Predicting residue-wise contact orders in proteins by support vector regression.
Song, Jiangning; Burrage, Kevin
2006-10-03
The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
Local alignment of two-base encoded DNA sequence
Homer, Nils; Merriman, Barry; Nelson, Stanley F
2009-01-01
Background DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. Results We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. Conclusion The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data. PMID:19508732
2-D to 3-D global/local finite element analysis of cross-ply composite laminates
NASA Technical Reports Server (NTRS)
Thompson, D. Muheim; Griffin, O. Hayden, Jr.
1990-01-01
An example of two-dimensional to three-dimensional global/local finite element analysis of a laminated composite plate with a hole is presented. The 'zoom' technique of global/local analysis is used, where displacements of the global/local interface from the two-dimensional global model are applied to the edges of the three-dimensional local model. Three different hole diameters, one, three, and six inches, are considered in order to compare the effect of hole size on the three-dimensional stress state around the hole. In addition, three different stacking sequences are analyzed for the six inch hole case in order to study the effect of stacking sequence. The existence of a 'critical' hole size, where the interlaminar stresses are maximum, is indicated. Dispersion of plies at the same angle, as opposed to clustering, is found to reduce the magnitude of some interlaminar stress components and increase others.
Whole-Genome Sequencing and Assembly with High-Throughput, Short-Read Technologies
Sundquist, Andreas; Ronaghi, Mostafa; Tang, Haixu; Pevzner, Pavel; Batzoglou, Serafim
2007-01-01
While recently developed short-read sequencing technologies may dramatically reduce the sequencing cost and eventually achieve the $1000 goal for re-sequencing, their limitations prevent the de novo sequencing of eukaryotic genomes with the standard shotgun sequencing protocol. We present SHRAP (SHort Read Assembly Protocol), a sequencing protocol and assembly methodology that utilizes high-throughput short-read technologies. We describe a variation on hierarchical sequencing with two crucial differences: (1) we select a clone library from the genome randomly rather than as a tiling path and (2) we sample clones from the genome at high coverage and reads from the clones at low coverage. We assume that 200 bp read lengths with a 1% error rate and inexpensive random fragment cloning on whole mammalian genomes is feasible. Our assembly methodology is based on first ordering the clones and subsequently performing read assembly in three stages: (1) local assemblies of regions significantly smaller than a clone size, (2) clone-sized assemblies of the results of stage 1, and (3) chromosome-sized assemblies. By aggressively localizing the assembly problem during the first stage, our method succeeds in assembling short, unpaired reads sampled from repetitive genomes. We tested our assembler using simulated reads from D. melanogaster and human chromosomes 1, 11, and 21, and produced assemblies with large sets of contiguous sequence and a misassembly rate comparable to other draft assemblies. Tested on D. melanogaster and the entire human genome, our clone-ordering method produces accurate maps, thereby localizing fragment assembly and enabling the parallelization of the subsequent steps of our pipeline. Thus, we have demonstrated that truly inexpensive de novo sequencing of mammalian genomes will soon be possible with high-throughput, short-read technologies using our methodology. PMID:17534434
Evolution of a global regulator: Lrp in four orders of γ-Proteobacteria.
Unoarumhi, Yvette; Blumenthal, Robert M; Matson, Jyl S
2016-05-20
Bacterial global regulators each regulate the expression of several hundred genes. In Escherichia coli, the top seven global regulators together control over half of all genes. Leucine-responsive regulatory protein (Lrp) is one of these top seven global regulators. Lrp orthologs are very widely distributed, among both Bacteria and Archaea. Surprisingly, even within the phylum γ-Proteobacteria (which includes E. coli), Lrp is a global regulator in some orders and a local regulator in others. This raises questions about the evolution of Lrp and, more broadly, of global regulators. We examined Lrp sequences from four bacterial orders of the γ-Proteobacteria using phylogenetic and Logo analyses. The orders studied were Enterobacteriales and Vibrionales, in which Lrp plays a global role in tested species; Pasteurellales, in which Lrp is a local regulator in the tested species; and Alteromonadales, an order closely related to the other three but in which Lrp has not yet been studied. For comparison, we analyzed the Lrp paralog AsnC, which in all tested cases is a local regulator. The Lrp and AsnC phylogenetic clusters each divided, as expected, into subclusters representing the Enterobacteriales, Vibrionales, and Pasteuralles. However the Alteromonadales did not yield coherent clusters for either Lrp or AsnC. Logo analysis revealed signatures associated with globally- vs. locally- acting Lrp orthologs, providing testable hypotheses for which portions of Lrp are responsible for a global vs. local role. These candidate regions include both ends of the Lrp polypeptide but not, interestingly, the highly-conserved helix-turn-helix motif responsible for DNA sequence specificity. Lrp and AsnC have conserved sequence signatures that allow their unambiguous annotation, at least in γ-Proteobacteria. Among Lrp orthologs, specific residues correlated with global vs. local regulatory roles, and can now be tested to determine which are functionally relevant and which simply reflect divergence. In the Alteromonadales, it appears that there are different subgroups of Lrp orthologs, one of which may act globally while the other may act locally. These results suggest experiments to improve our understanding of the evolution of bacterial global regulators.
SubCellProt: predicting protein subcellular localization using machine learning approaches.
Garg, Prabha; Sharma, Virag; Chaudhari, Pradeep; Roy, Nilanjan
2009-01-01
High-throughput genome sequencing projects continue to churn out enormous amounts of raw sequence data. However, most of this raw sequence data is unannotated and, hence, not very useful. Among the various approaches to decipher the function of a protein, one is to determine its localization. Experimental approaches for proteome annotation including determination of a protein's subcellular localizations are very costly and labor intensive. Besides the available experimental methods, in silico methods present alternative approaches to accomplish this task. Here, we present two machine learning approaches for prediction of the subcellular localization of a protein from the primary sequence information. Two machine learning algorithms, k Nearest Neighbor (k-NN) and Probabilistic Neural Network (PNN) were used to classify an unknown protein into one of the 11 subcellular localizations. The final prediction is made on the basis of a consensus of the predictions made by two algorithms and a probability is assigned to it. The results indicate that the primary sequence derived features like amino acid composition, sequence order and physicochemical properties can be used to assign subcellular localization with a fair degree of accuracy. Moreover, with the enhanced accuracy of our approach and the definition of a prediction domain, this method can be used for proteome annotation in a high throughput manner. SubCellProt is available at www.databases.niper.ac.in/SubCellProt.
Effort in Multitasking: Local and Global Assessment of Effort.
Kiesel, Andrea; Dignath, David
2017-01-01
When performing multiple tasks in succession, self-organization of task order might be superior compared to external-controlled task schedules, because self-organization allows optimizing processing modes and thus reduces switch costs, and it increases commitment to task goals. However, self-organization is an additional executive control process that is not required if task order is externally specified and as such it is considered as time-consuming and effortful. To compare self-organized and externally controlled task scheduling, we suggest assessing global subjective and objectives measures of effort in addition to local performance measures. In our new experimental approach, we combined characteristics of dual tasking settings and task switching settings and compared local and global measures of effort in a condition with free choice of task sequence and a condition with cued task sequence. In a multi-tasking environment, participants chose the task order while the task requirement of the not-yet-performed task remained the same. This task preview allowed participants to work on the previously non-chosen items in parallel and resulted in faster responses and fewer errors in task switch trials than in task repetition trials. The free-choice group profited more from this task preview than the cued group when considering local performance measures. Nevertheless, the free-choice group invested more effort than the cued group when considering global measures. Thus, self-organization in task scheduling seems to be effortful even in conditions in which it is beneficiary for task processing. In a second experiment, we reduced the possibility of task preview for the not-yet-performed tasks in order to hinder efficient self-organization. Here neither local nor global measures revealed substantial differences between the free-choice and a cued task sequence condition. Based on the results of both experiments, we suggest that global assessment of effort in addition to local performance measures might be a useful tool for multitasking research.
Markov models of genome segmentation
NASA Astrophysics Data System (ADS)
Thakur, Vivek; Azad, Rajeev K.; Ramaswamy, Ram
2007-01-01
We introduce Markov models for segmentation of symbolic sequences, extending a segmentation procedure based on the Jensen-Shannon divergence that has been introduced earlier. Higher-order Markov models are more sensitive to the details of local patterns and in application to genome analysis, this makes it possible to segment a sequence at positions that are biologically meaningful. We show the advantage of higher-order Markov-model-based segmentation procedures in detecting compositional inhomogeneity in chimeric DNA sequences constructed from genomes of diverse species, and in application to the E. coli K12 genome, boundaries of genomic islands, cryptic prophages, and horizontally acquired regions are accurately identified.
Randomizing world trade. II. A weighted network analysis
NASA Astrophysics Data System (ADS)
Squartini, Tiziano; Fagiolo, Giorgio; Garlaschelli, Diego
2011-10-01
Based on the misleading expectation that weighted network properties always offer a more complete description than purely topological ones, current economic models of the International Trade Network (ITN) generally aim at explaining local weighted properties, not local binary ones. Here we complement our analysis of the binary projections of the ITN by considering its weighted representations. We show that, unlike the binary case, all possible weighted representations of the ITN (directed and undirected, aggregated and disaggregated) cannot be traced back to local country-specific properties, which are therefore of limited informativeness. Our two papers show that traditional macroeconomic approaches systematically fail to capture the key properties of the ITN. In the binary case, they do not focus on the degree sequence and hence cannot characterize or replicate higher-order properties. In the weighted case, they generally focus on the strength sequence, but the knowledge of the latter is not enough in order to understand or reproduce indirect effects.
The pieces fit: Constituent structure and global coherence of visual narrative in RSVP.
Hagmann, Carl Erick; Cohn, Neil
2016-02-01
Recent research has shown that comprehension of visual narrative relies on the ordering and timing of sequential images. Here we tested if rapidly presented 6-image long visual sequences could be understood as coherent narratives. Half of the sequences were correctly ordered and half had two of the four internal panels switched. Participants reported whether the sequence was correctly ordered and rated its coherence. Accuracy in detecting a switch increased when panels were presented for 1 s rather than 0.5 s. Doubling the duration of the first panel did not affect results. When two switched panels were further apart, order was discriminated more accurately and coherence ratings were low, revealing that a strong local adjacency effect influenced order and coherence judgments. Switched panels at constituent boundaries or within constituents were most disruptive to order discrimination, indicating that the preservation of constituent structure is critical to visual narrative grammar. Copyright © 2016 Elsevier B.V. All rights reserved.
Cerebral responses to local and global auditory novelty under general anesthesia
Uhrig, Lynn; Janssen, David; Dehaene, Stanislas; Jarraya, Béchir
2017-01-01
Primate brains can detect a variety of unexpected deviations in auditory sequences. The local-global paradigm dissociates two hierarchical levels of auditory predictive coding by examining the brain responses to first-order (local) and second-order (global) sequence violations. Using the macaque model, we previously demonstrated that, in the awake state, local violations cause focal auditory responses while global violations activate a brain circuit comprising prefrontal, parietal and cingulate cortices. Here we used the same local-global auditory paradigm to clarify the encoding of the hierarchical auditory regularities in anesthetized monkeys and compared their brain responses to those obtained in the awake state as measured with fMRI. Both, propofol, a GABAA-agonist, and ketamine, an NMDA-antagonist, left intact or even enhanced the cortical response to auditory inputs. The local effect vanished during propofol anesthesia and shifted spatially during ketamine anesthesia compared with wakefulness. Under increasing levels of propofol, we observed a progressive disorganization of the global effect in prefrontal, parietal and cingulate cortices and its complete suppression under ketamine anesthesia. Anesthesia also suppressed thalamic activations to the global effect. These results suggest that anesthesia preserves initial auditory processing, but disturbs both short-term and long-term auditory predictive coding mechanisms. The disorganization of auditory novelty processing under anesthesia relates to a loss of thalamic responses to novelty and to a disruption of higher-order functional cortical networks in parietal, prefrontal and cingular cortices. PMID:27502046
Johnson, Cari L.; Graham, Stephan A.
2007-01-01
An integrated database of outcrop studies, borehole logs, and seismic-reflection profiles is used to divide Eocene through Miocene strata of the central and southern San Joaquin Basin, California, into a framework of nine stratigraphic sequences. These third- and higher-order sequences (<3 m.y. duration) comprise the principal intervals for petroleum assessment for the basin, including key reservoir and source rock intervals. Important characteristics of each sequence are discussed, including distribution and stratigraphic relationships, sedimentary facies, regional correlation, and age relations. This higher-order stratigraphic packaging represents relatively short-term fluctuations in various forcing factors including climatic effects, changes in sediment supply, local and regional tectonism, and fluctuations in global eustatic sea level. These stratigraphic packages occur within the context of second-order stratigraphic megasequences, which mainly reflect long-term tectonic basin evolution. Despite more than a century of petroleum exploration in the San Joaquin Basin, many uncertainties remain regarding the age, correlation, and origin of the third- and higher-order sequences. Nevertheless, a sequence stratigraphic approach allows definition of key intervals based on genetic affinity rather than purely lithostratigraphic relationships, and thus is useful for reconstructing the multiphase history of this basin, as well as understanding its petroleum systems.
1990-02-28
include energy costs, time required for cooling, large volume changes, and degradation. For many high -temperature LCPs, the latter may be the most...LCPs)- high local (microscopic) orientational order, which is retained in the solid state-has significant implications in a range of DOD applications...that yield and maintain specific mer sequences. * Continue efforts to measure mer sequence distribution, e.g., by multinuclei NMR. 0 Develop high
Bedbrook, Claire N; Yang, Kevin K; Rice, Austin J; Gradinaru, Viviana; Arnold, Frances H
2017-10-01
There is growing interest in studying and engineering integral membrane proteins (MPs) that play key roles in sensing and regulating cellular response to diverse external signals. A MP must be expressed, correctly inserted and folded in a lipid bilayer, and trafficked to the proper cellular location in order to function. The sequence and structural determinants of these processes are complex and highly constrained. Here we describe a predictive, machine-learning approach that captures this complexity to facilitate successful MP engineering and design. Machine learning on carefully-chosen training sequences made by structure-guided SCHEMA recombination has enabled us to accurately predict the rare sequences in a diverse library of channelrhodopsins (ChRs) that express and localize to the plasma membrane of mammalian cells. These light-gated channel proteins of microbial origin are of interest for neuroscience applications, where expression and localization to the plasma membrane is a prerequisite for function. We trained Gaussian process (GP) classification and regression models with expression and localization data from 218 ChR chimeras chosen from a 118,098-variant library designed by SCHEMA recombination of three parent ChRs. We use these GP models to identify ChRs that express and localize well and show that our models can elucidate sequence and structure elements important for these processes. We also used the predictive models to convert a naturally occurring ChR incapable of mammalian localization into one that localizes well.
Rice, Austin J.; Gradinaru, Viviana; Arnold, Frances H.
2017-01-01
There is growing interest in studying and engineering integral membrane proteins (MPs) that play key roles in sensing and regulating cellular response to diverse external signals. A MP must be expressed, correctly inserted and folded in a lipid bilayer, and trafficked to the proper cellular location in order to function. The sequence and structural determinants of these processes are complex and highly constrained. Here we describe a predictive, machine-learning approach that captures this complexity to facilitate successful MP engineering and design. Machine learning on carefully-chosen training sequences made by structure-guided SCHEMA recombination has enabled us to accurately predict the rare sequences in a diverse library of channelrhodopsins (ChRs) that express and localize to the plasma membrane of mammalian cells. These light-gated channel proteins of microbial origin are of interest for neuroscience applications, where expression and localization to the plasma membrane is a prerequisite for function. We trained Gaussian process (GP) classification and regression models with expression and localization data from 218 ChR chimeras chosen from a 118,098-variant library designed by SCHEMA recombination of three parent ChRs. We use these GP models to identify ChRs that express and localize well and show that our models can elucidate sequence and structure elements important for these processes. We also used the predictive models to convert a naturally occurring ChR incapable of mammalian localization into one that localizes well. PMID:29059183
USDA-ARS?s Scientific Manuscript database
The genome sequence of the constricta strain of Potato yellow dwarf virus (CYDV) was determined to be 12,792 nucleotides long and organized into seven open reading frames with the gene order 3’-N-X-P-Y-M-G-L-5’, which encodes the nucleocapsid, phosphoprotein, movement, matrix, glycoprotein and RNA-d...
On High-Order Radiation Boundary Conditions
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1995-01-01
In this paper we develop the theory of high-order radiation boundary conditions for wave propagation problems. In particular, we study the convergence of sequences of time-local approximate conditions to the exact boundary condition, and subsequently estimate the error in the solutions obtained using these approximations. We show that for finite times the Pade approximants proposed by Engquist and Majda lead to exponential convergence if the solution is smooth, but that good long-time error estimates cannot hold for spatially local conditions. Applications in fluid dynamics are also discussed.
Cooper, David N.; Bacolla, Albino; Férec, Claude; Vasquez, Karen M.; Kehrer-Sawatzki, Hildegard; Chen, Jian-Min
2011-01-01
Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher-order features of the genomic architecture. The human genome is now recognized to contain ‘pervasive architectural flaws’ in that certain DNA sequences are inherently mutation-prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of non-canonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair, and may serve to increase mutation frequencies in generalized fashion (i.e. both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease. PMID:21853507
The right inferior frontal gyrus processes nested non-local dependencies in music.
Cheung, Vincent K M; Meyer, Lars; Friederici, Angela D; Koelsch, Stefan
2018-02-28
Complex auditory sequences known as music have often been described as hierarchically structured. This permits the existence of non-local dependencies, which relate elements of a sequence beyond their temporal sequential order. Previous studies in music have reported differential activity in the inferior frontal gyrus (IFG) when comparing regular and irregular chord-transitions based on theories in Western tonal harmony. However, it is unclear if the observed activity reflects the interpretation of hierarchical structure as the effects are confounded by local irregularity. Using functional magnetic resonance imaging (fMRI), we found that violations to non-local dependencies in nested sequences of three-tone musical motifs in musicians elicited increased activity in the right IFG. This is in contrast to similar studies in language which typically report the left IFG in processing grammatical syntax. Effects of increasing auditory working demands are moreover reflected by distributed activity in frontal and parietal regions. Our study therefore demonstrates the role of the right IFG in processing non-local dependencies in music, and suggests that hierarchical processing in different cognitive domains relies on similar mechanisms that are subserved by domain-selective neuronal subpopulations.
Newell, Nicholas E
2011-12-15
The extraction of the set of features most relevant to function from classified biological sequence sets is still a challenging problem. A central issue is the determination of expected counts for higher order features so that artifact features may be screened. Cascade detection (CD), a new algorithm for the extraction of localized features from sequence sets, is introduced. CD is a natural extension of the proportional modeling techniques used in contingency table analysis into the domain of feature detection. The algorithm is successfully tested on synthetic data and then applied to feature detection problems from two different domains to demonstrate its broad utility. An analysis of HIV-1 protease specificity reveals patterns of strong first-order features that group hydrophobic residues by side chain geometry and exhibit substantial symmetry about the cleavage site. Higher order results suggest that favorable cooperativity is weak by comparison and broadly distributed, but indicate possible synergies between negative charge and hydrophobicity in the substrate. Structure-function results for the Schellman loop, a helix-capping motif in proteins, contain strong first-order features and also show statistically significant cooperativities that provide new insights into the design of the motif. These include a new 'hydrophobic staple' and multiple amphipathic and electrostatic pair features. CD should prove useful not only for sequence analysis, but also for the detection of multifactor synergies in cross-classified data from clinical studies or other sources. Windows XP/7 application and data files available at: https://sites.google.com/site/cascadedetect/home. nacnewell@comcast.net Supplementary information is available at Bioinformatics online.
Liu, Bin; Liu, Fule; Fang, Longyun; Wang, Xiaolong; Chou, Kuo-Chen
2015-04-15
In order to develop powerful computational predictors for identifying the biological features or attributes of DNAs, one of the most challenging problems is to find a suitable approach to effectively represent the DNA sequences. To facilitate the studies of DNAs and nucleotides, we developed a Python package called representations of DNAs (repDNA) for generating the widely used features reflecting the physicochemical properties and sequence-order effects of DNAs and nucleotides. There are three feature groups composed of 15 features. The first group calculates three nucleic acid composition features describing the local sequence information by means of kmers; the second group calculates six autocorrelation features describing the level of correlation between two oligonucleotides along a DNA sequence in terms of their specific physicochemical properties; the third group calculates six pseudo nucleotide composition features, which can be used to represent a DNA sequence with a discrete model or vector yet still keep considerable sequence-order information via the physicochemical properties of its constituent oligonucleotides. In addition, these features can be easily calculated based on both the built-in and user-defined properties via using repDNA. The repDNA Python package is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/repDNA/. bliu@insun.hit.edu.cn or kcchou@gordonlifescience.org Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bejerman, Nicolás, E-mail: n.bejerman@uq.edu.au; Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072; Giolitti, Fabián
Summary: We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3′-N-P-P3-M-G-P6-L-5′. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3′ leader and 5′ trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cellmore » periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses. - Highlights: • The complete genome of alfalfa dwarf virus is obtained. • An integrated localization and interaction map for ADV is determined. • ADV has a genome sequence similarity and evolutionary links with cytorhabdoviruses. • ADV protein localization and interaction data show an association with the nucleus. • ADV combines properties of both cytoplasmic and nuclear plant rhabdoviruses.« less
NASA Astrophysics Data System (ADS)
Nestares, Oscar; Miravet, Carlos; Santamaria, Javier; Fonolla Navarro, Rafael
1999-05-01
Automatic object segmentation in highly noisy image sequences, composed by a translating object over a background having a different motion, is achieved through joint motion-texture analysis. Local motion and/or texture is characterized by the energy of the local spatio-temporal spectrum, as different textures undergoing different translational motions display distinctive features in their 3D (x,y,t) spectra. Measurements of local spectrum energy are obtained using a bank of directional 3rd order Gaussian derivative filters in a multiresolution pyramid in space- time (10 directions, 3 resolution levels). These 30 energy measurements form a feature vector describing texture-motion for every pixel in the sequence. To improve discrimination capability and reduce computational cost, we automatically select those 4 features (channels) that best discriminate object from background, under the assumptions that the object is smaller than the background and has a different velocity or texture. In this way we reject features irrelevant or dominated by noise, that could yield wrong segmentation results. This method has been successfully applied to sequences with extremely low visibility and for objects that are even invisible for the eye in absence of motion.
An improved stochastic fractal search algorithm for 3D protein structure prediction.
Zhou, Changjun; Sun, Chuan; Wang, Bin; Wang, Xiaojun
2018-05-03
Protein structure prediction (PSP) is a significant area for biological information research, disease treatment, and drug development and so on. In this paper, three-dimensional structures of proteins are predicted based on the known amino acid sequences, and the structure prediction problem is transformed into a typical NP problem by an AB off-lattice model. This work applies a novel improved Stochastic Fractal Search algorithm (ISFS) to solve the problem. The Stochastic Fractal Search algorithm (SFS) is an effective evolutionary algorithm that performs well in exploring the search space but falls into local minimums sometimes. In order to avoid the weakness, Lvy flight and internal feedback information are introduced in ISFS. In the experimental process, simulations are conducted by ISFS algorithm on Fibonacci sequences and real peptide sequences. Experimental results prove that the ISFS performs more efficiently and robust in terms of finding the global minimum and avoiding getting stuck in local minimums.
Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen
2009-07-21
Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.
Shideler, G.L.
1994-01-01
Middle Miocene siliciclastic deposits comprising the Calvert Cliffs section at the Baltimore Gas and Electric Company's (BG&E) nuclear power plant site in southern Maryland were analyzed in terms of lithostratigraphy, sedimentary structures, and granulometric parameters, to interprete paleo-environments within a sequence-stratigraphic framework. In terms of sequence-stratigraphic models, the BG&E section can be interpreted as consisting of two genetic stratigraphic sequences (Galloway model), namely, a shelf sequence and an overlying deltaic sequence. Using the Exxon model, the section consists of two third-order (1-5 m.y. duration) depositional sequences. The stratigraphic sequences of the BG&E section reflect both relatively short-term eustatic transgressive events, as well as a long-term regressive trend with associated local deltation and coastal progradation. The regression probably signified a regional basinward shift of depocenters within the Salisbury embayment during Miocene time. -from Author
Super Normal Vector for Human Activity Recognition with Depth Cameras.
Yang, Xiaodong; Tian, YingLi
2017-05-01
The advent of cost-effectiveness and easy-operation depth cameras has facilitated a variety of visual recognition tasks including human activity recognition. This paper presents a novel framework for recognizing human activities from video sequences captured by depth cameras. We extend the surface normal to polynormal by assembling local neighboring hypersurface normals from a depth sequence to jointly characterize local motion and shape information. We then propose a general scheme of super normal vector (SNV) to aggregate the low-level polynormals into a discriminative representation, which can be viewed as a simplified version of the Fisher kernel representation. In order to globally capture the spatial layout and temporal order, an adaptive spatio-temporal pyramid is introduced to subdivide a depth video into a set of space-time cells. In the extensive experiments, the proposed approach achieves superior performance to the state-of-the-art methods on the four public benchmark datasets, i.e., MSRAction3D, MSRDailyActivity3D, MSRGesture3D, and MSRActionPairs3D.
Povinelli, C M
1992-01-01
In order to detect sequence-based information predictive for the location of eukaryotic transcriptional regulatory domains, the frequencies and distributions of the 36 possible purine/pyrimidine reverse complement hexamer pairs was determined for test sets of real and random sequences. The distribution of one of the hexamer pairs (RRYYRR/YYRRYY, referred to as M1) was further examined in a larger set of sequences (> 32 genes, 230 kb). Predominant clusters of M1 and the locations of eukaryotic transcriptional regulatory domains were found to be associated and non-randomly distributed along the DNA consistent with a periodicity of approximately 1.2 kb. In the context of higher ordered chromatin this would align promoters, enhancers and the predominant clusters of M1 longitudinally along one face of a 30 nm fiber. Using only information about the distribution of the M1 motif, 50-70% of a sequence could be eliminated as being unlikely to contain transcriptional regulatory domains with an 87% recovery of the regulatory domains present.
Noncollinear magnetic ordering in a frustrated magnet: Metallic regime and the role of frustration
NASA Astrophysics Data System (ADS)
Shahzad, Munir; Sengupta, Pinaki
2017-12-01
We explore the magnetic phases in a Kondo lattice model on the geometrically frustrated Shastry-Sutherland lattice at metallic electron densities, searching for noncollinear and noncoplanar spin textures. Motivated by experimental observations in many rare-earth-based frustrated metallic magnets, we treat the local moments as classical spins and set the coupling between the itinerant electrons and local moments as the largest energy scale in the problem. Our results show that a noncollinear flux state is stabilized over an extended range of Hamiltonian parameters. These spin states can be quenched efficiently by external fields like temperature and magnetic field as well as by varying the degree of frustration in the electronic itinerancy and exchange coupling between local moments. Interestingly, unlike insulating electron densities that we discussed in paper I of this sequence, a Dzyaloshinskii-Moriya interaction between the local moments is not essential for the emergence of their noncollinear ordering.
Spectral Analysis of CLU Galaxies
NASA Astrophysics Data System (ADS)
Sutter, Jessica; Cook, David O.; Kasliwal, Mansi M.; Dale, Daniel A.
2017-01-01
In order to help select possible EM signals from gravitational wave-emitting sources, a more complete catalog of local galaxies is being created. This catalog, called the Census of the Local Universe (CLU), will attempt to find the position of all star-forming galaxies within 200 Mpc. By doing this, the area on the sky from which a gravitational wave could possibly have originated is reduced by a factor of 100. Besides providing this valuable resource for gravitational wave follow-up, the CLU survey provides an exciting new opportunity for better understanding the properties of galaxies near the same age as the Milky Way. Using spectra obtained with the Palomar 200-inch double-prime spectrograph as well as data from the WISE survey, we have created a main sequence for the CLU survey. By analyzing how this main sequence behaves in local galaxies, we can better understand the relationship between current star formation rate and total galaxy stellar mass.
Perceptions of randomness in binary sequences: Normative, heuristic, or both?
Reimers, Stian; Donkin, Chris; Le Pelley, Mike E
2018-03-01
When people consider a series of random binary events, such as tossing an unbiased coin and recording the sequence of heads (H) and tails (T), they tend to erroneously rate sequences with less internal structure or order (such as HTTHT) as more probable than sequences containing more structure or order (such as HHHHH). This is traditionally explained as a local representativeness effect: Participants assume that the properties of long sequences of random outcomes-such as an equal proportion of heads and tails, and little internal structure-should also apply to short sequences. However, recent theoretical work has noted that the probability of a particular sequence of say, heads and tails of length n, occurring within a larger (>n) sequence of coin flips actually differs by sequence, so P(HHHHH)
Song, Jiangning; Burrage, Kevin; Yuan, Zheng; Huber, Thomas
2006-03-09
The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.
Helble, Tyler A; Ierley, Glenn R; D'Spain, Gerald L; Martin, Stephen W
2015-01-01
Time difference of arrival (TDOA) methods for acoustically localizing multiple marine mammals have been applied to recorded data from the Navy's Pacific Missile Range Facility in order to localize and track humpback whales. Modifications to established methods were necessary in order to simultaneously track multiple animals on the range faster than real-time and in a fully automated way, while minimizing the number of incorrect localizations. The resulting algorithms were run with no human intervention at computational speeds faster than the data recording speed on over forty days of acoustic recordings from the range, spanning multiple years. Spatial localizations based on correlating sequences of units originating from within the range produce estimates having a standard deviation typically 10 m or less (due primarily to TDOA measurement errors), and a bias of 20 m or less (due primarily to sound speed mismatch). An automated method for associating units to individual whales is presented, enabling automated humpback song analyses to be performed.
de Melo, Ivan S.; Jimenez-Nuñez, Maria D.; Iglesias, Concepción; Campos-Caro, Antonio; Moreno-Sanchez, David; Ruiz, Felix A.; Bolívar, Jorge
2013-01-01
NOA36/ZNF330 is an evolutionarily well-preserved protein present in the nucleolus and mitochondria of mammalian cells. We have previously reported that the pro-apoptotic activity of this protein is mediated by a characteristic cysteine-rich domain. We now demonstrate that the nucleolar localization of NOA36 is due to a highly-conserved nucleolar localization signal (NoLS) present in residues 1–33. This NoLS is a sequence containing three clusters of two or three basic amino acids. We fused the amino terminal of NOA36 to eGFP in order to characterize this putative NoLS. We show that a cluster of three lysine residues at positions 3 to 5 within this sequence is critical for the nucleolar localization. We also demonstrate that the sequence as found in human is capable of directing eGFP to the nucleolus in several mammal, fish and insect cells. Moreover, this NoLS is capable of specifically directing the cytosolic yeast enzyme polyphosphatase to the target of the nucleolus of HeLa cells, wherein its enzymatic activity was detected. This NoLS could therefore serve as a very useful tool as a nucleolar marker and for directing particular proteins to the nucleolus in distant animal species. PMID:23516598
Planning of Combat Operations and Command of Troops with the Aid of Network Graphs,
1985-01-14
less than 30 h. First week 30 h. Third space . The works, which have local reserves, are examined. This is necessary in order to respectively lengthen the...107. Remaining routes/paths have smaller. length: -------------- 1.) 9-* i.) 4,3 t.- , .- ,-5*. .. .*, ..*.* . . . . DOC 84033705 PAGE Third space . Sequence
Application of a mitochondrial DNA control region frequency database for UK domestic cats.
Ottolini, Barbara; Lall, Gurdeep Matharu; Sacchini, Federico; Jobling, Mark A; Wetton, Jon H
2017-03-01
DNA variation in 402bp of the mitochondrial control region flanked by repeat sequences RS2 and RS3 was evaluated by Sanger sequencing in 152 English domestic cats, in order to determine the significance of matching DNA sequences between hairs found with a victim's body and the suspect's pet cat. Whilst 95% of English cats possessed one of the twelve globally widespread mitotypes, four new variants were observed, the most common of which (2% frequency) was shared with the evidential samples. No significant difference in mitotype frequency was seen between 32 individuals from the locality of the crime and 120 additional cats from the rest of England, suggesting a lack of local population structure. However, significant differences were observed in comparison with frequencies in other countries, including the closely neighbouring Netherlands, highlighting the importance of appropriate genetic databases when determining the evidential significance of mitochondrial DNA evidence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mapping Simple Repeated DNA Sequences in Heterochromatin of Drosophila Melanogaster
Lohe, A. R.; Hilliker, A. J.; Roberts, P. A.
1993-01-01
Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multichromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)(n) (8 Mb), (AAGAG)(n) (7 Mb) and (AATAT)(n) (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin. PMID:8375654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
NASA Astrophysics Data System (ADS)
Kaltak, Merzuk; Fernández-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A2Mn8O16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3 d electrons are more explicitly considered with the DFT + U approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn3 + centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Finally, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.
Evaluation of the kinase domain of c-KIT in canine cutaneous mast cell tumors
Webster, Joshua D; Kiupel, Matti; Yuzbasiyan-Gurkan, Vilma
2006-01-01
Background Mutations in the c-KIT proto-oncogene have been implicated in the progression of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and cutaneous mast cell tumors (MCTs) in canines. Mutations in human mastocytosis patients primarily occur in c-KIT exon 17, which encodes a portion of its kinase domain. In contrast, deletions and internal tandem duplication (ITD) mutations are found in the juxtamembrane domain of c-KIT in approximately 15% of canine MCTs. In addition, ITD c-KIT mutations are significantly associated with aberrant KIT protein localization in canine MCTs. However, some canine MCTs have aberrant KIT localization but lack ITD c-KIT mutations, suggesting that other mutations or other factors may be responsible for aberrant KIT localization in these tumors. Methods In order to characterize the prevalence of mutations in the phospho-transferase portion of c-KIT's kinase domain in canine MCTs exons 16–20 of 33 canine MCTs from 33 dogs were amplified and sequenced. Additionally, in order to determine if mutations in c-KIT exon 17 are responsible for aberrant KIT localization in MCTs that lack juxtamembrane domain c-KIT mutations, c-KIT exon 17 was amplified and sequenced from 18 canine MCTs that showed an aberrant KIT localization pattern but did not have ITD c-KIT mutations. Results No mutations or polymorphisms were identified in exons 16–20 of any of the MCTs examined. Conclusion In conclusion, mutations in the phospho-transferase portion of c-KIT's kinase domain do not play an important role in the progression of canine cutaneous MCTs, or in the aberrant localization of KIT in canine MCTs. PMID:16579858
Pesteie, Mehran; Abolmaesumi, Purang; Ashab, Hussam Al-Deen; Lessoway, Victoria A; Massey, Simon; Gunka, Vit; Rohling, Robert N
2015-06-01
Injection therapy is a commonly used solution for back pain management. This procedure typically involves percutaneous insertion of a needle between or around the vertebrae, to deliver anesthetics near nerve bundles. Most frequently, spinal injections are performed either blindly using palpation or under the guidance of fluoroscopy or computed tomography. Recently, due to the drawbacks of the ionizing radiation of such imaging modalities, there has been a growing interest in using ultrasound imaging as an alternative. However, the complex spinal anatomy with different wave-like structures, affected by speckle noise, makes the accurate identification of the appropriate injection plane difficult. The aim of this study was to propose an automated system that can identify the optimal plane for epidural steroid injections and facet joint injections. A multi-scale and multi-directional feature extraction system to provide automated identification of the appropriate plane is proposed. Local Hadamard coefficients are obtained using the sequency-ordered Hadamard transform at multiple scales. Directional features are extracted from local coefficients which correspond to different regions in the ultrasound images. An artificial neural network is trained based on the local directional Hadamard features for classification. The proposed method yields distinctive features for classification which successfully classified 1032 images out of 1090 for epidural steroid injection and 990 images out of 1052 for facet joint injection. In order to validate the proposed method, a leave-one-out cross-validation was performed. The average classification accuracy for leave-one-out validation was 94 % for epidural and 90 % for facet joint targets. Also, the feature extraction time for the proposed method was 20 ms for a native 2D ultrasound image. A real-time machine learning system based on the local directional Hadamard features extracted by the sequency-ordered Hadamard transform for detecting the laminae and facet joints in ultrasound images has been proposed. The system has the potential to assist the anesthesiologists in quickly finding the target plane for epidural steroid injections and facet joint injections.
Molecular analysis of a 11 700-year-old rodent midden from the Atacama Desert, Chile
Kuch, M.; Rohland, N.; Betancourt, J.L.; Latorre, C.; Steppan, S.; Poinar, H.N.
2002-01-01
DNA was extracted from an 11 700-year-old rodent midden from the Atacama Desert, Chile and the chloroplast and animal mitochondrial DNA (mtDNA) gene sequences were analysed to investigate the floral environment surrounding the midden, and the identity of the midden agent. The plant sequences, together with the macroscopic identifications, suggest the presence of 13 plant families and three orders that no longer exist today at the midden locality, and thus point to a much more diverse and humid climate 11 700 years ago. The mtDNA sequences suggest the presence of at least four different vertebrates, which have been putatively identified as a camelid (vicuna), two rodents (Phyllotis and Abrocoma), and a cardinal bird (Passeriformes). To identify the midden agent, DNA was extracted from pooled faecal pellets, three small overlapping fragments of the mitochondrial cytochrome b gene were amplified and multiple clones were sequenced. These results were analysed along with complete cytochrome b sequences for several modern Phyllotis species to place the midden sequence phylogenetically. The results identified the midden agent as belonging to an ancestral P. limatus. Today, P. limatus is not found at the midden locality but it can be found 100 km to the north, indicating at least a small range shift. The more extensive sampling of modern Phyllotis reinforces the suggestion that P. limatus is recently derived from a peripheral isolate.
(Pea)nuts and bolts of visual narrative: Structure and meaning in sequential image comprehension
Cohn, Neil; Paczynski, Martin; Jackendoff, Ray; Holcomb, Phillip J.; Kuperberg, Gina R.
2012-01-01
Just as syntax differentiates coherent sentences from scrambled word strings, the comprehension of sequential images must also use a cognitive system to distinguish coherent narrative sequences from random strings of images. We conducted experiments analogous to two classic studies of language processing to examine the contributions of narrative structure and semantic relatedness to processing sequential images. We compared four types of comic strips: 1) Normal sequences with both structure and meaning, 2) Semantic Only sequences (in which the panels were related to a common semantic theme, but had no narrative structure), 3) Structural Only sequences (narrative structure but no semantic relatedness), and 4) Scrambled sequences of randomly-ordered panels. In Experiment 1, participants monitored for target panels in sequences presented panel-by-panel. Reaction times were slowest to panels in Scrambled sequences, intermediate in both Structural Only and Semantic Only sequences, and fastest in Normal sequences. This suggests that both semantic relatedness and narrative structure offer advantages to processing. Experiment 2 measured ERPs to all panels across the whole sequence. The N300/N400 was largest to panels in both the Scrambled and Structural Only sequences, intermediate in Semantic Only sequences and smallest in the Normal sequences. This implies that a combination of narrative structure and semantic relatedness can facilitate semantic processing of upcoming panels (as reflected by the N300/N400). Also, panels in the Scrambled sequences evoked a larger left-lateralized anterior negativity than panels in the Structural Only sequences. This localized effect was distinct from the N300/N400, and appeared despite the fact that these two sequence types were matched on local semantic relatedness between individual panels. These findings suggest that sequential image comprehension uses a narrative structure that may be independent of semantic relatedness. Altogether, we argue that the comprehension of visual narrative is guided by an interaction between structure and meaning. PMID:22387723
Guédon, Yann; d'Aubenton-Carafa, Yves; Thermes, Claude
2006-03-01
The most commonly used models for analysing local dependencies in DNA sequences are (high-order) Markov chains. Incorporating knowledge relative to the possible grouping of the nucleotides enables to define dedicated sub-classes of Markov chains. The problem of formulating lumpability hypotheses for a Markov chain is therefore addressed. In the classical approach to lumpability, this problem can be formulated as the determination of an appropriate state space (smaller than the original state space) such that the lumped chain defined on this state space retains the Markov property. We propose a different perspective on lumpability where the state space is fixed and the partitioning of this state space is represented by a one-to-many probabilistic function within a two-level stochastic process. Three nested classes of lumped processes can be defined in this way as sub-classes of first-order Markov chains. These lumped processes enable parsimonious reparameterizations of Markov chains that help to reveal relevant partitions of the state space. Characterizations of the lumped processes on the original transition probability matrix are derived. Different model selection methods relying either on hypothesis testing or on penalized log-likelihood criteria are presented as well as extensions to lumped processes constructed from high-order Markov chains. The relevance of the proposed approach to lumpability is illustrated by the analysis of DNA sequences. In particular, the use of lumped processes enables to highlight differences between intronic sequences and gene untranslated region sequences.
How the Sequence of a Gene Specifies Structural Symmetry in Proteins
Shen, Xiaojuan; Huang, Tongcheng; Wang, Guanyu; Li, Guanglin
2015-01-01
Internal symmetry is commonly observed in the majority of fundamental protein folds. Meanwhile, sufficient evidence suggests that nascent polypeptide chains of proteins have the potential to start the co-translational folding process and this process allows mRNA to contain additional information on protein structure. In this paper, we study the relationship between gene sequences and protein structures from the viewpoint of symmetry to explore how gene sequences code for structural symmetry in proteins. We found that, for a set of two-fold symmetric proteins from left-handed beta-helix fold, intragenic symmetry always exists in their corresponding gene sequences. Meanwhile, codon usage bias and local mRNA structure might be involved in modulating translation speed for the formation of structural symmetry: a major decrease of local codon usage bias in the middle of the codon sequence can be identified as a common feature; and major or consecutive decreases in local mRNA folding energy near the boundaries of the symmetric substructures can also be observed. The results suggest that gene duplication and fusion may be an evolutionarily conserved process for this protein fold. In addition, the usage of rare codons and the formation of higher order of secondary structure near the boundaries of symmetric substructures might have coevolved as conserved mechanisms to slow down translation elongation and to facilitate effective folding of symmetric substructures. These findings provide valuable insights into our understanding of the mechanisms of translation and its evolution, as well as the design of proteins via symmetric modules. PMID:26641668
NASA Astrophysics Data System (ADS)
Sitaula, R. P.; Aschoff, J.
2013-12-01
Regional-scale sequence stratigraphic correlation, well log analysis, syntectonic unconformity mapping, isopach maps, and depositional environment maps of the upper Mesaverde Group (UMG) in Uinta basin, Utah suggest higher accommodation in northeastern part (Natural Buttes area) and local development of lacustrine facies due to increased subsidence caused by uplift of San Rafael Swell (SRS) in southern and Uinta Uplift in northern parts. Recently discovered lacustrine facies in Natural Buttes area are completely different than the dominant fluvial facies in outcrops along Book Cliffs and could have implications for significant amount of tight-gas sand production from this area. Data used for sequence stratigraphic correlation, isopach maps and depositional environmental maps include > 100 well logs, 20 stratigraphic profiles, 35 sandstone thin sections and 10 outcrop-based gamma ray profiles. Seven 4th order depositional sequences (~0.5 my duration) are identified and correlated within UMG. Correlation was constructed using a combination of fluvial facies and stacking patterns in outcrops, chert-pebble conglomerates and tidally influenced strata. These surfaces were extrapolated into subsurface by matching GR profiles. GR well logs and core log of Natural Buttes area show intervals of coarsening upward patterns suggesting possible lacustrine intervals that might contain high TOC. Locally, younger sequences are completely truncated across SRS whereas older sequences are truncated and thinned toward SRS. The cycles of truncation and thinning represent phases of SRS uplift. Thinning possibly related with the Uinta Uplift is also observed in northwestern part. Paleocurrents are consistent with interpretation of periodic segmentation and deflection of sedimentation. Regional paleocurrents are generally E-NE-directed in Sequences 1-4, and N-directed in Sequences 5-7. From isopach maps and paleocurrent direction it can be interpreted that uplift of SRS changed route of sediment supply from west to southwest. Locally, paleocurrents are highly variable near SRS further suggesting UMG basin-fill was partitioned by uplift of SRS. Sandstone composition analysis also suggests the uplift of SRS causing the variation of source rocks in upper sequences than the lower sequences. In conclusion, we suggest that Uinta basin was episodically partitioned during the deposition of UMG due to uplift of Laramide structures in the basin and accommodation was localized in northeastern part. Understanding of structural controls on accommodation, sedimentation patterns and depositional environments will aid prediction of the best-producing gas reservoirs.
Spring-Pearson, Senanu M; Stone, Joshua K; Doyle, Adina; Allender, Christopher J; Okinaka, Richard T; Mayo, Mark; Broomall, Stacey M; Hill, Jessica M; Karavis, Mark A; Hubbard, Kyle S; Insalaco, Joseph M; McNew, Lauren A; Rosenzweig, C Nicole; Gibbons, Henry S; Currie, Bart J; Wagner, David M; Keim, Paul; Tuanyok, Apichai
2015-01-01
The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is 'open', with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.
Identification of a Herbal Powder by Deoxyribonucleic Acid Barcoding and Structural Analyses.
Sheth, Bhavisha P; Thaker, Vrinda S
2015-10-01
Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. To identify a herbal powder obtained from a herbalist in the local vicinity of Rajkot, Gujarat, using deoxyribonucleic acid (DNA) barcoding and molecular tools. The DNA was extracted from a herbal powder and selected Cassia species, followed by the polymerase chain reaction (PCR) and sequencing of the rbcL barcode locus. Thereafter the sequences were subjected to National Center for Biotechnology Information (NCBI) basic local alignment search tool (BLAST) analysis, followed by the protein three-dimension structure determination of the rbcL protein from the herbal powder and Cassia species namely Cassia fistula, Cassia tora and Cassia javanica (sequences obtained in the present study), Cassia Roxburghii, and Cassia abbreviata (sequences retrieved from Genbank). Further, the multiple and pairwise structural alignment were carried out in order to identify the herbal powder. The nucleotide sequences obtained from the selected species of Cassia were submitted to Genbank (Accession No. JX141397, JX141405, JX141420). The NCBI BLAST analysis of the rbcL protein from the herbal powder showed an equal sequence similarity (with reference to different parameters like E value, maximum identity, total score, query coverage) to C. javanica and C. roxburghii. In order to solve the ambiguities of the BLAST result, a protein structural approach was implemented. The protein homology models obtained in the present study were submitted to the protein model database (PM0079748-PM0079753). The pairwise structural alignment of the herbal powder (as template) and C. javanica and C. roxburghii (as targets individually) revealed a close similarity of the herbal powder with C. javanica. A strategy as used here, incorporating the integrated use of DNA barcoding and protein structural analyses could be adopted, as a novel rapid and economic procedure, especially in cases when protein coding loci are considered. Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. A herbal powder was obtained from a herbalist in the local vicinity of Rajkot, Gujarat. An integrated approach using DNA barcoding and structural analyses was carried out to identify the herbal powder. The herbal powder was identified as Cassia javanica L.
