 candidates awaiting confirmation, providing little evidence to support this claim. We also compute an updated nebular derived metallicity of log(O/H)+12=8.40 +/- 0.04 for the galaxy using the direct method. Inspection of IC10 WR average line luminosities show these stars are more similar to their LMC, rather than SMC counterparts.

  5. Locality in Search Engine Queries and Its Implications for Caching

    DTIC Science & Technology

    2001-05-01

    in the question of whether caching might be effective for search engines as well. They study two real search engine traces by examining query...locality and its implications for caching. The two search engines studied are Vivisimo and Excite. Their trace analysis results show that queries have

  6. Visual Search with Image Modification in Age-Related Macular Degeneration

    PubMed Central

    Wiecek, Emily; Jackson, Mary Lou; Dakin, Steven C.; Bex, Peter

    2012-01-01

    Purpose. AMD results in loss of central vision and a dependence on low-resolution peripheral vision. While many image enhancement techniques have been proposed, there is a lack of quantitative comparison of the effectiveness of enhancement. We developed a natural visual search task that uses patients' eye movements as a quantitative and functional measure of the efficacy of image modification. Methods. Eye movements of 17 patients (mean age = 77 years) with AMD were recorded while they searched for target objects in natural images. Eight different image modification methods were implemented and included manipulations of local image or edge contrast, color, and crowding. In a subsequent task, patients ranked their preference of the image modifications. Results. Within individual participants, there was no significant difference in search duration or accuracy across eight different image manipulations. When data were collapsed across all image modifications, a multivariate model identified six significant predictors for normalized search duration including scotoma size and acuity, as well as interactions among scotoma size, age, acuity, and contrast (P < 0.05). Additionally, an analysis of image statistics showed no correlation with search performance across all image modifications. Rank ordering of enhancement methods based on participants' preference revealed a trend that participants preferred the least modified images (P < 0.05). Conclusions. There was no quantitative effect of image modification on search performance. A better understanding of low- and high-level components of visual search in natural scenes is necessary to improve future attempts at image enhancement for low vision patients. Different search tasks may require alternative image modifications to improve patient functioning and performance. PMID:22930725

  7. An Improved Hybrid Encoding Cuckoo Search Algorithm for 0-1 Knapsack Problems

    PubMed Central

    Feng, Yanhong; Jia, Ke; He, Yichao

    2014-01-01

    Cuckoo search (CS) is a new robust swarm intelligence method that is based on the brood parasitism of some cuckoo species. In this paper, an improved hybrid encoding cuckoo search algorithm (ICS) with greedy strategy is put forward for solving 0-1 knapsack problems. First of all, for solving binary optimization problem with ICS, based on the idea of individual hybrid encoding, the cuckoo search over a continuous space is transformed into the synchronous evolution search over discrete space. Subsequently, the concept of confidence interval (CI) is introduced; hence, the new position updating is designed and genetic mutation with a small probability is introduced. The former enables the population to move towards the global best solution rapidly in every generation, and the latter can effectively prevent the ICS from trapping into the local optimum. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Experiments with a large number of KP instances show the effectiveness of the proposed algorithm and its ability to achieve good quality solutions. PMID:24527026

  8. Cascade heterogeneous face sketch-photo synthesis via dual-scale Markov Network

    NASA Astrophysics Data System (ADS)

    Yao, Saisai; Chen, Zhenxue; Jia, Yunyi; Liu, Chengyun

    2018-03-01

    Heterogeneous face sketch-photo synthesis is an important and challenging task in computer vision, which has widely applied in law enforcement and digital entertainment. According to the different synthesis results based on different scales, this paper proposes a cascade sketch-photo synthesis method via dual-scale Markov Network. Firstly, Markov Network with larger scale is used to synthesise the initial sketches and the local vertical and horizontal neighbour search (LVHNS) method is used to search for the neighbour patches of test patches in training set. Then, the initial sketches and test photos are jointly entered into smaller scale Markov Network. Finally, the fine sketches are obtained after cascade synthesis process. Extensive experimental results on various databases demonstrate the superiority of the proposed method compared with several state-of-the-art methods.

  9. Heuristic approach to image registration

    NASA Astrophysics Data System (ADS)

    Gertner, Izidor; Maslov, Igor V.

    2000-08-01

    Image registration, i.e. correct mapping of images obtained from different sensor readings onto common reference frame, is a critical part of multi-sensor ATR/AOR systems based on readings from different types of sensors. In order to fuse two different sensor readings of the same object, the readings have to be put into a common coordinate system. This task can be formulated as optimization problem in a space of all possible affine transformations of an image. In this paper, a combination of heuristic methods is explored to register gray- scale images. The modification of Genetic Algorithm is used as the first step in global search for optimal transformation. It covers the entire search space with (randomly or heuristically) scattered probe points and helps significantly reduce the search space to a subspace of potentially most successful transformations. Due to its discrete character, however, Genetic Algorithm in general can not converge while coming close to the optimum. Its termination point can be specified either as some predefined number of generations or as achievement of a certain acceptable convergence level. To refine the search, potential optimal subspaces are searched using more delicate and efficient for local search Taboo and Simulated Annealing methods.

  10. Breast Histopathological Image Retrieval Based on Latent Dirichlet Allocation.

    PubMed

    Ma, Yibing; Jiang, Zhiguo; Zhang, Haopeng; Xie, Fengying; Zheng, Yushan; Shi, Huaqiang; Zhao, Yu

    2017-07-01

    In the field of pathology, whole slide image (WSI) has become the major carrier of visual and diagnostic information. Content-based image retrieval among WSIs can aid the diagnosis of an unknown pathological image by finding its similar regions in WSIs with diagnostic information. However, the huge size and complex content of WSI pose several challenges for retrieval. In this paper, we propose an unsupervised, accurate, and fast retrieval method for a breast histopathological image. Specifically, the method presents a local statistical feature of nuclei for morphology and distribution of nuclei, and employs the Gabor feature to describe the texture information. The latent Dirichlet allocation model is utilized for high-level semantic mining. Locality-sensitive hashing is used to speed up the search. Experiments on a WSI database with more than 8000 images from 15 types of breast histopathology demonstrate that our method achieves about 0.9 retrieval precision as well as promising efficiency. Based on the proposed framework, we are developing a search engine for an online digital slide browsing and retrieval platform, which can be applied in computer-aided diagnosis, pathology education, and WSI archiving and management.

  11. Distributed least-squares estimation of a remote chemical source via convex combination in wireless sensor networks.

    PubMed

    Cao, Meng-Li; Meng, Qing-Hao; Zeng, Ming; Sun, Biao; Li, Wei; Ding, Cheng-Jun

    2014-06-27

    This paper investigates the problem of locating a continuous chemical source using the concentration measurements provided by a wireless sensor network (WSN). Such a problem exists in various applications: eliminating explosives or drugs, detecting the leakage of noxious chemicals, etc. The limited power and bandwidth of WSNs have motivated collaborative in-network processing which is the focus of this paper. We propose a novel distributed least-squares estimation (DLSE) method to solve the chemical source localization (CSL) problem using a WSN. The DLSE method is realized by iteratively conducting convex combination of the locally estimated chemical source locations in a distributed manner. Performance assessments of our method are conducted using both simulations and real experiments. In the experiments, we propose a fitting method to identify both the release rate and the eddy diffusivity. The results show that the proposed DLSE method can overcome the negative interference of local minima and saddle points of the objective function, which would hinder the convergence of local search methods, especially in the case of locating a remote chemical source.

  12. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

    NASA Astrophysics Data System (ADS)

    Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

    2015-03-01

    During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

  13. Improved Ant Algorithms for Software Testing Cases Generation

    PubMed Central

    Yang, Shunkun; Xu, Jiaqi

    2014-01-01

    Existing ant colony optimization (ACO) for software testing cases generation is a very popular domain in software testing engineering. However, the traditional ACO has flaws, as early search pheromone is relatively scarce, search efficiency is low, search model is too simple, positive feedback mechanism is easy to porduce the phenomenon of stagnation and precocity. This paper introduces improved ACO for software testing cases generation: improved local pheromone update strategy for ant colony optimization, improved pheromone volatilization coefficient for ant colony optimization (IPVACO), and improved the global path pheromone update strategy for ant colony optimization (IGPACO). At last, we put forward a comprehensive improved ant colony optimization (ACIACO), which is based on all the above three methods. The proposed technique will be compared with random algorithm (RND) and genetic algorithm (GA) in terms of both efficiency and coverage. The results indicate that the improved method can effectively improve the search efficiency, restrain precocity, promote case coverage, and reduce the number of iterations. PMID:24883391

  14. Electroencephalography epilepsy classifications using hybrid cuckoo search and neural network

    NASA Astrophysics Data System (ADS)

    Pratiwi, A. B.; Damayanti, A.; Miswanto

    2017-07-01

    Epilepsy is a condition that affects the brain and causes repeated seizures. This seizure is episodes that can vary and nearly undetectable to long periods of vigorous shaking or brain contractions. Epilepsy often can be confirmed with an electrocephalography (EEG). Neural Networks has been used in biomedic signal analysis, it has successfully classified the biomedic signal, such as EEG signal. In this paper, a hybrid cuckoo search and neural network are used to recognize EEG signal for epilepsy classifications. The weight of the multilayer perceptron is optimized by the cuckoo search algorithm based on its error. The aim of this methods is making the network faster to obtained the local or global optimal then the process of classification become more accurate. Based on the comparison results with the traditional multilayer perceptron, the hybrid cuckoo search and multilayer perceptron provides better performance in term of error convergence and accuracy. The purpose methods give MSE 0.001 and accuracy 90.0 %.

  15. Hybrid Genetic Algorithm - Local Search Method for Ground-Water Management

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Nishikawa, T.; Martin, P.

    2008-12-01

    Ground-water management problems commonly are formulated as a mixed-integer, non-linear programming problem (MINLP). Relying only on conventional gradient-search methods to solve the management problem is computationally fast; however, the methods may become trapped in a local optimum. Global-optimization schemes can identify the global optimum, but the convergence is very slow when the optimal solution approaches the global optimum. In this study, we developed a hybrid optimization scheme, which includes a genetic algorithm and a gradient-search method, to solve the MINLP. The genetic algorithm identifies a near- optimal solution, and the gradient search uses the near optimum to identify the global optimum. Our methodology is applied to a conjunctive-use project in the Warren ground-water basin, California. Hi- Desert Water District (HDWD), the primary water-manager in the basin, plans to construct a wastewater treatment plant to reduce future septic-tank effluent from reaching the ground-water system. The treated wastewater instead will recharge the ground-water basin via percolation ponds as part of a larger conjunctive-use strategy, subject to State regulations (e.g. minimum distances and travel times). HDWD wishes to identify the least-cost conjunctive-use strategies that control ground-water levels, meet regulations, and identify new production-well locations. As formulated, the MINLP objective is to minimize water-delivery costs subject to constraints including pump capacities, available recharge water, water-supply demand, water-level constraints, and potential new-well locations. The methodology was demonstrated by an enumerative search of the entire feasible solution and comparing the optimum solution with results from the branch-and-bound algorithm. The results also indicate that the hybrid method identifies the global optimum within an affordable computation time. Sensitivity analyses, which include testing different recharge-rate scenarios, pond layouts, and water-supply constraints, indicate that the number of new wells is insensitive to water-supply constraints; however, pumping rates and patterns of the existing wells are sensitive. The locations of new wells are mildly sensitive to the pond layout.

  16. Chapter 51: How to Build a Simple Cone Search Service Using a Local Database

    NASA Astrophysics Data System (ADS)

    Kent, B. R.; Greene, G. R.

    The cone search service protocol will be examined from the server side in this chapter. A simple cone search service will be setup and configured locally using MySQL. Data will be read into a table, and the Java JDBC will be used to connect to the database. Readers will understand the VO cone search specification and how to use it to query a database on their local systems and return an XML/VOTable file based on an input of RA/DEC coordinates and a search radius. The cone search in this example will be deployed as a Java servlet. The resulting cone search can be tested with a verification service. This basic setup can be used with other languages and relational databases.

  17. On local search for bi-objective knapsack problems.

    PubMed

    Liefooghe, Arnaud; Paquete, Luís; Figueira, José Rui

    2013-01-01

    In this article, a local search approach is proposed for three variants of the bi-objective binary knapsack problem, with the aim of maximizing the total profit and minimizing the total weight. First, an experimental study on a given structural property of connectedness of the efficient set is conducted. Based on this property, a local search algorithm is proposed and its performance is compared to exact algorithms in terms of runtime and quality metrics. The experimental results indicate that this simple local search algorithm is able to find a representative set of optimal solutions in most of the cases, and in much less time than exact algorithms.

  18. Memetic Approaches for Optimizing Hidden Markov Models: A Case Study in Time Series Prediction

    NASA Astrophysics Data System (ADS)

    Bui, Lam Thu; Barlow, Michael

    We propose a methodology for employing memetics (local search) within the framework of evolutionary algorithms to optimize parameters of hidden markov models. With this proposal, the rate and frequency of using local search are automatically changed over time either at a population or individual level. At the population level, we allow the rate of using local search to decay over time to zero (at the final generation). At the individual level, each individual is equipped with information of when it will do local search and for how long. This information evolves over time alongside the main elements of the chromosome representing the individual.

  19. Robust local search for spacecraft operations using adaptive noise

    NASA Technical Reports Server (NTRS)

    Fukunaga, Alex S.; Rabideau, Gregg; Chien, Steve

    2004-01-01

    Randomization is a standard technique for improving the performance of local search algorithms for constraint satisfaction. However, it is well-known that local search algorithms are constraints satisfaction. However, it is well-known that local search algorithms are to the noise values selected. We investigate the use of an adaptive noise mechanism in an iterative repair-based planner/scheduler for spacecraft operations. Preliminary results indicate that adaptive noise makes the use of randomized repair moves safe and robust; that is, using adaptive noise makes it possible to consistently achieve, performance comparable with the best tuned noise setting without the need for manually tuning the noise parameter.

  20. TU-AB-202-12: A Novel Method to Map Endoscopic Video to CT for Treatment Planning and Toxicity Analysis in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, W; Yang, J; Beadle, B

    Purpose: Endoscopic examinations are routine procedures for head-and-neck cancer patients. Our goal is to develop a method to map the recorded video to CT, providing valuable information for radiotherapy treatment planning and toxicity analysis. Methods: We map video frames to CT via virtual endoscopic images rendered at the real endoscope’s CT-space coordinates. We developed two complementary methods to find these coordinates by maximizing real-to-virtual image similarity:(1)Endoscope Tracking: moves the virtual endoscope frame-by-frame until the desired frame is reached. Utilizes prior knowledge of endoscope coordinates, but sensitive to local optima. (2)Location Search: moves the virtual endoscope along possible paths through themore » volume to find the desired frame. More robust, but more computationally expensive. We tested these methods on clay phantoms with embedded markers for point mapping and protruding bolus material for contour mapping, and we assessed them qualitatively on three patient exams. For mapped points we calculated 3D-distance errors, and for mapped contours we calculated mean absolute distances (MAD) from CT contours. Results: In phantoms, Endoscope Tracking had average point error=0.66±0.50cm and average bolus MAD=0.74±0.37cm for the first 80% of each video. After that the virtual endoscope got lost, increasing these values to 4.73±1.69cm and 4.06±0.30cm. Location Search had point error=0.49±0.44cm and MAD=0.53±0.28cm. Point errors were larger where the endoscope viewed the surface at shallow angles<10 degrees (1.38±0.62cm and 1.22±0.69cm for Endoscope Tracking and Location Search, respectively). In patients, Endoscope Tracking did not make it past the nasal cavity. However, Location Search found coordinates near the correct location for 70% of test frames. Its performance was best near the epiglottis and in the nasal cavity. Conclusion: Location Search is a robust and accurate technique to map endoscopic video to CT. Endoscope Tracking is sensitive to erratic camera motion and local optima, but could be used in conjunction with anchor points found using Location Search.« less

  1. Global OpenSearch

    NASA Astrophysics Data System (ADS)

    Newman, D. J.; Mitchell, A. E.

    2015-12-01

    At AGU 2014, NASA EOSDIS demonstrated a case-study of an OpenSearch framework for Earth science data discovery. That framework leverages the IDN and CWIC OpenSearch API implementations to provide seamless discovery of data through the 'two-step' discovery process as outlined by the Federation for Earth Sciences (ESIP) OpenSearch Best Practices. But how would an Earth Scientist leverage this framework and what are the benefits? Using a client that understands the OpenSearch specification and, for further clarity, the various best practices and extensions, a scientist can discovery a plethora of data not normally accessible either by traditional methods (NASA Earth Data Search, Reverb, etc) or direct methods (going to the source of the data) We will demonstrate, via the CWICSmart web client, how an earth scientist can access regional data on a regional phenomena in a uniform and aggregated manner. We will demonstrate how an earth scientist can 'globalize' their discovery. You want to find local data on 'sea surface temperature of the Indian Ocean'? We can help you with that. 'European meteorological data'? Yes. 'Brazilian rainforest satellite imagery'? That too. CWIC allows you to get earth science data in a uniform fashion from a large number of disparate, world-wide agencies. This is what we mean by Global OpenSearch.

  2. Motion compensation in digital subtraction angiography using graphics hardware.

    PubMed

    Deuerling-Zheng, Yu; Lell, Michael; Galant, Adam; Hornegger, Joachim

    2006-07-01

    An inherent disadvantage of digital subtraction angiography (DSA) is its sensitivity to patient motion which causes artifacts in the subtraction images. These artifacts could often reduce the diagnostic value of this technique. Automated, fast and accurate motion compensation is therefore required. To cope with this requirement, we first examine a method explicitly designed to detect local motions in DSA. Then, we implement a motion compensation algorithm by means of block matching on modern graphics hardware. Both methods search for maximal local similarity by evaluating a histogram-based measure. In this context, we are the first who have mapped an optimizing search strategy on graphics hardware while paralleling block matching. Moreover, we provide an innovative method for creating histograms on graphics hardware with vertex texturing and frame buffer blending. It turns out that both methods can effectively correct the artifacts in most case, as the hardware implementation of block matching performs much faster: the displacements of two 1024 x 1024 images can be calculated at 3 frames/s with integer precision or 2 frames/s with sub-pixel precision. Preliminary clinical evaluation indicates that the computation with integer precision could already be sufficient.

  3. A new approach to applying feedforward neural networks to the prediction of musculoskeletal disorder risk.

    PubMed

    Chen, C L; Kaber, D B; Dempsey, P G

    2000-06-01

    A new and improved method to feedforward neural network (FNN) development for application to data classification problems, such as the prediction of levels of low-back disorder (LBD) risk associated with industrial jobs, is presented. Background on FNN development for data classification is provided along with discussions of previous research and neighborhood (local) solution search methods for hard combinatorial problems. An analytical study is presented which compared prediction accuracy of a FNN based on an error-back propagation (EBP) algorithm with the accuracy of a FNN developed by considering results of local solution search (simulated annealing) for classifying industrial jobs as posing low or high risk for LBDs. The comparison demonstrated superior performance of the FNN generated using the new method. The architecture of this FNN included fewer input (predictor) variables and hidden neurons than the FNN developed based on the EBP algorithm. Independent variable selection methods and the phenomenon of 'overfitting' in FNN (and statistical model) generation for data classification are discussed. The results are supportive of the use of the new approach to FNN development for applications to musculoskeletal disorders and risk forecasting in other domains.

  4. An artifact caused by undersampling optimal trees in supermatrix analyses of locally sampled characters.

    PubMed

    Simmons, Mark P; Goloboff, Pablo A

    2013-10-01

    Empirical and simulated examples are used to demonstrate an artifact caused by undersampling optimal trees in data matrices that consist mostly or entirely of locally sampled (as opposed to globally, for most or all terminals) characters. The artifact is that unsupported clades consisting entirely of terminals scored for the same locally sampled partition may be resolved and assigned high resampling support-despite their being properly unsupported (i.e., not resolved in the strict consensus of all optimal trees). This artifact occurs despite application of random-addition sequences for stepwise terminal addition. The artifact is not necessarily obviated with thorough conventional branch swapping methods (even tree-bisection-reconnection) when just a single tree is held, as is sometimes implemented in parsimony bootstrap pseudoreplicates, and in every GARLI, PhyML, and RAxML pseudoreplicate and search for the most likely tree for the matrix as a whole. Hence GARLI, RAxML, and PhyML-based likelihood results require extra scrutiny, particularly when they provide high resolution and support for clades that are entirely unsupported by methods that perform more thorough searches, as in most parsimony analyses. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. An off-lattice, self-learning kinetic Monte Carlo method using local environments.

    PubMed

    Konwar, Dhrubajit; Bhute, Vijesh J; Chatterjee, Abhijit

    2011-11-07

    We present a method called local environment kinetic Monte Carlo (LE-KMC) method for efficiently performing off-lattice, self-learning kinetic Monte Carlo (KMC) simulations of activated processes in material systems. Like other off-lattice KMC schemes, new atomic processes can be found on-the-fly in LE-KMC. However, a unique feature of LE-KMC is that as long as the assumption that all processes and rates depend only on the local environment is satisfied, LE-KMC provides a general algorithm for (i) unambiguously describing a process in terms of its local atomic environments, (ii) storing new processes and environments in a catalog for later use with standard KMC, and (iii) updating the system based on the local information once a process has been selected for a KMC move. Search, classification, storage and retrieval steps needed while employing local environments and processes in the LE-KMC method are discussed. The advantages and computational cost of LE-KMC are discussed. We assess the performance of the LE-KMC algorithm by considering test systems involving diffusion in a submonolayer Ag and Ag-Cu alloy films on Ag(001) surface.

  6. A methodological survey identified eight proposed frameworks for the adaptation of health related guidelines.

    PubMed

    Darzi, Andrea; Abou-Jaoude, Elias A; Agarwal, Arnav; Lakis, Chantal; Wiercioch, Wojtek; Santesso, Nancy; Brax, Hneine; El-Jardali, Fadi; Schünemann, Holger J; Akl, Elie A

    2017-06-01

    Our objective was to identify and describe published frameworks for adaptation of clinical, public health, and health services guidelines. We included reports describing methods of adaptation of guidelines in sufficient detail to allow its reproducibility. We searched Medline and EMBASE databases. We also searched personal files, as well manuals and handbooks of organizations and professional societies that proposed methods of adaptation and adoption of guidelines. We followed standard systematic review methodology. Our search captured 12,021 citations, out of which we identified eight proposed methods of guidelines adaptation: ADAPTE, Adapted ADAPTE, Alberta Ambassador Program adaptation phase, GRADE-ADOLOPMENT, MAGIC, RAPADAPTE, Royal College of Nursing (RCN), and Systematic Guideline Review (SGR). The ADAPTE framework consists of a 24-step process to adapt guidelines to a local context taking into consideration the needs, priorities, legislation, policies, and resources. The Alexandria Center for Evidence-Based Clinical Practice Guidelines updated one of ADAPTE's tools, modified three tools, and added three new ones. In addition, they proposed optionally using three other tools. The Alberta Ambassador Program adaptation phase consists of 11 steps and focused on adapting good-quality guidelines for nonspecific low back pain into local context. GRADE-ADOLOPMENT is an eight-step process based on the GRADE Working Group's Evidence to Decision frameworks and applied in 22 guidelines in the context of national guideline development program. The MAGIC research program developed a five-step adaptation process, informed by ADAPTE and the GRADE approach in the context of adapting thrombosis guidelines. The RAPADAPTE framework consists of 12 steps based on ADAPTE and using synthesized evidence databases, retrospectively derived from the experience of producing a high-quality guideline for the treatment of breast cancer with limited resources in Costa Rica. The RCN outlines five key steps strategy for adaptation of guidelines to the local context. The SGR method consists of nine steps and takes into consideration both methodological gaps and context-specific normative issues in source guidelines. We identified through searching personal files two abandoned methods. We identified and described eight proposed frameworks for the adaptation of health-related guidelines. There is a need to evaluate these different frameworks to assess rigor, efficiency, and transparency of their proposed processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Parallel Online Temporal Difference Learning for Motor Control.

    PubMed

    Caarls, Wouter; Schuitema, Erik

    2016-07-01

    Temporal difference (TD) learning, a key concept in reinforcement learning, is a popular method for solving simulated control problems. However, in real systems, this method is often avoided in favor of policy search methods because of its long learning time. But policy search suffers from its own drawbacks, such as the necessity of informed policy parameterization and initialization. In this paper, we show that TD learning can work effectively in real robotic systems as well, using parallel model learning and planning. Using locally weighted linear regression and trajectory sampled planning with 14 concurrent threads, we can achieve a speedup of almost two orders of magnitude over regular TD control on simulated control benchmarks. For a real-world pendulum swing-up task and a two-link manipulator movement task, we report a speedup of 20× to 60× , with a real-time learning speed of less than half a minute. The results are competitive with state-of-the-art policy search.

  8. Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs

    NASA Astrophysics Data System (ADS)

    Choi, Woo-Yong; Chatterjee, Mainak

    2015-03-01

    With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.

  9. Residual vibration control based on a global search method in a high-speed white light scanning interferometer.

    PubMed

    Song, Zhenyuan; Guo, Tong; Fu, Xing; Hu, Xiaotang

    2018-05-01

    To achieve high-speed measurements using white light scanning interferometers, the scanning devices used need to have high feedback gain in closed-loop operations. However, flexure hinges induce a residual vibration that can cause a misidentification of the fringe order. The reduction of this residual vibration is crucial because the highly nonlinear distortions in interferograms lead to clearly incorrect measured profiles. Input shaping can be used to control the amplitude of the residual vibration. The conventional method uses continuous wavelet transform (CWT) to estimate parameters of the scanning device. Our proposed method extracts equivalent modal parameters using a global search algorithm. Due to its simplicity, ease of implementation, and response speed, this global search method outperforms CWT. The delay time is shortened by searching, because fewer modes are needed for the shaper. The effectiveness of the method has been confirmed by the agreement between simulated shaped responses and experimental displacement information from the capacitive sensor inside the scanning device, and the intensity profiles of the interferometer have been greatly improved. An experiment measuring the surface of a silicon wafer is also presented. The method is shown to be effective at improving the intensity profiles and recovering accurate surface topography. Finally, frequency localizations are found to be almost stable with different proportional gains, but their energy distributions change.

  10. An analysis of iterated local search for job-shop scheduling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitley, L. Darrell; Howe, Adele E.; Watson, Jean-Paul

    2003-08-01

    Iterated local search, or ILS, is among the most straightforward meta-heuristics for local search. ILS employs both small-step and large-step move operators. Search proceeds via iterative modifications to a single solution, in distinct alternating phases. In the first phase, local neighborhood search (typically greedy descent) is used in conjunction with the small-step operator to transform solutions into local optima. In the second phase, the large-step operator is applied to generate perturbations to the local optima obtained in the first phase. Ideally, when local neighborhood search is applied to the resulting solution, search will terminate at a different local optimum, i.e.,more » the large-step perturbations should be sufficiently large to enable escape from the attractor basins of local optima. ILS has proven capable of delivering excellent performance on numerous N P-Hard optimization problems. [LMS03]. However, despite its implicity, very little is known about why ILS can be so effective, and under what conditions. The goal of this paper is to advance the state-of-the-art in the analysis of meta-heuristics, by providing answers to this research question. They focus on characterizing both the relationship between the structure of the underlying search space and ILS performance, and the dynamic behavior of ILS. The analysis proceeds in the context of the job-shop scheduling problem (JSP) [Tai94]. They begin by demonstrating that the attractor basins of local optima in the JSP are surprisingly weak, and can be escaped with high probaiblity by accepting a short random sequence of less-fit neighbors. this result is used to develop a new ILS algorithms for the JSP, I-JAR, whose performance is competitive with tabu search on difficult benchmark instances. They conclude by developing a very accurate behavioral model of I-JAR, which yields significant insights into the dynamics of search. The analysis is based on a set of 100 random 10 x 10 problem instances, in addition to some widely used benchmark instances. Both I-JAR and the tabu search algorithm they consider are based on the N1 move operator introduced by van Laarhoven et al. [vLAL92]. The N1 operator induces a connected search space, such that it is always possible to move from an arbitrary solution to an optimal solution; this property is integral to the development of a behavioral model of I-JAR. However, much of the analysis generalizes to other move operators, including that of Nowicki and Smutnick [NS96]. Finally the models are based on the distance between two solutions, which they take as the well-known disjunctive graph distance [MBK99].« less

  11. Local Field Response Method Phenomenologically Introducing Spin Correlations

    NASA Astrophysics Data System (ADS)

    Tomaru, Tatsuya

    2018-03-01

    The local field response (LFR) method is a way of searching for the ground state in a similar manner to quantum annealing. However, the LFR method operates on a classical machine, and quantum effects are introduced through a priori information and through phenomenological means reflecting the states during the computations. The LFR method has been treated with a one-body approximation, and therefore, the effect of entanglement has not been sufficiently taken into account. In this report, spin correlations are phenomenologically introduced as one of the effects of entanglement, by which multiple tunneling at anticrossing points is taken into account. As a result, the accuracy of solutions for a 128-bit system increases by 31% compared with that without spin correlations.

  12. Locating Structural Centers: A Density-Based Clustering Method for Community Detection

    PubMed Central

    Liu, Gongshen; Li, Jianhua; Nees, Jan P.

    2017-01-01

    Uncovering underlying community structures in complex networks has received considerable attention because of its importance in understanding structural attributes and group characteristics of networks. The algorithmic identification of such structures is a significant challenge. Local expanding methods have proven to be efficient and effective in community detection, but most methods are sensitive to initial seeds and built-in parameters. In this paper, we present a local expansion method by density-based clustering, which aims to uncover the intrinsic network communities by locating the structural centers of communities based on a proposed structural centrality. The structural centrality takes into account local density of nodes and relative distance between nodes. The proposed algorithm expands a community from the structural center to the border with a single local search procedure. The local expanding procedure follows a heuristic strategy as allowing it to find complete community structures. Moreover, it can identify different node roles (cores and outliers) in communities by defining a border region. The experiments involve both on real-world and artificial networks, and give a comparison view to evaluate the proposed method. The result of these experiments shows that the proposed method performs more efficiently with a comparative clustering performance than current state of the art methods. PMID:28046030

  13. Improving Robot Locomotion Through Learning Methods for Expensive Black-Box Systems

    DTIC Science & Technology

    2013-11-01

    development of a class of “gradient free” optimization techniques; these include local approaches, such as a Nelder- Mead simplex search (c.f. [73]), and global...1Note that this simple method differs from the Nelder Mead constrained nonlinear optimization method [73]. 39 the Non-dominated Sorting Genetic Algorithm...Kober, and Jan Peters. Model-free inverse reinforcement learning. In International Conference on Artificial Intelligence and Statistics, 2011. [12] George

  14. Dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization

    NASA Astrophysics Data System (ADS)

    Li, Li

    2018-03-01

    In order to extract target from complex background more quickly and accurately, and to further improve the detection effect of defects, a method of dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization was proposed. Firstly, the method of single-threshold selection based on Arimoto entropy was extended to dual-threshold selection in order to separate the target from the background more accurately. Then intermediate variables in formulae of Arimoto entropy dual-threshold selection was calculated by recursion to eliminate redundant computation effectively and to reduce the amount of calculation. Finally, the local search phase of artificial bee colony algorithm was improved by chaotic sequence based on tent mapping. The fast search for two optimal thresholds was achieved using the improved bee colony optimization algorithm, thus the search could be accelerated obviously. A large number of experimental results show that, compared with the existing segmentation methods such as multi-threshold segmentation method using maximum Shannon entropy, two-dimensional Shannon entropy segmentation method, two-dimensional Tsallis gray entropy segmentation method and multi-threshold segmentation method using reciprocal gray entropy, the proposed method can segment target more quickly and accurately with superior segmentation effect. It proves to be an instant and effective method for image segmentation.

  15. Optimization of structures to satisfy a flutter velocity constraint by use of quadratic equation fitting. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Motiwalla, S. K.

    1973-01-01

    Using the first and the second derivative of flutter velocity with respect to the parameters, the velocity hypersurface is made quadratic. This greatly simplifies the numerical procedure developed for determining the values of the design parameters such that a specified flutter velocity constraint is satisfied and the total structural mass is near a relative minimum. A search procedure is presented utilizing two gradient search methods and a gradient projection method. The procedure is applied to the design of a box beam, using finite-element representation. The results indicate that the procedure developed yields substantial design improvement satisfying the specified constraint and does converge to near a local optimum.

  16. Transients in the Local Universe : Systematically Searching the Gap between Novae and Supernovae

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi M.; Kulkarni, S.

    2009-05-01

    We present three systematic transient searches of the glaring luminosity gap between brightest novae (Mv = -10) and faintest supernovae (Mv = -16). The least explored regime in this gap, with several intriguing theoretical predictions, is short-duration transients (<10; days). Our searches are targeted and designed to be deeper and faster cadence (1-day) than traditional supernova searches and probe a larger volume compared to nova searches. We summarize discoveries from our search of the nearest, brightest galaxies (P60-FasTING, Fast Transients In Nearest Galaxies) and nearest galaxy clusters (CFHT-COVET, Coma and Virgo Exploration for Transients). We also highlight first results from the Palomar Transient Factory which targets local (<200 Mpc) luminosity concentrations. We suggest that building a complete inventory of transients in the local universe is timely. These transients are potential electromagnetic counterparts to next-generation instruments (e.g. Advanced LIGO, Auger, ICECUBE) which are also limited in sensitivity (due to intrumental or physical effects) to the local universe.

  17. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    PubMed Central

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  18. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  19. Simultaneous beam sampling and aperture shape optimization for SPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decisionmore » variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. Conclusions: The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.« less

  20. Search methods that people use to find owners of lost pets.

    PubMed

    Lord, Linda K; Wittum, Thomas E; Ferketich, Amy K; Funk, Julie A; Rajala-Schultz, Päivi J

    2007-06-15

    To characterize the process by which people who find lost pets search for the owners. Cross-sectional study. Sample Population-188 individuals who found a lost pet in Dayton, Ohio, between March 1 and June 30, 2006. Procedures-Potential participants were identified as a result of contact with a local animal agency or placement of an advertisement in the local newspaper. A telephone survey was conducted to identify methods participants used to find the pets' owners. 156 of 188 (83%) individuals completed the survey. Fifty-nine of the 156 (38%) pets were reunited with their owners; median time to reunification was 2 days (range, 0.5 to 45 days). Only 1 (3%) cat owner was found, compared with 58 (46%) dog owners. Pet owners were found as a result of information provided by an animal agency (25%), placement of a newspaper advertisement (24%), walking the neighborhood (19%), signs in the neighborhood (15%), information on a pet tag (10%), and other methods (7%). Most finders (87%) considered it extremely important to find the owner, yet only 13 (8%) initially surrendered the found pet to an animal agency. The primary reason people did not surrender found pets was fear of euthanasia (57%). Only 97 (62%) individuals were aware they could run a found-pet advertisement in the newspaper at no charge, and only 1 person who was unaware of the no-charge policy placed an advertisement. Veterinarians and shelters can help educate people who find lost pets about methods to search for the pets' owners.

  1. Control strategy of grid-connected photovoltaic generation system based on GMPPT method

    NASA Astrophysics Data System (ADS)

    Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen

    2018-02-01

    There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.

  2. Harmonised information exchange between decentralised food composition database systems.

    PubMed

    Pakkala, H; Christensen, T; de Victoria, I Martínez; Presser, K; Kadvan, A

    2010-11-01

    The main aim of the European Food Information Resource (EuroFIR) project is to develop and disseminate a comprehensive, coherent and validated data bank for the distribution of food composition data (FCD). This can only be accomplished by harmonising food description and data documentation and by the use of standardised thesauri. The data bank is implemented through a network of local FCD storages (usually national) under the control and responsibility of the local (national) EuroFIR partner. The implementation of the system based on the EuroFIR specifications is under development. The data interchange happens through the EuroFIR Web Services interface, allowing the partners to implement their system using methods and software suitable for the local computer environment. The implementation uses common international standards, such as Simple Object Access Protocol, Web Service Description Language and Extensible Markup Language (XML). A specifically constructed EuroFIR search facility (eSearch) was designed for end users. The EuroFIR eSearch facility compiles queries using a specifically designed Food Data Query Language and sends a request to those network nodes linked to the EuroFIR Web Services that will most likely have the requested information. The retrieved FCD are compiled into a specifically designed data interchange format (the EuroFIR Food Data Transport Package) in XML, which is sent back to the EuroFIR eSearch facility as the query response. The same request-response operation happens in all the nodes that have been selected in the EuroFIR eSearch facility for a certain task. Finally, the FCD are combined by the EuroFIR eSearch facility and delivered to the food compiler. The implementation of FCD interchange using decentralised computer systems instead of traditional data-centre models has several advantages. First of all, the local partners have more control over their FCD, which will increase commitment and improve quality. Second, a multicentred solution is more economically viable than the creation of a centralised data bank, because of the lack of national political support for multinational systems.

  3. VIP Barcoding: composition vector-based software for rapid species identification based on DNA barcoding.

    PubMed

    Fan, Long; Hui, Jerome H L; Yu, Zu Guo; Chu, Ka Hou

    2014-07-01

    Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/. © 2014 John Wiley & Sons Ltd.

  4. Identification of expression quantitative trait loci by the interaction analysis using genetic algorithm.

    PubMed

    Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung

    2007-01-01

    Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene x gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene x gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms.

  5. Identification of expression quantitative trait loci by the interaction analysis using genetic algorithm

    PubMed Central

    Namkung, Junghyun; Nam, Jin-Wu; Park, Taesung

    2007-01-01

    Many genes with major effects on quantitative traits have been reported to interact with other genes. However, finding a group of interacting genes from thousands of SNPs is challenging. Hence, an efficient and robust algorithm is needed. The genetic algorithm (GA) is useful in searching for the optimal solution from a very large searchable space. In this study, we show that genome-wide interaction analysis using GA and a statistical interaction model can provide a practical method to detect biologically interacting loci. We focus our search on transcriptional regulators by analyzing gene × gene interactions for cancer-related genes. The expression values of three cancer-related genes were selected from the expression data of the Genetic Analysis Workshop 15 Problem 1 data set. We implemented a GA to identify the expression quantitative trait loci that are significantly associated with expression levels of the cancer-related genes. The time complexity of the GA was compared with that of an exhaustive search algorithm. As a result, our GA, which included heuristic methods, such as archive, elitism, and local search, has greatly reduced computational time in a genome-wide search for gene × gene interactions. In general, the GA took one-fifth the computation time of an exhaustive search for the most significant pair of single-nucleotide polymorphisms. PMID:18466570

  6. A novel segmentation method for uneven lighting image with noise injection based on non-local spatial information and intuitionistic fuzzy entropy

    NASA Astrophysics Data System (ADS)

    Yu, Haiyan; Fan, Jiulun

    2017-12-01

    Local thresholding methods for uneven lighting image segmentation always have the limitations that they are very sensitive to noise injection and that the performance relies largely upon the choice of the initial window size. This paper proposes a novel algorithm for segmenting uneven lighting images with strong noise injection based on non-local spatial information and intuitionistic fuzzy theory. We regard an image as a gray wave in three-dimensional space, which is composed of many peaks and troughs, and these peaks and troughs can divide the image into many local sub-regions in different directions. Our algorithm computes the relative characteristic of each pixel located in the corresponding sub-region based on fuzzy membership function and uses it to replace its absolute characteristic (its gray level) to reduce the influence of uneven light on image segmentation. At the same time, the non-local adaptive spatial constraints of pixels are introduced to avoid noise interference with the search of local sub-regions and the computation of local characteristics. Moreover, edge information is also taken into account to avoid false peak and trough labeling. Finally, a global method based on intuitionistic fuzzy entropy is employed on the wave transformation image to obtain the segmented result. Experiments on several test images show that the proposed method has excellent capability of decreasing the influence of uneven illumination on images and noise injection and behaves more robustly than several classical global and local thresholding methods.

  7. A strategy to find minimal energy nanocluster structures.

    PubMed

    Rogan, José; Varas, Alejandro; Valdivia, Juan Alejandro; Kiwi, Miguel

    2013-11-05

    An unbiased strategy to search for the global and local minimal energy structures of free standing nanoclusters is presented. Our objectives are twofold: to find a diverse set of low lying local minima, as well as the global minimum. To do so, we use massively the fast inertial relaxation engine algorithm as an efficient local minimizer. This procedure turns out to be quite efficient to reach the global minimum, and also most of the local minima. We test the method with the Lennard-Jones (LJ) potential, for which an abundant literature does exist, and obtain novel results, which include a new local minimum for LJ13 , 10 new local minima for LJ14 , and thousands of new local minima for 15≤N≤65. Insights on how to choose the initial configurations, analyzing the effectiveness of the method in reaching low-energy structures, including the global minimum, are developed as a function of the number of atoms of the cluster. Also, a novel characterization of the potential energy surface, analyzing properties of the local minima basins, is provided. The procedure constitutes a promising tool to generate a diverse set of cluster conformations, both two- and three-dimensional, that can be used as an input for refinement by means of ab initio methods. Copyright © 2013 Wiley Periodicals, Inc.

  8. Forensic imaging tools for law enforcement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SMITHPETER,COLIN L.; SANDISON,DAVID R.; VARGO,TIMOTHY D.

    2000-01-01

    Conventional methods of gathering forensic evidence at crime scenes are encumbered by difficulties that limit local law enforcement efforts to apprehend offenders and bring them to justice. Working with a local law-enforcement agency, Sandia National Laboratories has developed a prototype multispectral imaging system that can speed up the investigative search task and provide additional and more accurate evidence. The system, called the Criminalistics Light-imaging Unit (CLU), has demonstrated the capabilities of locating fluorescing evidence at crime scenes under normal lighting conditions and of imaging other types of evidence, such as untreated fingerprints, by direct white-light reflectance. CLU employs state ofmore » the art technology that provides for viewing and recording of the entire search process on videotape. This report describes the work performed by Sandia to design, build, evaluate, and commercialize CLU.« less

  9. An evaluation of multi-probe locality sensitive hashing for computing similarities over web-scale query logs.

    PubMed

    Cormode, Graham; Dasgupta, Anirban; Goyal, Amit; Lee, Chi Hoon

    2018-01-01

    Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users' queries from commercial search engines), computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a distributed computing environment (specifically, Hadoop). We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with "vanilla" LSH, even when using the same amount of space.

  10. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems

    PubMed Central

    Cao, Leilei; Xu, Lihong; Goodman, Erik D.

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421

  11. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.

    PubMed

    Cao, Leilei; Xu, Lihong; Goodman, Erik D

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.

  12. Modification site localization scoring integrated into a search engine.

    PubMed

    Baker, Peter R; Trinidad, Jonathan C; Chalkley, Robert J

    2011-07-01

    Large proteomic data sets identifying hundreds or thousands of modified peptides are becoming increasingly common in the literature. Several methods for assessing the reliability of peptide identifications both at the individual peptide or data set level have become established. However, tools for measuring the confidence of modification site assignments are sparse and are not often employed. A few tools for estimating phosphorylation site assignment reliabilities have been developed, but these are not integral to a search engine, so require a particular search engine output for a second step of processing. They may also require use of a particular fragmentation method and are mostly only applicable for phosphorylation analysis, rather than post-translational modifications analysis in general. In this study, we present the performance of site assignment scoring that is directly integrated into the search engine Protein Prospector, which allows site assignment reliability to be automatically reported for all modifications present in an identified peptide. It clearly indicates when a site assignment is ambiguous (and if so, between which residues), and reports an assignment score that can be translated into a reliability measure for individual site assignments.