PSAT: A web tool to compare genomic neighborhoods of multiple prokaryotic genomes
Fong, Christine; Rohmer, Laurence; Radey, Matthew; Wasnick, Michael; Brittnacher, Mitchell J
2008-01-01
Background The conservation of gene order among prokaryotic genomes can provide valuable insight into gene function, protein interactions, or events by which genomes have evolved. Although some tools are available for visualizing and comparing the order of genes between genomes of study, few support an efficient and organized analysis between large numbers of genomes. The Prokaryotic Sequence homology Analysis Tool (PSAT) is a web tool for comparing gene neighborhoods among multiple prokaryotic genomes. Results PSAT utilizes a database that is preloaded with gene annotation, BLAST hit results, and gene-clustering scores designed to help identify regions of conserved gene order. Researchers use the PSAT web interface to find a gene of interest in a reference genome and efficiently retrieve the sequence homologs found in other bacterial genomes. The tool generates a graphic of the genomic neighborhood surrounding the selected gene and the corresponding regions for its homologs in each comparison genome. Homologs in each region are color coded to assist users with analyzing gene order among various genomes. In contrast to common comparative analysis methods that filter sequence homolog data based on alignment score cutoffs, PSAT leverages gene context information for homologs, including those with weak alignment scores, enabling a more sensitive analysis. Features for constraining or ordering results are designed to help researchers browse results from large numbers of comparison genomes in an organized manner. PSAT has been demonstrated to be useful for helping to identify gene orthologs and potential functional gene clusters, and detecting genome modifications that may result in loss of function. Conclusion PSAT allows researchers to investigate the order of genes within local genomic neighborhoods of multiple genomes. A PSAT web server for public use is available for performing analyses on a growing set of reference genomes through any web browser with no client side software setup or installation required. Source code is freely available to researchers interested in setting up a local version of PSAT for analysis of genomes not available through the public server. Access to the public web server and instructions for obtaining source code can be found at . PMID:18366802
Campion, S R; Ameen, A S; Lai, L; King, J M; Munzenmaier, T N
2001-08-15
This report describes the application of a simple computational tool, AAPAIR.TAB, for the systematic analysis of the cysteine-rich EGF, Sushi, and Laminin motif/sequence families at the two-amino acid level. Automated dipeptide frequency/bias analysis detects preferences in the distribution of amino acids in established protein families, by determining which "ordered dipeptides" occur most frequently in comprehensive motif-specific sequence data sets. Graphic display of the dipeptide frequency/bias data revealed family-specific preferences for certain dipeptides, but more importantly detected a shared preference for employment of the ordered dipeptides Gly-Tyr (GY) and Gly-Phe (GF) in all three protein families. The dipeptide Asn-Gly (NG) also exhibited high-frequency and bias in the EGF and Sushi motif families, whereas Asn-Thr (NT) was distinguished in the Laminin family. Evaluation of the distribution of dipeptides identified by frequency/bias analysis subsequently revealed the highly restricted localization of the G(F/Y) and N(G/T) sequence elements at two separate sites of extreme conservation in the consensus sequence of all three sequence families. The similar employment of the high-frequency/bias dipeptides in three distinct protein sequence families was further correlated with the concurrence of these shared molecular determinants at similar positions within the distinctive scaffolds of three structurally divergent, but similarly employed, motif modules.
Efficient Unsteady Flow Visualization with High-Order Access Dependencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru
We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiencymore » of pathline computation.« less
Pomerantz, Aaron; Peñafiel, Nicolás; Arteaga, Alejandro; Bustamante, Lucas; Pichardo, Frank; Coloma, Luis A; Barrio-Amorós, César L; Salazar-Valenzuela, David; Prost, Stefan
2018-04-01
Advancements in portable scientific instruments provide promising avenues to expedite field work in order to understand the diverse array of organisms that inhabit our planet. Here, we tested the feasibility for in situ molecular analyses of endemic fauna using a portable laboratory fitting within a single backpack in one of the world's most imperiled biodiversity hotspots, the Ecuadorian Chocó rainforest. We used portable equipment, including the MinION nanopore sequencer (Oxford Nanopore Technologies) and the miniPCR (miniPCR), to perform DNA extraction, polymerase chain reaction amplification, and real-time DNA barcoding of reptile specimens in the field. We demonstrate that nanopore sequencing can be implemented in a remote tropical forest to quickly and accurately identify species using DNA barcoding, as we generated consensus sequences for species resolution with an accuracy of >99% in less than 24 hours after collecting specimens. The flexibility of our mobile laboratory further allowed us to generate sequence information at the Universidad Tecnológica Indoamérica in Quito for rare, endangered, and undescribed species. This includes the recently rediscovered Jambato toad, which was thought to be extinct for 28 years. Sequences generated on the MinION required as few as 30 reads to achieve high accuracy relative to Sanger sequencing, and with further multiplexing of samples, nanopore sequencing can become a cost-effective approach for rapid and portable DNA barcoding. Overall, we establish how mobile laboratories and nanopore sequencing can help to accelerate species identification in remote areas to aid in conservation efforts and be applied to research facilities in developing countries. This opens up possibilities for biodiversity studies by promoting local research capacity building, teaching nonspecialists and students about the environment, tackling wildlife crime, and promoting conservation via research-focused ecotourism.
Anin, M F; Leng, M
1990-01-01
Conformational changes induced in double-stranded oligonucleotides by the binding of trans- or cis-diamminedichloro platinum(II) to the d(GTG) sequence have been characterized by means of melting temperatures, electrophoretic migrations in non-denaturing polyacrylamide gels, reactivities with the artificial nuclease Phenanthroline-copper and with chemical probes. The cis-platinum adduct behaves more as a centre of directed bend than as a hinge joint, the induced bend angle being of the order of 25-30 degrees. The double helix is locally denatured over 2 base pairs (corresponding to the platinated 5'G residue and the central T residue) and is distorted over 4-5 base pairs. The trans-platinum adduct behaves also more as a centre of directed bend than as a hinge joint, the induced bend angle being of the order of 60 degrees. The double helix is locally denatured over 4 base pairs (corresponding to the immediately 5'T residue adjacent to the adduct and to the three base residues of the adduct). Both the cis- and trans-platinum adducts decrease the thermal stability of the double helix. Images PMID:2388824
Export of FepA::PhoA fusion proteins to the outer membrane of Escherichia coli K-12.
Murphy, C K; Klebba, P E
1989-11-01
A library of fepA::phoA gene fusions was generated in order to study the structure and secretion of the Escherichia coli K-12 ferric enterobactin receptor, FepA. All of the fusion proteins contained various lengths of the amino-terminal portion of FepA fused in frame to the catalytic portion of bacterial alkaline phosphatase. Localization of FepA::PhoA fusion proteins in the cell envelope was dependent on the number of residues of mature FepA present at the amino terminus. Hybrids containing up to one-third of the amino-terminal portion of FepA fractionated with their periplasm, while those containing longer sequences of mature FepA were exported to the outer membrane. Outer membrane-localized fusion proteins expressed FepA sequences on the external face of the outer membrane and alkaline phosphatase moieties in the periplasmic space. From sequence determinations of the fepA::phoA fusion joints, residues within FepA which may be exposed on the periplasmic side of the outer membrane were identified.
NASA Astrophysics Data System (ADS)
Sedorko, Daniel; Netto, Renata G.; Savrda, Charles E.
2018-04-01
Previous studies of the Paraná Supersequence (Furnas and Ponta Grossa formations) of the Paraná Basin in southern Brazil have yielded disparate sequence stratigraphic interpretations. An integrated sedimentological, paleontological, and ichnological model was created to establish a refined sequence stratigraphic framework for this succession, focusing on the Ponta Grossa Formation. Twenty-nine ichnotaxa are recognized in the Ponta Grossa Formation, recurring assemblages of which define five trace fossil suites that represent various expressions of the Skolithos, Glossifungites and Cruziana ichnofacies. Physical sedimentologic characteristics and associated softground ichnofacies provide the basis for recognizing seven facies that reflect a passive relationship to bathymetric gradients from shallow marine (shoreface) to offshore deposition. The vertical distribution of facies provides the basis for dividing the Ponta Grossa Formation into three major (3rd-order) depositional sequences- Siluro-Devonian and Devonian I and II-each containing a record of three to seven higher-order relative sea-level cycles. Major sequence boundaries, commonly coinciding with hiatuses recognized from previously published biostratigraphic data, are locally marked by firmground Glossifungites Ichnofacies associated with submarine erosion. Maximum transgressive horizons are prominently marked by unbioturbated or weakly bioturbated black shales. By integrating observations of the Ponta Grossa Formation with those recently made on the underlying marginal- to shallow-marine Furnas Formation, the entire Paraná Supersequence can be divided into four disconformity-bound sequences: a Lower Silurian (Llandovery-Wenlock) sequence, corresponding to lower and middle units of the Furnas; a Siluro-Devonian sequence (?Pridoli-Early Emsian), and Devonian sequences I (Late Emsian-Late Eifelian) and II (Late Eifelian-Early Givetian). Stratigraphic positions of sequence boundaries generally coincide with regressive phases on established global sea-level curves for the Silurian-Devonian.
NASA Astrophysics Data System (ADS)
Yang, Wan; Kominz, Michelle A.
2003-01-01
The Cisco Group on the Eastern Shelf of the Midland Basin is composed of fluvial, deltaic, shelf, shelf-margin, and slope-to-basin carbonate and siliciclastic rocks. Sedimentologic and stratigraphic analyses of 181 meter-to-decimeter-scale depositional sequences exposed in the up-dip shelf indicated that the siliciclastic and carbonate parasequences in the transgressive systems tracts (TST) are thin and upward deepening, whereas those in highstand systems tracts (HST) are thick and upward shallowing. The sequences can be subdivided into five types on the basis of principal lithofacies, and exhibit variable magnitude of facies shift corresponding to variable extents of marine transgression and regression on the shelf. The sequence stacking patterns and their regional persistence suggest a three-level sequence hierarchy controlled by eustasy, whereas local and regional changes in lithology, thickness, and sequence type, magnitude, and absence were controlled by interplay of eustasy, differential shelf subsidence, depositional topography, and pattern of siliciclastic supply. The outcropping Cisco Group is highly incomplete with an estimated 6-11% stratigraphic completeness. The average duration of deposition of the major (third-order) sequences is estimated as 67-102 ka on the up-dip shelf and increases down dip, while the average duration of the major sequence boundaries (SB) is estimated as 831-1066 ka and decreases down dip. The nondepositional and erosional hiatus on the up-dip shelf was represented by lowstand deltaic systems in the basin and slope.
[Clustered regularly interspaced short palindromic repeats (CRISPR) site in Bacillus anthracis].
Gao, Zhiqi; Wang, Dongshu; Feng, Erling; Wang, Bingxiang; Hui, Yiming; Han, Shaobo; Jiao, Lei; Liu, Xiankai; Wang, Hengliang
2014-11-04
To investigate the polymorphism of clustered regularly interspaced short palindromic repeats (CRISPR) in Bacillu santhracis and the application to molecular typing based on the polymorphism of CRISPR in B. anthracis. We downloaded the whole genome sequence of 6 B. anthracis strains and extracted the CRISPR sites. We designed the primers of CRISPR sites and amplified the CRISPR fragments in 193 B. anthracis strains by PCR and sequenced these fragments. In order to reveal the polymorphism of CRISPR in B. anthracis, wealigned all the extracted sequences and sequenced results by local blasting. At the same time, we also analyzed the CRISPR sites in B. cereus and B. thuringiensis. We did not find any polymorphism of CRISPR in B. anthracis. The molecular typing approach based on CRISPR polymorphism is not suitable for B. anthracis, but it is possible for us to distinguish B. anthracis from B. cereus and B. thuringiensis.
Generation of non-genomic oligonucleotide tag sequences for RNA template-specific PCR
Pinto, Fernando Lopes; Svensson, Håkan; Lindblad, Peter
2006-01-01
Background In order to overcome genomic DNA contamination in transcriptional studies, reverse template-specific polymerase chain reaction, a modification of reverse transcriptase polymerase chain reaction, is used. The possibility of using tags whose sequences are not found in the genome further improves reverse specific polymerase chain reaction experiments. Given the absence of software available to produce genome suitable tags, a simple tool to fulfill such need was developed. Results The program was developed in Perl, with separate use of the basic local alignment search tool, making the tool platform independent (known to run on Windows XP and Linux). In order to test the performance of the generated tags, several molecular experiments were performed. The results show that Tagenerator is capable of generating tags with good priming properties, which will deliberately not result in PCR amplification of genomic DNA. Conclusion The program Tagenerator is capable of generating tag sequences that combine genome absence with good priming properties for RT-PCR based experiments, circumventing the effects of genomic DNA contamination in an RNA sample. PMID:16820068
The Origins of Order: Self-Organization and Selection in Evolution
NASA Astrophysics Data System (ADS)
Kauffman, Stuart A.
The following sections are included: * Introduction * Fitness Landscapes in Sequence Space * The NK Model of Rugged Fitness Landscapes * The NK Model of Random Epistatic Interactions * The Rank Order Statistics on K = N - 1 Random Landscapes * The number of local optima is very large * The expected fraction of fitter 1-mutant neighbors dwindles by 1/2 on each improvement step * Walks to local optima are short and vary as a logarithmic function of N * The expected time to reach an optimum is proportional to the dimensionality of the space * The ratio of accepted to tried mutations scales as lnN/N * Any genotype can only climb to a small fraction of the local optima * A small fraction of the genotypes can climb to any one optimum * Conflicting constraints cause a "complexity catastrophe": as complexity increase accessible adaptive peaks fall toward the mean fitness * The "Tunable" NK Family of Correlated Landscapes * Other Combinatorial Optimization Problems and Their Landscapes * Summary * References
Browning, J.V.; Miller, K.G.; McLaughlin, P.P.; Kominz, M.A.; Sugarman, P.J.; Monteverde, D.; Feigenson, M.D.; Hernandez, J.C.
2006-01-01
We use backstripping to quantify the roles of variations in global sea level (eustasy), subsidence, and sediment supply on the development of the Miocene stratigraphic record of the mid-Atlantic continental margin of the United States (New Jersey, Delaware, and Maryland). Eustasy is a primary influence on sequence patterns, determining the global template of sequences (i.e., times when sequences can be preserved) and explaining similarities in Miocene sequence architecture on margins throughout the world. Sequences can be correlated throughout the mid-Atlantic region with Sr-isotopic chronology (??0.6 m.y. to ??1.2 m.y.). Eight Miocene sequences correlate regionally and can be correlated to global ??18O increases, indicating glacioeustatic control. This margin is dominated by passive subsidence with little evidence for active tectonic overprints, except possibly in Maryland during the early Miocene. However, early Miocene sequences in New Jersey and Delaware display a patchwork distribution that is attributable to minor (tens of meters) intervals of excess subsidence. Backstripping quantifies that excess subsidence began in Delaware at ca. 21 Ma and continued until 12 Ma, with maximum rates from ca. 21-16 Ma. We attribute this enhanced subsidence to local flexural response to the progradation of thick sequences offshore and adjacent to this area. Removing this excess subsidence in Delaware yields a record that is remarkably similar to New Jersey eustatic estimates. We conclude that sea-level rise and fall is a first-order control on accommodation providing similar timing on all margins to the sequence record. Tectonic changes due to movement of the crust can overprint the record, resulting in large gaps in the stratigraphic record. Smaller differences in sequences can be attributed to local flexural loading effects, particularly in regions experiencing large-scale progradation. ?? 2006 Geological Society of America.
Unraveling the Stepwise Melting of an Ionic Liquid.
Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C
2017-05-04
Differential scanning calorimetry, X-ray diffraction, and Raman spectroscopy were used to reveal the premelting events precursors of melting of the ionic liquid triethylsulfonium bis(trifluoromethanesufonyl)imide, [S 222 ][NTf 2 ]. On heating the crystalline phase of [S 222 ][NTf 2 ], melting occurs along a sequence of at least three steps. First, the crystalline long-range order breaks down, but local order is retained. The second step is characterized by conformational freedom of the ethyl chains of cations related to premelting of nonpolar domains, and the complete melting finally occurs when anions acquire conformational freedom. This work provides a microscopic view on the mechanism of melting of [S 222 ][NTf 2 ] in line with the picture of melting taking place as a sequence of structural changes. The results of this work shed light on the understanding of the complex melting process of ionic liquids.
Comparison of gizzard and intestinal microbiota of wild neotropical birds
Shin, Hakdong; Sanz, Virginia; Lentino, Miguel; Martínez, L. Margarita; Contreras, Monica; Michelangeli, Fabian; Domínguez-Bello, María Gloria
2018-01-01
Gut bacterial communities have been shown to be influenced by diet, host phylogeny and anatomy, but most of these studies have been done in captive animals. Here we compare the bacterial communities in the digestive tract of wild birds. We characterized the gizzard and intestinal microbiota among 8 wild Neotropical bird species, granivorous or frugivorous species of the orders Columbiformes and Passeriformes. We sequenced the V4 region of the 16S rRNA gene in 94 collected samples from 32 wild birds from 5 localities, and compared bacterial communities by foraging guild, organ, locality and bird taxonomy. 16S rRNA gene-based sequencing data were examined using QIIME with linear discriminant analysis effect size (LEfSe) and metabolic pathways were predicted using PICRUSt algorism. We identified 8 bacterial phyla, dominated by Firmicutes, Actinobacteria and Proteobacteria. Beta diversity analyses indicated significant separation of gut communities by bird orders (Columbiformes vs. Passerifomes) and between bird species (p<0.01). In lower intestine, PICRUSt shows a predominance of carbohydrate metabolism in granivorous birds and xenobiotics biodegradation pathways in frugivorous birds. Gizzard microbiota was significantly richer in granivorous, in relation to frugivorous birds (Chao 1; non-parametric t-test, p<0.05), suggesting a microbial gizzard function, beyond grinding food. The results suggest that the most important factor separating the bacterial community structure was bird taxonomy, followed by foraging guild. However, variation between localities is also likely to be important, but this could not been assessed with our study design. PMID:29579092
Chu, Chien-Hsin; Chang, Lung-Chun; Hsu, Hong-Ming; Wei, Shu-Yi; Liu, Hsing-Wei; Lee, Yu; Kuo, Chung-Chi; Indra, Dharmu; Chen, Chinpan; Ong, Shiou-Jeng; Tai, Jung-Hsiang
2011-01-01
Nuclear proteins usually contain specific peptide sequences, referred to as nuclear localization signals (NLSs), for nuclear import. These signals remain unexplored in the protozoan pathogen, Trichomonas vaginalis. The nuclear import of a Myb2 transcription factor was studied here using immunodetection of a hemagglutinin-tagged Myb2 overexpressed in the parasite. The tagged Myb2 was localized to the nucleus as punctate signals. With mutations of its polybasic sequences, 48KKQK51 and 61KR62, Myb2 was localized to the nucleus, but the signal was diffusive. When fused to a C-terminal non-nuclear protein, the Myb2 sequence spanning amino acid (aa) residues 48 to 143, which is embedded within the R2R3 DNA-binding domain (aa 40 to 156), was essential and sufficient for efficient nuclear import of a bacterial tetracycline repressor (TetR), and yet the transport efficiency was reduced with an additional fusion of a firefly luciferase to TetR, while classical NLSs from the simian virus 40 T-antigen had no function in this assay system. Myb2 nuclear import and DNA-binding activity were substantially perturbed with mutation of a conserved isoleucine (I74) in helix 2 to proline that altered secondary structure and ternary folding of the R2R3 domain. Disruption of DNA-binding activity alone by point mutation of a lysine residue, K51, preceding the structural domain had little effect on Myb2 nuclear localization, suggesting that nuclear translocation of Myb2, which requires an ordered structural domain, is independent of its DNA binding activity. These findings provide useful information for testing whether myriad Mybs in the parasite use a common module to regulate nuclear import. PMID:22021237
Spin-reorientation transitions in the Cairo pentagonal magnet Bi 4 Fe 5 O 13 F
Tsirlin, Alexander A.; Rousochatzakis, Ioannis; Filimonov, Dmitry; ...
2017-09-19
Here, we show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi 4Fe 5O 13F, on one hand mediating the three-dimensional magnetic order, and on the other driving spin-reorientation transitions both within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction and Mössbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically to be stabilized by quantum fluctuations, but Bi 4Fe 5O 13F is very far from the relevant parametermore » regime. While the observed in-plane reorientation cannot be explained by any standard frustration mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe 3+ spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.« less
Spin-reorientation transitions in the Cairo pentagonal magnet Bi4Fe5O13F
NASA Astrophysics Data System (ADS)
Tsirlin, Alexander A.; Rousochatzakis, Ioannis; Filimonov, Dmitry; Batuk, Dmitry; Frontzek, Matthias; Abakumov, Artem M.
2017-09-01
We show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi4Fe5O13F , on one hand mediating the three-dimensional magnetic order, and on the other driving spin-reorientation transitions both within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction and Mössbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically to be stabilized by quantum fluctuations, but Bi4Fe5O13F is very far from the relevant parameter regime. While the observed in-plane reorientation cannot be explained by any standard frustration mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe3 + spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.
Sequential associative memory with nonuniformity of the layer sizes.
Teramae, Jun-Nosuke; Fukai, Tomoki
2007-01-01
Sequence retrieval has a fundamental importance in information processing by the brain, and has extensively been studied in neural network models. Most of the previous sequential associative memory embedded sequences of memory patterns have nearly equal sizes. It was recently shown that local cortical networks display many diverse yet repeatable precise temporal sequences of neuronal activities, termed "neuronal avalanches." Interestingly, these avalanches displayed size and lifetime distributions that obey power laws. Inspired by these experimental findings, here we consider an associative memory model of binary neurons that stores sequences of memory patterns with highly variable sizes. Our analysis includes the case where the statistics of these size variations obey the above-mentioned power laws. We study the retrieval dynamics of such memory systems by analytically deriving the equations that govern the time evolution of macroscopic order parameters. We calculate the critical sequence length beyond which the network cannot retrieve memory sequences correctly. As an application of the analysis, we show how the present variability in sequential memory patterns degrades the power-law lifetime distribution of retrieved neural activities.
Vidal, Rodrigo; Meneses, Isabel; Smith, Macarena
2003-09-01
Knowledge on species of the order Corallinales along the coast of Chile is still scarce despite a number of studies and records of other divisions of seaweeds made since the early 20th century. This lack of information is more dramatic among crustose representatives of the order, thus depriving biogeographic studies of a thorough analysis and resulting in inadequately representative accounts of biodiversity. The currently changing taxonomy of the group makes it difficult to identify and differentiate among taxa based on morphological and developmental characters. Therefore, the use of molecular tools has been adopted in this study in order to facilitate identification and comparison of crustose corallines collected at the rocky intertidal between 27 degrees and 48 degrees S along the Pacific temperate coast of South America. A sequence 600bp (in length) from the SSU-rDNA gene was used to identify five taxa to the genus level: Lithophyllum, Spongites, Mesophyllum, Synarthrophyton, and Leptophytum. In all cases, the genus distinction based on morphological characters coincide with designations based on variation in the ribosomal DNA gene sequence. Spongites is the most frequently occurring genus and is found in all localities sampled while the others appear occasionally. Taxa recognition at species level must be examined with caution considering that morphological variability is not well understood in Chile because the SSU-rDNA region sequence does not always stand alone as an unambiguous means of identifying all coralline species. In such cases, more rapidly evolving markers are needed. For example, sequences from the ITS (rDNA) region often provide greater resolution among closely related species and genera. However, the methodology presented here remains a useful tool for species-level identification.
Garrison, J.R.; Van Den, Bergh; Barker, C.E.; Tabet, D.E.
1997-01-01
This Field Excursion will visit outcrops of the fluvial-deltaic Upper Cretaceous (Turonian) Ferron Sandstone Member of the Mancos Shale, known as the Last Chance delta or Upper Ferron Sandstone. This field guide and the field stops will outline the architecture and depositional sequence stratigraphy of the Upper Ferron Sandstone clastic wedge and explore the stratigraphic positions and compositions of major coal zones. The implications of the architecture and stratigraphy of the Ferron fluvial-deltaic complex for coal and coalbed methane resources will be discussed. Early works suggested that the southwesterly derived deltaic deposits of the the upper Ferron Sandstone clastic wedge were a Type-2 third-order depositional sequence, informally called the Ferron Sequence. These works suggested that the Ferron Sequence is separated by a type-2 sequence boundary from the underlying 3rd-order Hyatti Sequence, which has its sediment source from the northwest. Within the 3rd-order depositional sequence, the deltaic events of the Ferron clastic wedge, recognized as parasequence sets, appear to be stacked into progradational, aggradational, and retrogradational patterns reflecting a generally decreasing sediment supply during an overall slow sea-level rise. The architecture of both near-marine facies and non-marine fluvial facies exhibit well defined trends in response to this decrease in available sediment. Recent studies have concluded that, unless coincident with a depositional sequence boundary, regionally extensive coal zones occur at the tops of the parasequence sets within the Ferron clastic wedge. These coal zones consist of coal seams and their laterally equivalent fissile carbonaceous shales, mudstones, and siltstones, paleosols, and flood plain mudstones. Although the compositions of coal zones vary along depositional dip, the presence of these laterally extensive stratigraphic horizons, above parasequence sets, provides a means of correlating and defining the tops of depositional parasequence sets in both near-marine and non-marine parts of fluvial-deltaic depositional sequences. Ongoing field studies, based on this concept of coal zone stratigraphy, and detailed stratigraphic mapping, have documented the existence of at least 12 parasequence sets within the Last Chance delta clastic wedge. These parasequence sets appear to form four high frequency, 4th-order depositional sequences. The dramatic erosional unconformities, associated with these 4th-order sequence boundaries, indicate that there was up to 20-30 m of erosion, signifying locally substantial base-level drops. These base-level drops were accompanied by a basin ward shift in paleo-shorelines by as much as 5-7 km. These 4th-order Upper Ferron Sequences are superimposed on the 3rd-order sea-level rise event and the 3rd-order, sediment supply/accommodation space driven, stratigraphie architecture of the Upper Ferron Sandstone. The fluvial deltaic architecture shows little response to these 4th-order sea-level events. Coal zones generally thicken landward relative to the mean position of the landward pinch-out of the underlying parasequence set, but after some distance landward, they decrease in thickness. Coal zones also generally thin seaward relative to the mean position of the landward pinch-out of the underlying parasequence set. The coal is thickest in the region between this landward pinch-out and the position of maximum zone thickness. Data indicate that the proportion of coal in the coal zone decreases progressively landward from the landward pinch-out. The effects of differential compaction and differences in original pre-peat swamp topography have the effect of adding perturbations to the general trends. These coal zone systematics have major impact on approaches to exploration and production, and the resource accessment of both coal and coalbed methane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less
Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio; ...
2016-03-09
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less
Cárdenas, Leyla; Sánchez, Roland; Gomez, Daniela; Fuenzalida, Gonzalo; Gallardo-Escárate, Cristián; Tanguy, Arnaud
2011-09-01
The marine gastropod Concholepas concholepas, locally known as the "loco", is the main target species of the benthonic Chilean fisheries. Genetic and genomic tools are necessary to study the genome of this species in order to understand the molecular basis of its development, growth, and other key traits to improve the management strategies and to identify local adaptation to prevent loss of biodiversity. Here, we use pyrosequencing technologies to generate the first transcriptomic database from adult specimens of the loco. After trimming, a total of 140,756 Expressed Sequence Tag sequences were achieved. Clustering and assembly analysis identified 19,219 contigs and 105,435 singleton sequences. BlastN analysis showed a significant identity with Expressed Sequence Tags of different gastropod species available in public databases. Similarly, BlastX results showed that only 895 out of the total 124,654 had significant hits and may represent novel genes for marine gastropods. From this database, simple sequence repeat motifs were also identified and a total of 38 primer pairs were designed and tested to assess their potential as informative markers and to investigate their cross-species amplification in different related gastropod species. This dataset represents the first publicly available 454 data for a marine gastropod endemic to the southeastern Pacific coast, providing a valuable transcriptomic resource for future efforts of gene discovery and development of functional markers in other marine gastropods. Copyright © 2011 Elsevier B.V. All rights reserved.
Genome-wide characterization of centromeric satellites from multiple mammalian genomes.
Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario
2011-01-01
Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.
Evidence for the Concerted Evolution between Short Linear Protein Motifs and Their Flanking Regions
Chica, Claudia; Diella, Francesca; Gibson, Toby J.
2009-01-01
Background Linear motifs are short modules of protein sequences that play a crucial role in mediating and regulating many protein–protein interactions. The function of linear motifs strongly depends on the context, e.g. functional instances mainly occur inside flexible regions that are accessible for interaction. Sometimes linear motifs appear as isolated islands of conservation in multiple sequence alignments. However, they also occur in larger blocks of sequence conservation, suggesting an active role for the neighbouring amino acids. Results The evolution of regions flanking 116 functional linear motif instances was studied. The conservation of the amino acid sequence and order/disorder tendency of those regions was related to presence/absence of the instance. For the majority of the analysed instances, the pairs of sequences conserving the linear motif were also observed to maintain a similar local structural tendency and/or to have higher local sequence conservation when compared to pairs of sequences where one is missing the linear motif. Furthermore, those instances have a higher chance to co–evolve with the neighbouring residues in comparison to the distant ones. Those findings are supported by examples where the regulation of the linear motif–mediated interaction has been shown to depend on the modifications (e.g. phosphorylation) at neighbouring positions or is thought to benefit from the binding versatility of disordered regions. Conclusion The results suggest that flanking regions are relevant for linear motif–mediated interactions, both at the structural and sequence level. More interestingly, they indicate that the prediction of linear motif instances can be enriched with contextual information by performing a sequence analysis similar to the one presented here. This can facilitate the understanding of the role of these predicted instances in determining the protein function inside the broader context of the cellular network where they arise. PMID:19584925
Peñafiel, Nicolás; Arteaga, Alejandro; Bustamante, Lucas; Pichardo, Frank; Coloma, Luis A; Barrio-Amorós, César L; Salazar-Valenzuela, David; Prost, Stefan
2018-01-01
Abstract Background Advancements in portable scientific instruments provide promising avenues to expedite field work in order to understand the diverse array of organisms that inhabit our planet. Here, we tested the feasibility for in situ molecular analyses of endemic fauna using a portable laboratory fitting within a single backpack in one of the world's most imperiled biodiversity hotspots, the Ecuadorian Chocó rainforest. We used portable equipment, including the MinION nanopore sequencer (Oxford Nanopore Technologies) and the miniPCR (miniPCR), to perform DNA extraction, polymerase chain reaction amplification, and real-time DNA barcoding of reptile specimens in the field. Findings We demonstrate that nanopore sequencing can be implemented in a remote tropical forest to quickly and accurately identify species using DNA barcoding, as we generated consensus sequences for species resolution with an accuracy of >99% in less than 24 hours after collecting specimens. The flexibility of our mobile laboratory further allowed us to generate sequence information at the Universidad Tecnológica Indoamérica in Quito for rare, endangered, and undescribed species. This includes the recently rediscovered Jambato toad, which was thought to be extinct for 28 years. Sequences generated on the MinION required as few as 30 reads to achieve high accuracy relative to Sanger sequencing, and with further multiplexing of samples, nanopore sequencing can become a cost-effective approach for rapid and portable DNA barcoding. Conclusions Overall, we establish how mobile laboratories and nanopore sequencing can help to accelerate species identification in remote areas to aid in conservation efforts and be applied to research facilities in developing countries. This opens up possibilities for biodiversity studies by promoting local research capacity building, teaching nonspecialists and students about the environment, tackling wildlife crime, and promoting conservation via research-focused ecotourism. PMID:29617771
Remarks on High Reynolds Numbers Hydrodynamics and the Inviscid Limit
NASA Astrophysics Data System (ADS)
Constantin, Peter; Vicol, Vlad
2018-04-01
We prove that any weak space-time L^2 vanishing viscosity limit of a sequence of strong solutions of Navier-Stokes equations in a bounded domain of R^2 satisfies the Euler equation if the solutions' local enstrophies are uniformly bounded. We also prove that t-a.e. weak L^2 inviscid limits of solutions of 3D Navier-Stokes equations in bounded domains are weak solutions of the Euler equation if they locally satisfy a scaling property of their second-order structure function. The conditions imposed are far away from boundaries, and wild solutions of Euler equations are not a priori excluded in the limit.
Choice of High-Efficacy Strains for the Annual Influenza Vaccine
NASA Astrophysics Data System (ADS)
Deem, Michael
2005-03-01
We introduce a model of protein evolution to explain limitations in the immune system response to vaccination and disease [1]. The phenomenon of original antigenic sin, wherein vaccination creates memory sequences that can increase susceptibility to future exposures to the same disease, is explained as stemming from localization of the immune system response in antibody sequence space. This localization is a result of the roughness in sequence space of the evolved antibody affinity constant for antigen and is observed for diseases with high year-to-year mutation rates, such as influenza. We show that the order parameter within this theory correlates well with efficacies of the H3N2 influenza A component of the annual vaccine between 1971 and 2004 [2,3]. This new measure of antigenic distance predicts vaccine efficacy significantly more accurately than do current state-of-the-art phylogenetic sequence analyses or ferret antisera inhibition assays. We discuss how this new measure of antigenic distance may be used in the context of annual influenza vaccine design and monitoring of vaccine efficacy. 1) M. W. Deem and H. Y. Lee, Phys. Rev. Lett. 91 (2003) 068101. 2) E. T. Munoz and M. W. Deem,q-bio.BM/0408016. 3) V. Gupta, D. J. Earl, and M. W. Deem, ``Choice of High-Efficacy Strains for the Annual Influenza Vaccine,'' submitted.
Real-time, portable genome sequencing for Ebola surveillance
Bore, Joseph Akoi; Koundouno, Raymond; Dudas, Gytis; Mikhail, Amy; Ouédraogo, Nobila; Afrough, Babak; Bah, Amadou; Baum, Jonathan HJ; Becker-Ziaja, Beate; Boettcher, Jan-Peter; Cabeza-Cabrerizo, Mar; Camino-Sanchez, Alvaro; Carter, Lisa L.; Doerrbecker, Juiliane; Enkirch, Theresa; Dorival, Isabel Graciela García; Hetzelt, Nicole; Hinzmann, Julia; Holm, Tobias; Kafetzopoulou, Liana Eleni; Koropogui, Michel; Kosgey, Abigail; Kuisma, Eeva; Logue, Christopher H; Mazzarelli, Antonio; Meisel, Sarah; Mertens, Marc; Michel, Janine; Ngabo, Didier; Nitzsche, Katja; Pallash, Elisa; Patrono, Livia Victoria; Portmann, Jasmine; Repits, Johanna Gabriella; Rickett, Natasha Yasmin; Sachse, Andrea; Singethan, Katrin; Vitoriano, Inês; Yemanaberhan, Rahel L; Zekeng, Elsa G; Trina, Racine; Bello, Alexander; Sall, Amadou Alpha; Faye, Ousmane; Faye, Oumar; Magassouba, N’Faly; Williams, Cecelia V.; Amburgey, Victoria; Winona, Linda; Davis, Emily; Gerlach, Jon; Washington, Franck; Monteil, Vanessa; Jourdain, Marine; Bererd, Marion; Camara, Alimou; Somlare, Hermann; Camara, Abdoulaye; Gerard, Marianne; Bado, Guillaume; Baillet, Bernard; Delaune, Déborah; Nebie, Koumpingnin Yacouba; Diarra, Abdoulaye; Savane, Yacouba; Pallawo, Raymond Bernard; Gutierrez, Giovanna Jaramillo; Milhano, Natacha; Roger, Isabelle; Williams, Christopher J; Yattara, Facinet; Lewandowski, Kuiama; Taylor, Jamie; Rachwal, Philip; Turner, Daniel; Pollakis, Georgios; Hiscox, Julian A.; Matthews, David A.; O’Shea, Matthew K.; Johnston, Andrew McD; Wilson, Duncan; Hutley, Emma; Smit, Erasmus; Di Caro, Antonino; Woelfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Gabriel, Martin; Weller, Simon A.; Koivogui, Lamine; Diallo, Boubacar; Keita, Sakoba; Rambaut, Andrew; Formenty, Pierre; Gunther, Stephan; Carroll, Miles W.
2016-01-01
The Ebola virus disease (EVD) epidemic in West Africa is the largest on record, responsible for >28,599 cases and >11,299 deaths 1. Genome sequencing in viral outbreaks is desirable in order to characterize the infectious agent to determine its evolutionary rate, signatures of host adaptation, identification and monitoring of diagnostic targets and responses to vaccines and treatments. The Ebola virus genome (EBOV) substitution rate in the Makona strain has been estimated at between 0.87 × 10−3 to 1.42 × 10−3 mutations per site per year. This is equivalent to 16 to 27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic 2-7. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought-after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions 8. Genomic surveillance during the epidemic has been sporadic due to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities 9. In order to address this problem, we devised a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. Here we present sequence data and analysis of 142 Ebola virus (EBOV) samples collected during the period March to October 2015. We were able to generate results in less than 24 hours after receiving an Ebola positive sample, with the sequencing process taking as little as 15-60 minutes. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks. PMID:26840485
A Motion Detection Algorithm Using Local Phase Information
Lazar, Aurel A.; Ukani, Nikul H.; Zhou, Yiyin
2016-01-01
Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used to detect local motion. The local phase-based motion detector is akin to models employed to detect motion in biological vision, for example, the Reichardt detector. The local phase-based motion detection algorithm introduced here consists of two building blocks. The first building block measures/evaluates the temporal change of the local phase. The temporal derivative of the local phase is shown to exhibit the structure of a second order Volterra kernel with two normalized inputs. We provide an efficient, FFT-based algorithm for implementing the change of the local phase. The second processing building block implements the detector; it compares the maximum of the Radon transform of the local phase derivative with a chosen threshold. We demonstrate examples of applying the local phase-based motion detection algorithm on several video sequences. We also show how the locally detected motion can be used for segmenting moving objects in video scenes and compare our local phase-based algorithm to segmentation achieved with a widely used optic flow algorithm. PMID:26880882
Finnigan, Gregory C.; Sterling, Sarah M.; Duvalyan, Angela; Liao, Elizabeth N.; Sargsyan, Aspram; Garcia, Galo; Nogales, Eva; Thorner, Jeremy
2016-01-01
Passage through the eukaryotic cell cycle requires processes that are tightly regulated both spatially and temporally. Surveillance mechanisms (checkpoints) exert quality control and impose order on the timing and organization of downstream events by impeding cell cycle progression until the necessary components are available and undamaged and have acted in the proper sequence. In budding yeast, a checkpoint exists that does not allow timely execution of the G2/M transition unless and until a collar of septin filaments has properly assembled at the bud neck, which is the site where subsequent cytokinesis will occur. An essential component of this checkpoint is the large (1518-residue) protein kinase Hsl1, which localizes to the bud neck only if the septin collar has been correctly formed. Hsl1 reportedly interacts with particular septins; however, the precise molecular determinants in Hsl1 responsible for its recruitment to this cellular location during G2 have not been elucidated. We performed a comprehensive mutational dissection and accompanying image analysis to identify the sequence elements within Hsl1 responsible for its localization to the septins at the bud neck. Unexpectedly, we found that this targeting is multipartite. A segment of the central region of Hsl1 (residues 611–950), composed of two tandem, semiredundant but distinct septin-associating elements, is necessary and sufficient for binding to septin filaments both in vitro and in vivo. However, in addition to 611–950, efficient localization of Hsl1 to the septin collar in the cell obligatorily requires generalized targeting to the cytosolic face of the plasma membrane, a function normally provided by the C-terminal phosphatidylserine-binding KA1 domain (residues 1379–1518) in Hsl1 but that can be replaced by other, heterologous phosphatidylserine-binding sequences. PMID:27193302
Compositional searching of CpG islands in the human genome
NASA Astrophysics Data System (ADS)
Luque-Escamilla, Pedro Luis; Martínez-Aroza, José; Oliver, José L.; Gómez-Lopera, Juan Francisco; Román-Roldán, Ramón
2005-06-01
We report on an entropic edge detector based on the local calculation of the Jensen-Shannon divergence with application to the search for CpG islands. CpG islands are pieces of the genome related to gene expression and cell differentiation, and thus to cancer formation. Searching for these CpG islands is a major task in genetics and bioinformatics. Some algorithms have been proposed in the literature, based on moving statistics in a sliding window, but its size may greatly influence the results. The local use of Jensen-Shannon divergence is a completely different strategy: the nucleotide composition inside the islands is different from that in their environment, so a statistical distance—the Jensen-Shannon divergence—between the composition of two adjacent windows may be used as a measure of their dissimilarity. Sliding this double window over the entire sequence allows us to segment it compositionally. The fusion of those segments into greater ones that satisfy certain identification criteria must be achieved in order to obtain the definitive results. We find that the local use of Jensen-Shannon divergence is very suitable in processing DNA sequences for searching for compositionally different structures such as CpG islands, as compared to other algorithms in literature.
Jones, John T; Kumar, Amar; Pylypenko, Liliya A; Thirugnanasambandam, Amarnath; Castelli, Lydia; Chapman, Sean; Cock, Peter J A; Grenier, Eric; Lilley, Catherine J; Phillips, Mark S; Blok, Vivian C
2009-11-01
In this article, we describe the analysis of over 9000 expressed sequence tags (ESTs) from cDNA libraries obtained from various life cycle stages of Globodera pallida. We have identified over 50 G. pallida effectors from this dataset using bioinformatics analysis, by screening clones in order to identify secreted proteins up-regulated after the onset of parasitism and using in situ hybridization to confirm the expression in pharyngeal gland cells. A substantial gene family encoding G. pallida SPRYSEC proteins has been identified. The expression of these genes is restricted to the dorsal pharyngeal gland cell. Different members of the SPRYSEC family of proteins from G. pallida show different subcellular localization patterns in plants, with some localized to the cytoplasm and others to the nucleus and nucleolus. Differences in subcellular localization may reflect diverse functional roles for each individual protein or, more likely, variety in the compartmentalization of plant proteins targeted by the nematode. Our data are therefore consistent with the suggestion that the SPRYSEC proteins suppress host defences, as suggested previously, and that they achieve this through interaction with a range of host targets.
Jones, David T; Kandathil, Shaun M
2018-04-26
In addition to substitution frequency data from protein sequence alignments, many state-of-the-art methods for contact prediction rely on additional sources of information, or features, of protein sequences in order to predict residue-residue contacts, such as solvent accessibility, predicted secondary structure, and scores from other contact prediction methods. It is unclear how much of this information is needed to achieve state-of-the-art results. Here, we show that using deep neural network models, simple alignment statistics contain sufficient information to achieve state-of-the-art precision. Our prediction method, DeepCov, uses fully convolutional neural networks operating on amino-acid pair frequency or covariance data derived directly from sequence alignments, without using global statistical methods such as sparse inverse covariance or pseudolikelihood estimation. Comparisons against CCMpred and MetaPSICOV2 show that using pairwise covariance data calculated from raw alignments as input allows us to match or exceed the performance of both of these methods. Almost all of the achieved precision is obtained when considering relatively local windows (around 15 residues) around any member of a given residue pairing; larger window sizes have comparable performance. Assessment on a set of shallow sequence alignments (fewer than 160 effective sequences) indicates that the new method is substantially more precise than CCMpred and MetaPSICOV2 in this regime, suggesting that improved precision is attainable on smaller sequence families. Overall, the performance of DeepCov is competitive with the state of the art, and our results demonstrate that global models, which employ features from all parts of the input alignment when predicting individual contacts, are not strictly needed in order to attain precise contact predictions. DeepCov is freely available at https://github.com/psipred/DeepCov. d.t.jones@ucl.ac.uk.
Santos, Sara; Chaves, Raquel; Adega, Filomena; Bastos, Estela; Guedes-Pinto, Henrique
2006-01-01
Most mammalian chromosomes have satellite DNA sequences located at or near the centromeres, organized in arrays of variable size and higher order structure. The implications of these specific repetitive DNA sequences and their organization for centromere function are still quite cloudy. In contrast to most mammalian species, the domestic cat seems to have the major satellite DNA family (FA-SAT) localized primarily at the telomeres and secondarily at the centromeres of the chromosomes. In the present work, we analyzed chromosome preparations from a fibrosarcoma, in comparison with nontumor cells (epithelial tissue) from the same individual, by in situ hybridization of the FA-SAT cat satellite DNA family. This repetitive sequence was found to be amplified in the cat tumor chromosomes analyzed. The amplification of these satellite DNA sequences in the cat chromosomes with variable number and appearance (marker chromosomes) is discussed and might be related to mitotic instability, which could explain the exhibition of complex patterns of chromosome aberrations detected in the fibrosarcoma analyzed.
Khanna, Namita; Ghosh, Ananta Kumar; Huntemann, Marcel; Deshpande, Shweta; Han, James; Chen, Amy; Kyrpides, Nikos; Mavrommatis, Kostas; Szeto, Ernest; Markowitz, Victor; Ivanova, Natalia; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Nolan, Matt; Woyke, Tanja; Teshima, Hazuki; Chertkov, Olga; Daligault, Hajnalka; Davenport, Karen; Gu, Wei; Munk, Christine; Zhang, Xiaojing; Bruce, David; Detter, Chris; Xu, Yan; Quintana, Beverly; Reitenga, Krista; Kunde, Yulia; Green, Lance; Erkkila, Tracy; Han, Cliff; Brambilla, Evelyne-Marie; Lang, Elke; Klenk, Hans-Peter; Goodwin, Lynne; Chain, Patrick; Das, Debabrata
2013-12-20
Enterobacter sp. IIT-BT 08 belongs to Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Enterobacteriales, Family: Enterobacteriaceae. The organism was isolated from the leaves of a local plant near the Kharagpur railway station, Kharagpur, West Bengal, India. It has been extensively studied for fermentative hydrogen production because of its high hydrogen yield. For further enhancement of hydrogen production by strain development, complete genome sequence analysis was carried out. Sequence analysis revealed that the genome was linear, 4.67 Mbp long and had a GC content of 56.01%. The genome properties encode 4,393 protein-coding and 179 RNA genes. Additionally, a putative pathway of hydrogen production was suggested based on the presence of formate hydrogen lyase complex and other related genes identified in the genome. Thus, in the present study we describe the specific properties of the organism and the generation, annotation and analysis of its genome sequence as well as discuss the putative pathway of hydrogen production by this organism.
Protein structure prediction with local adjust tabu search algorithm
2014-01-01
Background Protein folding structure prediction is one of the most challenging problems in the bioinformatics domain. Because of the complexity of the realistic protein structure, the simplified structure model and the computational method should be adopted in the research. The AB off-lattice model is one of the simplification models, which only considers two classes of amino acids, hydrophobic (A) residues and hydrophilic (B) residues. Results The main work of this paper is to discuss how to optimize the lowest energy configurations in 2D off-lattice model and 3D off-lattice model by using Fibonacci sequences and real protein sequences. In order to avoid falling into local minimum and faster convergence to the global minimum, we introduce a novel method (SATS) to the protein structure problem, which combines simulated annealing algorithm and tabu search algorithm. Various strategies, such as the new encoding strategy, the adaptive neighborhood generation strategy and the local adjustment strategy, are adopted successfully for high-speed searching the optimal conformation corresponds to the lowest energy of the protein sequences. Experimental results show that some of the results obtained by the improved SATS are better than those reported in previous literatures, and we can sure that the lowest energy folding state for short Fibonacci sequences have been found. Conclusions Although the off-lattice models is not very realistic, they can reflect some important characteristics of the realistic protein. It can be found that 3D off-lattice model is more like native folding structure of the realistic protein than 2D off-lattice model. In addition, compared with some previous researches, the proposed hybrid algorithm can more effectively and more quickly search the spatial folding structure of a protein chain. PMID:25474708
Phylogenetic Invariants for Metazoan Mitochondrial Genome Evolution.
Sankoff; Blanchette
1998-01-01
The method of phylogenetic invariants was developed to apply to aligned sequence data generated, according to a stochastic substitution model, for N species related through an unknown phylogenetic tree. The invariants are functions of the probabilities of the observable N-tuples, which are identically zero, over all choices of branch length, for some trees. Evaluating the invariants associated with all possible trees, using observed N-tuple frequencies over all sequence positions, enables us to rapidly infer the generating tree. An aspect of evolution at the genomic level much studied recently is the rearrangements of gene order along the chromosome from one species to another. Instead of the substitutions responsible for sequence evolution, we examine the non-local processes responsible for genome rearrangements such as inversion of arbitrarily long segments of chromosomes. By treating the potential adjacency of each possible pair of genes as a position", an appropriate substitution" model can be recognized as governing the rearrangement process, and a probabilistically principled phylogenetic inference can be set up. We calculate the invariants for this process for N=5, and apply them to mitochondrial genome data from coelomate metazoans, showing how they resolve key aspects of branching order.
Annamalai, Alagappan; Lee, Hyun Hwi; Choi, Sun Hee; Lee, Su Yong; Gracia-Espino, Eduardo; Subramanian, Arunprabaharan; Park, Jaedeuk; Kong, Ki-jeong; Jang, Jum Suk
2016-01-01
For ex-situ co-doping methods, sintering at high temperatures enables rapid diffusion of Sn4+ and Be2+ dopants into hematite (α–Fe2O3) lattices, without altering the nanorod morphology or damaging their crystallinity. Sn/Be co-doping results in a remarkable enhancement in photocurrent (1.7 mA/cm2) compared to pristine α–Fe2O3 (0.7 mA/cm2), and Sn4+ mono-doped α-Fe2O3 photoanodes (1.0 mA/cm2). From first-principles calculations, we found that Sn4+ doping induced a shallow donor level below the conduction band minimum, which does not contribute to increase electrical conductivity and photocurrent because of its localized nature. Additionally, Sn4+-doping induce local micro-strain and a decreased Fe-O bond ordering. When Be2+ was co-doped with Sn4+-doped α–Fe2O3 photoanodes, the conduction band recovered its original state, without localized impurities peaks, also a reduction in micro-strain and increased Fe-O bond ordering is observed. Also the sequence in which the ex-situ co-doping is carried out is very crucial, as Be/Sn co-doping sequence induces many under-coordinated O atoms resulting in a higher micro-strain and lower charge separation efficiency resulting undesired electron recombination. Here, we perform a detailed systematic characterization using XRD, FESEM, XPS and comprehensive electrochemical and photoelectrochemical studies, along with sophisticated synchrotron diffraction studies and extended X-ray absorption fine structure. PMID:27005757
Influence of Electron–Holes on DNA Sequence-Specific Mutation Rates
Suárez-Villagrán, Martha Y; Azevedo, Ricardo B R; Miller, John H
2018-01-01
Abstract Biases in mutation rate can influence molecular evolution, yielding rates of evolution that vary widely in different parts of the genome and even among neighboring nucleotides. Here, we explore one possible mechanism of influence on sequence-specific mutation rates, the electron–hole, which can localize and potentially trigger a replication mismatch. A hole is a mobile site of positive charge created during one-electron oxidation by, for example, radiation, contact with a mutagenic agent, or oxidative stress. Its quantum wavelike properties cause it to localize at various sites with probabilities that vary widely, by orders of magnitude, and depend strongly on the local sequence. We find significant correlations between hole probabilities and mutation rates within base triplets, observed in published mutation accumulation experiments on four species of bacteria. We have also computed hole probability spectra for hypervariable segment I of the human mtDNA control region, which contains several mutational hotspots, and for heptanucleotides in noncoding regions of the human genome, whose polymorphism levels have recently been reported. We observe significant correlations between hole probabilities, and context-specific mutation and substitution rates. The correlation with hole probability cannot be explained entirely by CpG methylation in the heptanucleotide data. Peaks in hole probability tend to coincide with mutational hotspots, even in mtDNA where CpG methylation is rare. Our results suggest that hole-enhanced mutational mechanisms, such as oxidation-stabilized tautomerization and base deamination, contribute to molecular evolution. PMID:29617801
Guo, Xianwu; Castillo-Ramírez, Santiago; González, Víctor; Bustos, Patricia; Luís Fernández-Vázquez, José; Santamaría, Rosa Isela; Arellano, Jesús; Cevallos, Miguel A; Dávila, Guillermo
2007-01-01
Background Fabaceae (legumes) is one of the largest families of flowering plants, and some members are important crops. In contrast to what we know about their great diversity or economic importance, our knowledge at the genomic level of chloroplast genomes (cpDNAs or plastomes) for these crops is limited. Results We sequenced the complete genome of the common bean (Phaseolus vulgaris cv. Negro Jamapa) chloroplast. The plastome of P. vulgaris is a 150,285 bp circular molecule. It has gene content similar to that of other legume plastomes, but contains two pseudogenes, rpl33 and rps16. A distinct inversion occurred at the junction points of trnH-GUG/rpl14 and rps19/rps8, as in adzuki bean [1]. These two pseudogenes and the inversion were confirmed in 10 varieties representing the two domestication centers of the bean. Genomic comparative analysis indicated that inversions generally occur in legume plastomes and the magnitude and localization of insertions/deletions (indels) also vary. The analysis of repeat sequences demonstrated that patterns and sequences of tandem repeats had an important impact on sequence diversification between legume plastomes and tandem repeats did not belong to dispersed repeats. Interestingly, P. vulgaris plastome had higher evolutionary rates of change on both genomic and gene levels than G. max, which could be the consequence of pressure from both mutation and natural selection. Conclusion Legume chloroplast genomes are widely diversified in gene content, gene order, indel structure, abundance and localization of repetitive sequences, intracellular sequence exchange and evolutionary rates. The P. vulgaris plastome is a rapidly evolving genome. PMID:17623083
Assembly-history dynamics of a pitcher-plant protozoan community in experimental microcosms.
Kadowaki, Kohmei; Inouye, Brian D; Miller, Thomas E
2012-01-01
History drives community assembly through differences both in density (density effects) and in the sequence in which species arrive (sequence effects). Density effects arise from predictable population dynamics, which are free of history, but sequence effects are due to a density-free mechanism, arising solely from the order and timing of immigration events. Few studies have determined how components of immigration history (timing, number of individuals, frequency) alter local dynamics to determine community assembly, beyond addressing when immigration history produces historically contingent assembly. We varied density and sequence effects independently in a two-way factorial design to follow community assembly in a three-species aquatic protozoan community. A superior competitor, Colpoda steinii, mediated alternative community states; early arrival or high introduction density allowed this species to outcompete or suppress the other competitors (Poterioochromonas malhamensis and Eimeriidae gen. sp.). Multivariate analysis showed that density effects caused greater variation in community states, whereas sequence effects altered the mean community composition. A significant interaction between density and sequence effects suggests that we should refine our understanding of priority effects. These results highlight a practical need to understand not only the "ingredients" (species) in ecological communities but their "recipes" as well.
Complete mitogenome sequencing and phylogenetic analysis of PaLi yak (Bos grunniens).
Bao, Pengjia; Guo, Xian; Pei, Jie; Liang, Chunnian; Ding, Xuezhi; Min, Chu; Wang, Hongbo; Wu, Xiaoyun; Yan, Ping
2016-11-01
PaLi yak is a very important local breed in China; as a year-round grazing animal, it plays a very important role for the economic and native herdsmen. The PaLi yak complete mitochondrial DNA is sequenced in this study, the total length is 16,324 bp, containing 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a non-coding control region (D-loop region). The order and composition are similar to most of the other vertebrates. The base contents are: 33.72% A, 25.80% C, 13.21% G and 27.27% T; A + T (60.99%) was higher than G + C (39.01%). The phylogenetic relationships were analyzed using the complete mitogenome sequence, results showed that the genetic relationship between yak and cattle is distinct. These information provides useful data for further study on protection of genetic resources and the taxonomy of Bovinae.
Molecular phylogeny of noctilucoid dinoflagellates (Noctilucales, Dinophyceae).
Gómez, Fernando; Moreira, David; López-García, Purificación
2010-07-01
The order Noctilucales or class Noctiluciphyceae encompasses three families of aberrant dinoflagellates (Noctilucaceae, Leptodiscaceae and Kofoidiniaceae) that, at least in some life stages, lack typical dinoflagellate characters such as the ribbon-like transversal flagellum or condensed chromosomes. Noctiluca scintillans, the first dinoflagellate to be described, has been intensively investigated. However, its phylogenetic position based on the small subunit ribosomal DNA (SSU rDNA) sequence is unstable and controversial. Noctiluca has been placed either as an early diverging lineage that diverged after Oxyrrhis and before the dinokaryotes -core dinoflagellates- or as a recent lineage branching from unarmoured dino fl agellates in the order Gymnodiniales. So far, the lack of other noctilucoid sequences has hampered the elucidation of their phylogenetic relationships to other dino fl agellates. Furthermore, even the monophyly of the noctilucoids remained uncertain. We have determined SSU rRNA gene sequences for Kofoidiniaceae, those of the type Spatulodinium (=Gymnodinium) pseudonoctiluca and another Spatulodinium species, as well as of two species of Kofoidinium, and the first gene sequence of Leptodiscaceae, that of Abedinium (=Leptophyllus) dasypus. These taxa were collected from their type localities, the English Channel and the NW Mediterranean Sea, respectively. Phylogenetic analyses place the Noctilucales as a monophyletic group at a basal position close to parasites of the Marine Alveolate Group I (MAGI) and the Syndiniales (MAGII), before the core of dinokaryotic dinoflagellates, although with moderate support. 2010 Elsevier GmbH. All rights reserved.
Pan, Xiaoyong; Shen, Hong-Bin
2018-05-02
RNA-binding proteins (RBPs) take over 5∼10% of the eukaryotic proteome and play key roles in many biological processes, e.g. gene regulation. Experimental detection of RBP binding sites is still time-intensive and high-costly. Instead, computational prediction of the RBP binding sites using pattern learned from existing annotation knowledge is a fast approach. From the biological point of view, the local structure context derived from local sequences will be recognized by specific RBPs. However, in computational modeling using deep learning, to our best knowledge, only global representations of entire RNA sequences are employed. So far, the local sequence information is ignored in the deep model construction process. In this study, we present a computational method iDeepE to predict RNA-protein binding sites from RNA sequences by combining global and local convolutional neural networks (CNNs). For the global CNN, we pad the RNA sequences into the same length. For the local CNN, we split a RNA sequence into multiple overlapping fixed-length subsequences, where each subsequence is a signal channel of the whole sequence. Next, we train deep CNNs for multiple subsequences and the padded sequences to learn high-level features, respectively. Finally, the outputs from local and global CNNs are combined to improve the prediction. iDeepE demonstrates a better performance over state-of-the-art methods on two large-scale datasets derived from CLIP-seq. We also find that the local CNN run 1.8 times faster than the global CNN with comparable performance when using GPUs. Our results show that iDeepE has captured experimentally verified binding motifs. https://github.com/xypan1232/iDeepE. xypan172436@gmail.com or hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online.
An algorithm to compute the sequency ordered Walsh transform
NASA Technical Reports Server (NTRS)
Larsen, H.
1976-01-01
A fast sequency-ordered Walsh transform algorithm is presented; this sequency-ordered fast transform is complementary to the sequency-ordered fast Walsh transform introduced by Manz (1972) and eliminating gray code reordering through a modification of the basic fast Hadamard transform structure. The new algorithm retains the advantages of its complement (it is in place and is its own inverse), while differing in having a decimation-in time structure, accepting data in normal order, and returning the coefficients in bit-reversed sequency order. Applications include estimation of Walsh power spectra for a random process, sequency filtering and computing logical autocorrelations, and selective bit reversing.
Zhang, Jing-Nan; Song, Ping; Hu, Jia-Rui; Mo, Sai-Jun; Peng, Mao-Yu; Zhou, Wei; Zou, Ji-Xing; Hu, Yin-Chang
2005-01-01
In this study,the full-length cDNAs of GH (Growth Hormone) gene was isolated from six important economic fishes, Siniperca kneri, Epinephelus coioides, Monopterus albus, Silurus asotus, Misgurnus anguillicaudatus and Carassius auratus gibelio Bloch. It is the first time to clone these GH sequences except E. coioides GH. The lengths of the above cDNAs are as follows: 953 bp, 1 023 bp, 825 bp, 1 082 bp, 1 154 bp and 1 180 bp. Each sequence includes an ORF of about 600 bp which encodes a protein of about 200 amino acid: S. kneri, E. coioides and M. albus GHs of 204 amino acid, S. asotus GH of 200 amino acid, M. anguillicaudatus and C. auratus gibelio GHs of 210 amino acid. Then detailed sequence analysis of the six GHs with many other fish sequences was performed. The six sequences all showed high homology to other sequences, especially to sequences within the same order, and many conserved residues were identified, most localized in five domains. The phylogenetic trees (MP and NJ) of many fish GH ORF sequences (including the new six) with Amia calva as outgroup were generally resolved and largely congruent with the morphology-based tree though some incongruities were observed, suggesting GH ORF should be paid more attention to in teleostean phylogeny.
Yi, Zhenzhen; Song, Weibo
2011-01-01
Previous systematic arrangement on the ciliate order Urostylida was mainly based on morphological data and only about 20% taxa were analyzed using molecular phylogenetic analyses. In the present investigation, 22 newly sequenced species for which alpha-tubulin, SSU rRNA genes or ITS1-5.8S-ITS2 region were sampled, refer to all families within the order. Following conclusions could be drawn: (1) the order Urostylida is not monophyletic, but a core group is always present; (2) among the family Urostylidae, six of 10 sequenced genera are rejected belonging to this family; (3) the genus Epiclintes is confirmed belonging to its own taxon; (4) the family Pseudokeronopsidae undoubtedly belongs to the core portion of urostylids; however, some or most of its members should be transferred to the family Urostylidae; (5) Bergeriellidae is confirmed to be a valid family; (6) the distinction of the taxon Acaudalia is not supported; (7) the morphology-based genus Anteholosticha is extremely polyphyletic; (8) ITS2 secondary structures of Pseudoamphisiella and Psammomitra are rather different from other urostylids; (9) partition addition bootstrap alteration (PABA) result shows that bootstrap values usually tend to increase as more gene partitions are included. PMID:21408166
Adaptive rood pattern search for fast block-matching motion estimation.
Nie, Yao; Ma, Kai-Kuang
2002-01-01
In this paper, we propose a novel and simple fast block-matching algorithm (BMA), called adaptive rood pattern search (ARPS), which consists of two sequential search stages: 1) initial search and 2) refined local search. For each macroblock (MB), the initial search is performed only once at the beginning in order to find a good starting point for the follow-up refined local search. By doing so, unnecessary intermediate search and the risk of being trapped into local minimum matching error points could be greatly reduced in long search case. For the initial search stage, an adaptive rood pattern (ARP) is proposed, and the ARP's size is dynamically determined for each MB, based on the available motion vectors (MVs) of the neighboring MBs. In the refined local search stage, a unit-size rood pattern (URP) is exploited repeatedly, and unrestrictedly, until the final MV is found. To further speed up the search, zero-motion prejudgment (ZMP) is incorporated in our method, which is particularly beneficial to those video sequences containing small motion contents. Extensive experiments conducted based on the MPEG-4 Verification Model (VM) encoding platform show that the search speed of our proposed ARPS-ZMP is about two to three times faster than that of the diamond search (DS), and our method even achieves higher peak signal-to-noise ratio (PSNR) particularly for those video sequences containing large and/or complex motion contents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witzke, B.J.
1993-03-01
Four large-scale (2--8 Ma) T-R sedimentary sequences of M. Ord. age (late Chaz.-Sherm.) were delimited by Witzke Kolata (1980) in the Iowa area, each bounded by local to regional unconformity/disconformity surfaces. These encompass both siliciclastic and carbonate intervals, in ascending order: (1) St. Peter-Glenwood fms., (2) Platteville Fm., (3) Decorah Fm., (4) Dunleith/upper Decorah fms. Finer-scale resolution of depth-related depositional features has led to regional recognition of smaller-scale shallowing-upward cyclicity contained within each large-scale sequence. Such smaller-scale cyclicity encompasses stratigraphic intervals of 1--10 m thickness, with estimated durations of 0.5--1.5 Ma. The St. Peter Sandst. has long been regarded asmore » a classic transgressive sheet sand. However, four discrete shallowing-upward packages characterize the St. Peter-Glenwood interval regionally (IA, MN, NB, KS), including western facies displaying coarsening-upward sandstone packages with condensed conodont-rich brown shale and phosphatic sediments in their lower part (local oolitic ironstone), commonly above pyritic hardgrounds. Regional continuity of small-scale cyclic patterns in M. Ord. strata of the Iowa area may suggest eustatic controls; this can be tested through inter-regional comparisons.« less
Mapping genes to human chromosome 19
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, Sarah
1996-05-01
For this project, 22 Expressed Sequence Tags (ESTs) were fine mapped to regions of human chromosome 19. An EST is a short DNA sequence that occurs once in the genome and corresponds to a single expressed gene. {sup 32}P-radiolabeled probes were made by polymerase chain reaction for each EST and hybridized to filters containing a chromosome 19-specific cosmid library. The location of the ESTs on the chromosome was determined by the location of the ordered cosmid to which the EST hybridized. Of the 22 ESTs that were sublocalized, 6 correspond to known genes, and 16 correspond to anonymous genes. Thesemore » localized ESTs may serve as potential candidates for disease genes, as well as markers for future physical mapping.« less
SCALCE: boosting sequence compression algorithms using locally consistent encoding.
Hach, Faraz; Numanagic, Ibrahim; Alkan, Can; Sahinalp, S Cenk
2012-12-01
The high throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for the computational infrastructure. Data management, storage and analysis have become major logistical obstacles for those adopting the new platforms. The requirement for large investment for this purpose almost signalled the end of the Sequence Read Archive hosted at the National Center for Biotechnology Information (NCBI), which holds most of the sequence data generated world wide. Currently, most HTS data are compressed through general purpose algorithms such as gzip. These algorithms are not designed for compressing data generated by the HTS platforms; for example, they do not take advantage of the specific nature of genomic sequence data, that is, limited alphabet size and high similarity among reads. Fast and efficient compression algorithms designed specifically for HTS data should be able to address some of the issues in data management, storage and communication. Such algorithms would also help with analysis provided they offer additional capabilities such as random access to any read and indexing for efficient sequence similarity search. Here we present SCALCE, a 'boosting' scheme based on Locally Consistent Parsing technique, which reorganizes the reads in a way that results in a higher compression speed and compression rate, independent of the compression algorithm in use and without using a reference genome. Our tests indicate that SCALCE can improve the compression rate achieved through gzip by a factor of 4.19-when the goal is to compress the reads alone. In fact, on SCALCE reordered reads, gzip running time can improve by a factor of 15.06 on a standard PC with a single core and 6 GB memory. Interestingly even the running time of SCALCE + gzip improves that of gzip alone by a factor of 2.09. When compared with the recently published BEETL, which aims to sort the (inverted) reads in lexicographic order for improving bzip2, SCALCE + gzip provides up to 2.01 times better compression while improving the running time by a factor of 5.17. SCALCE also provides the option to compress the quality scores as well as the read names, in addition to the reads themselves. This is achieved by compressing the quality scores through order-3 Arithmetic Coding (AC) and the read names through gzip through the reordering SCALCE provides on the reads. This way, in comparison with gzip compression of the unordered FASTQ files (including reads, read names and quality scores), SCALCE (together with gzip and arithmetic encoding) can provide up to 3.34 improvement in the compression rate and 1.26 improvement in running time. Our algorithm, SCALCE (Sequence Compression Algorithm using Locally Consistent Encoding), is implemented in C++ with both gzip and bzip2 compression options. It also supports multithreading when gzip option is selected, and the pigz binary is available. It is available at http://scalce.sourceforge.net. fhach@cs.sfu.ca or cenk@cs.sfu.ca Supplementary data are available at Bioinformatics online.
Montgomery, P.; Farr, M.R.; Franseen, E.K.; Goldstein, R.H.
2001-01-01
A high-resolution chronostratigraphy has been developed for Miocene shallow-water carbonate strata in the Cabo de Gata region of SE Spain for evaluation of local, regional and global factors that controlled platform architecture prior to and during the Messinian salinity crisis. Paleomagnetic data were collected from strata at three localities. Mean natural remanent magnetization (NRM) ranges between 1.53 ?? 10-8 and 5.2 ?? 10-3 Am2/kg. Incremental thermal and alternating field demagnetization isolated the characteristic remanent magnetization (ChRM). Rock magnetic studies show that the dominant magnetic mineral is magnetite, but mixtures of magnetite and hematite occur. A composite chronostratigraphy was derived from five stratigraphic sections. Regional stratigraphic data, biostratigraphic data, and an 40Ar/39Ar date of 8.5 ?? 0.1 Ma, for an interbedded volcanic flow, place the strata in geomagnetic polarity Chrons C4r to C3r. Sequence-stratigraphic and diagenetic evidence indicate a major unconformity at the base of depositional sequence (DS)3 that contains a prograding reef complex, suggesting that approximately 250 000 yr of record (Subchrons C3Br.2r to 3Br.1r) are missing near the Messinian-Tortonian boundary. Correlation to the GPTS shows that the studied strata represent five third- to fourth-order DSs. Basal units are temperate to subtropical ramps (DS1A, DS1B, DS2); these are overlain by subtropical to tropical reefal platforms (DS3), which are capped by subtropical to tropical cyclic carbonates (Terminal Carbonate Complex, TCC). Correlation of the Cabo de Gata record to the Melilla area of Morocco, and the Sorbas basin of Spain indicate that early - Late Tortonian ramp strata from these areas are partially time-equivalent. Similar strata are extensively developed in the Western Mediterranean and likely were influenced by a cool climate or influx of nutrients during an overall rise in global sea-level. After ramp deposition, a sequence boundary (SB3) in Cabo de Gata correlates with a sequence boundary in Morocco and a published third-order eustatic fall suggesting at least a partial eustatic control for the sequence boundary. Coral reefs began to develop earlier in Cabo de Gata than at Melilla or Sorbas, arguing for local factors affecting this major environmental transition. Later Messinian reefs (DS3) from all areas are time-equivalent, suggesting a regional or global control on their formation. Some Halimeda-rich horizons in the Western Mediterranean are not time-equivalent event strata as hypothesized by others. Correlation of the relative sea-level curve for the fringing reef complex (DS3) with a published eustatic curve suggests at least a partial third-order global eustatic control for the highstand part of the sequence. Downstepping DS3 reefs and initial subaerial exposure of earlier DS3 reef strata approximately correlate with initiation of a series of subaerial unconformities in the South Pacific. The longer-term relative fall in sea-level during DS3 downstepping reef progradation does not correlate with a published third-order eustatic fall. Eustatic sea-level fluctuations may have been associated with initiation of the Mediterranean Messinian salinity crisis, but the longer-term fall may have been linked to tectonic uplift in the Mediterranean region. Widespread distribution of 'TCC-style' cycles of approximately the same age suggests a regional (Western Mediterranean) or global control on sea-level change responsible for TCC cycles. In addition, four subaerial exposure-capped TCC cycles may correlate with similar subaerial unconformities in the South Pacific, suggesting at least a partial eustatic control on TCC cyclicity. The high rates of relative sea-level change needed to generate a minimum of 25-30 m sea-level changes associated with each cycle are consistent with glacio-eustacy along with rapid evaporitic drawdown in the Mediterranean. ?? 2001 Elsevier Science B.V. All rights reserved.
Zhou, Mu; Zhang, Qiao; Xu, Kunjie; Tian, Zengshan; Wang, Yanmeng; He, Wei
2015-01-01
Due to the wide deployment of wireless local area networks (WLAN), received signal strength (RSS)-based indoor WLAN localization has attracted considerable attention in both academia and industry. In this paper, we propose a novel page rank-based indoor mapping and localization (PRIMAL) by using the gene-sequenced unlabeled WLAN RSS for simultaneous localization and mapping (SLAM). Specifically, first of all, based on the observation of the motion patterns of the people in the target environment, we use the Allen logic to construct the mobility graph to characterize the connectivity among different areas of interest. Second, the concept of gene sequencing is utilized to assemble the sporadically-collected RSS sequences into a signal graph based on the transition relations among different RSS sequences. Third, we apply the graph drawing approach to exhibit both the mobility graph and signal graph in a more readable manner. Finally, the page rank (PR) algorithm is proposed to construct the mapping from the signal graph into the mobility graph. The experimental results show that the proposed approach achieves satisfactory localization accuracy and meanwhile avoids the intensive time and labor cost involved in the conventional location fingerprinting-based indoor WLAN localization. PMID:26404274
Angiuoli, Samuel V; White, James R; Matalka, Malcolm; White, Owen; Fricke, W Florian
2011-01-01
The widespread popularity of genomic applications is threatened by the "bioinformatics bottleneck" resulting from uncertainty about the cost and infrastructure needed to meet increasing demands for next-generation sequence analysis. Cloud computing services have been discussed as potential new bioinformatics support systems but have not been evaluated thoroughly. We present benchmark costs and runtimes for common microbial genomics applications, including 16S rRNA analysis, microbial whole-genome shotgun (WGS) sequence assembly and annotation, WGS metagenomics and large-scale BLAST. Sequence dataset types and sizes were selected to correspond to outputs typically generated by small- to midsize facilities equipped with 454 and Illumina platforms, except for WGS metagenomics where sampling of Illumina data was used. Automated analysis pipelines, as implemented in the CloVR virtual machine, were used in order to guarantee transparency, reproducibility and portability across different operating systems, including the commercial Amazon Elastic Compute Cloud (EC2), which was used to attach real dollar costs to each analysis type. We found considerable differences in computational requirements, runtimes and costs associated with different microbial genomics applications. While all 16S analyses completed on a single-CPU desktop in under three hours, microbial genome and metagenome analyses utilized multi-CPU support of up to 120 CPUs on Amazon EC2, where each analysis completed in under 24 hours for less than $60. Representative datasets were used to estimate maximum data throughput on different cluster sizes and to compare costs between EC2 and comparable local grid servers. Although bioinformatics requirements for microbial genomics depend on dataset characteristics and the analysis protocols applied, our results suggests that smaller sequencing facilities (up to three Roche/454 or one Illumina GAIIx sequencer) invested in 16S rRNA amplicon sequencing, microbial single-genome and metagenomics WGS projects can achieve cost-efficient bioinformatics support using CloVR in combination with Amazon EC2 as an alternative to local computing centers.
Angiuoli, Samuel V.; White, James R.; Matalka, Malcolm; White, Owen; Fricke, W. Florian
2011-01-01
Background The widespread popularity of genomic applications is threatened by the “bioinformatics bottleneck” resulting from uncertainty about the cost and infrastructure needed to meet increasing demands for next-generation sequence analysis. Cloud computing services have been discussed as potential new bioinformatics support systems but have not been evaluated thoroughly. Results We present benchmark costs and runtimes for common microbial genomics applications, including 16S rRNA analysis, microbial whole-genome shotgun (WGS) sequence assembly and annotation, WGS metagenomics and large-scale BLAST. Sequence dataset types and sizes were selected to correspond to outputs typically generated by small- to midsize facilities equipped with 454 and Illumina platforms, except for WGS metagenomics where sampling of Illumina data was used. Automated analysis pipelines, as implemented in the CloVR virtual machine, were used in order to guarantee transparency, reproducibility and portability across different operating systems, including the commercial Amazon Elastic Compute Cloud (EC2), which was used to attach real dollar costs to each analysis type. We found considerable differences in computational requirements, runtimes and costs associated with different microbial genomics applications. While all 16S analyses completed on a single-CPU desktop in under three hours, microbial genome and metagenome analyses utilized multi-CPU support of up to 120 CPUs on Amazon EC2, where each analysis completed in under 24 hours for less than $60. Representative datasets were used to estimate maximum data throughput on different cluster sizes and to compare costs between EC2 and comparable local grid servers. Conclusions Although bioinformatics requirements for microbial genomics depend on dataset characteristics and the analysis protocols applied, our results suggests that smaller sequencing facilities (up to three Roche/454 or one Illumina GAIIx sequencer) invested in 16S rRNA amplicon sequencing, microbial single-genome and metagenomics WGS projects can achieve cost-efficient bioinformatics support using CloVR in combination with Amazon EC2 as an alternative to local computing centers. PMID:22028928
Villela, Luciana Cristine Vasques; Alves, Anderson Luis; Varela, Eduardo Sousa; Yamagishi, Michel Eduardo Beleza; Giachetto, Poliana Fernanda; da Silva, Naiara Milagres Augusto; Ponzetto, Josi Margarete; Paiva, Samuel Rezende; Caetano, Alexandre Rodrigues
2017-02-01
The cachara (Pseudoplatystoma reticulatum) is a Neotropical freshwater catfish from family Pimelodidae (Siluriformes) native to Brazil. The species is of relative economic importance for local aquaculture production and basic biological information is under development to help boost efforts to domesticate and raise the species in commercial systems. The complete cachara mitochondrial genome was obtained by assembling Illumina RNA-seq data from pooled samples. The full mitogenome was found to be 16,576 bp in length, showing the same basic structure, order, and genetic organization observed in other Pimelodidae, with 13 protein-coding genes, 2 rNA genes, 22 trNAs, and a control region. Observed base composition was 24.63% T, 28.47% C, 31.45% A, and 15.44% G. With the exception of NAD6 and eight tRNAs, all of the observed mitochondrial genes were found to be coded on the H strand. A total of 107 SNPs were identified in P. reticulatum mtDNA, 67 of which were located in coding regions. Of these SNPs, 10 result in amino acid changes. Analysis of the obtained sequence with 94 publicly available full Siluriformes mitogenomes resulted in a phylogenetic tree that generally agreed with available phylogenetic proposals for the order. The first report of the complete Pseudoplatystoma reticulatum mitochondrial genome sequence revealed general gene organization, structure, content, and order similar to most vertebrates. Specific sequence and content features were observed and may have functional attributes which are now available for further investigation.
DLocalMotif: a discriminative approach for discovering local motifs in protein sequences.
Mehdi, Ahmed M; Sehgal, Muhammad Shoaib B; Kobe, Bostjan; Bailey, Timothy L; Bodén, Mikael
2013-01-01
Local motifs are patterns of DNA or protein sequences that occur within a sequence interval relative to a biologically defined anchor or landmark. Current protein motif discovery methods do not adequately consider such constraints to identify biologically significant motifs that are only weakly over-represented but spatially confined. Using negatives, i.e. sequences known to not contain a local motif, can further increase the specificity of their discovery. This article introduces the method DLocalMotif that makes use of positional information and negative data for local motif discovery in protein sequences. DLocalMotif combines three scoring functions, measuring degrees of motif over-representation, entropy and spatial confinement, specifically designed to discriminatively exploit the availability of negative data. The method is shown to outperform current methods that use only a subset of these motif characteristics. We apply the method to several biological datasets. The analysis of peroxisomal targeting signals uncovers several novel motifs that occur immediately upstream of the dominant peroxisomal targeting signal-1 signal. The analysis of proline-tyrosine nuclear localization signals uncovers multiple novel motifs that overlap with C2H2 zinc finger domains. We also evaluate the method on classical nuclear localization signals and endoplasmic reticulum retention signals and find that DLocalMotif successfully recovers biologically relevant sequence properties. http://bioinf.scmb.uq.edu.au/dlocalmotif/
Wild Birds Use an Ordering Rule to Decode Novel Call Sequences.
Suzuki, Toshitaka N; Wheatcroft, David; Griesser, Michael
2017-08-07
The generative power of human language depends on grammatical rules, such as word ordering, that allow us to produce and comprehend even novel combinations of words [1-3]. Several species of birds and mammals produce sequences of calls [4-6], and, like words in human sentences, their order may influence receiver responses [7]. However, it is unknown whether animals use call ordering to extract meaning from truly novel sequences. Here, we use a novel experimental approach to test this in a wild bird species, the Japanese tit (Parus minor). Japanese tits are attracted to mobbing a predator when they hear conspecific alert and recruitment calls ordered as alert-recruitment sequences [7]. They also approach in response to recruitment calls of heterospecific individuals in mixed-species flocks [8, 9]. Using experimental playbacks, we assess their responses to artificial sequences in which their own alert calls are combined into different orderings with heterospecific recruitment calls. We find that Japanese tits respond similarly to mixed-species alert-recruitment call sequences and to their own alert-recruitment sequences. Importantly, however, tits rarely respond to mixed-species sequences in which the call order is reversed. Thus, Japanese tits extract a compound meaning from novel call sequences using an ordering rule. These results demonstrate a new parallel between animal communication systems and human language, opening new avenues for exploring the evolution of ordering rules and compositionality in animal vocal sequences. Copyright © 2017 Elsevier Ltd. All rights reserved.
Edelson, Benjamin S; Best, Timothy P; Olenyuk, Bogdan; Nickols, Nicholas G; Doss, Raymond M; Foister, Shane; Heckel, Alexander; Dervan, Peter B
2004-01-01
A pivotal step forward in chemical approaches to controlling gene expression is the development of sequence-specific DNA-binding molecules that can enter live cells and traffic to nuclei unaided. DNA-binding polyamides are a class of programmable, sequence-specific small molecules that have been shown to influence a wide variety of protein-DNA interactions. We have synthesized over 100 polyamide-fluorophore conjugates and assayed their nuclear uptake profiles in 13 mammalian cell lines. The compiled dataset, comprising 1300 entries, establishes a benchmark for the nuclear localization of polyamide-dye conjugates. Compounds in this series were chosen to provide systematic variation in several structural variables, including dye composition and placement, molecular weight, charge, ordering of the aromatic and aliphatic amino-acid building blocks and overall shape. Nuclear uptake does not appear to be correlated with polyamide molecular weight or with the number of imidazole residues, although the positions of imidazole residues affect nuclear access properties significantly. Generally negative determinants for nuclear access include the presence of a beta-Ala-tail residue and the lack of a cationic alkyl amine moiety, whereas the presence of an acetylated 2,4-diaminobutyric acid-turn is a positive factor for nuclear localization. We discuss implications of these data on the design of polyamide-dye conjugates for use in biological systems.
Double absorbing boundaries for finite-difference time-domain electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaGrone, John, E-mail: jlagrone@smu.edu; Hagstrom, Thomas, E-mail: thagstrom@smu.edu
We describe the implementation of optimal local radiation boundary condition sequences for second order finite difference approximations to Maxwell's equations and the scalar wave equation using the double absorbing boundary formulation. Numerical experiments are presented which demonstrate that the design accuracy of the boundary conditions is achieved and, for comparable effort, exceeds that of a convolution perfectly matched layer with reasonably chosen parameters. An advantage of the proposed approach is that parameters can be chosen using an accurate a priori error bound.
fRMSDPred: Predicting Local RMSD Between Structural Fragments Using Sequence Information
2007-04-04
machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel
Annotation of the Clostridium Acetobutylicum Genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, M. J.
The genome sequence of the solvent producing bacterium Clostridium acetobutylicum ATCC824, has been determined by the shotgun approach. The genome consists of a 3.94 Mb chromosome and a 192 kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases, closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria.
Begum, Rabeya; Alam, Sheikh Shamimul; Menzel, Gerhard; Schmidt, Thomas
2009-01-01
Background and Aims Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera. Methods In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH). Key Results Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species. Conclusions The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal rearrangements in D. aphyllum while the number and localization of rRNA genes as well as the species-specific distribution pattern of an abundant microsatellite reflect the genomic diversity of the three Dendrobium species. PMID:19635741
Effect of sequence-dependent rigidity on plectoneme localization in dsDNA
NASA Astrophysics Data System (ADS)
Medalion, Shlomi; Rabin, Yitzhak
2016-04-01
We use Monte-Carlo simulations to study the effect of variable rigidity on plectoneme formation and localization in supercoiled double-stranded DNA. We show that the presence of soft sequences increases the number of plectoneme branches and that the edges of the branches tend to be localized at these sequences. We propose an experimental approach to test our results in vitro, and discuss the possible role played by plectoneme localization in the search process of transcription factors for their targets (promoter regions) on the bacterial genome.
2013-01-01
Background The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume species with a relatively compact genome. The species has 2n = 40 chromosomes and its genome size is 960 Mbp/1C. During the last decade, L. angustifolius genomic studies have achieved several milestones, such as molecular-marker development, linkage maps, and bacterial artificial chromosome (BAC) libraries. Here, these resources were integratively used to identify and sequence two gene-rich regions (GRRs) of the genome. Results The genome was screened with a probe representing the sequence of a microsatellite fragment length polymorphism (MFLP) marker linked to Phomopsis stem blight resistance. BAC clones selected by hybridization were subjected to restriction fingerprinting and contig assembly, and 232 BAC-ends were sequenced and annotated. BAC fluorescence in situ hybridization (BAC-FISH) identified eight single-locus clones. Based on physical mapping, cytogenetic localization, and BAC-end annotation, five clones were chosen for sequencing. Within the sequences of clones that hybridized in FISH to a single-locus, two large GRRs were identified. The GRRs showed strong and conserved synteny to Glycine max duplicated genome regions, illustrated by both identical gene order and parallel orientation. In contrast, in the clones with dispersed FISH signals, more than one-third of sequences were transposable elements. Sequenced, single-locus clones were used to develop 12 genetic markers, increasing the number of L. angustifolius chromosomes linked to appropriate linkage groups by five pairs. Conclusions In general, probes originating from MFLP sequences can assist genome screening and gene discovery. However, such probes are not useful for positional cloning, because they tend to hybridize to numerous loci. GRRs identified in L. angustifolius contained a low number of interspersed repeats and had a high level of synteny to the genome of the model legume G. max. Our results showed that not only was the gene nucleotide sequence conserved between soybean and lupin GRRs, but the order and orientation of particular genes in syntenic blocks was homologous, as well. These findings will be valuable to the forthcoming sequencing of the lupin genome. PMID:23379841
NASA Astrophysics Data System (ADS)
Poletti, Enea; Veronese, Elisa; Calabrese, Massimiliano; Bertoldo, Alessandra; Grisan, Enrico
2012-02-01
The automatic segmentation of brain tissues in magnetic resonance (MR) is usually performed on T1-weighted images, due to their high spatial resolution. T1w sequence, however, has some major downsides when brain lesions are present: the altered appearance of diseased tissues causes errors in tissues classification. In order to overcome these drawbacks, we employed two different MR sequences: fluid attenuated inversion recovery (FLAIR) and double inversion recovery (DIR). The former highlights both gray matter (GM) and white matter (WM), the latter highlights GM alone. We propose here a supervised classification scheme that does not require any anatomical a priori information to identify the 3 classes, "GM", "WM", and "background". Features are extracted by means of a local multi-scale texture analysis, computed for each pixel of the DIR and FLAIR sequences. The 9 textures considered are average, standard deviation, kurtosis, entropy, contrast, correlation, energy, homogeneity, and skewness, evaluated on a neighborhood of 3x3, 5x5, and 7x7 pixels. Hence, the total number of features associated to a pixel is 56 (9 textures x3 scales x2 sequences +2 original pixel values). The classifier employed is a Support Vector Machine with Radial Basis Function as kernel. From each of the 4 brain volumes evaluated, a DIR and a FLAIR slice have been selected and manually segmented by 2 expert neurologists, providing 1st and 2nd human reference observations which agree with an average accuracy of 99.03%. SVM performances have been assessed with a 4-fold cross-validation, yielding an average classification accuracy of 98.79%.
DNA viewed as an out-of-equilibrium structure
NASA Astrophysics Data System (ADS)
Provata, A.; Nicolis, C.; Nicolis, G.
2014-05-01
The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ2 tests shows that DNA can not be described as a low order Markov chain of order up to r =6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.
DNA viewed as an out-of-equilibrium structure.
Provata, A; Nicolis, C; Nicolis, G
2014-05-01
The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ^{2} tests shows that DNA can not be described as a low order Markov chain of order up to r=6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.
Late Neogene sedimentary facies and sequences in the Pannonian Basin, Hungary
Juhasz, E.; Phillips, L.; Muller, P.; Ricketts, B.; Toth-Makk, A.; Lantos, M.; Kovacs, L.O.
1999-01-01
This paper is part of the special publication No.156, The Mediterranean basins: Tertiary extension within the Alpine Orogen. (eds B.Durand, L. Jolivet, F.Horvath and M.Seranne). Detailed sedimentological, facies and numerical cycle analysis, combined with magnetostratigraphy, have been made in a number of boreholes in the Pannonian Basin, in order to study the causes of relative water-level changes and the history of the basin subsidence. Subsidence and infilling of the Pannonian Basin, which was an isolated lake at that time occurred mainly during the Late Miocene and Pliocene. The subsidence history was remarkably different in the individual sub-basins: early thermal subsidence was interrupted in the southern part of the basin, while high sedimentation rate and continuous subsidence was detected in the northeastern sub-basin. Three regional unconformities were detected in the Late Neogene Pannonian Basin fill, which represent 0.5 and 7.5 Ma time spans corresponding to single and composite unconformities. Consequently two main sequences build up the Late Neogene Pannonian Basin fill: a Late Miocene and a Pliocene one. Within the Late Miocene sequence there are smaller sedimentary cycles most probably corresponding to climatically driven relative lake-level changes in the Milankovitch frequency band. Considering the periods, the estimated values for precession and eccentricity in this study (19 and 370 ka) are close to the usually cited ones. In the case of obliquity the calculated period (71 ka) slightly deviates from the generally accepted number. Based on the relative amplitudes of oscillations, precession (sixth order) and obliquity (fifth order) cycles had the most significant impact on the sedimentation. Eccentricity caused cycles (fourth order) are poorly detectable in the sediments. The longer term (third order) cycles had very slight influence on the sedimentation pattern. Progradation, recorded in the Late Miocene sequence, correlates poorly in time within the basin. The dominant controls of this process probably were changes of basin subsidence rate and the very high sedimentation rate. The slow, upward trend of silt and sand bed thickness as well as that of the grain size also reflects the local progradation.
NASA Astrophysics Data System (ADS)
Gharsalli, Ramzi; Zouaghi, Taher; Soussi, Mohamed; Chebbi, Riadh; Khomsi, Sami; Bédir, Mourad
2013-09-01
The Cap Bon Peninsula, belonging to northeastern Tunisia, is located in the Maghrebian Alpine foreland and in the North of the Pelagian block. By its paleoposition, during the Cenozoic, in the edge of the southern Tethyan margin, this peninsula constitutes a geological entity that fossilized the eustatic, tectonic and climatic interactions. Surface and subsurface study carried out in the Cap Bon onshore area and surrounding offshore of Hammamet interests the Miocene deposits from the Langhian-to-Messinian interval time. Related to the basin and the platform positions, sequence and seismic stratigraphy studies have been conducted to identify seven third-order seismic sequences in subsurface (SM1-SM7), six depositional sequences on the Zinnia-1 petroleum well (SDM1-SDM6), and five depositional sequences on the El Oudiane section of the Jebel Abderrahmane (SDM1-SDM5). Each sequence shows a succession of high-frequency systems tract and parasequences. These sequences are separated by remarkable sequence boundaries and maximum flooding surfaces (SB and MFS) that have been correlated to the eustatic cycles and supercycles of the Global Sea Level Chart of Haq et al. (1987). The sequences have been also correlated with Sequence Chronostratigraphic Chart of Hardenbol et al. (1998), related to European basins, allows us to arise some major differences in number and in size. The major discontinuities, which limit the sequences resulted from the interplay between tectonic and climatic phenomena. It thus appears very judicious to bring back these chronological surfaces to eustatic and/or local tectonic activity and global eustatic and climatic controls.
Finnigan, Gregory C; Sterling, Sarah M; Duvalyan, Angela; Liao, Elizabeth N; Sargsyan, Aspram; Garcia, Galo; Nogales, Eva; Thorner, Jeremy
2016-07-15
Passage through the eukaryotic cell cycle requires processes that are tightly regulated both spatially and temporally. Surveillance mechanisms (checkpoints) exert quality control and impose order on the timing and organization of downstream events by impeding cell cycle progression until the necessary components are available and undamaged and have acted in the proper sequence. In budding yeast, a checkpoint exists that does not allow timely execution of the G2/M transition unless and until a collar of septin filaments has properly assembled at the bud neck, which is the site where subsequent cytokinesis will occur. An essential component of this checkpoint is the large (1518-residue) protein kinase Hsl1, which localizes to the bud neck only if the septin collar has been correctly formed. Hsl1 reportedly interacts with particular septins; however, the precise molecular determinants in Hsl1 responsible for its recruitment to this cellular location during G2 have not been elucidated. We performed a comprehensive mutational dissection and accompanying image analysis to identify the sequence elements within Hsl1 responsible for its localization to the septins at the bud neck. Unexpectedly, we found that this targeting is multipartite. A segment of the central region of Hsl1 (residues 611-950), composed of two tandem, semiredundant but distinct septin-associating elements, is necessary and sufficient for binding to septin filaments both in vitro and in vivo. However, in addition to 611-950, efficient localization of Hsl1 to the septin collar in the cell obligatorily requires generalized targeting to the cytosolic face of the plasma membrane, a function normally provided by the C-terminal phosphatidylserine-binding KA1 domain (residues 1379-1518) in Hsl1 but that can be replaced by other, heterologous phosphatidylserine-binding sequences. © 2016 Finnigan et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Jedlicki, Ana; Fernández, Gonzalo; Astorga, Marcela; Oyarzún, Pablo; Toro, Jorge E.; Navarro, Jorge M.; Martínez, Víctor
2012-01-01
Background and aims On the basis of morphological evidence, the species involved in South American Pacific coast harmful algal blooms (HABs) has been traditionally recognized as Alexandrium catenella (Dinophyceae). However, these observations have not been confirmed using evidence based on genomic sequence variability. Our principal objective was to accurately determine the species of Alexandrium involved in local HABs in order to implement a real-time polymerase chain reaction (PCR) assay for its rapid and easy detection on filter-feeding shellfish, such as mussels. Methodology For species-specific determination, the intergenic spacer 1 (ITS1), 5.8S subunit, ITS2 and the hypervariable genomic regions D1–D5 of the large ribosomal subunit of local strains were sequenced and compared with two data sets of other Alexandrium sequences. Species-specific primers were used to amplify signature sequences within the genomic DNA of the studied species by conventional and real-time PCR. Principal results Phylogenetic analysis determined that the Chilean strain falls into Group I of the tamarensis complex. Our results support the allocation of the Chilean Alexandrium species as a toxic Alexandrium tamarense rather than A. catenella, as currently defined. Once local species were determined to belong to Group I of the tamarensis complex, a highly sensitive and accurate real-time PCR procedure was developed to detect dinoflagellate presence in Mytilus spp. (Bivalvia) samples after being fed (challenged) in vitro with the Chilean Alexandrium strain. The results show that real-time PCR is useful to detect Alexandrium intake in filter-feeding molluscs. Conclusions It has been shown that the classification of local Alexandrium using morphological evidence is not very accurate. Molecular methods enabled the HAB dinoflagellate species of the Chilean coast to be assigned as A. tamarense rather than A. catenella. Real-time PCR analysis based on A. tamarense primers allowed the detection of dinoflagellate DNA in Mytilus spp. samples exposed to this alga. Through the specific assignment of dinoflagellate species involved in HABs, more reliable preventive policies can be implemented. PMID:23259043
The Evolution of the Observed Hubble Sequence over the past 6Gyr
NASA Astrophysics Data System (ADS)
Delgado-Serrano, R.; Hammer, F.; Yang, Y. B.; Puech, M.; Flores, H.; Rodrigues, M.