  13. An evolutionary algorithm for large traveling salesman problems.

    PubMed

    Tsai, Huai-Kuang; Yang, Jinn-Moon; Tsai, Yuan-Fang; Kao, Cheng-Yan

    2004-08-01

    This work proposes an evolutionary algorithm, called the heterogeneous selection evolutionary algorithm (HeSEA), for solving large traveling salesman problems (TSP). The strengths and limitations of numerous well-known genetic operators are first analyzed, along with local search methods for TSPs from their solution qualities and mechanisms for preserving and adding edges. Based on this analysis, a new approach, HeSEA is proposed which integrates edge assembly crossover (EAX) and Lin-Kernighan (LK) local search, through family competition and heterogeneous pairing selection. This study demonstrates experimentally that EAX and LK can compensate for each other's disadvantages. Family competition and heterogeneous pairing selections are used to maintain the diversity of the population, which is especially useful for evolutionary algorithms in solving large TSPs. The proposed method was evaluated on 16 well-known TSPs in which the numbers of cities range from 318 to 13509. Experimental results indicate that HeSEA performs well and is very competitive with other approaches. The proposed method can determine the optimum path when the number of cities is under 10,000 and the mean solution quality is within 0.0074% above the optimum for each test problem. These findings imply that the proposed method can find tours robustly with a fixed small population and a limited family competition length in reasonable time, when used to solve large TSPs.

  14. Aerodynamic Shape Optimization Using Hybridized Differential Evolution

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2003-01-01

    An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.

  15. FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm

    PubMed Central

    Tuo, Shouheng; Zhang, Junying; Yuan, Xiguo; Zhang, Yuanyuan; Liu, Zhaowen

    2016-01-01

    Motivation Two-locus model is a typical significant disease model to be identified in genome-wide association study (GWAS). Due to intensive computational burden and diversity of disease models, existing methods have drawbacks on low detection power, high computation cost, and preference for some types of disease models. Method In this study, two scoring functions (Bayesian network based K2-score and Gini-score) are used for characterizing two SNP locus as a candidate model, the two criteria are adopted simultaneously for improving identification power and tackling the preference problem to disease models. Harmony search algorithm (HSA) is improved for quickly finding the most likely candidate models among all two-locus models, in which a local search algorithm with two-dimensional tabu table is presented to avoid repeatedly evaluating some disease models that have strong marginal effect. Finally G-test statistic is used to further test the candidate models. Results We investigate our method named FHSA-SED on 82 simulated datasets and a real AMD dataset, and compare it with two typical methods (MACOED and CSE) which have been developed recently based on swarm intelligent search algorithm. The results of simulation experiments indicate that our method outperforms the two compared algorithms in terms of detection power, computation time, evaluation times, sensitivity (TPR), specificity (SPC), positive predictive value (PPV) and accuracy (ACC). Our method has identified two SNPs (rs3775652 and rs10511467) that may be also associated with disease in AMD dataset. PMID:27014873

  16. Visual Search in ASD: Instructed versus Spontaneous Local and Global Processing

    ERIC Educational Resources Information Center

    Van der Hallen, Ruth; Evers, Kris; Boets, Bart; Steyaert, Jean; Noens, Ilse; Wagemans, Johan

    2016-01-01

    Visual search has been used extensively to investigate differences in mid-level visual processing between individuals with ASD and TD individuals. The current study employed two visual search paradigms with Gaborized stimuli to assess the impact of task distractors (Experiment 1) and task instruction (Experiment 2) on local-global visual…

  17. Simultaneous beam sampling and aperture shape optimization for SPORT.

    PubMed

    Zarepisheh, Masoud; Li, Ruijiang; Ye, Yinyu; Xing, Lei

    2015-02-01

    Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.

  18. Stellar Wakes from Dark Matter Subhalos

    NASA Astrophysics Data System (ADS)

    Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R.; Wu, Chih-Liang

    2018-05-01

    We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ˜107 M⊙ or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.

  19. Protein 3D Structure and Electron Microscopy Map Retrieval Using 3D-SURFER2.0 and EM-SURFER.

    PubMed

    Han, Xusi; Wei, Qing; Kihara, Daisuke

    2017-12-08

    With the rapid growth in the number of solved protein structures stored in the Protein Data Bank (PDB) and the Electron Microscopy Data Bank (EMDB), it is essential to develop tools to perform real-time structure similarity searches against the entire structure database. Since conventional structure alignment methods need to sample different orientations of proteins in the three-dimensional space, they are time consuming and unsuitable for rapid, real-time database searches. To this end, we have developed 3D-SURFER and EM-SURFER, which utilize 3D Zernike descriptors (3DZD) to conduct high-throughput protein structure comparison, visualization, and analysis. Taking an atomic structure or an electron microscopy map of a protein or a protein complex as input, the 3DZD of a query protein is computed and compared with the 3DZD of all other proteins in PDB or EMDB. In addition, local geometrical characteristics of a query protein can be analyzed using VisGrid and LIGSITE CSC in 3D-SURFER. This article describes how to use 3D-SURFER and EM-SURFER to carry out protein surface shape similarity searches, local geometric feature analysis, and interpretation of the search results. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  20. Toward a detailed understanding of search trajectories in fragment assembly approaches to protein structure prediction

    PubMed Central

    Handl, Julia; Lovell, Simon C.

    2016-01-01

    ABSTRACT Energy functions, fragment libraries, and search methods constitute three key components of fragment‐assembly methods for protein structure prediction, which are all crucial for their ability to generate high‐accuracy predictions. All of these components are tightly coupled; efficient searching becomes more important as the quality of fragment libraries decreases. Given these relationships, there is currently a poor understanding of the strengths and weaknesses of the sampling approaches currently used in fragment‐assembly techniques. Here, we determine how the performance of search techniques can be assessed in a meaningful manner, given the above problems. We describe a set of techniques that aim to reduce the impact of the energy function, and assess exploration in view of the search space defined by a given fragment library. We illustrate our approach using Rosetta and EdaFold, and show how certain features of these methods encourage or limit conformational exploration. We demonstrate that individual trajectories of Rosetta are susceptible to local minima in the energy landscape, and that this can be linked to non‐uniform sampling across the protein chain. We show that EdaFold's novel approach can help balance broad exploration with locating good low‐energy conformations. This occurs through two mechanisms which cannot be readily differentiated using standard performance measures: exclusion of false minima, followed by an increasingly focused search in low‐energy regions of conformational space. Measures such as ours can be helpful in characterizing new fragment‐based methods in terms of the quality of conformational exploration realized. Proteins 2016; 84:411–426. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:26799916

  1. Near-Field Source Localization by Using Focusing Technique

    NASA Astrophysics Data System (ADS)

    He, Hongyang; Wang, Yide; Saillard, Joseph

    2008-12-01

    We discuss two fast algorithms to localize multiple sources in near field. The symmetry-based method proposed by Zhi and Chia (2007) is first improved by implementing a search-free procedure for the reduction of computation cost. We present then a focusing-based method which does not require symmetric array configuration. By using focusing technique, the near-field signal model is transformed into a model possessing the same structure as in the far-field situation, which allows the bearing estimation with the well-studied far-field methods. With the estimated bearing, the range estimation of each source is consequently obtained by using 1D MUSIC method without parameter pairing. The performance of the improved symmetry-based method and the proposed focusing-based method is compared by Monte Carlo simulations and with Crammer-Rao bound as well. Unlike other near-field algorithms, these two approaches require neither high-computation cost nor high-order statistics.

  2. A Wandering Mind Does Not Stray Far from Home: The Value of Metacognition in Distant Search

    PubMed Central

    Kudesia, Ravi S.; Baer, Markus; Elfenbein, Hillary Anger

    2015-01-01

    When faced with a problem, how do individuals search for potential solutions? In this article, we explore the cognitive processes that lead to local search (i.e., identifying options closest to existing solutions) and distant search (i.e., identifying options of a qualitatively different nature than existing solutions). We suggest that mind wandering is likely to lead to local search because it operates by spreading activation from initial ideas to closely associated ideas. This reduces the likelihood of accessing a qualitatively different solution. However, instead of getting lost in thought, individuals can also step back and monitor their thoughts from a detached perspective. Such mindful metacognition, we suggest, is likely to lead to distant search because it redistributes activation away from initial ideas to other, less strongly associated, ideas. This hypothesis was confirmed across two studies. Thus, getting lost in thoughts is helpful when one is on the right track and needs only a local search whereas stepping back from thoughts is helpful when one needs distant search to produce a change in perspective. PMID:25974164

  3. An effective hybrid immune algorithm for solving the distributed permutation flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min

    2014-09-01

    In this article, an effective hybrid immune algorithm (HIA) is presented to solve the distributed permutation flow-shop scheduling problem (DPFSP). First, a decoding method is proposed to transfer a job permutation sequence to a feasible schedule considering both factory dispatching and job sequencing. Secondly, a local search with four search operators is presented based on the characteristics of the problem. Thirdly, a special crossover operator is designed for the DPFSP, and mutation and vaccination operators are also applied within the framework of the HIA to perform an immune search. The influence of parameter setting on the HIA is investigated based on the Taguchi method of design of experiment. Extensive numerical testing results based on 420 small-sized instances and 720 large-sized instances are provided. The effectiveness of the HIA is demonstrated by comparison with some existing heuristic algorithms and the variable neighbourhood descent methods. New best known solutions are obtained by the HIA for 17 out of 420 small-sized instances and 585 out of 720 large-sized instances.

  4. Improving the Fitness of High-Dimensional Biomechanical Models via Data-Driven Stochastic Exploration

    PubMed Central

    Bustamante, Carlos D.; Valero-Cuevas, Francisco J.

    2010-01-01

    The field of complex biomechanical modeling has begun to rely on Monte Carlo techniques to investigate the effects of parameter variability and measurement uncertainty on model outputs, search for optimal parameter combinations, and define model limitations. However, advanced stochastic methods to perform data-driven explorations, such as Markov chain Monte Carlo (MCMC), become necessary as the number of model parameters increases. Here, we demonstrate the feasibility and, what to our knowledge is, the first use of an MCMC approach to improve the fitness of realistically large biomechanical models. We used a Metropolis–Hastings algorithm to search increasingly complex parameter landscapes (3, 8, 24, and 36 dimensions) to uncover underlying distributions of anatomical parameters of a “truth model” of the human thumb on the basis of simulated kinematic data (thumbnail location, orientation, and linear and angular velocities) polluted by zero-mean, uncorrelated multivariate Gaussian “measurement noise.” Driven by these data, ten Markov chains searched each model parameter space for the subspace that best fit the data (posterior distribution). As expected, the convergence time increased, more local minima were found, and marginal distributions broadened as the parameter space complexity increased. In the 36-D scenario, some chains found local minima but the majority of chains converged to the true posterior distribution (confirmed using a cross-validation dataset), thus demonstrating the feasibility and utility of these methods for realistically large biomechanical problems. PMID:19272906

  5. Use of artificial bee colonies algorithm as numerical approximation of differential equations solution

    NASA Astrophysics Data System (ADS)

    Fikri, Fariz Fahmi; Nuraini, Nuning

    2018-03-01

    The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.

  6. Power law-based local search in spider monkey optimisation for lower order system modelling

    NASA Astrophysics Data System (ADS)

    Sharma, Ajay; Sharma, Harish; Bhargava, Annapurna; Sharma, Nirmala

    2017-01-01

    The nature-inspired algorithms (NIAs) have shown efficiency to solve many complex real-world optimisation problems. The efficiency of NIAs is measured by their ability to find adequate results within a reasonable amount of time, rather than an ability to guarantee the optimal solution. This paper presents a solution for lower order system modelling using spider monkey optimisation (SMO) algorithm to obtain a better approximation for lower order systems and reflects almost original higher order system's characteristics. Further, a local search strategy, namely, power law-based local search is incorporated with SMO. The proposed strategy is named as power law-based local search in SMO (PLSMO). The efficiency, accuracy and reliability of the proposed algorithm is tested over 20 well-known benchmark functions. Then, the PLSMO algorithm is applied to solve the lower order system modelling problem.

  7. Unsupervised Word Spotting in Historical Handwritten Document Images using Document-oriented Local Features.

    PubMed

    Zagoris, Konstantinos; Pratikakis, Ioannis; Gatos, Basilis

    2017-05-03

    Word spotting strategies employed in historical handwritten documents face many challenges due to variation in the writing style and intense degradation. In this paper, a new method that permits effective word spotting in handwritten documents is presented that it relies upon document-oriented local features which take into account information around representative keypoints as well a matching process that incorporates spatial context in a local proximity search without using any training data. Experimental results on four historical handwritten datasets for two different scenarios (segmentation-based and segmentation-free) using standard evaluation measures show the improved performance achieved by the proposed methodology.

  8. There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task

    PubMed Central

    Miconi, Thomas; Groomes, Laura; Kreiman, Gabriel

    2016-01-01

    When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global “priority map” that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects. PMID:26092221

  9. HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2014-01-01

    Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.

  10. FHSA-SED: Two-Locus Model Detection for Genome-Wide Association Study with Harmony Search Algorithm.

    PubMed

    Tuo, Shouheng; Zhang, Junying; Yuan, Xiguo; Zhang, Yuanyuan; Liu, Zhaowen

    2016-01-01

    Two-locus model is a typical significant disease model to be identified in genome-wide association study (GWAS). Due to intensive computational burden and diversity of disease models, existing methods have drawbacks on low detection power, high computation cost, and preference for some types of disease models. In this study, two scoring functions (Bayesian network based K2-score and Gini-score) are used for characterizing two SNP locus as a candidate model, the two criteria are adopted simultaneously for improving identification power and tackling the preference problem to disease models. Harmony search algorithm (HSA) is improved for quickly finding the most likely candidate models among all two-locus models, in which a local search algorithm with two-dimensional tabu table is presented to avoid repeatedly evaluating some disease models that have strong marginal effect. Finally G-test statistic is used to further test the candidate models. We investigate our method named FHSA-SED on 82 simulated datasets and a real AMD dataset, and compare it with two typical methods (MACOED and CSE) which have been developed recently based on swarm intelligent search algorithm. The results of simulation experiments indicate that our method outperforms the two compared algorithms in terms of detection power, computation time, evaluation times, sensitivity (TPR), specificity (SPC), positive predictive value (PPV) and accuracy (ACC). Our method has identified two SNPs (rs3775652 and rs10511467) that may be also associated with disease in AMD dataset.

  11. Spectroscopic imaging ellipsometry for automated search of flakes of mono- and n-layers of 2D-materials

    NASA Astrophysics Data System (ADS)

    Funke, S.; Wurstbauer, U.; Miller, B.; Matković, A.; Green, A.; Diebold, A.; Röling, C.; Thiesen, P. H.

    2017-11-01

    Spectroscopic imaging ellipsometry (SIE) is used to localize and characterize flakes of conducting, semi-conducting and insulating 2D-materials. Although the research in the field of monolayers of 2D-materials increased the last years, it is still challenging to look for small flakes and distinguish between different layer numbers. Special substrates are used to enhance optical contrast for the conventional light microscopy (LM). In case when other functional support from the substrate is essential, an additional transfer step needs to be employed, bringing the drawbacks as contamination, cracking and wrinkling of the 2D materials. Furthermore it is time-consuming and not yet fully automatically to search for monolayers by contrast with the LM. Here we present a method, that is able to automatically localize regions with desired thicknesses, e.g. monolayers, of the different materials on arbitrary substrates.

  12. An evaluation of multi-probe locality sensitive hashing for computing similarities over web-scale query logs

    PubMed Central

    2018-01-01

    Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users’ queries from commercial search engines), computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH) methods and evaluate four variants in a distributed computing environment (specifically, Hadoop). We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with “vanilla” LSH, even when using the same amount of space. PMID:29346410

  13. Optimizing heliostat positions with local search metaheuristics using a ray tracing optical model

    NASA Astrophysics Data System (ADS)

    Reinholz, Andreas; Husenbeth, Christof; Schwarzbözl, Peter; Buck, Reiner

    2017-06-01

    The life cycle costs of solar tower power plants are mainly determined by the investment costs of its construction. Significant parts of these investment costs are used for the heliostat field. Therefore, an optimized placement of the heliostats gaining the maximal annual power production has a direct impact on the life cycle costs revenue ratio. We present a two level local search method implemented in MATLAB utilizing the Monte Carlo raytracing software STRAL [1] for the evaluation of the annual power output for a specific weighted annual time scheme. The algorithm was applied to a solar tower power plant (PS10) with 624 heliostats. Compared to former work of Buck [2], we were able to improve both runtime of the algorithm and quality of the output solutions significantly. Using the same environment for both algorithms, we were able to reach Buck's best solution with a speed up factor of about 20.

  14. An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin

    2018-04-01

    Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.

  15. A simple approach to lifetime learning in genetic programming-based symbolic regression.

    PubMed

    Azad, Raja Muhammad Atif; Ryan, Conor

    2014-01-01

    Genetic programming (GP) coarsely models natural evolution to evolve computer programs. Unlike in nature, where individuals can often improve their fitness through lifetime experience, the fitness of GP individuals generally does not change during their lifetime, and there is usually no opportunity to pass on acquired knowledge. This paper introduces the Chameleon system to address this discrepancy and augment GP with lifetime learning by adding a simple local search that operates by tuning the internal nodes of individuals. Although not the first attempt to combine local search with GP, its simplicity means that it is easy to understand and cheap to implement. A simple cache is added which leverages the local search to reduce the tuning cost to a small fraction of the expected cost, and we provide a theoretical upper limit on the maximum tuning expense given the average tree size of the population and show that this limit grows very conservatively as the average tree size of the population increases. We show that Chameleon uses available genetic material more efficiently by exploring more actively than with standard GP, and demonstrate that not only does Chameleon outperform standard GP (on both training and test data) over a number of symbolic regression type problems, it does so by producing smaller individuals and it works harmoniously with two other well-known extensions to GP, namely, linear scaling and a diversity-promoting tournament selection method.

  16. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP.

    PubMed

    Mohsen, Abdulqader M

    2016-01-01

    Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality.

  17. Escalated convergent artificial bee colony

    NASA Astrophysics Data System (ADS)

    Jadon, Shimpi Singh; Bansal, Jagdish Chand; Tiwari, Ritu

    2016-03-01

    Artificial bee colony (ABC) optimisation algorithm is a recent, fast and easy-to-implement population-based meta heuristic for optimisation. ABC has been proved a rival algorithm with some popular swarm intelligence-based algorithms such as particle swarm optimisation, firefly algorithm and ant colony optimisation. The solution search equation of ABC is influenced by a random quantity which helps its search process in exploration at the cost of exploitation. In order to find a fast convergent behaviour of ABC while exploitation capability is maintained, in this paper basic ABC is modified in two ways. First, to improve exploitation capability, two local search strategies, namely classical unidimensional local search and levy flight random walk-based local search are incorporated with ABC. Furthermore, a new solution search strategy, namely stochastic diffusion scout search is proposed and incorporated into the scout bee phase to provide more chance to abandon solution to improve itself. Efficiency of the proposed algorithm is tested on 20 benchmark test functions of different complexities and characteristics. Results are very promising and they prove it to be a competitive algorithm in the field of swarm intelligence-based algorithms.

  18. Advanced fitness landscape analysis and the performance of memetic algorithms.

    PubMed

    Merz, Peter

    2004-01-01

    Memetic algorithms (MAs) have demonstrated very effective in combinatorial optimization. This paper offers explanations as to why this is so by investigating the performance of MAs in terms of efficiency and effectiveness. A special class of MAs is used to discuss efficiency and effectiveness for local search and evolutionary meta-search. It is shown that the efficiency of MAs can be increased drastically with the use of domain knowledge. However, effectiveness highly depends on the structure of the problem. As is well-known, identifying this structure is made easier with the notion of fitness landscapes: the local properties of the fitness landscape strongly influence the effectiveness of the local search while the global properties strongly influence the effectiveness of the evolutionary meta-search. This paper also introduces new techniques for analyzing the fitness landscapes of combinatorial problems; these techniques focus on the investigation of random walks in the fitness landscape starting at locally optimal solutions as well as on the escape from the basins of attractions of current local optima. It is shown for NK-landscapes and landscapes of the unconstrained binary quadratic programming problem (BQP) that a random walk to another local optimum can be used to explain the efficiency of recombination in comparison to mutation. Moreover, the paper shows that other aspects like the size of the basins of attractions of local optima are important for the efficiency of MAs and a local search escape analysis is proposed. These simple analysis techniques have several advantages over previously proposed statistical measures and provide valuable insight into the behaviour of MAs on different kinds of landscapes.

  19. Biclustering of gene expression data using reactive greedy randomized adaptive search procedure.

    PubMed

    Dharan, Smitha; Nair, Achuthsankar S

    2009-01-30

    Biclustering algorithms belong to a distinct class of clustering algorithms that perform simultaneous clustering of both rows and columns of the gene expression matrix and can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse. Cheng and Church have introduced a measure called mean squared residue score to evaluate the quality of a bicluster and has become one of the most popular measures to search for biclusters. In this paper, we review basic concepts of the metaheuristics Greedy Randomized Adaptive Search Procedure (GRASP)-construction and local search phases and propose a new method which is a variant of GRASP called Reactive Greedy Randomized Adaptive Search Procedure (Reactive GRASP) to detect significant biclusters from large microarray datasets. The method has two major steps. First, high quality bicluster seeds are generated by means of k-means clustering. In the second step, these seeds are grown using the Reactive GRASP, in which the basic parameter that defines the restrictiveness of the candidate list is self-adjusted, depending on the quality of the solutions found previously. We performed statistical and biological validations of the biclusters obtained and evaluated the method against the results of basic GRASP and as well as with the classic work of Cheng and Church. The experimental results indicate that the Reactive GRASP approach outperforms the basic GRASP algorithm and Cheng and Church approach. The Reactive GRASP approach for the detection of significant biclusters is robust and does not require calibration efforts.

  20. Randomly iterated search and statistical competency as powerful inversion tools for deformation source modeling: Application to volcano interferometric synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    Shirzaei, M.; Walter, T. R.

    2009-10-01

    Modern geodetic techniques provide valuable and near real-time observations of volcanic activity. Characterizing the source of deformation based on these observations has become of major importance in related monitoring efforts. We investigate two random search approaches, simulated annealing (SA) and genetic algorithm (GA), and utilize them in an iterated manner. The iterated approach helps to prevent GA in general and SA in particular from getting trapped in local minima, and it also increases redundancy for exploring the search space. We apply a statistical competency test for estimating the confidence interval of the inversion source parameters, considering their internal interaction through the model, the effect of the model deficiency, and the observational error. Here, we present and test this new randomly iterated search and statistical competency (RISC) optimization method together with GA and SA for the modeling of data associated with volcanic deformations. Following synthetic and sensitivity tests, we apply the improved inversion techniques to two episodes of activity in the Campi Flegrei volcanic region in Italy, observed by the interferometric synthetic aperture radar technique. Inversion of these data allows derivation of deformation source parameters and their associated quality so that we can compare the two inversion methods. The RISC approach was found to be an efficient method in terms of computation time and search results and may be applied to other optimization problems in volcanic and tectonic environments.

  1. Localizing New Pulsars with Intensity Mapping

    NASA Astrophysics Data System (ADS)

    Swiggum, Joe; Gentile, Peter

    2018-01-01

    Although low-frequency, single dish pulsar surveys provide an efficient means of searching large regions of sky quickly, the localization of new discoveries is poor. For example, discoveries from 350 MHz surveys using the Green Bank Telescope (GBT) have position uncertainties up to the FWHM of the telescope's "beam" on the sky, over half a degree! Before finding a coherent timing solution (requires 8-12 months of dedicated timing observations) a "gridding" method is usually employed to improve localization of new pulsars, whereby a grid of higher frequency beam positions is used to tile the initial error region. This method often requires over an hour of observing time to achieve arcminute-precision localization (provided the pulsar is detectable at higher frequencies).Here, we describe another method that uses the same observing frequency as the discovery observation and scans over Right Ascension and Declination directions around the nominal position. A Gaussian beam model is fit to folded pulse profile intensities as a function of time/position to provide improved localization. Using five test cases, we show that intensity mapping localization at 350 MHz with the GBT yields pulsar positions to 1 arcminute precision, facilitating high-frequency follow-up and higher significance detections for future pulsar timing. This method is also well suited to be directly implemented in future low-frequency drift scan pulsar surveys (e.g. with the Five hundred meter Aperture Spherical Telescope; FAST).

  2. Feeling lucky? Using search engines to assess perceptions of urban sustainability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keirstead, James

    2009-02-15

    The sustainability of urban environments is an important issue at both local and international scales. Indicators are frequently used by decision-makers seeking to improve urban performance but these metrics can be dependent on sparse quantitative data. This paper explores the potential of an alternative approach, using an internet search engine to quickly gather qualitative data on the key attributes of cities. The method is applied to 21 world cities and the results indicate that, while the technique does shed light on direct and indirect aspects of sustainability, the validity of derived metrics as objective indicators of long-term sustainability is questionable.more » However the method's ability to provide subjective short-term assessments is more promising and it could therefore play an important role in participatory policy exercises such as public consultations. A number of promising technical improvements to the method's performance are also highlighted.« less

  3. Particle swarm optimization and gravitational wave data analysis: Performance on a binary inspiral testbed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Yan; Mohanty, Soumya D.; Center for Gravitational Wave Astronomy, Department of Physics and Astronomy, University of Texas at Brownsville, 80 Fort Brown, Brownsville, Texas 78520

    2010-03-15

    The detection and estimation of gravitational wave signals belonging to a parameterized family of waveforms requires, in general, the numerical maximization of a data-dependent function of the signal parameters. Because of noise in the data, the function to be maximized is often highly multimodal with numerous local maxima. Searching for the global maximum then becomes computationally expensive, which in turn can limit the scientific scope of the search. Stochastic optimization is one possible approach to reducing computational costs in such applications. We report results from a first investigation of the particle swarm optimization method in this context. The method ismore » applied to a test bed motivated by the problem of detection and estimation of a binary inspiral signal. Our results show that particle swarm optimization works well in the presence of high multimodality, making it a viable candidate method for further applications in gravitational wave data analysis.« less

  4. Stellar Wakes from Dark Matter Subhalos.

    PubMed

    Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R; Wu, Chih-Liang

    2018-05-25

    We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ∼10^{7}  M_{⊙} or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.

  5. Research on rolling element bearing fault diagnosis based on genetic algorithm matching pursuit

    NASA Astrophysics Data System (ADS)

    Rong, R. W.; Ming, T. F.

    2017-12-01

    In order to solve the problem of slow computation speed, matching pursuit algorithm is applied to rolling bearing fault diagnosis, and the improvement are conducted from two aspects that are the construction of dictionary and the way to search for atoms. To be specific, Gabor function which can reflect time-frequency localization characteristic well is used to construct the dictionary, and the genetic algorithm to improve the searching speed. A time-frequency analysis method based on genetic algorithm matching pursuit (GAMP) algorithm is proposed. The way to set property parameters for the improvement of the decomposition results is studied. Simulation and experimental results illustrate that the weak fault feature of rolling bearing can be extracted effectively by this proposed method, at the same time, the computation speed increases obviously.

  6. Optimal Multiple Surface Segmentation With Shape and Context Priors

    PubMed Central

    Bai, Junjie; Garvin, Mona K.; Sonka, Milan; Buatti, John M.; Wu, Xiaodong

    2014-01-01

    Segmentation of multiple surfaces in medical images is a challenging problem, further complicated by the frequent presence of weak boundary evidence, large object deformations, and mutual influence between adjacent objects. This paper reports a novel approach to multi-object segmentation that incorporates both shape and context prior knowledge in a 3-D graph-theoretic framework to help overcome the stated challenges. We employ an arc-based graph representation to incorporate a wide spectrum of prior information through pair-wise energy terms. In particular, a shape-prior term is used to penalize local shape changes and a context-prior term is used to penalize local surface-distance changes from a model of the expected shape and surface distances, respectively. The globally optimal solution for multiple surfaces is obtained by computing a maximum flow in a low-order polynomial time. The proposed method was validated on intraretinal layer segmentation of optical coherence tomography images and demonstrated statistically significant improvement of segmentation accuracy compared to our earlier graph-search method that was not utilizing shape and context priors. The mean unsigned surface positioning errors obtained by the conventional graph-search approach (6.30 ± 1.58 μm) was improved to 5.14 ± 0.99 μm when employing our new method with shape and context priors. PMID:23193309

  7. Contextual cost: when a visual-search target is not where it should be.

    PubMed

    Makovski, Tal; Jiang, Yuhong V

    2010-02-01

    Visual search is often facilitated when the search display occasionally repeats, revealing a contextual-cueing effect. According to the associative-learning account, contextual cueing arises from associating the display configuration with the target location. However, recent findings emphasizing the importance of local context near the target have given rise to the possibility that low-level repetition priming may account for the contextual-cueing effect. This study distinguishes associative learning from local repetition priming by testing whether search is directed toward a target's expected location, even when the target is relocated. After participants searched for a T among Ls in displays that repeated 24 times, they completed a transfer session where the target was relocated locally to a previously blank location (Experiment 1) or to an adjacent distractor location (Experiment 2). Results revealed that contextual cueing decreased as the target appeared farther away from its expected location, ultimately resulting in a contextual cost when the target swapped locations with a local distractor. We conclude that target predictability is a key factor in contextual cueing.

  8. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci

    PubMed Central

    2010-01-01

    Background Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Methods Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. Results We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. Conclusions We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and modelling gene-gene interactions that influence a complex human trait. PMID:20875103

  9. Minimizing the Discrepancy between Simulated and Historical Failures in Turbine Engines: A Simulation-Based Optimization Method (Postprint)

    DTIC Science & Technology

    2015-01-01

    Procedure. The simulated annealing (SA) algorithm is a well-known local search metaheuristic used to address discrete, continuous, and multiobjective...design of experiments (DOE) to tune the parameters of the optimiza- tion algorithm . Section 5 shows the results of the case study. Finally, concluding... metaheuristic . The proposed method is broken down into two phases. Phase I consists of a Monte Carlo simulation to obtain the simulated percentage of failure

  10. Optic disk localization by a robust fusion method

    NASA Astrophysics Data System (ADS)

    Zhang, Jielin; Yin, Fengshou; Wong, Damon W. K.; Liu, Jiang; Baskaran, Mani; Cheng, Ching-Yu; Wong, Tien Yin

    2013-02-01

    The optic disk localization plays an important role in developing computer-aided diagnosis (CAD) systems for ocular diseases such as glaucoma, diabetic retinopathy and age-related macula degeneration. In this paper, we propose an intelligent fusion of methods for the localization of the optic disk in retinal fundus images. Three different approaches are developed to detect the location of the optic disk separately. The first method is the maximum vessel crossing method, which finds the region with the most number of blood vessel crossing points. The second one is the multichannel thresholding method, targeting the area with the highest intensity. The final method searches the vertical and horizontal region-of-interest separately on the basis of blood vessel structure and neighborhood entropy profile. Finally, these three methods are combined using an intelligent fusion method to improve the overall accuracy. The proposed algorithm was tested on the STARE database and the ORIGAlight database, each consisting of images with various pathologies. The preliminary result on the STARE database can achieve 81.5%, while a higher result of 99% can be obtained for the ORIGAlight database. The proposed method outperforms each individual approach and state-of-the-art method which utilizes an intensity-based approach. The result demonstrates a high potential for this method to be used in retinal CAD systems.

  11. Improved iris localization by using wide and narrow field of view cameras for iris recognition

    NASA Astrophysics Data System (ADS)

    Kim, Yeong Gon; Shin, Kwang Yong; Park, Kang Ryoung

    2013-10-01

    Biometrics is a method of identifying individuals by their physiological or behavioral characteristics. Among other biometric identifiers, iris recognition has been widely used for various applications that require a high level of security. When a conventional iris recognition camera is used, the size and position of the iris region in a captured image vary according to the X, Y positions of a user's eye and the Z distance between a user and the camera. Therefore, the searching area of the iris detection algorithm is increased, which can inevitably decrease both the detection speed and accuracy. To solve these problems, we propose a new method of iris localization that uses wide field of view (WFOV) and narrow field of view (NFOV) cameras. Our study is new as compared to previous studies in the following four ways. First, the device used in our research acquires three images, one each of the face and both irises, using one WFOV and two NFOV cameras simultaneously. The relation between the WFOV and NFOV cameras is determined by simple geometric transformation without complex calibration. Second, the Z distance (between a user's eye and the iris camera) is estimated based on the iris size in the WFOV image and anthropometric data of the size of the human iris. Third, the accuracy of the geometric transformation between the WFOV and NFOV cameras is enhanced by using multiple matrices of the transformation according to the Z distance. Fourth, the searching region for iris localization in the NFOV image is significantly reduced based on the detected iris region in the WFOV image and the matrix of geometric transformation corresponding to the estimated Z distance. Experimental results showed that the performance of the proposed iris localization method is better than that of conventional methods in terms of accuracy and processing time.

  12. Partial branch and bound algorithm for improved data association in multiframe processing

    NASA Astrophysics Data System (ADS)

    Poore, Aubrey B.; Yan, Xin

    1999-07-01

    A central problem in multitarget, multisensor, and multiplatform tracking remains that of data association. Lagrangian relaxation methods have shown themselves to yield near optimal answers in real-time. The necessary improvement in the quality of these solutions warrants a continuing interest in these methods. These problems are NP-hard; the only known methods for solving them optimally are enumerative in nature with branch-and-bound being most efficient. Thus, the development of methods less than a full branch-and-bound are needed for improving the quality. Such methods as K-best, local search, and randomized search have been proposed to improve the quality of the relaxation solution. Here, a partial branch-and-bound technique along with adequate branching and ordering rules are developed. Lagrangian relaxation is used as a branching method and as a method to calculate the lower bound for subproblems. The result shows that the branch-and-bound framework greatly improves the resolution quality of the Lagrangian relaxation algorithm and yields better multiple solutions in less time than relaxation alone.

  13. Language Preferences on Websites and in Google Searches for Human Health and Food Information

    PubMed Central

    Singh, Punam Mony; Wight, Carly A; Sercinoglu, Olcan; Wilson, David C; Boytsov, Artem

    2007-01-01

    Background While it is known that the majority of pages on the World Wide Web are in English, little is known about the preferred language of users searching for health information online. Objectives (1) To help global and domestic publishers, for example health and food agencies, to determine the need for translation of online information from English into local languages. (2) To help these agencies determine which language(s) they should select when publishing information online in target nations and for target subpopulations within nations. Methods To estimate the percentage of Web publishers that translate their health and food websites, we measured the frequency at which domain names retrieved by Google overlap for language translations of the same health-related search term. To quantify language choice of searchers from different countries, Google provided estimates of the rate at which its search engine was queried in six languages relative to English for the terms “avian flu,” “tuberculosis,” “schizophrenia,” and “maize” (corn) from January 2004 to April 2006. The estimate was based on a 20% sample of all Google queries from 227 nations. Results We estimate that 80%-90% of health- and food-related institutions do not translate their websites into multiple languages, even when the information concerns pandemic disease such as avian influenza. Although Internet users are often well-educated, there was a strong preference for searching for health and food information in the local language, rather than English. For “avian flu,” we found that only 1% of searches in non-English-speaking nations were in English, whereas for “tuberculosis” or “schizophrenia,” about 4%-40% of searches in non-English countries employed English. A subset of searches for health information presumably originating from immigrants occurred in their native tongue, not the language of the adopted country. However, Spanish-language online searches for “avian flu,” “schizophrenia,” and “maize/corn” in the United States occurred at only <1% of the English search rate, although the US online Hispanic population constitutes 12% of the total US online population. Sub-Saharan Africa and Bangladesh searches for health information occurred in unexpected languages, perhaps reflecting the presence of aid workers and the global migration of Internet users, respectively. In Latin America, indigenous-language search terms were often used rather than Spanish. Conclusions (1) Based on the strong preference for searching the Internet for health information in the local language, indigenous language, or immigrant language of origin, global and domestic health and food agencies should continue their efforts to translate their institutional websites into more languages. (2) We have provided linguistic online search pattern data to help health and food agencies better select languages for targeted website publishing. PMID:17613488

  14. FLASHFLOOD: A 3D Field-based similarity search and alignment method for flexible molecules

    NASA Astrophysics Data System (ADS)

    Pitman, Michael C.; Huber, Wolfgang K.; Horn, Hans; Krämer, Andreas; Rice, Julia E.; Swope, William C.

    2001-07-01

    A three-dimensional field-based similarity search and alignment method for flexible molecules is introduced. The conformational space of a flexible molecule is represented in terms of fragments and torsional angles of allowed conformations. A user-definable property field is used to compute features of fragment pairs. Features are generalizations of CoMMA descriptors (Silverman, B.D. and Platt, D.E., J. Med. Chem., 39 (1996) 2129.) that characterize local regions of the property field by its local moments. The features are invariant under coordinate system transformations. Features taken from a query molecule are used to form alignments with fragment pairs in the database. An assembly algorithm is then used to merge the fragment pairs into full structures, aligned to the query. Key to the method is the use of a context adaptive descriptor scaling procedure as the basis for similarity. This allows the user to tune the weights of the various feature components based on examples relevant to the particular context under investigation. The property fields may range from simple, phenomenological fields, to fields derived from quantum mechanical calculations. We apply the method to the dihydrofolate/methotrexate benchmark system, and show that when one injects relevant contextual information into the descriptor scaling procedure, better results are obtained more efficiently. We also show how the method works and include computer times for a query from a database that represents approximately 23 million conformers of seventeen flexible molecules.

  15. Theoretical Analysis of Local Search and Simple Evolutionary Algorithms for the Generalized Travelling Salesperson Problem.

    PubMed

    Pourhassan, Mojgan; Neumann, Frank

    2018-06-22

    The generalized travelling salesperson problem is an important NP-hard combinatorial optimization problem for which meta-heuristics, such as local search and evolutionary algorithms, have been used very successfully. Two hierarchical approaches with different neighbourhood structures, namely a Cluster-Based approach and a Node-Based approach, have been proposed by Hu and Raidl (2008) for solving this problem. In this paper, local search algorithms and simple evolutionary algorithms based on these approaches are investigated from a theoretical perspective. For local search algorithms, we point out the complementary abilities of the two approaches by presenting instances where they mutually outperform each other. Afterwards, we introduce an instance which is hard for both approaches when initialized on a particular point of the search space, but where a variable neighbourhood search combining them finds the optimal solution in polynomial time. Then we turn our attention to analysing the behaviour of simple evolutionary algorithms that use these approaches. We show that the Node-Based approach solves the hard instance of the Cluster-Based approach presented in Corus et al. (2016) in polynomial time. Furthermore, we prove an exponential lower bound on the optimization time of the Node-Based approach for a class of Euclidean instances.

  16. Heuristic reusable dynamic programming: efficient updates of local sequence alignment.

    PubMed

    Hong, Changjin; Tewfik, Ahmed H

    2009-01-01

    Recomputation of the previously evaluated similarity results between biological sequences becomes inevitable when researchers realize errors in their sequenced data or when the researchers have to compare nearly similar sequences, e.g., in a family of proteins. We present an efficient scheme for updating local sequence alignments with an affine gap model. In principle, using the previous matching result between two amino acid sequences, we perform a forward-backward alignment to generate heuristic searching bands which are bounded by a set of suboptimal paths. Given a correctly updated sequence, we initially predict a new score of the alignment path for each contour to select the best candidates among them. Then, we run the Smith-Waterman algorithm in this confined space. Furthermore, our heuristic alignment for an updated sequence shows that it can be further accelerated by using reusable dynamic programming (rDP), our prior work. In this study, we successfully validate "relative node tolerance bound" (RNTB) in the pruned searching space. Furthermore, we improve the computational performance by quantifying the successful RNTB tolerance probability and switch to rDP on perturbation-resilient columns only. In our searching space derived by a threshold value of 90 percent of the optimal alignment score, we find that 98.3 percent of contours contain correctly updated paths. We also find that our method consumes only 25.36 percent of the runtime cost of sparse dynamic programming (sDP) method, and to only 2.55 percent of that of a normal dynamic programming with the Smith-Waterman algorithm.

  17. A methodology for airplane parameter estimation and confidence interval determination in nonlinear estimation problems. Ph.D. Thesis - George Washington Univ., Apr. 1985

    NASA Technical Reports Server (NTRS)

    Murphy, P. C.

    1986-01-01

    An algorithm for maximum likelihood (ML) estimation is developed with an efficient method for approximating the sensitivities. The ML algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). MNRES determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. With the fitted surface, sensitivity information can be updated at each iteration with less computational effort than that required by either a finite-difference method or integration of the analytically determined sensitivity equations. MNRES eliminates the need to derive sensitivity equations for each new model, and thus provides flexibility to use model equations in any convenient format. A random search technique for determining the confidence limits of ML parameter estimates is applied to nonlinear estimation problems for airplanes. The confidence intervals obtained by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. The degree of nonlinearity in the estimation problem is an important factor in the relationship between CR bounds and the error bounds determined by the search technique. Beale's measure of nonlinearity is developed in this study for airplane identification problems; it is used to empirically correct confidence levels and to predict the degree of agreement between CR bounds and search estimates.

  18. Finite-difference solution of the compressible stability eigenvalue problem

    NASA Technical Reports Server (NTRS)

    Malik, M. R.

    1982-01-01

    A compressible stability analysis computer code is developed. The code uses a matrix finite difference method for local eigenvalue solution when a good guess for the eigenvalue is available and is significantly more computationally efficient than the commonly used initial value approach. The local eigenvalue search procedure also results in eigenfunctions and, at little extra work, group velocities. A globally convergent eigenvalue procedure is also developed which may be used when no guess for the eigenvalue is available. The global problem is formulated in such a way that no unstable spurious modes appear so that the method is suitable for use in a black box stability code. Sample stability calculations are presented for the boundary layer profiles of a Laminar Flow Control (LFC) swept wing.

  19. Structure Refinement of Protein Low Resolution Models Using the GNEIMO Constrained Dynamics Method

    PubMed Central

    Park, In-Hee; Gangupomu, Vamshi; Wagner, Jeffrey; Jain, Abhinandan; Vaidehi, Nagara-jan

    2012-01-01

    The challenge in protein structure prediction using homology modeling is the lack of reliable methods to refine the low resolution homology models. Unconstrained all-atom molecular dynamics (MD) does not serve well for structure refinement due to its limited conformational search. We have developed and tested the constrained MD method, based on the Generalized Newton-Euler Inverse Mass Operator (GNEIMO) algorithm for protein structure refinement. In this method, the high-frequency degrees of freedom are replaced with hard holonomic constraints and a protein is modeled as a collection of rigid body clusters connected by flexible torsional hinges. This allows larger integration time steps and enhances the conformational search space. In this work, we have demonstrated the use of a constraint free GNEIMO method for protein structure refinement that starts from low-resolution decoy sets derived from homology methods. In the eight proteins with three decoys for each, we observed an improvement of ~2 Å in the RMSD to the known experimental structures of these proteins. The GNEIMO method also showed enrichment in the population density of native-like conformations. In addition, we demonstrated structural refinement using a “Freeze and Thaw” clustering scheme with the GNEIMO framework as a viable tool for enhancing localized conformational search. We have derived a robust protocol based on the GNEIMO replica exchange method for protein structure refinement that can be readily extended to other proteins and possibly applicable for high throughput protein structure refinement. PMID:22260550

  20. Speeding up 3D speckle tracking using PatchMatch

    NASA Astrophysics Data System (ADS)

    Zontak, Maria; O'Donnell, Matthew

    2016-03-01

    Echocardiography provides valuable information to diagnose heart dysfunction. A typical exam records several minutes of real-time cardiac images. To enable complete analysis of 3D cardiac strains, 4-D (3-D+t) echocardiography is used. This results in a huge dataset and requires effective automated analysis. Ultrasound speckle tracking is an effective method for tissue motion analysis. It involves correlation of a 3D kernel (block) around a voxel with kernels in later frames. The search region is usually confined to a local neighborhood, due to biomechanical and computational constraints. For high strains and moderate frame-rates, however, this search region will remain large, leading to a considerable computational burden. Moreover, speckle decorrelation (due to high strains) leads to errors in tracking. To solve this, spatial motion coherency between adjacent voxels should be imposed, e.g., by averaging their correlation functions.1 This requires storing correlation functions for neighboring voxels, thus increasing memory demands. In this work, we propose an efficient search using PatchMatch, 2 a powerful method to find correspondences between images. Here we adopt PatchMatch for 3D volumes and radio-frequency signals. As opposed to an exact search, PatchMatch performs random sampling of the search region and propagates successive matches among neighboring voxels. We show that: 1) Inherently smooth offset propagation in PatchMatch contributes to spatial motion coherence without any additional processing or memory demand. 2) For typical scenarios, PatchMatch is at least 20 times faster than the exact search, while maintaining comparable tracking accuracy.