2011-10-01
During the past years we have confronted serious problems of methodology concerning the morphological and kinematic classification of distant galaxies. This has forced us to create a new simple and effective morphological classification methodology, in order to guarantee a morpho-kinematic correlation, make the reproducibility easier and restrict the classification subjectivity. Giving the characteristic of our morphological classification, we have thus been able to apply the same methodology, using equivalent observations, to representative samples of local and distant galaxies. It has allowed us to derive, for the first time, the distant Hubble sequence (~6 Gyr ago), and determine a morphological evolution of galaxies over the past 6 Gyr. Our results strongly suggest that more than half of the present-day spirals had peculiar morphologies, 6 Gyr ago.
Cirulli, Elizabeth T; Noor, Mohamed A F
2007-01-01
Ectopic exchange between transposable elements or other repetitive sequences along a chromosome can produce chromosomal inversions. As a result, genome sequence studies typically find sequence similarity between corresponding inversion breakpoint regions. Here, we identify and investigate the breakpoint regions of the X chromosome inversion distinguishing Drosophila mojavensis and Drosophila arizonae. We localize one inversion breakpoint to 13.7 kb and localize the other to a 1-Mb interval. Using this localization and assuming microsynteny between Drosophila melanogaster and D. arizonae, we pinpoint likely positions of the inversion breakpoints to windows of less than 3000 bp. These breakpoints define the size of the inversion to approximately 11 Mb. However, in contrast to many other studies, we fail to find significant sequence similarity between the 2 breakpoint regions. The localization of these inversion breakpoints will facilitate future genetic and molecular evolutionary studies in this species group, an emerging model system for ecological genetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillson, Nathan
j5 automates and optimizes the design of the molecular biological process of cloning/constructing DNA. j5 enables users to benefit from (combinatorial) multi-part scar-less SLIC, Gibson, CPEC, Golden Gate assembly, or variants thereof, for which automation software does not currently exist, without the intense labor currently associated with the process. j5 inputs a list of the DNA sequences to be assembled, along with a Genbank, FASTA, jbei-seq, or SBOL v1.1 format sequence file for each DNA source. Given the list of DNA sequences to be assembled, j5 first determines the cost-minimizing assembly strategy for each part (direct synthesis, PCR/SOE, or oligo-embedding),more » designs DNA oligos with Primer3, adds flanking homology sequences (SLIC, Gibson, and CPEC; optimized with Primer3 for CPEC) or optimized overhang sequences (Golden Gate) to the oligos and direct synthesis pieces, and utilizes BLAST to check against oligo mis-priming and assembly piece incompatibility events. After identifying DNA oligos that are already contained within a local collection for reuse, the program estimates the total cost of direct synthesis and new oligos to be ordered. In the instance that j5 identifies putative assembly piece incompatibilities (multiple pieces with high flanking sequence homology), the program suggests hierarchical subassemblies where possible. The program outputs a comma-separated value (CSV) file, viewable via Excel or other spreadsheet software, that contains assembly design information (such as the PCR/SOE reactions to perform, their anticipated sizes and sequences, etc.) as well as a properly annotated genbank file containing the sequence resulting from the assembly, and appends the local oligo library with the oligos to be ordered j5 condenses multiple independent assembly projects into 96-well format for high-throughput liquid-handling robotics platforms, and generates configuration files for the PR-PR biology-friendly robot programming language. j5 thus provides a new way to design DNA assembly procedures much more productively and efficiently, not only in terms of time, but also in terms of cost. To a large extent, however, j5 does not allow people to do something that could not be done before by hand given enough time and effort. An exception to this is that, since the very act of using j5 to design the DNA assembly process standardizes the experimental details and workflow, j5 enables a single person to concurrently perform the independent DNA construction tasks of an entire group of researchers. Currently, this is not readily possible, since separate researchers employ disparate design strategies and workflows, and furthermore, their designs and workflows are very infrequently fully captured in an electronic format which is conducive to automation.« less
The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion
Kabeiseman, Emily J.; Cichos, Kyle H.; Moore, Elizabeth R.
2014-01-01
Understanding how host proteins are targeted to pathogen-specified organelles, like the chlamydial inclusion, is fundamentally important to understanding the biogenesis of these unique subcellular compartments and how they maintain autonomy within the cell. Syntaxin 6, which localizes to the chlamydial inclusion, contains an YGRL signal sequence. The YGRL functions to return syntaxin 6 to the trans-Golgi from the plasma membrane, and deletion of the YGRL signal sequence from syntaxin 6 also prevents the protein from localizing to the chlamydial inclusion. YGRL is one of three YXXL (YGRL, YQRL, and YKGL) signal sequences which target proteins to the trans-Golgi. We designed various constructs of eukaryotic proteins to test the specificity and propensity of YXXL sequences to target the inclusion. The YGRL signal sequence redirects proteins (e.g., Tgn38, furin, syntaxin 4) that normally do not localize to the chlamydial inclusion. Further, the requirement of the YGRL signal sequence for syntaxin 6 localization to inclusions formed by different species of Chlamydia is conserved. These data indicate that there is an inherent property of the chlamydial inclusion, which allows it to recognize the YGRL signal sequence. To examine whether this “inherent property” was protein or lipid in nature, we asked if deletion of the YGRL signal sequence from syntaxin 6 altered the ability of the protein to interact with proteins or lipids. Deletion or alteration of the YGRL from syntaxin 6 does not appreciably impact syntaxin 6-protein interactions, but does decrease syntaxin 6-lipid interactions. Intriguingly, data also demonstrate that YKGL or YQRL can successfully substitute for YGRL in localization of syntaxin 6 to the chlamydial inclusion. Importantly and for the first time, we are establishing that a eukaryotic signal sequence targets the chlamydial inclusion. PMID:25309881
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.
Daily, Jeff
2016-02-10
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.
Compactness of viral genomes: effect of disperse and localized random mutations
NASA Astrophysics Data System (ADS)
Lošdorfer Božič, Anže; Micheletti, Cristian; Podgornik, Rudolf; Tubiana, Luca
2018-02-01
Genomes of single-stranded RNA viruses have evolved to optimize several concurrent properties. One of them is the architecture of their genomic folds, which must not only feature precise structural elements at specific positions, but also allow for overall spatial compactness. The latter was shown to be disrupted by random synonymous mutations, a disruption which can consequently negatively affect genome encapsidation. In this study, we use three mutation schemes with different degrees of locality to mutate the genomes of phage MS2 and Brome Mosaic virus in order to understand the observed sensitivity of the global compactness of their folds. We find that mutating local stretches of their genomes’ sequence or structure is less disruptive to their compactness compared to inducing randomly-distributed mutations. Our findings are indicative of a mechanism for the conservation of compactness acting on a global scale of the genomes, and have several implications for understanding the interplay between local and global architecture of viral RNA genomes.
Chan, Rachel W; von Deuster, Constantin; Giese, Daniel; Stoeck, Christian T; Harmer, Jack; Aitken, Andrew P; Atkinson, David; Kozerke, Sebastian
2014-07-01
Diffusion tensor imaging (DTI) of moving organs is gaining increasing attention but robust performance requires sequence modifications and dedicated correction methods to account for system imperfections. In this study, eddy currents in the "unipolar" Stejskal-Tanner and the velocity-compensated "bipolar" spin-echo diffusion sequences were investigated and corrected for using a magnetic field monitoring approach in combination with higher-order image reconstruction. From the field-camera measurements, increased levels of second-order eddy currents were quantified in the unipolar sequence relative to the bipolar diffusion sequence while zeroth and linear orders were found to be similar between both sequences. Second-order image reconstruction based on field-monitoring data resulted in reduced spatial misalignment artifacts and residual displacements of less than 0.43 mm and 0.29 mm (in the unipolar and bipolar sequences, respectively) after second-order eddy-current correction. Results demonstrate the need for second-order correction in unipolar encoding schemes but also show that bipolar sequences benefit from second-order reconstruction to correct for incomplete intrinsic cancellation of eddy-currents. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Encounter times of chromatin loci influenced by polymer decondensation
NASA Astrophysics Data System (ADS)
Amitai, A.; Holcman, D.
2018-03-01
The time for a DNA sequence to find its homologous counterpart depends on a long random search inside the cell nucleus. Using polymer models, we compute here the mean first encounter time (MFET) between two sites located on two different polymer chains and confined locally by potential wells. We find that reducing tethering forces acting on the polymers results in local decondensation, and numerical simulations of the polymer model show that these changes are associated with a reduction of the MFET by several orders of magnitude. We derive here new asymptotic formula for the MFET, confirmed by Brownian simulations. We conclude from the present modeling approach that the fast search for homology is mediated by a local chromatin decondensation due to the release of multiple chromatin tethering forces. The present scenario could explain how the homologous recombination pathway for double-stranded DNA repair is controlled by its random search step.
Losio, C.; Della Corte, A.; Venturini, E.; Ambrosi, A.; Panizza, P.; De Cobelli, F.
2018-01-01
Purpose To assess correlations between volumetric first-order texture parameters on baseline MRI and pathological response after neoadjuvant chemotherapy (NAC) for locally advanced breast cancer (BC). Materials and Methods 69 patients with locally advanced BC candidate to neoadjuvant chemotherapy underwent MRI within 4 weeks from the start of therapeutic regimen. T2, DWI, and DCE sequences were analyzed and maps were generated for Apparent Diffusion Coefficient (ADC), T2 signal intensity, and the following dynamic parameters: k-trans, peak enhancement, area under curve (AUC), time to maximal enhancement (TME), wash-in rate, and washout rate. Volumetric analysis of these parameters was performed, yielding a histogram analysis including first-order texture kinetics (percentiles, maximum value, minimum value, range, standard deviation, mean, median, mode, skewness, and kurtosis). Finally, correlations between these values and response to NAC (evaluated on the surgical specimen according to RECIST 1.1 criteria) were assessed. Results Out of 69 tumors, 33 (47.8%) achieved complete pathological response, 26 (37.7%) partial response, and 10 (14.5%) no response. Higher levels of AUCmax (p value = 0.0338), AUCrange (p value = 0.0311), and TME75 (p value = 0.0452) and lower levels of washout10 (p value = 0.0417), washout20 (p value = 0.0138), washout25 (p value = 0.0114), and washout30 (p value = 0.05) were predictive of noncomplete response. Conclusion Histogram-derived texture analysis of MRI images allows finding quantitative parameters predictive of nonresponse to NAC in women affected by locally advanced BC. PMID:29853811
Panzeri, M M; Losio, C; Della Corte, A; Venturini, E; Ambrosi, A; Panizza, P; De Cobelli, F
2018-01-01
To assess correlations between volumetric first-order texture parameters on baseline MRI and pathological response after neoadjuvant chemotherapy (NAC) for locally advanced breast cancer (BC). 69 patients with locally advanced BC candidate to neoadjuvant chemotherapy underwent MRI within 4 weeks from the start of therapeutic regimen. T2, DWI, and DCE sequences were analyzed and maps were generated for Apparent Diffusion Coefficient (ADC), T2 signal intensity, and the following dynamic parameters: k -trans, peak enhancement, area under curve (AUC), time to maximal enhancement (TME), wash-in rate, and washout rate. Volumetric analysis of these parameters was performed, yielding a histogram analysis including first-order texture kinetics (percentiles, maximum value, minimum value, range, standard deviation, mean, median, mode, skewness, and kurtosis). Finally, correlations between these values and response to NAC (evaluated on the surgical specimen according to RECIST 1.1 criteria) were assessed. Out of 69 tumors, 33 (47.8%) achieved complete pathological response, 26 (37.7%) partial response, and 10 (14.5%) no response. Higher levels of AUCmax ( p value = 0.0338), AUCrange ( p value = 0.0311), and TME 75 ( p value = 0.0452) and lower levels of washout 10 ( p value = 0.0417), washout 20 ( p value = 0.0138), washout 25 ( p value = 0.0114), and washout 30 ( p value = 0.05) were predictive of noncomplete response. Histogram-derived texture analysis of MRI images allows finding quantitative parameters predictive of nonresponse to NAC in women affected by locally advanced BC.
Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme
2013-07-01
The design of RNA sequences folding into predefined secondary structures is a milestone for many synthetic biology and gene therapy studies. Most of the current software uses similar local search strategies (i.e. a random seed is progressively adapted to acquire the desired folding properties) and more importantly do not allow the user to control explicitly the nucleotide distribution such as the GC-content in their sequences. However, the latter is an important criterion for large-scale applications as it could presumably be used to design sequences with better transcription rates and/or structural plasticity. In this article, we introduce IncaRNAtion, a novel algorithm to design RNA sequences folding into target secondary structures with a predefined nucleotide distribution. IncaRNAtion uses a global sampling approach and weighted sampling techniques. We show that our approach is fast (i.e. running time comparable or better than local search methods), seedless (we remove the bias of the seed in local search heuristics) and successfully generates high-quality sequences (i.e. thermodynamically stable) for any GC-content. To complete this study, we develop a hybrid method combining our global sampling approach with local search strategies. Remarkably, our glocal methodology overcomes both local and global approaches for sampling sequences with a specific GC-content and target structure. IncaRNAtion is available at csb.cs.mcgill.ca/incarnation/. Supplementary data are available at Bioinformatics online.
Computer-based prediction of mitochondria-targeting peptides.
Martelli, Pier Luigi; Savojardo, Castrense; Fariselli, Piero; Tasco, Gianluca; Casadio, Rita
2015-01-01
Computational methods are invaluable when protein sequences, directly derived from genomic data, need functional and structural annotation. Subcellular localization is a feature necessary for understanding the protein role and the compartment where the mature protein is active and very difficult to characterize experimentally. Mitochondrial proteins encoded on the cytosolic ribosomes carry specific patterns in the precursor sequence from where it is possible to recognize a peptide targeting the protein to its final destination. Here we discuss to which extent it is feasible to develop computational methods for detecting mitochondrial targeting peptides in the precursor sequences and benchmark our and other methods on the human mitochondrial proteins endowed with experimentally characterized targeting peptides. Furthermore, we illustrate our newly implemented web server and its usage on the whole human proteome in order to infer mitochondrial targeting peptides, their cleavage sites, and whether the targeting peptide regions contain or not arginine-rich recurrent motifs. By this, we add some other 2,800 human proteins to the 124 ones already experimentally annotated with a mitochondrial targeting peptide.
Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion
Dunn, Timothy W; Mu, Yu; Narayan, Sujatha; Randlett, Owen; Naumann, Eva A; Yang, Chao-Tsung; Schier, Alexander F
2016-01-01
In the absence of salient sensory cues to guide behavior, animals must still execute sequences of motor actions in order to forage and explore. How such successive motor actions are coordinated to form global locomotion trajectories is unknown. We mapped the structure of larval zebrafish swim trajectories in homogeneous environments and found that trajectories were characterized by alternating sequences of repeated turns to the left and to the right. Using whole-brain light-sheet imaging, we identified activity relating to the behavior in specific neural populations that we termed the anterior rhombencephalic turning region (ARTR). ARTR perturbations biased swim direction and reduced the dependence of turn direction on turn history, indicating that the ARTR is part of a network generating the temporal correlations in turn direction. We also find suggestive evidence for ARTR mutual inhibition and ARTR projections to premotor neurons. Finally, simulations suggest the observed turn sequences may underlie efficient exploration of local environments. DOI: http://dx.doi.org/10.7554/eLife.12741.001 PMID:27003593
Cianciulli, Antonia; Calvello, Rosa; Panaro, Maria A
2015-04-01
In the homologous genes studied, the exons and introns alternated in the same order in mouse and human. We studied, in both species: corresponding short segments of introns, whole corresponding introns and complete homologous genes. We considered the total number of nucleotides and the number and orientation of the SINE inserts. Comparisons of mouse and human data series showed that at the level of individual relatively short segments of intronic sequences the stochastic variability prevails in the local structuring, but at higher levels of organization a deterministic component emerges, conserved in mouse and human during the divergent evolution, despite the ample re-editing of the intronic sequences and the fact that processes such as SINE spread had taken place in an independent way in the two species. Intron conservation is negatively correlated with the SINE occupancy, suggesting that virus inserts interfere with the conservation of the sequences inherited from the common ancestor. Copyright © 2015 Elsevier Ltd. All rights reserved.
HMM-ModE: implementation, benchmarking and validation with HMMER3
2014-01-01
Background HMM-ModE is a computational method that generates family specific profile HMMs using negative training sequences. The method optimizes the discrimination threshold using 10 fold cross validation and modifies the emission probabilities of profiles to reduce common fold based signals shared with other sub-families. The protocol depends on the program HMMER for HMM profile building and sequence database searching. The recent release of HMMER3 has improved database search speed by several orders of magnitude, allowing for the large scale deployment of the method in sequence annotation projects. We have rewritten our existing scripts both at the level of parsing the HMM profiles and modifying emission probabilities to upgrade HMM-ModE using HMMER3 that takes advantage of its probabilistic inference with high computational speed. The method is benchmarked and tested on GPCR dataset as an accurate and fast method for functional annotation. Results The implementation of this method, which now works with HMMER3, is benchmarked with the earlier version of HMMER, to show that the effect of local-local alignments is marked only in the case of profiles containing a large number of discontinuous match states. The method is tested on a gold standard set of families and we have reported a significant reduction in the number of false positive hits over the default HMM profiles. When implemented on GPCR sequences, the results showed an improvement in the accuracy of classification compared with other methods used to classify the familyat different levels of their classification hierarchy. Conclusions The present findings show that the new version of HMM-ModE is a highly specific method used to differentiate between fold (superfamily) and function (family) specific signals, which helps in the functional annotation of protein sequences. The use of modified profile HMMs of GPCR sequences provides a simple yet highly specific method for classification of the family, being able to predict the sub-family specific sequences with high accuracy even though sequences share common physicochemical characteristics between sub-families. PMID:25073805
Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study.
Fast, Martin F; Eiben, Björn; Menten, Martin J; Wetscherek, Andreas; Hawkes, David J; McClelland, Jamie R; Oelfke, Uwe
2017-12-01
Radiotherapy guidance based on magnetic resonance imaging (MRI) is currently becoming a clinical reality. Fast 2d cine MRI sequences are expected to increase the precision of radiation delivery by facilitating tumour delineation during treatment. This study compares four auto-contouring algorithms for the task of delineating the primary tumour in six locally advanced (LA) lung cancer patients. Twenty-two cine MRI sequences were acquired using either a balanced steady-state free precession or a spoiled gradient echo imaging technique. Contours derived by the auto-contouring algorithms were compared against manual reference contours. A selection of eight image data sets was also used to assess the inter-observer delineation uncertainty. Algorithmically derived contours agreed well with the manual reference contours (median Dice similarity index: ⩾0.91). Multi-template matching and deformable image registration performed significantly better than feature-driven registration and the pulse-coupled neural network (PCNN). Neither MRI sequence nor image orientation was a conclusive predictor for algorithmic performance. Motion significantly degraded the performance of the PCNN. The inter-observer variability was of the same order of magnitude as the algorithmic performance. Auto-contouring of tumours on cine MRI is feasible in LA lung cancer patients. Despite large variations in implementation complexity, the different algorithms all have relatively similar performance. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
A slow earthquake sequence on the San Andreas fault
Linde, A.T.; Gladwin, M.T.; Johnston, M.J.S.; Gwyther, R.L.; Bilham, R.G.
1996-01-01
EARTHQUAKES typically release stored strain energy on timescales of the order of seconds, limited by the velocity of sound in rock. Over the past 20 years, observations and laboratory experiments have indicated that capture can also occur more slowly, with durations up to hours. Such events may be important in earthquake nucleation and in accounting for the excess of plate convergence over seismic slip in subduction zones. The detection of events with larger timescales requires near-field deformation measurements. In December 1992, two borehole strainmeters close to the San Andreas fault in California recorded a slow strain event of about a week in duration, and we show here that the strain changes were produced by a slow earthquake sequence (equivalent magnitude 4.8) with complexity similar to that of regular earthquakes. The largest earthquakes associated with these slow events were small (local magnitude 3.7) and contributed negligible strain release. The importance of slow earthquakes in the seismogenic process remains an open question, but these observations extend the observed timescale for slow events by two orders of magnitude.
Processing Dynamic Image Sequences from a Moving Sensor.
1984-02-01
65 Roadsign Image Sequence ..... ................ ... 70 Roadsign Sequence with Redundant Features .. ........ . 79 Roadsign Subimage...Selected Feature Error Values .. ........ 66 2c. Industrial Image Selected Feature Local Search Values. .. .... 67 3ab. Roadsign Image Error Values...72 3c. Roadsign Image Local Search Values ............. 73 4ab. Roadsign Redundant Feature Error Values. ............ 8 4c. Roadsign
2016-01-01
Abstract Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G‐LoSA. G‐LoSA aligns protein local structures in a sequence order independent way and provides a GA‐score, a chemical feature‐based and size‐independent structure similarity score. Our benchmark validation shows the robust performance of G‐LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure‐centric comparative biology studies. In particular, G‐LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G‐LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer‐aided drug design. We hope that G‐LoSA can be a useful computational method for exploring interesting biological problems through large‐scale comparison of protein local structures and facilitating drug discovery research and development. G‐LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/. PMID:26813336
Lee, Hui Sun; Im, Wonpil
2016-04-01
Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G-LoSA. G-LoSA aligns protein local structures in a sequence order independent way and provides a GA-score, a chemical feature-based and size-independent structure similarity score. Our benchmark validation shows the robust performance of G-LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure-centric comparative biology studies. In particular, G-LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G-LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer-aided drug design. We hope that G-LoSA can be a useful computational method for exploring interesting biological problems through large-scale comparison of protein local structures and facilitating drug discovery research and development. G-LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/. © 2016 The Protein Society.
SCALCE: boosting sequence compression algorithms using locally consistent encoding
Hach, Faraz; Numanagić, Ibrahim; Sahinalp, S Cenk
2012-01-01
Motivation: The high throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for the computational infrastructure. Data management, storage and analysis have become major logistical obstacles for those adopting the new platforms. The requirement for large investment for this purpose almost signalled the end of the Sequence Read Archive hosted at the National Center for Biotechnology Information (NCBI), which holds most of the sequence data generated world wide. Currently, most HTS data are compressed through general purpose algorithms such as gzip. These algorithms are not designed for compressing data generated by the HTS platforms; for example, they do not take advantage of the specific nature of genomic sequence data, that is, limited alphabet size and high similarity among reads. Fast and efficient compression algorithms designed specifically for HTS data should be able to address some of the issues in data management, storage and communication. Such algorithms would also help with analysis provided they offer additional capabilities such as random access to any read and indexing for efficient sequence similarity search. Here we present SCALCE, a ‘boosting’ scheme based on Locally Consistent Parsing technique, which reorganizes the reads in a way that results in a higher compression speed and compression rate, independent of the compression algorithm in use and without using a reference genome. Results: Our tests indicate that SCALCE can improve the compression rate achieved through gzip by a factor of 4.19—when the goal is to compress the reads alone. In fact, on SCALCE reordered reads, gzip running time can improve by a factor of 15.06 on a standard PC with a single core and 6 GB memory. Interestingly even the running time of SCALCE + gzip improves that of gzip alone by a factor of 2.09. When compared with the recently published BEETL, which aims to sort the (inverted) reads in lexicographic order for improving bzip2, SCALCE + gzip provides up to 2.01 times better compression while improving the running time by a factor of 5.17. SCALCE also provides the option to compress the quality scores as well as the read names, in addition to the reads themselves. This is achieved by compressing the quality scores through order-3 Arithmetic Coding (AC) and the read names through gzip through the reordering SCALCE provides on the reads. This way, in comparison with gzip compression of the unordered FASTQ files (including reads, read names and quality scores), SCALCE (together with gzip and arithmetic encoding) can provide up to 3.34 improvement in the compression rate and 1.26 improvement in running time. Availability: Our algorithm, SCALCE (Sequence Compression Algorithm using Locally Consistent Encoding), is implemented in C++ with both gzip and bzip2 compression options. It also supports multithreading when gzip option is selected, and the pigz binary is available. It is available at http://scalce.sourceforge.net. Contact: fhach@cs.sfu.ca or cenk@cs.sfu.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23047557
EST-PAC a web package for EST annotation and protein sequence prediction
Strahm, Yvan; Powell, David; Lefèvre, Christophe
2006-01-01
With the decreasing cost of DNA sequencing technology and the vast diversity of biological resources, researchers increasingly face the basic challenge of annotating a larger number of expressed sequences tags (EST) from a variety of species. This typically consists of a series of repetitive tasks, which should be automated and easy to use. The results of these annotation tasks need to be stored and organized in a consistent way. All these operations should be self-installing, platform independent, easy to customize and amenable to using distributed bioinformatics resources available on the Internet. In order to address these issues, we present EST-PAC a web oriented multi-platform software package for expressed sequences tag (EST) annotation. EST-PAC provides a solution for the administration of EST and protein sequence annotations accessible through a web interface. Three aspects of EST annotation are automated: 1) searching local or remote biological databases for sequence similarities using Blast services, 2) predicting protein coding sequence from EST data and, 3) annotating predicted protein sequences with functional domain predictions. In practice, EST-PAC integrates the BLASTALL suite, EST-Scan2 and HMMER in a relational database system accessible through a simple web interface. EST-PAC also takes advantage of the relational database to allow consistent storage, powerful queries of results and, management of the annotation process. The system allows users to customize annotation strategies and provides an open-source data-management environment for research and education in bioinformatics. PMID:17147782
Association mining of dependency between time series
NASA Astrophysics Data System (ADS)
Hafez, Alaaeldin
2001-03-01
Time series analysis is considered as a crucial component of strategic control over a broad variety of disciplines in business, science and engineering. Time series data is a sequence of observations collected over intervals of time. Each time series describes a phenomenon as a function of time. Analysis on time series data includes discovering trends (or patterns) in a time series sequence. In the last few years, data mining has emerged and been recognized as a new technology for data analysis. Data Mining is the process of discovering potentially valuable patterns, associations, trends, sequences and dependencies in data. Data mining techniques can discover information that many traditional business analysis and statistical techniques fail to deliver. In this paper, we adapt and innovate data mining techniques to analyze time series data. By using data mining techniques, maximal frequent patterns are discovered and used in predicting future sequences or trends, where trends describe the behavior of a sequence. In order to include different types of time series (e.g. irregular and non- systematic), we consider past frequent patterns of the same time sequences (local patterns) and of other dependent time sequences (global patterns). We use the word 'dependent' instead of the word 'similar' for emphasis on real life time series where two time series sequences could be completely different (in values, shapes, etc.), but they still react to the same conditions in a dependent way. In this paper, we propose the Dependence Mining Technique that could be used in predicting time series sequences. The proposed technique consists of three phases: (a) for all time series sequences, generate their trend sequences, (b) discover maximal frequent trend patterns, generate pattern vectors (to keep information of frequent trend patterns), use trend pattern vectors to predict future time series sequences.
First-order and higher order sequence learning in specific language impairment.
Clark, Gillian M; Lum, Jarrad A G
2017-02-01
A core claim of the procedural deficit hypothesis of specific language impairment (SLI) is that the disorder is associated with poor implicit sequence learning. This study investigated whether implicit sequence learning problems in SLI are present for first-order conditional (FOC) and higher order conditional (HOC) sequences. Twenty-five children with SLI and 27 age-matched, nonlanguage-impaired children completed 2 serial reaction time tasks. On 1 version, the sequence to be implicitly learnt comprised a FOC sequence and on the other a HOC sequence. Results showed that the SLI group learned the HOC sequence (η p ² = .285, p = .005) but not the FOC sequence (η p ² = .099, p = .118). The control group learned both sequences (FOC η p ² = .497, HOC η p 2= .465, ps < .001). The SLI group's difficulty learning the FOC sequence is consistent with the procedural deficit hypothesis. However, the study provides new evidence that multiple mechanisms may underpin the learning of FOC and HOC sequences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Role Sequencing: Does Order Matter for Mental Health?
ERIC Educational Resources Information Center
Jackson, Pamela Braboy
2004-01-01
Role sequencing refers to the ordering of social roles. According to the normative order hypothesis, adults who follow a certain sequencing of their social roles will be better adjusted than their peers who follow other life course patterns. The normative order is defined as first entering the paid labor force, getting married, and later having…
Eddy, Sean R.
2008-01-01
Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ = log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments. PMID:18516236
Maleki, Ehsan; Babashah, Hossein; Koohi, Somayyeh; Kavehvash, Zahra
2017-07-01
This paper presents an optical processing approach for exploring a large number of genome sequences. Specifically, we propose an optical correlator for global alignment and an extended moiré matching technique for local analysis of spatially coded DNA, whose output is fed to a novel three-dimensional artificial neural network for local DNA alignment. All-optical implementation of the proposed 3D artificial neural network is developed and its accuracy is verified in Zemax. Thanks to its parallel processing capability, the proposed structure performs local alignment of 4 million sequences of 150 base pairs in a few seconds, which is much faster than its electrical counterparts, such as the basic local alignment search tool.
Chemical probes of the conformation of DNA modified by cis-diamminedichloroplatinum(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrot, L.; Leng, M.
The purpose of this work was to analyze at the nucleotide level the distortions induced by the binding of cis-diamminedichloroplatinum(II) (cis-DDP) to DNA by means of chemical probes. In order to test the chemical probes, experiments were first carried out on two platinated oligonucleotides. It has been verified by circular dichroism and gel electrophoresis that the binding of cis-DDP to an AG or to a GTG site within a double-stranded oligonucleotide distorts the double helix. The reactivity of the oligonucleotide platinated at the GTG site with chloroacetaldehyde, diethyl pyrocarbonate, and osmium tetraoxide, respectively, suggests a local denaturation of the doublemore » helix. The 5'G residue and the T residue within the adduct are no longer paired, while the 3'G residue is paired. The double helix is more distorted (but not denatured) at the 5' side of the adduct than at the 3' side. The reactivities of the chemical probes with six platinated DNA restriction fragments show that even at a relatively high level of platination only a few base pairs are unpaired but the double helix is largely distorted. No local denaturation has been detected at the GG sites separated from the nearest GG or AG sites by at least three base pairs. The AG sites separated from the nearest AG or GG sites by at least three base pairs do not denature the double helix locally when they are in the sequences puAG/pyTC. It is suggested that the distortion within these sequences is induced by adducts located further away along the DNA fragments, these sequences not being the major sites for the binding of cis-DDP.« less
Global and Local Pitch Perception in Children with Developmental Dyslexia
ERIC Educational Resources Information Center
Ziegler, Johannes C.; Pech-Georgel, Catherine; George, Florence; Foxton, Jessica M.
2012-01-01
This study investigated global versus local pitch pattern perception in children with dyslexia aged between 8 and 11 years. Children listened to two consecutive 4-tone pitch sequences while performing a same/different task. On the different trials, sequences either preserved the contour (local condition) or they violated the contour (global…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, Nicholas W.; The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD; Shoji, Yutaka
2016-01-01
AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. - Highlights: • We have identified a bipartitemore » nuclear localization sequence (NLS) in ARID1A. • Confirmation of the NLS was performed using GFP constructs. • NLS mutant ARID1A exhibits greater stability than wild-type ARID1A.« less
Optimal choice of word length when comparing two Markov sequences using a χ 2-statistic.
Bai, Xin; Tang, Kujin; Ren, Jie; Waterman, Michael; Sun, Fengzhu
2017-10-03
Alignment-free sequence comparison using counts of word patterns (grams, k-tuples) has become an active research topic due to the large amount of sequence data from the new sequencing technologies. Genome sequences are frequently modelled by Markov chains and the likelihood ratio test or the corresponding approximate χ 2 -statistic has been suggested to compare two sequences. However, it is not known how to best choose the word length k in such studies. We develop an optimal strategy to choose k by maximizing the statistical power of detecting differences between two sequences. Let the orders of the Markov chains for the two sequences be r 1 and r 2 , respectively. We show through both simulations and theoretical studies that the optimal k= max(r 1 ,r 2 )+1 for both long sequences and next generation sequencing (NGS) read data. The orders of the Markov chains may be unknown and several methods have been developed to estimate the orders of Markov chains based on both long sequences and NGS reads. We study the power loss of the statistics when the estimated orders are used. It is shown that the power loss is minimal for some of the estimators of the orders of Markov chains. Our studies provide guidelines on choosing the optimal word length for the comparison of Markov sequences.
A novel directional asymmetric sampling search algorithm for fast block-matching motion estimation
NASA Astrophysics Data System (ADS)
Li, Yue-e.; Wang, Qiang
2011-11-01
This paper proposes a novel directional asymmetric sampling search (DASS) algorithm for video compression. Making full use of the error information (block distortions) of the search patterns, eight different direction search patterns are designed for various situations. The strategy of local sampling search is employed for the search of big-motion vector. In order to further speed up the search, early termination strategy is adopted in procedure of DASS. Compared to conventional fast algorithms, the proposed method has the most satisfactory PSNR values for all test sequences.
Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Eliot D; Ma, Jie; Delaire, Olivier A
2015-01-01
Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller, Ralph, E-mail: ralph.mueller@ise.fraunhofer.de; Schrof, Julian; Reichel, Christian
2014-09-08
The highest energy conversion efficiencies in the field of silicon-based photovoltaics have been achieved with back-junction back-contact (BJBC) silicon solar cells by several companies and research groups. One of the most complex parts of this cell structure is the fabrication of the locally doped p- and n-type regions, both on the back side of the solar cell. In this work, we introduce a process sequence based on a synergistic use of ion implantation and furnace diffusion. This sequence enables the formation of all doped regions for a BJBC silicon solar cell in only three processing steps. We observed that implantedmore » phosphorus can block the diffusion of boron atoms into the silicon substrate by nearly three orders of magnitude. Thus, locally implanted phosphorus can be used as an in-situ mask for a subsequent boron diffusion which simultaneously anneals the implanted phosphorus and forms the boron emitter. BJBC silicon solar cells produced with such an easy-to-fabricate process achieved conversion efficiencies of up to 21.7%. An open-circuit voltage of 674 mV and a fill factor of 80.6% prove that there is no significant recombination at the sharp transition between the highly doped emitter and the highly doped back surface field at the device level.« less
Tolentino, Jerlyn C; Pirogovsky, Eva; Luu, Trinh; Toner, Chelsea K; Gilbert, Paul E
2012-05-21
Two experiments tested the effect of temporal interference on order memory for fixed and random sequences in young adults and nondemented older adults. The results demonstrate that temporal order memory for fixed and random sequences is impaired in nondemented older adults, particularly when temporal interference is high. However, temporal order memory for fixed sequences is comparable between older adults and young adults when temporal interference is minimized. The results suggest that temporal order memory is less efficient and more susceptible to interference in older adults, possibly due to impaired temporal pattern separation.
Small-target leak detection for a closed vessel via infrared image sequences
NASA Astrophysics Data System (ADS)
Zhao, Ling; Yang, Hongjiu
2017-03-01
This paper focus on a leak diagnosis and localization method based on infrared image sequences. Some problems on high probability of false warning and negative affect for marginal information are solved by leak detection. An experimental model is established for leak diagnosis and localization on infrared image sequences. The differential background prediction is presented to eliminate the negative affect of marginal information on test vessel based on a kernel regression method. A pipeline filter based on layering voting is designed to reduce probability of leak point false warning. A synthesize leak diagnosis and localization algorithm is proposed based on infrared image sequences. The effectiveness and potential are shown for developed techniques through experimental results.
A Robust Crowdsourcing-Based Indoor Localization System.
Zhou, Baoding; Li, Qingquan; Mao, Qingzhou; Tu, Wei
2017-04-14
WiFi fingerprinting-based indoor localization has been widely used due to its simplicity and can be implemented on the smartphones. The major drawback of WiFi fingerprinting is that the radio map construction is very labor-intensive and time-consuming. Another drawback of WiFi fingerprinting is the Received Signal Strength (RSS) variance problem, caused by environmental changes and device diversity. RSS variance severely degrades the localization accuracy. In this paper, we propose a robust crowdsourcing-based indoor localization system (RCILS). RCILS can automatically construct the radio map using crowdsourcing data collected by smartphones. RCILS abstracts the indoor map as the semantics graph in which the edges are the possible user paths and the vertexes are the location where users may take special activities. RCILS extracts the activity sequence contained in the trajectories by activity detection and pedestrian dead-reckoning. Based on the semantics graph and activity sequence, crowdsourcing trajectories can be located and a radio map is constructed based on the localization results. For the RSS variance problem, RCILS uses the trajectory fingerprint model for indoor localization. During online localization, RCILS obtains an RSS sequence and realizes localization by matching the RSS sequence with the radio map. To evaluate RCILS, we apply RCILS in an office building. Experiment results demonstrate the efficiency and robustness of RCILS.
A Robust Crowdsourcing-Based Indoor Localization System
Zhou, Baoding; Li, Qingquan; Mao, Qingzhou; Tu, Wei
2017-01-01
WiFi fingerprinting-based indoor localization has been widely used due to its simplicity and can be implemented on the smartphones. The major drawback of WiFi fingerprinting is that the radio map construction is very labor-intensive and time-consuming. Another drawback of WiFi fingerprinting is the Received Signal Strength (RSS) variance problem, caused by environmental changes and device diversity. RSS variance severely degrades the localization accuracy. In this paper, we propose a robust crowdsourcing-based indoor localization system (RCILS). RCILS can automatically construct the radio map using crowdsourcing data collected by smartphones. RCILS abstracts the indoor map as the semantics graph in which the edges are the possible user paths and the vertexes are the location where users may take special activities. RCILS extracts the activity sequence contained in the trajectories by activity detection and pedestrian dead-reckoning. Based on the semantics graph and activity sequence, crowdsourcing trajectories can be located and a radio map is constructed based on the localization results. For the RSS variance problem, RCILS uses the trajectory fingerprint model for indoor localization. During online localization, RCILS obtains an RSS sequence and realizes localization by matching the RSS sequence with the radio map. To evaluate RCILS, we apply RCILS in an office building. Experiment results demonstrate the efficiency and robustness of RCILS. PMID:28420108
Soo Shin, Jane Hae
2017-01-01
Abstract Guanine-rich (G-rich) homopurine–homopyrimidine nucleotide sequences can block transcription with an efficiency that depends upon their orientation, composition and length, as well as the presence of negative supercoiling or breaks in the non-template DNA strand. We report that a G-rich sequence in the non-template strand reduces the yield of T7 RNA polymerase transcription by more than an order of magnitude when positioned close (9 bp) to the promoter, in comparison to that for a distal (∼250 bp) location of the same sequence. This transcription blockage is much less pronounced for a C-rich sequence, and is not significant for an A-rich sequence. Remarkably, the blockage is not pronounced if transcription is performed in the presence of RNase H, which specifically digests the RNA strands within RNA–DNA hybrids. The blockage also becomes less pronounced upon reduced RNA polymerase concentration. Based upon these observations and those from control experiments, we conclude that the blockage is primarily due to the formation of stable RNA–DNA hybrids (R-loops), which inhibit successive rounds of transcription. Our results could be relevant to transcription dynamics in vivo (e.g. transcription ‘bursting’) and may also have practical implications for the design of expression vectors. PMID:28498974
Belotserkovskii, Boris P; Soo Shin, Jane Hae; Hanawalt, Philip C
2017-06-20
Guanine-rich (G-rich) homopurine-homopyrimidine nucleotide sequences can block transcription with an efficiency that depends upon their orientation, composition and length, as well as the presence of negative supercoiling or breaks in the non-template DNA strand. We report that a G-rich sequence in the non-template strand reduces the yield of T7 RNA polymerase transcription by more than an order of magnitude when positioned close (9 bp) to the promoter, in comparison to that for a distal (∼250 bp) location of the same sequence. This transcription blockage is much less pronounced for a C-rich sequence, and is not significant for an A-rich sequence. Remarkably, the blockage is not pronounced if transcription is performed in the presence of RNase H, which specifically digests the RNA strands within RNA-DNA hybrids. The blockage also becomes less pronounced upon reduced RNA polymerase concentration. Based upon these observations and those from control experiments, we conclude that the blockage is primarily due to the formation of stable RNA-DNA hybrids (R-loops), which inhibit successive rounds of transcription. Our results could be relevant to transcription dynamics in vivo (e.g. transcription 'bursting') and may also have practical implications for the design of expression vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
A space-efficient algorithm for local similarities.
Huang, X Q; Hardison, R C; Miller, W
1990-10-01
Existing dynamic-programming algorithms for identifying similar regions of two sequences require time and space proportional to the product of the sequence lengths. Often this space requirement is more limiting than the time requirement. We describe a dynamic-programming local-similarity algorithm that needs only space proportional to the sum of the sequence lengths. The method can also find repeats within a single long sequence. To illustrate the algorithm's potential, we discuss comparison of a 73,360 nucleotide sequence containing the human beta-like globin gene cluster and a corresponding 44,594 nucleotide sequence for rabbit, a problem well beyond the capabilities of other dynamic-programming software.
NASA Astrophysics Data System (ADS)
Daneshian, Jahanbakhsh; Ramezani Dana, Leila; Sadler, Peter
2017-01-01
Benthic foraminifera species commonly outnumber planktic species in the type area of the Lower Miocene Qom Formation, in north central Iran, where it records the Tethyan link between the eastern Mediterranean and Indo- Pacific provinces. Because measured sections preserve very different sequences of first and last occurrences of these species, no single section provides a completely suitable baseline for correlation. To resolve this problem, we combined bioevents from three stratigraphic sections into a single composite sequence by constrained optimization (CONOP). The composite section arranges the first and last appearance events (FAD and LAD) of 242 foraminifera in an optimal order that minimizes the implied diachronism between sections. The composite stratigraphic ranges of the planktic foraminifera support a practical biozonation which reveals substantial local changes of accumulation rate during Aquitanian to Burdigalian times. Traditional biozone boundaries emerge little changed but an order of magnitude more correlations can be interpolated. The top of the section at Dobaradar is younger than previously thought and younger than sections at Dochah and Tigheh Reza-Abad. The latter two sections probably extend older into the Aquitanian than the Dobaradar section, but likely include a hiatus near the base of the Burdigalian. The bounding contacts with the Upper Red and Lower Red Formations are shown to be diachronous.
NASA Astrophysics Data System (ADS)
Ravara, Ascensão; Ramos, Diana; Teixeira, Marcos A. L.; Costa, Filipe O.; Cunha, Marina R.
2017-03-01
The polychaetes of the order Phyllodocida (excluding Nereidiformia and Phyllodociformia incertae sedis) collected from deep-sea habitats of the Iberian margin (Bay of Biscay, Horseshoe continental rise, Gulf of Cadiz and Alboran Sea), and Atlantic seamounts (Gorringe Bank, Atlantis and Nameless) are reported herein. Thirty-six species belonging to seven families - Acoetidae, Pholoidae, Polynoidae, Sigalionidae, Glyceridae, Goniadidae and Phyllodocidae, were identified. Amended descriptions and/or new illustrations are given for the species Allmaniella setubalensis, Anotochaetonoe michelbhaudi, Lepidasthenia brunnea and Polynoe sp. Relevant taxonomical notes are provided for other seventeen species. Allmaniella setubalensis, Anotochaetonoe michelbhaudi, Harmothoe evei, Eumida longicirrata and Glycera noelae, previously known only from their type localities were found in different deep-water places of the studied areas and constitute new records for the Iberian margin. The geographic distributions and the bathymetric range of thirteen and fifteen species, respectively, are extended. The morphology-based biodiversity inventory was complemented with DNA sequences of the mitochondrial barcode region (COI barcodes) providing a molecular tag for future reference. Twenty new sequences were obtained for nine species in the families Acoetidae, Glyceridae and Polynoidae and for three lineages within the Phylodoce madeirensis complex (Phyllodocidae). A brief analysis of the newly obtained sequences and publicly available COI barcode data for the genera herein reported, highlighted several cases of unclear taxonomic assignments, which need further study.
On Fusing Recursive Traversals of K-d Trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; Kim, Jinsung; Krishnamoorthy, Sriram
Loop fusion is a key program transformation for data locality optimization that is implemented in production compilers. But optimizing compilers currently cannot exploit fusion opportunities across a set of recursive tree traversal computations with producer-consumer relationships. In this paper, we develop a compile-time approach to dependence characterization and program transformation to enable fusion across recursively specified traversals over k-ary trees. We present the FuseT source-to-source code transformation framework to automatically generate fused composite recursive operators from an input program containing a sequence of primitive recursive operators. We use our framework to implement fused operators for MADNESS, Multiresolution Adaptive Numerical Environmentmore » for Scientific Simulation. We show that locality optimization through fusion can offer more than an order of magnitude performance improvement.« less
Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr
2014-04-01
Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.
INFO-RNA--a fast approach to inverse RNA folding.