  1. An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network.

    PubMed

    Cheng, Jing; Xia, Linyuan

    2016-08-31

    Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.

  2. An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network

    PubMed Central

    Cheng, Jing; Xia, Linyuan

    2016-01-01

    Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm. PMID:27589756

  3. A Comparison of Risk Sensitive Path Planning Methods for Aircraft Emergency Landing

    NASA Technical Reports Server (NTRS)

    Meuleau, Nicolas; Plaunt, Christian; Smith, David E.; Smith, Tristan

    2009-01-01

    Determining the best site to land a damaged aircraft presents some interesting challenges for standard path planning techniques. There are multiple possible locations to consider, the space is 3-dimensional with dynamics, the criteria for a good path is determined by overall risk rather than distance or time, and optimization really matters, since an improved path corresponds to greater expected survival rate. We have investigated a number of different path planning methods for solving this problem, including cell decomposition, visibility graphs, probabilistic road maps (PRMs), and local search techniques. In their pure form, none of these techniques have proven to be entirely satisfactory - some are too slow or unpredictable, some produce highly non-optimal paths or do not find certain types of paths, and some do not cope well with the dynamic constraints when controllability is limited. In the end, we are converging towards a hybrid technique that involves seeding a roadmap with a layered visibility graph, using PRM to extend that roadmap, and using local search to further optimize the resulting paths. We describe the techniques we have investigated, report on our experiments with these techniques, and discuss when and why various techniques were unsatisfactory.

  4. Shape optimization techniques for musical instrument design

    NASA Astrophysics Data System (ADS)

    Henrique, Luis; Antunes, Jose; Carvalho, Joao S.

    2002-11-01

    The design of musical instruments is still mostly based on empirical knowledge and costly experimentation. One interesting improvement is the shape optimization of resonating components, given a number of constraints (allowed parameter ranges, shape smoothness, etc.), so that vibrations occur at specified modal frequencies. Each admissible geometrical configuration generates an error between computed eigenfrequencies and the target set. Typically, error surfaces present many local minima, corresponding to suboptimal designs. This difficulty can be overcome using global optimization techniques, such as simulated annealing. However these methods are greedy, concerning the number of function evaluations required. Thus, the computational effort can be unacceptable if complex problems, such as bell optimization, are tackled. Those issues are addressed in this paper, and a method for improving optimization procedures is proposed. Instead of using the local geometric parameters as searched variables, the system geometry is modeled in terms of truncated series of orthogonal space-funcitons, and optimization is performed on their amplitude coefficients. Fourier series and orthogonal polynomials are typical such functions. This technique reduces considerably the number of searched variables, and has a potential for significant computational savings in complex problems. It is illustrated by optimizing the shapes of both current and uncommon marimba bars.

  5. An active UHF RFID localization system for fawn saving

    NASA Astrophysics Data System (ADS)

    Eberhardt, M.; Lehner, M.; Ascher, A.; Allwang, M.; Biebl, E. M.

    2015-11-01

    We present a localization concept for active UHF RFID transponders which enables mowing machine drivers to detect and localize marked fawns. The whole system design and experimental results with transponders located near the ground in random orientations in a meadow area are shown. The communication flow between reader and transponders is realized as a dynamic master-slave concept. Multiple marked fawns will be localized by processing detected transponders sequentially. With an eight-channel-receiver with integrated calibration method one can estimate the direction-of-arrival by measuring the phases of the transponder signals up to a range of 50 m in all directions. For further troubleshooting array manifolds have been measured. An additional hand-held receiver with a two-channel receiver allows a guided approaching search without endangering the fawn by the mowing machine.

  6. Visual Search Targeting Either Local or Global Perceptual Processes Differs as a Function of Autistic-Like Traits in the Typically Developing Population

    ERIC Educational Resources Information Center

    Almeida, Renita A.; Dickinson, J. Edwin; Maybery, Murray T.; Badcock, Johanna C.; Badcock, David R.

    2013-01-01

    Relative to low scorers, high scorers on the Autism-Spectrum Quotient (AQ) show enhanced performance on the Embedded Figures Test and the Radial Frequency search task (RFST), which has been attributed to both enhanced local processing and differences in combining global percepts. We investigate the role of local and global processing further using…

  7. Combining local and global limitations of visual search.

    PubMed

    Põder, Endel

    2017-04-01

    There are different opinions about the roles of local interactions and central processing capacity in visual search. This study attempts to clarify the problem using a new version of relevant set cueing. A central precue indicates two symmetrical segments (that may contain a target object) within a circular array of objects presented briefly around the fixation point. The number of objects in the relevant segments, and density of objects in the array were varied independently. Three types of search experiments were run: (a) search for a simple visual feature (color, size, and orientation); (b) conjunctions of simple features; and (c) spatial configuration of simple features (rotated Ts). For spatial configuration stimuli, the results were consistent with a fixed global processing capacity and standard crowding zones. For simple features and their conjunctions, the results were different, dependent on the features involved. While color search exhibits virtually no capacity limits or crowding, search for an orientation target was limited by both. Results for conjunctions of features can be partly explained by the results from the respective features. This study shows that visual search is limited by both local interference and global capacity, and the limitations are different for different visual features.

  8. Matching CCD images to a stellar catalog using locality-sensitive hashing

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Yu, Jia-Zong; Peng, Qing-Yu

    2018-02-01

    The usage of a subset of observed stars in a CCD image to find their corresponding matched stars in a stellar catalog is an important issue in astronomical research. Subgraph isomorphic-based algorithms are the most widely used methods in star catalog matching. When more subgraph features are provided, the CCD images are recognized better. However, when the navigation feature database is large, the method requires more time to match the observing model. To solve this problem, this study investigates further and improves subgraph isomorphic matching algorithms. We present an algorithm based on a locality-sensitive hashing technique, which allocates quadrilateral models in the navigation feature database into different hash buckets and reduces the search range to the bucket in which the observed quadrilateral model is located. Experimental results indicate the effectivity of our method.

  9. MinFinder v2.0: An improved version of MinFinder

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Lagaris, Isaac E.

    2008-10-01

    A new version of the "MinFinder" program is presented that offers an augmented linking procedure for Fortran-77 subprograms, two additional stopping rules and a new start-point rejection mechanism that saves a significant portion of gradient and function evaluations. The method is applied on a set of standard test functions and the results are reported. New version program summaryProgram title: MinFinder v2.0 Catalogue identifier: ADWU_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWU_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC Licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 14 150 No. of bytes in distributed program, including test data, etc.: 218 144 Distribution format: tar.gz Programming language used: GNU C++, GNU FORTRAN, GNU C Computer: The program is designed to be portable in all systems running the GNU C++ compiler Operating system: Linux, Solaris, FreeBSD RAM: 200 000 bytes Classification: 4.9 Catalogue identifier of previous version: ADWU_v1_0 Journal reference of previous version: Computer Physics Communications 174 (2006) 166-179 Does the new version supersede the previous version?: Yes Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques can be trapped in any local minimum. Global optimization is then the appropriate tool. For example, solving a non-linear system of equations via optimization, one may encounter many local minima that do not correspond to solutions, i.e. they are far from zero. Solution method: Using a uniform pdf, points are sampled from a rectangular domain. A clustering technique, based on a typical distance and a gradient criterion, is used to decide from which points a local search should be started. Further searching is terminated when all the local minima inside the search domain are thought to be found. This is accomplished via three stopping rules: the "double-box" stopping rule, the "observables" stopping rule and the "expected minimizers" stopping rule. Reasons for the new version: The link procedure for source code in Fortran 77 is enhanced, two additional stopping rules are implemented and a new criterion for accepting-start points, that economizes on function and gradient calls, is introduced. Summary of revisions:Addition of command line parameters to the utility program make_program. Augmentation of the link process for Fortran 77 subprograms, by linking the final executable with the g2c library. Addition of two probabilistic stopping rules. Introduction of a rejection mechanism to the Checking step of the original method, that reduces the number of gradient evaluations. Additional comments: A technical report describing the revisions, experiments and test runs is packaged with the source code. Running time: Depending on the objective function.

  10. Searching LOGIN, the Local Government Information Network.

    ERIC Educational Resources Information Center

    Jack, Robert F.

    1984-01-01

    Describes a computer-based information retrieval and electronic messaging system produced by Control Data Corporation now being used by government agencies and other organizations. Background of Local Government Information Network (LOGIN), database structure, types of LOGIN units, searching LOGIN (intersect, display, and list commands), and how…

  11. Conformational analysis of methylphenidate: comparison of molecular orbital and molecular mechanics methods

    NASA Astrophysics Data System (ADS)

    Gilbert, Kathleen M.; Skawinski, William J.; Misra, Milind; Paris, Kristina A.; Naik, Neelam H.; Buono, Ronald A.; Deutsch, Howard M.; Venanzi, Carol A.

    2004-11-01

    Methylphenidate (MP) binds to the cocaine binding site on the dopamine transporter and inhibits reuptake of dopamine, but does not appear to have the same abuse potential as cocaine. This study, part of a comprehensive effort to identify a drug treatment for cocaine abuse, investigates the effect of choice of calculation technique and of solvent model on the conformational potential energy surface (PES) of MP and a rigid methylphenidate (RMP) analogue which exhibits the same dopamine transporter binding affinity as MP. Conformational analysis was carried out by the AM1 and AM1/SM5.4 semiempirical molecular orbital methods, a molecular mechanics method (Tripos force field with the dielectric set equal to that of vacuum or water) and the HF/6-31G* molecular orbital method in vacuum phase. Although all three methods differ somewhat in the local details of the PES, the general trends are the same for neutral and protonated MP. In vacuum phase, protonation has a distinctive effect in decreasing the regions of space available to the local conformational minima. Solvent has little effect on the PES of the neutral molecule and tends to stabilize the protonated species. The random search (RS) conformational analysis technique using the Tripos force field was found to be capable of locating the minima found by the molecular orbital methods using systematic grid search. This suggests that the RS/Tripos force field/vacuum phase protocol is a reasonable choice for locating the local minima of MP. However, the Tripos force field gave significantly larger phenyl ring rotational barriers than the molecular orbital methods for MP and RMP. For both the neutral and protonated cases, all three methods found the phenyl ring rotational barriers for the RMP conformers/invertamers (denoted as cte, tte, and cta) to be: cte, tte> MP > cta. Solvation has negligible effect on the phenyl ring rotational barrier of RMP. The B3LYP/6-31G* density functional method was used to calculate the phenyl ring rotational barrier for neutral MP and gave results very similar to those of the HF/6-31G* method.

  12. Annealing Ant Colony Optimization with Mutation Operator for Solving TSP

    PubMed Central

    2016-01-01

    Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality. PMID:27999590

  13. A Group Theoretic Approach to Metaheuristic Local Search for Partitioning Problems

    DTIC Science & Technology

    2005-05-01

    Tabu Search. Mathematical and Computer Modeling 39: 599-616. 107 Daskin , M.S., E. Stern. 1981. A Hierarchical Objective Set Covering Model for EMS... A Group Theoretic Approach to Metaheuristic Local Search for Partitioning Problems by Gary W. Kinney Jr., B.G.S., M.S. Dissertation Presented to the...DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited The University of Texas at Austin May, 2005 20050504 002 REPORT

  14. Enhanced Conformational Sampling in Molecular Dynamics Simulations of Solvated Peptides: Fragment-Based Local Elevation Umbrella Sampling.

    PubMed

    Hansen, Halvor S; Daura, Xavier; Hünenberger, Philippe H

    2010-09-14

    A new method, fragment-based local elevation umbrella sampling (FB-LEUS), is proposed to enhance the conformational sampling in explicit-solvent molecular dynamics (MD) simulations of solvated polymers. The method is derived from the local elevation umbrella sampling (LEUS) method [ Hansen and Hünenberger , J. Comput. Chem. 2010 , 31 , 1 - 23 ], which combines the local elevation (LE) conformational searching and the umbrella sampling (US) conformational sampling approaches into a single scheme. In LEUS, an initial (relatively short) LE build-up (searching) phase is used to construct an optimized (grid-based) biasing potential within a subspace of conformationally relevant degrees of freedom, which is then frozen and used in a (comparatively longer) US sampling phase. This combination dramatically enhances the sampling power of MD simulations but, due to computational and memory costs, is only applicable to relevant subspaces of low dimensionalities. As an attempt to expand the scope of the LEUS approach to solvated polymers with more than a few relevant degrees of freedom, the FB-LEUS scheme involves an US sampling phase that relies on a superposition of low-dimensionality biasing potentials optimized using LEUS at the fragment level. The feasibility of this approach is tested using polyalanine (poly-Ala) and polyvaline (poly-Val) oligopeptides. Two-dimensional biasing potentials are preoptimized at the monopeptide level, and subsequently applied to all dihedral-angle pairs within oligopeptides of 4,  6,  8, or 10 residues. Two types of fragment-based biasing potentials are distinguished: (i) the basin-filling (BF) potentials act so as to "fill" free-energy basins up to a prescribed free-energy level above the global minimum; (ii) the valley-digging (VD) potentials act so as to "dig" valleys between the (four) free-energy minima of the two-dimensional maps, preserving barriers (relative to linearly interpolated free-energy changes) of a prescribed magnitude. The application of these biasing potentials may lead to an impressive enhancement of the searching power (volume of conformational space visited in a given amount of simulation time). However, this increase is largely offset by a deterioration of the statistical efficiency (representativeness of the biased ensemble in terms of the conformational distribution appropriate for the physical ensemble). As a result, it appears difficult to engineer FB-LEUS schemes representing a significant improvement over plain MD, at least for the systems considered here.

  15. Collective odor source estimation and search in time-variant airflow environments using mobile robots.

    PubMed

    Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Zeng, Ming

    2011-01-01

    This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots' search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot's detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection-diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method.

  16. Collective Odor Source Estimation and Search in Time-Variant Airflow Environments Using Mobile Robots

    PubMed Central

    Meng, Qing-Hao; Yang, Wei-Xing; Wang, Yang; Zeng, Ming

    2011-01-01

    This paper addresses the collective odor source localization (OSL) problem in a time-varying airflow environment using mobile robots. A novel OSL methodology which combines odor-source probability estimation and multiple robots’ search is proposed. The estimation phase consists of two steps: firstly, the separate probability-distribution map of odor source is estimated via Bayesian rules and fuzzy inference based on a single robot’s detection events; secondly, the separate maps estimated by different robots at different times are fused into a combined map by way of distance based superposition. The multi-robot search behaviors are coordinated via a particle swarm optimization algorithm, where the estimated odor-source probability distribution is used to express the fitness functions. In the process of OSL, the estimation phase provides the prior knowledge for the searching while the searching verifies the estimation results, and both phases are implemented iteratively. The results of simulations for large-scale advection–diffusion plume environments and experiments using real robots in an indoor airflow environment validate the feasibility and robustness of the proposed OSL method. PMID:22346650

  17. Optimising mobile phase composition, its flow-rate and column temperature in HPLC using taboo search.

    PubMed

    Guillaume, Y C; Peyrin, E

    2000-03-06

    A chemometric methodology is proposed to study the separation of seven p-hydroxybenzoic esters in reversed phase liquid chromatography (RPLC). Fifteen experiments were found to be necessary to find a mathematical model which linked a novel chromatographic response function (CRF) with the column temperature, the water fraction in the mobile phase and its flow rate. The CRF optimum was determined using a new algorithm based on Glover's taboo search (TS). A flow-rate of 0.9 ml min(-1) with a water fraction of 0.64 in the ACN-water mixture and a column temperature of 10 degrees C gave the most efficient separation conditions. The usefulness of TS was compared with the pure random search (PRS) and simplex search (SS). As demonstrated by calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimisation, this procedure is generally applicable, easy to implement, derivative free, conceptually simple and could be used in the future for much more complex optimisation problems.

  18. Real-time automatic registration in optical surgical navigation

    NASA Astrophysics Data System (ADS)

    Lin, Qinyong; Yang, Rongqian; Cai, Ken; Si, Xuan; Chen, Xiuwen; Wu, Xiaoming

    2016-05-01

    An image-guided surgical navigation system requires the improvement of the patient-to-image registration time to enhance the convenience of the registration procedure. A critical step in achieving this aim is performing a fully automatic patient-to-image registration. This study reports on a design of custom fiducial markers and the performance of a real-time automatic patient-to-image registration method using these markers on the basis of an optical tracking system for rigid anatomy. The custom fiducial markers are designed to be automatically localized in both patient and image spaces. An automatic localization method is performed by registering a point cloud sampled from the three dimensional (3D) pedestal model surface of a fiducial marker to each pedestal of fiducial markers searched in image space. A head phantom is constructed to estimate the performance of the real-time automatic registration method under four fiducial configurations. The head phantom experimental results demonstrate that the real-time automatic registration method is more convenient, rapid, and accurate than the manual method. The time required for each registration is approximately 0.1 s. The automatic localization method precisely localizes the fiducial markers in image space. The averaged target registration error for the four configurations is approximately 0.7 mm. The automatic registration performance is independent of the positions relative to the tracking system and the movement of the patient during the operation.

  19. Artificial bee colony algorithm with dynamic multi-population

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Ji, Zhicheng; Wang, Yan

    2017-07-01

    To improve the convergence rate and make a balance between the global search and local turning abilities, this paper proposes a decentralized form of artificial bee colony (ABC) algorithm with dynamic multi-populations by means of fuzzy C-means (FCM) clustering. Each subpopulation periodically enlarges with the same size during the search process, and the overlapping individuals among different subareas work for delivering information acting as exploring the search space with diffusion of solutions. Moreover, a Gaussian-based search equation with redefined local attractor is proposed to further accelerate the diffusion of the best solution and guide the search towards potential areas. Experimental results on a set of benchmarks demonstrate the competitive performance of our proposed approach.

  20. Cooperative quantum-behaved particle swarm optimization with dynamic varying search areas and Lévy flight disturbance.

    PubMed

    Li, Desheng

    2014-01-01

    This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L; Shen, C; Wang, J

    Purpose: To reduce cone beam CT (CBCT) imaging dose, we previously proposed a progressive dose control (PDC) scheme to employ temporal correlation between CBCT images at different fractions for image quality enhancement. A temporal non-local means (TNLM) method was developed to enhance quality of a new low-dose CBCT using existing high-quality CBCT. To enhance a voxel value, the TNLM method searches for similar voxels in a window. Due to patient deformation among the two CBCTs, a large searching window was required, reducing image quality and computational efficiency. This abstract proposes a deformation-assisted TNLM (DA-TNLM) method to solve this problem. Methods:more » For a low-dose CBCT to be enhanced using a high-quality CBCT, we first performed deformable image registration between the low-dose CBCT and the high-quality CBCT to approximately establish voxel correspondence between the two. A searching window for a voxel was then set based on the deformation vector field. Specifically, the search window for each voxel was shifted by the deformation vector. A TNLM step was then applied using only voxels within this determined window to correct image intensity at the low-dose CBCT. Results: We have tested the proposed scheme on simulated CIRS phantom data and real patient data. The CITS phantom was scanned on Varian onboard imaging CBCT system with coach shifting and dose reducing for each time. The real patient data was acquired in four fractions with dose reduced from standard CBCT dose to 12.5% of standard dose. It was found that the DA-TNLM method can reduce total dose by over 75% on average in the first four fractions. Conclusion: We have developed a PDC scheme which can enhance the quality of image scanned at low dose using a DA-TNLM method. Tests in phantom and patient studies demonstrated promising results.« less

  2. A non-invasive implementation of a mixed domain decomposition method for frictional contact problems

    NASA Astrophysics Data System (ADS)

    Oumaziz, Paul; Gosselet, Pierre; Boucard, Pierre-Alain; Guinard, Stéphane

    2017-11-01

    A non-invasive implementation of the Latin domain decomposition method for frictional contact problems is described. The formulation implies to deal with mixed (Robin) conditions on the faces of the subdomains, which is not a classical feature of commercial software. Therefore we propose a new implementation of the linear stage of the Latin method with a non-local search direction built as the stiffness of a layer of elements on the interfaces. This choice enables us to implement the method within the open source software Code_Aster, and to derive 2D and 3D examples with similar performance as the standard Latin method.

  3. Forecasting the Incidence of Dementia and Dementia-Related Outpatient Visits With Google Trends: Evidence From Taiwan

    PubMed Central

    2015-01-01

    Background Google Trends has demonstrated the capability to both monitor and predict epidemic outbreaks. The connection between Internet searches for dementia information and dementia incidence and dementia-related outpatient visits remains unknown. Objective This study aimed to determine whether Google Trends could provide insight into trends in dementia incidence and related outpatient visits in Taiwan. We investigated and validated the local search terms that would be the best predictors of new dementia cases and outpatient visits. We further evaluated the nowcasting (ie, forecasting the present) and forecasting effects of Google Trends search trends for new dementia cases and outpatient visits. The long-term goal is to develop a surveillance system to help early detection and interventions for dementia in Taiwan. Methods This study collected (1) dementia data from Taiwan’s National Health Insurance Research Database and (2) local Internet search data from Google Trends, both from January 2009 to December 2011. We investigated and validated search terms that would be the best predictors of new dementia cases and outpatient visits. We then evaluated both the nowcasting and the forecasting effects of Google Trends search trends through cross-correlation analysis of the dementia incidence and outpatient visit data with the Google Trends data. Results The search term “dementia + Alzheimer’s disease” demonstrated a 3-month lead effect for new dementia cases and a 6-month lead effect for outpatient visits (r=.503, P=.002; r=.431, P=.009, respectively). When gender was included in the analysis, the search term “dementia” showed 6-month predictive power for new female dementia cases (r=.520, P=.001), but only a nowcasting effect for male cases (r=.430, P=.009). The search term “neurology” demonstrated a 3-month leading effect for new dementia cases (r=.433, P=.008), for new male dementia cases (r=.434, P=.008), and for outpatient visits (r=.613, P<.001). Conclusions Google Trends established a plausible relationship between search terms and new dementia cases and dementia-related outpatient visits in Taiwan. This data may allow the health care system in Taiwan to prepare for upcoming outpatient and dementia screening visits. In addition, the validated search term results can be used to provide caregivers with caregiving-related health, skills, and social welfare information by embedding dementia-related search keywords in relevant online articles. PMID:26586281

  4. Global and local "teachable moments": The role of Nobel Prize and national pride.

    PubMed

    Baram-Tsabari, Ayelet; Segev, Elad

    2018-05-01

    This study examined to what extent Nobel Prize announcements and awards trigger global and local searches or "teachable moments" related to the laureates and their discoveries. We examined the longitudinal trends in Google searches for the names and discoveries of Nobel laureates from 2012 to 2017. The findings show that Nobel Prize events clearly trigger more searches for laureates, but also for their respective discoveries. We suggest that fascination with the Nobel prize creates a teachable moment not only for the underlying science, but also about the nature of science. Locality also emerged as playing a significant role in intensifying interest.

  5. Balancing exploration and exploitation in population-based sampling improves fragment-based de novo protein structure prediction.

    PubMed

    Simoncini, David; Schiex, Thomas; Zhang, Kam Y J

    2017-05-01

    Conformational search space exploration remains a major bottleneck for protein structure prediction methods. Population-based meta-heuristics typically enable the possibility to control the search dynamics and to tune the balance between local energy minimization and search space exploration. EdaFold is a fragment-based approach that can guide search by periodically updating the probability distribution over the fragment libraries used during model assembly. We implement the EdaFold algorithm as a Rosetta protocol and provide two different probability update policies: a cluster-based variation (EdaRose c ) and an energy-based one (EdaRose en ). We analyze the search dynamics of our new Rosetta protocols and show that EdaRose c is able to provide predictions with lower C αRMSD to the native structure than EdaRose en and Rosetta AbInitio Relax protocol. Our software is freely available as a C++ patch for the Rosetta suite and can be downloaded from http://www.riken.jp/zhangiru/software/. Our protocols can easily be extended in order to create alternative probability update policies and generate new search dynamics. Proteins 2017; 85:852-858. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Security Analysis of Image Encryption Based on Gyrator Transform by Searching the Rotation Angle with Improved PSO Algorithm.

    PubMed

    Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong

    2015-08-05

    Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms.

  7. Multiple-variable neighbourhood search for the single-machine total weighted tardiness problem

    NASA Astrophysics Data System (ADS)

    Chung, Tsui-Ping; Fu, Qunjie; Liao, Ching-Jong; Liu, Yi-Ting

    2017-07-01

    The single-machine total weighted tardiness (SMTWT) problem is a typical discrete combinatorial optimization problem in the scheduling literature. This problem has been proved to be NP hard and thus provides a challenging area for metaheuristics, especially the variable neighbourhood search algorithm. In this article, a multiple variable neighbourhood search (m-VNS) algorithm with multiple neighbourhood structures is proposed to solve the problem. Special mechanisms named matching and strengthening operations are employed in the algorithm, which has an auto-revising local search procedure to explore the solution space beyond local optimality. Two aspects, searching direction and searching depth, are considered, and neighbourhood structures are systematically exchanged. Experimental results show that the proposed m-VNS algorithm outperforms all the compared algorithms in solving the SMTWT problem.

  8. Biclustering of gene expression data using reactive greedy randomized adaptive search procedure

    PubMed Central

    Dharan, Smitha; Nair, Achuthsankar S

    2009-01-01

    Background Biclustering algorithms belong to a distinct class of clustering algorithms that perform simultaneous clustering of both rows and columns of the gene expression matrix and can be a very useful analysis tool when some genes have multiple functions and experimental conditions are diverse. Cheng and Church have introduced a measure called mean squared residue score to evaluate the quality of a bicluster and has become one of the most popular measures to search for biclusters. In this paper, we review basic concepts of the metaheuristics Greedy Randomized Adaptive Search Procedure (GRASP)-construction and local search phases and propose a new method which is a variant of GRASP called Reactive Greedy Randomized Adaptive Search Procedure (Reactive GRASP) to detect significant biclusters from large microarray datasets. The method has two major steps. First, high quality bicluster seeds are generated by means of k-means clustering. In the second step, these seeds are grown using the Reactive GRASP, in which the basic parameter that defines the restrictiveness of the candidate list is self-adjusted, depending on the quality of the solutions found previously. Results We performed statistical and biological validations of the biclusters obtained and evaluated the method against the results of basic GRASP and as well as with the classic work of Cheng and Church. The experimental results indicate that the Reactive GRASP approach outperforms the basic GRASP algorithm and Cheng and Church approach. Conclusion The Reactive GRASP approach for the detection of significant biclusters is robust and does not require calibration efforts. PMID:19208127

  9. Searching in clutter : visual attention strategies of expert pilots

    DOT National Transportation Integrated Search

    2012-10-22

    Clutter can slow visual search. However, experts may develop attention strategies that alleviate the effects of clutter on search performance. In the current study we examined the effects of global and local clutter on visual search performance and a...

  10. Calculation of earthquake rupture histories using a hybrid global search algorithm: Application to the 1992 Landers, California, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Liu, P.

    1996-01-01

    A method is presented for the simultaneous calculation of slip amplitudes and rupture times for a finite fault using a hybrid global search algorithm. The method we use combines simulated annealing with the downhill simplex method to produce a more efficient search algorithm then either of the two constituent parts. This formulation has advantages over traditional iterative or linearized approaches to the problem because it is able to escape local minima in its search through model space for the global optimum. We apply this global search method to the calculation of the rupture history for the Landers, California, earthquake. The rupture is modeled using three separate finite-fault planes to represent the three main fault segments that failed during this earthquake. Both the slip amplitude and the time of slip are calculated for a grid work of subfaults. The data used consist of digital, teleseismic P and SH body waves. Long-period, broadband, and short-period records are utilized to obtain a wideband characterization of the source. The results of the global search inversion are compared with a more traditional linear-least-squares inversion for only slip amplitudes. We use a multi-time-window linear analysis to relax the constraints on rupture time and rise time in the least-squares inversion. Both inversions produce similar slip distributions, although the linear-least-squares solution has a 10% larger moment (7.3 ?? 1026 dyne-cm compared with 6.6 ?? 1026 dyne-cm). Both inversions fit the data equally well and point out the importance of (1) using a parameterization with sufficient spatial and temporal flexibility to encompass likely complexities in the rupture process, (2) including suitable physically based constraints on the inversion to reduce instabilities in the solution, and (3) focusing on those robust rupture characteristics that rise above the details of the parameterization and data set.

  11. Global Sensor Management: Military Asset Allocation

    DTIC Science & Technology

    2009-10-06

    solution (referred to as moves). A similar approach has been suggested by Zweben et al. (1993), who use a local search base metaheuristic , specifically...trapped in a local optimum. Hansen and Mladenovic (1998) describe the concept of variable neighborhood local search algorithms , and describe an...Mataric and G.S. Sukhatme (2002). “An incremental deployment algorithm for mobile robot teams,” Proceedings of the 2002 IEEE/RSJ Intl. Conference on

  12. Neurophysiological correlates of relatively enhanced local visual search in autistic adolescents.

    PubMed

    Manjaly, Zina M; Bruning, Nicole; Neufang, Susanne; Stephan, Klaas E; Brieber, Sarah; Marshall, John C; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Fink, Gereon R

    2007-03-01

    Previous studies found normal or even superior performance of autistic patients on visuospatial tasks requiring local search, like the Embedded Figures Task (EFT). A well-known interpretation of this is "weak central coherence", i.e. autistic patients may show a reduced general ability to process information in its context and may therefore have a tendency to favour local over global aspects of information processing. An alternative view is that the local processing advantage in the EFT may result from a relative amplification of early perceptual processes which boosts processing of local stimulus properties but does not affect processing of global context. This study used functional magnetic resonance imaging (fMRI) in 12 autistic adolescents (9 Asperger and 3 high-functioning autistic patients) and 12 matched controls to help distinguish, on neurophysiological grounds, between these two accounts of EFT performance in autistic patients. Behaviourally, we found autistic individuals to be unimpaired during the EFT while they were significantly worse at performing a closely matched control task with minimal local search requirements. The fMRI results showed that activations specific for the local search aspects of the EFT were left-lateralised in parietal and premotor areas for the control group (as previously demonstrated for adults), whereas for the patients these activations were found in right primary visual cortex and bilateral extrastriate areas. These results suggest that enhanced local processing in early visual areas, as opposed to impaired processing of global context, is characteristic for performance of the EFT by autistic patients.

  13. Neurophysiological correlates of relatively enhanced local visual search in autistic adolescents

    PubMed Central

    Manjaly, Zina M.; Bruning, Nicole; Neufang, Susanne; Stephan, Klaas E.; Brieber, Sarah; Marshall, John C.; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Fink, Gereon R.

    2007-01-01

    Previous studies found normal or even superior performance of autistic patients on visuospatial tasks requiring local search, like the Embedded Figures Task (EFT). A well-known interpretation of this is “weak central coherence”, i.e. autistic patients may show a reduced general ability to process information in its context and may therefore have a tendency to favour local over global aspects of information processing. An alternative view is that the local processing advantage in the EFT may result from a relative amplification of early perceptual processes which boosts processing of local stimulus properties but does not affect processing of global context. This study used functional magnetic resonance imaging (fMRI) in 12 autistic adolescents (9 Asperger and 3 high-functioning autistic patients) and 12 matched controls to help distinguish, on neurophysiological grounds, between these two accounts of EFT performance in autistic patients. Behaviourally, we found autistic individuals to be unimpaired during the EFT while they were significantly worse at performing a closely matched control task with minimal local search requirements. The fMRI results showed that activations specific for the local search aspects of the EFT were left-lateralised in parietal and premotor areas for the control group (as previously demonstrated for adults), whereas for the patients these activations were found in right primary visual cortex and bilateral extrastriate areas. These results suggest that enhanced local processing in early visual areas, as opposed to impaired processing of global context, is characteristic for performance of the EFT by autistic patients. PMID:17240169

  14. An investigation of acoustic beam patterns for the sonar localization problem using a beam based method.

    PubMed

    Guarato, Francesco; Windmill, James; Gachagan, Anthony; Harvey, Gerald

    2013-06-01

    Target localization can be accomplished through an ultrasonic sonar system equipped with an emitter and two receivers. Time of flight of the sonar echoes allows the calculation of the distance of the target. The orientation can be estimated from knowledge of the beam pattern of the receivers and the ratio, in the frequency domain, between the emitted and the received signals after compensation for distance effects and air absorption. The localization method is described and, as its performance strongly depends on the beam pattern, the search of the most appropriate sonar receiver in order to ensure the highest accuracy of target orientation estimations is developed in this paper. The structure designs considered are inspired by the ear shapes of some bat species. Parameters like flare rate, truncation angle, and tragus are considered in the design of the receiver structures. Simulations of the localization method allow us to state which combination of those parameters could provide the best real world implementation. Simulation results show the estimates of target orientations are, in the worst case, 2° with SNR = 50 dB using the receiver structure chosen for a potential practical implementation of a sonar system.

  15. Locating hazardous gas leaks in the atmosphere via modified genetic, MCMC and particle swarm optimization algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Zhang, Ru; Yan, Yuting; Dong, Xiaoqiang; Li, Jun Ming

    2017-05-01

    Hazardous gas leaks in the atmosphere can cause significant economic losses in addition to environmental hazards, such as fires and explosions. A three-stage hazardous gas leak source localization method was developed that uses movable and stationary gas concentration sensors. The method calculates a preliminary source inversion with a modified genetic algorithm (MGA) and has the potential to crossover with eliminated individuals from the population, following the selection of the best candidate. The method then determines a search zone using Markov Chain Monte Carlo (MCMC) sampling, utilizing a partial evaluation strategy. The leak source is then accurately localized using a modified guaranteed convergence particle swarm optimization algorithm with several bad-performing individuals, following selection of the most successful individual with dynamic updates. The first two stages are based on data collected by motionless sensors, and the last stage is based on data from movable robots with sensors. The measurement error adaptability and the effect of the leak source location were analyzed. The test results showed that this three-stage localization process can localize a leak source within 1.0 m of the source for different leak source locations, with measurement error standard deviation smaller than 2.0.

  16. Constraints on baryonic dark matter in the Galactic halo and Local Group

    NASA Technical Reports Server (NTRS)

    Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris

    1992-01-01

    A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.

  17. Multimodal Estimation of Distribution Algorithms.

    PubMed

    Yang, Qiang; Chen, Wei-Neng; Li, Yun; Chen, C L Philip; Xu, Xiang-Min; Zhang, Jun

    2016-02-15

    Taking the advantage of estimation of distribution algorithms (EDAs) in preserving high diversity, this paper proposes a multimodal EDA. Integrated with clustering strategies for crowding and speciation, two versions of this algorithm are developed, which operate at the niche level. Then these two algorithms are equipped with three distinctive techniques: 1) a dynamic cluster sizing strategy; 2) an alternative utilization of Gaussian and Cauchy distributions to generate offspring; and 3) an adaptive local search. The dynamic cluster sizing affords a potential balance between exploration and exploitation and reduces the sensitivity to the cluster size in the niching methods. Taking advantages of Gaussian and Cauchy distributions, we generate the offspring at the niche level through alternatively using these two distributions. Such utilization can also potentially offer a balance between exploration and exploitation. Further, solution accuracy is enhanced through a new local search scheme probabilistically conducted around seeds of niches with probabilities determined self-adaptively according to fitness values of these seeds. Extensive experiments conducted on 20 benchmark multimodal problems confirm that both algorithms can achieve competitive performance compared with several state-of-the-art multimodal algorithms, which is supported by nonparametric tests. Especially, the proposed algorithms are very promising for complex problems with many local optima.

  18. Estimation of distribution algorithm with path relinking for the blocking flow-shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Shao, Zhongshi; Pi, Dechang; Shao, Weishi

    2018-05-01

    This article presents an effective estimation of distribution algorithm, named P-EDA, to solve the blocking flow-shop scheduling problem (BFSP) with the makespan criterion. In the P-EDA, a Nawaz-Enscore-Ham (NEH)-based heuristic and the random method are combined to generate the initial population. Based on several superior individuals provided by a modified linear rank selection, a probabilistic model is constructed to describe the probabilistic distribution of the promising solution space. The path relinking technique is incorporated into EDA to avoid blindness of the search and improve the convergence property. A modified referenced local search is designed to enhance the local exploitation. Moreover, a diversity-maintaining scheme is introduced into EDA to avoid deterioration of the population. Finally, the parameters of the proposed P-EDA are calibrated using a design of experiments approach. Simulation results and comparisons with some well-performing algorithms demonstrate the effectiveness of the P-EDA for solving BFSP.

  19. A hybrid binary particle swarm optimization for large capacitated multi item multi level lot sizing (CMIMLLS) problem

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Sahithi, V. V. D.; Rao, C. S. P.

    2016-09-01

    The lot sizing problem deals with finding optimal order quantities which minimizes the ordering and holding cost of product mix. when multiple items at multiple levels with all capacity restrictions are considered, the lot sizing problem become NP hard. Many heuristics were developed in the past have inevitably failed due to size, computational complexity and time. However the authors were successful in the development of PSO based technique namely iterative improvement binary particles swarm technique to address very large capacitated multi-item multi level lot sizing (CMIMLLS) problem. First binary particle Swarm Optimization algorithm is used to find a solution in a reasonable time and iterative improvement local search mechanism is employed to improvise the solution obtained by BPSO algorithm. This hybrid mechanism of using local search on the global solution is found to improve the quality of solutions with respect to time thus IIBPSO method is found best and show excellent results.

  20. Fast neutron counting in a mobile, trailer-based search platform

    NASA Astrophysics Data System (ADS)

    Hayward, Jason P.; Sparger, John; Fabris, Lorenzo; Newby, Robert J.

    2017-12-01

    Trailer-based search platforms for detection of radiological and nuclear threats are often based upon coded aperture gamma-ray imaging, because this method can be rendered insensitive to local variations in gamma background while still localizing the source well. Since gamma source emissions are rather easily shielded, in this work we consider the addition of fast neutron counting to a mobile platform for detection of sources containing Pu. A proof-of-concept system capable of combined gamma and neutron coded-aperture imaging was built inside of a trailer and used to detect a 252Cf source while driving along a roadway. Neutron detector types employed included EJ-309 in a detector plane and EJ-299-33 in a front mask plane. While the 252Cf gamma emissions were not readily detectable while driving by at 16.9 m standoff, the neutron emissions can be detected while moving. Mobile detection performance for this system and a scaled-up system design are presented, along with implications for threat sensing.

  1. Comparative Diagnostic Performance of Ultrasonography and 99mTc-Sestamibi Scintigraphy for Parathyroid Adenoma in Primary Hyperparathyroidism; Systematic Review and Meta- Analysis

    PubMed

    Nafisi Moghadam, Reza; Amlelshahbaz, Amir Pasha; Namiranian, Nasim; Sobhan-Ardekani, Mohammad; Emami-Meybodi, Mahmood; Dehghan, Ali; Rahmanian, Masoud; Razavi-Ratki, Seid Kazem

    2017-12-28

    Objective: Ultrasonography (US) and parathyroid scintigraphy (PS) with 99mTc-MIBI are common methods for preoperative localization of parathyroid adenomas but there discrepancies exist with regard to diagnostic accuracy. The aim of the study was to compare PS and US for localization of parathyroid adenoma with a systematic review and meta-analysis of the literature. Methods: Pub Med, Scopus (EMbase), Web of Science and the reference lists of all included studies were searched up to 1st January 2016. The search strategy was according PICO characteristics. Heterogeneity between the studies was accounted by P < 0.1. Point estimates were pooled estimate of sensitivity, specificity and positive predictive value of SPECT and ultrasonography with 99% confidence intervals (CIs) by pooling available data. Data analysis was performed using Meta-DiSc software (version 1.4). Results: Among 188 studies and after deletion of duplicated studies (75), a total of 113 titles and abstracts were studied. From these, 12 studies were selected. The meta-analysis determined a pooled sensitivity for scintigraphy of 83% [99% confidence interval (CI) 96.358 -97.412] and for ultra-sonography of 80% [99% confidence interval (CI) 76-83]. Similar results for specificity were also obtained for both approache. Conclusion: According this meta- analysis, there were no significant differences between the two methods in terms of sensitivity and specificity. There were overlaps in 99% confidence intervals. Also features of the two methods are similar. Creative Commons Attribution License

  2. Unbiased, scalable sampling of protein loop conformations from probabilistic priors.

    PubMed

    Zhang, Yajia; Hauser, Kris

    2013-01-01

    Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion.

  3. Unbiased, scalable sampling of protein loop conformations from probabilistic priors

    PubMed Central

    2013-01-01

    Background Protein loops are flexible structures that are intimately tied to function, but understanding loop motion and generating loop conformation ensembles remain significant computational challenges. Discrete search techniques scale poorly to large loops, optimization and molecular dynamics techniques are prone to local minima, and inverse kinematics techniques can only incorporate structural preferences in adhoc fashion. This paper presents Sub-Loop Inverse Kinematics Monte Carlo (SLIKMC), a new Markov chain Monte Carlo algorithm for generating conformations of closed loops according to experimentally available, heterogeneous structural preferences. Results Our simulation experiments demonstrate that the method computes high-scoring conformations of large loops (>10 residues) orders of magnitude faster than standard Monte Carlo and discrete search techniques. Two new developments contribute to the scalability of the new method. First, structural preferences are specified via a probabilistic graphical model (PGM) that links conformation variables, spatial variables (e.g., atom positions), constraints and prior information in a unified framework. The method uses a sparse PGM that exploits locality of interactions between atoms and residues. Second, a novel method for sampling sub-loops is developed to generate statistically unbiased samples of probability densities restricted by loop-closure constraints. Conclusion Numerical experiments confirm that SLIKMC generates conformation ensembles that are statistically consistent with specified structural preferences. Protein conformations with 100+ residues are sampled on standard PC hardware in seconds. Application to proteins involved in ion-binding demonstrate its potential as a tool for loop ensemble generation and missing structure completion. PMID:24565175

  4. Nocturnal bees are attracted by widespread floral scents.

    PubMed

    Carvalho, Airton Torres; Maia, Artur Campos Dalia; Ojima, Poliana Yumi; dos Santos, Adauto A; Schlindwein, Clemens

    2012-03-01

    Flower localization in darkness is a challenging task for nocturnal pollinators. Floral scents often play a crucial role in guiding them towards their hosts. Using common volatile compounds of floral scents, we trapped female nocturnal Megalopta-bees (Halictidae), thus uncovering olfactory cues involved in their search for floral resources. Applying a new sampling method hereby described, we offer novel perspectives on the investigation of nocturnal bees.

  5. Emergence of a few distinct structures from a single formal structure type during high-throughput screening for stable compounds: The case of RbCuS and RbCuSe

    NASA Astrophysics Data System (ADS)

    Trimarchi, Giancarlo; Zhang, Xiuwen; DeVries Vermeer, Michael J.; Cantwell, Jacqueline; Poeppelmeier, Kenneth R.; Zunger, Alex

    2015-10-01

    Theoretical sorting of stable and synthesizable "missing compounds" from those that are unstable is a crucial step in the discovery of previously unknown functional materials. This active research area often involves high-throughput (HT) examination of the total energy of a given compound in a list of candidate formal structure types (FSTs), searching for those with the lowest energy within that list. While it is well appreciated that local relaxation methods based on a fixed list of structure types can lead to inaccurate geometries, this approach is widely used in HT studies because it produces answers faster than global optimization methods (that vary lattice vectors and atomic positions without local restrictions). We find, however, a different failure mode of the HT protocol: specific crystallographic classes of formal structure types each correspond to a series of chemically distinct "daughter structure types" (DSTs) that have the same space group but possess totally different local bonding configurations, including coordination types. Failure to include such DSTs in the fixed list of examined candidate structures used in contemporary high-throughput approaches can lead to qualitative misidentification of the stable bonding pattern, not just quantitative inaccuracies. In this work, we (i) clarify the understanding of the general DST-FST relationship, thus improving current discovery HT approaches, (ii) illustrate this failure mode for RbCuS and RbCuSe (the latter being a yet unreported compound and is predicted here) by developing a synthesis method and accelerated crystal-structure determination, and (iii) apply the genetic-algorithm-based global space-group optimization (GSGO) approach which is not vulnerable to the failure mode of HT searches of fixed lists, demonstrating a correct identification of the stable DST. The broad impact of items (i)-(iii) lies in the demonstrated predictive ability of a more comprehensive search strategy than what is currently used—use HT calculations as the preliminary broad screening followed by unbiased GSGO of the final candidates.

  6. Application of artificial neural networks and genetic algorithms to modeling molecular electronic spectra in solution

    NASA Astrophysics Data System (ADS)

    Lilichenko, Mark; Kelley, Anne Myers

    2001-04-01

    A novel approach is presented for finding the vibrational frequencies, Franck-Condon factors, and vibronic linewidths that best reproduce typical, poorly resolved electronic absorption (or fluorescence) spectra of molecules in condensed phases. While calculation of the theoretical spectrum from the molecular parameters is straightforward within the harmonic oscillator approximation for the vibrations, "inversion" of an experimental spectrum to deduce these parameters is not. Standard nonlinear least-squares fitting methods such as Levenberg-Marquardt are highly susceptible to becoming trapped in local minima in the error function unless very good initial guesses for the molecular parameters are made. Here we employ a genetic algorithm to force a broad search through parameter space and couple it with the Levenberg-Marquardt method to speed convergence to each local minimum. In addition, a neural network trained on a large set of synthetic spectra is used to provide an initial guess for the fitting parameters and to narrow the range searched by the genetic algorithm. The combined algorithm provides excellent fits to a variety of single-mode absorption spectra with experimentally negligible errors in the parameters. It converges more rapidly than the genetic algorithm alone and more reliably than the Levenberg-Marquardt method alone, and is robust in the presence of spectral noise. Extensions to multimode systems, and/or to include other spectroscopic data such as resonance Raman intensities, are straightforward.

  7. Automatic streak endpoint localization from the cornerness metric

    NASA Astrophysics Data System (ADS)

    Sease, Brad; Flewelling, Brien; Black, Jonathan

    2017-05-01

    Streaked point sources are a common occurrence when imaging unresolved space objects from both ground- and space-based platforms. Effective localization of streak endpoints is a key component of traditional techniques in space situational awareness related to orbit estimation and attitude determination. To further that goal, this paper derives a general detection and localization method for streak endpoints based on the cornerness metric. Corners detection involves searching an image for strong bi-directional gradients. These locations typically correspond to robust structural features in an image. In the case of unresolved imagery, regions with a high cornerness score correspond directly to the endpoints of streaks. This paper explores three approaches for global extraction of streak endpoints and applies them to an attitude and rate estimation routine.

  8. Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.

    PubMed

    Smith, J E

    2012-01-01

    Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes outperform global reward schemes in combinatorial spaces, unlike in continuous spaces. An analysis of evolving meme behaviour is used to explain these findings.

  9. Portfolios in Stochastic Local Search: Efficiently Computing Most Probable Explanations in Bayesian Networks

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Roth, Dan; Wilkins, David C.

    2001-01-01

    Portfolio methods support the combination of different algorithms and heuristics, including stochastic local search (SLS) heuristics, and have been identified as a promising approach to solve computationally hard problems. While successful in experiments, theoretical foundations and analytical results for portfolio-based SLS heuristics are less developed. This article aims to improve the understanding of the role of portfolios of heuristics in SLS. We emphasize the problem of computing most probable explanations (MPEs) in Bayesian networks (BNs). Algorithmically, we discuss a portfolio-based SLS algorithm for MPE computation, Stochastic Greedy Search (SGS). SGS supports the integration of different initialization operators (or initialization heuristics) and different search operators (greedy and noisy heuristics), thereby enabling new analytical and experimental results. Analytically, we introduce a novel Markov chain model tailored to portfolio-based SLS algorithms including SGS, thereby enabling us to analytically form expected hitting time results that explain empirical run time results. For a specific BN, we show the benefit of using a homogenous initialization portfolio. To further illustrate the portfolio approach, we consider novel additive search heuristics for handling determinism in the form of zero entries in conditional probability tables in BNs. Our additive approach adds rather than multiplies probabilities when computing the utility of an explanation. We motivate the additive measure by studying the dramatic impact of zero entries in conditional probability tables on the number of zero-probability explanations, which again complicates the search process. We consider the relationship between MAXSAT and MPE, and show that additive utility (or gain) is a generalization, to the probabilistic setting, of MAXSAT utility (or gain) used in the celebrated GSAT and WalkSAT algorithms and their descendants. Utilizing our Markov chain framework, we show that expected hitting time is a rational function - i.e. a ratio of two polynomials - of the probability of applying an additive search operator. Experimentally, we report on synthetically generated BNs as well as BNs from applications, and compare SGSs performance to that of Hugin, which performs BN inference by compilation to and propagation in clique trees. On synthetic networks, SGS speeds up computation by approximately two orders of magnitude compared to Hugin. In application networks, our approach is highly competitive in Bayesian networks with a high degree of determinism. In addition to showing that stochastic local search can be competitive with clique tree clustering, our empirical results provide an improved understanding of the circumstances under which portfolio-based SLS outperforms clique tree clustering and vice versa.

  10. [Spectral scatter correction of coal samples based on quasi-linear local weighted method].

    PubMed

    Lei, Meng; Li, Ming; Ma, Xiao-Ping; Miao, Yan-Zi; Wang, Jian-Sheng

    2014-07-01

    The present paper puts forth a new spectral correction method based on quasi-linear expression and local weighted function. The first stage of the method is to search 3 quasi-linear expressions to replace the original linear expression in MSC method, such as quadratic, cubic and growth curve expression. Then the local weighted function is constructed by introducing 4 kernel functions, such as Gaussian, Epanechnikov, Biweight and Triweight kernel function. After adding the function in the basic estimation equation, the dependency between the original and ideal spectra is described more accurately and meticulously at each wavelength point. Furthermore, two analytical models were established respectively based on PLS and PCA-BP neural network method, which can be used for estimating the accuracy of corrected spectra. At last, the optimal correction mode was determined by the analytical results with different combination of quasi-linear expression and local weighted function. The spectra of the same coal sample have different noise ratios while the coal sample was prepared under different particle sizes. To validate the effectiveness of this method, the experiment analyzed the correction results of 3 spectral data sets with the particle sizes of 0.2, 1 and 3 mm. The results show that the proposed method can eliminate the scattering influence, and also can enhance the information of spectral peaks. This paper proves a more efficient way to enhance the correlation between corrected spectra and coal qualities significantly, and improve the accuracy and stability of the analytical model substantially.

  11. Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades

    NASA Astrophysics Data System (ADS)

    Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang

    2017-12-01

    This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.

  12. Description of the atomic disorder (local order) in crystals by the mixed-symmetry method

    NASA Astrophysics Data System (ADS)

    Dudka, A. P.; Novikova, N. E.

    2017-11-01

    An approach to the description of local atomic disorder (short-range order) in single crystals by the mixed-symmetry method based on Bragg scattering data is proposed, and the corresponding software is developed. In defect-containing crystals, each atom in the unit cell can be described by its own symmetry space group. The expression for the calculated structural factor includes summation over different sets of symmetry operations for different atoms. To facilitate the search for new symmetry elements, an "atomic disorder expert" was developed, which estimates the significance of tested models. It is shown that the symmetry lowering for some atoms correlates with the existence of phase transitions (in langasite family crystals) and the anisotropy of physical properties (in rare-earth dodecaborides RB12).

  13. Evaluation of coded aperture radiation detectors using a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Miller, Kyle; Huggins, Peter; Labov, Simon; Nelson, Karl; Dubrawski, Artur

    2016-12-01

    We investigate tradeoffs arising from the use of coded aperture gamma-ray spectrometry to detect and localize sources of harmful radiation in the presence of noisy background. Using an example application scenario of area monitoring and search, we empirically evaluate weakly supervised spectral, spatial, and hybrid spatio-spectral algorithms for scoring individual observations, and two alternative methods of fusing evidence obtained from multiple observations. Results of our experiments confirm the intuition that directional information provided by spectrometers masked with coded aperture enables gains in source localization accuracy, but at the expense of reduced probability of detection. Losses in detection performance can however be to a substantial extent reclaimed by using our new spatial and spatio-spectral scoring methods which rely on realistic assumptions regarding masking and its impact on measured photon distributions.

  14. Searching for Truth: Internet Search Patterns as a Method of Investigating Online Responses to a Russian Illicit Drug Policy Debate

    PubMed Central

    Gillespie, James A; Quinn, Casey

    2012-01-01

    Background This is a methodological study investigating the online responses to a national debate over an important health and social problem in Russia. Russia is the largest Internet market in Europe, exceeding Germany in the absolute number of users. However, Russia is unusual in that the main search provider is not Google, but Yandex. Objective This study had two main objectives. First, to validate Yandex search patterns against those provided by Google, and second, to test this method's adequacy for investigating online interest in a 2010 national debate over Russian illicit drug policy. We hoped to learn what search patterns and specific search terms could reveal about the relative importance and geographic distribution of interest in this debate. Methods A national drug debate, centering on the anti-drug campaigner Egor Bychkov, was one of the main Russian domestic news events of 2010. Public interest in this episode was accompanied by increased Internet search. First, we measured the search patterns for 13 search terms related to the Bychkov episode and concurrent domestic events by extracting data from Google Insights for Search (GIFS) and Yandex WordStat (YaW). We conducted Spearman Rank Correlation of GIFS and YaW search data series. Second, we coded all 420 primary posts from Bychkov's personal blog between March 2010 and March 2012 to identify the main themes. Third, we compared GIFS and Yandex policies concerning the public release of search volume data. Finally, we established the relationship between salient drug issues and the Bychkov episode. Results We found a consistent pattern of strong to moderate positive correlations between Google and Yandex for the terms "Egor Bychkov" (r s = 0.88, P < .001), “Bychkov” (r s = .78, P < .001) and “Khimki”(r s = 0.92, P < .001). Peak search volumes for the Bychkov episode were comparable to other prominent domestic political events during 2010. Monthly search counts were 146,689 for “Bychkov” and 48,084 for “Egor Bychkov”, compared to 53,403 for “Khimki” in Yandex. We found Google potentially provides timely search results, whereas Yandex provides more accurate geographic localization. The correlation was moderate to strong between search terms representing the Bychkov episode and terms representing salient drug issues in Yandex–“illicit drug treatment” (r s = .90, P < .001), "illicit drugs" (r s = .76, P < .001), and "drug addiction" (r s = .74, P < .001). Google correlations were weaker or absent–"illicit drug treatment" (r s = .12, P = .58), “illicit drugs ” (r s = -0.29, P = .17), and "drug addiction" (r s = .68, P < .001). Conclusions This study contributes to the methodological literature on the analysis of search patterns for public health. This paper investigated the relationship between Google and Yandex, and contributed to the broader methods literature by highlighting both the potential and limitations of these two search providers. We believe that Yandex Wordstat is a potentially valuable, and underused data source for researchers working on Russian-related illicit drug policy and other public health problems. The Russian Federation, with its large, geographically dispersed, and politically engaged online population presents unique opportunities for studying the evolving influence of the Internet on politics and policy, using low cost methods resilient against potential increases in censorship. PMID:23238600

  15. Predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review.

    PubMed

    Ryan, J E; Warrier, S K; Lynch, A C; Ramsay, R G; Phillips, W A; Heriot, A G

    2016-03-01

    Approximately 20% of patients treated with neoadjuvant chemoradiotherapy (nCRT) for locally advanced rectal cancer achieve a pathological complete response (pCR) while the remainder derive the benefit of improved local control and downstaging and a small proportion show a minimal response. The ability to predict which patients will benefit would allow for improved patient stratification directing therapy to those who are likely to achieve a good response, thereby avoiding ineffective treatment in those unlikely to benefit. A systematic review of the English language literature was conducted to identify pathological factors, imaging modalities and molecular factors that predict pCR following chemoradiotherapy. PubMed, MEDLINE and Cochrane Database searches were conducted with the following keywords and MeSH search terms: 'rectal neoplasm', 'response', 'neoadjuvant', 'preoperative chemoradiation', 'tumor response'. After review of title and abstracts, 85 articles addressing the prediction of pCR were selected. Clear methods to predict pCR before chemoradiotherapy have not been defined. Clinical and radiological features of the primary cancer have limited ability to predict response. Molecular profiling holds the greatest potential to predict pCR but adoption of this technology will require greater concordance between cohorts for the biomarkers currently under investigation. At present no robust markers of the prediction of pCR have been identified and the topic remains an area for future research. This review critically evaluates existing literature providing an overview of the methods currently available to predict pCR to nCRT for locally advanced rectal cancer. The review also provides a comprehensive comparison of the accuracy of each modality. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  16. Implementing metal detector technology and a navigation system in the removal of shrapnel.

    PubMed

    Peleg, Eran; Harari, Meytal; Liebergall, Meir; Mosheiff, Rami

    2009-01-01

    The removal of metal shrapnel in the sub-acute phase of casualty treatment requires the utmost accuracy in detection and removal, especially when there is proximity to major neurovascular structures. Inability to successfully locate and remove retained fragments may lead to a variety of complications due to fragment migration. In this study we prove the feasibility of a new technique which uses metal detector technology combined with a surgical navigation system, resulting in improved accuracy and decreased operating time. In each of the experiments, 6 metal nuts were inserted into a dummy leg to simulate shrapnel wounds. Two major experiments were then conducted. Experiment 1 was a comparison of two methods: (a) localization of the nuts using surgical navigation alone, and (b) localization by means of metal detector technology combined with a surgical navigation system (StealthStation® TREON® plus). Experiment 2 employed the same two methods, but this time migration of the metal fragments was introduced. The localization time was measured from incision of the dummy skin to the moment the metal fragment was touched by the searching device. In experiment 1 the results showed no significant differences between the two approaches. In experiment 2 the new technique was found to significantly decrease the mean fragment localization time, taking 9.6 seconds (±7.2 seconds) as compared to 26.4 seconds (±13.8 seconds) when using the regular technique. Combining a metal detector probe and a surgical navigation system was found to significantly decrease operating time and increase the surgeon's confidence, especially in cases where migration of the metal fragment occurred during searching and extraction.

  17. A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2017-10-01

    The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.

  18. A physically based catchment partitioning method for hydrological analysis

    NASA Astrophysics Data System (ADS)

    Menduni, Giovanni; Riboni, Vittoria

    2000-07-01

    We propose a partitioning method for the topographic surface, which is particularly suitable for hydrological distributed modelling and shallow-landslide distributed modelling. The model provides variable mesh size and appears to be a natural evolution of contour-based digital terrain models. The proposed method allows the drainage network to be derived from the contour lines. The single channels are calculated via a search for the steepest downslope lines. Then, for each network node, the contributing area is determined by means of a search for both steepest upslope and downslope lines. This leads to the basin being partitioned into physically based finite elements delimited by irregular polygons. In particular, the distributed computation of local geomorphological parameters (i.e. aspect, average slope and elevation, main stream length, concentration time, etc.) can be performed easily for each single element. The contributing area system, together with the information on the distribution of geomorphological parameters provide a useful tool for distributed hydrological modelling and simulation of environmental processes such as erosion, sediment transport and shallow landslides.

  19. The genetic algorithm: A robust method for stress inversion

    NASA Astrophysics Data System (ADS)

    Thakur, Prithvi; Srivastava, Deepak C.; Gupta, Pravin K.

    2017-01-01

    The stress inversion of geological or geophysical observations is a nonlinear problem. In most existing methods, it is solved by linearization, under certain assumptions. These linear algorithms not only oversimplify the problem but also are vulnerable to entrapment of the solution in a local optimum. We propose the use of a nonlinear heuristic technique, the genetic algorithm, which searches the global optimum without making any linearizing assumption or simplification. The algorithm mimics the natural evolutionary processes of selection, crossover and mutation and, minimizes a composite misfit function for searching the global optimum, the fittest stress tensor. The validity and efficacy of the algorithm are demonstrated by a series of tests on synthetic and natural fault-slip observations in different tectonic settings and also in situations where the observations are noisy. It is shown that the genetic algorithm is superior to other commonly practised methods, in particular, in those tectonic settings where none of the principal stresses is directed vertically and/or the given data set is noisy.

  20. Simultaneous planning of the project scheduling and material procurement problem under the presence of multiple suppliers

    NASA Astrophysics Data System (ADS)

    Tabrizi, Babak H.; Ghaderi, Seyed Farid

    2016-09-01

    Simultaneous planning of project scheduling and material procurement can improve the project execution costs. Hence, the issue has been addressed here by a mixed-integer programming model. The proposed model facilitates the procurement decisions by accounting for a number of suppliers offering a distinctive discount formula from which to purchase the required materials. It is aimed at developing schedules with the best net present value regarding the obtained benefit and costs of the project execution. A genetic algorithm is applied to deal with the problem, in addition to a modified version equipped with a variable neighbourhood search. The underlying factors of the solution methods are calibrated by the Taguchi method to obtain robust solutions. The performance of the aforementioned methods is compared for different problem sizes, in which the utilized local search proved efficient. Finally, a sensitivity analysis is carried out to check the effect of inflation on the objective function value.

  1. Searching for Wolf-Rayet Stars Beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Bibby, J. L.; Shara, M. M.; Crowther, P. A.; Moffat, A. F. J.

    2012-12-01

    We present preliminary results from our HST/WFC3 F469N narrow-band imaging of the nearby star-forming galaxy M101 in which we search for Wolf-Rayet (WR) stars, possible progenitors of Type Ibc core-collapse supernovae (ccSNe). From analysis of the central pointing of M101 we identify ˜1000 WR candidates from photometric analysis and estimate ˜ 450 using the “blinking” method. From analysis of a sample region we find that 35% of our WR candidates would not be detected in ground-based surveys and 40% of sources are not detected in the HST F435W images, highlighting the importance of high spatial resolution narrow-band imaging.

  2. Seeking consent for research with indigenous communities: a systematic review.

    PubMed

    Fitzpatrick, Emily F M; Martiniuk, Alexandra L C; D'Antoine, Heather; Oscar, June; Carter, Maureen; Elliott, Elizabeth J

    2016-10-22

    When conducting research with Indigenous populations consent should be sought from both individual participants and the local community. We aimed to search and summarise the literature about methods for seeking consent for research with Indigenous populations. A systematic literature search was conducted for articles that describe or evaluate the process of seeking informed consent for research with Indigenous participants. Guidelines for ethical research and for seeking consent with Indigenous people are also included in our review. Of 1447 articles found 1391 were excluded (duplicates, irrelevant, not in English); 56 were relevant and included. Articles were categorised into original research that evaluated the consent process (n = 5) or publications detailing the process of seeking consent (n = 13) and guidelines for ethical research (n = 38). Guidelines were categorised into international (n = 8); national (n = 20) and state/regional/local guidelines (n = 10). In five studies based in Australia, Canada and The United States of America the consent process with Indigenous people was objectively evaluated. In 13 other studies interpreters, voice recording, videos, pictures, flipcharts and "plain language" forms were used to assist in seeking consent but these processes were not evaluated. Some Indigenous organisations provide examples of community-designed resources for seeking consent and describe methods of community engagement, but none are evaluated. International, national and local ethical guidelines stress the importance of upholding Indigenous values but fail to specify methods for engaging communities or obtaining individual consent. In the 'Grey literature' concerns about the consent process are identified but no solutions are offered. Consultation with Indigenous communities is needed to determine how consent should be sought from the community and the individual, and how to evaluate this process.

  3. Surgical Site Infiltration for Abdominal Surgery: A Novel Neuroanatomical-based Approach

    PubMed Central

    Janis, Jeffrey E.; Haas, Eric M.; Ramshaw, Bruce J.; Nihira, Mikio A.; Dunkin, Brian J.

    2016-01-01

    Background: Provision of optimal postoperative analgesia should facilitate postoperative ambulation and rehabilitation. An optimal multimodal analgesia technique would include the use of nonopioid analgesics, including local/regional analgesic techniques such as surgical site local anesthetic infiltration. This article presents a novel approach to surgical site infiltration techniques for abdominal surgery based upon neuroanatomy. Methods: Literature searches were conducted for studies reporting the neuroanatomical sources of pain after abdominal surgery. Also, studies identified by preceding search were reviewed for relevant publications and manually retrieved. Results: Based on neuroanatomy, an optimal surgical site infiltration technique would consist of systematic, extensive, meticulous administration of local anesthetic into the peritoneum (or preperitoneum), subfascial, and subdermal tissue planes. The volume of local anesthetic would depend on the size of the incision such that 1 to 1.5 mL is injected every 1 to 2 cm of surgical incision per layer. It is best to infiltrate with a 22-gauge, 1.5-inch needle. The needle is inserted approximately 0.5 to 1 cm into the tissue plane, and local anesthetic solution is injected while slowly withdrawing the needle, which should reduce the risk of intravascular injection. Conclusions: Meticulous, systematic, and extensive surgical site local anesthetic infiltration in the various tissue planes including the peritoneal, musculofascial, and subdermal tissues, where pain foci originate, provides excellent postoperative pain relief. This approach should be combined with use of other nonopioid analgesics with opioids reserved for rescue. Further well-designed studies are necessary to assess the analgesic efficacy of the proposed infiltration technique. PMID:28293525

  4. Earthquake Fingerprints: Representing Earthquake Waveforms for Similarity-Based Detection

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Beroza, G. C.

    2016-12-01

    New earthquake detection methods, such as Fingerprint and Similarity Thresholding (FAST), use fast approximate similarity search to identify similar waveforms in long-duration data without templates (Yoon et al. 2015). These methods have two key components: fingerprint extraction and an efficient search algorithm. Fingerprint extraction converts waveforms into fingerprints, compact signatures that represent short-duration waveforms for identification and search. Earthquakes are detected using an efficient indexing and search scheme, such as locality-sensitive hashing, that identifies similar waveforms in a fingerprint database. The quality of the search results, and thus the earthquake detection results, is strongly dependent on the fingerprinting scheme. Fingerprint extraction should map similar earthquake waveforms to similar waveform fingerprints to ensure a high detection rate, even under additive noise and small distortions. Additionally, fingerprints corresponding to noise intervals should have mutually dissimilar fingerprints to minimize false detections. In this work, we compare the performance of multiple fingerprint extraction approaches for the earthquake waveform similarity search problem. We apply existing audio fingerprinting (used in content-based audio identification systems) and time series indexing techniques and present modified versions that are specifically adapted for seismic data. We also explore data-driven fingerprinting approaches that can take advantage of labeled or unlabeled waveform data. For each fingerprinting approach we measure its ability to identify similar waveforms in a low signal-to-noise setting, and quantify the trade-off between true and false detection rates in the presence of persistent noise sources. We compare the performance using known event waveforms from eight independent stations in the Northern California Seismic Network.

  5. Processing Dynamic Image Sequences from a Moving Sensor.

    DTIC Science & Technology

    1984-02-01

    65 Roadsign Image Sequence ..... ................ ... 70 Roadsign Sequence with Redundant Features .. ........ . 79 Roadsign Subimage...Selected Feature Error Values .. ........ 66 2c. Industrial Image Selected Feature Local Search Values. .. .... 67 3ab. Roadsign Image Error Values...72 3c. Roadsign Image Local Search Values ............. 73 4ab. Roadsign Redundant Feature Error Values. ............ 8 4c. Roadsign

  6. Discovering ecologically relevant knowledge from published studies through geosemantic searching

    USDA-ARS?s Scientific Manuscript database

    It is easier to search the globe for research on genes of a local plant or animal than to find local field research on that plant’s ecology. While internet applications can find the closest coffee shop, it is difficult to find where the nearest relevant research was conducted. As a result, ecologi...

  7. Relations between perceptual and conceptual scope: how global versus local processing fits a focus on similarity versus dissimilarity.

    PubMed

    Förster, Jens

    2009-02-01

    Nine studies showed a bidirectional link (a) between a global processing style and generation of similarities and (b) between a local processing style and generation of dissimilarities. In Experiments 1-4, participants were primed with global versus local perception styles and then asked to work on an allegedly unrelated generation task. Across materials, participants generated more similarities than dissimilarities after global priming, whereas for participants with local priming, the opposite was true. Experiments 5-6 demonstrated a bidirectional link whereby participants who were first instructed to search for similarities attended more to the gestalt of a stimulus than to its details, whereas the reverse was true for those who were initially instructed to search for dissimilarities. Because important psychological variables are correlated with processing styles, in Experiments 7-9, temporal distance, a promotion focus, and high power were predicted and shown to enhance the search for similarities, whereas temporal proximity, a prevention focus, and low power enhanced the search for dissimilarities. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  8. Incremental social learning in particle swarms.

    PubMed

    de Oca, Marco A Montes; Stutzle, Thomas; Van den Enden, Ken; Dorigo, Marco

    2011-04-01

    Incremental social learning (ISL) was proposed as a way to improve the scalability of systems composed of multiple learning agents. In this paper, we show that ISL can be very useful to improve the performance of population-based optimization algorithms. Our study focuses on two particle swarm optimization (PSO) algorithms: a) the incremental particle swarm optimizer (IPSO), which is a PSO algorithm with a growing population size in which the initial position of new particles is biased toward the best-so-far solution, and b) the incremental particle swarm optimizer with local search (IPSOLS), in which solutions are further improved through a local search procedure. We first derive analytically the probability density function induced by the proposed initialization rule applied to new particles. Then, we compare the performance of IPSO and IPSOLS on a set of benchmark functions with that of other PSO algorithms (with and without local search) and a random restart local search algorithm. Finally, we measure the benefits of using incremental social learning on PSO algorithms by running IPSO and IPSOLS on problems with different fitness distance correlations.

  9. Coupled multiview autoencoders with locality sensitivity for three-dimensional human pose estimation

    NASA Astrophysics Data System (ADS)

    Yu, Jialin; Sun, Jifeng; Luo, Shasha; Duan, Bichao

    2017-09-01

    Estimating three-dimensional (3D) human poses from a single camera is usually implemented by searching pose candidates with image descriptors. Existing methods usually suppose that the mapping from feature space to pose space is linear, but in fact, their mapping relationship is highly nonlinear, which heavily degrades the performance of 3D pose estimation. We propose a method to recover 3D pose from a silhouette image. It is based on the multiview feature embedding (MFE) and the locality-sensitive autoencoders (LSAEs). On the one hand, we first depict the manifold regularized sparse low-rank approximation for MFE and then the input image is characterized by a fused feature descriptor. On the other hand, both the fused feature and its corresponding 3D pose are separately encoded by LSAEs. A two-layer back-propagation neural network is trained by parameter fine-tuning and then used to map the encoded 2D features to encoded 3D poses. Our LSAE ensures a good preservation of the local topology of data points. Experimental results demonstrate the effectiveness of our proposed method.

  10. Cooperative Quantum-Behaved Particle Swarm Optimization with Dynamic Varying Search Areas and Lévy Flight Disturbance

    PubMed Central

    Li, Desheng

    2014-01-01

    This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem. PMID:24851085

  11. An improved CS-LSSVM algorithm-based fault pattern recognition of ship power equipments.

    PubMed

    Yang, Yifei; Tan, Minjia; Dai, Yuewei

    2017-01-01

    A ship power equipments' fault monitoring signal usually provides few samples and the data's feature is non-linear in practical situation. This paper adopts the method of the least squares support vector machine (LSSVM) to deal with the problem of fault pattern identification in the case of small sample data. Meanwhile, in order to avoid involving a local extremum and poor convergence precision which are induced by optimizing the kernel function parameter and penalty factor of LSSVM, an improved Cuckoo Search (CS) algorithm is proposed for the purpose of parameter optimization. Based on the dynamic adaptive strategy, the newly proposed algorithm improves the recognition probability and the searching step length, which can effectively solve the problems of slow searching speed and low calculation accuracy of the CS algorithm. A benchmark example demonstrates that the CS-LSSVM algorithm can accurately and effectively identify the fault pattern types of ship power equipments.

  12. Inclusive Search for Boosted Higgs Bosons Using H$$ \\rightarrow \\mathrm{b\\overline{b}}$$ Decays with the CMS Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernieri, Caterina

    We present the first search for the standard model Higgs boson (H) produced with large transverse momentum (more » $$\\mathrm{p_{T}}$$) via gluon fusion and decaying to a bottom quark-antiquark pair ($$\\mathrm{b\\overline{b}}$$). The search is performed using a data set of pp collisions at $$\\sqrt{s}=13$$ TeV collected with the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9 fb$$^{\\mathrm{-1}}$$. A highly Lorentz-boosted Higgs boson decaying to $$\\mathrm{b\\overline{b}}$$ is reconstructed as a single, large radius jet and is identified using jet substructure and dedicated b tagging techniques. The method is validated with the first observation of the Z$$\\rightarrow\\mathrm{b\\overline{b}}$$ process in the single-jet topology, with a local significance of 5.1 standard deviations (5.8 expected).« less

  13. Inversion for Refractivity Parameters Using a Dynamic Adaptive Cuckoo Search with Crossover Operator Algorithm

    PubMed Central

    Zhang, Zhihua; Sheng, Zheng; Shi, Hanqing; Fan, Zhiqiang

    2016-01-01

    Using the RFC technique to estimate refractivity parameters is a complex nonlinear optimization problem. In this paper, an improved cuckoo search (CS) algorithm is proposed to deal with this problem. To enhance the performance of the CS algorithm, a parameter dynamic adaptive operation and crossover operation were integrated into the standard CS (DACS-CO). Rechenberg's 1/5 criteria combined with learning factor were used to control the parameter dynamic adaptive adjusting process. The crossover operation of genetic algorithm was utilized to guarantee the population diversity. The new hybrid algorithm has better local search ability and contributes to superior performance. To verify the ability of the DACS-CO algorithm to estimate atmospheric refractivity parameters, the simulation data and real radar clutter data are both implemented. The numerical experiments demonstrate that the DACS-CO algorithm can provide an effective method for near-real-time estimation of the atmospheric refractivity profile from radar clutter. PMID:27212938

  14. Spatially localized motion aftereffect disappears faster from awareness when selectively attended to according to its direction.

    PubMed

    Murd, Carolina; Bachmann, Talis

    2011-05-25

    In searching for the target-afterimage patch among spatially separate alternatives of color-afterimages the target fades from awareness before its competitors (Bachmann, T., & Murd, C. (2010). Covert spatial attention in search for the location of a color-afterimage patch speeds up its decay from awareness: Introducing a method useful for the study of neural correlates of visual awareness. Vision Research 50, 1048-1053). In an analogous study presented here we show that a similar effect is obtained when a target spatial location specified according to the direction of motion aftereffect within it is searched by covert top-down attention. The adverse effect of selective attention on the duration of awareness of sensory qualiae known earlier to be present for color and periodic spatial contrast is extended also to sensory channels carrying motion information. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Stabilization of a locally minimal forest

    NASA Astrophysics Data System (ADS)

    Ivanov, A. O.; Mel'nikova, A. E.; Tuzhilin, A. A.

    2014-03-01

    The method of partial stabilization of locally minimal networks, which was invented by Ivanov and Tuzhilin to construct examples of shortest trees with given topology, is developed. According to this method, boundary vertices of degree 2 are not added to all edges of the original locally minimal tree, but only to some of them. The problem of partial stabilization of locally minimal trees in a finite-dimensional Euclidean space is solved completely in the paper, that is, without any restrictions imposed on the number of edges remaining free of subdivision. A criterion for the realizability of such stabilization is established. In addition, the general problem of searching for the shortest forest connecting a finite family of boundary compact sets in an arbitrary metric space is formalized; it is shown that such forests exist for any family of compact sets if and only if for any finite subset of the ambient space there exists a shortest tree connecting it. The theory developed here allows us to establish further generalizations of the stabilization theorem both for arbitrary metric spaces and for metric spaces with some special properties. Bibliography: 10 titles.

  16. Cumulative query method for influenza surveillance using search engine data.

    PubMed

    Seo, Dong-Woo; Jo, Min-Woo; Sohn, Chang Hwan; Shin, Soo-Yong; Lee, JaeHo; Yu, Maengsoo; Kim, Won Young; Lim, Kyoung Soo; Lee, Sang-Il

    2014-12-16

    Internet search queries have become an important data source in syndromic surveillance system. However, there is currently no syndromic surveillance system using Internet search query data in South Korea. The objective of this study was to examine correlations between our cumulative query method and national influenza surveillance data. Our study was based on the local search engine, Daum (approximately 25% market share), and influenza-like illness (ILI) data from the Korea Centers for Disease Control and Prevention. A quota sampling survey was conducted with 200 participants to obtain popular queries. We divided the study period into two sets: Set 1 (the 2009/10 epidemiological year for development set 1 and 2010/11 for validation set 1) and Set 2 (2010/11 for development Set 2 and 2011/12 for validation Set 2). Pearson's correlation coefficients were calculated between the Daum data and the ILI data for the development set. We selected the combined queries for which the correlation coefficients were .7 or higher and listed them in descending order. Then, we created a cumulative query method n representing the number of cumulative combined queries in descending order of the correlation coefficient. In validation set 1, 13 cumulative query methods were applied, and 8 had higher correlation coefficients (min=.916, max=.943) than that of the highest single combined query. Further, 11 of 13 cumulative query methods had an r value of ≥.7, but 4 of 13 combined queries had an r value of ≥.7. In validation set 2, 8 of 15 cumulative query methods showed higher correlation coefficients (min=.975, max=.987) than that of the highest single combined query. All 15 cumulative query methods had an r value of ≥.7, but 6 of 15 combined queries had an r value of ≥.7. Cumulative query method showed relatively higher correlation with national influenza surveillance data than combined queries in the development and validation set.

  17. Ionization imaging—A new method to search for 0- ν ββ decay

    NASA Astrophysics Data System (ADS)

    Chinowski, W.; Goldschmidt, A.; Nygren, D.; Bernstein, A.; Heffner, M.; Millaud, J.

    2007-10-01

    We present a new method to search for 0- ν ββ decay in 136Xe, the Ionization Imaging Chamber. This concept is based on 3-D track reconstruction by detection of ionization, without avalanche gain, in a novel time projection chamber (TPC) geometry. The rejection efficiency of external charged particle backgrounds is optimized by the realization of a maximal, fully active, closed, and ex post facto variable fiducial surface. Event localization within the fiducial volume and detailed event reconstruction mitigate external neutral particle backgrounds; larger detectors offer higher rejection efficiencies. Energy resolution at the Q-value of 2.5 MeV is expected to be better than 1% FWHM, reducing the potential impact of allowed 2- ν ββ decays. Scaling from ˜25 kg prototype to 1000+ kg target mass is graceful. A new possible methodology for the identification of the daughter barium nucleus is also described.

  18. Generation algorithm of craniofacial structure contour in cephalometric images

    NASA Astrophysics Data System (ADS)

    Mondal, Tanmoy; Jain, Ashish; Sardana, H. K.

    2010-02-01

    Anatomical structure tracing on cephalograms is a significant way to obtain cephalometric analysis. Computerized cephalometric analysis involves both manual and automatic approaches. The manual approach is limited in accuracy and repeatability. In this paper we have attempted to develop and test a novel method for automatic localization of craniofacial structure based on the detected edges on the region of interest. According to the grey scale feature at the different region of the cephalometric images, an algorithm for obtaining tissue contour is put forward. Using edge detection with specific threshold an improved bidirectional contour tracing approach is proposed by an interactive selection of the starting edge pixels, the tracking process searches repetitively for an edge pixel at the neighborhood of previously searched edge pixel to segment images, and then craniofacial structures are obtained. The effectiveness of the algorithm is demonstrated by the preliminary experimental results obtained with the proposed method.

  19. Shared-hole graph search with adaptive constraints for 3D optic nerve head optical coherence tomography image segmentation

    PubMed Central

    Yu, Kai; Shi, Fei; Gao, Enting; Zhu, Weifang; Chen, Haoyu; Chen, Xinjian

    2018-01-01

    Optic nerve head (ONH) is a crucial region for glaucoma detection and tracking based on spectral domain optical coherence tomography (SD-OCT) images. In this region, the existence of a “hole” structure makes retinal layer segmentation and analysis very challenging. To improve retinal layer segmentation, we propose a 3D method for ONH centered SD-OCT image segmentation, which is based on a modified graph search algorithm with a shared-hole and locally adaptive constraints. With the proposed method, both the optic disc boundary and nine retinal surfaces can be accurately segmented in SD-OCT images. An overall mean unsigned border positioning error of 7.27 ± 5.40 µm was achieved for layer segmentation, and a mean Dice coefficient of 0.925 ± 0.03 was achieved for optic disc region detection. PMID:29541497

  20. An Integrated Method Based on PSO and EDA for the Max-Cut Problem.

    PubMed

    Lin, Geng; Guan, Jian

    2016-01-01

    The max-cut problem is NP-hard combinatorial optimization problem with many real world applications. In this paper, we propose an integrated method based on particle swarm optimization and estimation of distribution algorithm (PSO-EDA) for solving the max-cut problem. The integrated algorithm overcomes the shortcomings of particle swarm optimization and estimation of distribution algorithm. To enhance the performance of the PSO-EDA, a fast local search procedure is applied. In addition, a path relinking procedure is developed to intensify the search. To evaluate the performance of PSO-EDA, extensive experiments were carried out on two sets of benchmark instances with 800 to 20,000 vertices from the literature. Computational results and comparisons show that PSO-EDA significantly outperforms the existing PSO-based and EDA-based algorithms for the max-cut problem. Compared with other best performing algorithms, PSO-EDA is able to find very competitive results in terms of solution quality.

  1. On-the-fly transition search and applications to temperature-accelerated dynamics

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Amar, Jacques

    2015-03-01

    Temperature-accelerated dynamics (TAD) is a powerful method to study non-equilibrium processes and has been providing surprising insights for a variety of systems. While serial TAD simulations have been limited by the roughly N3 increase in the computational cost as a function of the number of atoms N in the system, recently we have shown that by carrying out parallel TAD simulations which combine spatial decomposition with our semi-rigorous synchronous sublattice algorithm, significantly improved scaling is possible. However, in this approach the size of activated events is limited by the processor size while the dynamics is not exact. Here we discuss progress in improving the scaling of serial TAD by combining the use of on-the-fly transition searching with our previously developed localized saddle-point method. We demonstrate improved performance for the cases of Ag/Ag(100) annealing and Cu/Cu(100) growth. Supported by NSF DMR-1410840.

  2. Medial-based deformable models in nonconvex shape-spaces for medical image segmentation.

    PubMed

    McIntosh, Chris; Hamarneh, Ghassan

    2012-01-01

    We explore the application of genetic algorithms (GA) to deformable models through the proposition of a novel method for medical image segmentation that combines GA with nonconvex, localized, medial-based shape statistics. We replace the more typical gradient descent optimizer used in deformable models with GA, and the convex, implicit, global shape statistics with nonconvex, explicit, localized ones. Specifically, we propose GA to reduce typical deformable model weaknesses pertaining to model initialization, pose estimation and local minima, through the simultaneous evolution of a large number of models. Furthermore, we constrain the evolution, and thus reduce the size of the search-space, by using statistically-based deformable models whose deformations are intuitive (stretch, bulge, bend) and are driven in terms of localized principal modes of variation, instead of modes of variation across the entire shape that often fail to capture localized shape changes. Although GA are not guaranteed to achieve the global optima, our method compares favorably to the prevalent optimization techniques, convex/nonconvex gradient-based optimizers and to globally optimal graph-theoretic combinatorial optimization techniques, when applied to the task of corpus callosum segmentation in 50 mid-sagittal brain magnetic resonance images.

  3. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    PubMed

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  4. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    PubMed Central

    Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-01-01

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths. PMID:29462929

  5. Sirius PSB: a generic system for analysis of biological sequences.

    PubMed

    Koh, Chuan Hock; Lin, Sharene; Jedd, Gregory; Wong, Limsoon

    2009-12-01

    Computational tools are essential components of modern biological research. For example, BLAST searches can be used to identify related proteins based on sequence homology, or when a new genome is sequenced, prediction models can be used to annotate functional sites such as transcription start sites, translation initiation sites and polyadenylation sites and to predict protein localization. Here we present Sirius Prediction Systems Builder (PSB), a new computational tool for sequence analysis, classification and searching. Sirius PSB has four main operations: (1) Building a classifier, (2) Deploying a classifier, (3) Search for proteins similar to query proteins, (4) Preliminary and post-prediction analysis. Sirius PSB supports all these operations via a simple and interactive graphical user interface. Besides being a convenient tool, Sirius PSB has also introduced two novelties in sequence analysis. Firstly, genetic algorithm is used to identify interesting features in the feature space. Secondly, instead of the conventional method of searching for similar proteins via sequence similarity, we introduced searching via features' similarity. To demonstrate the capabilities of Sirius PSB, we have built two prediction models - one for the recognition of Arabidopsis polyadenylation sites and another for the subcellular localization of proteins. Both systems are competitive against current state-of-the-art models based on evaluation of public datasets. More notably, the time and effort required to build each model is greatly reduced with the assistance of Sirius PSB. Furthermore, we show that under certain conditions when BLAST is unable to find related proteins, Sirius PSB can identify functionally related proteins based on their biophysical similarities. Sirius PSB and its related supplements are available at: http://compbio.ddns.comp.nus.edu.sg/~sirius.

  6. Evaluation of the site effect with Heuristic Methods

    NASA Astrophysics Data System (ADS)

    Torres, N. N.; Ortiz-Aleman, C.

    2017-12-01

    The seismic site response in an area depends mainly on the local geological and topographical conditions. Estimation of variations in ground motion can lead to significant contributions on seismic hazard assessment, in order to reduce human and economic losses. Site response estimation can be posed as a parameterized inversion approach which allows separating source and path effects. The generalized inversion (Field and Jacob, 1995) represents one of the alternative methods to estimate the local seismic response, which involves solving a strongly non-linear multiparametric problem. In this work, local seismic response was estimated using global optimization methods (Genetic Algorithms and Simulated Annealing) which allowed us to increase the range of explored solutions in a nonlinear search, as compared to other conventional linear methods. By using the VEOX Network velocity records, collected from August 2007 to March 2009, source, path and site parameters corresponding to the amplitude spectra of the S wave of the velocity seismic records are estimated. We can establish that inverted parameters resulting from this simultaneous inversion approach, show excellent agreement, not only in terms of adjustment between observed and calculated spectra, but also when compared to previous work from several authors.