Busch, Anke; Backofen, Rolf
2006-08-01
The structure of RNA molecules is often crucial for their function. Therefore, secondary structure prediction has gained much interest. Here, we consider the inverse RNA folding problem, which means designing RNA sequences that fold into a given structure. We introduce a new algorithm for the inverse folding problem (INFO-RNA) that consists of two parts; a dynamic programming method for good initial sequences and a following improved stochastic local search that uses an effective neighbor selection method. During the initialization, we design a sequence that among all sequences adopts the given structure with the lowest possible energy. For the selection of neighbors during the search, we use a kind of look-ahead of one selection step applying an additional energy-based criterion. Afterwards, the pre-ordered neighbors are tested using the actual optimization criterion of minimizing the structure distance between the target structure and the mfe structure of the considered neighbor. We compared our algorithm to RNAinverse and RNA-SSD for artificial and biological test sets. Using INFO-RNA, we performed better than RNAinverse and in most cases, we gained better results than RNA-SSD, the probably best inverse RNA folding tool on the market. www.bioinf.uni-freiburg.de?Subpages/software.html.
Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, Takashi; Suzuki, Shunji; Kanno, Motoko
2006-06-10
Nop25 is a putative RNA binding nucleolar protein associated with rRNA transcription. The present study was undertaken to determine the mechanism of Nop25 localization in the nucleolus. Deletion experiments of Nop25 amino acid sequence showed Nop25 to contain a nuclear targeting sequence in the N-terminal and a nucleolar targeting sequence in the C-terminal. By expressing derivative peptides from the C-terminal as GFP-fusion proteins in the cells, a lysine and arginine residue-enriched peptide (KRKHPRRAQDSTKKPPSATRTSKTQRRRR) allowed a GFP-fusion protein to be transported and fully retained in the nucleolus. When the peptide was fused with cMyc epitope and expressed in the cells, amore » cMyc epitope was then detected in the nucleolus. Nop25 did not localize in the nucleolus by deletion of the peptide from Nop25. Furthermore, deletion of a subdomain (KRKHPRRAQ) in the peptide or amino acid substitution of lysine and arginine residues in the subdomain resulted in the loss of Nop25 nucleolar localization. These results suggest that the lysine and arginine residue-enriched peptide is the most prominent nucleolar targeting sequence of Nop25 and that the long stretch of basic residues might play an important role in the nucleolar localization of Nop25. Although Nop25 contained putative SUMOylation, phosphorylation and glycosylation sites, the amino acid substitution in these sites had no effect on the nucleolar localization, thus suggesting that these post-translational modifications did not contribute to the localization of Nop25 in the nucleolus. The treatment of the cells, which expressed a GFP-fusion protein with a nucleolar targeting sequence of Nop25, with RNase A resulted in a complete dislocation of the protein from the nucleolus. These data suggested that the nucleolar targeting sequence might therefore play an important role in the binding of Nop25 to RNA molecules and that the RNA binding of Nop25 might be essential for the nucleolar localization of Nop25.« less
Watermarking scheme for authentication of compressed image
NASA Astrophysics Data System (ADS)
Hsieh, Tsung-Han; Li, Chang-Tsun; Wang, Shuo
2003-11-01
As images are commonly transmitted or stored in compressed form such as JPEG, to extend the applicability of our previous work, a new scheme for embedding watermark in compressed domain without resorting to cryptography is proposed. In this work, a target image is first DCT transformed and quantised. Then, all the coefficients are implicitly watermarked in order to minimize the risk of being attacked on the unwatermarked coefficients. The watermarking is done through registering/blending the zero-valued coefficients with a binary sequence to create the watermark and involving the unembedded coefficients during the process of embedding the selected coefficients. The second-order neighbors and the block itself are considered in the process of the watermark embedding in order to thwart different attacks such as cover-up, vector quantisation, and transplantation. The experiments demonstrate the capability of the proposed scheme in thwarting local tampering, geometric transformation such as cropping, and common signal operations such as lowpass filtering.
The Ordered Clustered Travelling Salesman Problem: A Hybrid Genetic Algorithm
Ahmed, Zakir Hussain
2014-01-01
The ordered clustered travelling salesman problem is a variation of the usual travelling salesman problem in which a set of vertices (except the starting vertex) of the network is divided into some prespecified clusters. The objective is to find the least cost Hamiltonian tour in which vertices of any cluster are visited contiguously and the clusters are visited in the prespecified order. The problem is NP-hard, and it arises in practical transportation and sequencing problems. This paper develops a hybrid genetic algorithm using sequential constructive crossover, 2-opt search, and a local search for obtaining heuristic solution to the problem. The efficiency of the algorithm has been examined against two existing algorithms for some asymmetric and symmetric TSPLIB instances of various sizes. The computational results show that the proposed algorithm is very effective in terms of solution quality and computational time. Finally, we present solution to some more symmetric TSPLIB instances. PMID:24701148
Real-time global illumination on mobile device
NASA Astrophysics Data System (ADS)
Ahn, Minsu; Ha, Inwoo; Lee, Hyong-Euk; Kim, James D. K.
2014-02-01
We propose a novel method for real-time global illumination on mobile devices. Our approach is based on instant radiosity, which uses a sequence of virtual point lights in order to represent the e ect of indirect illumination. Our rendering process consists of three stages. With the primary light, the rst stage generates a local illumination with the shadow map on GPU The second stage of the global illumination uses the re ective shadow map on GPU and generates the sequence of virtual point lights on CPU. Finally, we use the splatting method of Dachsbacher et al 1 and add the indirect illumination to the local illumination on GPU. With the limited computing resources in mobile devices, a small number of virtual point lights are allowed for real-time rendering. Our approach uses the multi-resolution sampling method with 3D geometry and attributes simultaneously and reduce the total number of virtual point lights. We also use the hybrid strategy, which collaboratively combines the CPUs and GPUs available in a mobile SoC due to the limited computing resources in mobile devices. Experimental results demonstrate the global illumination performance of the proposed method.
Lee, Jongkeun; Lee, Andy Jinseok; Lee, June-Koo; Park, Jongkeun; Kwon, Youngoh; Park, Seongyeol; Chun, Hyonho; Ju, Young Seok; Hong, Dongwan
2018-05-22
Somatic genome mutations occur due to combinations of various intrinsic/extrinsic mutational processes and DNA repair mechanisms. Different molecular processes frequently generate different signatures of somatic mutations in their own favored contexts. As a result, the regional somatic mutation rate is dependent on the local DNA sequence, the DNA replication/RNA transcription dynamics and epigenomic chromatin organization landscape in the genome. Here, we propose an online computational framework, termed Mutalisk, which correlates somatic mutations with various genomic, transcriptional and epigenomic features in order to understand mutational processes that contribute to the generation of the mutations. This user-friendly tool explores the presence of localized hypermutations (kataegis), dissects the spectrum of mutations into the maximum likelihood combination of known mutational signatures and associates the mutation density with numerous regulatory elements in the genome. As a result, global patterns of somatic mutations in any query sample can be efficiently screened, thus enabling a deeper understanding of various mutagenic factors. This tool will facilitate more effective downstream analyses of cancer genome sequences to elucidate the diversity of mutational processes underlying the development and clonal evolution of cancer cells. Mutalisk is freely available at http://mutalisk.org.
Towards Long-Range RNA Structure Prediction in Eukaryotic Genes.
Pervouchine, Dmitri D
2018-06-15
The ability to form an intramolecular structure plays a fundamental role in eukaryotic RNA biogenesis. Proximate regions in the primary transcripts fold into a local secondary structure, which is then hierarchically assembled into a tertiary structure that is stabilized by RNA-binding proteins and long-range intramolecular base pairings. While the local RNA structure can be predicted reasonably well for short sequences, long-range structure at the scale of eukaryotic genes remains problematic from the computational standpoint. The aim of this review is to list functional examples of long-range RNA structures, to summarize current comparative methods of structure prediction, and to highlight their advances and limitations in the context of long-range RNA structures. Most comparative methods implement the “first-align-then-fold” principle, i.e., they operate on multiple sequence alignments, while functional RNA structures often reside in non-conserved parts of the primary transcripts. The opposite “first-fold-then-align” approach is currently explored to a much lesser extent. Developing novel methods in both directions will improve the performance of comparative RNA structure analysis and help discover novel long-range structures, their higher-order organization, and RNA⁻RNA interactions across the transcriptome.
Distinguishing thrust sequences in gravity-driven fold and thrust belts
NASA Astrophysics Data System (ADS)
Alsop, G. I.; Weinberger, R.; Marco, S.
2018-04-01
Piggyback or foreland-propagating thrust sequences, where younger thrusts develop in the footwalls of existing thrusts, are generally assumed to be the typical order of thrust development in most orogenic settings. However, overstep or 'break-back' sequences, where later thrusts develop above and in the hangingwalls of earlier thrusts, may potentially form during cessation of movement in gravity-driven mass transport deposits (MTDs). In this study, we provide a detailed outcrop-based analysis of such an overstep thrust sequence developed in an MTD in the southern Dead Sea Basin. Evidence that may be used to discriminate overstep thrusting from piggyback thrust sequences within the gravity-driven fold and thrust belt includes upright folds and forethrusts that are cut by younger overlying thrusts. Backthrusts form ideal markers that are also clearly offset and cut by overlying younger forethrusts. Portions of the basal detachment to the thrust system are folded and locally imbricated in footwall synclines below forethrust ramps, and these geometries also support an overstep sequence. However, new 'short-cut' basal detachments develop below these synclines, indicating that movement continued on the basal detachment rather than it being abandoned as in classic overstep sequences. Further evidence for 'synchronous thrusting', where movement on more than one thrust occurs at the same time, is provided by displacement patterns on sequences of thrust ramp imbricates that systematically increases downslope towards the toe of the MTD. Older thrusts that initiate downslope in the broadly overstep sequence continue to move and therefore accrue greater displacements during synchronous thrusting. Our study provides a template to help distinguish different thrust sequences in both orogenic settings and gravity-driven surficial systems, with displacement patterns potentially being imaged in seismic sections across offshore MTDs.
NASA Astrophysics Data System (ADS)
Choi, Jin-Hyuck; Klinger, Yann; Ferry, Matthieu; Ritz, Jean-François; Kurtz, Robin; Rizza, Magali; Bollinger, Laurent; Davaasambuu, Battogtokh; Tsend-Ayush, Nyambayar; Demberel, Sodnomsambuu
2018-02-01
In 1905, 14 days apart, two M 8 continental strike-slip earthquakes, the Tsetserleg and Bulnay earthquakes, occurred on the Bulnay fault system, in Mongolia. Together, they ruptured four individual faults, with a total length of 676 km. Using submetric optical satellite images "Pleiades" with ground resolution of 0.5 m, complemented by field observation, we mapped in detail the entire surface rupture associated with this earthquake sequence. Surface rupture along the main Bulnay fault is 388 km in length, striking nearly E-W. The rupture is formed by a series of fault segments that are 29 km long on average, separated by geometric discontinuities. Although there is a difference of about 2 m in the average slip between the western and eastern parts of the Bulnay rupture, along-fault slip variations are overall limited, resulting in a smooth slip distribution, except for local slip deficit at segment boundaries. We show that damage, including short branches and secondary faulting, associated with the rupture propagation, occurred significantly more often along the western part of the Bulnay rupture, while the eastern part of the rupture appears more localized and thus possibly structurally simpler. Eventually, the difference of slip between the western and eastern parts of the rupture is attributed to this difference of rupture localization, associated at first order with a lateral change in the local geology. Damage associated to rupture branching appears to be located asymmetrically along the extensional side of the strike-slip rupture and shows a strong dependence on structural geologic inheritance.
Imaging in rectal cancer with emphasis on local staging with MRI
Arya, Supreeta; Das, Deepak; Engineer, Reena; Saklani, Avanish
2015-01-01
Imaging in rectal cancer has a vital role in staging disease, and in selecting and optimizing treatment planning. High-resolution MRI (HR-MRI) is the recommended method of first choice for local staging of rectal cancer for both primary staging and for restaging after preoperative chemoradiation (CT-RT). HR-MRI helps decide between upfront surgery and preoperative CT-RT. It provides high accuracy for prediction of circumferential resection margin at surgery, T category, and nodal status in that order. MRI also helps assess resectability after preoperative CT-RT and decide between sphincter saving or more radical surgery. Accurate technique is crucial for obtaining high-resolution images in the appropriate planes for correct staging. The phased array external coil has replaced the endorectal coil that is no longer recommended. Non-fat suppressed 2D T2-weighted (T2W) sequences in orthogonal planes to the tumor are sufficient for primary staging. Contrast-enhanced MRI is considered inappropriate for both primary staging and restaging. Diffusion-weighted sequence may be of value in restaging. Multidetector CT cannot replace MRI in local staging, but has an important role for evaluating distant metastases. Positron emission tomography-computed tomography (PET/CT) has a limited role in the initial staging of rectal cancer and is reserved for cases with resectable metastatic disease before contemplating surgery. This article briefly reviews the comprehensive role of imaging in rectal cancer, describes the role of MRI in local staging in detail, discusses the optimal MRI technique, and provides a synoptic report for both primary staging and restaging after CT-RT in routine practice. PMID:25969638
Differentiating Visual from Response Sequencing during Long-term Skill Learning.
Lynch, Brighid; Beukema, Patrick; Verstynen, Timothy
2017-01-01
The dual-system model of sequence learning posits that during early learning there is an advantage for encoding sequences in sensory frames; however, it remains unclear whether this advantage extends to long-term consolidation. Using the serial RT task, we set out to distinguish the dynamics of learning sequential orders of visual cues from learning sequential responses. On each day, most participants learned a new mapping between a set of symbolic cues and responses made with one of four fingers, after which they were exposed to trial blocks of either randomly ordered cues or deterministic ordered cues (12-item sequence). Participants were randomly assigned to one of four groups (n = 15 per group): Visual sequences (same sequence of visual cues across training days), Response sequences (same order of key presses across training days), Combined (same serial order of cues and responses on all training days), and a Control group (a novel sequence each training day). Across 5 days of training, sequence-specific measures of response speed and accuracy improved faster in the Visual group than any of the other three groups, despite no group differences in explicit awareness of the sequence. The two groups that were exposed to the same visual sequence across days showed a marginal improvement in response binding that was not found in the other groups. These results indicate that there is an advantage, in terms of rate of consolidation across multiple days of training, for learning sequences of actions in a sensory representational space, rather than as motoric representations.
Birth order in small multihospital systems.
Luke, R D; Ozcan, Y A; Begun, J W
1990-06-01
The strategic behaviors of small multihospital systems have received little attention in the literature despite the fact that small systems are the predominant scale among multihospital systems. This study examines one important aspect of small-system strategic behaviors: the birth-order or evolutionary patterns of hospital acquisition. The evolutionary patterns of acquisition are compared across three strategic model types studied elsewhere: local market, investment, and historical. Using data obtained from a variety of sources, local market model systems are found, in the sequence of acquisition, to be significantly different from the other two model types in terms of relative distances of acquisitions from the initiating or parent hospital, the sizes of acquisition hospitals, the complexity of those hospitals, and the likelihood that the acquisitions are located in rural areas. Differences between parents and acquisitions are also significant, as hypothesized, for the market model system types, although they are not generally significant for the other two model types. The findings suggest that the market model represents an important strategic form that may have important implications for the restructuring of hospital markets.
NASA Astrophysics Data System (ADS)
Kondo, Yasuo; Abbott, Stephen T.; Kitamura, Akihisa; Kamp, Peter J. J.; Naish, Tim R.; Kamataki, Takanobu; Saul, Gordon S.
1998-12-01
Examples of lithology, fossil content and taphonomic features of shellbeds and intervening less fossiliferous intervals are presented from four Plio-Pleistocene successions (Shimosa Group, Boso Peninsula, Omma Formation, Hokuriku area, Japan, and Okehu, Kai-iwi, and Shakespeare groups in Wanganui, and the Rangitikei Group along the Rangitikei River in New Zealand). As for pre-Pliocene 3rd- and 4th-order depositional sequences, Plio-Pleistocene 5th- to 7th-order depositional sequences contain a variety of shellbeds which are often associated with surfaces or intervals that are characterized by sedimentary condensation, omission or erosion (e.g. sequence boundaries, ravinement surfaces, downlap surfaces and condensed sections). Stratigraphic patterns of shellbed type tend to be similar and repetitive within a basin and a locality. This demonstrates that a specific palaeogeography played an important role in determining the nature of shellbeds. For example, shellbeds formed in the context of toplap are common only in the Shimosa Group, which was deposited in a moderately sheltered sea, the palaeo-Tokyo Bay. Toplap shellbeds are rare in other sequences formed in more open conditions. Despite the variability resulting from such basin characteristics, common styles of shellbeds can be recognized that formed under conditions of marine onlap, backlap, downlap and toplap. Each type of shellbed has a characteristic fossil composition and taphonomy. Onlap and toplap shellbeds contain low-diversity macrobenthic associations including Glycymeris, Mercenaria, Paphies or other bivalves having robust shells, which are often abraded or fragmented. Backlap shellbeds, which are equivalent to the condensed section formed at the maximum transgression, are characterized by dominance of epifaunal macrobenthos such as bryozoa, brachiopoda, pectinid and ostreid bivalves, preserved in a slightly cemented, glauconitic muddy matrix. In contrast to fossils in such condensed sections, the shell density and species diversity of downlap shellbed associations are rather low, and in a few examples the macrobenthic association was buried rapidly in a lower unit of the highstand systems tract (HST) stratigraphically located above the condensed sections. Variations in the stratigraphic distribution of shellbed types are reflected in symmetrical and asymmetrical sequence architectures. Symmetrical sequences have roughly the same thickness of transgressive systems tracts (TST) and highstand systems tracts (HST), and have well segregated shellbeds that were formed during marine onlap and backlap. Asymmetrical cycles have very thin TSTs and much thicker HSTs, and are characterized by the amalgamation of condensed onlap and backlap shellbeds. Such contrasting cycle architectures are interpreted to reflect inner (symmetrical) and outer (asymmetrical) shelf palaeodepositional settings. The amalgamated onlap/backlap shellbeds appear to be common in Plio-Pleistocene sequences. Owing to the short duration of glacio-eustatic sea-level changes with dominant frequencies of 20,000, 40,000 or 100,000 years, shellbeds in the Plio-Pleistocene are relatively simple and thin compared to those formed in ordinary third-order depositional sequences. Infauna-dominated benthic associations are generally more common than in third-order cycles, and epifaunal associations facilitated by taphonomic feedback on sediment-starved shell-gravel substrates occur only in the condensed section corresponding to maximum transgression in most Plio-Pleistocene sequences.
Arneth, Borros
2012-10-01
As possible mechanisms to explain the emergence of autoimmune diseases, the current author has suggested in earlier papers two new pathways: the "protein localization hypothesis" and the "protein traffic hypothesis". The "protein localization hypothesis" states that an autoimmune disease develops if a protein accumulates in a previously unoccupied compartment, that did not previously contain that protein. Similarly, the "protein traffic hypothesis" states that a sudden error within the transport of a certain protein leads to the emergence of an autoimmune disease. The current article discusses the usefulness of the different commercially available transgenic murine models of diabetes mellitus type 1 to confirm the aforementioned hypotheses. This discussion shows that several transgenic murine models of diabetes mellitus type 1 are in-line and confirm the aforementioned hypotheses. Furthermore, these hypotheses are additionally inline with the occurrence of several newly discovered protein sequences, the so-called trepitope sequences. These sequences modulate the immune response to certain proteins. The current study analyzed to what extent the hypotheses are supported by the occurrence of these new sequences. Thereby the occurrence of the trepitope sequences provides additional evidence supporting the aforementioned hypotheses. Both the "protein localization hypothesis" and the "protein traffic hypothesis" have the potential to lead to new causal therapy concepts. The "protein localization hypothesis" and the "protein traffic hypothesis" provide conceptional explanations for the diabetes mouse models as well as for the newly discovered trepitope sequences. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hewaidy, Abdel Galil A.; Farouk, Sherif; Bazeen, Youssef S.
2017-12-01
The Maastrichtian-Paleocene succession at the Dakhla Oasis is marked by the presence of a typical Nile Valley Facies represented by the Dakhla and Tarawan formations in Edmonstone and Qur El Malik sections in the central and western parts of the oasis, while a mixed Nile Valley and Garra Al-Arbain facies represented by Dakhla, Kurkur and Tarawan formations in Teneida section in the eastern part of the oasis adjacent to the Abu Tartur Plateau. These sections were examined for their foraminiferal contents, lithologic characters and stratigraphic boundaries. The distribution of foraminifera in the studied sections is variable and inconstant, as the planktonics are concentrated only at certain levels, which may be considered as a time intervals of transgression and maximum flooding surfaces. Eight planktonic biozones are distinguished in this work; of theses two are of Maastrichtain age and six are of Paleocene age. Eight 3rd order depositional sequences are recognized in the studied Maastrichtian-Paleocene succession based on the time stratigraphic boundaries released from the planktonic foraminifera and sea level changes which are released from the paleoecologic interpretations. The distinguished sequences are subdivided into their systems tracts based on the paleobathymetric interpretations of P/B% and benthic biofacies analysis. These sequences are bounded by eight sequence boundaries (SB A - SB H) represented by unconformity surfaces and depositional hiatuses. The correlation of the sequence boundaries of the established depositional sequences with the eustatic sea level curve, suggesting that these depositional sequences were resulted from the interplay of eustatic sea-level changes and local tectonic activities.
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Jeffrey A.
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments
Daily, Jeffrey A.
2016-02-10
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less
Kilpert, Fabian; Podsiadlowski, Lars
2006-01-01
Background Sequence data and other characters from mitochondrial genomes (gene translocations, secondary structure of RNA molecules) are useful in phylogenetic studies among metazoan animals from population to phylum level. Moreover, the comparison of complete mitochondrial sequences gives valuable information about the evolution of small genomes, e.g. about different mechanisms of gene translocation, gene duplication and gene loss, or concerning nucleotide frequency biases. The Peracarida (gammarids, isopods, etc.) comprise about 21,000 species of crustaceans, living in many environments from deep sea floor to arid terrestrial habitats. Ligia oceanica is a terrestrial isopod living at rocky seashores of the european North Sea and Atlantic coastlines. Results The study reveals the first complete mitochondrial DNA sequence from a peracarid crustacean. The mitochondrial genome of Ligia oceanica is a circular double-stranded DNA molecule, with a size of 15,289 bp. It shows several changes in mitochondrial gene order compared to other crustacean species. An overview about mitochondrial gene order of all crustacean taxa yet sequenced is also presented. The largest non-coding part (the putative mitochondrial control region) of the mitochondrial genome of Ligia oceanica is unexpectedly not AT-rich compared to the remainder of the genome. It bears two repeat regions (4× 10 bp and 3× 64 bp), and a GC-rich hairpin-like secondary structure. Some of the transfer RNAs show secondary structures which derive from the usual cloverleaf pattern. While some tRNA genes are putative targets for RNA editing, trnR could not be localized at all. Conclusion Gene order is not conserved among Peracarida, not even among isopods. The two isopod species Ligia oceanica and Idotea baltica show a similarly derived gene order, compared to the arthropod ground pattern and to the amphipod Parhyale hawaiiensis, suggesting that most of the translocation events were already present the last common ancestor of these isopods. Beyond that, the positions of three tRNA genes differ in the two isopod species. Strand bias in nucleotide frequency is reversed in both isopod species compared to other Malacostraca. This is probably due to a reversal of the replication origin, which is further supported by the fact that the hairpin structure typically found in the control region shows a reversed orientation in the isopod species, compared to other crustaceans. PMID:16987408
Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu
2016-11-23
The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.
Bettenbühl, Mario; Rusconi, Marco; Engbert, Ralf; Holschneider, Matthias
2012-01-01
Complex biological dynamics often generate sequences of discrete events which can be described as a Markov process. The order of the underlying Markovian stochastic process is fundamental for characterizing statistical dependencies within sequences. As an example for this class of biological systems, we investigate the Markov order of sequences of microsaccadic eye movements from human observers. We calculate the integrated likelihood of a given sequence for various orders of the Markov process and use this in a Bayesian framework for statistical inference on the Markov order. Our analysis shows that data from most participants are best explained by a first-order Markov process. This is compatible with recent findings of a statistical coupling of subsequent microsaccade orientations. Our method might prove to be useful for a broad class of biological systems.
Bateman, Nicholas W; Shoji, Yutaka; Conrads, Kelly A; Stroop, Kevin D; Hamilton, Chad A; Darcy, Kathleen M; Maxwell, George L; Risinger, John I; Conrads, Thomas P
2016-01-01
AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Adamaki, Angeliki K.; Papadimitriou, Eleftheria E.; Karakostas, Vassilis G.; Tsaklidis, George M.
2013-04-01
The necessity of the imminent seismic hazard assessment stems from a strong social component which is the outcome of the need of people to inquire more in order to understand nature exhaustively and not partially, either to satisfy their inner curiosity or in favor of their self preservation instinct against the physical phenomena that the human kind cannot control. Choosing this path to follow, many seismologists have focused on forecasting the temporal and spatial distribution of earthquakes in short time scales. The possibility of knowing with a degree of certainty the way an earthquake sequence evolves proves to be an important object of research. Being more specific, the present work summarizes applications of seismicity and statistical models on seismic catalogues of areas that are specified by their tectonic structures and their past seismicity, providing information on the temporal and spatial evolution of local seismic activity, which can point out seismicity rate "irregularities" or changes as precursors of strong events, either in case of a main shock or a strong aftershock. In order to study these rate changes both preceding and following a strong earthquake, seismicity models are applied in order to estimate the Coulomb stress changes resulting from the occurrence of a strong earthquake and their results are combined with the application of a Restricted Epidemic Type Aftershock Sequence model. There are many active tectonic structures in the territory of Greece that are related with the occurrence of strong earthquakes, especially near populated areas, and the aim of this work is to contribute to the assessment of the imminent seismic hazard by applying the aforementioned models and techniques and studying the temporal evolution of several seismic sequences that occurred in the Aegean area in the near past.
Ballados-González, G G; Sánchez-Montes, S; Romero-Salas, D; Colunga Salas, P; Gutiérrez-Molina, R; León-Paniagua, L; Becker, I; Méndez-Ojeda, M L; Barrientos-Salcedo, C; Serna-Lagunes, R; Cruz-Romero, A
2018-06-01
The genus Leptospira encompass 22 species of spirochaetes, with ten pathogenic species that have been recorded in more than 160 mammals worldwide. In the last two decades, the numbers of records of these agents associated with bats have increased exponentially, particularly in America. Although order Chiroptera represents the second most diverse order of mammals in Mexico, and leptospirosis represents a human and veterinary problem in the country, few studies have been conducted to identify potential wildlife reservoirs. The aim of this study was to detect the presence and diversity of Leptospira sp. in communities of bats in an endemic state of leptospirosis in Mexico. During January to September 2016, 81 bats of ten species from three localities of Veracruz, Mexico, were collected with mist nets. Kidney samples were obtained from all specimens. For the detection of Leptospira sp., we amplified several genes using specific primers. Amplicons of the expected size were submitted to sequencing, and sequences recovered were compared with those of reference deposited in GenBank using the BLAST tool. To identify their phylogenetic position, we realized a reconstruction using maximum-likelihood (ML) method. Twenty-five samples from three bat species (Artibeus lituratus, Choeroniscus godmani and Desmodus rotundus) showed the presence of Leptospira DNA. Sequences recovered were close to Leptospira noguchii, Leptospira weilii and Leptospira interrogans. Our results include the first record of Leptospira in bats from Mexico and exhibit a high diversity of these pathogens circulating in the state. Due to the finding of a large number of positive wild animals, it is necessary to implement a surveillance system in populations of the positive bats as well as in related species, in order to understand their role as carriers of this bacterial genus. © 2018 Blackwell Verlag GmbH.
Visual management of large scale data mining projects.
Shah, I; Hunter, L
2000-01-01
This paper describes a unified framework for visualizing the preparations for, and results of, hundreds of machine learning experiments. These experiments were designed to improve the accuracy of enzyme functional predictions from sequence, and in many cases were successful. Our system provides graphical user interfaces for defining and exploring training datasets and various representational alternatives, for inspecting the hypotheses induced by various types of learning algorithms, for visualizing the global results, and for inspecting in detail results for specific training sets (functions) and examples (proteins). The visualization tools serve as a navigational aid through a large amount of sequence data and induced knowledge. They provided significant help in understanding both the significance and the underlying biological explanations of our successes and failures. Using these visualizations it was possible to efficiently identify weaknesses of the modular sequence representations and induction algorithms which suggest better learning strategies. The context in which our data mining visualization toolkit was developed was the problem of accurately predicting enzyme function from protein sequence data. Previous work demonstrated that approximately 6% of enzyme protein sequences are likely to be assigned incorrect functions on the basis of sequence similarity alone. In order to test the hypothesis that more detailed sequence analysis using machine learning techniques and modular domain representations could address many of these failures, we designed a series of more than 250 experiments using information-theoretic decision tree induction and naive Bayesian learning on local sequence domain representations of problematic enzyme function classes. In more than half of these cases, our methods were able to perfectly discriminate among various possible functions of similar sequences. We developed and tested our visualization techniques on this application.
Uniform Local Binary Pattern Based Texture-Edge Feature for 3D Human Behavior Recognition.
Ming, Yue; Wang, Guangchao; Fan, Chunxiao
2015-01-01
With the rapid development of 3D somatosensory technology, human behavior recognition has become an important research field. Human behavior feature analysis has evolved from traditional 2D features to 3D features. In order to improve the performance of human activity recognition, a human behavior recognition method is proposed, which is based on a hybrid texture-edge local pattern coding feature extraction and integration of RGB and depth videos information. The paper mainly focuses on background subtraction on RGB and depth video sequences of behaviors, extracting and integrating historical images of the behavior outlines, feature extraction and classification. The new method of 3D human behavior recognition has achieved the rapid and efficient recognition of behavior videos. A large number of experiments show that the proposed method has faster speed and higher recognition rate. The recognition method has good robustness for different environmental colors, lightings and other factors. Meanwhile, the feature of mixed texture-edge uniform local binary pattern can be used in most 3D behavior recognition.
Livingston, B T; Shaw, R; Bailey, A; Wilt, F
1991-12-01
In order to investigate the role of proteins in the formation of mineralized tissues during development, we have isolated a cDNA that encodes a protein that is a component of the organic matrix of the skeletal spicule of the sea urchin, Lytechinus pictus. The expression of the RNA encoding this protein is regulated over development and is localized to the descendents of the micromere lineage. Comparison of the sequence of this cDNA to homologous cDNAs from other species of urchin reveal that the protein is basic and contains three conserved structural motifs: a signal peptide, a proline-rich region, and an unusual region composed of a series of direct repeats. Studies on the protein encoded by this cDNA confirm the predicted reading frame deduced from the nucleotide sequence and show that the protein is secreted and not glycosylated. Comparison of the amino acid sequence to databases reveal that the repeat domain is similar to proteins that form a unique beta-spiral supersecondary structure.
Children's discrimination of vowel sequences
NASA Astrophysics Data System (ADS)
Coady, Jeffry A.; Kluender, Keith R.; Evans, Julia
2003-10-01
Children's ability to discriminate sequences of steady-state vowels was investigated. Vowels (as in ``beet,'' ``bat,'' ``bought,'' and ``boot'') were synthesized at durations of 40, 80, 160, 320, 640, and 1280 ms. Four different vowel sequences were created by concatenating different orders of vowels for each duration, separated by 10-ms intervening silence. Thus, sequences differed in vowel order and duration (rate). Sequences were 12 s in duration, with amplitude ramped linearly over the first and last 2 s. Sequence pairs included both same (identical sequences) and different trials (sequences with vowels in different orders). Sequences with vowel of equal duration were presented on individual trials. Children aged 7;0 to 10;6 listened to pairs of sequences (with 100 ms between sequences) and responded whether sequences sounded the same or different. Results indicate that children are best able to discriminate sequences of intermediate-duration vowels, typical of conversational speaking rate. Children were less accurate with both shorter and longer vowels. Results are discussed in terms of auditory processing (shortest vowels) and memory (longest vowels). [Research supported by NIDCD DC-05263, DC-04072, and DC-005650.
ERIC Educational Resources Information Center
Tolentino, Jerlyn C.; Pirogovsky, Eva; Luu, Trinh; Toner, Chelsea K.; Gilbert, Paul E.
2012-01-01
Two experiments tested the effect of temporal interference on order memory for fixed and random sequences in young adults and nondemented older adults. The results demonstrate that temporal order memory for fixed and random sequences is impaired in nondemented older adults, particularly when temporal interference is high. However, temporal order…
Simulating protein folding initiation sites using an alpha-carbon-only knowledge-based force field
Buck, Patrick M.; Bystroff, Christopher
2015-01-01
Protein folding is a hierarchical process where structure forms locally first, then globally. Some short sequence segments initiate folding through strong structural preferences that are independent of their three-dimensional context in proteins. We have constructed a knowledge-based force field in which the energy functions are conditional on local sequence patterns, as expressed in the hidden Markov model for local structure (HMMSTR). Carbon-alpha force field (CALF) builds sequence specific statistical potentials based on database frequencies for α-carbon virtual bond opening and dihedral angles, pairwise contacts and hydrogen bond donor-acceptor pairs, and simulates folding via Brownian dynamics. We introduce hydrogen bond donor and acceptor potentials as α-carbon probability fields that are conditional on the predicted local sequence. Constant temperature simulations were carried out using 27 peptides selected as putative folding initiation sites, each 12 residues in length, representing several different local structure motifs. Each 0.6 μs trajectory was clustered based on structure. Simulation convergence or representativeness was assessed by subdividing trajectories and comparing clusters. For 21 of the 27 sequences, the largest cluster made up more than half of the total trajectory. Of these 21 sequences, 14 had cluster centers that were at most 2.6 Å root mean square deviation (RMSD) from their native structure in the corresponding full-length protein. To assess the adequacy of the energy function on nonlocal interactions, 11 full length native structures were relaxed using Brownian dynamics simulations. Equilibrated structures deviated from their native states but retained their overall topology and compactness. A simple potential that folds proteins locally and stabilizes proteins globally may enable a more realistic understanding of hierarchical folding pathways. PMID:19137613
Bobrova, E V; Liakhovetskiĭ, V A; Borshchevskaia, E R
2011-01-01
The dependence of errors during reproduction of a sequence of hand movements without visual feedback on the previous right- and left-hand performance ("prehistory") and on positions in space of sequence elements (random or ordered by the explicit rule) was analyzed. It was shown that the preceding information about the ordered positions of the sequence elements was used during right-hand movements, whereas left-hand movements were performed with involvement of the information about the random sequence. The data testify to a central mechanism of the analysis of spatial structure of sequence elements. This mechanism activates movement coding specific for the left hemisphere (vector coding) in case of an ordered sequence structure and positional coding specific for the right hemisphere in case of a random sequence structure.
Moonshine Versus Earthshine: Physics Makes a Difference
NASA Technical Reports Server (NTRS)
Wilson, T. L.
2005-01-01
Introduction: Recently released, high-resolution images from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) reveal a myriad of intriguing landforms banked along the northern edge of Terby Crater located on the northern rim of Hellas (approx.28degS, 287degW). Landforms within this crater include north-trending troughs and ridges, a remarkable 2.5 km-thick sequence of exposed layers, mantled ramps that extend across and between layered sequences, fan-like structures, sinuous channels, collapse pits, a massive landslide and viscous flow features. The suite of diverse landforms in Terby and its immediate surroundings attest to a diversity of rock types and geologic processes, making this locality ideal for studying landform-climate relationships on Mars. In order to decipher the complicated geologic history of Terby Crater and the nature of the layered deposits, a generalized geomorphic map was created and the slope of the layered deposits was examined.
Mannen, H; Kohno, M; Nagata, Y; Tsuji, S; Bradley, D G; Yeo, J S; Nyamsamba, D; Zagdsuren, Y; Yokohama, M; Nomura, K; Amano, T
2004-08-01
In order to clarify the origin and genetic diversity of cattle in North Eastern Asia, this study examined mitochondrial displacement loop sequence variation and frequencies of Bos taurus and Bos indicus Y chromosome haplotypes in Japanese, Mongolian, and Korean native cattle. In mitochondrial analyses, 20% of Mongolian cattle carried B. indicus mitochondrial haplotypes, but Japanese and Korean cattle carried only B. taurus haplotypes. In contrast, all samples revealed B. taurus Y chromosome haplotypes. This may be due to the import of zebu and other cattle during the Mongol Empire era with subsequent crossing with native taurine cattle. B. taurus mtDNA sequences fall into several geographically distributed haplogroups and one of these, termed here T4, is described in each of the test samples, but has not been observed in Near Eastern, European or African cattle. This may have been locally domesticated from an East Eurasian strain of Bos primigenius.
Contrera, Ronan Cleber; da Cruz Silva, Katia Cristina; Morita, Dione Mari; Domingues Rodrigues, José Alberto; Zaiat, Marcelo; Schalch, Valdir
2014-12-01
This paper reports the kinetics evaluation of landfill leachate anaerobic treatment in a pilot-scale Anaerobic Sequence Batch Biofilm Reactor (AnSBBR). The experiment was carried out at room temperature (23.8 ± 2.1 °C) in the landfill area in São Carlos-SP, Brazil. Biomass from the bottom of a local landfill leachate stabilization pond was used as inoculum. After acclimated and utilizing leachate directly from the landfill, the AnSBBR presented efficiency over 70%, in terms of COD removal, with influent COD ranging from 4825 mg L(-1) to 12,330 mg L(-1). To evaluate the kinetics of landfill leachate treatment, temporal profiles of CODFilt. concentration were performed and a first-order kinetics model was adjusted for substrate consumption, obtaining an average k1 = 4.40 × 10(-5) L mgTVS(-1) d(-1), corrected to 25 °C. Considering the temperature variations, a temperature-activity coefficient θ = 1.07 was obtained. Statistical "Randomness" and "F" tests were used to successfully validate the model considered. Thus, the results demonstrate that the first-order kinetic model is adequate to model the anaerobic treatment of the landfill leachate in the AnSBBR. Copyright © 2014 Elsevier Ltd. All rights reserved.
Random digital encryption secure communication system
NASA Technical Reports Server (NTRS)
Doland, G. D. (Inventor)
1982-01-01
The design of a secure communication system is described. A product code, formed from two pseudorandom sequences of digital bits, is used to encipher or scramble data prior to transmission. The two pseudorandom sequences are periodically changed at intervals before they have had time to repeat. One of the two sequences is transmitted continuously with the scrambled data for synchronization. In the receiver portion of the system, the incoming signal is compared with one of two locally generated pseudorandom sequences until correspondence between the sequences is obtained. At this time, the two locally generated sequences are formed into a product code which deciphers the data from the incoming signal. Provision is made to ensure synchronization of the transmitting and receiving portions of the system.
Adaptive Local Realignment of Protein Sequences.
DeBlasio, Dan; Kececioglu, John
2018-06-11
While mutation rates can vary markedly over the residues of a protein, multiple sequence alignment tools typically use the same values for their scoring-function parameters across a protein's entire length. We present a new approach, called adaptive local realignment, that in contrast automatically adapts to the diversity of mutation rates along protein sequences. This builds upon a recent technique known as parameter advising, which finds global parameter settings for an aligner, to now adaptively find local settings. Our approach in essence identifies local regions with low estimated accuracy, constructs a set of candidate realignments using a carefully-chosen collection of parameter settings, and replaces the region if a realignment has higher estimated accuracy. This new method of local parameter advising, when combined with prior methods for global advising, boosts alignment accuracy as much as 26% over the best default setting on hard-to-align protein benchmarks, and by 6.4% over global advising alone. Adaptive local realignment has been implemented within the Opal aligner using the Facet accuracy estimator.
SW#db: GPU-Accelerated Exact Sequence Similarity Database Search.
Korpar, Matija; Šošić, Martin; Blažeka, Dino; Šikić, Mile
2015-01-01
In recent years we have witnessed a growth in sequencing yield, the number of samples sequenced, and as a result-the growth of publicly maintained sequence databases. The increase of data present all around has put high requirements on protein similarity search algorithms with two ever-opposite goals: how to keep the running times acceptable while maintaining a high-enough level of sensitivity. The most time consuming step of similarity search are the local alignments between query and database sequences. This step is usually performed using exact local alignment algorithms such as Smith-Waterman. Due to its quadratic time complexity, alignments of a query to the whole database are usually too slow. Therefore, the majority of the protein similarity search methods prior to doing the exact local alignment apply heuristics to reduce the number of possible candidate sequences in the database. However, there is still a need for the alignment of a query sequence to a reduced database. In this paper we present the SW#db tool and a library for fast exact similarity search. Although its running times, as a standalone tool, are comparable to the running times of BLAST, it is primarily intended to be used for exact local alignment phase in which the database of sequences has already been reduced. It uses both GPU and CPU parallelization and was 4-5 times faster than SSEARCH, 6-25 times faster than CUDASW++ and more than 20 times faster than SSW at the time of writing, using multiple queries on Swiss-prot and Uniref90 databases.
2011-07-27
domain (type 2 phosphatidic acid phosphatase) and may be a PAP2 like superfamily member. In order to localize the promoter(s) for these three genes...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 which amino acid residue(s) was critical for the enzyme activity. This enzyme possesses a...analyzed the role of eight conserved amino acid residues. The amino acids to be mutated were chosen based on the sequence alignment of several class C
Zhang, Jianwei; Kudrna, Dave; Mu, Ting; Li, Weiming; Copetti, Dario; Yu, Yeisoo; Goicoechea, Jose Luis; Lei, Yang; Wing, Rod A
2016-10-15
Next generation sequencing technologies have revolutionized our ability to rapidly and affordably generate vast quantities of sequence data. Once generated, raw sequences are assembled into contigs or scaffolds. However, these assemblies are mostly fragmented and inaccurate at the whole genome scale, largely due to the inability to integrate additional informative datasets (e.g. physical, optical and genetic maps). To address this problem, we developed a semi-automated software tool-Genome Puzzle Master (GPM)-that enables the integration of additional genomic signposts to edit and build 'new-gen-assemblies' that result in high-quality 'annotation-ready' pseudomolecules. With GPM, loaded datasets can be connected to each other via their logical relationships which accomplishes tasks to 'group,' 'merge,' 'order and orient' sequences in a draft assembly. Manual editing can also be performed with a user-friendly graphical interface. Final pseudomolecules reflect a user's total data package and are available for long-term project management. GPM is a web-based pipeline and an important part of a Laboratory Information Management System (LIMS) which can be easily deployed on local servers for any genome research laboratory. The GPM (with LIMS) package is available at https://github.com/Jianwei-Zhang/LIMS CONTACTS: jzhang@mail.hzau.edu.cn or rwing@mail.arizona.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Pleurochrysome: A Web Database of Pleurochrysis Transcripts and Orthologs Among Heterogeneous Algae
Fujiwara, Shoko; Takatsuka, Yukiko; Hirokawa, Yasutaka; Tsuzuki, Mikio; Takano, Tomoyuki; Kobayashi, Masaaki; Suda, Kunihiro; Asamizu, Erika; Yokoyama, Koji; Shibata, Daisuke; Tabata, Satoshi; Yano, Kentaro
2016-01-01
Pleurochrysis is a coccolithophorid genus, which belongs to the Coccolithales in the Haptophyta. The genus has been used extensively for biological research, together with Emiliania in the Isochrysidales, to understand distinctive features between the two coccolithophorid-including orders. However, molecular biological research on Pleurochrysis such as elucidation of the molecular mechanism behind coccolith formation has not made great progress at least in part because of lack of comprehensive gene information. To provide such information to the research community, we built an open web database, the Pleurochrysome (http://bioinf.mind.meiji.ac.jp/phapt/), which currently stores 9,023 unique gene sequences (designated as UNIGENEs) assembled from expressed sequence tag sequences of P. haptonemofera as core information. The UNIGENEs were annotated with gene sequences sharing significant homology, conserved domains, Gene Ontology, KEGG Orthology, predicted subcellular localization, open reading frames and orthologous relationship with genes of 10 other algal species, a cyanobacterium and the yeast Saccharomyces cerevisiae. This sequence and annotation information can be easily accessed via several search functions. Besides fundamental functions such as BLAST and keyword searches, this database also offers search functions to explore orthologous genes in the 12 organisms and to seek novel genes. The Pleurochrysome will promote molecular biological and phylogenetic research on coccolithophorids and other haptophytes by helping scientists mine data from the primary transcriptome of P. haptonemofera. PMID:26746174
Połka, Justyna; Rebecchi, Annalisa; Pisacane, Vincenza; Morelli, Lorenzo; Puglisi, Edoardo
2015-04-01
The bacterial diversity involved in food fermentations is one of the most important factors shaping the final characteristics of traditional foods. Knowledge about this diversity can be greatly improved by the application of high-throughput sequencing technologies (HTS) coupled to the PCR amplification of the 16S rRNA subunit. Here we investigated the bacterial diversity in batches of Salame Piacentino PDO (Protected Designation of Origin), a dry fermented sausage that is typical of a regional area of Northern Italy. Salami samples from 6 different local factories were analysed at 0, 21, 49 and 63 days of ripening; raw meat at time 0 and casing samples at 21 days of ripening where also analysed, and the effect of starter addition was included in the experimental set-up. Culture-based microbiological analyses and PCR-DGGE were carried out in order to be compared with HTS results. A total of 722,196 high quality sequences were obtained after trimming, paired-reads assembly and quality screening of raw reads obtained by Illumina MiSeq sequencing of the two bacterial 16S hypervariable regions V3 and V4; manual curation of 16S database allowed a correct taxonomical classification at the species for 99.5% of these reads. Results confirmed the presence of main bacterial species involved in the fermentation of salami as assessed by PCR-DGGE, but with a greater extent of resolution and quantitative assessments that are not possible by the mere analyses of gel banding patterns. Thirty-two different Staphylococcus and 33 Lactobacillus species where identified in the salami from different producers, while the whole data set obtained accounted for 13 main families and 98 rare ones, 23 of which were present in at least 10% of the investigated samples, with casings being the major sources of the observed diversity. Multivariate analyses also showed that batches from 6 local producers tend to cluster altogether after 21 days of ripening, thus indicating that HTS has the potential for fine scale differentiation of local fermented foods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Generalized statistical convergence of order β for sequences of fuzzy numbers
NASA Astrophysics Data System (ADS)
Altınok, Hıfsı; Karakaş, Abdulkadir; Altın, Yavuz
2018-01-01
In the present paper, we introduce the concepts of Δm-statistical convergence of order β for sequences of fuzzy numbers and strongly Δm-summable of order β for sequences of fuzzy numbers by using a modulus function f and taking supremum on metric d for 0 < β ≤ 1 and give some inclusion relations between them.
Not All Order Memory Is Equal: Test Demands Reveal Dissociations in Memory for Sequence Information
ERIC Educational Resources Information Center
Jonker, Tanya R.; MacLeod, Colin M.
2017-01-01
Remembering the order of a sequence of events is a fundamental feature of episodic memory. Indeed, a number of formal models represent temporal context as part of the memory system, and memory for order has been researched extensively. Yet, the nature of the code(s) underlying sequence memory is still relatively unknown. Across 4 experiments that…
Photosynthesis within Mars' volcanic craters?: Insights from Cerro Negro Volcano, Nicaragua
NASA Astrophysics Data System (ADS)
Rogers, K. L.; Hynek, B. M.; McCollom, T. M.