  7. Fast clustering using adaptive density peak detection.

    PubMed

    Wang, Xiao-Feng; Xu, Yifan

    2017-12-01

    Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.

  8. Texture Classification by Texton: Statistical versus Binary

    PubMed Central

    Guo, Zhenhua; Zhang, Zhongcheng; Li, Xiu; Li, Qin; You, Jane

    2014-01-01

    Using statistical textons for texture classification has shown great success recently. The maximal response 8 (Statistical_MR8), image patch (Statistical_Joint) and locally invariant fractal (Statistical_Fractal) are typical statistical texton algorithms and state-of-the-art texture classification methods. However, there are two limitations when using these methods. First, it needs a training stage to build a texton library, thus the recognition accuracy will be highly depended on the training samples; second, during feature extraction, local feature is assigned to a texton by searching for the nearest texton in the whole library, which is time consuming when the library size is big and the dimension of feature is high. To address the above two issues, in this paper, three binary texton counterpart methods were proposed, Binary_MR8, Binary_Joint, and Binary_Fractal. These methods do not require any training step but encode local feature into binary representation directly. The experimental results on the CUReT, UIUC and KTH-TIPS databases show that binary texton could get sound results with fast feature extraction, especially when the image size is not big and the quality of image is not poor. PMID:24520346

  9. Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0

    PubMed Central

    Zhu, Xiaolei; Xiong, Yi; Kihara, Daisuke

    2015-01-01

    Motivation: Ligand binding is a key aspect of the function of many proteins. Thus, binding ligand prediction provides important insight in understanding the biological function of proteins. Binding ligand prediction is also useful for drug design and examining potential drug side effects. Results: We present a computational method named Patch-Surfer2.0, which predicts binding ligands for a protein pocket. By representing and comparing pockets at the level of small local surface patches that characterize physicochemical properties of the local regions, the method can identify binding pockets of the same ligand even if they do not share globally similar shapes. Properties of local patches are represented by an efficient mathematical representation, 3D Zernike Descriptor. Patch-Surfer2.0 has significant technical improvements over our previous prototype, which includes a new feature that captures approximate patch position with a geodesic distance histogram. Moreover, we constructed a large comprehensive database of ligand binding pockets that will be searched against by a query. The benchmark shows better performance of Patch-Surfer2.0 over existing methods. Availability and implementation: http://kiharalab.org/patchsurfer2.0/ Contact: dkihara@purdue.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25359888

  10. A Method to Search for Correlations of Ultra-high Energy Cosmic-Ray Masses with the Large-scale Structures in the Local Galaxy Density Field

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.

    2013-02-01

    One of the main goals of investigations using present and future giant extensive air shower (EAS) arrays is the mass composition of ultra-high energy cosmic rays (UHECRs). A new approach to the problem is presented, combining the analysis of arrival directions with the statistical test of the paired EAS samples. One of the ideas of the method is to search for possible correlations between UHECR masses and their separate sources; for instance, if there are two sources in different areas of the celestial sphere injecting different nuclei, but the fluxes are comparable so that arrival directions are isotropic, then the aim is to reveal a difference in the mass composition of cosmic-ray fluxes. The method is based on a non-parametric statistical test—the Wilcoxon signed-rank routine—which does not depend on the populations fitting any parameterized distributions. Two particular algorithms are proposed: first, using measurements of the depth of the EAS maximum position in the atmosphere; and second, relying on the age variance of air showers initiated by different primary particles. The formulated method is applied to the Yakutsk array data, in order to demonstrate the possibility of searching for a difference in average mass composition between the two UHECR sets, arriving particularly from the supergalactic plane and a complementary region.

  11. Improved hybrid optimization algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  12. An Algorithm for Efficient Maximum Likelihood Estimation and Confidence Interval Determination in Nonlinear Estimation Problems

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick Charles

    1985-01-01

    An algorithm for maximum likelihood (ML) estimation is developed with an efficient method for approximating the sensitivities. The algorithm was developed for airplane parameter estimation problems but is well suited for most nonlinear, multivariable, dynamic systems. The ML algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). MNRES determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. The fitted surface allows sensitivity information to be updated at each iteration with a significant reduction in computational effort. MNRES determines the sensitivities with less computational effort than using either a finite-difference method or integrating the analytically determined sensitivity equations. MNRES eliminates the need to derive sensitivity equations for each new model, thus eliminating algorithm reformulation with each new model and providing flexibility to use model equations in any format that is convenient. A random search technique for determining the confidence limits of ML parameter estimates is applied to nonlinear estimation problems for airplanes. The confidence intervals obtained by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. It is observed that the degree of nonlinearity in the estimation problem is an important factor in the relationship between CR bounds and the error bounds determined by the search technique. The CR bounds were found to be close to the bounds determined by the search when the degree of nonlinearity was small. Beale's measure of nonlinearity is developed in this study for airplane identification problems; it is used to empirically correct confidence levels for the parameter confidence limits. The primary utility of the measure, however, was found to be in predicting the degree of agreement between Cramer-Rao bounds and search estimates.

  13. The historical development of the magnetic method in exploration

    USGS Publications Warehouse

    Nabighian, M.N.; Grauch, V.J.S.; Hansen, R.O.; LaFehr, T.R.; Li, Y.; Peirce, J.W.; Phillips, J.D.; Ruder, M.E.

    2005-01-01

    The magnetic method, perhaps the oldest of geophysical exploration techniques, blossomed after the advent of airborne surveys in World War II. With improvements in instrumentation, navigation, and platform compensation, it is now possible to map the entire crustal section at a variety of scales, from strongly magnetic basement at regional scale to weakly magnetic sedimentary contacts at local scale. Methods of data filtering, display, and interpretation have also advanced, especially with the availability of low-cost, high-performance personal computers and color raster graphics. The magnetic method is the primary exploration tool in the search for minerals. In other arenas, the magnetic method has evolved from its sole use for mapping basement structure to include a wide range of new applications, such as locating intrasedimentary faults, defining subtle lithologic contacts, mapping salt domes in weakly magnetic sediments, and better defining targets through 3D inversion. These new applications have increased the method's utility in all realms of exploration - in the search for minerals, oil and gas, geothermal resources, and groundwater, and for a variety of other purposes such as natural hazards assessment, mapping impact structures, and engineering and environmental studies. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  14. Overlapping communities from dense disjoint and high total degree clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Hongli; Gao, Yang; Zhang, Yue

    2018-04-01

    Community plays an important role in the field of sociology, biology and especially in domains of computer science, where systems are often represented as networks. And community detection is of great importance in the domains. A community is a dense subgraph of the whole graph with more links between its members than between its members to the outside nodes, and nodes in the same community probably share common properties or play similar roles in the graph. Communities overlap when nodes in a graph belong to multiple communities. A vast variety of overlapping community detection methods have been proposed in the literature, and the local expansion method is one of the most successful techniques dealing with large networks. The paper presents a density-based seeding method, in which dense disjoint local clusters are searched and selected as seeds. The proposed method selects a seed by the total degree and density of local clusters utilizing merely local structures of the network. Furthermore, this paper proposes a novel community refining phase via minimizing the conductance of each community, through which the quality of identified communities is largely improved in linear time. Experimental results in synthetic networks show that the proposed seeding method outperforms other seeding methods in the state of the art and the proposed refining method largely enhances the quality of the identified communities. Experimental results in real graphs with ground-truth communities show that the proposed approach outperforms other state of the art overlapping community detection algorithms, in particular, it is more than two orders of magnitude faster than the existing global algorithms with higher quality, and it obtains much more accurate community structure than the current local algorithms without any priori information.

  15. A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreasen, Daniel, E-mail: dana@dtu.dk

    Purpose: In radiotherapy based only on magnetic resonance imaging (MRI), knowledge about tissue electron densities must be derived from the MRI. This can be achieved by converting the MRI scan to the so-called pseudo-computed tomography (pCT). An obstacle is that the voxel intensities in conventional MRI scans are not uniquely related to electron density. The authors previously demonstrated that a patch-based method could produce accurate pCTs of the brain using conventional T{sub 1}-weighted MRI scans. The method was driven mainly by local patch similarities and relied on simple affine registrations between an atlas database of the co-registered MRI/CT scan pairsmore » and the MRI scan to be converted. In this study, the authors investigate the applicability of the patch-based approach in the pelvis. This region is challenging for a method based on local similarities due to the greater inter-patient variation. The authors benchmark the method against a baseline pCT strategy where all voxels inside the body contour are assigned a water-equivalent bulk density. Furthermore, the authors implement a parallelized approximate patch search strategy to speed up the pCT generation time to a more clinically relevant level. Methods: The data consisted of CT and T{sub 1}-weighted MRI scans of 10 prostate patients. pCTs were generated using an approximate patch search algorithm in a leave-one-out fashion and compared with the CT using frequently described metrics such as the voxel-wise mean absolute error (MAE{sub vox}) and the deviation in water-equivalent path lengths. Furthermore, the dosimetric accuracy was tested for a volumetric modulated arc therapy plan using dose–volume histogram (DVH) point deviations and γ-index analysis. Results: The patch-based approach had an average MAE{sub vox} of 54 HU; median deviations of less than 0.4% in relevant DVH points and a γ-index pass rate of 0.97 using a 1%/1 mm criterion. The patch-based approach showed a significantly better performance than the baseline water pCT in almost all metrics. The approximate patch search strategy was 70x faster than a brute-force search, with an average prediction time of 20.8 min. Conclusions: The authors showed that a patch-based method based on affine registrations and T{sub 1}-weighted MRI could generate accurate pCTs of the pelvis. The main source of differences between pCT and CT was positional changes of air pockets and body outline.« less

  16. Capabilities in Context: Evaluating the Net-Centric Enterprise

    DTIC Science & Technology

    2009-03-01

    with an intuitive keyword search using the enterprise’s federated search capability. Service accessibility. Testers will ensure that local service has...search using the enterprise’s federated search capability. Data accessibility. Testers will ensure that Feder- ated Search results provide active link...user may request access to the data, and be available within ‘‘2 clicks’’ from the active link provided by Federated Search . Data understandability

  17. DECAF - Density Estimation for Cetaceans from Passive Acoustic Fixed Sensors

    DTIC Science & Technology

    2007-01-01

    including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing...penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2007 2. REPORT...as far as possible to leverage data that have already been collected, and classification and localization methods that have already been developed

  18. Generalization and Parallelization of Messy Genetic Algorithms and Communication in Parallel Genetic Algorithms.

    DTIC Science & Technology

    1992-12-01

    Dynamics and Free Energy Perturbation Methods." Reviews in Computational Chem- istry edited by Kenny B. Lipkowitz and Donald B. Boyd, chapter 8, 295-320...atomic motions during annealing, allows the search to probabilistically move in a locally non-optimal direction. The probability of doing so is...Network processors communicate via communication links. This type of communication is generally very slow relative to other processor activities

  19. Multi-period project portfolio selection under risk considerations and stochastic income

    NASA Astrophysics Data System (ADS)

    Tofighian, Ali Asghar; Moezzi, Hamid; Khakzar Barfuei, Morteza; Shafiee, Mahmood

    2018-02-01

    This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, considering risks, stochastic incomes, and possibility of investing extra budget in each time period. Due to the complexity of the problem, an effective meta-heuristic method hybridized with a local search procedure is presented to solve the problem. The algorithm is based on genetic algorithm (GA), which is a prominent method to solve this type of problems. The GA is enhanced by a new solution representation and well selected operators. It also is hybridized with a local search mechanism to gain better solution in shorter time. The performance of the proposed algorithm is then compared with well-known algorithms, like basic genetic algorithm (GA), particle swarm optimization (PSO), and electromagnetism-like algorithm (EM-like) by means of some prominent indicators. The computation results show the superiority of the proposed algorithm in terms of accuracy, robustness and computation time. At last, the proposed algorithm is wisely combined with PSO to improve the computing time considerably.

  20. A Novel Local Learning based Approach With Application to Breast Cancer Diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Songhua; Tourassi, Georgia

    2012-01-01

    The purpose of this study is to develop and evaluate a novel local learning-based approach for computer-assisted diagnosis of breast cancer. Our new local learning based algorithm using the linear logistic regression method as its base learner is described. Overall, our algorithm will perform its stochastic searching process until the total allowed computing time is used up by our random walk process in identifying the most suitable population subdivision scheme and their corresponding individual base learners. The proposed local learning-based approach was applied for the prediction of breast cancer given 11 mammographic and clinical findings reported by physicians using themore » BI-RADS lexicon. Our database consisted of 850 patients with biopsy confirmed diagnosis (290 malignant and 560 benign). We also compared the performance of our method with a collection of publicly available state-of-the-art machine learning methods. Predictive performance for all classifiers was evaluated using 10-fold cross validation and Receiver Operating Characteristics (ROC) analysis. Figure 1 reports the performance of 54 machine learning methods implemented in the machine learning toolkit Weka (version 3.0). We introduced a novel local learning-based classifier and compared it with an extensive list of other classifiers for the problem of breast cancer diagnosis. Our experiments show that the algorithm superior prediction performance outperforming a wide range of other well established machine learning techniques. Our conclusion complements the existing understanding in the machine learning field that local learning may capture complicated, non-linear relationships exhibited by real-world datasets.« less

  1. Alternative practices of achieving anaesthesia for dental procedures: a review.

    PubMed

    Angelo, Zavattini; Polyvios, Charalambous

    2018-04-01

    Managing pain and anxiety in patients has always been an essential part of dentistry. To prevent pain, dentists administer local anaesthesia (LA) via a needle injection. Unfortunately, anxiety and fear that arise prior to and/or during injection remains a barrier for many children and adults from receiving dental treatment. There is a constant search for techniques to alleviate the invasive and painful nature of the needle injection. In recent years, researchers have developed alternative methods which enable dental anaesthesia to be less invasive and more patient-friendly. The aim of this review is to highlight the procedures and devices available which may replace the conventional needle-administered local anaesthesia. The most known alternative methods in providing anaesthesia in dentistry are: topical anaesthesia, electronic dental anaesthesia, jet-injectors, iontophoresis, and computerized control local anaesthesia delivery systems. Even though these procedures are well accepted by patients to date, it is the authors' opinion that the effectiveness practicality of such techniques in general dentistry is not without limitations.

  2. Alternative practices of achieving anaesthesia for dental procedures: a review

    PubMed Central

    2018-01-01

    Managing pain and anxiety in patients has always been an essential part of dentistry. To prevent pain, dentists administer local anaesthesia (LA) via a needle injection. Unfortunately, anxiety and fear that arise prior to and/or during injection remains a barrier for many children and adults from receiving dental treatment. There is a constant search for techniques to alleviate the invasive and painful nature of the needle injection. In recent years, researchers have developed alternative methods which enable dental anaesthesia to be less invasive and more patient-friendly. The aim of this review is to highlight the procedures and devices available which may replace the conventional needle-administered local anaesthesia. The most known alternative methods in providing anaesthesia in dentistry are: topical anaesthesia, electronic dental anaesthesia, jet-injectors, iontophoresis, and computerized control local anaesthesia delivery systems. Even though these procedures are well accepted by patients to date, it is the authors' opinion that the effectiveness practicality of such techniques in general dentistry is not without limitations. PMID:29744382

  3. Visual Search in ASD: Instructed Versus Spontaneous Local and Global Processing.

    PubMed

    Van der Hallen, Ruth; Evers, Kris; Boets, Bart; Steyaert, Jean; Noens, Ilse; Wagemans, Johan

    2016-09-01

    Visual search has been used extensively to investigate differences in mid-level visual processing between individuals with ASD and TD individuals. The current study employed two visual search paradigms with Gaborized stimuli to assess the impact of task distractors (Experiment 1) and task instruction (Experiment 2) on local-global visual processing in ASD versus TD children. Experiment 1 revealed both groups to be equally sensitive to the absence or presence of a distractor, regardless of the type of target or type of distractor. Experiment 2 revealed a differential effect of task instruction for ASD compared to TD, regardless of the type of target. Taken together, these results stress the importance of task factors in the study of local-global visual processing in ASD.

  4. Localization Transition Induced by Learning in Random Searches

    NASA Astrophysics Data System (ADS)

    Falcón-Cortés, Andrea; Boyer, Denis; Giuggioli, Luca; Majumdar, Satya N.

    2017-10-01

    We solve an adaptive search model where a random walker or Lévy flight stochastically resets to previously visited sites on a d -dimensional lattice containing one trapping site. Because of reinforcement, a phase transition occurs when the resetting rate crosses a threshold above which nondiffusive stationary states emerge, localized around the inhomogeneity. The threshold depends on the trapping strength and on the walker's return probability in the memoryless case. The transition belongs to the same class as the self-consistent theory of Anderson localization. These results show that similarly to many living organisms and unlike the well-studied Markovian walks, non-Markov movement processes can allow agents to learn about their environment and promise to bring adaptive solutions in search tasks.

  5. Niche harmony search algorithm for detecting complex disease associated high-order SNP combinations.

    PubMed

    Tuo, Shouheng; Zhang, Junying; Yuan, Xiguo; He, Zongzhen; Liu, Yajun; Liu, Zhaowen

    2017-09-14

    Genome-wide association study is especially challenging in detecting high-order disease-causing models due to model diversity, possible low or even no marginal effect of the model, and extraordinary search and computations. In this paper, we propose a niche harmony search algorithm where joint entropy is utilized as a heuristic factor to guide the search for low or no marginal effect model, and two computationally lightweight scores are selected to evaluate and adapt to diverse of disease models. In order to obtain all possible suspected pathogenic models, niche technique merges with HS, which serves as a taboo region to avoid HS trapping into local search. From the resultant set of candidate SNP-combinations, we use G-test statistic for testing true positives. Experiments were performed on twenty typical simulation datasets in which 12 models are with marginal effect and eight ones are with no marginal effect. Our results indicate that the proposed algorithm has very high detection power for searching suspected disease models in the first stage and it is superior to some typical existing approaches in both detection power and CPU runtime for all these datasets. Application to age-related macular degeneration (AMD) demonstrates our method is promising in detecting high-order disease-causing models.

  6. Enabling the extended compact genetic algorithm for real-parameter optimization by using adaptive discretization.

    PubMed

    Chen, Ying-ping; Chen, Chao-Hong

    2010-01-01

    An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence.

  7. Micro-seismic waveform matching inversion based on gravitational search algorithm and parallel computation

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Xing, H. L.

    2016-12-01

    Micro-seismic events induced by water injection, mining activity or oil/gas extraction are quite informative, the interpretation of which can be applied for the reconstruction of underground stress and monitoring of hydraulic fracturing progress in oil/gas reservoirs. The source characterises and locations are crucial parameters that required for these purposes, which can be obtained through the waveform matching inversion (WMI) method. Therefore it is imperative to develop a WMI algorithm with high accuracy and convergence speed. Heuristic algorithm, as a category of nonlinear method, possesses a very high convergence speed and good capacity to overcome local minimal values, and has been well applied for many areas (e.g. image processing, artificial intelligence). However, its effectiveness for micro-seismic WMI is still poorly investigated; very few literatures exits that addressing this subject. In this research an advanced heuristic algorithm, gravitational search algorithm (GSA) , is proposed to estimate the focal mechanism (angle of strike, dip and rake) and source locations in three dimension. Unlike traditional inversion methods, the heuristic algorithm inversion does not require the approximation of green function. The method directly interacts with a CPU parallelized finite difference forward modelling engine, and updating the model parameters under GSA criterions. The effectiveness of this method is tested with synthetic data form a multi-layered elastic model; the results indicate GSA can be well applied on WMI and has its unique advantages. Keywords: Micro-seismicity, Waveform matching inversion, gravitational search algorithm, parallel computation

  8. Creating and Searching a Local Inventory for Data Granules in a Remote Archive

    NASA Astrophysics Data System (ADS)

    Cornillon, P. C.

    2016-12-01

    More often than not, search capabilities for network accessible data do not exist or do not meet the requirements of the user. For large archives this can make finding data of interest tedious at best. This summer, the author encountered such a problem with regard to the two existing archives of VIIRS L2 sea surface temperature (SST) fields obtained with the new ACSPO retrieval algorithm; one at the Jet Propulsion Laboratory's PO-DAAC and the other at NOAA's National Centers for Environmental Information (NCEI). In both cases the data were available via ftp and OPeNDAP but there was no search capability at the PO-DAAC and the NCEI archive was incomplete. Furthermore, in order to meet the needs of a broad range of datasets and users, the beta version of the search engine at NCEI was cumbersome for the searches of interest. Although some of these problems have been resolved since (and may be described in other posters/presentations at this meeting), the solution described in this presentation offers the user the ability to develop a search capability for archives lacking a search capability and/or to configure searches more to his or her preferences than the generic searches offered by the data provider. The solution, a Matlab script, used html access to the PO-DAAC web site to locate all VIIRS 10 minute granules and OPeNDAP access to acquire the bounding box for each granule from the metadata bound to the file. This task required several hours of wall time to acquire the data and to write the bounding boxes to a local file with the associated ftp and OPeNDAP urls for the 110,000+ granule archive. A second Matlab script searched the local archive, seconds, for granules falling in a user defined space-time window and an ascii file of wget commands associated with these was generated. This file was then executed to acquire the data of interest. The wget commands can be configured to acquire the entire files via ftp or a subset of each file via OPeNDAP. Furthermore, the search capability, based on bounding boxes and rectangular regions, could easily be modified to further refine the search. Finally, the script that builds the inventory has been designed to update the local inventory, minutes per month rather than hours.

  9. Investigating the enhanced Best Performance Algorithm for Annual Crop Planning problem based on economic factors.

    PubMed

    Adewumi, Aderemi Oluyinka; Chetty, Sivashan

    2017-01-01

    The Annual Crop Planning (ACP) problem was a recently introduced problem in the literature. This study further expounds on this problem by presenting a new mathematical formulation, which is based on market economic factors. To determine solutions, a new local search metaheuristic algorithm is investigated which is called the enhanced Best Performance Algorithm (eBPA). eBPA's results are compared against two well-known local search metaheuristic algorithms; these include Tabu Search and Simulated Annealing. The results show the potential of the eBPA for continuous optimization problems.

  10. Linear Response Path Following: A Molecular Dynamics Method To Simulate Global Conformational Changes of Protein upon Ligand Binding.

    PubMed

    Tamura, Koichi; Hayashi, Shigehiko

    2015-07-14

    Molecular functions of proteins are often fulfilled by global conformational changes that couple with local events such as the binding of ligand molecules. High molecular complexity of proteins has, however, been an obstacle to obtain an atomistic view of the global conformational transitions, imposing a limitation on the mechanistic understanding of the functional processes. In this study, we developed a new method of molecular dynamics (MD) simulation called the linear response path following (LRPF) to simulate a protein's global conformational changes upon ligand binding. The method introduces a biasing force based on a linear response theory, which determines a local reaction coordinate in the configuration space that represents linear coupling between local events of ligand binding and global conformational changes and thus provides one with fully atomistic models undergoing large conformational changes without knowledge of a target structure. The overall transition process involving nonlinear conformational changes is simulated through iterative cycles consisting of a biased MD simulation with an updated linear response force and a following unbiased MD simulation for relaxation. We applied the method to the simulation of global conformational changes of the yeast calmodulin N-terminal domain and successfully searched out the end conformation. The atomistically detailed trajectories revealed a sequence of molecular events that properly lead to the global conformational changes and identified key steps of local-global coupling that induce the conformational transitions. The LRPF method provides one with a powerful means to model conformational changes of proteins such as motors and transporters where local-global coupling plays a pivotal role in their functional processes.

  11. Dynamic Search and Working Memory in Social Recall

    ERIC Educational Resources Information Center

    Hills, Thomas T.; Pachur, Thorsten

    2012-01-01

    What are the mechanisms underlying search in social memory (e.g., remembering the people one knows)? Do the search mechanisms involve dynamic local-to-global transitions similar to semantic search, and are these transitions governed by the general control of attention, associated with working memory span? To find out, we asked participants to…

  12. A Method for Search Engine Selection using Thesaurus for Selective Meta-Search Engine

    NASA Astrophysics Data System (ADS)

    Goto, Shoji; Ozono, Tadachika; Shintani, Toramatsu

    In this paper, we propose a new method for selecting search engines on WWW for selective meta-search engine. In selective meta-search engine, a method is needed that would enable selecting appropriate search engines for users' queries. Most existing methods use statistical data such as document frequency. These methods may select inappropriate search engines if a query contains polysemous words. In this paper, we describe an search engine selection method based on thesaurus. In our method, a thesaurus is constructed from documents in a search engine and is used as a source description of the search engine. The form of a particular thesaurus depends on the documents used for its construction. Our method enables search engine selection by considering relationship between terms and overcomes the problems caused by polysemous words. Further, our method does not have a centralized broker maintaining data, such as document frequency for all search engines. As a result, it is easy to add a new search engine, and meta-search engines become more scalable with our method compared to other existing methods.

  13. Structural optimization via a design space hierarchy

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.

    1976-01-01

    Mathematical programming techniques provide a general approach to automated structural design. An iterative method is proposed in which design is treated as a hierarchy of subproblems, one being locally constrained and the other being locally unconstrained. It is assumed that the design space is locally convex in the case of good initial designs and that the objective and constraint functions are continuous, with continuous first derivatives. A general design algorithm is outlined for finding a move direction which will decrease the value of the objective function while maintaining a feasible design. The case of one-dimensional search in a two-variable design space is discussed. Possible applications are discussed. A major feature of the proposed algorithm is its application to problems which are inherently ill-conditioned, such as design of structures for optimum geometry.

  14. Computational Methods for Tracking, Quantitative Assessment, and Visualization of C. elegans Locomotory Behavior

    PubMed Central

    Moy, Kyle; Li, Weiyu; Tran, Huu Phuoc; Simonis, Valerie; Story, Evan; Brandon, Christopher; Furst, Jacob; Raicu, Daniela; Kim, Hongkyun

    2015-01-01

    The nematode Caenorhabditis elegans provides a unique opportunity to interrogate the neural basis of behavior at single neuron resolution. In C. elegans, neural circuits that control behaviors can be formulated based on its complete neural connection map, and easily assessed by applying advanced genetic tools that allow for modulation in the activity of specific neurons. Importantly, C. elegans exhibits several elaborate behaviors that can be empirically quantified and analyzed, thus providing a means to assess the contribution of specific neural circuits to behavioral output. Particularly, locomotory behavior can be recorded and analyzed with computational and mathematical tools. Here, we describe a robust single worm-tracking system, which is based on the open-source Python programming language, and an analysis system, which implements path-related algorithms. Our tracking system was designed to accommodate worms that explore a large area with frequent turns and reversals at high speeds. As a proof of principle, we used our tracker to record the movements of wild-type animals that were freshly removed from abundant bacterial food, and determined how wild-type animals change locomotory behavior over a long period of time. Consistent with previous findings, we observed that wild-type animals show a transition from area-restricted local search to global search over time. Intriguingly, we found that wild-type animals initially exhibit short, random movements interrupted by infrequent long trajectories. This movement pattern often coincides with local/global search behavior, and visually resembles Lévy flight search, a search behavior conserved across species. Our mathematical analysis showed that while most of the animals exhibited Brownian walks, approximately 20% of the animals exhibited Lévy flights, indicating that C. elegans can use Lévy flights for efficient food search. In summary, our tracker and analysis software will help analyze the neural basis of the alteration and transition of C. elegans locomotory behavior in a food-deprived condition. PMID:26713869

  15. Direct weak localization signature with ultracold atoms: the CBS revival

    NASA Astrophysics Data System (ADS)

    Josse, Vincent

    2016-05-01

    Ultracold atomic systems in presence of disorder have attracted a lot of interest over the past decade, in particular to study the physics of Anderson localization (AL) in a renewed perspective. Landmark experiments have been demonstrated, in 1D and 3D geometries. However many challenges remain and new ideas have emerged, as for instance the search for original signatures of Anderson localization in momentum space. Here I will describe our progresses along that line where a weak localization effect has been directly observed, i.e. the Coherent Backscattering (CBS) phenomenon. In particular I will report on the recent observation of suppression and revival of CBS when a controlled dephasing kick is applied to the system. This observation demonstrates a novel and general method, introduced by T. Micklitz and coworkers, to study probe phase coherence in disordered systems by manipulating time reversal symmetry.

  16. Source mechanism of the 2006 M5.1 Wen'an Earthquake determined from a joint inversion of local and teleseismic broadband waveform data

    NASA Astrophysics Data System (ADS)

    Huang, J.; Ni, S.; Niu, F.; Fu, R.

    2007-12-01

    On July 4th, 2006, a magnitude 5.1 earthquake occurred at Wen'an, {~}100 km south of Beijing, which was felt at Beijing metropolitan area. To better understand the regional tectonics, we have inverted local and teleseismic broadband waveform data to determine the focal mechanism of this earthquake. We selected waveform data of 9 stations from the recently installed Beijing metropolitan digital Seismic Network (BSN). These stations are located within 600 km and cover a good azimuthal range to the earthquake. To better fit the lower amplitude P waveform, we employed two different weights for the P wave and surface wave arrivals, respectively. A grid search method was employed to find the strike, dip and slip of the earthquake that best fits the P and surface waveforms recorded at all the three components (the tangential component of the P-wave arrivals was not used). Synthetic waveforms were computed with an F-K method. Two crustal velocity models were used in the synthetic calculation to reflect a rapid east-west transition in crustal structure observed by seismic and geological studies in the study area. The 3D grid search results in reasonable constraints on the fault geometry and the slip vector with a less well determined focal depth. As such we combined teleseismic waveform data from 8 stations of the Global Seismic Network in a joint inversion. Clearly identifiable depth phases (pP, sP) recorded in the teleseismic stations obviously provided a better constraint on the resulting source depth. Results from the joint inversion indicate that the Wen'an earthquake is mainly a right-lateral strike slip event (-150°) which occurred at a near vertical (dip, 80° ) NNE trend (210°º) fault. The estimated focal depth is {~}14- 15km, and the moment magnitude is 5.1. The estimated fault geometry here agrees well with aftershock distribution and is consistent with the major fault systems in the area which were developed under a NNE-SSW oriented compressional stress field. Key word: waveform modeling method, source mechanism, grid search method, cut and paste method, aftershocks distribution

  17. Reassessing Google Flu Trends Data for Detection of Seasonal and Pandemic Influenza: A Comparative Epidemiological Study at Three Geographic Scales

    PubMed Central

    Olson, Donald R.; Konty, Kevin J.; Paladini, Marc; Viboud, Cecile; Simonsen, Lone

    2013-01-01

    The goal of influenza-like illness (ILI) surveillance is to determine the timing, location and magnitude of outbreaks by monitoring the frequency and progression of clinical case incidence. Advances in computational and information technology have allowed for automated collection of higher volumes of electronic data and more timely analyses than previously possible. Novel surveillance systems, including those based on internet search query data like Google Flu Trends (GFT), are being used as surrogates for clinically-based reporting of influenza-like-illness (ILI). We investigated the reliability of GFT during the last decade (2003 to 2013), and compared weekly public health surveillance with search query data to characterize the timing and intensity of seasonal and pandemic influenza at the national (United States), regional (Mid-Atlantic) and local (New York City) levels. We identified substantial flaws in the original and updated GFT models at all three geographic scales, including completely missing the first wave of the 2009 influenza A/H1N1 pandemic, and greatly overestimating the intensity of the A/H3N2 epidemic during the 2012/2013 season. These results were obtained for both the original (2008) and the updated (2009) GFT algorithms. The performance of both models was problematic, perhaps because of changes in internet search behavior and differences in the seasonality, geographical heterogeneity and age-distribution of the epidemics between the periods of GFT model-fitting and prospective use. We conclude that GFT data may not provide reliable surveillance for seasonal or pandemic influenza and should be interpreted with caution until the algorithm can be improved and evaluated. Current internet search query data are no substitute for timely local clinical and laboratory surveillance, or national surveillance based on local data collection. New generation surveillance systems such as GFT should incorporate the use of near-real time electronic health data and computational methods for continued model-fitting and ongoing evaluation and improvement. PMID:24146603

  18. Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales.

    PubMed

    Olson, Donald R; Konty, Kevin J; Paladini, Marc; Viboud, Cecile; Simonsen, Lone

    2013-01-01

    The goal of influenza-like illness (ILI) surveillance is to determine the timing, location and magnitude of outbreaks by monitoring the frequency and progression of clinical case incidence. Advances in computational and information technology have allowed for automated collection of higher volumes of electronic data and more timely analyses than previously possible. Novel surveillance systems, including those based on internet search query data like Google Flu Trends (GFT), are being used as surrogates for clinically-based reporting of influenza-like-illness (ILI). We investigated the reliability of GFT during the last decade (2003 to 2013), and compared weekly public health surveillance with search query data to characterize the timing and intensity of seasonal and pandemic influenza at the national (United States), regional (Mid-Atlantic) and local (New York City) levels. We identified substantial flaws in the original and updated GFT models at all three geographic scales, including completely missing the first wave of the 2009 influenza A/H1N1 pandemic, and greatly overestimating the intensity of the A/H3N2 epidemic during the 2012/2013 season. These results were obtained for both the original (2008) and the updated (2009) GFT algorithms. The performance of both models was problematic, perhaps because of changes in internet search behavior and differences in the seasonality, geographical heterogeneity and age-distribution of the epidemics between the periods of GFT model-fitting and prospective use. We conclude that GFT data may not provide reliable surveillance for seasonal or pandemic influenza and should be interpreted with caution until the algorithm can be improved and evaluated. Current internet search query data are no substitute for timely local clinical and laboratory surveillance, or national surveillance based on local data collection. New generation surveillance systems such as GFT should incorporate the use of near-real time electronic health data and computational methods for continued model-fitting and ongoing evaluation and improvement.

  19. Optimal correction and design parameter search by modern methods of rigorous global optimization

    NASA Astrophysics Data System (ADS)

    Makino, K.; Berz, M.

    2011-07-01

    Frequently the design of schemes for correction of aberrations or the determination of possible operating ranges for beamlines and cells in synchrotrons exhibit multitudes of possibilities for their correction, usually appearing in disconnected regions of parameter space which cannot be directly qualified by analytical means. In such cases, frequently an abundance of optimization runs are carried out, each of which determines a local minimum depending on the specific chosen initial conditions. Practical solutions are then obtained through an often extended interplay of experienced manual adjustment of certain suitable parameters and local searches by varying other parameters. However, in a formal sense this problem can be viewed as a global optimization problem, i.e. the determination of all solutions within a certain range of parameters that lead to a specific optimum. For example, it may be of interest to find all possible settings of multiple quadrupoles that can achieve imaging; or to find ahead of time all possible settings that achieve a particular tune; or to find all possible manners to adjust nonlinear parameters to achieve correction of high order aberrations. These tasks can easily be phrased in terms of such an optimization problem; but while mathematically this formulation is often straightforward, it has been common belief that it is of limited practical value since the resulting optimization problem cannot usually be solved. However, recent significant advances in modern methods of rigorous global optimization make these methods feasible for optics design for the first time. The key ideas of the method lie in an interplay of rigorous local underestimators of the objective functions, and by using the underestimators to rigorously iteratively eliminate regions that lie above already known upper bounds of the minima, in what is commonly known as a branch-and-bound approach. Recent enhancements of the Differential Algebraic methods used in particle optics for the computation of aberrations allow the determination of particularly sharp underestimators for large regions. As a consequence, the subsequent progressive pruning of the allowed search space as part of the optimization progresses is carried out particularly effectively. The end result is the rigorous determination of the single or multiple optimal solutions of the parameter optimization, regardless of their location, their number, and the starting values of optimization. The methods are particularly powerful if executed in interplay with genetic optimizers generating their new populations within the currently active unpruned space. Their current best guess provides rigorous upper bounds of the minima, which can then beneficially be used for better pruning. Examples of the method and its performance will be presented, including the determination of all operating points of desired tunes or chromaticities, etc. in storage ring lattices.

  20. Simulation to Support Local Search in Trajectory Optimization Planning

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Venable, K. Brent; Lindsey, James

    2012-01-01

    NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and civil tilt rotors. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. One way to address the rotorcraft noise problem is by exploiting powerful search techniques coming from artificial intelligence coupled with simulation and field tests to design low-noise flight profiles which can be tested in simulation or through field tests. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints directly into the problem formulation that addresses passenger safety and comfort.

  1. Cryolipolysis for fat reduction and body contouring: safety and efficacy of current treatment paradigms.

    PubMed

    Ingargiola, Michael J; Motakef, Saba; Chung, Michael T; Vasconez, Henry C; Sasaki, Gordon H

    2015-06-01

    Cryolipolysis is a nonsurgical technique for localized fat reduction. With the increased risk of complications from more invasive methods such as liposuction, cryolipolysis presents a promising method for nonsurgical body contouring. This study presents a systematic review of the available clinical data, with an emphasis on the efficacy, methods, safety, and complications of cryolipolysis. To identify clinical studies that assessed outcomes of cryolipolysis, a systematic review of the MEDLINE and Cochrane databases was performed with the search algorithm cryolipolysis OR cool sculpting OR fat freezing OR lipocryolysis. The primary literature search returned 319 articles. After inclusion criteria were applied and additional articles were idenfied via manual review of article references, 19 studies were selected for review. Average reduction in caliper measurement ranged from 14.67 percent to 28.5 percent. Average reduction by ultrasound ranged from 10.3 percent to 25.5 percent. No significant impact on lipid levels or liver function tests after cryolipolysis treatments was noted in any study. Only mild, short-term side effects, such as erythema, swelling, and pain, were noted. Paradoxical adipose hyperplasia was described in one patient. Cryolipolysis is a promising procedure for nonsurgical fat reduction and body contouring and presents a compelling alternative to liposuction and other, more invasive methods. This procedure appears to be safe in the short term, with a limited side effect profile, and results in significant fat reduction when used for localized adiposities. It remains unclear whether posttreatment manual massage and multiple treatments in the same anatomic area enhance the efficacy of cryolipolysis.

  2. "Miss, Did This Really Happen Here?" Exploring Big Overviews through Local Depth

    ERIC Educational Resources Information Center

    Foster, Rachel; Goudie, Kath

    2015-01-01

    Rachel Foster and Kath Goudie's search for a more rigorous and interesting way of teaching Year 7 the Norman Conquest was initially driven by a desire to incorporate local history in a more meaningful way in their Key Stage 3 schemes of work. This search culminated in a collaboration with an academic historian, Stephen Baxter. In this article they…

  3. Matrix Completion Optimization for Localization in Wireless Sensor Networks for Intelligent IoT

    PubMed Central

    Nguyen, Thu L. N.; Shin, Yoan

    2016-01-01

    Localization in wireless sensor networks (WSNs) is one of the primary functions of the intelligent Internet of Things (IoT) that offers automatically discoverable services, while the localization accuracy is a key issue to evaluate the quality of those services. In this paper, we develop a framework to solve the Euclidean distance matrix completion problem, which is an important technical problem for distance-based localization in WSNs. The sensor network localization problem is described as a low-rank dimensional Euclidean distance completion problem with known nodes. The task is to find the sensor locations through recovery of missing entries of a squared distance matrix when the dimension of the data is small compared to the number of data points. We solve a relaxation optimization problem using a modification of Newton’s method, where the cost function depends on the squared distance matrix. The solution obtained in our scheme achieves a lower complexity and can perform better if we use it as an initial guess for an interactive local search of other higher precision localization scheme. Simulation results show the effectiveness of our approach. PMID:27213378

  4. Tabu search and binary particle swarm optimization for feature selection using microarray data.

    PubMed

    Chuang, Li-Yeh; Yang, Cheng-Huei; Yang, Cheng-Hong

    2009-12-01

    Gene expression profiles have great potential as a medical diagnosis tool because they represent the state of a cell at the molecular level. In the classification of cancer type research, available training datasets generally have a fairly small sample size compared to the number of genes involved. This fact poses an unprecedented challenge to some classification methodologies due to training data limitations. Therefore, a good selection method for genes relevant for sample classification is needed to improve the predictive accuracy, and to avoid incomprehensibility due to the large number of genes investigated. In this article, we propose to combine tabu search (TS) and binary particle swarm optimization (BPSO) for feature selection. BPSO acts as a local optimizer each time the TS has been run for a single generation. The K-nearest neighbor method with leave-one-out cross-validation and support vector machine with one-versus-rest serve as evaluators of the TS and BPSO. The proposed method is applied and compared to the 11 classification problems taken from the literature. Experimental results show that our method simplifies features effectively and either obtains higher classification accuracy or uses fewer features compared to other feature selection methods.

  5. LCS-TA to identify similar fragments in RNA 3D structures.

    PubMed

    Wiedemann, Jakub; Zok, Tomasz; Milostan, Maciej; Szachniuk, Marta

    2017-10-23

    In modern structural bioinformatics, comparison of molecular structures aimed to identify and assess similarities and differences between them is one of the most commonly performed procedures. It gives the basis for evaluation of in silico predicted models. It constitutes the preliminary step in searching for structural motifs. In particular, it supports tracing the molecular evolution. Faced with an ever-increasing amount of available structural data, researchers need a range of methods enabling comparative analysis of the structures from either global or local perspective. Herein, we present a new, superposition-independent method which processes pairs of RNA 3D structures to identify their local similarities. The similarity is considered in the context of structure bending and bonds' rotation which are described by torsion angles. In the analyzed RNA structures, the method finds the longest continuous segments that show similar torsion within a user-defined threshold. The length of the segment is provided as local similarity measure. The method has been implemented as LCS-TA algorithm (Longest Continuous Segments in Torsion Angle space) and is incorporated into our MCQ4Structures application, freely available for download from http://www.cs.put.poznan.pl/tzok/mcq/ . The presented approach ties torsion-angle-based method of structure analysis with the idea of local similarity identification by handling continuous 3D structure segments. The first method, implemented in MCQ4Structures, has been successfully utilized in RNA-Puzzles initiative. The second one, originally applied in Euclidean space, is a component of LGA (Local-Global Alignment) algorithm commonly used in assessing protein models submitted to CASP. This unique combination of concepts implemented in LCS-TA provides a new perspective on structure quality assessment in local and quantitative aspect. A series of computational experiments show the first results of applying our method to comparison of RNA 3D models. LCS-TA can be used for identifying strengths and weaknesses in the prediction of RNA tertiary structures.

  6. A proposed search for dark-matter axions in the 0.6-16 micro-eV range

    NASA Technical Reports Server (NTRS)

    Vanbibber, Karl; Sikivie, P.; Sullivan, N. S.; Tanner, D. B.; Turner, Michael S.; Moltz, D. M.

    1991-01-01

    A proposed experiment is described to search for dark matter axions in the mass range 0.6 to 16 micro-eV. The method is based on the Primakoff conversion of axions into monochromatic microwave photons inside a tunable microwave cavity in a large volume high field magnet, as described by Sikivie. This proposal capitalizes on the availability of two Axicell magnets from the decommissioned Mirror Fusion Test Facility (MFTF-B) fusion machine at LLNL. Assuming a local dark matter density in axions of rho = 0.3 GeV/cu cm, the axion would be found or ruled out at the 97 pct. c.l. in the above mass range in 48 months.

  7. Complexity of the Quantum Adiabatic Algorithm

    NASA Astrophysics Data System (ADS)

    Hen, Itay

    2013-03-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorihms. Here, we discuss several aspects of the quantum adiabatic algorithm: We analyze the efficiency of the algorithm on several ``hard'' (NP) computational problems. Studying the size dependence of the typical minimum energy gap of the Hamiltonians of these problems using quantum Monte Carlo methods, we find that while for most problems the minimum gap decreases exponentially with the size of the problem, indicating that the QAA is not more efficient than existing classical search algorithms, for other problems there is evidence to suggest that the gap may be polynomial near the phase transition. We also discuss applications of the QAA to ``real life'' problems and how they can be implemented on currently available (albeit prototypical) quantum hardware such as ``D-Wave One'', that impose serious restrictions as to which type of problems may be tested. Finally, we discuss different approaches to find improved implementations of the algorithm such as local adiabatic evolution, adaptive methods, local search in Hamiltonian space and others.

  8. Dynamic model updating based on strain mode shape and natural frequency using hybrid pattern search technique

    NASA Astrophysics Data System (ADS)

    Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping

    2018-05-01

    Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.

  9. The Search for RR Lyrae Variables in the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Nielsen, Chandler; Marshall, Jennifer L.; Long, James

    2017-01-01

    RR Lyrae variables are stars with a characteristic relationship between magnitude and phase and whose distances can be easily determined, making them extremely valuable in mapping and analyzing galactic substructure. We present our method of searching for RR Lyrae variable stars using data extracted from the Dark Energy Survey (DES). The DES probes for stars as faint as i = 24.3. Finding such distant RR Lyrae allows for the discovery of objects such as dwarf spheroidal tidal streams and dwarf galaxies; in fact, at least one RR Lyrae has been discovered in each of the probed dwarf spheroidal galaxies orbiting the Milky Way (Baker & Willman 2015). In turn, these discoveries may ultimately resolve the well-known missing satellite problem, in which theoretical simulations predict many more dwarf satellites than are observed in the local Universe. Using the Lomb-Scargle periodogram to determine the period of the star being analyzed, we could display the relationship between magnitude and phase and visually determine if the star being analyzed was an RR Lyrae. We began the search in frequently observed regions of the DES footprint, known as the supernova fields. We then moved our search to known dwarf galaxies found during the second year of the DES. Unfortunately, we did not discover RR Lyrae in the probed dwarf galaxies; this method should be tried again once more observations are taken in the DES.

  10. Classification of event location using matched filters via on-floor accelerometers

    NASA Astrophysics Data System (ADS)

    Woolard, Americo G.; Malladi, V. V. N. Sriram; Alajlouni, Sa'ed; Tarazaga, Pablo A.

    2017-04-01

    Recent years have shown prolific advancements in smart infrastructures, allowing buildings of the modern world to interact with their occupants. One of the sought-after attributes of smart buildings is the ability to provide unobtrusive, indoor localization of occupants. The ability to locate occupants indoors can provide a broad range of benefits in areas such as security, emergency response, and resource management. Recent research has shown promising results in occupant building localization, although there is still significant room for improvement. This study presents a passive, small-scale localization system using accelerometers placed around the edges of a small area in an active building environment. The area is discretized into a grid of small squares, and vibration measurements are processed using a pattern matching approach that estimates the location of the source. Vibration measurements are produced with ball-drops, hammer-strikes, and footsteps as the sources of the floor excitation. The developed approach uses matched filters based on a reference data set, and the location is classified using a nearest-neighbor search. This approach detects the appropriate location of impact-like sources i.e. the ball-drops and hammer-strikes with a 100% accuracy. However, this accuracy reduces to 56% for footsteps, with the average localization results being within 0.6 m (α = 0.05) from the true source location. While requiring a reference data set can make this method difficult to implement on a large scale, it may be used to provide accurate localization abilities in areas where training data is readily obtainable. This exploratory work seeks to examine the feasibility of the matched filter and nearest neighbor search approach for footstep and event localization in a small, instrumented area within a multi-story building.

  11. 75 FR 34777 - Florida Power & Light Company, Combined License Application for the Turkey Point Units 6 & 7...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... search (advanced search) engine or the ADAMS ``Find'' tool in Citrix. The Westinghouse AP1000 DCD, which... local residents at the South Dade Regional Library and the Homestead Branch Library. To search for...

  12. Measuring Search Efficiency in Complex Visual Search Tasks: Global and Local Clutter

    ERIC Educational Resources Information Center

    Beck, Melissa R.; Lohrenz, Maura C.; Trafton, J. Gregory

    2010-01-01

    Set size and crowding affect search efficiency by limiting attention for recognition and attention against competition; however, these factors can be difficult to quantify in complex search tasks. The current experiments use a quantitative measure of the amount and variability of visual information (i.e., clutter) in highly complex stimuli (i.e.,…

  13. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation

    PubMed Central

    2011-01-01

    Background The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation. Results A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License. Conclusions Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance. PMID:21631914

  14. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation.

    PubMed

    Rognes, Torbjørn

    2011-06-01

    The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation. A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License. Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance.

  15. Image-Based Localization for Indoor Environment Using Mobile Phone

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wang, H.; Zhan, K.; Zhao, J.; Gui, P.; Feng, T.

    2015-05-01

    Real-time indoor localization based on supporting infrastructures like wireless devices and QR codes are usually costly and labor intensive to implement. In this study, we explored a cheap alternative approach based on images for indoor localization. A user can localize him/herself by just shooting a photo of the surrounding indoor environment using the mobile phone. No any other equipment is required. This is achieved by employing image-matching and searching techniques with a dataset of pre-captured indoor images. In the beginning, a database of structured images of the indoor environment is constructed by using image matching and the bundle adjustment algorithm. Then each image's relative pose (its position and orientation) is estimated and the semantic locations of images are tagged. A user's location can then be determined by comparing a photo taken by the mobile phone to the database. This is done by combining quick image searching, matching and the relative orientation. This study also try to explore image acquisition plans and the processing capacity of off-the-shell mobile phones. During the whole pipeline, a collection of indoor images with both rich and poor textures are examined. Several feature detectors are used and compared. Pre-processing of complex indoor photo is also implemented on the mobile phone. The preliminary experimental results prove the feasibility of this method. In the future, we are trying to raise the efficiency of matching between indoor images and explore the fast 4G wireless communication to ensure the speed and accuracy of the localization based on a client-server framework.

  16. Searching for truth: internet search patterns as a method of investigating online responses to a Russian illicit drug policy debate.

    PubMed

    Zheluk, Andrey; Gillespie, James A; Quinn, Casey

    2012-12-13

    This is a methodological study investigating the online responses to a national debate over an important health and social problem in Russia. Russia is the largest Internet market in Europe, exceeding Germany in the absolute number of users. However, Russia is unusual in that the main search provider is not Google, but Yandex. This study had two main objectives. First, to validate Yandex search patterns against those provided by Google, and second, to test this method's adequacy for investigating online interest in a 2010 national debate over Russian illicit drug policy. We hoped to learn what search patterns and specific search terms could reveal about the relative importance and geographic distribution of interest in this debate. A national drug debate, centering on the anti-drug campaigner Egor Bychkov, was one of the main Russian domestic news events of 2010. Public interest in this episode was accompanied by increased Internet search. First, we measured the search patterns for 13 search terms related to the Bychkov episode and concurrent domestic events by extracting data from Google Insights for Search (GIFS) and Yandex WordStat (YaW). We conducted Spearman Rank Correlation of GIFS and YaW search data series. Second, we coded all 420 primary posts from Bychkov's personal blog between March 2010 and March 2012 to identify the main themes. Third, we compared GIFS and Yandex policies concerning the public release of search volume data. Finally, we established the relationship between salient drug issues and the Bychkov episode. We found a consistent pattern of strong to moderate positive correlations between Google and Yandex for the terms "Egor Bychkov" (r(s) = 0.88, P < .001), "Bychkov" (r(s) = .78, P < .001) and "Khimki"(r(s) = 0.92, P < .001). Peak search volumes for the Bychkov episode were comparable to other prominent domestic political events during 2010. Monthly search counts were 146,689 for "Bychkov" and 48,084 for "Egor Bychkov", compared to 53,403 for "Khimki" in Yandex. We found Google potentially provides timely search results, whereas Yandex provides more accurate geographic localization. The correlation was moderate to strong between search terms representing the Bychkov episode and terms representing salient drug issues in Yandex-"illicit drug treatment" (r(s) = .90, P < .001), "illicit drugs" (r(s) = .76, P < .001), and "drug addiction" (r(s) = .74, P < .001). Google correlations were weaker or absent-"illicit drug treatment" (r(s) = .12, P = .58), "illicit drugs " (r(s) = -0.29, P = .17), and "drug addiction" (r(s) = .68, P < .001). This study contributes to the methodological literature on the analysis of search patterns for public health. This paper investigated the relationship between Google and Yandex, and contributed to the broader methods literature by highlighting both the potential and limitations of these two search providers. We believe that Yandex Wordstat is a potentially valuable, and underused data source for researchers working on Russian-related illicit drug policy and other public health problems. The Russian Federation, with its large, geographically dispersed, and politically engaged online population presents unique opportunities for studying the evolving influence of the Internet on politics and policy, using low cost methods resilient against potential increases in censorship.

  17. Multiresolution image registration in digital x-ray angiography with intensity variation modeling.

    PubMed

    Nejati, Mansour; Pourghassem, Hossein

    2014-02-01

    Digital subtraction angiography (DSA) is a widely used technique for visualization of vessel anatomy in diagnosis and treatment. However, due to unavoidable patient motions, both externally and internally, the subtracted angiography images often suffer from motion artifacts that adversely affect the quality of the medical diagnosis. To cope with this problem and improve the quality of DSA images, registration algorithms are often employed before subtraction. In this paper, a novel elastic registration algorithm for registration of digital X-ray angiography images, particularly for the coronary location, is proposed. This algorithm includes a multiresolution search strategy in which a global transformation is calculated iteratively based on local search in coarse and fine sub-image blocks. The local searches are accomplished in a differential multiscale framework which allows us to capture both large and small scale transformations. The local registration transformation also explicitly accounts for local variations in the image intensities which incorporated into our model as a change of local contrast and brightness. These local transformations are then smoothly interpolated using thin-plate spline interpolation function to obtain the global model. Experimental results with several clinical datasets demonstrate the effectiveness of our algorithm in motion artifact reduction.

  18. Three hybridization models based on local search scheme for job shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Balbi Fraga, Tatiana

    2015-05-01

    This work presents three different hybridization models based on the general schema of Local Search Heuristics, named Hybrid Successive Application, Hybrid Neighborhood, and Hybrid Improved Neighborhood. Despite similar approaches might have already been presented in the literature in other contexts, in this work these models are applied to analyzes the solution of the job shop scheduling problem, with the heuristics Taboo Search and Particle Swarm Optimization. Besides, we investigate some aspects that must be considered in order to achieve better solutions than those obtained by the original heuristics. The results demonstrate that the algorithms derived from these three hybrid models are more robust than the original algorithms and able to get better results than those found by the single Taboo Search.

  19. WS-BP: An efficient wolf search based back-propagation algorithm

    NASA Astrophysics Data System (ADS)

    Nawi, Nazri Mohd; Rehman, M. Z.; Khan, Abdullah

    2015-05-01

    Wolf Search (WS) is a heuristic based optimization algorithm. Inspired by the preying and survival capabilities of the wolves, this algorithm is highly capable to search large spaces in the candidate solutions. This paper investigates the use of WS algorithm in combination with back-propagation neural network (BPNN) algorithm to overcome the local minima problem and to improve convergence in gradient descent. The performance of the proposed Wolf Search based Back-Propagation (WS-BP) algorithm is compared with Artificial Bee Colony Back-Propagation (ABC-BP), Bat Based Back-Propagation (Bat-BP), and conventional BPNN algorithms. Specifically, OR and XOR datasets are used for training the network. The simulation results show that the WS-BP algorithm effectively avoids the local minima and converge to global minima.

  20. Phylogenetically informed logic relationships improve detection of biological network organization

    PubMed Central

    2011-01-01

    Background A "phylogenetic profile" refers to the presence or absence of a gene across a set of organisms, and it has been proven valuable for understanding gene functional relationships and network organization. Despite this success, few studies have attempted to search beyond just pairwise relationships among genes. Here we search for logic relationships involving three genes, and explore its potential application in gene network analyses. Results Taking advantage of a phylogenetic matrix constructed from the large orthologs database Roundup, we invented a method to create balanced profiles for individual triplets of genes that guarantee equal weight on the different phylogenetic scenarios of coevolution between genes. When we applied this idea to LAPP, the method to search for logic triplets of genes, the balanced profiles resulted in significant performance improvement and the discovery of hundreds of thousands more putative triplets than unadjusted profiles. We found that logic triplets detected biological network organization and identified key proteins and their functions, ranging from neighbouring proteins in local pathways, to well separated proteins in the whole pathway, and to the interactions among different pathways at the system level. Finally, our case study suggested that the directionality in a logic relationship and the profile of a triplet could disclose the connectivity between the triplet and surrounding networks. Conclusion Balanced profiles are superior to the raw profiles employed by traditional methods of phylogenetic profiling in searching for high order gene sets. Gene triplets can provide valuable information in detection of biological network organization and identification of key genes at different levels of cellular interaction. PMID:22172058

  1. Wiener-Hammerstein system identification - an evolutionary approach

    NASA Astrophysics Data System (ADS)

    Naitali, Abdessamad; Giri, Fouad

    2016-01-01

    The problem of identifying parametric Wiener-Hammerstein (WH) systems is addressed within the evolutionary optimisation context. Specifically, a hybrid culture identification method is developed that involves model structure adaptation using genetic recombination and model parameter learning using particle swarm optimisation. The method enjoys three interesting features: (1) the risk of premature convergence of model parameter estimates to local optima is significantly reduced, due to the constantly maintained diversity of model candidates; (2) no prior knowledge is needed except for upper bounds on the system structure indices; (3) the method is fully autonomous as no interaction is needed with the user during the optimum search process. The performances of the proposed method will be illustrated and compared to alternative methods using a well-established WH benchmark.

  2. A novel cooperative localization algorithm using enhanced particle filter technique in maritime search and rescue wireless sensor network.

    PubMed

    Wu, Huafeng; Mei, Xiaojun; Chen, Xinqiang; Li, Junjun; Wang, Jun; Mohapatra, Prasant

    2018-07-01

    Maritime search and rescue (MSR) play a significant role in Safety of Life at Sea (SOLAS). However, it suffers from scenarios that the measurement information is inaccurate due to wave shadow effect when utilizing wireless Sensor Network (WSN) technology in MSR. In this paper, we develop a Novel Cooperative Localization Algorithm (NCLA) in MSR by using an enhanced particle filter method to reduce measurement errors on observation model caused by wave shadow effect. First, we take into account the mobility of nodes at sea to develop a motion model-Lagrangian model. Furthermore, we introduce both state model and observation model to constitute a system model for particle filter (PF). To address the impact of the wave shadow effect on the observation model, we develop an optimal parameter derived by Kullback-Leibler divergence (KLD) to mitigate the error. After the optimal parameter is acquired, an improved likelihood function is presented. Finally, the estimated position is acquired. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Investigating the enhanced Best Performance Algorithm for Annual Crop Planning problem based on economic factors

    PubMed Central

    2017-01-01

    The Annual Crop Planning (ACP) problem was a recently introduced problem in the literature. This study further expounds on this problem by presenting a new mathematical formulation, which is based on market economic factors. To determine solutions, a new local search metaheuristic algorithm is investigated which is called the enhanced Best Performance Algorithm (eBPA). eBPA’s results are compared against two well-known local search metaheuristic algorithms; these include Tabu Search and Simulated Annealing. The results show the potential of the eBPA for continuous optimization problems. PMID:28792495

  4. Improvement of the analog forecasting method by using local thermodynamic data. Application to autumn precipitation in Catalonia

    NASA Astrophysics Data System (ADS)

    Gibergans-Báguena, J.; Llasat, M. C.

    2007-12-01

    The objective of this paper is to present the improvement of quantitative forecasting of daily rainfall in Catalonia (NE Spain) from an analogues technique, taking into account synoptic and local data. This method is based on an analogues sorting technique: meteorological situations similar to the current one, in terms of 700 and 1000 hPa geopotential fields at 00 UTC, complemented with the inclusion of some thermodynamic parameters extracted from an historical data file. Thermodynamic analysis acts as a highly discriminating feature for situations in which the synoptic situation fails to explain either atmospheric phenomena or rainfall distribution. This is the case in heavy rainfall situations, where the existence of instability and high water vapor content is essential. With the objective of including these vertical thermodynamic features, information provided by the Palma de Mallorca radiosounding (Spain) has been used. Previously, a selection of the most discriminating thermodynamic parameters for the daily rainfall was made, and then the analogues technique applied to them. Finally, three analog forecasting methods were applied for the quantitative daily rainfall forecasting in Catalonia. The first one is based on analogies from geopotential fields to synoptic scale; the second one is exclusively based on the search of similarity from local thermodynamic information and the third method combines the other two methods. The results show that this last method provides a substantial improvement of quantitative rainfall estimation.

  5. Binary Bees Algorithm - bioinspiration from the foraging mechanism of honeybees to optimize a multiobjective multidimensional assignment problem

    NASA Astrophysics Data System (ADS)

    Xu, Shuo; Ji, Ze; Truong Pham, Duc; Yu, Fan

    2011-11-01

    The simultaneous mission assignment and home allocation for hospital service robots studied is a Multidimensional Assignment Problem (MAP) with multiobjectives and multiconstraints. A population-based metaheuristic, the Binary Bees Algorithm (BBA), is proposed to optimize this NP-hard problem. Inspired by the foraging mechanism of honeybees, the BBA's most important feature is an explicit functional partitioning between global search and local search for exploration and exploitation, respectively. Its key parts consist of adaptive global search, three-step elitism selection (constraint handling, non-dominated solutions selection, and diversity preservation), and elites-centred local search within a Hamming neighbourhood. Two comparative experiments were conducted to investigate its single objective optimization, optimization effectiveness (indexed by the S-metric and C-metric) and optimization efficiency (indexed by computational burden and CPU time) in detail. The BBA outperformed its competitors in almost all the quantitative indices. Hence, the above overall scheme, and particularly the searching history-adapted global search strategy was validated.

  6. A Moderate Redshift Supernova Search Program

    NASA Astrophysics Data System (ADS)

    Adams, M. T.; Wheeler, J. C.; Ward, M.; Wren, W. R.; Schmidt, B. P.

    1995-12-01

    We report on a recently initiated supernova (SN) search program using the McDonald Observatory 0.76m telescope and Prime Focus Camera (PFC). This SN search program takes advantage of the PFC's 42.6 x 42.6 arcmin FOV to survey moderate redshift Abell clusters in single Kron-Cousins R-band images. Our scientific goal is to discover and provide quality BVRI photometric follow-up, to R \\ +21, for a significant SNe sample at 0.03 < z < 0.15. These data will constrain SNe progenitor models and calibrate SN luminosity, color and light curve characteristics, as a function of host galaxy type, increasing our understanding of the utility of SNe as "calibrated candles" and cosmological model probes. The McDonald SNe provide an important link between the local discoveries of the LBL Automated Nearby SN Search (Pennypacker et al 1995, Aiguiblava NATO ASI Proceedings, in preparation), and the very distant SNe found by the LBL/UC Berkeley group (Perlmutter et al 1995, ApJ, 440, L41), and the High Redshift SN Search Team (Schmidt et al 1995, Aiguiblava NATO ASI Proceedings). The McDonald SN search program includes a sample of the Abell clusters used by Lauer and Postman (1994, ApJ, 425, 418) to analyze Local Group motion. SNe discovered in these clusters contribute to the resolution of the Local Group motion controversy. We present an overview of the McDonald Observatory supernova search program, and discuss recent results.

  7. Object Permanence After a 24-Hr Delay and Leaving the Locale of Disappearance: The Role of Memory, Space, and Identity

    ERIC Educational Resources Information Center

    Moore, M. Keith; Meltzoff, Andrew N.

    2004-01-01

    Fourteen-month-old infants saw an object hidden inside a container and were removed from the disappearance locale for 24 hr. Upon their return, they searched correctly for the hidden object, demonstrating object permanence and long-term memory. Control infants who saw no disappearance did not search. In Experiment 2, infants returned to see the…

  8. Mobile object retrieval in server-based image databases

    NASA Astrophysics Data System (ADS)

    Manger, D.; Pagel, F.; Widak, H.

    2013-05-01

    The increasing number of mobile phones equipped with powerful cameras leads to huge collections of user-generated images. To utilize the information of the images on site, image retrieval systems are becoming more and more popular to search for similar objects in an own image database. As the computational performance and the memory capacity of mobile devices are constantly increasing, this search can often be performed on the device itself. This is feasible, for example, if the images are represented with global image features or if the search is done using EXIF or textual metadata. However, for larger image databases, if multiple users are meant to contribute to a growing image database or if powerful content-based image retrieval methods with local features are required, a server-based image retrieval backend is needed. In this work, we present a content-based image retrieval system with a client server architecture working with local features. On the server side, the scalability to large image databases is addressed with the popular bag-of-word model with state-of-the-art extensions. The client end of the system focuses on a lightweight user interface presenting the most similar images of the database highlighting the visual information which is common with the query image. Additionally, new images can be added to the database making it a powerful and interactive tool for mobile contentbased image retrieval.

  9. Superintendent Search and Selection Processes in the State of Wisconsin: Seeking the Best Match

    ERIC Educational Resources Information Center

    Olson, Lisa

    2012-01-01

    Local school boards have the responsibility to select school superintendents to lead their districts. The process by which school boards go about searching for and selecting a superintendent varies. In Wisconsin, school boards have the option to hire a search firm or other outside assistance, or they can choose to search for and select a…

  10. Autonomous Modelling of X-ray Spectra Using Robust Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Safi-Harb, Samar; Fiege, Jason

    2015-08-01

    The standard approach to model fitting in X-ray astronomy is by means of local optimization methods. However, these local optimizers suffer from a number of problems, such as a tendency for the fit parameters to become trapped in local minima, and can require an involved process of detailed user intervention to guide them through the optimization process. In this work we introduce a general GUI-driven global optimization method for fitting models to X-ray data, written in MATLAB, which searches for optimal models with minimal user interaction. We directly interface with the commonly used XSPEC libraries to access the full complement of pre-existing spectral models that describe a wide range of physics appropriate for modelling astrophysical sources, including supernova remnants and compact objects. Our algorithm is powered by the Ferret genetic algorithm and Locust particle swarm optimizer from the Qubist Global Optimization Toolbox, which are robust at finding families of solutions and identifying degeneracies. This technique will be particularly instrumental for multi-parameter models and high-fidelity data. In this presentation, we provide details of the code and use our techniques to analyze X-ray data obtained from a variety of astrophysical sources.

  11. Local alignment of two-base encoded DNA sequence

    PubMed Central

    Homer, Nils; Merriman, Barry; Nelson, Stanley F

    2009-01-01

    Background DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. Results We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. Conclusion The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data. PMID:19508732

  12. Characterizing the phylogenetic tree-search problem.

    PubMed

    Money, Daniel; Whelan, Simon

    2012-03-01

    Phylogenetic trees are important in many areas of biological research, ranging from systematic studies to the methods used for genome annotation. Finding the best scoring tree under any optimality criterion is an NP-hard problem, which necessitates the use of heuristics for tree-search. Although tree-search plays a major role in obtaining a tree estimate, there remains a limited understanding of its characteristics and how the elements of the statistical inferential procedure interact with the algorithms used. This study begins to answer some of these questions through a detailed examination of maximum likelihood tree-search on a wide range of real genome-scale data sets. We examine all 10,395 trees for each of the 106 genes of an eight-taxa yeast phylogenomic data set, then apply different tree-search algorithms to investigate their performance. We extend our findings by examining two larger genome-scale data sets and a large disparate data set that has been previously used to benchmark the performance of tree-search programs. We identify several broad trends occurring during tree-search that provide an insight into the performance of heuristics and may, in the future, aid their development. These trends include a tendency for the true maximum likelihood (best) tree to also be the shortest tree in terms of branch lengths, a weak tendency for tree-search to recover the best tree, and a tendency for tree-search to encounter fewer local optima in genes that have a high information content. When examining current heuristics for tree-search, we find that nearest-neighbor-interchange performs poorly, and frequently finds trees that are significantly different from the best tree. In contrast, subtree-pruning-and-regrafting tends to perform well, nearly always finding trees that are not significantly different to the best tree. Finally, we demonstrate that the precise implementation of a tree-search strategy, including when and where parameters are optimized, can change the character of tree-search, and that good strategies for tree-search may combine existing tree-search programs.

  13. Linking search space structure, run-time dynamics, and problem difficulty : a step toward demystifying tabu search.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitley, L. Darrell; Howe, Adele E.; Watson, Jean-Paul

    2004-09-01

    Tabu search is one of the most effective heuristics for locating high-quality solutions to a diverse array of NP-hard combinatorial optimization problems. Despite the widespread success of tabu search, researchers have a poor understanding of many key theoretical aspects of this algorithm, including models of the high-level run-time dynamics and identification of those search space features that influence problem difficulty. We consider these questions in the context of the job-shop scheduling problem (JSP), a domain where tabu search algorithms have been shown to be remarkably effective. Previously, we demonstrated that the mean distance between random local optima and the nearestmore » optimal solution is highly correlated with problem difficulty for a well-known tabu search algorithm for the JSP introduced by Taillard. In this paper, we discuss various shortcomings of this measure and develop a new model of problem difficulty that corrects these deficiencies. We show that Taillard's algorithm can be modeled with high fidelity as a simple variant of a straightforward random walk. The random walk model accounts for nearly all of the variability in the cost required to locate both optimal and sub-optimal solutions to random JSPs, and provides an explanation for differences in the difficulty of random versus structured JSPs. Finally, we discuss and empirically substantiate two novel predictions regarding tabu search algorithm behavior. First, the method for constructing the initial solution is highly unlikely to impact the performance of tabu search. Second, tabu tenure should be selected to be as small as possible while simultaneously avoiding search stagnation; values larger than necessary lead to significant degradations in performance.« less

  14. Subregional Nowcasts of Seasonal Influenza Using Search Trends.

    PubMed

    Kandula, Sasikiran; Hsu, Daniel; Shaman, Jeffrey

    2017-11-06

    Limiting the adverse effects of seasonal influenza outbreaks at state or city level requires close monitoring of localized outbreaks and reliable forecasts of their progression. Whereas forecasting models for influenza or influenza-like illness (ILI) are becoming increasingly available, their applicability to localized outbreaks is limited by the nonavailability of real-time observations of the current outbreak state at local scales. Surveillance data collected by various health departments are widely accepted as the reference standard for estimating the state of outbreaks, and in the absence of surveillance data, nowcast proxies built using Web-based activities such as search engine queries, tweets, and access of health-related webpages can be useful. Nowcast estimates of state and municipal ILI were previously published by Google Flu Trends (GFT); however, validations of these estimates were seldom reported. The aim of this study was to develop and validate models to nowcast ILI at subregional geographic scales. We built nowcast models based on autoregressive (autoregressive integrated moving average; ARIMA) and supervised regression methods (Random forests) at the US state level using regional weighted ILI and Web-based search activity derived from Google's Extended Trends application programming interface. We validated the performance of these methods using actual surveillance data for the 50 states across six seasons. We also built state-level nowcast models using state-level estimates of ILI and compared the accuracy of these estimates with the estimates of the regional models extrapolated to the state level and with the nowcast estimates published by GFT. Models built using regional ILI extrapolated to state level had a median correlation of 0.84 (interquartile range: 0.74-0.91) and a median root mean square error (RMSE) of 1.01 (IQR: 0.74-1.50), with noticeable variability across seasons and by state population size. Model forms that hypothesize the availability of timely state-level surveillance data show significantly lower errors of 0.83 (0.55-0.23). Compared with GFT, the latter model forms have lower errors but also lower correlation. These results suggest that the proposed methods may be an alternative to the discontinued GFT and that further improvements in the quality of subregional nowcasts may require increased access to more finely resolved surveillance data. ©Sasikiran Kandula, Daniel Hsu, Jeffrey Shaman. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 06.11.2017.

  15. FlexStem: improving predictions of RNA secondary structures with pseudoknots by reducing the search space.

    PubMed

    Chen, Xiang; He, Si-Min; Bu, Dongbo; Zhang, Fa; Wang, Zhiyong; Chen, Runsheng; Gao, Wen

    2008-09-15

    RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is proved to be NP-hard. Due to kinetic reasons the real RNA secondary structure often has local instead of global minimum free energy. This implies that we may improve the performance of RNA secondary structure prediction by taking kinetics into account and minimize free energy in a local area. we propose a novel algorithm named FlexStem to predict RNA secondary structures with pseudoknots. Still based on MFE criterion, FlexStem adopts comprehensive energy models that allow complex pseudoknots. Unlike classical thermodynamic methods, our approach aims to simulate the RNA folding process by successive addition of maximal stems, reducing the search space while maintaining or even improving the prediction accuracy. This reduced space is constructed by our maximal stem strategy and stem-adding rule induced from elaborate statistical experiments on real RNA secondary structures. The strategy and the rule also reflect the folding characteristic of RNA from a new angle and help compensate for the deficiency of merely relying on MFE in RNA structure prediction. We validate FlexStem by applying it to tRNAs, 5SrRNAs and a large number of pseudoknotted structures and compare it with the well-known algorithms such as RNAfold, PKNOTS, PknotsRG, HotKnots and ILM according to their overall sensitivities and specificities, as well as positive and negative controls on pseudoknots. The results show that FlexStem significantly increases the prediction accuracy through its local search strategy. Software is available at http://pfind.ict.ac.cn/FlexStem/. Supplementary data are available at Bioinformatics online.

  16. Study of motion of optimal bodies in the soil of grid method

    NASA Astrophysics Data System (ADS)

    Kotov, V. L.; Linnik, E. Yu

    2016-11-01

    The paper presents a method of calculating the optimum forms in axisymmetric numerical method based on the Godunov and models elastoplastic soil vedium Grigoryan. Solved two problems in a certain definition of generetrix rotation of the body of a given length and radius of the base, having a minimum impedance and maximum penetration depth. Numerical calculations are carried out by a modified method of local variations, which allows to significantly reduce the number of operations at different representations of generetrix. Significantly simplify the process of searching for optimal body allows the use of a quadratic model of local interaction for preliminary assessments. It is noted the qualitative similarity of the process of convergence of numerical calculations for solving the optimization problem based on local interaction model and within the of continuum mechanics. A comparison of the optimal bodies with absolutely optimal bodies possessing the minimum resistance of penetration below which is impossible to achieve under given constraints on the geometry. It is shown that the conical striker with a variable vertex angle, which equal to the angle of the solution is absolutely optimal body of minimum resistance of penetration for each value of the velocity of implementation will have a final depth of penetration is only 12% more than the traditional body absolutely optimal maximum depth penetration.

  17. Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0.

    PubMed

    Zhu, Xiaolei; Xiong, Yi; Kihara, Daisuke

    2015-03-01

    Ligand binding is a key aspect of the function of many proteins. Thus, binding ligand prediction provides important insight in understanding the biological function of proteins. Binding ligand prediction is also useful for drug design and examining potential drug side effects. We present a computational method named Patch-Surfer2.0, which predicts binding ligands for a protein pocket. By representing and comparing pockets at the level of small local surface patches that characterize physicochemical properties of the local regions, the method can identify binding pockets of the same ligand even if they do not share globally similar shapes. Properties of local patches are represented by an efficient mathematical representation, 3D Zernike Descriptor. Patch-Surfer2.0 has significant technical improvements over our previous prototype, which includes a new feature that captures approximate patch position with a geodesic distance histogram. Moreover, we constructed a large comprehensive database of ligand binding pockets that will be searched against by a query. The benchmark shows better performance of Patch-Surfer2.0 over existing methods. http://kiharalab.org/patchsurfer2.0/ CONTACT: dkihara@purdue.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Cuckoo Search with Lévy Flights for Weighted Bayesian Energy Functional Optimization in Global-Support Curve Data Fitting

    PubMed Central

    Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis

    2014-01-01

    The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way. PMID:24977175

  19. Cuckoo search with Lévy flights for weighted Bayesian energy functional optimization in global-support curve data fitting.

    PubMed

    Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis

    2014-01-01

    The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.

  20. LSHSIM: A Locality Sensitive Hashing based method for multiple-point geostatistics

    NASA Astrophysics Data System (ADS)

    Moura, Pedro; Laber, Eduardo; Lopes, Hélio; Mesejo, Daniel; Pavanelli, Lucas; Jardim, João; Thiesen, Francisco; Pujol, Gabriel

    2017-10-01

    Reservoir modeling is a very important task that permits the representation of a geological region of interest, so as to generate a considerable number of possible scenarios. Since its inception, many methodologies have been proposed and, in the last two decades, multiple-point geostatistics (MPS) has been the dominant one. This methodology is strongly based on the concept of training image (TI) and the use of its characteristics, which are called patterns. In this paper, we propose a new MPS method that combines the application of a technique called Locality Sensitive Hashing (LSH), which permits to accelerate the search for patterns similar to a target one, with a Run-Length Encoding (RLE) compression technique that speeds up the calculation of the Hamming similarity. Experiments with both categorical and continuous images show that LSHSIM is computationally efficient and produce good quality realizations. In particular, for categorical data, the results suggest that LSHSIM is faster than MS-CCSIM, one of the state-of-the-art methods.

  1. Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns

    PubMed Central

    2013-01-01

    Background It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. Results We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. Conclusions The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected sublinear running time of the presented index-based algorithms, allows for the first time approximate matching of RNA sequence-structure patterns in large sequence databases. Beyond the algorithmic contributions, we provide with RaligNAtor a robust and well documented open-source software package implementing the algorithms presented in this manuscript. The RaligNAtor software is available at http://www.zbh.uni-hamburg.de/ralignator. PMID:23865810

  2. A method to add richness to the National Landslide Database of Great Britain

    NASA Astrophysics Data System (ADS)

    Taylor, Faith; Freeborough, Katy; Malamud, Bruce; Demeritt, David

    2014-05-01

    Landslides in Great Britain (GB) pose a risk to infrastructure, property and livelihoods. Our understanding of where landslide hazard and impact will be greatest is based on our knowledge of past events. Here, we present a method to supplement existing records of landslides in GB by searching electronic archives of local and regional newspapers. In Great Britain, the British Geological Survey (BGS) are responsible for updating and maintaining records of GB landslide events and their impacts in the National Landslide Database (NLD). The NLD contains records of approximately 16,500 landslide events in Great Britain. Data sources for the NLD include field surveys, academic articles, grey literature, news, public reports and, since 2012, social media. Here we aim to supplement the richness of the NLD by (i) identifying additional landslide events and (ii) adding more detail to existing database entries. This is done by systematically searching the LexisNexis digital archive of 568 local and regional newspapers published in the UK. The first step in the methodology was to construct Boolean search criteria that optimised the balance between minimising the number of irrelevant articles (e.g. "a landslide victory") and maximising those referring to landslide events. This keyword search was then applied to the LexisNexis archive of newspapers for all articles published between 1 January and 31 December 2012, resulting in 1,668 articles. These articles were assessed to determine whether they related to a landslide event. Of the 1,668 articles, approximately 30% (~700) referred to landslide events, with others referring to landslides more generally or themes unrelated to landslides. Examples of information obtained from newspaper articles included: date/time of landslide occurrence, spatial location, size, impact, landslide type and triggering mechanism, although the amount of detail and precision attainable from individual articles was variable. Of the 700 articles found for 2012, 72 of these resulted in additions to the BGS NLD and 4 in amendments to previously collected information. This raises the total number of landslides reported in 2012 from 186 to 258. Using the increased presence of landslides in the news and social media, 2012 had already resulted in the largest number of landslides for a given year being recorded by BGS in the NLD. With the additions from this current study to the NLD, we estimate that the annual total number of landslides was around six times higher in 2012 than the average annual total between 2006 and 2011. Years prior to 2012 plan to be revisited using this method, and more broadly, this method of searching newspaper archives could be applied to many other natural hazards to add richness to databases of historical events and improve our understanding of hazard occurrence and impact.

  3. Sites Inferred by Metabolic Background Assertion Labeling (SIMBAL): adapting the Partial Phylogenetic Profiling algorithm to scan sequences for signatures that predict protein function

    PubMed Central

    2010-01-01

    Background Comparative genomics methods such as phylogenetic profiling can mine powerful inferences from inherently noisy biological data sets. We introduce Sites Inferred by Metabolic Background Assertion Labeling (SIMBAL), a method that applies the Partial Phylogenetic Profiling (PPP) approach locally within a protein sequence to discover short sequence signatures associated with functional sites. The approach is based on the basic scoring mechanism employed by PPP, namely the use of binomial distribution statistics to optimize sequence similarity cutoffs during searches of partitioned training sets. Results Here we illustrate and validate the ability of the SIMBAL method to find functionally relevant short sequence signatures by application to two well-characterized protein families. In the first example, we partitioned a family of ABC permeases using a metabolic background property (urea utilization). Thus, the TRUE set for this family comprised members whose genome of origin encoded a urea utilization system. By moving a sliding window across the sequence of a permease, and searching each subsequence in turn against the full set of partitioned proteins, the method found which local sequence signatures best correlated with the urea utilization trait. Mapping of SIMBAL "hot spots" onto crystal structures of homologous permeases reveals that the significant sites are gating determinants on the cytosolic face rather than, say, docking sites for the substrate-binding protein on the extracellular face. In the second example, we partitioned a protein methyltransferase family using gene proximity as a criterion. In this case, the TRUE set comprised those methyltransferases encoded near the gene for the substrate RF-1. SIMBAL identifies sequence regions that map onto the substrate-binding interface while ignoring regions involved in the methyltransferase reaction mechanism in general. Neither method for training set construction requires any prior experimental characterization. Conclusions SIMBAL shows that, in functionally divergent protein families, selected short sequences often significantly outperform their full-length parent sequence for making functional predictions by sequence similarity, suggesting avenues for improved functional classifiers. When combined with structural data, SIMBAL affords the ability to localize and model functional sites. PMID:20102603

  4. Amoeba-inspired nanoarchitectonic computing implemented using electrical Brownian ratchets.

    PubMed

    Aono, M; Kasai, S; Kim, S-J; Wakabayashi, M; Miwa, H; Naruse, M

    2015-06-12

    In this study, we extracted the essential spatiotemporal dynamics that allow an amoeboid organism to solve a computationally demanding problem and adapt to its environment, thereby proposing a nature-inspired nanoarchitectonic computing system, which we implemented using a network of nanowire devices called 'electrical Brownian ratchets (EBRs)'. By utilizing the fluctuations generated from thermal energy in nanowire devices, we used our system to solve the satisfiability problem, which is a highly complex combinatorial problem related to a wide variety of practical applications. We evaluated the dependency of the solution search speed on its exploration parameter, which characterizes the fluctuation intensity of EBRs, using a simulation model of our system called 'AmoebaSAT-Brownian'. We found that AmoebaSAT-Brownian enhanced the solution searching speed dramatically when we imposed some constraints on the fluctuations in its time series and it outperformed a well-known stochastic local search method. These results suggest a new computing paradigm, which may allow high-speed problem solving to be implemented by interacting nanoscale devices with low power consumption.

  5. Specification for a surface-search radar-detection-range model

    NASA Astrophysics Data System (ADS)

    Hattan, Claude P.

    1990-09-01

    A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.

  6. Classification of adaptive memetic algorithms: a comparative study.

    PubMed

    Ong, Yew-Soon; Lim, Meng-Hiot; Zhu, Ning; Wong, Kok-Wai

    2006-02-01

    Adaptation of parameters and operators represents one of the recent most important and promising areas of research in evolutionary computations; it is a form of designing self-configuring algorithms that acclimatize to suit the problem in hand. Here, our interests are on a recent breed of hybrid evolutionary algorithms typically known as adaptive memetic algorithms (MAs). One unique feature of adaptive MAs is the choice of local search methods or memes and recent studies have shown that this choice significantly affects the performances of problem searches. In this paper, we present a classification of memes adaptation in adaptive MAs on the basis of the mechanism used and the level of historical knowledge on the memes employed. Then the asymptotic convergence properties of the adaptive MAs considered are analyzed according to the classification. Subsequently, empirical studies on representatives of adaptive MAs for different type-level meme adaptations using continuous benchmark problems indicate that global-level adaptive MAs exhibit better search performances. Finally we conclude with some promising research directions in the area.

  7. Discrete harmony search algorithm for scheduling and rescheduling the reprocessing problems in remanufacturing: a case study

    NASA Astrophysics Data System (ADS)

    Gao, Kaizhou; Wang, Ling; Luo, Jianping; Jiang, Hua; Sadollah, Ali; Pan, Quanke

    2018-06-01

    In this article, scheduling and rescheduling problems with increasing processing time and new job insertion are studied for reprocessing problems in the remanufacturing process. To handle the unpredictability of reprocessing time, an experience-based strategy is used. Rescheduling strategies are applied for considering the effect of increasing reprocessing time and the new subassembly insertion. To optimize the scheduling and rescheduling objective, a discrete harmony search (DHS) algorithm is proposed. To speed up the convergence rate, a local search method is designed. The DHS is applied to two real-life cases for minimizing the maximum completion time and the mean of earliness and tardiness (E/T). These two objectives are also considered together as a bi-objective problem. Computational optimization results and comparisons show that the proposed DHS is able to solve the scheduling and rescheduling problems effectively and productively. Using the proposed approach, satisfactory optimization results can be achieved for scheduling and rescheduling on a real-life shop floor.

  8. Hybrid General Pattern Search and Simulated Annealing for Industrail Production Planning Problems

    NASA Astrophysics Data System (ADS)

    Vasant, P.; Barsoum, N.

    2010-06-01

    In this paper, the hybridization of GPS (General Pattern Search) method and SA (Simulated Annealing) incorporated in the optimization process in order to look for the global optimal solution for the fitness function and decision variables as well as minimum computational CPU time. The real strength of SA approach been tested in this case study problem of industrial production planning. This is due to the great advantage of SA for being easily escaping from trapped in local minima by accepting up-hill move through a probabilistic procedure in the final stages of optimization process. Vasant [1] in his Ph. D thesis has provided 16 different techniques of heuristic and meta-heuristic in solving industrial production problems with non-linear cubic objective functions, eight decision variables and 29 constraints. In this paper, fuzzy technological problems have been solved using hybrid techniques of general pattern search and simulated annealing. The simulated and computational results are compared to other various evolutionary techniques.

  9. Enhanced ICP for the Registration of Large-Scale 3D Environment Models: An Experimental Study

    PubMed Central

    Han, Jianda; Yin, Peng; He, Yuqing; Gu, Feng

    2016-01-01

    One of the main applications of mobile robots is the large-scale perception of the outdoor environment. One of the main challenges of this application is fusing environmental data obtained by multiple robots, especially heterogeneous robots. This paper proposes an enhanced iterative closest point (ICP) method for the fast and accurate registration of 3D environmental models. First, a hierarchical searching scheme is combined with the octree-based ICP algorithm. Second, an early-warning mechanism is used to perceive the local minimum problem. Third, a heuristic escape scheme based on sampled potential transformation vectors is used to avoid local minima and achieve optimal registration. Experiments involving one unmanned aerial vehicle and one unmanned surface vehicle were conducted to verify the proposed technique. The experimental results were compared with those of normal ICP registration algorithms to demonstrate the superior performance of the proposed method. PMID:26891298

  10. Detection of Upscale-Crop and Partial Manipulation in Surveillance Video Based on Sensor Pattern Noise

    PubMed Central

    Hyun, Dai-Kyung; Ryu, Seung-Jin; Lee, Hae-Yeoun; Lee, Heung-Kyu

    2013-01-01

    In many court cases, surveillance videos are used as significant court evidence. As these surveillance videos can easily be forged, it may cause serious social issues, such as convicting an innocent person. Nevertheless, there is little research being done on forgery of surveillance videos. This paper proposes a forensic technique to detect forgeries of surveillance video based on sensor pattern noise (SPN). We exploit the scaling invariance of the minimum average correlation energy Mellin radial harmonic (MACE-MRH) correlation filter to reliably unveil traces of upscaling in videos. By excluding the high-frequency components of the investigated video and adaptively choosing the size of the local search window, the proposed method effectively localizes partially manipulated regions. Empirical evidence from a large database of test videos, including RGB (Red, Green, Blue)/infrared video, dynamic-/static-scene video and compressed video, indicates the superior performance of the proposed method. PMID:24051524

  11. Health Impact Assessment as a framework for evaluation of local complex projects.

    PubMed

    Heath, Lucy

    2007-07-01

    Health impact assessment (HIA) has been used to predict effects of a local parenting strategy and develop an evaluation framework. Methods used included literature searches, inequalities profiling, interviews with key informants and a review of available cost data. Four priority areas, where parenting can potentially impact, were identified: education, antisocial behaviour, lifestyle choices and mental health. The results concerning mental health are presented here. Improving the quality of parenting can impact on a child's mental health. The costs relating to the mental health outcomes are high and parenting is a cost-effective method to address the family dynamics that impact on this. Intermediary indicators, including clear boundaries, time spent as a family and parental involvement can be used to evaluate the intervention in the short-term, although there are difficulties in their measurement. The HIA process can improve cross-sectorial working, increased community participation and keep inequalities on the agenda.