2011-12-01
Discrete locales of sulfate-rich bedrocks exist on Mars and in many cases represent the products of acid-sulfate alteration of martian basalt. In some places, the products have been attributed to hydrothermal processes from local volcanism. In order to evaluate the habitability of such an environment, we are investigating the geochemical and biological composition of active fumaroles at Cerro Negro Volcano, Nicaragua, where fresh basaltic cinders similar in composition to martian basalts are altered by acidic, sulfur-bearing gases. Temperatures at active fumaroles can reach as high as 400°C and the pH of the steam ranges from <0 to 5. Adjacent to some fumaroles, silica is being precipitated from condensing steam on the crater walls and endolithic photosynthetic mats are found at 1-2 cm depth within these silica deposits. We have analyzed one of these mats, Monkey Cheek (T=65°C, pH ~4.5), for both Archaeal and Bacterial diversity. Cloning of PCR-amplified 16S rRNA genes reveals a diverse community of Bacteria, with eight phyla represented. The most common bacterial sequences belonged to the Cyanobacteria and Ktedonobacteria, however Actinobacteria, alpha-Proteobacteria and Acidobacteria were also identified. Many of the cyanobacterial sequences were similar to those of the eukaryotic Cyanidiales, red algae that inhabit acidic, geothermal environments. Many of sequences related to Ktedonobacteria and Actinobacteria have also been found in acid mine drainage environments. The Archaeal community was far less diverse, with sequences matching those of unclassified Desulfurococcales and unclassified Thermoprotei. These sequences were more distant from isolated species than the bacterial sequences. Similar bacterial and archaeal communities have been found in hot spring environments in Yellowstone National Park, Greenland, Iceland, New Zealand and Costa Rica. Some of Mars' volcanoes were active for billions of years and by analogy to Cerro Negro, may have hosted photosynthetic organisms that could have been preserved in alteration mineral assemblages. Even on a generally cold and dry Mars, volcanic craters likely provided long-lived warm and wet conditions and should be a key target for future exploration assessing habitability.
NASA Astrophysics Data System (ADS)
Masi, A.; Mucciarelli, M.; Chiauzzi, L.; De Costanzo, G.; Loperte, G.
2012-04-01
Facing natural disasters effects can be a very difficult task lacking suitable activities and tools to preventively prepare the involved community (people, authorities, professionals, …) to the expected events. Therefore, a suite of preventive actions should be carried out to mitigate natural risks, in particular working to reduce the territorial vulnerability with respect to the specific natural hazard at hand, and to increase people response capacity. In fact, building social capacity helps to increase the risk perception and the people capacity to adapt to and cope with natural hazards. Since October 2011 a seismic swarm is affecting the Pollino mountain range, Southern Italy. At present the sequence is still ongoing, with more than 500 events with M>1, at least 40 well perceived by the population and a maximum magnitude at 3.6. The area mainly affected by the seismic sequence includes 12 villages, with a total population of about 50.000 inhabitants and, according to the current seismic hazard map it has high seismicity level. Such area was hit by a magnitude Ml=5.7 event in 1998 that produced macroseismic intensity not higher that VII-VIII degree of MCS scale and caused one dead, some injured and widespread damage in at least six municipalities. During the sequence, the National Department of Civil Protection (DPC) and the Civil Protection of Basilicata Region decided to put in action some measures aimed at verifying and enhancing emergency preparedness. These actions have been carried out with a constant and fruitful collaboration among the main stakeholders involved (scientific community, local and national governmental agencies, civil protection volunteers, etc) trough the following main activities: 1. collaboration between scientific community and the local and national offices of Civil Protection especially in the relationship with local authorities (e.g. mayors, which are civil protection authorities in their municipality); 2. interaction between DPC, Italian Institute of Geophysics and Vulcanology (INGV) in order to transfer information to the population to enhance self-protection capability and decrease its state of worry ("what to do" in case of an earthquake); 3. review of local plans of emergency, where available, using ad hoc inspection forms to collect data for verifying and updating the emergency plan content and requirements. Specifically, in order to prepare seismic scenarios of building damage and effects on population for emergency planning and civil defense drills to be organized, two more activities have been carried out: 4. collection of current vulnerability data on the building stock and the strategic infrastructures located in the area; 5. accurate survey of data on post earthquake retrofitting and microzonation actions carried out after the 1998 Pollino earthquake that struck the same involved villages. In some cases, as a consequence of the position of the involved area, the activities were carried out also in collaboration with Calabria Region authorities. Several points have arisen in carrying out the activities, mostly due to the interaction between risk governance and risk perception in the pre-event emergency management. At the abstract submission date the seismic sequence, and thus the activities here described, are still ongoing. Therefore, analysis and discussion of pro's and con's of the actions taken are currently in progress on a week-by-week basis.
Babbucci, Massimiliano; Basso, Andrea; Scupola, Antonio; Patarnello, Tomaso; Negrisolo, Enrico
2014-01-01
Insect mitochondrial genomes (mtDNA) are usually double helical and circular molecules containing 37 genes that are encoded on both strands. The arrangement of the genes is not constant for all species, and produces distinct gene orders (GOs) that have proven to be diagnostic in defining clades at different taxonomic levels. In general, it is believed that distinct taxa have a very low chance of sharing identically arranged GOs. However, examples of identical, homoplastic local rearrangements occurring in distinct taxa do exist. In this study, we sequenced the complete mtDNAs of the ants Formica fusca and Myrmica scabrinodis (Formicidae, Hymenoptera) and compared their GOs with those of other Insecta. The GO of F. fusca was found to be identical to the GO of Dytrisia (the largest clade of Lepidoptera). This finding is the first documented case of an identical GO shared by distinct groups of Insecta, and it is the oldest known event of GO convergent evolution in animals. Both Hymenoptera and Lepidoptera acquired this GO early in their evolution. Using a phylogenetic approach combined with new bioinformatic tools, the chronological order of the evolutionary events that produced the diversity of the hymenopteran GOs was determined. Additionally, new local homoplastic rearrangements shared by distinct groups of insects were identified. Our study showed that local and global homoplasies affecting the insect GOs are more widespread than previously thought. Homoplastic GOs can still be useful for characterizing the various clades, provided that they are appropriately considered in a phylogenetic and taxonomic context. PMID:25480682
Rotondi, Kenneth S; Gierasch, Lila M
2003-07-08
The experiments described here explore the role of local sequence in the folding of cellular retinoic acid binding protein I (CRABP I). This is a 136-residue, 10-stranded, antiparallel beta-barrel protein with seven beta-hairpins and is a member of the intracellular lipid binding protein (iLBP) family. The relative roles of local and global sequence information in governing the folding of this class of proteins are not well-understood. In question is whether the beta-turns are locally defined by short-range interactions within their sequences, and are thus able to play an active role in reducing the conformational space available to the folding chain, or whether the turns are passive, relying upon global forces to form. Short (six- and seven-residue) peptides corresponding to the seven CRABP I turns were analyzed by circular dichroism and NMR for their tendencies to take up the conformations they adopt in the context of the native protein. The results indicate that two of the peptides, encompassing turns III and IV in CRABP I, have a strong intrinsic bias to form native turns. Intriguingly, these turns are on linked hairpins in CRABP I and represent the best-conserved turns in the iLBP family. These results suggest that local sequence may play an important role in narrowing the conformational ensemble of CRABP I during folding.
Lin, Yanqin; Lin, Liangjie; Wei, Zhiliang; Zhong, Jianhui; Chen, Zhong
2016-12-01
To acquire single voxel localized one-dimensional 1 H magnetic resonance spectroscopy (MRS) without J coupling modulations, free from amplitude and phase distortions. A pulse sequence, named PRESSIR, is developed for volume localized MRS without J modulations at arbitrary echo time (TE). The J coupling evolution is suppressed by the J-refocused module that uses a 90° pulse at the midpoint of a double spin echo. The localization performance of the PRESSIR sequence was tested with a two-compartment phantom. The proposed sequence shows similar voxel localization accuracy as PRESS. Both PRESSIR and PRESS sequences were performed on MRS brain phantom and pig brain tissue. PRESS spectra suffer from amplitude and phase distortions due to J modulations, especially under moderate and long TEs, while PRESSIR spectra are almost free from distortions. The PRESSIR sequence proposed herein enables the acquisition of single voxel in-phase MRS within a single scan. It allows an enhanced signal intensity of J coupling metabolites and reducing undesired broad resonances with short T2s while suppressing J modulations. Moreover, it provides an approach for direct measurement of nonoverlapping J coupling peaks and of transverse relaxation times T2s. Magn Reson Med 76:1661-1667, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.
Fine tangled pili expressed by Haemophilus ducreyi are a novel class of pili.
Brentjens, R J; Ketterer, M; Apicella, M A; Spinola, S M
1996-01-01
Haemophilus ducreyi synthesizes fine, tangled pili composed predominantly of a protein whose apparent molecular weight is 24,000 (24K). A hybridoma, 2D8, produced a monoclonal antibody (MAb) that bound to a 24K protein in H. ducreyi strains isolated from diverse geographic locations. A lambda gt11 H. ducreyi library was screened with MAb 2D8. A 3.5-kb chromosomal insert from one reactive plaque was amplified and ligated into the pCRII vector. The recombinant plasmid, designated pHD24, expressed a 24K protein in Escherichia coli INV alpha F that bound MAb 2D8. The coding sequence of the 24K gene was localized by exonuclease III digestion. The insert contained a 570-bp open reading frame, designated ftpA (fine, tangled pili). Translation of ftpA predicted a polypeptide with a molecular weight of 21.1K. The predicted N-terminal amino acid sequence of the polypeptide encoded by ftpA was identical to the N-terminal amino acid sequence of purified pilin and lacked a cleavable signal sequence. Primer extension analysis of ftpA confirmed the lack of a leader peptide. The predicted amino acid sequence lacked homology to known pilin sequences but shared homology with the sequences of E. coli Dps and Treponema pallidum antigen TpF1 or 4D, proteins which associate to form ordered rings. An isogenic pilin mutant, H. ducreyi 35000ftpA::mTn3(Cm), was constructed by shuttle mutagenesis and did not contain pili when examined by electron microscopy. We conclude that H. ducreyi synthesizes fine, tangled pili that are composed of a unique major subunit, which may be exported by a signal sequence independent mechanism. PMID:8550517
Zhang, Hua; Feng, Juan; Chen, Hongsheng; Li, Jiada; Luo, Hunjin; Feng, Yong
2015-12-01
To study the role of dysfunction of nuclear localization signals (NLS) of MITF protein in the pathogenesis of Waardenburg syndrome. Eukaryotic expression plasmid pCMV-MITF-Flag was used as a template to generate mutant plasmid pCMV-MITF△NLS-Flag by molecular cloning technique in order to design the mutagenic primers. The UACC903 cells were transfected transiently with MITF and MITF△NLS plasmids, and the luciferase activity assays were performed to determine their impact on the transcriptional activities of target gene tyrosinase (TYR). The oligonucleotide 5'-GAACGAAGAAGAAGATTT-3' was subcloned into pEGFP-N1 to generate recombinant eukaryotic expression plasmid pEGFP-N1-MITF-NLS. The NIH3T3 cells were transfected separately with MITF, MITF△NLS, pEGFP-N1 and pEGFP-N1-NLS plasmids, and their subcellular distribution was observed by immunoflorescence assays. Expression plasmids for the mutant MITF△NLS with loss of core NLS sequence and pEGFP-N1-NLS coupled with MITF△NLS were successfully generated. Compared with the wild-type MITF, MITF△NLS was not able to transactivate the transcriptional activities of promoter TYR and did not affect the normal function of MITF. MITF△NLS was only localized in the cytoplasm and pEGFP-N1 was found in both the cytoplasm and nucleus, whereas pEGFP-N1-NLS was mainly located in the nucleus. This study has confirmed the localization function of NLS sequence 213ERRRRF218 within the MITF protein. Mutant MITF with loss of NLS has failed to transactivate the transcriptional activities of target gene TYR, which can result in melanocyte defects and cause WS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, G.S.; Funanage, V.L.; Proujansky, R.
1996-05-15
Creatine and creatine phosphate act as a buffer system for the regeneration of ATP in tissues with fluctuating energy demands. Following reports of the cloning of a creatine transporter in rat, rabbit, and human, we cloned and sequenced a creatine transporter from a human intestinal cDNA library. PCR amplification of genomic DNAs from somatic cell hybrid panels localized two creatine transporter (CT) genes: CT1 to Xq26-q28 and CT2 to 16p11.2. Refinement of CT1 to Xq28 was confirmed by FISH. Identification of CT2 sequences in YACs and cosmid contigs that had been ordered on human chromosome 16 enabled its assignment tomore » the proximal end of 16p11.2. Sequencing of the CT2 gene identified sequence differences between CT1 and CT2 transcripts that were utilized to determine that CT2 is expressed in testis only. CT2 is the most proximally identified gene on chromosome 16p to date. The existence of an autosomal, testis-specific form of the human creatine transporter gene suggests that creatine transporter activity is critical for normal function of spermatazoa following meiosis. 17 refs., 2 figs., 2 tabs.« less
Identification of a nuclear localization sequence in the polyomavirus capsid protein VP2
NASA Technical Reports Server (NTRS)
Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)
1992-01-01
A nuclear localization signal (NLS) has been identified in the C-terminal (Glu307-Glu-Asp-Gly-Pro-Gln-Lys-Lys-Lys-Arg-Arg-Leu318) amino acid sequence of the polyomavirus minor capsid protein VP2. The importance of this amino acid sequence for nuclear transport of newly synthesized VP2 was demonstrated by a genetic "subtractive" study using the constructs pSG5VP2 (expressing full-length VP2) and pSG5 delta 3VP2 (expressing truncated VP2, lacking amino acids Glu307-Leu318). These constructs were transfected into COS-7 cells, and the intracellular localization of the VP2 protein was determined by indirect immunofluorescence. These studies revealed that the full-length VP2 was localized in the nucleus, while the truncated VP2 protein was localized in the cytoplasm and not transported to the nucleus. A biochemical "additive" approach was also used to determine whether this sequence could target nonnuclear proteins to the nucleus. A synthetic peptide identical to VP2 amino acids Glu307-Leu318 was cross-linked to the nonnuclear proteins bovine serum albumin (BSA) or immunoglobulin G (IgG). The conjugates were then labeled with fluorescein isothiocyanate and microinjected into the cytoplasm of NIH 3T6 cells. Both conjugates localized in the nucleus of the microinjected cells, whereas unconjugated BSA and IgG remained in the cytoplasm. Taken together, these genetic subtractive and biochemical additive approaches have identified the C-terminal sequence of polyoma-virus VP2 (containing amino acids Glu307-Leu318) as the NLS of this protein.
Enhanced Methods for Local Ancestry Assignment in Sequenced Admixed Individuals
Brown, Robert; Pasaniuc, Bogdan
2014-01-01
Inferring the ancestry at each locus in the genome of recently admixed individuals (e.g., Latino Americans) plays a major role in medical and population genetic inferences, ranging from finding disease-risk loci, to inferring recombination rates, to mapping missing contigs in the human genome. Although many methods for local ancestry inference have been proposed, most are designed for use with genotyping arrays and fail to make use of the full spectrum of data available from sequencing. In addition, current haplotype-based approaches are very computationally demanding, requiring large computational time for moderately large sample sizes. Here we present new methods for local ancestry inference that leverage continent-specific variants (CSVs) to attain increased performance over existing approaches in sequenced admixed genomes. A key feature of our approach is that it incorporates the admixed genomes themselves jointly with public datasets, such as 1000 Genomes, to improve the accuracy of CSV calling. We use simulations to show that our approach attains accuracy similar to widely used computationally intensive haplotype-based approaches with large decreases in runtime. Most importantly, we show that our method recovers comparable local ancestries, as the 1000 Genomes consensus local ancestry calls in the real admixed individuals from the 1000 Genomes Project. We extend our approach to account for low-coverage sequencing and show that accurate local ancestry inference can be attained at low sequencing coverage. Finally, we generalize CSVs to sub-continental population-specific variants (sCSVs) and show that in some cases it is possible to determine the sub-continental ancestry for short chromosomal segments on the basis of sCSVs. PMID:24743331
Nucleotide sequence of the gag gene and gag-pol junction of feline leukemia virus.
Laprevotte, I; Hampe, A; Sherr, C J; Galibert, F
1984-01-01
The nucleotide sequence of the gag gene of feline leukemia virus and its flanking sequences were determined and compared with the corresponding sequences of two strains of feline sarcoma virus and with that of the Moloney strain of murine leukemia virus. A high degree of nucleotide sequence homology between the feline leukemia virus and murine leukemia virus gag genes was observed, suggesting that retroviruses of domestic cats and laboratory mice have a common, proximal evolutionary progenitor. The predicted structure of the complete feline leukemia virus gag gene precursor suggests that the translation of nonglycosylated and glycosylated gag gene polypeptides is initiated at two different AUG codons. These initiator codons fall in the same reading frame and are separated by a 222-base-pair segment which encodes an amino terminal signal peptide. The nucleotide sequence predicts the order of amino acids in each of the individual gag-coded proteins (p15, p12, p30, p10), all of which derive from the gag gene precursor. Stable stem-and-loop secondary structures are proposed for two regions of viral RNA. The first falls within sequences at the 5' end of the viral genome, together with adjacent palindromic sequences which may play a role in dimer linkage of RNA subunits. The second includes coding sequences at the gag-pol junction and is proposed to be involved in translation of the pol gene product. Sequence analysis of the latter region shows that the gag and pol genes are translated in different reading frames. Classical consensus splice donor and acceptor sequences could not be localized to regions which would permit synthesis of the expected gag-pol precursor protein. Alternatively, we suggest that the pol gene product (RNA-dependent DNA polymerase) could be translated by a frameshift suppressing mechanism which could involve cleavage modification of stems and loops in a manner similar to that observed in tRNA processing. PMID:6328019
Patiño-Galindo, Juan Ángel; Torres-Puente, Manoli; Bracho, María Alma; Alastrué, Ignacio; Juan, Amparo; Navarro, David; Galindo, María José; Ocete, Dolores; Ortega, Enrique; Gimeno, Concepción; Belda, Josefina; Domínguez, Victoria; Moreno, Rosario; González-Candelas, Fernando
2017-09-14
HIV infections are still a very serious concern for public heath worldwide. We have applied molecular evolution methods to study the HIV-1 epidemics in the Comunidad Valenciana (CV, Spain) from a public health surveillance perspective. For this, we analysed 1804 HIV-1 sequences comprising protease and reverse transcriptase (PR/RT) coding regions, sampled between 2004 and 2014. These sequences were subtyped and subjected to phylogenetic analyses in order to detect transmission clusters. In addition, univariate and multinomial comparisons were performed to detect epidemiological differences between HIV-1 subtypes, and risk groups. The HIV epidemic in the CV is dominated by subtype B infections among local men who have sex with men (MSM). 270 transmission clusters were identified (>57% of the dataset), 12 of which included ≥10 patients; 11 of subtype B (9 affecting MSMs) and one (n = 21) of CRF14, affecting predominately intravenous drug users (IDUs). Dated phylogenies revealed these large clusters to have originated from the mid-80s to the early 00 s. Subtype B is more likely to form transmission clusters than non-B variants and MSMs to cluster than other risk groups. Multinomial analyses revealed an association between non-B variants, which are not established in the local population yet, and different foreign groups.
Heyting, C; Menke, H H
1979-01-11
1. We have determined the physical location of mitochondrial genetic markers in the 21S region of yeast mtDNA by genetic analysis of petite mutants whose mtDNA has been physically mapped on the wild-type mtDNA. 2. The order of loci, determined in this study, is in agreement with the order deduced from recombination analysis and coretention analysis except for the position of omega+: we conclude that omega+ is located between C321 (RIB-1) and E514 (RIB-3). 3. The marker E514 (RIB-3) has been localized on a DNA segment of 3800 bp, and the markers E354, E553 and cs23 (RIB-2) on a DNA segment of 1100 base pairs; both these segments overlap the 21S rRNA cistron. The marker C321 (RIB-1) has been localized within a segment of 240 bp which also overlaps the 21S rRNA cistron, and we infer on the basis of indirect evidence that this marker lies within this cistron. 4. In all our rho+ as well as rho- strains there is a one-to-one correlation between the omega+ phenotype, the ability to transmit the omega+ allele and the presence of a mtDNA segment of about 1000 bp long, located between sequences specifying RIB-3 and sequences corresponding to the loci RIB-1 and RIB-2. This segment may be inserted at this same position into omega- mtDNA by recombination. 5. The role which the different allelic forms of omega may play in the polarity of recombination is discussed.
Rubin, D A; Dores, R M
1995-06-01
In order to obtain a more resolute phylogeny of teleosts based on growth hormone (GH) sequences, phylogenetic analyses were performed in which deletions (gaps), which appear to be order specific, were upheld to maintain GH's structural information. Sequences were analyzed at 194 amino acid positions. In addition, the two closest genealogically related groups to the teleosts, Amia calva and Acipenser guldenstadti, were used as outgroups. Modified sequence alignments were also analyzed to determine clade stability. Analyses indicated, in the most parsimonious cladogram, that molecular and morphological relationships for the orders of fishes are congruent. With GH molecular sequence data it was possible to resolve all clades at the familial level. Analyses of the primary sequence data indicate that: (a) the halecomorphean and chondrostean GH sequences are the appropriate outgroups for generating the most parsimonious cladogram for teleosts; (b) proper alignment of teleost GH sequence by the inclusion of gaps is necessary for resolution of the Percomorpha; and (c) removal of sequence information by deleting improperly aligned sequence decreases the phylogenetic signal obtained.
The privileged status of locality in consonant harmony
Finley, Sara
2011-01-01
While the vast majority of linguistic processes apply locally, consonant harmony appears to be an exception. In this phonological process, consonants share the same value of a phonological feature, such as secondary place of articulation. In sibilant harmony, [s] and [ʃ] (‘sh’) alternate such that if a word contains the sound [ʃ], all [s] sounds become [ʃ]. This can apply locally as a first-order or non-locally as a second-order pattern. In the first-order case, no consonants intervene between the two sibilants (e.g., [pisasu], [piʃaʃu]). In second-order case, a consonant may intervene (e.g., [sipasu], [ʃipaʃu]). The fact that there are languages that allow second-order non-local agreement of consonant features has led some to question whether locality constraints apply to consonant harmony. This paper presents the results from two artificial grammar learning experiments that demonstrate the privileged role of locality constraints, even in patterns that allow second-order non-local interactions. In Experiment 1, we show that learners do not extend first-order non-local relationships in consonant harmony to second-order nonlocal relationships. In Experiment 2, we show that learners will extend a consonant harmony pattern with second-order long distance relationships to a consonant harmony with first-order long distance relationships. Because second-order non-local application implies first-order non-local application, but first-order non-local application does not imply second-order non-local application, we establish that local constraints are privileged even in consonant harmony. PMID:21686094
Ordered fast fourier transforms on a massively parallel hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Tong, Charles; Swarztrauber, Paul N.
1989-01-01
Design alternatives for ordered Fast Fourier Transformation (FFT) algorithms were examined on massively parallel hypercube multiprocessors such as the Connection Machine. Particular emphasis is placed on reducing communication which is known to dominate the overall computing time. To this end, the order and computational phases of the FFT were combined, and the sequence to processor maps that reduce communication were used. The class of ordered transforms is expanded to include any FFT in which the order of the transform is the same as that of the input sequence. Two such orderings are examined, namely, standard-order and A-order which can be implemented with equal ease on the Connection Machine where orderings are determined by geometries and priorities. If the sequence has N = 2 exp r elements and the hypercube has P = 2 exp d processors, then a standard-order FFT can be implemented with d + r/2 + 1 parallel transmissions. An A-order sequence can be transformed with 2d - r/2 parallel transmissions which is r - d + 1 fewer than the standard order. A parallel method for computing the trigonometric coefficients is presented that does not use trigonometric functions or interprocessor communication. A performance of 0.9 GFLOPS was obtained for an A-order transform on the Connection Machine.
Alveolar socket healing: what can we learn?
Araújo, Mauricio G; Silva, Cléverson O; Misawa, Mônica; Sukekava, Flavia
2015-06-01
Tooth extraction induces a series of complex and integrated local changes within the investing hard and soft tissues. These local alterations arise in order to close the socket wound and to restore tissue homeostasis, and are referred to as '"socket healing". The aims of the present report were twofold: first, to describe the socket-healing process; and, second, to discuss what can be learned from the temporal sequence of healing events, in order to improve treatment outcomes. The socket-healing process may be divided into three sequential, and frequently overlapping, phases: inflammatory; proliferative; and modeling/remodeling. Several clinical and experimental studies have demonstrated that the socket-healing process promotes up to 50% reduction of the original ridge width, greater bone resorption at the buccal aspect than at the lingual/palatal counterpart and a larger amount of alveolar bone reduction in the molar region. In conclusion, tooth extraction, once a simple and straightforward surgical procedure, should be performed in the knowledge that ridge reduction will follow and that further clinical steps should be considered to compensate for this, when considering future options for tooth replacement. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Chikenji, George; Fujitsuka, Yoshimi; Takada, Shoji
2006-02-28
Predicting protein tertiary structure by folding-like simulations is one of the most stringent tests of how much we understand the principle of protein folding. Currently, the most successful method for folding-based structure prediction is the fragment assembly (FA) method. Here, we address why the FA method is so successful and its lesson for the folding problem. To do so, using the FA method, we designed a structure prediction test of "chimera proteins." In the chimera proteins, local structural preference is specific to the target sequences, whereas nonlocal interactions are only sequence-independent compaction forces. We find that these chimera proteins can find the native folds of the intact sequences with high probability indicating dominant roles of the local interactions. We further explore roles of local structural preference by exact calculation of the HP lattice model of proteins. From these results, we suggest principles of protein folding: For small proteins, compact structures that are fully compatible with local structural preference are few, one of which is the native fold. These local biases shape up the funnel-like energy landscape.
Shaping up the protein folding funnel by local interaction: Lesson from a structure prediction study
Chikenji, George; Fujitsuka, Yoshimi; Takada, Shoji
2006-01-01
Predicting protein tertiary structure by folding-like simulations is one of the most stringent tests of how much we understand the principle of protein folding. Currently, the most successful method for folding-based structure prediction is the fragment assembly (FA) method. Here, we address why the FA method is so successful and its lesson for the folding problem. To do so, using the FA method, we designed a structure prediction test of “chimera proteins.” In the chimera proteins, local structural preference is specific to the target sequences, whereas nonlocal interactions are only sequence-independent compaction forces. We find that these chimera proteins can find the native folds of the intact sequences with high probability indicating dominant roles of the local interactions. We further explore roles of local structural preference by exact calculation of the HP lattice model of proteins. From these results, we suggest principles of protein folding: For small proteins, compact structures that are fully compatible with local structural preference are few, one of which is the native fold. These local biases shape up the funnel-like energy landscape. PMID:16488978
New powerful statistics for alignment-free sequence comparison under a pattern transfer model.
Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S; Sun, Fengzhu
2011-09-07
Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D*2 and D(s)2 showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D*2 and D(s)2 by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. Copyright © 2011 Elsevier Ltd. All rights reserved.
New Powerful Statistics for Alignment-free Sequence Comparison Under a Pattern Transfer Model
Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S.; Sun, Fengzhu
2011-01-01
Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D2∗ and D2s showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D2∗ and D2s by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. PMID:21723298
Global and local pitch perception in children with developmental dyslexia.
Ziegler, Johannes C; Pech-Georgel, Catherine; George, Florence; Foxton, Jessica M
2012-03-01
This study investigated global versus local pitch pattern perception in children with dyslexia aged between 8 and 11 years. Children listened to two consecutive 4-tone pitch sequences while performing a same/different task. On the different trials, sequences either preserved the contour (local condition) or they violated the contour (global condition). Compared to normally developing children, dyslexics showed robust pitch perception deficits in the local but not the global condition. This finding was replicated in a simple pitch direction task, which minimizes sequencing and short term memory. Results are consistent with a left-hemisphere deficit in dyslexia because local pitch changes are supposedly processed by the left hemisphere, whereas global pitch changes are processed by the right hemisphere. The present data suggest a link between impaired pitch processing and abnormal phonological development in children with dyslexia, which makes pitch pattern processing a potent tool for early diagnosis and remediation of dyslexia. Copyright © 2011 Elsevier Inc. All rights reserved.
Electronic and structural ground state of heavy alkali metals at high pressure
Fabbris, G.; Lim, J.; Veiga, L. S. I.; ...
2015-02-17
Here, alkali metals display unexpected properties at high pressure, including emergence of low symmetry crystal structures, that appear to occur due to enhanced electronic correlations among the otherwise nearly-free conduction electrons. We investigate the high pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with ab initio theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the oC84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of themore » valence electrons characterized by pseudo-gap formation near the Fermi level and strong spd hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.« less
Taddei, Angela; Schober, Heiko; Gasser, Susan M.
2010-01-01
The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure. PMID:20554704
A high-order time-accurate interrogation method for time-resolved PIV
NASA Astrophysics Data System (ADS)
Lynch, Kyle; Scarano, Fulvio
2013-03-01
A novel method is introduced for increasing the accuracy and extending the dynamic range of time-resolved particle image velocimetry (PIV). The approach extends the concept of particle tracking velocimetry by multiple frames to the pattern tracking by cross-correlation analysis as employed in PIV. The working principle is based on tracking the patterned fluid element, within a chosen interrogation window, along its individual trajectory throughout an image sequence. In contrast to image-pair interrogation methods, the fluid trajectory correlation concept deals with variable velocity along curved trajectories and non-zero tangential acceleration during the observed time interval. As a result, the velocity magnitude and its direction are allowed to evolve in a nonlinear fashion along the fluid element trajectory. The continuum deformation (namely spatial derivatives of the velocity vector) is accounted for by adopting local image deformation. The principle offers important reductions of the measurement error based on three main points: by enlarging the temporal measurement interval, the relative error becomes reduced; secondly, the random and peak-locking errors are reduced by the use of least-squares polynomial fits to individual trajectories; finally, the introduction of high-order (nonlinear) fitting functions provides the basis for reducing the truncation error. Lastly, the instantaneous velocity is evaluated as the temporal derivative of the polynomial representation of the fluid parcel position in time. The principal features of this algorithm are compared with a single-pair iterative image deformation method. Synthetic image sequences are considered with steady flow (translation, shear and rotation) illustrating the increase of measurement precision. An experimental data set obtained by time-resolved PIV measurements of a circular jet is used to verify the robustness of the method on image sequences affected by camera noise and three-dimensional motions. In both cases, it is demonstrated that the measurement time interval can be significantly extended without compromising the correlation signal-to-noise ratio and with no increase of the truncation error. The increase of velocity dynamic range scales more than linearly with the number of frames included for the analysis, which supersedes by one order of magnitude the pair correlation by window deformation. The main factors influencing the performance of the method are discussed, namely the number of images composing the sequence and the polynomial order chosen to represent the motion throughout the trajectory.
STELLAR: fast and exact local alignments
2011-01-01
Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de. PMID:22151882
Gilbert, Guillaume; Savard, Geneviève; Bard, Céline; Beaudoin, Gilles
2012-06-01
The aim of this study was to investigate the benefits arising from the use of a multiecho sequence for susceptibility-weighted phase imaging using a quantitative comparison with a standard single-echo acquisition. Four healthy adult volunteers were imaged on a clinical 3-T system using a protocol comprising two different three-dimensional susceptibility-weighted gradient-echo sequences: a standard single-echo sequence and a multiecho sequence. Both sequences were repeated twice in order to evaluate the local noise contribution by a subtraction of the two acquisitions. For the multiecho sequence, the phase information from each echo was independently unwrapped, and the background field contribution was removed using either homodyne filtering or the projection onto dipole fields method. The phase information from all echoes was then combined using a weighted linear regression. R2 maps were also calculated from the multiecho acquisitions. The noise standard deviation in the reconstructed phase images was evaluated for six manually segmented regions of interest (frontal white matter, posterior white matter, globus pallidus, putamen, caudate nucleus and lateral ventricle). The use of the multiecho sequence for susceptibility-weighted phase imaging led to a reduction of the noise standard deviation for all subjects and all regions of interest investigated in comparison to the reference single-echo acquisition. On average, the noise reduction ranged from 18.4% for the globus pallidus to 47.9% for the lateral ventricle. In addition, the amount of noise reduction was found to be strongly inversely correlated to the estimated R2 value (R=-0.92). In conclusion, the use of a multiecho sequence is an effective way to decrease the noise contribution in susceptibility-weighted phase images, while preserving both contrast and acquisition time. The proposed approach additionally permits the calculation of R2 maps. Copyright © 2012 Elsevier Inc. All rights reserved.
Integration of Temporal and Ordinal Information During Serial Interception Sequence Learning
Gobel, Eric W.; Sanchez, Daniel J.; Reber, Paul J.
2011-01-01
The expression of expert motor skills typically involves learning to perform a precisely timed sequence of movements (e.g., language production, music performance, athletic skills). Research examining incidental sequence learning has previously relied on a perceptually-cued task that gives participants exposure to repeating motor sequences but does not require timing of responses for accuracy. Using a novel perceptual-motor sequence learning task, learning a precisely timed cued sequence of motor actions is shown to occur without explicit instruction. Participants learned a repeating sequence through practice and showed sequence-specific knowledge via a performance decrement when switched to an unfamiliar sequence. In a second experiment, the integration of representation of action order and timing sequence knowledge was examined. When either action order or timing sequence information was selectively disrupted, performance was reduced to levels similar to completely novel sequences. Unlike prior sequence-learning research that has found timing information to be secondary to learning action sequences, when the task demands require accurate action and timing information, an integrated representation of these types of information is acquired. These results provide the first evidence for incidental learning of fully integrated action and timing sequence information in the absence of an independent representation of action order, and suggest that this integrative mechanism may play a material role in the acquisition of complex motor skills. PMID:21417511
Rocha, Alexandre B; de Moura, Carlos E V
2011-12-14
Potential energy curves for inner-shell states of nitrogen and carbon dioxide molecules are calculated by inner-shell complete active space self-consistent field (CASSCF) method, which is a protocol, recently proposed, to obtain specifically converged inner-shell states at multiconfigurational level. This is possible since the collapse of the wave function to a low-lying state is avoided by a sequence of constrained optimization in the orbital mixing step. The problem of localization of K-shell states is revisited by calculating their energies at CASSCF level based on both localized and delocalized orbitals. The localized basis presents the best results at this level of calculation. Transition energies are also calculated by perturbation theory, by taking the above mentioned MCSCF function as zeroth order wave function. Values for transition energy are in fairly good agreement with experimental ones. Bond dissociation energies for N(2) are considerably high, which means that these states are strongly bound. Potential curves along ground state normal modes of CO(2) indicate the occurrence of Renner-Teller effect in inner-shell states. © 2011 American Institute of Physics
D-score: a search engine independent MD-score.
Vaudel, Marc; Breiter, Daniela; Beck, Florian; Rahnenführer, Jörg; Martens, Lennart; Zahedi, René P
2013-03-01
While peptides carrying PTMs are routinely identified in gel-free MS, the localization of the PTMs onto the peptide sequences remains challenging. Search engine scores of secondary peptide matches have been used in different approaches in order to infer the quality of site inference, by penalizing the localization whenever the search engine similarly scored two candidate peptides with different site assignments. In the present work, we show how the estimation of posterior error probabilities for peptide candidates allows the estimation of a PTM score called the D-score, for multiple search engine studies. We demonstrate the applicability of this score to three popular search engines: Mascot, OMSSA, and X!Tandem, and evaluate its performance using an already published high resolution data set of synthetic phosphopeptides. For those peptides with phosphorylation site inference uncertainty, the number of spectrum matches with correctly localized phosphorylation increased by up to 25.7% when compared to using Mascot alone, although the actual increase depended on the fragmentation method used. Since this method relies only on search engine scores, it can be readily applied to the scoring of the localization of virtually any modification at no additional experimental or in silico cost. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan
2010-01-01
For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.
NASA Astrophysics Data System (ADS)
Danise, Silvia; Holland, Steven
2017-04-01
Understanding how regional ecosystems respond to sea level and environmental perturbations is a main challenge in palaeoecology. Here we use quantitative abundance estimates, integrated within a sequence stratigraphic and environmental framework, to reconstruct benthic community changes through the 13 myr history of the Jurassic Sundance Seaway in the western United States. Faunal censuses of macroinvertebrates were obtained from marine rocks of the Gypsum Spring, Sundance and Twin Creek formations at 44 localities in Wyoming, Montana and South Dakota. Fossils were identified to species wherever possible. Ordination of samples shows a main turnover event at the Middle-Upper Jurassic transition, which coincided with the shift from carbonate to siliciclastic depositional systems in the Seaway. This shift was probably initiated by the northward migration of the North American Plate, which moved the study area from subtropical latitudes, fostering an arid climate, into progressively more humid conditions, and possibly also by global cooling at this time. Turnover was not uniform across the onshore-offshore gradient, but was higher in offshore environments, in both carbonate and siliciclastic settings. Both the Jaccard and the Bray-Curtis similarity measures indicate that taxonomic similarity decreases from onshore to offshore in successive third-order depositional sequences, although similarity values are low for both onshore and offshore environments The higher resilience of onshore communities to third-order sea-level fluctuations and to the change from a carbonate to a siliciclastic system was driven by a few abundant eurytopic species that persisted from the opening to the closing of the Seaway and that were not restricted to single depositional environments or sequences. Lower stability in offshore facies was instead controlled by the presence of more volatile stenotopic species. Such increased onshore stability in community composition contrasts with the well-documented onshore increase in taxonomic turnover rates, and indicates the need for ecological studies to complement taxonomic studies of macroevolutionary events. This study also shows how a stratigraphic palaeobiological approach is essential for understanding the link between environmental and faunal gradients, and for understanding the long-term changes in these gradients over time that produce the local stratigraphical pattern of changes in community composition.
NASA Astrophysics Data System (ADS)
Catuneanu, O.; Khalifa, M. A.; Wanas, H. A.
2006-08-01
The Lower Cenomanian Bahariya Formation corresponds to a second-order depositional sequence that formed within a continental shelf setting under relatively low-rate conditions of positive accommodation (< 200 m during 3-6 My). This overall trend of base-level rise was interrupted by three episodes of base-level fall that resulted in the formation of third-order sequence boundaries. These boundaries are represented by subaerial unconformities (replaced or not by younger transgressive wave ravinement surfaces), and subdivide the Bahariya Formation into four third-order depositional sequences. The construction of the sequence stratigraphic framework of the Bahariya Formation is based on the lateral and vertical changes between shelf, subtidal, coastal and fluvial facies, as well as on the nature of contacts that separate them. The internal (third-order) sequence boundaries are associated with incised valleys, which explain (1) significant lateral changes in the thickness of incised valley fill deposits, (2) the absence of third-order highstand and even transgressive systems tracts in particular areas, and (3) the abrupt facies shifts that may occur laterally over relatively short distances. Within each sequence, the concepts of lowstand, transgressive and highstand systems tracts are used to explain the observed lateral and vertical facies variability. This case study demonstrates the usefulness of sequence stratigraphic analysis in understanding the architecture and stacking patterns of the preserved rock record, and helps to identify 13 stages in the history of base-level changes that marked the evolution of the Bahariya Oasis region during the Early Cenomanian.
Matsubara, Kazumi; Uno, Yoshinobu; Srikulnath, Kornsorn; Seki, Risako; Nishida, Chizuko; Matsuda, Yoichi
2015-12-01
Highly repetitive DNA sequences of the centromeric heterochromatin provide valuable molecular cytogenetic markers for the investigation of genomic compartmentalization in the macrochromosomes and microchromosomes of sauropsids. Here, the relationship between centromeric heterochromatin and karyotype evolution was examined using cloned repetitive DNA sequences from two snake species, the habu snake (Protobothrops flavoviridis, Crotalinae, Viperidae) and Burmese python (Python bivittatus, Pythonidae). Three satellite DNA (stDNA) families were isolated from the heterochromatin of these snakes: 168-bp PFL-MspI from P. flavoviridis and 196-bp PBI-DdeI and 174-bp PBI-MspI from P. bivittatus. The PFL-MspI and PBI-DdeI sequences were localized to the centromeric regions of most chromosomes in the respective species, suggesting that the two sequences were the major components of the centromeric heterochromatin in these organisms. The PBI-MspI sequence was localized to the pericentromeric region of four chromosome pairs. The PFL-MspI and the PBI-DdeI sequences were conserved only in the genome of closely related species, Gloydius blomhoffii (Crotalinae) and Python molurus, respectively, although their locations on the chromosomes were slightly different. In contrast, the PBI-MspI sequence was also in the genomes of P. molurus and Boa constrictor (Boidae), and additionally localized to the centromeric regions of eight chromosome pairs in B. constrictor, suggesting that this sequence originated in the genome of a common ancestor of Pythonidae and Boidae, approximately 86 million years ago. The three stDNA sequences showed no genomic compartmentalization between the macrochromosomes and microchromosomes, suggesting that homogenization of the centromeric and/or pericentromeric stDNA sequences occurred in the macrochromosomes and microchromosomes of these snakes.
TABLE D - WMO AND LOCAL (NCEP) DESCRIPTORS AS WELL AS THOSE AWAITING
sequences common to satellite observations None 3 05 Meteorological or hydrological sequences common to Vertical sounding sequences (conventional data) None 3 10 Vertical sounding sequences (satellite data) None (satellite data) None 3 13 Sequences common to image data None 3 14 Reserved None 3 15 Oceanographic report
Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments
Yim, Won Cheol; Cushman, John C.
2017-07-22
Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less
SU-F-T-350: Continuous Leaf Optimization (CLO) for IMRT Leaf Sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, T; Chen, M; Jiang, S
Purpose: To study a new step-and-shoot IMRT leaf sequencing model that avoids the two main pitfalls of conventional leaf sequencing: (1) target fluence being stratified into a fixed number of discrete levels and/or (2) aperture leaf positions being restricted to a discrete set of locations. These assumptions induce error into the sequence or reduce the feasible region of potential plans, respectively. Methods: We develop a one-dimensional (single leaf pair) methodology that does not make assumptions (1) or (2) that can be easily extended to a multi-row model. The proposed continuous leaf optimization (CLO) methodology takes in an existing set ofmore » apertures and associated intensities, or solution “seed,” and improves the plan without the restrictiveness of 1or (2). It then uses a first-order descent algorithm to converge onto a locally optimal solution. A seed solution can come from models that assume (1) and (2), thus allowing the CLO model to improve upon existing leaf sequencing methodologies. Results: The CLO model was applied to 208 generated target fluence maps in one dimension. In all cases for all tested sequencing strategies, the CLO model made improvements on the starting seed objective function. The CLO model also was able to keep MUs low. Conclusion: The CLO model can improve upon existing leaf sequencing methods by avoiding the restrictions of (1) and (2). By allowing for more flexible leaf positioning, error can be reduced when matching some target fluence. This study lays the foundation for future models and solution methodologies that can incorporate continuous leaf positions explicitly into the IMRT treatment planning model. Supported by Cancer Prevention & Research Institute of Texas (CPRIT) - ID RP150485.« less
Bouchard, Kristofer E.; Ganguli, Surya; Brainard, Michael S.
2015-01-01
The majority of distinct sensory and motor events occur as temporally ordered sequences with rich probabilistic structure. Sequences can be characterized by the probability of transitioning from the current state to upcoming states (forward probability), as well as the probability of having transitioned to the current state from previous states (backward probability). Despite the prevalence of probabilistic sequencing of both sensory and motor events, the Hebbian mechanisms that mold synapses to reflect the statistics of experienced probabilistic sequences are not well understood. Here, we show through analytic calculations and numerical simulations that Hebbian plasticity (correlation, covariance, and STDP) with pre-synaptic competition can develop synaptic weights equal to the conditional forward transition probabilities present in the input sequence. In contrast, post-synaptic competition can develop synaptic weights proportional to the conditional backward probabilities of the same input sequence. We demonstrate that to stably reflect the conditional probability of a neuron's inputs and outputs, local Hebbian plasticity requires balance between competitive learning forces that promote synaptic differentiation and homogenizing learning forces that promote synaptic stabilization. The balance between these forces dictates a prior over the distribution of learned synaptic weights, strongly influencing both the rate at which structure emerges and the entropy of the final distribution of synaptic weights. Together, these results demonstrate a simple correspondence between the biophysical organization of neurons, the site of synaptic competition, and the temporal flow of information encoded in synaptic weights by Hebbian plasticity while highlighting the utility of balancing learning forces to accurately encode probability distributions, and prior expectations over such probability distributions. PMID:26257637
Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, Won Cheol; Cushman, John C.
Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less
The red-sequence of 72 WINGS local galaxy clusters
NASA Astrophysics Data System (ADS)
Valentinuzzi, T.; Poggianti, B. M.; Fasano, G.; D'Onofrio, M.; Moretti, A.; Ramella, M.; Biviano, A.; Fritz, J.; Varela, J.; Bettoni, D.; Vulcani, B.; Moles, M.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Omizzolo, A.; Cava, A.
2011-12-01
We study the color - magnitude red sequence and blue fraction of 72 X-ray selected galaxy clusters at z = 0.04-0.07 from the WINGS survey, searching for correlations between the characteristics of the red sequence (RS) and the environment. We consider the slope and scatter of the red sequence, the number ratio of red luminous-to-faint galaxies, the blue fraction, and the fractions of ellipticals, S0s, and spirals that compose the RS. None of these quantities correlate with the cluster velocity dispersion, X-ray luminosity, number of cluster substructures, BCG prevalence over next brightest galaxies, and the spatial concentration of ellipticals. The properties of the RS, instead, depend strongly on local galaxy density. Higher density regions have a smaller RS scatter, a higher luminous-to-faint ratio, a lower blue fraction, and a lower spiral fraction on the RS. Our results clearly illustrate the prominent effect of the local density in setting the epoch when galaxies become passive and join the red sequence, as opposed to the mass of the galaxy host structure.
Analysis of delay reducing and fuel saving sequencing and spacing algorithms for arrival traffic
NASA Technical Reports Server (NTRS)
Neuman, Frank; Erzberger, Heinz
1991-01-01
The air traffic control subsystem that performs sequencing and spacing is discussed. The function of the sequencing and spacing algorithms is to automatically plan the most efficient landing order and to assign optimally spaced landing times to all arrivals. Several algorithms are described and their statistical performance is examined. Sequencing brings order to an arrival sequence for aircraft. First-come-first-served sequencing (FCFS) establishes a fair order, based on estimated times of arrival, and determines proper separations. Because of the randomness of the arriving traffic, gaps will remain in the sequence of aircraft. Delays are reduced by time-advancing the leading aircraft of each group while still preserving the FCFS order. Tightly spaced groups of aircraft remain with a mix of heavy and large aircraft. Spacing requirements differ for different types of aircraft trailing each other. Traffic is reordered slightly to take advantage of this spacing criterion, thus shortening the groups and reducing average delays. For heavy traffic, delays for different traffic samples vary widely, even when the same set of statistical parameters is used to produce each sample. This report supersedes NASA TM-102795 on the same subject. It includes a new method of time-advance as well as an efficient method of sequencing and spacing for two dependent runways.