  12. Collinearity Impairs Local Element Visual Search

    ERIC Educational Resources Information Center

    Jingling, Li; Tseng, Chia-Huei

    2013-01-01

    In visual searches, stimuli following the law of good continuity attract attention to the global structure and receive attentional priority. Also, targets that have unique features are of high feature contrast and capture attention in visual search. We report on a salient global structure combined with a high orientation contrast to the…

  13. Optimal Foraging in Semantic Memory

    ERIC Educational Resources Information Center

    Hills, Thomas T.; Jones, Michael N.; Todd, Peter M.

    2012-01-01

    Do humans search in memory using dynamic local-to-global search strategies similar to those that animals use to forage between patches in space? If so, do their dynamic memory search policies correspond to optimal foraging strategies seen for spatial foraging? Results from a number of fields suggest these possibilities, including the shared…

  14. Evaluation of Searching and Rescue (SAR) Method For Determining Local Wind Current

    DTIC Science & Technology

    1991-07-01

    JUL 10 1992 ("= Research ajJ Development Centerto 1082 Shennecossett Road . - Groton, CT 06340-6096 INTERIM REPORT July 1991 This document is...United States Coast Guard Research and Development Center 1082 Shennecossett Road Groton, CT 06340-6096 V ’C . l •• mU. Technical Report Documentation...Grant No. 1082 Shennecossett Road Groton, Connecticut 06340-6096 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address INTERIM

  15. Trust regions in Kriging-based optimization with expected improvement

    NASA Astrophysics Data System (ADS)

    Regis, Rommel G.

    2016-06-01

    The Kriging-based Efficient Global Optimization (EGO) method works well on many expensive black-box optimization problems. However, it does not seem to perform well on problems with steep and narrow global minimum basins and on high-dimensional problems. This article develops a new Kriging-based optimization method called TRIKE (Trust Region Implementation in Kriging-based optimization with Expected improvement) that implements a trust-region-like approach where each iterate is obtained by maximizing an Expected Improvement (EI) function within some trust region. This trust region is adjusted depending on the ratio of the actual improvement to the EI. This article also develops the Kriging-based CYCLONE (CYClic Local search in OptimizatioN using Expected improvement) method that uses a cyclic pattern to determine the search regions where the EI is maximized. TRIKE and CYCLONE are compared with EGO on 28 test problems with up to 32 dimensions and on a 36-dimensional groundwater bioremediation application in appendices supplied as an online supplement available at http://dx.doi.org/10.1080/0305215X.2015.1082350. The results show that both algorithms yield substantial improvements over EGO and they are competitive with a radial basis function method.

  16. Finding fossils in new ways: an artificial neural network approach to predicting the location of productive fossil localities.

    PubMed

    Anemone, Robert; Emerson, Charles; Conroy, Glenn

    2011-01-01

    Chance and serendipity have long played a role in the location of productive fossil localities by vertebrate paleontologists and paleoanthropologists. We offer an alternative approach, informed by methods borrowed from the geographic information sciences and using recent advances in computer science, to more efficiently predict where fossil localities might be found. Our model uses an artificial neural network (ANN) that is trained to recognize the spectral characteristics of known productive localities and other land cover classes, such as forest, wetlands, and scrubland, within a study area based on the analysis of remotely sensed (RS) imagery. Using these spectral signatures, the model then classifies other pixels throughout the study area. The results of the neural network classification can be examined and further manipulated within a geographic information systems (GIS) software package. While we have developed and tested this model on fossil mammal localities in deposits of Paleocene and Eocene age in the Great Divide Basin of southwestern Wyoming, a similar analytical approach can be easily applied to fossil-bearing sedimentary deposits of any age in any part of the world. We suggest that new analytical tools and methods of the geographic sciences, including remote sensing and geographic information systems, are poised to greatly enrich paleoanthropological investigations, and that these new methods should be embraced by field workers in the search for, and geospatial analysis of, fossil primates and hominins. Copyright © 2011 Wiley-Liss, Inc.

  17. The dual role of fragments in fragment-assembly methods for de novo protein structure prediction

    PubMed Central

    Handl, Julia; Knowles, Joshua; Vernon, Robert; Baker, David; Lovell, Simon C.

    2013-01-01

    In fragment-assembly techniques for protein structure prediction, models of protein structure are assembled from fragments of known protein structures. This process is typically guided by a knowledge-based energy function and uses a heuristic optimization method. The fragments play two important roles in this process: they define the set of structural parameters available, and they also assume the role of the main variation operators that are used by the optimiser. Previous analysis has typically focused on the first of these roles. In particular, the relationship between local amino acid sequence and local protein structure has been studied by a range of authors. The correlation between the two has been shown to vary with the window length considered, and the results of these analyses have informed directly the choice of fragment length in state-of-the-art prediction techniques. Here, we focus on the second role of fragments and aim to determine the effect of fragment length from an optimization perspective. We use theoretical analyses to reveal how the size and structure of the search space changes as a function of insertion length. Furthermore, empirical analyses are used to explore additional ways in which the size of the fragment insertion influences the search both in a simulation model and for the fragment-assembly technique, Rosetta. PMID:22095594

  18. A multi-populations multi-strategies differential evolution algorithm for structural optimization of metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Fan, Tian-E.; Shao, Gui-Fang; Ji, Qing-Shuang; Zheng, Ji-Wen; Liu, Tun-dong; Wen, Yu-Hua

    2016-11-01

    Theoretically, the determination of the structure of a cluster is to search the global minimum on its potential energy surface. The global minimization problem is often nondeterministic-polynomial-time (NP) hard and the number of local minima grows exponentially with the cluster size. In this article, a multi-populations multi-strategies differential evolution algorithm has been proposed to search the globally stable structure of Fe and Cr nanoclusters. The algorithm combines a multi-populations differential evolution with an elite pool scheme to keep the diversity of the solutions and avoid prematurely trapping into local optima. Moreover, multi-strategies such as growing method in initialization and three differential strategies in mutation are introduced to improve the convergence speed and lower the computational cost. The accuracy and effectiveness of our algorithm have been verified by comparing the results of Fe clusters with Cambridge Cluster Database. Meanwhile, the performance of our algorithm has been analyzed by comparing the convergence rate and energy evaluations with the classical DE algorithm. The multi-populations, multi-strategies mutation and growing method in initialization in our algorithm have been considered respectively. Furthermore, the structural growth pattern of Cr clusters has been predicted by this algorithm. The results show that the lowest-energy structure of Cr clusters contains many icosahedra, and the number of the icosahedral rings rises with increasing size.

  19. On the use of harmony search algorithm in the training of wavelet neural networks

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2015-10-01

    Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.

  20. An Application of the A* Search to Trajectory Optimization

    DTIC Science & Technology

    1990-05-11

    linearized model of orbital motion called the Clohessy - Wiltshire Equations and a node search technique called A*. The planner discussed in this thesis starts...states while transfer time is left unspecified. 13 Chapter 2. Background HILL’S ( CLOHESSY - WILTSHIRE ) EQUATIONS The Euler-Hill equations describe... Clohessy - Wiltshire equations. The coordinate system used in this thesis is commonly referred to as Local Vertical, Local Horizontal or LVLH reference frame

  1. Evidence-based practice: extending the search to find material for the systematic review

    PubMed Central

    Helmer, Diane; Savoie, Isabelle; Green, Carolyn; Kazanjian, Arminée

    2001-01-01

    Background: Cochrane-style systematic reviews increasingly require the participation of librarians. Guidelines on the appropriate search strategy to use for systematic reviews have been proposed. However, research evidence supporting these recommendations is limited. Objective: This study investigates the effectiveness of various systematic search methods used to uncover randomized controlled trials (RCTs) for systematic reviews. Effectiveness is defined as the proportion of relevant material uncovered for the systematic review using extended systematic review search methods. The following extended systematic search methods are evaluated: searching subject-specific or specialized databases (including trial registries), hand searching, scanning reference lists, and communicating personally. Methods: Two systematic review projects were prospectively monitored regarding the method used to identify items as well as the type of items retrieved. The proportion of RCTs identified by each systematic search method was calculated. Results: The extended systematic search methods uncovered 29.2% of all items retrieved for the systematic reviews. The search of specialized databases was the most effective method, followed by scanning of reference lists, communicating personally, and hand searching. Although the number of items identified through hand searching was small, these unique items would otherwise have been missed. Conclusions: Extended systematic search methods are effective tools for uncovering material for the systematic review. The quality of the items uncovered has yet to be assessed and will be key in evaluating the value of the systematic search methods. PMID:11837256

  2. Curating the Web: Building a Google Custom Search Engine for the Arts

    ERIC Educational Resources Information Center

    Hennesy, Cody; Bowman, John

    2008-01-01

    Google's first foray onto the web made search simple and results relevant. With its Co-op platform, Google has taken another step toward dramatically increasing the relevancy of search results, further adapting the World Wide Web to local needs. Google Custom Search Engine, a tool on the Co-op platform, puts one in control of his or her own search…

  3. Testing local anisotropy using the method of smoothed residuals I — methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appleby, Stephen; Shafieloo, Arman, E-mail: stephen.appleby@apctp.org, E-mail: arman@apctp.org

    2014-03-01

    We discuss some details regarding the method of smoothed residuals, which has recently been used to search for anisotropic signals in low-redshift distance measurements (Supernovae). In this short note we focus on some details regarding the implementation of the method, particularly the issue of effectively detecting signals in data that are inhomogeneously distributed on the sky. Using simulated data, we argue that the original method proposed in Colin et al. [1] will not detect spurious signals due to incomplete sky coverage, and that introducing additional Gaussian weighting to the statistic as in [2] can hinder its ability to detect amore » signal. Issues related to the width of the Gaussian smoothing are also discussed.« less

  4. A novel method of the image processing on irregular triangular meshes

    NASA Astrophysics Data System (ADS)

    Vishnyakov, Sergey; Pekhterev, Vitaliy; Sokolova, Elizaveta

    2018-04-01

    The paper describes a novel method of the image processing based on irregular triangular meshes implementation. The triangular mesh is adaptive to the image content, least mean square linear approximation is proposed for the basic interpolation within the triangle. It is proposed to use triangular numbers to simplify using of the local (barycentric) coordinates for the further analysis - triangular element of the initial irregular mesh is to be represented through the set of the four equilateral triangles. This allows to use fast and simple pixels indexing in local coordinates, e.g. "for" or "while" loops for access to the pixels. Moreover, representation proposed allows to use discrete cosine transform of the simple "rectangular" symmetric form without additional pixels reordering (as it is used for shape-adaptive DCT forms). Furthermore, this approach leads to the simple form of the wavelet transform on triangular mesh. The results of the method application are presented. It is shown that advantage of the method proposed is a combination of the flexibility of the image-adaptive irregular meshes with the simple form of the pixel indexing in local triangular coordinates and the using of the common forms of the discrete transforms for triangular meshes. Method described is proposed for the image compression, pattern recognition, image quality improvement, image search and indexing. It also may be used as a part of video coding (intra-frame or inter-frame coding, motion detection).

  5. Solving traveling salesman problems with DNA molecules encoding numerical values.

    PubMed

    Lee, Ji Youn; Shin, Soo-Yong; Park, Tai Hyun; Zhang, Byoung-Tak

    2004-12-01

    We introduce a DNA encoding method to represent numerical values and a biased molecular algorithm based on the thermodynamic properties of DNA. DNA strands are designed to encode real values by variation of their melting temperatures. The thermodynamic properties of DNA are used for effective local search of optimal solutions using biochemical techniques, such as denaturation temperature gradient polymerase chain reaction and temperature gradient gel electrophoresis. The proposed method was successfully applied to the traveling salesman problem, an instance of optimization problems on weighted graphs. This work extends the capability of DNA computing to solving numerical optimization problems, which is contrasted with other DNA computing methods focusing on logical problem solving.

  6. Collaboration between local health and local government agencies for health improvement.

    PubMed

    Hayes, Sara L; Mann, Mala K; Morgan, Fiona M; Kitcher, Hilary; Kelly, Mark J; Weightman, Alison L

    2011-06-15

    In many countries, national, regional and local inter- and intra-agency collaborations have been introduced in order to improve health outcomes. Evidence is needed on the effectiveness of locally-developed partnerships which target changes in individual health outcomes and behaviours. To evaluate the effects of interagency collaboration between local health and local government agencies on health outcomes. Twenty-five databases were searched using a highly sensitive search strategy. 'Snowballing' methods were also used, including expert contact, website searching and reference list follow up. Randomized controlled trials (RCTs), controlled clinical trials (CCTs), controlled before-and-after studies (CBAs) and interrupted time series (ITS) where the study reported on interagency collaboration between health and local government agencies. Studies were selected independently in duplicate by two of five authors. From the team of five review authors, two authors independently conducted data extraction and assessed risk of bias for each study. Eleven studies were identified, presenting information on a total of 26,686 participants. Owing to the heterogeneity between studies a narrative synthesis was undertaken. The included studies covered a range of topics. Six studies examined mental health initiatives, of which one study showed health benefit; four showed modest improvement in one or more of the outcomes measured, but no clear overall health gain; and one study showed no evidence of health gain. Two studies were related to lifestyle improvements of which one failed to show health gains for the intervention population, while the other showed more unhealthy lifestyle behaviours persisting in the intervention population. Three studies were related to chronic disease management and all three failed to demonstrate health gains. Collaboration between local health and local government is commonly considered best practice. However, the review did not identify any reliable evidence that inter‑agency collaboration, compared to standard services, leads to health improvement. A few studies identified component benefits but these were not reflected in overall outcome scores and could have resulted from the use of significant additional resources. Although agencies appear enthusiastic about collaboration, methodological flaws in the primary studies and incomplete implementation of initiatives have prevented the development of a strong evidence base. If these flaws are addressed in future studies (for example by providing greater detail on the implementation of programs, using more robust designs, with integrated process evaluations and measurement of health outcomes) it could provide a better understanding of what might work and why.When updating this review, we will analyse any partnership or process evaluations of our included studies to try to identify markers of success in local collaborative partnerships that could inform policy developments in the future.

  7. A new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problem

    NASA Astrophysics Data System (ADS)

    Pourrahimian, Parinaz

    2017-11-01

    Automated Guided Vehicle System (AGVS) provides the flexibility and automation demanded by Flexible Manufacturing System (FMS). However, with the growing concern on responsible management of resource use, it is crucial to manage these vehicles in an efficient way in order reduces travel time and controls conflicts and congestions. This paper presents the development process of a new Memetic Algorithm (MA) for optimizing partitioning problem of tandem AGVS. MAs employ a Genetic Algorithm (GA), as a global search, and apply a local search to bring the solutions to a local optimum point. A new Tabu Search (TS) has been developed and combined with a GA to refine the newly generated individuals by GA. The aim of the proposed algorithm is to minimize the maximum workload of the system. After all, the performance of the proposed algorithm is evaluated using Matlab. This study also compared the objective function of the proposed MA with GA. The results showed that the TS, as a local search, significantly improves the objective function of the GA for different system sizes with large and small numbers of zone by 1.26 in average.

  8. Accelerating atomic structure search with cluster regularization

    NASA Astrophysics Data System (ADS)

    Sørensen, K. H.; Jørgensen, M. S.; Bruix, A.; Hammer, B.

    2018-06-01

    We present a method for accelerating the global structure optimization of atomic compounds. The method is demonstrated to speed up the finding of the anatase TiO2(001)-(1 × 4) surface reconstruction within a density functional tight-binding theory framework using an evolutionary algorithm. As a key element of the method, we use unsupervised machine learning techniques to categorize atoms present in a diverse set of partially disordered surface structures into clusters of atoms having similar local atomic environments. Analysis of more than 1000 different structures shows that the total energy of the structures correlates with the summed distances of the atomic environments to their respective cluster centers in feature space, where the sum runs over all atoms in each structure. Our method is formulated as a gradient based minimization of this summed cluster distance for a given structure and alternates with a standard gradient based energy minimization. While the latter minimization ensures local relaxation within a given energy basin, the former enables escapes from meta-stable basins and hence increases the overall performance of the global optimization.

  9. A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector

    NASA Astrophysics Data System (ADS)

    MACRO Collaboration; Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; Derkaoui, J.; De Vincenzi, M.; DiCredico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Popa, V.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.

    2002-08-01

    We describe a search method for fast moving (β=v/c>5×10-3) magnetic monopoles using simultaneously the scintillator, streamer tube and track-etch subdetectors of the MACRO apparatus. The first two subdetectors are used primarily for the identification of candidates while the track-etch one is used as the final tool for their rejection or confirmation. Using this technique, a first sample of more than two years of data has been analyzed without any evidence of a magnetic monopole. We set a 90% CL upper limit to the local monopole flux of 1.5×10-15 cm-2s-1sr-1 in the velocity range 5×10-3<=β<=0.99 and for nucleon decay catalysis cross-section smaller than /~1 mb

  10. A comparison of results of empirical studies of supplementary search techniques and recommendations in review methodology handbooks: a methodological review.

    PubMed

    Cooper, Chris; Booth, Andrew; Britten, Nicky; Garside, Ruth

    2017-11-28

    The purpose and contribution of supplementary search methods in systematic reviews is increasingly acknowledged. Numerous studies have demonstrated their potential in identifying studies or study data that would have been missed by bibliographic database searching alone. What is less certain is how supplementary search methods actually work, how they are applied, and the consequent advantages, disadvantages and resource implications of each search method. The aim of this study is to compare current practice in using supplementary search methods with methodological guidance. Four methodological handbooks in informing systematic review practice in the UK were read and audited to establish current methodological guidance. Studies evaluating the use of supplementary search methods were identified by searching five bibliographic databases. Studies were included if they (1) reported practical application of a supplementary search method (descriptive) or (2) examined the utility of a supplementary search method (analytical) or (3) identified/explored factors that impact on the utility of a supplementary method, when applied in practice. Thirty-five studies were included in this review in addition to the four methodological handbooks. Studies were published between 1989 and 2016, and dates of publication of the handbooks ranged from 1994 to 2014. Five supplementary search methods were reviewed: contacting study authors, citation chasing, handsearching, searching trial registers and web searching. There is reasonable consistency between recommended best practice (handbooks) and current practice (methodological studies) as it relates to the application of supplementary search methods. The methodological studies provide useful information on the effectiveness of the supplementary search methods, often seeking to evaluate aspects of the method to improve effectiveness or efficiency. In this way, the studies advance the understanding of the supplementary search methods. Further research is required, however, so that a rational choice can be made about which supplementary search strategies should be used, and when.

  11. Foraging in Semantic Fields: How We Search Through Memory.

    PubMed

    Hills, Thomas T; Todd, Peter M; Jones, Michael N

    2015-07-01

    When searching for concepts in memory--as in the verbal fluency task of naming all the animals one can think of--people appear to explore internal mental representations in much the same way that animals forage in physical space: searching locally within patches of information before transitioning globally between patches. However, the definition of the patches being searched in mental space is not well specified. Do we search by activating explicit predefined categories (e.g., pets) and recall items from within that category (categorical search), or do we activate and recall a connected sequence of individual items without using categorical information, with each item recalled leading to the retrieval of an associated item in a stream (associative search), or both? Using semantic representations in a search of associative memory framework and data from the animal fluency task, we tested competing hypotheses based on associative and categorical search models. Associative, but not categorical, patch transitions took longer to make than position-matched productions, suggesting that categorical transitions were not true transitions. There was also clear evidence of associative search even within categorical patch boundaries. Furthermore, most individuals' behavior was best explained by an associative search model without the addition of categorical information. Thus, our results support a search process that does not use categorical information, but for which patch boundaries shift with each recall and local search is well described by a random walk in semantic space, with switches to new regions of the semantic space when the current region is depleted. Copyright © 2015 Cognitive Science Society, Inc.

  12. Spiking cortical model based non-local means method for despeckling multiframe optical coherence tomography data

    NASA Astrophysics Data System (ADS)

    Gu, Yameng; Zhang, Xuming

    2017-05-01

    Optical coherence tomography (OCT) images are severely degraded by speckle noise. Existing methods for despeckling multiframe OCT data cannot deliver sufficient speckle suppression while preserving image details well. To address this problem, the spiking cortical model (SCM) based non-local means (NLM) method has been proposed in this letter. In the proposed method, the considered frame and two neighboring frames are input into three SCMs to generate the temporal series of pulse outputs. The normalized moment of inertia (NMI) of the considered patches in the pulse outputs is extracted to represent the rotational and scaling invariant features of the corresponding patches in each frame. The pixel similarity is computed based on the Euclidean distance between the NMI features and used as the weight. Each pixel in the considered frame is restored by the weighted averaging of all pixels in the pre-defined search window in the three frames. Experiments on the real multiframe OCT data of the pig eye demonstrate the advantage of the proposed method over the frame averaging method, the multiscale sparsity based tomographic denoising method, the wavelet-based method and the traditional NLM method in terms of visual inspection and objective metrics such as signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), equivalent number of looks (ENL) and cross-correlation (XCOR).

  13. Global Search Capabilities of Indirect Methods for Impulsive Transfers

    NASA Astrophysics Data System (ADS)

    Shen, Hong-Xin; Casalino, Lorenzo; Luo, Ya-Zhong

    2015-09-01

    An optimization method which combines an indirect method with homotopic approach is proposed and applied to impulsive trajectories. Minimum-fuel, multiple-impulse solutions, with either fixed or open time are obtained. The homotopic approach at hand is relatively straightforward to implement and does not require an initial guess of adjoints, unlike previous adjoints estimation methods. A multiple-revolution Lambert solver is used to find multiple starting solutions for the homotopic procedure; this approach can guarantee to obtain multiple local solutions without relying on the user's intuition, thus efficiently exploring the solution space to find the global optimum. The indirect/homotopic approach proves to be quite effective and efficient in finding optimal solutions, and outperforms the joint use of evolutionary algorithms and deterministic methods in the test cases.

  14. Alternative Fuels Data Center

    Science.gov Websites

    Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary fuels and advanced vehicles. Choose one or more jurisdictions to start your search. Select additional

  15. Does the thinking aloud condition affect the search for pulmonary nodules?

    NASA Astrophysics Data System (ADS)

    Littlefair, Stephen; Brennan, Patrick; Reed, Warren; Williams, Mark; Pietrzyk, Mariusz W.

    2012-02-01

    Aim: To measure the effect of thinking aloud on perceptual accuracy and visual search behavior during chest radiograph interpretation for pulmonary nodules. Background: Thinking Aloud (TA) is an empirical research method used by researchers in cognitive psychology and behavioural analysis. In this pilot study we wanted to examine whether TA had an effect on the perceptual accuracy and search patterns of subjects looking for pulmonary nodules on adult posterioranterior chest radiographs (PA CxR). Method: Seven academics within Medical Radiation Sciences at The University of Sydney participated in two reading sessions with and without TA. Their task was to localize pulmonary nodules on 30 PA CxR using mouse clicks and rank their confidence levels of nodule presence. Eye-tracking recordings were collected during both viewing sessions. Time to first fixation, duration of first fixation, number of fixations, cumulative time of fixation and total viewing time were analysed. In addition, ROC analysis was conducted on collected outcome using DBM methodology. Results: Time to first nodule fixation was significantly longer (p=0.001) and duration of first fixation was significantly shorter (p=0.043). No significant difference was observed in ROC AUC scores between control and TA conditions. Conclusion: Our results confirm that TA has little effect on perceptual ability or performance, except for prolonging the task. However, there were significant differences in visual search behavior. Future researchers in radio-diagnosis could use the think aloud condition rather than silence so as to more closely replicate the clinical scenario.

  16. Encounter times of chromatin loci influenced by polymer decondensation

    NASA Astrophysics Data System (ADS)

    Amitai, A.; Holcman, D.

    2018-03-01

    The time for a DNA sequence to find its homologous counterpart depends on a long random search inside the cell nucleus. Using polymer models, we compute here the mean first encounter time (MFET) between two sites located on two different polymer chains and confined locally by potential wells. We find that reducing tethering forces acting on the polymers results in local decondensation, and numerical simulations of the polymer model show that these changes are associated with a reduction of the MFET by several orders of magnitude. We derive here new asymptotic formula for the MFET, confirmed by Brownian simulations. We conclude from the present modeling approach that the fast search for homology is mediated by a local chromatin decondensation due to the release of multiple chromatin tethering forces. The present scenario could explain how the homologous recombination pathway for double-stranded DNA repair is controlled by its random search step.

  17. Barriers and facilitators to health information exchange in low- and middle-income country settings: a systematic review.

    PubMed

    Akhlaq, Ather; McKinstry, Brian; Muhammad, Khalid Bin; Sheikh, Aziz

    2016-11-01

    The exchange and use of health information can help healthcare professionals and policymakers make informed decisions on ways of improving patient and population health. Many low- and middle-income countries (LMICs) have however failed to embrace the approaches and technologies to facilitate health information exchange (HIE). We sought to understand the barriers and facilitators to the implementation and adoption of HIE in LMICs. Two reviewers independently searched 11 academic databases for published and on-going qualitative, quantitative and mixed-method studies and searched for unpublished work through the Google search engine. The searches covered the period from January 1990 to July 2014 and were not restricted by language. Eligible studies were independently, critically appraised and then thematically analysed. The searches yielded 5461 citations after de-duplication of results. Of these, 56 articles, three conference abstracts and four technical reports met the inclusion criteria. The lack of importance given to data in decision making, corruption and insecurity, lack of training and poor infrastructure were considered to be major challenges to implementing HIE, but strong leadership and clear policy direction coupled with the financial support to acquire essential technology, improve the communication network, and provide training for staff all helped to promote implementation. The body of work also highlighted how implementers of HIE needed to take into account local needs to ensure that stakeholders saw HIE as relevant and advantageous. HIE interventions implemented through leapfrog technologies such as telehealth/telemedicine and mHealth in Brazil, Kenya, and South Africa, provided successful examples of exchanging health information in LMICs despite limited resources and capability. It is important that implementation of HIE is aligned with national priorities and local needs. © The Author 2016. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Standard plane localization in ultrasound by radial component model and selective search.

    PubMed

    Ni, Dong; Yang, Xin; Chen, Xin; Chin, Chien-Ting; Chen, Siping; Heng, Pheng Ann; Li, Shengli; Qin, Jing; Wang, Tianfu

    2014-11-01

    Acquisition of the standard plane is crucial for medical ultrasound diagnosis. However, this process requires substantial experience and a thorough knowledge of human anatomy. Therefore it is very challenging for novices and even time consuming for experienced examiners. We proposed a hierarchical, supervised learning framework for automatically detecting the standard plane from consecutive 2-D ultrasound images. We tested this technique by developing a system that localizes the fetal abdominal standard plane from ultrasound video by detecting three key anatomical structures: the stomach bubble, umbilical vein and spine. We first proposed a novel radial component-based model to describe the geometric constraints of these key anatomical structures. We then introduced a novel selective search method which exploits the vessel probability algorithm to produce probable locations for the spine and umbilical vein. Next, using component classifiers trained by random forests, we detected the key anatomical structures at their probable locations within the regions constrained by the radial component-based model. Finally, a second-level classifier combined the results from the component detection to identify an ultrasound image as either a "fetal abdominal standard plane" or a "non- fetal abdominal standard plane." Experimental results on 223 fetal abdomen videos showed that the detection accuracy of our method was as high as 85.6% and significantly outperformed both the full abdomen and the separate anatomy detection methods without geometric constraints. The experimental results demonstrated that our system shows great promise for application to clinical practice. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Speech coding at low to medium bit rates

    NASA Astrophysics Data System (ADS)

    Leblanc, Wilfred Paul

    1992-09-01

    Improved search techniques coupled with improved codebook design methodologies are proposed to improve the performance of conventional code-excited linear predictive coders for speech. Improved methods for quantizing the short term filter are developed by employing a tree search algorithm and joint codebook design to multistage vector quantization. Joint codebook design procedures are developed to design locally optimal multistage codebooks. Weighting during centroid computation is introduced to improve the outlier performance of the multistage vector quantizer. Multistage vector quantization is shown to be both robust against input characteristics and in the presence of channel errors. Spectral distortions of about 1 dB are obtained at rates of 22-28 bits/frame. Structured codebook design procedures for excitation in code-excited linear predictive coders are compared to general codebook design procedures. Little is lost using significant structure in the excitation codebooks while greatly reducing the search complexity. Sparse multistage configurations are proposed for reducing computational complexity and memory size. Improved search procedures are applied to code-excited linear prediction which attempt joint optimization of the short term filter, the adaptive codebook, and the excitation. Improvements in signal to noise ratio of 1-2 dB are realized in practice.

  20. NDBC Tropical Atmosphere Ocean (TAO)

    Science.gov Websites

    to go to the NWS homepage Left navigation bar Home News Organization Search NDBC web site search TAO Tour FAQ NDBC Home Contact Us USA.gov is the U.S. government's official web portal to all federal , state and local government web resources and services. Recent Data Observations Search TAO DART Tropical

  1. Local Health Districts - Virginia Department of Health

    Science.gov Websites

    Virginia.gov Agencies | Governor Search Virginia.Gov Skip to content Virginia Department of Health Virginia Department of Health Search for: Search Home About Us How Do I Apply for a birth/death or marriage Hepatitis Testing Sites? Check out home health service providers? Report a foodborne illness? File a

  2. COLUG: Chicago Online Users Introductory Guide.

    ERIC Educational Resources Information Center

    Moore, Alexandra L., Ed.; Pyrce, Sharon R., Ed.

    Intended to serve as an introduction to online searching in the Chicago area, the guide answers these basic questions for those considering going online for the first time: what is online searching, starting out online, local training for online searching, how to choose a terminal, 1200 baud equipment selection, how to prepare for and evaluate a…

  3. Exploring Library 2.0 on the Social Web

    ERIC Educational Resources Information Center

    Brantley, John S.

    2010-01-01

    Library 2.0 literature has described many of the possibilities Web 2.0 technologies offer to libraries. Case studies have assessed local use, but no studies have measured the Library 2.0 phenomenon by searching public social networking sites. This study used library-specific terms to search public social networking sites, blog search engines, and…

  4. Global Statistical Learning in a Visual Search Task

    ERIC Educational Resources Information Center

    Jones, John L.; Kaschak, Michael P.

    2012-01-01

    Locating a target in a visual search task is facilitated when the target location is repeated on successive trials. Global statistical properties also influence visual search, but have often been confounded with local regularities (i.e., target location repetition). In two experiments, target locations were not repeated for four successive trials,…

  5. A method for real-time visual stimulus selection in the study of cortical object perception.

    PubMed

    Leeds, Daniel D; Tarr, Michael J

    2016-06-01

    The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit's image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across pre-determined 1cm(3) rain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds et al., 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) real-time estimation of cortical responses to stimuli is reasonably consistent; 3) search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A Study of Penalty Function Methods for Constraint Handling with Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Ortiz, Francisco

    2004-01-01

    COMETBOARDS (Comparative Evaluation Testbed of Optimization and Analysis Routines for Design of Structures) is a design optimization test bed that can evaluate the performance of several different optimization algorithms. A few of these optimization algorithms are the sequence of unconstrained minimization techniques (SUMT), sequential linear programming (SLP) and the sequential quadratic programming techniques (SQP). A genetic algorithm (GA) is a search technique that is based on the principles of natural selection or "survival of the fittest". Instead of using gradient information, the GA uses the objective function directly in the search. The GA searches the solution space by maintaining a population of potential solutions. Then, using evolving operations such as recombination, mutation and selection, the GA creates successive generations of solutions that will evolve and take on the positive characteristics of their parents and thus gradually approach optimal or near-optimal solutions. By using the objective function directly in the search, genetic algorithms can be effectively applied in non-convex, highly nonlinear, complex problems. The genetic algorithm is not guaranteed to find the global optimum, but it is less likely to get trapped at a local optimum than traditional gradient-based search methods when the objective function is not smooth and generally well behaved. The purpose of this research is to assist in the integration of genetic algorithm (GA) into COMETBOARDS. COMETBOARDS cast the design of structures as a constrained nonlinear optimization problem. One method used to solve constrained optimization problem with a GA to convert the constrained optimization problem into an unconstrained optimization problem by developing a penalty function that penalizes infeasible solutions. There have been several suggested penalty function in the literature each with there own strengths and weaknesses. A statistical analysis of some suggested penalty functions is performed in this study. Also, a response surface approach to robust design is used to develop a new penalty function approach. This new penalty function approach is then compared with the other existing penalty functions.

  7. A method for real-time visual stimulus selection in the study of cortical object perception

    PubMed Central

    Leeds, Daniel D.; Tarr, Michael J.

    2016-01-01

    The properties utilized by visual object perception in the mid- and high-level ventral visual pathway are poorly understood. To better establish and explore possible models of these properties, we adopt a data-driven approach in which we repeatedly interrogate neural units using functional Magnetic Resonance Imaging (fMRI) to establish each unit’s image selectivity. This approach to imaging necessitates a search through a broad space of stimulus properties using a limited number of samples. To more quickly identify the complex visual features underlying human cortical object perception, we implemented a new functional magnetic resonance imaging protocol in which visual stimuli are selected in real-time based on BOLD responses to recently shown images. Two variations of this protocol were developed, one relying on natural object stimuli and a second based on synthetic object stimuli, both embedded in feature spaces based on the complex visual properties of the objects. During fMRI scanning, we continuously controlled stimulus selection in the context of a real-time search through these image spaces in order to maximize neural responses across predetermined 1 cm3 brain regions. Elsewhere we have reported the patterns of cortical selectivity revealed by this approach (Leeds 2014). In contrast, here our objective is to present more detailed methods and explore the technical and biological factors influencing the behavior of our real-time stimulus search. We observe that: 1) Searches converged more reliably when exploring a more precisely parameterized space of synthetic objects; 2) Real-time estimation of cortical responses to stimuli are reasonably consistent; 3) Search behavior was acceptably robust to delays in stimulus displays and subject motion effects. Overall, our results indicate that real-time fMRI methods may provide a valuable platform for continuing study of localized neural selectivity, both for visual object representation and beyond. PMID:26973168

  8. Searching for high-energy gamma-ray counterparts to gravitational-wave sources with Fermi-LAT: A needle in a haystack

    DOE PAGES

    Vianello, G.; Omodei, N.; Chiang, J.; ...

    2017-05-20

    At least a fraction of gravitational-wave (GW) progenitors are expected to emit an electromagnetic (EM) signal in the form of a short gamma-ray burst (sGRB). Discovering such a transient EM counterpart is challenging because the LIGO/VIRGO localization region is much larger (several hundreds of square degrees) than the field of view of X-ray, optical, and radio telescopes. The Fermi Large Area Telescope (LAT) has a wide field of view (~2.4 sr) and detects ~2–3 sGRBs per year above 100 MeV. It can detect them not only during the short prompt phase, but also during their long-lasting high-energy afterglow phase. If other wide-field, high-energy instruments such as Fermi-GBM, Swift-BAT, or INTEGRAL-ISGRI cannot detect or localize with enough precision an EM counterpart during the prompt phase, the LAT can potentially pinpoint it withmore » $$\\lesssim 10$$ arcmin accuracy during the afterglow phase. This routinely happens with gamma-ray bursts. Moreover, the LAT will cover the entire localization region within hours of any triggers during normal operations, allowing the γ-ray flux of any EM counterpart to be measured or constrained. As a result, we illustrate two new ad hoc methods to search for EM counterparts with the LAT and their application to the GW candidate LVT151012.« less

  9. Searching for high-energy gamma-ray counterparts to gravitational-wave sources with Fermi-LAT: A needle in a haystack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vianello, G.; Omodei, N.; Chiang, J.

    At least a fraction of gravitational-wave (GW) progenitors are expected to emit an electromagnetic (EM) signal in the form of a short gamma-ray burst (sGRB). Discovering such a transient EM counterpart is challenging because the LIGO/VIRGO localization region is much larger (several hundreds of square degrees) than the field of view of X-ray, optical, and radio telescopes. The Fermi Large Area Telescope (LAT) has a wide field of view (~2.4 sr) and detects ~2–3 sGRBs per year above 100 MeV. It can detect them not only during the short prompt phase, but also during their long-lasting high-energy afterglow phase. If other wide-field, high-energy instruments such as Fermi-GBM, Swift-BAT, or INTEGRAL-ISGRI cannot detect or localize with enough precision an EM counterpart during the prompt phase, the LAT can potentially pinpoint it withmore » $$\\lesssim 10$$ arcmin accuracy during the afterglow phase. This routinely happens with gamma-ray bursts. Moreover, the LAT will cover the entire localization region within hours of any triggers during normal operations, allowing the γ-ray flux of any EM counterpart to be measured or constrained. As a result, we illustrate two new ad hoc methods to search for EM counterparts with the LAT and their application to the GW candidate LVT151012.« less

  10. Recognition of functional sites in protein structures.

    PubMed

    Shulman-Peleg, Alexandra; Nussinov, Ruth; Wolfson, Haim J

    2004-06-04

    Recognition of regions on the surface of one protein, that are similar to a binding site of another is crucial for the prediction of molecular interactions and for functional classifications. We first describe a novel method, SiteEngine, that assumes no sequence or fold similarities and is able to recognize proteins that have similar binding sites and may perform similar functions. We achieve high efficiency and speed by introducing a low-resolution surface representation via chemically important surface points, by hashing triangles of physico-chemical properties and by application of hierarchical scoring schemes for a thorough exploration of global and local similarities. We proceed to rigorously apply this method to functional site recognition in three possible ways: first, we search a given functional site on a large set of complete protein structures. Second, a potential functional site on a protein of interest is compared with known binding sites, to recognize similar features. Third, a complete protein structure is searched for the presence of an a priori unknown functional site, similar to known sites. Our method is robust and efficient enough to allow computationally demanding applications such as the first and the third. From the biological standpoint, the first application may identify secondary binding sites of drugs that may lead to side-effects. The third application finds new potential sites on the protein that may provide targets for drug design. Each of the three applications may aid in assigning a function and in classification of binding patterns. We highlight the advantages and disadvantages of each type of search, provide examples of large-scale searches of the entire Protein Data Base and make functional predictions.

  11. 3D/2D image registration using weighted histogram of gradient directions

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang

    2015-03-01

    Three dimensional (3D) to two dimensional (2D) image registration is crucial in many medical applications such as image-guided evaluation of musculoskeletal disorders. One of the key problems is to estimate the 3D CT- reconstructed bone model positions (translation and rotation) which maximize the similarity between the digitally reconstructed radiographs (DRRs) and the 2D fluoroscopic images using a registration method. This problem is computational-intensive due to a large search space and the complicated DRR generation process. Also, finding a similarity measure which converges to the global optimum instead of local optima adds to the challenge. To circumvent these issues, most existing registration methods need a manual initialization, which requires user interaction and is prone to human error. In this paper, we introduce a novel feature-based registration method using the weighted histogram of gradient directions of images. This method simplifies the computation by searching the parameter space (rotation and translation) sequentially rather than simultaneously. In our numeric simulation experiments, the proposed registration algorithm was able to achieve sub-millimeter and sub-degree accuracies. Moreover, our method is robust to the initial guess. It can tolerate up to +/-90°rotation offset from the global optimal solution, which minimizes the need for human interaction to initialize the algorithm.

  12. On-line range images registration with GPGPU

    NASA Astrophysics Data System (ADS)

    Będkowski, J.; Naruniec, J.

    2013-03-01

    This paper concerns implementation of algorithms in the two important aspects of modern 3D data processing: data registration and segmentation. Solution proposed for the first topic is based on the 3D space decomposition, while the latter on image processing and local neighbourhood search. Data processing is implemented by using NVIDIA compute unified device architecture (NIVIDIA CUDA) parallel computation. The result of the segmentation is a coloured map where different colours correspond to different objects, such as walls, floor and stairs. The research is related to the problem of collecting 3D data with a RGB-D camera mounted on a rotated head, to be used in mobile robot applications. Performance of the data registration algorithm is aimed for on-line processing. The iterative closest point (ICP) approach is chosen as a registration method. Computations are based on the parallel fast nearest neighbour search. This procedure decomposes 3D space into cubic buckets and, therefore, the time of the matching is deterministic. First technique of the data segmentation uses accele-rometers integrated with a RGB-D sensor to obtain rotation compensation and image processing method for defining pre-requisites of the known categories. The second technique uses the adapted nearest neighbour search procedure for obtaining normal vectors for each range point.

  13. Discriminative structural approaches for enzyme active-site prediction.

    PubMed

    Kato, Tsuyoshi; Nagano, Nozomi

    2011-02-15

    Predicting enzyme active-sites in proteins is an important issue not only for protein sciences but also for a variety of practical applications such as drug design. Because enzyme reaction mechanisms are based on the local structures of enzyme active-sites, various template-based methods that compare local structures in proteins have been developed to date. In comparing such local sites, a simple measurement, RMSD, has been used so far. This paper introduces new machine learning algorithms that refine the similarity/deviation for comparison of local structures. The similarity/deviation is applied to two types of applications, single template analysis and multiple template analysis. In the single template analysis, a single template is used as a query to search proteins for active sites, whereas a protein structure is examined as a query to discover the possible active-sites using a set of templates in the multiple template analysis. This paper experimentally illustrates that the machine learning algorithms effectively improve the similarity/deviation measurements for both the analyses.

  14. A Probabilistic Model of Local Sequence Alignment That Simplifies Statistical Significance Estimation

    PubMed Central

    Eddy, Sean R.

    2008-01-01

    Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ = log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments. PMID:18516236

  15. Tourette Association of America

    MedlinePlus

    ... a Local Chapter Contact Us Careers Press Room Social Media Donate Español About Tourette Research & Medical Resources & Support Get Involved Public Policy About Us Search for: Search ... Advancing scientific understanding, treatment and care Providing ...

  16. Object Permanence After a 24-Hr Delay and Leaving the Locale of Disappearance: The Role of Memory, Space, and Identity

    PubMed Central

    Moore, M. Keith; Meltzoff, Andrew N.

    2005-01-01

    Fourteen-month-old infants saw an object hidden inside a container and were removed from the disappearance locale for 24 hr. Upon their return, they searched correctly for the hidden object, demonstrating object permanence and long-term memory. Control infants who saw no disappearance did not search. In Experiment 2, infants returned to see the container either in the same or a different room. Performance by room-change infants dropped to baseline levels, suggesting that infant search for hidden objects is guided by numerical identity. Infants seek the individual object that disappeared, which exists in its original location, not in a different room. A new behavior, identity-verifying search, was discovered and quantified. Implications are drawn for memory, spatial understanding, object permanence, and object identity. PMID:15238047

  17. Object permanence after a 24-hr delay and leaving the locale of disappearance: the role of memory, space, and identity.