λ (Δim) -statistical convergence of order α
NASA Astrophysics Data System (ADS)
Colak, Rifat; Et, Mikail; Altin, Yavuz
2017-09-01
In this study, using the generalized difference operator Δim and a sequence λ = (λn) which is a non-decreasing sequence of positive numbers tending to ∞ such that λn+1 ≤ λn+1, λ1 = 1, we introduce the concepts of λ (Δim) -statistical convergence of order α (α ∈ (0, 1]) and strong λ (Δim) -Cesàro summablility of order α (α > 0). We establish some connections between λ (Δim) -statistical convergence of order α and strong λ (Δim) -Cesàro summablility of order α. It is shown that if a sequence is strongly λ (Δim) -Cesàro summable of order α, then it is λ (Δim) -statistically convergent of order β in case 0 < α ≤ β ≤ 1.
Polypteridae (Actinopterygii: Cladistia) and DANA-SINEs insertions.
Morescalchi, Maria Alessandra; Barucca, Marco; Stingo, Vincenzo; Capriglione, Teresa
2010-06-01
SINE sequences are interspersed throughout virtually all eukaryotic genomes and greatly outnumber the other repetitive elements. These sequences are of increasing interest for phylogenetic studies because of their diagnostic power for establishing common ancestry among taxa, once properly characterized. We identified and characterized a peculiar family of composite tRNA-derived short interspersed SINEs, DANA-SINEs, associated with mutational activities in Danio rerio, in a group of species belonging to one of the most basal bony fish families, the Polypteridae, in order to investigate their own inner specific phylogenetic relationships. DANA sequences were identified, sequenced and then localized, by means of fluorescent in situ hybridization (FISH), in six Polypteridae species (Polypterus delhezi, P. ornatipinnis, P. palmas, P. buettikoferi P. senegalus and Erpetoichthys calabaricus) After cloning, the sequences obtained were aligned for phylogenetic analysis, comparing them with three Dipnoan lungfish species (Protopterus annectens, P. aethiopicus, Lepidosiren paradoxa), and Lethenteron reissneri (Petromyzontidae)was used as outgroup. The obtained overlapping MP, ML and NJ tree clustered together the species belonging to the two taxonomically different Osteichthyans groups: the Polypteridae, by one side, and the Protopteridae by the other, with the monotypic genus Erpetoichthys more distantly related to the Polypterus genus comprising three distinct groups: P. palmas and P. buettikoferi, P. delhezi and P. ornatipinnis and P. senegalus. In situ hybridization with DANA probes marked along the whole chromosome arms in the metaphases of all the Polypteridae species examined. Copyright © 2010 Elsevier B.V. All rights reserved.
Genomic Investigation of a Legionellosis Outbreak in a Persistently Colonized Hotel.
Sánchez-Busó, Leonor; Guiral, Silvia; Crespi, Sebastián; Moya, Víctor; Camaró, María L; Olmos, María P; Adrián, Francisco; Morera, Vicente; González-Morán, Francisco; Vanaclocha, Hermelinda; González-Candelas, Fernando
2015-01-01
A long-lasting legionellosis outbreak was reported between November 2011 and July 2012 in a hotel in Calpe (Spain) affecting 44 patients including six deaths. Intensive epidemiological and microbiological investigations were performed in order to detect the reservoirs. Clinical and environmental samples were tested for the presence and genetic characterization of Legionella pneumophila. Six of the isolates were subjected to whole-genome sequencing. Sequencing of 14 clinical and 260 environmental samples revealed sequence type (ST) 23 as the main responsible strain for the infections. This ST was found in the spa pool, from where it spread to other hotel public spaces, explaining the ST23 clinical cases, including guests who had not visited the spa. Uncultured clinical specimens showed profiles compatible with ST23, ST578, and mixed patterns. Profiles compatible with ST578 were obtained by direct sequencing from biofilm samples collected from the domestic water system, which provided evidence for the source of infection for non ST23 patients. Whole genome data from five ST23 strains and the identification of different STs and Legionella species showed that different hotel premises were likely colonized since the hotel opening thus explaining how different patients had been infected by distinct STs. Both epidemiological and molecular data are essential in the investigation of legionellosis outbreaks. Whole-genome sequencing data revealed significant intra-ST variability and allowed to make further inference on the short-term evolution of a local colonization of L. pneumophila.
Petkevičiūtė, D; Pasi, M; Gonzalez, O; Maddocks, J H
2014-11-10
cgDNA is a package for the prediction of sequence-dependent configuration-space free energies for B-form DNA at the coarse-grain level of rigid bases. For a fragment of any given length and sequence, cgDNA calculates the configuration of the associated free energy minimizer, i.e. the relative positions and orientations of each base, along with a stiffness matrix, which together govern differences in free energies. The model predicts non-local (i.e. beyond base-pair step) sequence dependence of the free energy minimizer. Configurations can be input or output in either the Curves+ definition of the usual helical DNA structural variables, or as a PDB file of coordinates of base atoms. We illustrate the cgDNA package by comparing predictions of free energy minimizers from (a) the cgDNA model, (b) time-averaged atomistic molecular dynamics (or MD) simulations, and (c) NMR or X-ray experimental observation, for (i) the Dickerson-Drew dodecamer and (ii) three oligomers containing A-tracts. The cgDNA predictions are rather close to those of the MD simulations, but many orders of magnitude faster to compute. Both the cgDNA and MD predictions are in reasonable agreement with the available experimental data. Our conclusion is that cgDNA can serve as a highly efficient tool for studying structural variations in B-form DNA over a wide range of sequences. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Zhang, Jianwei; Kudrna, Dave; Mu, Ting; Li, Weiming; Copetti, Dario; Yu, Yeisoo; Goicoechea, Jose Luis; Lei, Yang; Wing, Rod A.
2016-01-01
Abstract Motivation: Next generation sequencing technologies have revolutionized our ability to rapidly and affordably generate vast quantities of sequence data. Once generated, raw sequences are assembled into contigs or scaffolds. However, these assemblies are mostly fragmented and inaccurate at the whole genome scale, largely due to the inability to integrate additional informative datasets (e.g. physical, optical and genetic maps). To address this problem, we developed a semi-automated software tool—Genome Puzzle Master (GPM)—that enables the integration of additional genomic signposts to edit and build ‘new-gen-assemblies’ that result in high-quality ‘annotation-ready’ pseudomolecules. Results: With GPM, loaded datasets can be connected to each other via their logical relationships which accomplishes tasks to ‘group,’ ‘merge,’ ‘order and orient’ sequences in a draft assembly. Manual editing can also be performed with a user-friendly graphical interface. Final pseudomolecules reflect a user’s total data package and are available for long-term project management. GPM is a web-based pipeline and an important part of a Laboratory Information Management System (LIMS) which can be easily deployed on local servers for any genome research laboratory. Availability and Implementation: The GPM (with LIMS) package is available at https://github.com/Jianwei-Zhang/LIMS Contacts: jzhang@mail.hzau.edu.cn or rwing@mail.arizona.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27318200
Convolutional neural network architectures for predicting DNA–protein binding
Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.
2016-01-01
Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608
Genomic Investigation of a Legionellosis Outbreak in a Persistently Colonized Hotel
Sánchez-Busó, Leonor; Guiral, Silvia; Crespi, Sebastián; Moya, Víctor; Camaró, María L.; Olmos, María P.; Adrián, Francisco; Morera, Vicente; González-Morán, Francisco; Vanaclocha, Hermelinda; González-Candelas, Fernando
2016-01-01
Objectives: A long-lasting legionellosis outbreak was reported between November 2011 and July 2012 in a hotel in Calpe (Spain) affecting 44 patients including six deaths. Intensive epidemiological and microbiological investigations were performed in order to detect the reservoirs. Methods: Clinical and environmental samples were tested for the presence and genetic characterization of Legionella pneumophila. Six of the isolates were subjected to whole-genome sequencing. Results: Sequencing of 14 clinical and 260 environmental samples revealed sequence type (ST) 23 as the main responsible strain for the infections. This ST was found in the spa pool, from where it spread to other hotel public spaces, explaining the ST23 clinical cases, including guests who had not visited the spa. Uncultured clinical specimens showed profiles compatible with ST23, ST578, and mixed patterns. Profiles compatible with ST578 were obtained by direct sequencing from biofilm samples collected from the domestic water system, which provided evidence for the source of infection for non ST23 patients. Whole genome data from five ST23 strains and the identification of different STs and Legionella species showed that different hotel premises were likely colonized since the hotel opening thus explaining how different patients had been infected by distinct STs. Conclusions: Both epidemiological and molecular data are essential in the investigation of legionellosis outbreaks. Whole-genome sequencing data revealed significant intra-ST variability and allowed to make further inference on the short-term evolution of a local colonization of L. pneumophila. PMID:26834713
Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves.
Antman, Yair; Levanon, Nadav; Zadok, Avi
2012-12-15
A method for long variable all-optical delay is proposed and simulated, based on reflections from localized and stationary dynamic Brillouin gratings (DBGs). Inspired by radar methods, the DBGs are inscribed by two pumps that are comodulated by perfect Golomb codes, which reduce the off-peak reflectivity. Compared with random bit sequence coding, Golomb codes improve the optical signal-to-noise ratio (OSNR) of delayed waveforms by an order of magnitude. Simulations suggest a delay of 5 Gb/s data by 9 ns, or 45 bit durations, with an OSNR of 13 dB.
Diagnosis of skin cancer by correlation and complexity analyses of damaged DNA
Namazi, Hamidreza; Kulish, Vladimir V.; Delaviz, Fatemeh; Delaviz, Ali
2015-01-01
Skin cancer is a common, low-grade cancerous (malignant) growth of the skin. It starts from cells that begin as normal skin cells and transform into those with the potential to reproduce in an out-of-control manner. Cancer develops when DNA, the molecule found in cells that encodes genetic information, becomes damaged and the body cannot repair the damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to diagnose the skin cancer, first DNA walk plots of genomes of patients with skin cancer were generated. Then, the data so obtained was checked for complexity by computing the fractal dimension. Furthermore, the Hurst exponent has been employed in order to study the correlation of damaged DNA. By analysing different samples it has been found that the damaged DNA sequences are exhibiting higher degree of complexity and less correlation compared to normal DNA sequences. This investigation confirms that this method can be used for diagnosis of skin cancer. The method discussed in this research is useful not only for diagnosis of skin cancer but can be applied for diagnosis and growth analysis of different types of cancers. PMID:26497203
Motion estimation of magnetic resonance cardiac images using the Wigner-Ville and hough transforms
NASA Astrophysics Data System (ADS)
Carranza, N.; Cristóbal, G.; Bayerl, P.; Neumann, H.
2007-12-01
Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation of the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach. More specifically it relies on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The latter is a well-known line and shape detection method that is highly robust against incomplete data and noise. The rationale of using the HT in this context is that it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results in the case of synthetic sequences are compared with an implementation of the variational technique for local and global motion estimation, where it is shown that the results are accurate and robust to noise degradations. Results obtained with real cardiac magnetic resonance images are presented.
NASA Astrophysics Data System (ADS)
Carranza, N.; Cristóbal, G.; Sroubek, F.; Ledesma-Carbayo, M. J.; Santos, A.
2006-08-01
Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation to the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach, more specifically on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The later is a well-known line and shape detection method very robust against incomplete data and noise. The rationale of using the HT in this context is because it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results with synthetic sequences are compared against an implementation of the variational technique for local and global motion estimation, where it is shown that the results obtained here are accurate and robust to noise degradations. Real cardiac magnetic resonance images have been tested and evaluated with the current method.
Differential Effects of Paced and Unpaced Responding on delayed Serial Order Recall in Schizophrenia
Hill, S. Kristian; Griffin, Ginny B.; Houk, James C.; Sweeney, John A.
2011-01-01
Working memory for temporal order is a component of working memory that is especially dependent on striatal systems, but has not been extensively studied in schizophrenia. This study was designed to characterize serial order reproduction by adapting a spatial serial order task developed for nonhuman primate studies, while controlling for working memory load and whether responses were initiated freely (unpaced) or in an externally paced format. Clinically stable schizophrenia patients (n=27) and psychiatrically healthy individuals (n=25) were comparable on demographic variables and performance on standardized tests of immediate serial order recall (Digit Span, Spatial Span). No group differences were observed for serial order recall when read sequence reproduction was unpaced. However, schizophrenia patients exhibited significant impairments when responding was paced, regardless of sequence length or retention delay. Intact performance by schizophrenia patients during the unpaced condition indicates that prefrontal storage and striatal output systems are sufficiently intact to learn novel response sequences and hold them in working memory to perform serial order tasks. However, retention for newly learned response sequences was disrupted in schizophrenia patients by paced responding, when read-out of each element in the response sequence was externally controlled. The disruption of memory for serial order in paced read-out condition indicates a deficit in frontostriatal interaction characterized by an inability to update working memory stores and deconstruct ‘chunked’ information. PMID:21705197
NASA Astrophysics Data System (ADS)
Baumgartner, Peter O.
A database on Middle Jurassic-Early Cretaceous radiolarians consisting of first and final occurrences of 110 species in 226 samples from 43 localities was used to compute Unitary Associations and probabilistic ranking and scaling (RASC), in order to test deterministic versus probabilistic quantitative biostratigraphic methods. Because the Mesozoic radiolarian fossil record is mainly dissolution-controlled, the sequence of events differs greatly from section to section. The scatter of local first and final appearances along a time scale is large compared to the species range; it is asymmetrical, with a maximum near the ends of the range and it is non-random. Thus, these data do not satisfy the statistical assumptions made in ranking and scaling. Unitary Associations produce maximum ranges of the species relative to each other by stacking cooccurrence data from all sections and therefore compensate for the local dissolution effects. Ranking and scaling, based on the assumption of a normal random distribution of the events, produces average ranges which are for most species much shorter than the maximum UA-ranges. There are, however, a number of species with similar ranges in both solutions. These species are believed to be the most dissolution-resistant and, therefore, the most reliable ones for the definition of biochronozones. The comparison of maximum and average ranges may be a powerful tool to test reliability of species for biochronology. Dissolution-controlled fossil data yield high crossover frequencies and therefore small, statistically insignificant interfossil distances. Scaling has not produced a useful sequence for this type of data.
Colwellia psychrerythraea strains from distant deep sea basins show adaptation to local conditions
Techtmann, Stephen M.; Fitzgerald, Kathleen S.; Stelling, Savannah C.; ...
2016-05-09
Many studies have shown that microbes, which share nearly identical 16S rRNA genes, can have highly divergent genomes. Microbes from distinct parts of the ocean also exhibit biogeographic patterning. Here in this study we seek to better understand how certain microbes from the same species have adapted for growth under local conditions. The phenotypic and genomic heterogeneity of three strains of Colwellia psychrerythraea was investigated in order to understand adaptions to local environments. Colwellia are psychrophilic heterotrophic marine bacteria ubiquitous in cold marine ecosystems. We have recently isolated two Colwellia strains: ND2E from the Eastern Mediterranean and GAB14E from themore » Great Australian Bight. The 16S rRNA sequence of these two strains were greater than 98.2% identical to the well-characterized C. psychrerythraea 34H, which was isolated from arctic sediments. Salt tolerance, and carbon source utilization profiles for these strains were determined using Biolog Phenotype MicoArrays. These strains exhibited distinct salt tolerance, which was not associated with the salinity of sites of isolation. The carbon source utilization profiles were distinct with less than half of the tested carbon sources being metabolized by all three strains. Whole genome sequencing revealed that the genomes of these three strains were quite diverse with some genomes having up to 1600 strain-specific genes. Many genes involved in degrading strain-specific carbon sources were identified. Finally, there appears to be a link between carbon source utilization and location of isolation with distinctions observed between the Colwellia isolate recovered from sediment compared to water column isolates.« less
Stock price forecasting based on time series analysis
NASA Astrophysics Data System (ADS)
Chi, Wan Le
2018-05-01
Using the historical stock price data to set up a sequence model to explain the intrinsic relationship of data, the future stock price can forecasted. The used models are auto-regressive model, moving-average model and autoregressive-movingaverage model. The original data sequence of unit root test was used to judge whether the original data sequence was stationary. The non-stationary original sequence as a first order difference needed further processing. Then the stability of the sequence difference was re-inspected. If it is still non-stationary, the second order differential processing of the sequence is carried out. Autocorrelation diagram and partial correlation diagram were used to evaluate the parameters of the identified ARMA model, including coefficients of the model and model order. Finally, the model was used to forecast the fitting of the shanghai composite index daily closing price with precision. Results showed that the non-stationary original data series was stationary after the second order difference. The forecast value of shanghai composite index daily closing price was closer to actual value, indicating that the ARMA model in the paper was a certain accuracy.
Characterization of a nuclear localization signal in the foot-and-mouth disease virus polymerase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Aparicio, Maria Teresa; Rosas, Maria Flora; Sobrino, Francisco, E-mail: fsobrino@cbm.uam.es
2013-09-15
We have experimentally tested whether the MRKTKLAPT sequence in FMDV 3D protein (residues 16 to 24) can act as a nuclear localization signal (NLS). Mutants with substitutions in two basic residues within this sequence, K18E and K20E, were generated. A decreased nuclear localization was observed in transiently expressed 3D and its precursor 3CD, suggesting a role of K18 and K20 in nuclear targeting. Fusion of MRKTKLAPT to the green fluorescence protein (GFP) increased the nuclear localization of GFP, which was not observed when GFP was fused to the 3D mutated sequences. These results indicate that the sequence MRKTKLAPT can bemore » functionally considered as a NLS. When introduced in a FMDV full length RNA replacements K18E and K20E led to production of revertant viruses that replaced the acidic residues introduced (E) by K, suggesting that the presence of lysins at positions 18 and 20 of 3D is essential for virus multiplication. - Highlights: • The FMDV 3D polymerase contains a nuclear localization signal. • Replacements K18E and K20E decrease nuclear localization of 3D and its precursor 3CD. • Fusion of the MRKTKLAPT 3D motif to GFP increases the nuclear localization of GFP. • Replacements K18E and K20E abolish the ability of MRKTKLAPT to relocate GFP. • RNAs harboring replacements K18E and K20E lead to recovery of revertant FMDVs.« less
Musculoskeletal MRI findings of juvenile localized scleroderma.
Eutsler, Eric P; Horton, Daniel B; Epelman, Monica; Finkel, Terri; Averill, Lauren W
2017-04-01
Juvenile localized scleroderma comprises a group of autoimmune conditions often characterized clinically by an area of skin hardening. In addition to superficial changes in the skin and subcutaneous tissues, juvenile localized scleroderma may involve the deep soft tissues, bones and joints, possibly resulting in functional impairment and pain in addition to cosmetic changes. There is literature documenting the spectrum of findings for deep involvement of localized scleroderma (fascia, muscles, tendons, bones and joints) in adults, but there is limited literature for the condition in children. We aimed to document the spectrum of musculoskeletal magnetic resonance imaging (MRI) findings of both superficial and deep juvenile localized scleroderma involvement in children and to evaluate the utility of various MRI sequences for detecting those findings. Two radiologists retrospectively evaluated 20 MRI studies of the extremities in 14 children with juvenile localized scleroderma. Each imaging sequence was also given a subjective score of 0 (not useful), 1 (somewhat useful) or 2 (most useful for detecting the findings). Deep tissue involvement was detected in 65% of the imaged extremities. Fascial thickening and enhancement were seen in 50% of imaged extremities. Axial T1, axial T1 fat-suppressed (FS) contrast-enhanced and axial fluid-sensitive sequences were rated most useful. Fascial thickening and enhancement were the most commonly encountered deep tissue findings in extremity MRIs of children with juvenile localized scleroderma. Because abnormalities of the skin, subcutaneous tissues and fascia tend to run longitudinally in an affected limb, axial T1, axial fluid-sensitive and axial T1-FS contrast-enhanced sequences should be included in the imaging protocol.
A Quaternary paleolake in a sinkhole at Cassis (SE France) : a geomorphology and geophysical study
NASA Astrophysics Data System (ADS)
Romey, C.; Rochette, P.; Vella, C.; Arfib, B.; Champollion, C.; Dussouillez, P.; Hermitte, D.; Parisot, J.-C.
2012-04-01
The Lower Provence and the Massif des Calanques, near Marseille, are a key area in understanding the mechanisms of evolution of the Mediterranean climate and the study of human impact on the local environment during the Quaternary. However, a continuous continental record of paleoenvironment in coastal Provence was not previously available. Looking for such a record, we discovered in a coastal alluvial plain a small paleolake filling a sinkhole that occurred in a marl sequence topping pure limestones at an altitude of 80 m, and a distance to the sea of 2 km. The sinkhole is close to the outlet of a small catchment area of about 8 km2. Limestone is massive but much fractured and therefore suitable for the development of karst. The drilling sedimentary sequence of 50 meters is mainly resulting from the weathering of Cretaceous marls. It consists of 5 meters of oxidized brown clay deposit which covers 45 meters of laminated lacustrine gray clay with sandy past. Cretaceous marls are at the base of the sequence. The presence of marls pebbles in the last meters of the sequence reflects the collapse of the sinkhole. The lacustrine clay was probably deposed during stages isotope 2 to 4 (48 ± 3 ka C14 date at 23 meters depth), whereas brown clay deposit was interpreted as Holocene paleosol. Combination of surface observation, drilling and geophysical studies (gravimetry and Electrical Resistivity Tomography) allows to constraint the geometry of the paleo-polje that formed during glacial period. Lake diameter was likely of the order of 200 m. It evolved from a deep lake to a swamp (probably Holocene, dating in progress) and it was drained in roman times for agriculture. Locally, this discovery has implications for the understanding of karst processes and water resources. The relationship between the sinkhole, rooted at circa 100 m below surface according to gravimetric modeling and the underground karstic river of Bestouan is strongly suggested by underwater exploration and hydrogeologic investigations.
Expanding the 2011 Prague, OK Event Catalog: Detections, Relocations, and Stress Drop Estimates
NASA Astrophysics Data System (ADS)
Clerc, F.; Cochran, E. S.; Dougherty, S. L.; Keranen, K. M.; Harrington, R. M.
2016-12-01
The Mw 5.6 earthquake occurring on 6 Nov. 2011, near Prague, OK, is thought to have been triggered by a Mw 4.8 foreshock, which was likely induced by fluid injection into local wastewater disposal wells [Keranen et al., 2013; Sumy et al., 2014]. Previous stress drop estimates for the sequence have suggested values lower than those for most Central and Eastern U.S. tectonic events of similar magnitudes [Hough, 2014; Sun & Hartzell, 2014; Sumy & Neighbors et al., 2016]. Better stress drop estimates allow more realistic assessment of seismic hazard and more effective regulation of wastewater injection. More reliable estimates of source properties may help to differentiate induced events from natural ones. Using data from local and regional networks, we perform event detections, relocations, and stress drop calculations of the Prague aftershock sequence. We use the Match & Locate method, a variation on the matched-filter method which detects events of lower magnitudes by stacking cross-correlograms from different stations [Zhang & Wen, 2013; 2015], in order to create a more complete catalog from 6 Nov to 31 Dec 2011. We then relocate the detected events using the HypoDD double-difference algorithm. Using our enhanced catalog and relocations, we examine the seismicity distribution for evidence of migration and investigate implications for triggering mechanisms. To account for path and site effects, we calculate stress drops using the Empirical Green's Function (EGF) spectral ratio method, beginning with 2730 previously relocated events. We determine whether there is a correlation between the stress drop magnitudes and the spatial and temporal distribution of events, including depth, position relative to existing faults, and proximity to injection wells. Finally, we consider the range of stress drop values and scaling with respect to event magnitudes within the context of previously published work for the Prague sequence as well as other induced and natural sequences.
Score distributions of gapped multiple sequence alignments down to the low-probability tail
NASA Astrophysics Data System (ADS)
Fieth, Pascal; Hartmann, Alexander K.
2016-08-01
Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10-160, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.
Information capacity of nucleotide sequences and its applications.
Sadovsky, M G
2006-05-01
The information capacity of nucleotide sequences is defined through the specific entropy of frequency dictionary of a sequence determined with respect to another one containing the most probable continuations of shorter strings. This measure distinguishes a sequence both from a random one, and from ordered entity. A comparison of sequences based on their information capacity is studied. An order within the genetic entities is found at the length scale ranged from 3 to 8. Some other applications of the developed methodology to genetics, bioinformatics, and molecular biology are discussed.
Automatic differentiation for Fourier series and the radii polynomial approach
NASA Astrophysics Data System (ADS)
Lessard, Jean-Philippe; Mireles James, J. D.; Ransford, Julian
2016-11-01
In this work we develop a computer-assisted technique for proving existence of periodic solutions of nonlinear differential equations with non-polynomial nonlinearities. We exploit ideas from the theory of automatic differentiation in order to formulate an augmented polynomial system. We compute a numerical Fourier expansion of the periodic orbit for the augmented system, and prove the existence of a true solution nearby using an a-posteriori validation scheme (the radii polynomial approach). The problems considered here are given in terms of locally analytic vector fields (i.e. the field is analytic in a neighborhood of the periodic orbit) hence the computer-assisted proofs are formulated in a Banach space of sequences satisfying a geometric decay condition. In order to illustrate the use and utility of these ideas we implement a number of computer-assisted existence proofs for periodic orbits of the Planar Circular Restricted Three-Body Problem (PCRTBP).
Molzan, Manuela; Ottmann, Christian
2013-03-01
Myeloid leukemia factor 1 (MLF1) is associated with the development of leukemic diseases such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, information on the physiological function of MLF1 is limited and mostly derived from studies identifying MLF1 interaction partners like CSN3, MLF1IP, MADM, Manp and the 14-3-3 proteins. The 14-3-3-binding site surrounding S34 is one of the only known functional features of the MLF1 sequence, along with one nuclear export sequence (NES) and two nuclear localization sequences (NLS). It was recently shown that the subcellular localization of mouse MLF1 is dependent on 14-3-3 proteins. Based on these findings, we investigated whether the subcellular localization of human MLF1 was also directly 14-3-3-dependent. Live cell imaging with GFP-fused human MLF1 was used to study the effects of mutations and deletions on its subcellular localization. Surprisingly, we found that the subcellular localization of full-length human MLF1 is 14-3-3-independent, and is probably regulated by other as-yet-unknown proteins.
NASA Astrophysics Data System (ADS)
Eugster, H.; Huber, F.; Nebiker, S.; Gisi, A.
2012-07-01
Stereovision based mobile mapping systems enable the efficient capturing of directly georeferenced stereo pairs. With today's camera and onboard storage technologies imagery can be captured at high data rates resulting in dense stereo sequences. These georeferenced stereo sequences provide a highly detailed and accurate digital representation of the roadside environment which builds the foundation for a wide range of 3d mapping applications and image-based geo web-services. Georeferenced stereo images are ideally suited for the 3d mapping of street furniture and visible infrastructure objects, pavement inspection, asset management tasks or image based change detection. As in most mobile mapping systems, the georeferencing of the mapping sensors and observations - in our case of the imaging sensors - normally relies on direct georeferencing based on INS/GNSS navigation sensors. However, in urban canyons the achievable direct georeferencing accuracy of the dynamically captured stereo image sequences is often insufficient or at least degraded. Furthermore, many of the mentioned application scenarios require homogeneous georeferencing accuracy within a local reference frame over the entire mapping perimeter. To achieve these demands georeferencing approaches are presented and cost efficient workflows are discussed which allows validating and updating the INS/GNSS based trajectory with independently estimated positions in cases of prolonged GNSS signal outages in order to increase the georeferencing accuracy up to the project requirements.
Hu, Liping; Jiang, Liming; Bi, Ke; Liao, Huan; Yang, Zujing; Huang, Xiaoting; Bao, Zhenmin
2018-01-01
Abstract Mitotic chromosome preparations of the interspecific hybrids Chlamys farreri (Jones & Preston, 1904) × Patinopecten yessoensis (Jay, 1857), C. farreri × Argopecten irradians (Lamarck, 1819) and C. farreri × Mimachlamys nobilis (Reeve, 1852) were used to compare two different scallop genomes in a single slide. Although genomic in situ hybridization (GISH) using genomic DNA from each scallop species as probe painted mitotic chromosomes of the interspecific hybrids, the painting results were not uniform; instead it showed species-specific distribution patterns of fluorescent signals among the chromosomes. The most prominent GISH-bands were mainly located at centromeric or telomeric regions of scallop chromosomes. In order to illustrate the sequence constitution of the GISH-bands, the satellite Cf303 sequences of C. farreri and the vertebrate telomeric (TTAGGG)n sequences were used to map mitotic chromosomes of C. farreri by fluorescence in situ hybridization (FISH). The results indicated that the GISH-banding pattern presented by the chromosomes of C. farreri is mainly due to the distribution of the satellite Cf303 DNA, therefore suggesting that the GISH-banding patterns found in the other three scallops could also be the result of the chromosomal distribution of other species-specific satellite DNAs. PMID:29675138
Voyager Observations of Magnetic Fields and Cosmic Rays in the Heliosheath
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Ness, N. F.; Stone, E.; McDonald, F. B.
2011-01-01
The major features of the profile of >70 MeV/nuc cosmic ray intensity (CRI) observed by Voyager 1 (V1) in the heliosheath from 2005.8 - 2010.24 are described by the empirical "CR-B" relation as the cumulative effect of variations of the magnetic field strength B. The CRI profile observed by Voyager 2 (V2) from 2008.60 to 2010.28 in the heliosheath is also described by the CR-B relation. On a smaller scale, of the order of a hundred days, a sequence of 3 CRI decreases observed by V1 during 2006 was interpreted as the effect of a propagating interplanetary shock first interacting with the termination shock, then moving past V1, and finally reflecting from the heliopause and propagating back to V1. Our observations show that the second CRI decrease in this sequence began during the passage of a "Global Merged Interaction Region" (GMIR), approx. 40 days after the arrival of the GMIR and its possible shock. The first and third CRI decreases in the sequence were associated with local enhancements of B. The magnetic field observations associated with the second sequence of 3 cosmic ray intensity decreases observed by V1 in 2007/2008 are more difficult to reconcile with the scenario of Webber et al. and the CR-B relation. The discrepancy might indicate the importance of latitudinal effects.
Voyager Observations of Magnetic Fields and Cosmic Rays in the Heliosheath
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Ness, N. F.; Stone, E.; McDonald, F. B.
2011-01-01
The major features of the profile of greater than 70 MeV/nuc cosmic ray intensity (CRI) observed by Voyager 1 (VI) in the heliosheath from 2005.8-2010.24 are described by the empirical "CR-B" relation as the cumulative effect of variations of the magnetic field strength B. The CRI profile observed by Voyager 2 (V2) from 2008.60 to 2010.28 in the heliosheath is also described by the CR-B relation. On a smaller scale, of the order of a hundred days, a sequence on CRI decreases observed by V 1 during 2006 was interpreted as the effect of a propagating interplanetary shock first interacting with the termination shock, then moving past V1, and finally reflecting from the heliopause and propagating back to V1. Our observations show that the second CRI decrease in this sequence began during the passage of a "Global Merged Interaction Region" (GMIR), 40 days after the arrival of the GMIR and its possible shock. The first and third CRI decreases in the sequence were associated with local enhancements of B. The magnetic field observations associated with the second sequence of 3 cosmic ray intensity decreases observed by V 1 in 2007/2008 are more difficult to reconcile with the scenario of Webber et al. (2009) and the CR-B relation. The discrepancy might indicate the importance of latitudinal effects
Hu, Liping; Jiang, Liming; Bi, Ke; Liao, Huan; Yang, Zujing; Huang, Xiaoting; Bao, Zhenmin
2018-01-01
Mitotic chromosome preparations of the interspecific hybrids Chlamys farreri (Jones & Preston, 1904) × Patinopecten yessoensis (Jay, 1857), C. farreri × Argopecten irradians (Lamarck, 1819) and C. farreri × Mimachlamys nobilis (Reeve, 1852) were used to compare two different scallop genomes in a single slide. Although genomic in situ hybridization (GISH) using genomic DNA from each scallop species as probe painted mitotic chromosomes of the interspecific hybrids, the painting results were not uniform; instead it showed species-specific distribution patterns of fluorescent signals among the chromosomes. The most prominent GISH-bands were mainly located at centromeric or telomeric regions of scallop chromosomes. In order to illustrate the sequence constitution of the GISH-bands, the satellite Cf303 sequences of C. farreri and the vertebrate telomeric (TTAGGG) n sequences were used to map mitotic chromosomes of C. farreri by fluorescence in situ hybridization (FISH). The results indicated that the GISH-banding pattern presented by the chromosomes of C. farreri is mainly due to the distribution of the satellite Cf303 DNA, therefore suggesting that the GISH-banding patterns found in the other three scallops could also be the result of the chromosomal distribution of other species-specific satellite DNAs.
NASA Astrophysics Data System (ADS)
Ruohoniemi, J. M.; Greenwald, R. A.; Oksavik, K.; Baker, J. B.
2007-12-01
The electric fields at high latitudes are often modeled as a static pattern in the absence of variation in solar wind parameters or geomagnetic disturbance. However, temporal variability in the local electric fields on time scales of minutes for stable conditions has been reported and characterized statistically as an intrinsic property amounting to turbulence. We describe the results of applying a new technique to SuperDARN HF radar observations of ionospheric plasma convection at middle and high latitudes that gives views of the variability of the electric fields at sub-second time scales. We address the question of whether there is a limit to the temporal scale of the electric field variability and consider whether the turbulence on minute time scales is due to organized but unresolved behavior. The basis of the measurements is the ability to record raw samples from the individual multipulse sequences that are transmitted during the standard 3 or 6-second SuperDARN integration period; a backscattering volume is then effectively sampled at a cadence of 200 ms. The returns from the individual sequences are often sufficiently well-ordered to permit a sequence-by-sequence characterization of the electric field and backscattered power. We attempt a statistical characterization of the variability at these heretofore inaccessible time scales and consider how variability is influenced by solar wind and magentospheric factors.
Swain, Timothy D
2018-01-01
The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.
Permafrost as palaeo-environmental archive - potentials and limitations
NASA Astrophysics Data System (ADS)
Schirrmeister, L.; Wetterich, S.; Meyer, H.; Grosse, G.; Schwamborn, G.; Siegert, C.
2009-04-01
Since 1994, the Periglacial Research Group of the Alfred Wegener Institute is studying permafrost sequences of the Beringian landmass. The study sites in Siberia cover lake banks on Taymyr Peninsula, coastal sites at the Laptev and the East Siberian Seas, locations in the Lena Delta, at the lower Kolyma river, the middle Lena and the lower Aldan rivers, and the catchment area of the El'gygytgyn crater lake in Chukotka. In Alaska, permafrost tunnels near Fairbanks and Barrow, and coastal sites on the Seward Peninsula coast were studied. In addition, Canadian sites on Herschel Island in the Beaufort Sea and at the adjacent coast of the Yukon plain were studied. Subsurface exposures like tunnels and cellars provided the opportunity for three-dimensional studies of sedimentary and ground ice features, relatively ‘clean' field conditions for in-situ experiments, monitoring procedures, and detailed and repeatable sampling. Permafrost cores were drilled in order to study inaccessible sequences below the terrain surface and shelf sea floor. Cores were transported and stored frozen for further high-resolution analysis. Reference core sections were preserved for subsequent later studies. Terrestrial sediment cores are highly localized records, sometimes problematic in extrapolating horizons in inhomogeneous sediments like ground ice-deformed permafrost deposits, and drill campaigns are usually cost intensive and logistical challenging. Coastal permafrost cliffs often naturally expose large cross sections trough modern and ancient landscapes. Contrary to cores, they provide an opportunity to study the wider context of depositional environments and ground ice features. Due to the relative easy access to coasts and the recurring natural exposure of cliffs by thermo-abrasive wave action they are very convenient study objects for regional comparisons and correlation of past environmental conditions. Finally, palaeogeographical reconstructions are also guided by remote sensing-based analyses of geomorphological surface patterns, like Yedoma hills, thermokarst depressions, pingos or thermoerosional valleys. We generally relied on a multidisciplinary approach to study permafrost sequences in order to use the rich palaeo-environmental information stored in these frozen records. Cryofacies analysis describes both sediment and ice structures that allow interpretation of freezing conditions, thaw events, temperature regimes, and the local accumulation conditions. Ground ice bodies were sampled by ice screw and chain saw for analysis of hydrochemical and stable isotope composition. Several ground ice types were classified. The interaction between ice, sediment, and cryosoil were determined. The isotope signatures of sub-vertically layered ice wedges contain information about temperature variations, evaporation conditions and precipitation sources during different periods of ice wedge formation. The stratigraphy of the permafrost sequences was determined by lithostratigraphical classifications and geochronological results. Numerous sediment parameters were measured for differentiation between horizons in individual exposures, for local and regional stratigraphic correlation of permafrost sequences as well as for reconstruction of accumulation and transport conditions. Age determinations were carried out by radiocarbon analyses on organic remains, isochron uranium-thorium disequilibria technique on peats, optical stimulated luminescence on clastic sediments, and 36Cl/Cl stable isotope ratios measurements in ground ice. For palaeo-ecological reconstructions various fossil bioindicators were studied including pollen, plant macro-remains, insects, ostracods, testate amoebae, diatoms, chironomids, and mammal bones of the so-called mammoth fauna. By combining these data sets, we assembled a complex picture of the climate, landscape and vegetation dynamics of the studied regions during the Quaternary past. Derived palaeo-information includes mean annual air temperatures, mean winter temperatures, mean Juli temperatures, precipitation, humidity, soil climate and chemistry, hydrology and hydrochemistry of waters). The general potential of permafrost archives includes spatial (circumarctic, high arctic to boreal zones) and temporal (Mid Pleistocene to modern) environmental gradients. Lateral cross sections contain information about permafrost degradation during interglacial periods, the aggradation of ice-rich sequences during stadial and interstadial periods, and extreme changes in periglacial hydrology during the late Quaternary. The spatial reconstruction of ancient landscapes is possible by detailed study of kilometer-long coastal exposures. Temporally relative high resolution (about 50 years) isotope data from ice wedges reflect the Late Pleistocene to Holocene climate transition. Using transfer functions for pollen, plant macro remains or chironomids, the numerical estimation of palaeo-climate data (temperature and precipitation) is possible. The limitations of permafrost archives are the frequent lack of continuous sequences due to thermokarst or thermo-erosion events. Local stratigraphies are sometimes difficult to correlate on a regional scale because of permafrost degradation and neotectonic influence on the accumulative/erosive environment in some regions. Until now there are still uncertainties for comparing different geochronological methods, some of them related to unknown influences of permafrost processes on chemical and physical parameters important to the age determination technique. Due to strong cryoturbation patterns and sometimes challenging sampling situations on near-vertical frozen exposures the geochronological resolution in permafrost sequences is usually lower than in lacustrine sequences or glacial ice cores. Eventually, as for any other archive, we need to consider the effect of local versus regional signals derived from the palaeo-ecological interpretation of fossil records.
NASA Astrophysics Data System (ADS)
Dix, George R.; Parras, Ana
2014-06-01
A condensed (~ 20-m-thick) marine transgressive-highstand succession comprises the upper San Julián Formation (upper Oligocene-lower Miocene) of the northern retroarc Austral Basin, southern Patagonia. Mixed-sediment facies identify a shelf-interior setting, part of an overall warm-temperate regional platform of moderate energy. Giant oyster-dominated skeletal-hiatal accumulations along the maximum flooding surface and forming high-energy event beds in the highstand succession preserve relict micrite in protected shelter porosity, and identify periods of reduced sediment accumulation. The stratigraphic distribution of marine-derived glaucony and diagenetic carbonates is spatially related to sequence development. Depositional siderite coincides with prominent marine transgression, defining transient mixing of marine and meteoric waters across coastal-plain deposits. Chemically evolved autochthonous glaucony coincides with periods of extended seafloor exposure and transgressions that bracket the marine succession, and within the oyster-dominated skeletal accumulations. Seafloor cement, likely once magnesian calcite, formed in association with an encrusting/boring biota along the maximum flooding surface in concert with incursion of cool (11-13 °C) water. The cement is present locally in skeletal event beds in the highstand succession suggesting a possible association with high-order base-level change and cooler water. As the highstand succession coincides with elevated global sea level in the late Oligocene-early Miocene, the locally marine-cemented glauconitic skeletal event beds in the highstand succession may identify higher order glacio-eustatic control. Local stratal condensation, however, is best explained by regional differences in basement subsidence. In the burial realm, carbonate diagenesis produced layers of phreatic calcrete coincident with skeletal-rich deposits. Zeolite (clinoptilolite-K) cement is restricted to the lowermost marine transgressive interval probably due to initial elevated metastability of reworked weathered silicates. Clay (illite)-cement is restricted to siliciclastic-rich intervals wherein skeletal carbonate did not buffer pore-water pH. Diagenetic carbonate geochemistry (Sr, Na, and δ18O and δ13C) shows that, with burial, the transgressive and highstand system tracts developed as distinct paleoaquifers resulting from different proximities to meteoric recharge zones.
Thavabalasingam, Sathesan; O'Neil, Edward B; Lee, Andy C H
2018-05-22
Recent rodent work suggests the hippocampus may provide a temporal representation of event sequences, in which the order of events and the interval durations between them are encoded. There is, however, limited human evidence for the latter, in particular whether the hippocampus processes duration information pertaining to the passage of time rather than qualitative or quantitative changes in event content. We scanned participants while they made match-mismatch judgements on each trial between a study sequence of events and a subsequent test sequence. Participants explicitly remembered event order or interval duration information (Experiment 1), or monitored order only, with duration being manipulated implicitly (Experiment 2). Hippocampal study-test pattern similarity was significantly reduced by changes to order or duration in mismatch trials, even when duration was processed implicitly. Our findings suggest the human hippocampus processes short intervals within sequences and support the idea that duration information is integrated into hippocampal mnemonic representations. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Kemmerer, David; Weber-Fox, Christine; Price, Karen; Zdanczyk, Cynthia; Way, Heather
2007-01-01
Event-related brain potentials (ERPs) were recorded while participants read and made acceptability judgments about sentences containing three types of adjective sequences: (1) normal sequences--e.g., "Jennifer rode a huge gray elephant"; (2) reversed sequences that violate grammatical-semantic constraints on linear order--e.g., *"Jennifer rode a…
Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH.
Volk, Jochen; Herrmann, Torsten; Wüthrich, Kurt
2008-07-01
MATCH (Memetic Algorithm and Combinatorial Optimization Heuristics) is a new memetic algorithm for automated sequence-specific polypeptide backbone NMR assignment of proteins. MATCH employs local optimization for tracing partial sequence-specific assignments within a global, population-based search environment, where the simultaneous application of local and global optimization heuristics guarantees high efficiency and robustness. MATCH thus makes combined use of the two predominant concepts in use for automated NMR assignment of proteins. Dynamic transition and inherent mutation are new techniques that enable automatic adaptation to variable quality of the experimental input data. The concept of dynamic transition is incorporated in all major building blocks of the algorithm, where it enables switching between local and global optimization heuristics at any time during the assignment process. Inherent mutation restricts the intrinsically required randomness of the evolutionary algorithm to those regions of the conformation space that are compatible with the experimental input data. Using intact and artificially deteriorated APSY-NMR input data of proteins, MATCH performed sequence-specific resonance assignment with high efficiency and robustness.
Nishizawa, M; Nishizawa, K
2000-10-01
The tendency for repetitiveness of nucleotides in DNA sequences has been reported for a variety of organisms. We show that the tendency for repetitive use of amino acids is widespread and is observed even for segments conserved between human and Drosophila melanogaster at the level of >50% amino acid identity. This indicates that repetitiveness influences not only the weakly constrained segments but also those sequence segments conserved among phyla. Not only glutamine (Q) but also many of the 20 amino acids show a comparable level of repetitiveness. Repetitiveness in bases at codon position 3 is stronger for human than for D.melanogaster, whereas local repetitiveness in intron sequences is similar between the two organisms. While genes for immune system-specific proteins, but not ancient human genes (i.e. human homologs of Escherichia coli genes), have repetitiveness at codon bases 1 and 2, repetitiveness at codon base 3 for these groups is similar, suggesting that the human genome has at least two mechanisms generating local repetitiveness. Neither amino acid nor nucleotide repetitiveness is observed beyond the exon boundary, denying the possibility that such repetitiveness could mainly stem from natural selection on mRNA or protein sequences. Analyses of mammalian sequence alignments show that while the 'between gene' GC content heterogeneity, which is linked to 'isochores', is a principal factor associated with the bias in substitution patterns in human, 'within gene' heterogeneity in nucleotide composition is also associated with such bias on a more local scale. The relationship amongst the various types of repetitiveness is discussed.
Nishizawa, Manami; Nishizawa, Kazuhisa
2000-01-01
The tendency for repetitiveness of nucleotides in DNA sequences has been reported for a variety of organisms. We show that the tendency for repetitive use of amino acids is widespread and is observed even for segments conserved between human and Drosophila melanogaster at the level of >50% amino acid identity. This indicates that repetitiveness influences not only the weakly constrained segments but also those sequence segments conserved among phyla. Not only glutamine (Q) but also many of the 20 amino acids show a comparable level of repetitiveness. Repetitiveness in bases at codon position 3 is stronger for human than for D.melanogaster, whereas local repetitiveness in intron sequences is similar between the two organisms. While genes for immune system-specific proteins, but not ancient human genes (i.e. human homologs of Escherichia coli genes), have repetitiveness at codon bases 1 and 2, repetitiveness at codon base 3 for these groups is similar, suggesting that the human genome has at least two mechanisms generating local repetitiveness. Neither amino acid nor nucleotide repetitiveness is observed beyond the exon boundary, denying the possibility that such repetitiveness could mainly stem from natural selection on mRNA or protein sequences. Analyses of mammalian sequence alignments show that while the ‘between gene’ GC content heterogeneity, which is linked to ‘isochores’, is a principal factor associated with the bias in substitution patterns in human, ‘within gene’ heterogeneity in nucleotide composition is also associated with such bias on a more local scale. The relationship amongst the various types of repetitiveness is discussed. PMID:11000273
Fossils out of sequence: Computer simulations and strategies for dealing with stratigraphic disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cutler, A.H.; Flessa, K.W.