    PubMed

    Moore, M Keith; Meltzoff, Andrew N

    2004-07-01

    Fourteen-month-old infants saw an object hidden inside a container and were removed from the disappearance locale for 24 hr. Upon their return, they searched correctly for the hidden object, demonstrating object permanence and long-term memory. Control infants who saw no disappearance did not search. In Experiment 2, infants returned to see the container either in the same or a different room. Performance by room-change infants dropped to baseline levels, suggesting that infant search for hidden objects is guided by numerical identity. Infants seek the individual object that disappeared, which exists in its original location, not in a different room. A new behavior, identity-verifying search, was discovered and quantified. Implications are drawn for memory, spatial understanding, object permanence, and object identity. Copyright 2004 APA, all rights reserved

  18. SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters.

    PubMed

    Wang, Chunlin; Lefkowitz, Elliot J

    2004-10-28

    Large-scale sequence comparison is a powerful tool for biological inference in modern molecular biology. Comparing new sequences to those in annotated databases is a useful source of functional and structural information about these sequences. Using software such as the basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches between newly sequenced segments of genetic material and those in databases is an important task for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive, especially in light of the rapid growth of biological sequence databases due to the emergence of high throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable methods, high performance computation becomes necessary. We describe the implementation of SS-Wrapper (Similarity Search Wrapper), a package of wrapper applications that can parallelize similarity search applications on a Linux cluster. Our wrapper utilizes a query segmentation-search (QS-search) approach to parallelize sequence database search applications. It takes into consideration load balancing between each node on the cluster to maximize resource usage. QS-search is designed to wrap many different search tools, such as BLAST and HMMPFAM using the same interface. This implementation does not alter the original program, so newly obtained programs and program updates should be accommodated easily. Benchmark experiments using QS-search to optimize BLAST and HMMPFAM showed that QS-search accelerated the performance of these programs almost linearly in proportion to the number of CPUs used. We have also implemented a wrapper that utilizes a database segmentation approach (DS-BLAST) that provides a complementary solution for BLAST searches when the database is too large to fit into the memory of a single node. Used together, QS-search and DS-BLAST provide a flexible solution to adapt sequential similarity searching applications in high performance computing environments. Their ease of use and their ability to wrap a variety of database search programs provide an analytical architecture to assist both the seasoned bioinformaticist and the wet-bench biologist.

  19. SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters

    PubMed Central

    Wang, Chunlin; Lefkowitz, Elliot J

    2004-01-01

    Background Large-scale sequence comparison is a powerful tool for biological inference in modern molecular biology. Comparing new sequences to those in annotated databases is a useful source of functional and structural information about these sequences. Using software such as the basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches between newly sequenced segments of genetic material and those in databases is an important task for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive, especially in light of the rapid growth of biological sequence databases due to the emergence of high throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable methods, high performance computation becomes necessary. Results We describe the implementation of SS-Wrapper (Similarity Search Wrapper), a package of wrapper applications that can parallelize similarity search applications on a Linux cluster. Our wrapper utilizes a query segmentation-search (QS-search) approach to parallelize sequence database search applications. It takes into consideration load balancing between each node on the cluster to maximize resource usage. QS-search is designed to wrap many different search tools, such as BLAST and HMMPFAM using the same interface. This implementation does not alter the original program, so newly obtained programs and program updates should be accommodated easily. Benchmark experiments using QS-search to optimize BLAST and HMMPFAM showed that QS-search accelerated the performance of these programs almost linearly in proportion to the number of CPUs used. We have also implemented a wrapper that utilizes a database segmentation approach (DS-BLAST) that provides a complementary solution for BLAST searches when the database is too large to fit into the memory of a single node. Conclusions Used together, QS-search and DS-BLAST provide a flexible solution to adapt sequential similarity searching applications in high performance computing environments. Their ease of use and their ability to wrap a variety of database search programs provide an analytical architecture to assist both the seasoned bioinformaticist and the wet-bench biologist. PMID:15511296

  20. Hippocampal gamma-band Synchrony and pupillary responses index memory during visual search.

    PubMed

    Montefusco-Siegmund, Rodrigo; Leonard, Timothy K; Hoffman, Kari L

    2017-04-01

    Memory for scenes is supported by the hippocampus, among other interconnected structures, but the neural mechanisms related to this process are not well understood. To assess the role of the hippocampus in memory-guided scene search, we recorded local field potentials and multiunit activity from the hippocampus of macaques as they performed goal-directed search tasks using natural scenes. We additionally measured pupil size during scene presentation, which in humans is modulated by recognition memory. We found that both pupil dilation and search efficiency accompanied scene repetition, thereby indicating memory for scenes. Neural correlates included a brief increase in hippocampal multiunit activity and a sustained synchronization of unit activity to gamma band oscillations (50-70 Hz). The repetition effects on hippocampal gamma synchronization occurred when pupils were most dilated, suggesting an interaction between aroused, attentive processing and hippocampal correlates of recognition memory. These results suggest that the hippocampus may support memory-guided visual search through enhanced local gamma synchrony. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. A Genetic Algorithm Method for Direct estimation of paleostress states from heterogeneous fault-slip observations

    NASA Astrophysics Data System (ADS)

    Srivastava, D. C.

    2016-12-01

    A Genetic Algorithm Method for Direct estimation of paleostress states from heterogeneous fault-slip observationsDeepak C. Srivastava, Prithvi Thakur and Pravin K. GuptaDepartment of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247667, India. Abstract Paleostress estimation from a group of heterogeneous fault-slip observations entails first the classification of the observations into homogeneous fault sets and then a separate inversion of each homogeneous set. This study combines these two issues into a nonlinear inverse problem and proposes a heuristic search method that inverts the heterogeneous fault-slip observations. The method estimates different paleostress states in a group of heterogeneous fault-slip observations and classifies it into homogeneous sets as a byproduct. It uses the genetic algorithm operators, elitism, selection, encoding, crossover and mutation. These processes translate into a guided search that finds successively fitter solutions and operate iteratively until the termination criteria is met and the globally fittest stress tensors are obtained. We explain the basic steps of the algorithm on a working example and demonstrate validity of the method on several synthetic and a natural group of heterogeneous fault-slip observations. The method is independent of any user-defined bias or any entrapment of solution in a local optimum. It succeeds even in the difficult situations where other classification methods are found to fail.

  2. Pattern recognition with parallel associative memory

    NASA Technical Reports Server (NTRS)

    Toth, Charles K.; Schenk, Toni

    1990-01-01

    An examination is conducted of the feasibility of searching targets in aerial photographs by means of a parallel associative memory (PAM) that is based on the nearest-neighbor algorithm; the Hamming distance is used as a measure of closeness, in order to discriminate patterns. Attention has been given to targets typically used for ground-control points. The method developed sorts out approximate target positions where precise localizations are needed, in the course of the data-acquisition process. The majority of control points in different images were correctly identified.

  3. When being narrow minded is a good thing: locally biased people show stronger contextual cueing.

    PubMed

    Bellaera, Lauren; von Mühlenen, Adrian; Watson, Derrick G

    2014-01-01

    Repeated contexts allow us to find relevant information more easily. Learning such contexts has been proposed to depend upon either global processing of the repeated contexts, or alternatively processing of the local region surrounding the target information. In this study, we measured the extent to which observers were by default biased to process towards a more global or local level. The findings showed that the ability to use context to help guide their search was strongly related to an observer's local/global processing bias. Locally biased people could use context to help improve their search better than globally biased people. The results suggest that the extent to which context can be used depends crucially on the observer's attentional bias and thus also to factors and influences that can change this bias.

  4. Rapid qualitative research methods during complex health emergencies: A systematic review of the literature.

    PubMed

    Johnson, Ginger A; Vindrola-Padros, Cecilia

    2017-09-01

    The 2013-2016 Ebola outbreak in West Africa highlighted both the successes and limitations of social science contributions to emergency response operations. An important limitation was the rapid and effective communication of study findings. A systematic review was carried out to explore how rapid qualitative methods have been used during global heath emergencies to understand which methods are commonly used, how they are applied, and the difficulties faced by social science researchers in the field. We also asses their value and benefit for health emergencies. The review findings are used to propose recommendations for qualitative research in this context. Peer-reviewed articles and grey literature were identified through six online databases. An initial search was carried out in July 2016 and updated in February 2017. The PRISMA checklist was used to guide the reporting of methods and findings. The articles were assessed for quality using the MMAT and AACODS checklist. From an initial search yielding 1444 articles, 22 articles met the criteria for inclusion. Thirteen of the articles were qualitative studies and nine used a mixed-methods design. The purpose of the rapid studies included: the identification of causes of the outbreak, and assessment of infrastructure, control strategies, health needs and health facility use. The studies varied in duration (from 4 days to 1 month). The main limitations identified by the authors were: the low quality of the collected data, small sample sizes, and little time for cross-checking facts with other data sources to reduce bias. Rapid qualitative methods were seen as beneficial in highlighting context-specific issues that need to be addressed locally, population-level behaviors influencing health service use, and organizational challenges in response planning and implementation. Recommendations for carrying out rapid qualitative research in this context included the early designation of community leaders as a point of contact, early and continuous sharing of findings, and development of recommendations with local policy makers and practitioners. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Automated detection and labeling of high-density EEG electrodes from structural MR images.

    PubMed

    Marino, Marco; Liu, Quanying; Brem, Silvia; Wenderoth, Nicole; Mantini, Dante

    2016-10-01

    Accurate knowledge about the positions of electrodes in electroencephalography (EEG) is very important for precise source localizations. Direct detection of electrodes from magnetic resonance (MR) images is particularly interesting, as it is possible to avoid errors of co-registration between electrode and head coordinate systems. In this study, we propose an automated MR-based method for electrode detection and labeling, particularly tailored to high-density montages. Anatomical MR images were processed to create an electrode-enhanced image in individual space. Image processing included intensity non-uniformity correction, background noise and goggles artifact removal. Next, we defined a search volume around the head where electrode positions were detected. Electrodes were identified as local maxima in the search volume and registered to the Montreal Neurological Institute standard space using an affine transformation. This allowed the matching of the detected points with the specific EEG montage template, as well as their labeling. Matching and labeling were performed by the coherent point drift method. Our method was assessed on 8 MR images collected in subjects wearing a 256-channel EEG net, using the displacement with respect to manually selected electrodes as performance metric. Average displacement achieved by our method was significantly lower compared to alternative techniques, such as the photogrammetry technique. The maximum displacement was for more than 99% of the electrodes lower than 1 cm, which is typically considered an acceptable upper limit for errors in electrode positioning. Our method showed robustness and reliability, even in suboptimal conditions, such as in the case of net rotation, imprecisely gathered wires, electrode detachment from the head, and MR image ghosting. We showed that our method provides objective, repeatable and precise estimates of EEG electrode coordinates. We hope our work will contribute to a more widespread use of high-density EEG as a brain-imaging tool.

  6. Automated detection and labeling of high-density EEG electrodes from structural MR images

    NASA Astrophysics Data System (ADS)

    Marino, Marco; Liu, Quanying; Brem, Silvia; Wenderoth, Nicole; Mantini, Dante

    2016-10-01

    Objective. Accurate knowledge about the positions of electrodes in electroencephalography (EEG) is very important for precise source localizations. Direct detection of electrodes from magnetic resonance (MR) images is particularly interesting, as it is possible to avoid errors of co-registration between electrode and head coordinate systems. In this study, we propose an automated MR-based method for electrode detection and labeling, particularly tailored to high-density montages. Approach. Anatomical MR images were processed to create an electrode-enhanced image in individual space. Image processing included intensity non-uniformity correction, background noise and goggles artifact removal. Next, we defined a search volume around the head where electrode positions were detected. Electrodes were identified as local maxima in the search volume and registered to the Montreal Neurological Institute standard space using an affine transformation. This allowed the matching of the detected points with the specific EEG montage template, as well as their labeling. Matching and labeling were performed by the coherent point drift method. Our method was assessed on 8 MR images collected in subjects wearing a 256-channel EEG net, using the displacement with respect to manually selected electrodes as performance metric. Main results. Average displacement achieved by our method was significantly lower compared to alternative techniques, such as the photogrammetry technique. The maximum displacement was for more than 99% of the electrodes lower than 1 cm, which is typically considered an acceptable upper limit for errors in electrode positioning. Our method showed robustness and reliability, even in suboptimal conditions, such as in the case of net rotation, imprecisely gathered wires, electrode detachment from the head, and MR image ghosting. Significance. We showed that our method provides objective, repeatable and precise estimates of EEG electrode coordinates. We hope our work will contribute to a more widespread use of high-density EEG as a brain-imaging tool.

  7. Computational mining for hypothetical patterns of amino acid side chains in protein data bank (PDB)

    NASA Astrophysics Data System (ADS)

    Ghani, Nur Syatila Ab; Firdaus-Raih, Mohd

    2018-04-01

    The three-dimensional structure of a protein can provide insights regarding its function. Functional relationship between proteins can be inferred from fold and sequence similarities. In certain cases, sequence or fold comparison fails to conclude homology between proteins with similar mechanism. Since the structure is more conserved than the sequence, a constellation of functional residues can be similarly arranged among proteins of similar mechanism. Local structural similarity searches are able to detect such constellation of amino acids among distinct proteins, which can be useful to annotate proteins of unknown function. Detection of such patterns of amino acids on a large scale can increase the repertoire of important 3D motifs since available known 3D motifs currently, could not compensate the ever-increasing numbers of uncharacterized proteins to be annotated. Here, a computational platform for an automated detection of 3D motifs is described. A fuzzy-pattern searching algorithm derived from IMagine an Amino Acid 3D Arrangement search EnGINE (IMAAAGINE) was implemented to develop an automated method for searching of hypothetical patterns of amino acid side chains in Protein Data Bank (PDB), without the need for prior knowledge on related sequence or structure of pattern of interest. We present an example of the searches, which is the detection of a hypothetical pattern derived from known structural motif of C2H2 structural pattern from zinc fingers. The conservation of particular patterns of amino acid side chains in unrelated proteins is highlighted. This approach can act as a complementary method for available structure- and sequence-based platforms and may contribute in improving functional association between proteins.

  8. Partial discharge localization in power transformers based on the sequential quadratic programming-genetic algorithm adopting acoustic emission techniques

    NASA Astrophysics Data System (ADS)

    Liu, Hua-Long; Liu, Hua-Dong

    2014-10-01

    Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And localization results based on the SQP-GA are compared with some algorithms such as the GA, some other intelligent and non-intelligent algorithms. The results of calculating examples both stimulated and spot experiments demonstrate that the localization method based on the SQP-GA can effectively prevent the results from getting trapped into the local optimum values, and the localization method is of great feasibility and very suitable for the field applications, and the precision of localization is enhanced, and the effectiveness of localization is ideal and satisfactory.

  9. A Modified Empirical Wavelet Transform for Acoustic Emission Signal Decomposition in Structural Health Monitoring.

    PubMed

    Dong, Shaopeng; Yuan, Mei; Wang, Qiusheng; Liang, Zhiling

    2018-05-21

    The acoustic emission (AE) method is useful for structural health monitoring (SHM) of composite structures due to its high sensitivity and real-time capability. The main challenge, however, is how to classify the AE data into different failure mechanisms because the detected signals are affected by various factors. Empirical wavelet transform (EWT) is a solution for analyzing the multi-component signals and has been used to process the AE data. In order to solve the spectrum separation problem of the AE signals, this paper proposes a novel modified separation method based on local window maxima (LWM) algorithm. It searches the local maxima of the Fourier spectrum in a proper window, and automatically determines the boundaries of spectrum segmentations, which helps to eliminate the impact of noise interference or frequency dispersion in the detected signal and obtain the meaningful empirical modes that are more related to the damage characteristics. Additionally, both simulation signal and AE signal from the composite structures are used to verify the effectiveness of the proposed method. Finally, the experimental results indicate that the proposed method performs better than the original EWT method in identifying different damage mechanisms of composite structures.

  10. A Modified Empirical Wavelet Transform for Acoustic Emission Signal Decomposition in Structural Health Monitoring

    PubMed Central

    Dong, Shaopeng; Yuan, Mei; Wang, Qiusheng; Liang, Zhiling

    2018-01-01

    The acoustic emission (AE) method is useful for structural health monitoring (SHM) of composite structures due to its high sensitivity and real-time capability. The main challenge, however, is how to classify the AE data into different failure mechanisms because the detected signals are affected by various factors. Empirical wavelet transform (EWT) is a solution for analyzing the multi-component signals and has been used to process the AE data. In order to solve the spectrum separation problem of the AE signals, this paper proposes a novel modified separation method based on local window maxima (LWM) algorithm. It searches the local maxima of the Fourier spectrum in a proper window, and automatically determines the boundaries of spectrum segmentations, which helps to eliminate the impact of noise interference or frequency dispersion in the detected signal and obtain the meaningful empirical modes that are more related to the damage characteristics. Additionally, both simulation signal and AE signal from the composite structures are used to verify the effectiveness of the proposed method. Finally, the experimental results indicate that the proposed method performs better than the original EWT method in identifying different damage mechanisms of composite structures. PMID:29883411

  11. Prediction of CT Substitutes from MR Images Based on Local Diffeomorphic Mapping for Brain PET Attenuation Correction.

    PubMed

    Wu, Yao; Yang, Wei; Lu, Lijun; Lu, Zhentai; Zhong, Liming; Huang, Meiyan; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2016-10-01

    Attenuation correction is important for PET reconstruction. In PET/MR, MR intensities are not directly related to attenuation coefficients that are needed in PET imaging. The attenuation coefficient map can be derived from CT images. Therefore, prediction of CT substitutes from MR images is desired for attenuation correction in PET/MR. This study presents a patch-based method for CT prediction from MR images, generating attenuation maps for PET reconstruction. Because no global relation exists between MR and CT intensities, we propose local diffeomorphic mapping (LDM) for CT prediction. In LDM, we assume that MR and CT patches are located on 2 nonlinear manifolds, and the mapping from the MR manifold to the CT manifold approximates a diffeomorphism under a local constraint. Locality is important in LDM and is constrained by the following techniques. The first is local dictionary construction, wherein, for each patch in the testing MR image, a local search window is used to extract patches from training MR/CT pairs to construct MR and CT dictionaries. The k-nearest neighbors and an outlier detection strategy are then used to constrain the locality in MR and CT dictionaries. Second is local linear representation, wherein, local anchor embedding is used to solve MR dictionary coefficients when representing the MR testing sample. Under these local constraints, dictionary coefficients are linearly transferred from the MR manifold to the CT manifold and used to combine CT training samples to generate CT predictions. Our dataset contains 13 healthy subjects, each with T1- and T2-weighted MR and CT brain images. This method provides CT predictions with a mean absolute error of 110.1 Hounsfield units, Pearson linear correlation of 0.82, peak signal-to-noise ratio of 24.81 dB, and Dice in bone regions of 0.84 as compared with real CTs. CT substitute-based PET reconstruction has a regression slope of 1.0084 and R 2 of 0.9903 compared with real CT-based PET. In this method, no image segmentation or accurate registration is required. Our method demonstrates superior performance in CT prediction and PET reconstruction compared with competing methods. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  12. OHD - OHD Staff

    Science.gov Websites

    Site Map News Organization Search NWS All NOAA Go Local forecast by "City, St" Search by city or zip code. Press enter or select the go button to submit request City, St Go Front Office OWP

  13. OHD - Data Systems

    Science.gov Websites

    Site Map News Organization Search NWS All NOAA Go Local forecast by "City, St" Search by city or zip code. Press enter or select the go button to submit request City, St Go Front Office OWP

  14. OHD - Additional Links

    Science.gov Websites

    Site Map News Organization Search NWS All NOAA Go Local forecast by "City, St" Search by city or zip code. Press enter or select the go button to submit request City, St Go Front Office OWP

  15. OHD - Current history

    Science.gov Websites

    Site Map News Organization Search NWS All NOAA Go Local forecast by "City, St" Search by city or zip code. Press enter or select the go button to submit request City, St Go Front Office OWP

  16. OHD - Field Support

    Science.gov Websites

    Site Map News Organization Search NWS All NOAA Go Local forecast by "City, St" Search by city or zip code. Press enter or select the go button to submit request City, St Go Front Office OWP

  17. Restricted random search method based on taboo search in the multiple minima problem

    NASA Astrophysics Data System (ADS)

    Hong, Seung Do; Jhon, Mu Shik

    1997-03-01

    The restricted random search method is proposed as a simple Monte Carlo sampling method to search minima fast in the multiple minima problem. This method is based on taboo search applied recently to continuous test functions. The concept of the taboo region instead of the taboo list is used and therefore the sampling of a region near an old configuration is restricted in this method. This method is applied to 2-dimensional test functions and the argon clusters. This method is found to be a practical and efficient method to search near-global configurations of test functions and the argon clusters.

  18. HMM-ModE: implementation, benchmarking and validation with HMMER3

    PubMed Central

    2014-01-01

    Background HMM-ModE is a computational method that generates family specific profile HMMs using negative training sequences. The method optimizes the discrimination threshold using 10 fold cross validation and modifies the emission probabilities of profiles to reduce common fold based signals shared with other sub-families. The protocol depends on the program HMMER for HMM profile building and sequence database searching. The recent release of HMMER3 has improved database search speed by several orders of magnitude, allowing for the large scale deployment of the method in sequence annotation projects. We have rewritten our existing scripts both at the level of parsing the HMM profiles and modifying emission probabilities to upgrade HMM-ModE using HMMER3 that takes advantage of its probabilistic inference with high computational speed. The method is benchmarked and tested on GPCR dataset as an accurate and fast method for functional annotation. Results The implementation of this method, which now works with HMMER3, is benchmarked with the earlier version of HMMER, to show that the effect of local-local alignments is marked only in the case of profiles containing a large number of discontinuous match states. The method is tested on a gold standard set of families and we have reported a significant reduction in the number of false positive hits over the default HMM profiles. When implemented on GPCR sequences, the results showed an improvement in the accuracy of classification compared with other methods used to classify the familyat different levels of their classification hierarchy. Conclusions The present findings show that the new version of HMM-ModE is a highly specific method used to differentiate between fold (superfamily) and function (family) specific signals, which helps in the functional annotation of protein sequences. The use of modified profile HMMs of GPCR sequences provides a simple yet highly specific method for classification of the family, being able to predict the sub-family specific sequences with high accuracy even though sequences share common physicochemical characteristics between sub-families. PMID:25073805

  19. Using Digital Media Advertising in Early Psychosis Intervention.

    PubMed

    Birnbaum, Michael L; Garrett, Chantel; Baumel, Amit; Scovel, Maria; Rizvi, Asra F; Muscat, Whitney; Kane, John M

    2017-11-01

    Identifying and engaging youth with early-stage psychotic disorders in order to facilitate timely treatment initiation remains a major public health challenge. Although advertisers routinely use the Internet to directly target consumers, limited efforts have focused on applying available technology to proactively encourage help-seeking in the mental health community. This study explores how one might take advantage of Google AdWords in order to reach prospective patients with early psychosis. A landing page was developed with the primary goal of encouraging help-seeking individuals in New York City to contact their local early psychosis intervention clinic. In order to provide the best opportunity to reach the intended audience, Google AdWords was utilized to link more than 2,000 selected search terms to strategically placed landing page advertisements. The campaign ran for 14 weeks between April 11 and July 18, 2016 and had a total budget of $1,427. The ads appeared 191,313 times and were clicked on 4,350 times, at a per-click cost of $.33. Many users took additional help-seeking steps, including obtaining psychosis-specific information/education (44%), completing a psychosis self-screener (15%), and contacting the local early treatment program (1%). Digital ads appear to be a reasonable and cost-effective method to reach individuals who are searching for behavioral health information online. More research is needed to better understand the many complex steps between online search inquiries and making first clinical contact.

  20. An Enhanced Memetic Algorithm for Single-Objective Bilevel Optimization Problems.

    PubMed

    Islam, Md Monjurul; Singh, Hemant Kumar; Ray, Tapabrata; Sinha, Ankur

    2017-01-01

    Bilevel optimization, as the name reflects, deals with optimization at two interconnected hierarchical levels. The aim is to identify the optimum of an upper-level  leader problem, subject to the optimality of a lower-level follower problem. Several problems from the domain of engineering, logistics, economics, and transportation have an inherent nested structure which requires them to be modeled as bilevel optimization problems. Increasing size and complexity of such problems has prompted active theoretical and practical interest in the design of efficient algorithms for bilevel optimization. Given the nested nature of bilevel problems, the computational effort (number of function evaluations) required to solve them is often quite high. In this article, we explore the use of a Memetic Algorithm (MA) to solve bilevel optimization problems. While MAs have been quite successful in solving single-level optimization problems, there have been relatively few studies exploring their potential for solving bilevel optimization problems. MAs essentially attempt to combine advantages of global and local search strategies to identify optimum solutions with low computational cost (function evaluations). The approach introduced in this article is a nested Bilevel Memetic Algorithm (BLMA). At both upper and lower levels, either a global or a local search method is used during different phases of the search. The performance of BLMA is presented on twenty-five standard test problems and two real-life applications. The results are compared with other established algorithms to demonstrate the efficacy of the proposed approach.

  1. Searching for Variable Stars in the Field of Dolidze 35 (Abstract)

    NASA Astrophysics Data System (ADS)

    Welch, J.; Smith, J. A.

    2018-06-01

    (Abstract only) We are conducting a study of the open cluster Dolidze-35. We have a data set which contains several nights and spans four years. One step of our survey is to search these data to identify candidate local standards and potential variable stars. We present early results of the variable search effort.

  2. Searching the ASRS Database Using QUORUM Keyword Search, Phrase Search, Phrase Generation, and Phrase Discovery

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W.; Connors, Mary M. (Technical Monitor)

    2001-01-01

    To support Search Requests and Quick Responses at the Aviation Safety Reporting System (ASRS), four new QUORUM methods have been developed: keyword search, phrase search, phrase generation, and phrase discovery. These methods build upon the core QUORUM methods of text analysis, modeling, and relevance-ranking. QUORUM keyword search retrieves ASRS incident narratives that contain one or more user-specified keywords in typical or selected contexts, and ranks the narratives on their relevance to the keywords in context. QUORUM phrase search retrieves narratives that contain one or more user-specified phrases, and ranks the narratives on their relevance to the phrases. QUORUM phrase generation produces a list of phrases from the ASRS database that contain a user-specified word or phrase. QUORUM phrase discovery finds phrases that are related to topics of interest. Phrase generation and phrase discovery are particularly useful for finding query phrases for input to QUORUM phrase search. The presentation of the new QUORUM methods includes: a brief review of the underlying core QUORUM methods; an overview of the new methods; numerous, concrete examples of ASRS database searches using the new methods; discussion of related methods; and, in the appendices, detailed descriptions of the new methods.

  3. An ant colony optimization based algorithm for identifying gene regulatory elements.

    PubMed

    Liu, Wei; Chen, Hanwu; Chen, Ling

    2013-08-01

    It is one of the most important tasks in bioinformatics to identify the regulatory elements in gene sequences. Most of the existing algorithms for identifying regulatory elements are inclined to converge into a local optimum, and have high time complexity. Ant Colony Optimization (ACO) is a meta-heuristic method based on swarm intelligence and is derived from a model inspired by the collective foraging behavior of real ants. Taking advantage of the ACO in traits such as self-organization and robustness, this paper designs and implements an ACO based algorithm named ACRI (ant-colony-regulatory-identification) for identifying all possible binding sites of transcription factor from the upstream of co-expressed genes. To accelerate the ants' searching process, a strategy of local optimization is presented to adjust the ants' start positions on the searched sequences. By exploiting the powerful optimization ability of ACO, the algorithm ACRI can not only improve precision of the results, but also achieve a very high speed. Experimental results on real world datasets show that ACRI can outperform other traditional algorithms in the respects of speed and quality of solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Ambiguity Resolution for Phase-Based 3-D Source Localization under Fixed Uniform Circular Array.

    PubMed

    Chen, Xin; Liu, Zhen; Wei, Xizhang

    2017-05-11

    Under fixed uniform circular array (UCA), 3-D parameter estimation of a source whose half-wavelength is smaller than the array aperture would suffer from a serious phase ambiguity problem, which also appears in a recently proposed phase-based algorithm. In this paper, by using the centro-symmetry of UCA with an even number of sensors, the source's angles and range can be decoupled and a novel algorithm named subarray grouping and ambiguity searching (SGAS) is addressed to resolve angle ambiguity. In the SGAS algorithm, each subarray formed by two couples of centro-symmetry sensors can obtain a batch of results under different ambiguities, and by searching the nearest value among subarrays, which is always corresponding to correct ambiguity, rough angle estimation with no ambiguity is realized. Then, the unambiguous angles are employed to resolve phase ambiguity in a phase-based 3-D parameter estimation algorithm, and the source's range, as well as more precise angles, can be achieved. Moreover, to improve the practical performance of SGAS, the optimal structure of subarrays and subarray selection criteria are further investigated. Simulation results demonstrate the satisfying performance of the proposed method in 3-D source localization.

  5. News trends and web search query of HIV/AIDS in Hong Kong

    PubMed Central

    Chiu, Alice P. Y.; Lin, Qianying

    2017-01-01

    Background The HIV epidemic in Hong Kong has worsened in recent years, with major contributions from high-risk subgroup of men who have sex with men (MSM). Internet use is prevalent among the majority of the local population, where they sought health information online. This study examines the impacts of HIV/AIDS and MSM news coverage on web search query in Hong Kong. Methods Relevant news coverage about HIV/AIDS and MSM from January 1st, 2004 to December 31st, 2014 was obtained from the WiseNews databse. News trends were created by computing the number of relevant articles by type, topic, place of origin and sub-populations. We then obtained relevant search volumes from Google and analysed causality between news trends and Google Trends using Granger Causality test and orthogonal impulse function. Results We found that editorial news has an impact on “HIV” Google searches on HIV, with the search term popularity peaking at an average of two weeks after the news are published. Similarly, editorial news has an impact on the frequency of “AIDS” searches two weeks after. MSM-related news trends have a more fluctuating impact on “MSM” Google searches, although the time lag varies anywhere from one week later to ten weeks later. Conclusions This infodemiological study shows that there is a positive impact of news trends on the online search behavior of HIV/AIDS or MSM-related issues for up to ten weeks after. Health promotional professionals could make use of this brief time window to tailor the timing of HIV awareness campaigns and public health interventions to maximise its reach and effectiveness. PMID:28922376

  6. Prognostic markers in localized prostate cancer: from microscopes to molecules.

    PubMed

    Harding, M A; Theodorescu, D

    Management of patients diagnosed with localized prostate cancer is complicated by the diverse natural history of the disease and variable response to treatment. Prognostic criteria currently in use cannot fully predict tumor behavior and thus limit the ability to recommend treatment regimens with the assurance that they are the best course of action for each individual patient. The search for better prognostic markers is now focussed on the molecular mechanisms which underlay tumor behavior, such as altered cell cycle progression, apoptosis, neuroendocrine differentiation, and angiogenesis. As the number of potential molecular markers increases, it is becoming evident that no single marker will provide the prognostic information necessary to make a significant improvement in patient care. In addition, it seems likely that traditional methods of assessing the prognostic value of this multitude of new markers will prove inadequate. In this review, we briefly examine the current state of prognostication in localized prostate cancer and some of the promising new molecular markers. Next, we examine how new technologies may allow the multiplex analysis of vast numbers of markers and how computational methods such as artificial neural networks will provide meaningful interpretation of the data. In the near future, such an integrated approach may provide a comprehensive prognostic tool for localized prostate cancer.

  7. Evaluation of Parameters for Confident Phosphorylation Site Localization Using an Orbitrap Fusion Tribrid Mass Spectrometer.

    PubMed

    Ferries, Samantha; Perkins, Simon; Brownridge, Philip J; Campbell, Amy; Eyers, Patrick A; Jones, Andrew R; Eyers, Claire E

    2017-09-01

    Confident identification of sites of protein phosphorylation by mass spectrometry (MS) is essential to advance understanding of phosphorylation-mediated signaling events. However, the development of novel instrumentation requires that methods for MS data acquisition and its interrogation be evaluated and optimized for high-throughput phosphoproteomics. Here we compare and contrast eight MS acquisition methods on the novel tribrid Orbitrap Fusion MS platform using both a synthetic phosphopeptide library and a complex phosphopeptide-enriched cell lysate. In addition to evaluating multiple fragmentation regimes (HCD, EThcD, and neutral-loss-triggered ET(ca/hc)D) and analyzers for MS/MS (orbitrap (OT) versus ion trap (IT)), we also compare two commonly used bioinformatics platforms, Andromeda with PTM-score, and MASCOT with ptmRS for confident phosphopeptide identification and, crucially, phosphosite localization. Our findings demonstrate that optimal phosphosite identification is achieved using HCD fragmentation and high-resolution orbitrap-based MS/MS analysis, employing MASCOT/ptmRS for data interrogation. Although EThcD is optimal for confident site localization for a given PSM, the increased duty cycle compared with HCD compromises the numbers of phosphosites identified. Finally, our data highlight that a charge-state-dependent fragmentation regime and a multiple algorithm search strategy are likely to be of benefit for confident large-scale phosphosite localization.

  8. The relationship of the local food environment with obesity: A systematic review of methods, study quality and results

    PubMed Central

    Cobb, Laura K; Appel, Lawrence J; Franco, Manuel; Jones-Smith, Jessica C; Nur, Alana; Anderson, Cheryl AM

    2015-01-01

    Objective To examine the relationship between local food environments and obesity and assess the quality of studies reviewed. Methods Systematic keyword searches identified studies from US and Canada that assessed the relationship of obesity to local food environments. We applied a quality metric based on design, exposure and outcome measurement, and analysis. Results We identified 71 studies representing 65 cohorts. Overall, study quality was low; 60 studies were cross-sectional. Associations between food outlet availability and obesity were predominantly null. Among non-null associations, we saw a trend toward inverse associations between supermarket availability and obesity (22 negative, 4 positive, 67 null) and direct associations between fast food and obesity (29 positive, 6 negative, 71 null) in adults. We saw direct associations between fast food availability and obesity in lower income children (12 positive, 7 null). Indices including multiple food outlets were most consistently associated with obesity in adults (18 expected, 1 not expected, 17 null). Limiting to higher quality studies did not affect results. Conclusions Despite the large number of studies, we found limited evidence for associations between local food environments and obesity. The predominantly null associations should be interpreted cautiously due to the low quality of available studies. PMID:26096983

  9. A comparison of two search methods for determining the scope of systematic reviews and health technology assessments.

    PubMed

    Forsetlund, Louise; Kirkehei, Ingvild; Harboe, Ingrid; Odgaard-Jensen, Jan

    2012-01-01

    This study aims to compare two different search methods for determining the scope of a requested systematic review or health technology assessment. The first method (called the Direct Search Method) included performing direct searches in the Cochrane Database of Systematic Reviews (CDSR), Database of Abstracts of Reviews of Effects (DARE) and the Health Technology Assessments (HTA). Using the comparison method (called the NHS Search Engine) we performed searches by means of the search engine of the British National Health Service, NHS Evidence. We used an adapted cross-over design with a random allocation of fifty-five requests for systematic reviews. The main analyses were based on repeated measurements adjusted for the order in which the searches were conducted. The Direct Search Method generated on average fewer hits (48 percent [95 percent confidence interval {CI} 6 percent to 72 percent], had a higher precision (0.22 [95 percent CI, 0.13 to 0.30]) and more unique hits than when searching by means of the NHS Search Engine (50 percent [95 percent CI, 7 percent to 110 percent]). On the other hand, the Direct Search Method took longer (14.58 minutes [95 percent CI, 7.20 to 21.97]) and was perceived as somewhat less user-friendly than the NHS Search Engine (-0.60 [95 percent CI, -1.11 to -0.09]). Although the Direct Search Method had some drawbacks such as being more time-consuming and less user-friendly, it generated more unique hits than the NHS Search Engine, retrieved on average fewer references and fewer irrelevant results.

  10. Conjugate-gradient optimization method for orbital-free density functional calculations.

    PubMed

    Jiang, Hong; Yang, Weitao

    2004-08-01

    Orbital-free density functional theory as an extension of traditional Thomas-Fermi theory has attracted a lot of interest in the past decade because of developments in both more accurate kinetic energy functionals and highly efficient numerical methodology. In this paper, we developed a conjugate-gradient method for the numerical solution of spin-dependent extended Thomas-Fermi equation by incorporating techniques previously used in Kohn-Sham calculations. The key ingredient of the method is an approximate line-search scheme and a collective treatment of two spin densities in the case of spin-dependent extended Thomas-Fermi problem. Test calculations for a quartic two-dimensional quantum dot system and a three-dimensional sodium cluster Na216 with a local pseudopotential demonstrate that the method is accurate and efficient. (c) 2004 American Institute of Physics.

  11. [The backgroud sky subtraction around [OIII] line in LAMOST QSO spectra].

    PubMed

    Shi, Zhi-Xin; Comte, Georges; Luo, A-Li; Tu, Liang-Ping; Zhao, Yong-Heng; Wu, Fu-Chao

    2014-11-01

    At present, most sky-subtraction methods focus on the full spectrum, not the particular location, especially for the backgroud sky around [OIII] line which is very important to low redshift quasars. A new method to precisely subtract sky lines in local region is proposed in the present paper, which sloves the problem that the width of Hβ-[OIII] line is effected by the backgroud sky subtraction. The exprimental results show that, for different redshift quasars, the spectral quality has been significantly improved using our method relative to the original batch program by LAMOST. It provides a complementary solution for the small part of LAMOST spectra which are not well handled by LAMOST 2D pipeline. Meanwhile, This method has been used in searching for candidates of double-peaked Active Galactic Nuclei.

  12. Research on particle swarm optimization algorithm based on optimal movement probability

    NASA Astrophysics Data System (ADS)

    Ma, Jianhong; Zhang, Han; He, Baofeng

    2017-01-01

    The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.

  13. Compositional searching of CpG islands in the human genome

    NASA Astrophysics Data System (ADS)

    Luque-Escamilla, Pedro Luis; Martínez-Aroza, José; Oliver, José L.; Gómez-Lopera, Juan Francisco; Román-Roldán, Ramón

    2005-06-01

    We report on an entropic edge detector based on the local calculation of the Jensen-Shannon divergence with application to the search for CpG islands. CpG islands are pieces of the genome related to gene expression and cell differentiation, and thus to cancer formation. Searching for these CpG islands is a major task in genetics and bioinformatics. Some algorithms have been proposed in the literature, based on moving statistics in a sliding window, but its size may greatly influence the results. The local use of Jensen-Shannon divergence is a completely different strategy: the nucleotide composition inside the islands is different from that in their environment, so a statistical distance—the Jensen-Shannon divergence—between the composition of two adjacent windows may be used as a measure of their dissimilarity. Sliding this double window over the entire sequence allows us to segment it compositionally. The fusion of those segments into greater ones that satisfy certain identification criteria must be achieved in order to obtain the definitive results. We find that the local use of Jensen-Shannon divergence is very suitable in processing DNA sequences for searching for compositionally different structures such as CpG islands, as compared to other algorithms in literature.

  14. The Written Job Search--Doubts and "Leads."

    ERIC Educational Resources Information Center

    Bernheim, Mark

    1982-01-01

    Discusses the changes and doubts inherent in job searching of which business and technical communication teachers must be aware. Discusses strategies for using the business briefs section of the local newspaper as a source of employment "leads." (HTH)

  15. Glossary - NOAA's National Weather Service

    Science.gov Websites

    Organization Search NWS All NOAA Go Local forecast by "City, St" Search by city. Press enter or Text Bulletins By State By Message Type National Forecast Models Numerical Models Statistical Models

  16. OHD/HL - National Weather Hydrology Laboratory

    Science.gov Websites

    Organization Search NWS All NOAA Go Local forecast by "City, St" Search by city or zip code. Press enter or select the go button to submit request City, St Go Science Research and Collaboration Hydrology

  17. A SOUND SOURCE LOCALIZATION TECHNIQUE TO SUPPORT SEARCH AND RESCUE IN LOUD NOISE ENVIRONMENTS

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Hiroshi; Mizutani, Koichi; Wakatsuki, Naoto

    At some sites of earthquakes and other disasters, rescuers search for people buried under rubble by listening for the sounds which they make. Thus developing a technique to localize sound sources amidst loud noise will support such search and rescue operations. In this paper, we discuss an experiment performed to test an array signal processing technique which searches for unperceivable sound in loud noise environments. Two speakers simultaneously played a noise of a generator and a voice decreased by 20 dB (= 1/100 of power) from the generator noise at an outdoor space where cicadas were making noise. The sound signal was received by a horizontally set linear microphone array 1.05 m in length and consisting of 15 microphones. The direction and the distance of the voice were computed and the sound of the voice was extracted and played back as an audible sound by array signal processing.

  18. A Multistrategy Optimization Improved Artificial Bee Colony Algorithm

    PubMed Central

    Liu, Wen

    2014-01-01

    Being prone to the shortcomings of premature and slow convergence rate of artificial bee colony algorithm, an improved algorithm was proposed. Chaotic reverse learning strategies were used to initialize swarm in order to improve the global search ability of the algorithm and keep the diversity of the algorithm; the similarity degree of individuals of the population was used to characterize the diversity of population; population diversity measure was set as an indicator to dynamically and adaptively adjust the nectar position; the premature and local convergence were avoided effectively; dual population search mechanism was introduced to the search stage of algorithm; the parallel search of dual population considerably improved the convergence rate. Through simulation experiments of 10 standard testing functions and compared with other algorithms, the results showed that the improved algorithm had faster convergence rate and the capacity of jumping out of local optimum faster. PMID:24982924

  19. An improved stochastic fractal search algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Sun, Chuan; Wang, Bin; Wang, Xiaojun

    2018-05-03

    Protein structure prediction (PSP) is a significant area for biological information research, disease treatment, and drug development and so on. In this paper, three-dimensional structures of proteins are predicted based on the known amino acid sequences, and the structure prediction problem is transformed into a typical NP problem by an AB off-lattice model. This work applies a novel improved Stochastic Fractal Search algorithm (ISFS) to solve the problem. The Stochastic Fractal Search algorithm (SFS) is an effective evolutionary algorithm that performs well in exploring the search space but falls into local minimums sometimes. In order to avoid the weakness, Lvy flight and internal feedback information are introduced in ISFS. In the experimental process, simulations are conducted by ISFS algorithm on Fibonacci sequences and real peptide sequences. Experimental results prove that the ISFS performs more efficiently and robust in terms of finding the global minimum and avoiding getting stuck in local minimums.

  20. Optimizing searches for electromagnetic counterparts of gravitational wave triggers

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael W.; Tao, Duo; Chan, Man Leong; Chatterjee, Deep; Christensen, Nelson; Ghosh, Shaon; Greco, Giuseppe; Hu, Yiming; Kapadia, Shasvath; Rana, Javed; Salafia, Om Sharan; Stubbs11, Christopher

    2018-04-01

    With the detection of a binary neutron star system and its corresponding electromagnetic counterparts, a new window of transient astronomy has opened. Due to the size of the sky localization regions, which can span hundreds to thousands of square degrees, there are significant benefits to optimizing tilings for these large sky areas. The rich science promised by gravitational-wave astronomy has led to the proposal for a variety of proposed tiling and time allocation schemes, and for the first time, we make a systematic comparison of some of these methods. We find that differences of a factor of 2 or more in efficiency are possible, depending on the algorithm employed. For this reason, with future surveys searching for electromagnetic counterparts, care should be taken when selecting tiling, time allocation, and scheduling algorithms to optimize counterpart detection.

Top