Microstratigraphic resolution is limited by vertical mixing and reworking of fossils. Stratigraphic disorder is the degree to which fossils within a stratigraphic sequence are not in proper chronological order. Stratigraphic disorder arises through in situ vertical mixing of fossils and reworking of older fossils into younger deposits. The authors simulated the effects of mixing and reworking by simple computer models, and measured stratigraphic disorder using rank correlation between age and stratigraphic position (Spearman and Kendall coefficients). Mixing was simulated by randomly transposing pairs of adjacent fossils in a sequence. Reworking was simulated by randomly inserting older fossils into a youngermore » sequence. Mixing is an inefficient means of producing disorder; after 500 mixing steps stratigraphic order is still significant at the 99% to 95% level, depending on the coefficient used. Reworking disorders sequences very efficiently: significant order begins to be lost when reworked shells make up 35% of the sequence. Thus a sequence can be dominated by undisturbed, autochthonous shells and still be disordered. The effects of mixing-produced disorder can be minimized by increasing sample size at each horizon. Increased spacing between samples is of limited utility in dealing with disordered sequences: while widely separated samples are more likely to be stratigraphically ordered, the smaller number of samples makes the detection of trends problematic.« less
A comparison of serial order short-term memory effects across verbal and musical domains.
Gorin, Simon; Mengal, Pierre; Majerus, Steve
2018-04-01
Recent studies suggest that the mechanisms involved in the short-term retention of serial order information may be shared across short-term memory (STM) domains such as verbal and visuospatial STM. Given the intrinsic sequential organization of musical material, the study of STM for musical information may be particularly informative about serial order retention processes and their domain-generality. The present experiment examined serial order STM for verbal and musical sequences in participants with no advanced musical expertise and experienced musicians. Serial order STM for verbal information was assessed via a serial order reconstruction task for digit sequences. In the musical domain, serial order STM was assessed using a novel melodic sequence reconstruction task maximizing the retention of tone order information. We observed that performance for the verbal and musical tasks was characterized by sequence length as well as primacy and recency effects. Serial order errors in both tasks were characterized by similar transposition gradients and ratios of fill-in:infill errors. These effects were observed for both participant groups, although the transposition gradients and ratios of fill-in:infill errors showed additional specificities for musician participants in the musical task. The data support domain-general serial order STM effects but also suggest the existence of additional domain-specific effects. Implications for models of serial order STM in verbal and musical domains are discussed.
Biclustering as a method for RNA local multiple sequence alignment.
Wang, Shu; Gutell, Robin R; Miranker, Daniel P
2007-12-15
Biclustering is a clustering method that simultaneously clusters both the domain and range of a relation. A challenge in multiple sequence alignment (MSA) is that the alignment of sequences is often intended to reveal groups of conserved functional subsequences. Simultaneously, the grouping of the sequences can impact the alignment; precisely the kind of dual situation biclustering is intended to address. We define a representation of the MSA problem enabling the application of biclustering algorithms. We develop a computer program for local MSA, BlockMSA, that combines biclustering with divide-and-conquer. BlockMSA simultaneously finds groups of similar sequences and locally aligns subsequences within them. Further alignment is accomplished by dividing both the set of sequences and their contents. The net result is both a multiple sequence alignment and a hierarchical clustering of the sequences. BlockMSA was tested on the subsets of the BRAliBase 2.1 benchmark suite that display high variability and on an extension to that suite to larger problem sizes. Also, alignments were evaluated of two large datasets of current biological interest, T box sequences and Group IC1 Introns. The results were compared with alignments computed by ClustalW, MAFFT, MUCLE and PROBCONS alignment programs using Sum of Pairs (SPS) and Consensus Count. Results for the benchmark suite are sensitive to problem size. On problems of 15 or greater sequences, BlockMSA is consistently the best. On none of the problems in the test suite are there appreciable differences in scores among BlockMSA, MAFFT and PROBCONS. On the T box sequences, BlockMSA does the most faithful job of reproducing known annotations. MAFFT and PROBCONS do not. On the Intron sequences, BlockMSA, MAFFT and MUSCLE are comparable at identifying conserved regions. BlockMSA is implemented in Java. Source code and supplementary datasets are available at http://aug.csres.utexas.edu/msa/
Subcellular localization of transiently expressed fluorescent fusion proteins.
Collings, David A
2013-01-01
The recent and massive expansion in plant genomics data has generated a large number of gene sequences for which two seemingly simple questions need to be answered: where do the proteins encoded by these genes localize in cells, and what do they do? One widespread approach to answering the localization question has been to use particle bombardment to transiently express unknown proteins tagged with green fluorescent protein (GFP) or its numerous derivatives. Confocal fluorescence microscopy is then used to monitor the localization of the fluorescent protein as it hitches a ride through the cell. The subcellular localization of the fusion protein, if not immediately apparent, can then be determined by comparison to localizations generated by fluorescent protein fusions to known signalling sequences and proteins, or by direct comparison with fluorescent dyes. This review aims to be a tour guide for researchers wanting to travel this hitch-hiker's path, and for reviewers and readers who wish to understand their travel reports. It will describe some of the technology available for visualizing protein localizations, and some of the experimental approaches for optimizing and confirming localizations generated by particle bombardment in onion epidermal cells, the most commonly used experimental system. As the non-conservation of signal sequences in heterologous expression systems such as onion, and consequent mis-targeting of fusion proteins, is always a potential problem, the epidermal cells of the Argenteum mutant of pea are proposed as a model system.
Feature co-localization landscape of the human genome
Ng, Siu-Kin; Hu, Taobo; Long, Xi; Chan, Cheuk-Hin; Tsang, Shui-Ying; Xue, Hong
2016-01-01
Although feature co-localizations could serve as useful guide-posts to genome architecture, a comprehensive and quantitative feature co-localization map of the human genome has been lacking. Herein we show that, in contrast to the conventional bipartite division of genomic sequences into genic and inter-genic regions, pairwise co-localizations of forty-two genomic features in the twenty-two autosomes based on 50-kb to 2,000-kb sequence windows indicate a tripartite zonal architecture comprising Genic zones enriched with gene-related features and Alu-elements; Proximal zones enriched with MIR- and L2-elements, transcription-factor-binding-sites (TFBSs), and conserved-indels (CIDs); and Distal zones enriched with L1-elements. Co-localizations between single-nucleotide-polymorphisms (SNPs) and copy-number-variations (CNVs) reveal a fraction of sequence windows displaying steeply enhanced levels of SNPs, CNVs and recombination rates that point to active adaptive evolution in such pathways as immune response, sensory perceptions, and cognition. The strongest positive co-localization observed between TFBSs and CIDs suggests a regulatory role of CIDs in cooperation with TFBSs. The positive co-localizations of cancer somatic CNVs (CNVT) with all Proximal zone and most Genic zone features, in contrast to the distinctly more restricted co-localizations exhibited by germline CNVs (CNVG), reveal disparate distributions of CNVTs and CNVGs indicative of dissimilarity in their underlying mechanisms. PMID:26854351
Isolation of candidate genes of Friedreich`s ataxia on chromosome 9q13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montermini, L.; Zara, F.; Pandolfo, M.
1994-09-01
Friedreich`s ataxia (FRDA) is an autosomal recessive degenerative disease involving the central and peripheral nervous system and the heart. The mutated gene in FRDA has recently been localized within a 450 Kb interval on chromosome 9q13 between the markers D9S202/FR1/FR8. We have been able to confirm such localization for the disease gene by analysis of extended haplotype in consanguineous families. Cases of loss of marker homozygosity, which are likely to be due to ancient recombinations, have been found to involve D9S110, D9S15, and D9S111 on the telomeric side, and FR5 on the centromeric side, while homozygosity was always found formore » a core haplotype including D9S5, FD1, and D9S202. We constructed a YAC contig spanning the region between the telomeric markers and FR5, and cosmids have been obtained from the YACs. In order to isolate transcribed sequences from the FRDA candidate region we are utilizing a combination of approaches, including hybridization of YACs and cosmids to an arrayed human heart cDNA library, cDNA direct selection, and exon amplification. A transcribed sequence near the telomeric end of the region has been isolated by cDNA direct selection using pooled cosmids as genomic template and primary human heart, muscle, brain, liver and placenta cDNAs as cDNA source. We have shown this sequence to be the human equivalent of ZO-2, a tight junction protein previously described in the dog. No mutations of this gene have been found in FRDA subjects. Additional cDNA have recently been isolated and they are currently being evaluated.« less
Soriano, S V; Pierangeli, N B; Pianciola, L; Mazzeo, M; Lazzarini, L E; Saiz, M S; Kossman, A V; Bergagna, H F J; Chartier, K; Basualdo, J A
2010-12-01
Human cystic echinococcosis is a highly endemic zoonotic disease in the province of Neuquén, Patagonia Argentina, although a hydatid control programme has been carried out since 1970. Human infection due to Echinococcus canadensis (G6 genotype) is frequent in Neuquén. However, the reservoir for this species remains undetermined in a region where camels are absent. We investigated the fertility, viability and molecular epidemiology of hydatid cysts obtained from local goats, pigs and sheep in order to identify the possible reservoirs of E. canadensis (G6). We also analyzed isolates from infected dogs. A total of 67 isolates were identified by the DNA sequencing of the mitochondrial cytochrome c oxidase subunit 1 gene. Cysts from sheep (n=16), goats (n=23) and pigs (n=18) and adult worms from 10 infected dogs were analyzed. The fertility of the hydatid cysts was 78.6%; 90.4% and 94.4% for sheep, goats and pigs, respectively. We detected E. canadensis (G6) in 21 of 23 goat samples and in 1 dog isolate, E. canadensis (G7) in all the pig isolates, E. granulosus sensu stricto (G3) in 1 sheep and the G1 genotype in 15 sheep, 2 goats and 9 dog samples. The G1 haplotypes included the common sheep strain sequence and 2 microvariants of this sequence. E. granulosus sensu stricto (G3) is described for the first time in South America. We conclude that goats act as reservoir for E. canadensis (G6) in Neuquén, and that control strategies may have to be adapted to local molecular epidemiology to improve the control of parasite transmission. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Trudeau, Natacha; Morford, Jill P; Sutton, Ann
2010-06-01
Graphic symbols are often used to represent words in Augmentative and Alternative Communication systems. Previous findings suggest that different processes operate when using graphic symbols and when using speech. This study assessed the ability of native speakers of French with no communication disorders from four age groups to interpret graphic-symbol sequences of varying length and canonicity. Results reveal that, as they get older, participants show an increase in their capacity to interpret graphic-symbol sequences. Constituent order played an important role in the interpretation of the sequences. However, the specific word-order strategies used varied depending on the age group and the type of sequence presented.
Yaffe, Yakey; Shepshelovitch, Jeanne; Nevo-Yassaf, Inbar; Yeheskel, Adva; Shmerling, Hedva; Kwiatek, Joanna M; Gaus, Katharina; Pasmanik-Chor, Metsada; Hirschberg, Koret
2012-08-01
Occludin (Ocln), a MARVEL-motif-containing protein, is found in all tight junctions. MARVEL motifs are comprised of four transmembrane helices associated with the localization to or formation of diverse membrane subdomains by interacting with the proximal lipid environment. The functions of the Ocln MARVEL motif are unknown. Bioinformatics sequence- and structure-based analyses demonstrated that the MARVEL domain of Ocln family proteins has distinct evolutionarily conserved sequence features that are consistent with its basolateral membrane localization. Live-cell microscopy, fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) were used to analyze the intracellular distribution and self-association of fluorescent-protein-tagged full-length human Ocln or the Ocln MARVEL motif excluding the cytosolic C- and N-termini (amino acids 60-269, FP-MARVEL-Ocln). FP-MARVEL-Ocln efficiently arrived at the plasma membrane (PM) and was sorted to the basolateral PM in filter-grown polarized MDCK cells. A series of conserved aromatic amino acids within the MARVEL domain were found to be associated with Ocln dimerization using BiFC. FP-MARVEL-Ocln inhibited membrane pore growth during Triton-X-100-induced solubilization and was shown to increase the membrane-ordered state using Laurdan, a lipid dye. These data demonstrate that the Ocln MARVEL domain mediates self-association and correct sorting to the basolateral membrane.
Nielsen, Rasmus
2017-01-01
Admixture—the mixing of genomes from divergent populations—is increasingly appreciated as a central process in evolution. To characterize and quantify patterns of admixture across the genome, a number of methods have been developed for local ancestry inference. However, existing approaches have a number of shortcomings. First, all local ancestry inference methods require some prior assumption about the expected ancestry tract lengths. Second, existing methods generally require genotypes, which is not feasible to obtain for many next-generation sequencing projects. Third, many methods assume samples are diploid, however a wide variety of sequencing applications will fail to meet this assumption. To address these issues, we introduce a novel hidden Markov model for estimating local ancestry that models the read pileup data, rather than genotypes, is generalized to arbitrary ploidy, and can estimate the time since admixture during local ancestry inference. We demonstrate that our method can simultaneously estimate the time since admixture and local ancestry with good accuracy, and that it performs well on samples of high ploidy—i.e. 100 or more chromosomes. As this method is very general, we expect it will be useful for local ancestry inference in a wider variety of populations than what previously has been possible. We then applied our method to pooled sequencing data derived from populations of Drosophila melanogaster on an ancestry cline on the east coast of North America. We find that regions of local recombination rates are negatively correlated with the proportion of African ancestry, suggesting that selection against foreign ancestry is the least efficient in low recombination regions. Finally we show that clinal outlier loci are enriched for genes associated with gene regulatory functions, consistent with a role of regulatory evolution in ecological adaptation of admixed D. melanogaster populations. Our results illustrate the potential of local ancestry inference for elucidating fundamental evolutionary processes. PMID:28045893
Galbany-Casals, M; Carnicero-Campmany, P; Blanco-Moreno, J M; Smissen, R D
2012-09-01
Hybridisation is considered an important evolutionary phenomenon in Gnaphalieae, but contemporary hybridisation has been little explored within the tribe. Here, hybridisation between Helichrysum orientale and Helichrysum stoechas is studied at two different localities in the islands of Crete and Rhodes (Greece). Using three different types of molecular data (AFLP, nrDNA ITS sequences and cpDNA ndhF sequences) and morphological data, the aim is to provide simultaneous and direct comparisons between molecular and morphological variation among the parental species and the studied hybrid populations. AFLP profiles, ITS sequences and morphological data support the existence of hybrids at the two localities studied, shown as morphological and genetic intermediates between the parental species. Chloroplast DNA sequences show that both parental species can act either as pollen donor or as maternal parent. Fertility of hybrids is demonstrated by the viability of seeds produced by hybrids from both localities, and the detection of a backcross specimen to H. orientale. Although there is general congruence of morphological and molecular data, the analysis of morphology and ITS sequences can fail to detect backcross hybrids. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Technical Reports Server (NTRS)
Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)
1992-01-01
A nuclear localization signal (NLS) has been identified in the N-terminal (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) amino acid sequence of the polyomavirus major capsid protein VP1. The importance of this amino acid sequence for nuclear transport of VP1 protein was demonstrated by a genetic "subtractive" study using the constructs pSG5VP1 (full-length VP1) and pSG5 delta 5'VP1 (truncated VP1, lacking amino acids Ala1-Cys11). These constructs were used to transfect COS-7 cells, and expression and intracellular localization of the VP1 protein was visualized by indirect immunofluorescence. These studies revealed that the full-length VP1 was expressed and localized in the nucleus, while the truncated VP1 protein was localized in the cytoplasm and not transported to the nucleus. These findings were substantiated by an "additive" approach using FITC-labeled conjugates of synthetic peptides homologous to the NLS of VP1 cross-linked to bovine serum albumin or immunoglobulin G. Both conjugates localized in the nucleus after microinjection into the cytoplasm of 3T6 cells. The importance of individual amino acids found in the basic sequence (Lys3-Arg-Lys5) of the NLS was also investigated. This was accomplished by synthesizing three additional peptides in which lysine-3 was substituted with threonine, arginine-4 was substituted with threonine, or lysine-5 was substituted with threonine. It was found that lysine-3 was crucial for nuclear transport, since substitution of this amino acid with threonine prevented nuclear localization of the microinjected, FITC-labeled conjugate.
Infants learn better from left to right: a directional bias in infants' sequence learning.
Bulf, Hermann; de Hevia, Maria Dolores; Gariboldi, Valeria; Macchi Cassia, Viola
2017-05-26
A wealth of studies show that human adults map ordered information onto a directional spatial continuum. We asked whether mapping ordinal information into a directional space constitutes an early predisposition, already functional prior to the acquisition of symbolic knowledge and language. While it is known that preverbal infants represent numerical order along a left-to-right spatial continuum, no studies have investigated yet whether infants, like adults, organize any kind of ordinal information onto a directional space. We investigated whether 7-month-olds' ability to learn high-order rule-like patterns from visual sequences of geometric shapes was affected by the spatial orientation of the sequences (left-to-right vs. right-to-left). Results showed that infants readily learn rule-like patterns when visual sequences were presented from left to right, but not when presented from right to left. This result provides evidence that spatial orientation critically determines preverbal infants' ability to perceive and learn ordered information in visual sequences, opening to the idea that a left-to-right spatially organized mental representation of ordered dimensions might be rooted in biologically-determined constraints on human brain development.
Highly multiplexed subcellular RNA sequencing in situ
Lee, Je Hyuk; Daugharthy, Evan R.; Scheiman, Jonathan; Kalhor, Reza; Ferrante, Thomas C.; Yang, Joyce L.; Terry, Richard; Jeanty, Sauveur S. F.; Li, Chao; Amamoto, Ryoji; Peters, Derek T.; Turczyk, Brian M.; Marblestone, Adam H.; Inverso, Samuel A.; Bernard, Amy; Mali, Prashant; Rios, Xavier; Aach, John; Church, George M.
2014-01-01
Understanding the spatial organization of gene expression with single nucleotide resolution requires localizing the sequences of expressed RNA transcripts within a cell in situ. Here we describe fluorescent in situ RNA sequencing (FISSEQ), in which stably cross-linked cDNA amplicons are sequenced within a biological sample. Using 30-base reads from 8,742 genes in situ, we examined RNA expression and localization in human primary fibroblasts using a simulated wound healing assay. FISSEQ is compatible with tissue sections and whole mount embryos, and reduces the limitations of optical resolution and noisy signals on single molecule detection. Our platform enables massively parallel detection of genetic elements, including gene transcripts and molecular barcodes, and can be used to investigate cellular phenotype, gene regulation, and environment in situ. PMID:24578530
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randall, Graham L.; Zechiedrich, E. L.; Pettitt, Bernard M.
2009-09-01
To understand how underwinding and overwinding the DNA helix affects its structure, we simulated 19 independent DNA systems with fixed degrees of twist using molecular dynamics in a system that does not allow writhe. Underwinding DNA induced spontaneous, sequence-dependent base flipping and local denaturation, while overwinding DNA induced the formation of Pauling-like DNA (P-DNA). The winding resulted in a bimodal state simultaneously including local structural failure and B-form DNA for both underwinding and extreme overwinding. Our simulations suggest that base flipping and local denaturation may provide a landscape influencing protein recognition of DNA sequence to affect, for examples, replication, transcriptionmore » and recombination. Additionally, our findings help explain results from singlemolecule experiments and demonstrate that elastic rod models are strictly valid on average only for unstressed or overwound DNA up to P-DNA formation. Finally, our data support a model in which base flipping can result from torsional stress.« less
Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing.
Zhang, Jianjun; Fujimoto, Junya; Zhang, Jianhua; Wedge, David C; Song, Xingzhi; Zhang, Jiexin; Seth, Sahil; Chow, Chi-Wan; Cao, Yu; Gumbs, Curtis; Gold, Kathryn A; Kalhor, Neda; Little, Latasha; Mahadeshwar, Harshad; Moran, Cesar; Protopopov, Alexei; Sun, Huandong; Tang, Jiabin; Wu, Xifeng; Ye, Yuanqing; William, William N; Lee, J Jack; Heymach, John V; Hong, Waun Ki; Swisher, Stephen; Wistuba, Ignacio I; Futreal, P Andrew
2014-10-10
Cancers are composed of populations of cells with distinct molecular and phenotypic features, a phenomenon termed intratumor heterogeneity (ITH). ITH in lung cancers has not been well studied. We applied multiregion whole-exome sequencing (WES) on 11 localized lung adenocarcinomas. All tumors showed clear evidence of ITH. On average, 76% of all mutations and 20 out of 21 known cancer gene mutations were identified in all regions of individual tumors, which suggested that single-region sequencing may be adequate to identify the majority of known cancer gene mutations in localized lung adenocarcinomas. With a median follow-up of 21 months after surgery, three patients have relapsed, and all three patients had significantly larger fractions of subclonal mutations in their primary tumors than patients without relapse. These data indicate that a larger subclonal mutation fraction may be associated with increased likelihood of postsurgical relapse in patients with localized lung adenocarcinomas. Copyright © 2014, American Association for the Advancement of Science.
Memetic algorithms for de novo motif-finding in biomedical sequences.
Bi, Chengpeng
2012-09-01
The objectives of this study are to design and implement a new memetic algorithm for de novo motif discovery, which is then applied to detect important signals hidden in various biomedical molecular sequences. In this paper, memetic algorithms are developed and tested in de novo motif-finding problems. Several strategies in the algorithm design are employed that are to not only efficiently explore the multiple sequence local alignment space, but also effectively uncover the molecular signals. As a result, there are a number of key features in the implementation of the memetic motif-finding algorithm (MaMotif), including a chromosome replacement operator, a chromosome alteration-aware local search operator, a truncated local search strategy, and a stochastic operation of local search imposed on individual learning. To test the new algorithm, we compare MaMotif with a few of other similar algorithms using simulated and experimental data including genomic DNA, primary microRNA sequences (let-7 family), and transmembrane protein sequences. The new memetic motif-finding algorithm is successfully implemented in C++, and exhaustively tested with various simulated and real biological sequences. In the simulation, it shows that MaMotif is the most time-efficient algorithm compared with others, that is, it runs 2 times faster than the expectation maximization (EM) method and 16 times faster than the genetic algorithm-based EM hybrid. In both simulated and experimental testing, results show that the new algorithm is compared favorably or superior to other algorithms. Notably, MaMotif is able to successfully discover the transcription factors' binding sites in the chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) data, correctly uncover the RNA splicing signals in gene expression, and precisely find the highly conserved helix motif in the transmembrane protein sequences, as well as rightly detect the palindromic segments in the primary microRNA sequences. The memetic motif-finding algorithm is effectively designed and implemented, and its applications demonstrate it is not only time-efficient, but also exhibits excellent performance while compared with other popular algorithms. Copyright © 2012 Elsevier B.V. All rights reserved.
Relations between Shannon entropy and genome order index in segmenting DNA sequences.
Zhang, Yi
2009-04-01
Shannon entropy H and genome order index S are used in segmenting DNA sequences. Zhang [Phys. Rev. E 72, 041917 (2005)] found that the two schemes are equivalent when a DNA sequence is converted to a binary sequence of S (strong H bond) and W (weak H bond). They left the mathematical proof to mathematicians who are interested in this issue. In this paper, a possible mathematical explanation is given. Moreover, we find that Chargaff parity rule 2 is the necessary condition of the equivalence, and the equivalence disappears when a DNA sequence is regarded as a four-symbol sequence. At last, we propose that S-2(-H) may be related to species evolution.
Martin, Guillaume; Baurens, Franc-Christophe; Droc, Gaëtan; Rouard, Mathieu; Cenci, Alberto; Kilian, Andrzej; Hastie, Alex; Doležel, Jaroslav; Aury, Jean-Marc; Alberti, Adriana; Carreel, Françoise; D'Hont, Angélique
2016-03-16
Recent advances in genomics indicate functional significance of a majority of genome sequences and their long range interactions. As a detailed examination of genome organization and function requires very high quality genome sequence, the objective of this study was to improve reference genome assembly of banana (Musa acuminata). We have developed a modular bioinformatics pipeline to improve genome sequence assemblies, which can handle various types of data. The pipeline comprises several semi-automated tools. However, unlike classical automated tools that are based on global parameters, the semi-automated tools proposed an expert mode for a user who can decide on suggested improvements through local compromises. The pipeline was used to improve the draft genome sequence of Musa acuminata. Genotyping by sequencing (GBS) of a segregating population and paired-end sequencing were used to detect and correct scaffold misassemblies. Long insert size paired-end reads identified scaffold junctions and fusions missed by automated assembly methods. GBS markers were used to anchor scaffolds to pseudo-molecules with a new bioinformatics approach that avoids the tedious step of marker ordering during genetic map construction. Furthermore, a genome map was constructed and used to assemble scaffolds into super scaffolds. Finally, a consensus gene annotation was projected on the new assembly from two pre-existing annotations. This approach reduced the total Musa scaffold number from 7513 to 1532 (i.e. by 80%), with an N50 that increased from 1.3 Mb (65 scaffolds) to 3.0 Mb (26 scaffolds). 89.5% of the assembly was anchored to the 11 Musa chromosomes compared to the previous 70%. Unknown sites (N) were reduced from 17.3 to 10.0%. The release of the Musa acuminata reference genome version 2 provides a platform for detailed analysis of banana genome variation, function and evolution. Bioinformatics tools developed in this work can be used to improve genome sequence assemblies in other species.
Yang, Haishui; Zang, Yanyan; Yuan, Yongge; Tang, Jianjun; Chen, Xin
2012-04-12
Arbuscular mycorrhizal fungi (AMF) can form obligate symbioses with the vast majority of land plants, and AMF distribution patterns have received increasing attention from researchers. At the local scale, the distribution of AMF is well documented. Studies at large scales, however, are limited because intensive sampling is difficult. Here, we used ITS rDNA sequence metadata obtained from public databases to study the distribution of AMF at continental and global scales. We also used these sequence metadata to investigate whether host plant is the main factor that affects the distribution of AMF at large scales. We defined 305 ITS virtual taxa (ITS-VTs) among all sequences of the Glomeromycota by using a comprehensive maximum likelihood phylogenetic analysis. Each host taxonomic order averaged about 53% specific ITS-VTs, and approximately 60% of the ITS-VTs were host specific. Those ITS-VTs with wide host range showed wide geographic distribution. Most ITS-VTs occurred in only one type of host functional group. The distributions of most ITS-VTs were limited across ecosystem, across continent, across biogeographical realm, and across climatic zone. Non-metric multidimensional scaling analysis (NMDS) showed that AMF community composition differed among functional groups of hosts, and among ecosystem, continent, biogeographical realm, and climatic zone. The Mantel test showed that AMF community composition was significantly correlated with plant community composition among ecosystem, among continent, among biogeographical realm, and among climatic zone. The structural equation modeling (SEM) showed that the effects of ecosystem, continent, biogeographical realm, and climatic zone were mainly indirect on AMF distribution, but plant had strongly direct effects on AMF. The distribution of AMF as indicated by ITS rDNA sequences showed a pattern of high endemism at large scales. This pattern indicates high specificity of AMF for host at different scales (plant taxonomic order and functional group) and high selectivity from host plants for AMF. The effects of ecosystemic, biogeographical, continental and climatic factors on AMF distribution might be mediated by host plants.
Merlo, Manuel A; Cross, Ismael; Palazón, José L; Ubeda-Manzanaro, María; Sarasquete, Carmen; Rebordinos, Laureana
2012-10-07
The Batrachoididae family is a group of marine teleosts that includes several species with more complicated physiological characteristics, such as their excretory, reproductive, cardiovascular and respiratory systems. Previous studies of the 5S rDNA gene family carried out in four species from the Western Atlantic showed two types of this gene in two species but only one in the other two, under processes of concerted evolution and birth-and-death evolution with purifying selection. Here we present results of the 5S rDNA and another two gene families in Halobatrachus didactylus, an Eastern Atlantic species, and draw evolutionary inferences regarding the gene families. In addition we have also mapped the genes on the chromosomes by two-colour fluorescence in situ hybridization (FISH). Two types of 5S rDNA were observed, named type α and type β. Molecular analysis of the 5S rDNA indicates that H. didactylus does not share the non-transcribed spacer (NTS) sequences with four other species of the family; therefore, it must have evolved in isolation. Amplification with the type β specific primers amplified a specific band in 9 specimens of H. didactylus and two of Sparus aurata. Both types showed regulatory regions and a secondary structure which mark them as functional genes. However, the U2 snRNA gene and the ITS-1 sequence showed one electrophoretic band and with one type of sequence. The U2 snRNA sequence was the most variable of the three multigene families studied. Results from two-colour FISH showed no co-localization of the gene coding from three multigene families and provided the first map of the chromosomes of the species. A highly significant finding was observed in the analysis of the 5S rDNA, since two such distant species as H. didactylus and Sparus aurata share a 5S rDNA type. This 5S rDNA type has been detected in other species belonging to the Batrachoidiformes and Perciformes orders, but not in the Pleuronectiformes and Clupeiformes orders. Two hypotheses have been outlined: one is the possible vertical permanence of the shared type in some fish lineages, and the other is the possibility of a horizontal transference event between ancient species of the Perciformes and Batrachoidiformes orders. This finding opens a new perspective in fish evolution and in the knowledge of the dynamism of the 5S rDNA. Cytogenetic analysis allowed some evolutionary trends to be roughed out, such as the progressive change in the U2 snDNA and the organization of (GATA)n repeats, from dispersed to localized in one locus. The accumulation of (GATA)n repeats in one chromosome pair could be implicated in the evolution of a pair of proto-sex chromosomes. This possibility could situate H. didactylus as the most highly evolved of the Batrachoididae family in terms of sex chromosome biology.
NASA Astrophysics Data System (ADS)
Gavazzi, G.; Consolandi, G.; Dotti, M.; Fanali, R.; Fossati, M.; Fumagalli, M.; Viscardi, E.; Savorgnan, G.; Boselli, A.; Gutiérrez, L.; Hernández Toledo, H.; Giovanelli, R.; Haynes, M. P.
2015-08-01
A growing body of evidence indicates that the star formation rate per unit stellar mass (sSFR) decreases with increasing mass in normal main-sequence star-forming galaxies. Many processes have been advocated as being responsible for this trend (also known as mass quenching), e.g., feedback from active galactic nuclei (AGNs), and the formation of classical bulges. In order to improve our insight into the mechanisms regulating the star formation in normal star-forming galaxies across cosmic epochs, we determine a refined star formation versus stellar mass relation in the local Universe. To this end we use the Hα narrow-band imaging follow-up survey (Hα3) of field galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Coma and Local superclusters. By complementing this local determination with high-redshift measurements from the literature, we reconstruct the star formation history of main-sequence galaxies as a function of stellar mass from the present epoch up to z = 3. In agreement with previous studies, our analysis shows that quenching mechanisms occur above a threshold stellar mass Mknee that evolves with redshift as ∝ (1 + z)2. Moreover, visual morphological classification of individual objects in our local sample reveals a sharp increase in the fraction of visually classified strong bars with mass, hinting that strong bars may contribute to the observed downturn in the sSFR above Mknee. We test this hypothesis using a simple but physically motivated numerical model for bar formation, finding that strong bars can rapidly quench star formation in the central few kpc of field galaxies. We conclude that strong bars contribute significantly to the red colors observed in the inner parts of massive galaxies, although additional mechanisms are likely required to quench the star formation in the outer regions of massive spiral galaxies. Intriguingly, when we extrapolate our model to higher redshifts, we successfully recover the observed redshift evolution for Mknee. Our study highlights how the formation of strong bars in massive galaxies is an important mechanism in regulating the redshift evolution of the sSFR for field main-sequence galaxies. Based on observations taken at the observatory of San Pedro Martir (Baja California, Mexico), belonging to the Mexican Observatorio Astronómico Nacional.
Episodic sequence memory is supported by a theta-gamma phase code.
Heusser, Andrew C; Poeppel, David; Ezzyat, Youssef; Davachi, Lila
2016-10-01
The meaning we derive from our experiences is not a simple static extraction of the elements but is largely based on the order in which those elements occur. Models propose that sequence encoding is supported by interactions between high- and low-frequency oscillations, such that elements within an experience are represented by neural cell assemblies firing at higher frequencies (gamma) and sequential order is encoded by the specific timing of firing with respect to a lower frequency oscillation (theta). During episodic sequence memory formation in humans, we provide evidence that items in different sequence positions exhibit greater gamma power along distinct phases of a theta oscillation. Furthermore, this segregation is related to successful temporal order memory. Our results provide compelling evidence that memory for order, a core component of an episodic memory, capitalizes on the ubiquitous physiological mechanism of theta-gamma phase-amplitude coupling.
Scar-less multi-part DNA assembly design automation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillson, Nathan J.
The present invention provides a method of a method of designing an implementation of a DNA assembly. In an exemplary embodiment, the method includes (1) receiving a list of DNA sequence fragments to be assembled together and an order in which to assemble the DNA sequence fragments, (2) designing DNA oligonucleotides (oligos) for each of the DNA sequence fragments, and (3) creating a plan for adding flanking homology sequences to each of the DNA oligos. In an exemplary embodiment, the method includes (1) receiving a list of DNA sequence fragments to be assembled together and an order in which tomore » assemble the DNA sequence fragments, (2) designing DNA oligonucleotides (oligos) for each of the DNA sequence fragments, and (3) creating a plan for adding optimized overhang sequences to each of the DNA oligos.« less
Grahn, Jessica A.; Henry, Molly J.; McAuley, J. Devin
2011-01-01
How we measure time and integrate temporal cues from different sensory modalities are fundamental questions in neuroscience. Sensitivity to a “beat” (such as that routinely perceived in music) differs substantially between auditory and visual modalities. Here we examined beat sensitivity in each modality, and examined cross-modal influences, using functional magnetic resonance imaging (fMRI) to characterize brain activity during perception of auditory and visual rhythms. In separate fMRI sessions, participants listened to auditory sequences or watched visual sequences. The order of auditory and visual sequence presentation was counterbalanced so that cross-modal order effects could be investigated. Participants judged whether sequences were speeding up or slowing down, and the pattern of tempo judgments was used to derive a measure of sensitivity to an implied beat. As expected, participants were less sensitive to an implied beat in visual sequences than in auditory sequences. However, visual sequences produced a stronger sense of beat when preceded by auditory sequences with identical temporal structure. Moreover, increases in brain activity were observed in the bilateral putamen for visual sequences preceded by auditory sequences when compared to visual sequences without prior auditory exposure. No such order-dependent differences (behavioral or neural) were found for the auditory sequences. The results provide further evidence for the role of the basal ganglia in internal generation of the beat and suggest that an internal auditory rhythm representation may be activated during visual rhythm perception. PMID:20858544
Iwamoto, Susumu; Tokumasu, Seiji; Suyama, Yoshihisa; Kakishima, Makoto
2005-01-01
We investigated intraspecific diversity and genetic structures of a saprotrophic fungus--Thysanophora penicillioides--based on sequences of nuclear ribosomal internal transcribed spacer (ITS) in 15 discontinuous Abies mariesii forests of Japan. In such a well-defined morphological species, numerous unexpected ITS variations were revealed: 12 ITS sequence types detected in 254 isolates collected from 15 local populations were classified into five ITS sequence groups. Maximally, four ITS groups consisted of seven ITS types coexisting in one population. However, group 1 was dominant with approximately 65%; in particular, one haplotype, 1a, was most dominant with approximately 60% in respective populations. Therefore, few differences were recognized in genetic structure among local populations, implying that the gene flow of each lineage of the fungus occurs among local populations without geographic limitations. However, minor haplotypes in some ITS groups were found only in restricted areas, suggesting that they might expand steadily from their places of origin to neighboring A. mariesii forests. Aggregating sequence data of seven European strains and four North American strains from various substrates to those of Japanese strains, 18 ITS sequence types and 28 variable sites were recognized. They were clustered into nine lineages by phylogenetic analyses of the beta-tubulin and combined ITS and beta-tubulin datasets. According to phylogenetic species recognition by the concordance of genealogies, respective lineages correspond to phylogenetic species. Plural phylogenetic species coexist in a local population in an A. mariesii forest in Japan.
NASA Astrophysics Data System (ADS)
Mielke, Steven P.; Grønbech-Jensen, Niels; Krishnan, V. V.; Fink, William H.; Benham, Craig J.
2005-09-01
The topological state of DNA in vivo is dynamically regulated by a number of processes that involve interactions with bound proteins. In one such process, the tracking of RNA polymerase along the double helix during transcription, restriction of rotational motion of the polymerase and associated structures, generates waves of overtwist downstream and undertwist upstream from the site of transcription. The resulting superhelical stress is often sufficient to drive double-stranded DNA into a denatured state at locations such as promoters and origins of replication, where sequence-specific duplex opening is a prerequisite for biological function. In this way, transcription and other events that actively supercoil the DNA provide a mechanism for dynamically coupling genetic activity with regulatory and other cellular processes. Although computer modeling has provided insight into the equilibrium dynamics of DNA supercoiling, to date no model has appeared for simulating sequence-dependent DNA strand separation under the nonequilibrium conditions imposed by the dynamic introduction of torsional stress. Here, we introduce such a model and present results from an initial set of computer simulations in which the sequences of dynamically superhelical, 147 base pair DNA circles were systematically altered in order to probe the accuracy with which the model can predict location, extent, and time of stress-induced duplex denaturation. The results agree both with well-tested statistical mechanical calculations and with available experimental information. Additionally, we find that sites susceptible to denaturation show a propensity for localizing to supercoil apices, suggesting that base sequence determines locations of strand separation not only through the energetics of interstrand interactions, but also by influencing the geometry of supercoiling.
Mielke, Steven P; Grønbech-Jensen, Niels; Krishnan, V V; Fink, William H; Benham, Craig J
2005-09-22
The topological state of DNA in vivo is dynamically regulated by a number of processes that involve interactions with bound proteins. In one such process, the tracking of RNA polymerase along the double helix during transcription, restriction of rotational motion of the polymerase and associated structures, generates waves of overtwist downstream and undertwist upstream from the site of transcription. The resulting superhelical stress is often sufficient to drive double-stranded DNA into a denatured state at locations such as promoters and origins of replication, where sequence-specific duplex opening is a prerequisite for biological function. In this way, transcription and other events that actively supercoil the DNA provide a mechanism for dynamically coupling genetic activity with regulatory and other cellular processes. Although computer modeling has provided insight into the equilibrium dynamics of DNA supercoiling, to date no model has appeared for simulating sequence-dependent DNA strand separation under the nonequilibrium conditions imposed by the dynamic introduction of torsional stress. Here, we introduce such a model and present results from an initial set of computer simulations in which the sequences of dynamically superhelical, 147 base pair DNA circles were systematically altered in order to probe the accuracy with which the model can predict location, extent, and time of stress-induced duplex denaturation. The results agree both with well-tested statistical mechanical calculations and with available experimental information. Additionally, we find that sites susceptible to denaturation show a propensity for localizing to supercoil apices, suggesting that base sequence determines locations of strand separation not only through the energetics of interstrand interactions, but also by influencing the geometry of supercoiling.
Dynamic allocation of attention to metrical and grouping accents in rhythmic sequences.
Kung, Shu-Jen; Tzeng, Ovid J L; Hung, Daisy L; Wu, Denise H
2011-04-01
Most people find it easy to perform rhythmic movements in synchrony with music, which reflects their ability to perceive the temporal periodicity and to allocate attention in time accordingly. Musicians and non-musicians were tested in a click localization paradigm in order to investigate how grouping and metrical accents in metrical rhythms influence attention allocation, and to reveal the effect of musical expertise on such processing. We performed two experiments in which the participants were required to listen to isochronous metrical rhythms containing superimposed clicks and then to localize the click on graphical and ruler-like representations with and without grouping structure information, respectively. Both experiments revealed metrical and grouping influences on click localization. Musical expertise improved the precision of click localization, especially when the click coincided with a metrically strong beat. Critically, although all participants located the click accurately at the beginning of an intensity group, only musicians located it precisely when it coincided with a strong beat at the end of the group. Removal of the visual cue of grouping structures enhanced these effects in musicians and reduced them in non-musicians. These results indicate that musical expertise not only enhances attention to metrical accents but also heightens sensitivity to perceptual grouping.
Dueker, M Elias; O'Mullan, Gregory D; Juhl, Andrew R; Weathers, Kathleen C; Uriarte, Maria
2012-10-16
In polluted environments, when microbial aerosols originate locally, species composition of the aerosols should reflect the polluted source. To test the connection between local environmental pollution and microbial aerosols near an urban waterfront, we characterized bacterial aerosols at Newtown Creek (NTC), a public waterway and Superfund site in a densely populated area of New York, NY, USA. Culturable bacterial aerosol fallout rate and surface water bacterial concentrations were at least an order of magnitude greater at NTC than at a neighboring, less polluted waterfront and a nonurban coastal site in Maine. The NTC culturable bacterial aerosol community was significantly different in taxonomic structure from previous urban and coastal aerosol studies, particularly in relative abundances of Actinobacteria and Proteobacteria. Twenty-four percent of the operational taxonomic units in the NTC overall (air + water) bacterial isolate library were most similar to bacterial 16S rRNA gene sequences previously described in terrestrial or aquatic environments contaminated with sewage, hydrocarbons, heavy metals, and other industrial waste. This study is the first to examine the community composition and local deposition of bacterial aerosols from an aquatic Superfund site. The findings have important implications for the use of aeration remediation in polluted aquatic environments and suggest a novel pathway of microbial exposure in densely populated urban communities containing contaminated soil and water.
Hirsch, B; Endris, V; Lassmann, S; Weichert, W; Pfarr, N; Schirmacher, P; Kovaleva, V; Werner, M; Bonzheim, I; Fend, F; Sperveslage, J; Kaulich, K; Zacher, A; Reifenberger, G; Köhrer, K; Stepanow, S; Lerke, S; Mayr, T; Aust, D E; Baretton, G; Weidner, S; Jung, A; Kirchner, T; Hansmann, M L; Burbat, L; von der Wall, E; Dietel, M; Hummel, M
2018-04-01
The simultaneous detection of multiple somatic mutations in the context of molecular diagnostics of cancer is frequently performed by means of amplicon-based targeted next-generation sequencing (NGS). However, only few studies are available comparing multicenter testing of different NGS platforms and gene panels. Therefore, seven partner sites of the German Cancer Consortium (DKTK) performed a multicenter interlaboratory trial for targeted NGS using the same formalin-fixed, paraffin-embedded (FFPE) specimen of molecularly pre-characterized tumors (n = 15; each n = 5 cases of Breast, Lung, and Colon carcinoma) and a colorectal cancer cell line DNA dilution series. Detailed information regarding pre-characterized mutations was not disclosed to the partners. Commercially available and custom-designed cancer gene panels were used for library preparation and subsequent sequencing on several devices of two NGS different platforms. For every case, centrally extracted DNA and FFPE tissue sections for local processing were delivered to each partner site to be sequenced with the commercial gene panel and local bioinformatics. For cancer-specific panel-based sequencing, only centrally extracted DNA was analyzed at seven sequencing sites. Subsequently, local data were compiled and bioinformatics was performed centrally. We were able to demonstrate that all pre-characterized mutations were re-identified correctly, irrespective of NGS platform or gene panel used. However, locally processed FFPE tissue sections disclosed that the DNA extraction method can affect the detection of mutations with a trend in favor of magnetic bead-based DNA extraction methods. In conclusion, targeted NGS is a very robust method for simultaneous detection of various mutations in FFPE tissue specimens if certain pre-analytical conditions are carefully considered.
Improving the performance of minimizers and winnowing schemes
Marçais, Guillaume; Pellow, David; Bork, Daniel; Orenstein, Yaron; Shamir, Ron; Kingsford, Carl
2017-01-01
Abstract Motivation: The minimizers scheme is a method for selecting k-mers from sequences. It is used in many bioinformatics software tools to bin comparable sequences or to sample a sequence in a deterministic fashion at approximately regular intervals, in order to reduce memory consumption and processing time. Although very useful, the minimizers selection procedure has undesirable behaviors (e.g. too many k-mers are selected when processing certain sequences). Some of these problems were already known to the authors of the minimizers technique, and the natural lexicographic ordering of k-mers used by minimizers was recognized as their origin. Many software tools using minimizers employ ad hoc variations of the lexicographic order to alleviate those issues. Results: We provide an in-depth analysis of the effect of k-mer ordering on the performance of the minimizers technique. By using small universal hitting sets (a recently defined concept), we show how to significantly improve the performance of minimizers and avoid some of its worse behaviors. Based on these results, we encourage bioinformatics software developers to use an ordering based on a universal hitting set or, if not possible, a randomized ordering, rather than the lexicographic order. This analysis also settles negatively a conjecture (by Schleimer et al.) on the expected density of minimizers in a random sequence. Availability and Implementation: The software used for this analysis is available on GitHub: https://github.com/gmarcais/minimizers.git. Contact: gmarcais@cs.cmu.edu or carlk@cs.cmu.edu PMID:28881970
Complex Sequencing Rules of Birdsong Can be Explained by Simple Hidden Markov Processes
Katahira, Kentaro; Suzuki, Kenta; Okanoya, Kazuo; Okada, Masato
2011-01-01
Complex sequencing rules observed in birdsongs provide an opportunity to investigate the neural mechanism for generating complex sequential behaviors. To relate the findings from studying birdsongs to other sequential behaviors such as human speech and musical performance, it is crucial to characterize the statistical properties of the sequencing rules in birdsongs. However, the properties of the sequencing rules in birdsongs have not yet been fully addressed. In this study, we investigate the statistical properties of the complex birdsong of the Bengalese finch (Lonchura striata var. domestica). Based on manual-annotated syllable labeles, we first show that there are significant higher-order context dependencies in Bengalese finch songs, that is, which syllable appears next depends on more than one previous syllable. We then analyze acoustic features of the song and show that higher-order context dependencies can be explained using first-order hidden state transition dynamics with redundant hidden states. This model corresponds to hidden Markov models (HMMs), well known statistical models with a large range of application for time series modeling. The song annotation with these models with first-order hidden state dynamics agreed well with manual annotation, the score was comparable to that of a second-order HMM, and surpassed the zeroth-order model (the Gaussian mixture model; GMM), which does not use context information. Our results imply that the hierarchical representation with hidden state dynamics may underlie the neural implementation for generating complex behavioral sequences with higher-order dependencies. PMID:21915345
Comparative Cytogenetics between Two Important Songbird, Models: The Zebra Finch and the Canary
dos Santos, Michelly da Silva; Kretschmer, Rafael; Frankl-Vilches, Carolina; Bakker, Antje; Gahr, Manfred; O´Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.
2017-01-01
Songbird species (order Passeriformes, suborder Oscines) are important models in various experimental fields spanning behavioural genomics to neurobiology. Although the genomes of some songbird species were sequenced recently, the chromosomal organization of these species is mostly unknown. Here we focused on the two most studied songbird species in neuroscience, the zebra finch (Taeniopygia guttata) and the canary (Serinus canaria). In order to clarify these issues and also to integrate chromosome data with their assembled genomes, we used classical and molecular cytogenetics in both zebra finch and canary to define their chromosomal homology, localization of heterochromatic blocks and distribution of rDNA clusters. We confirmed the same diploid number (2n = 80) in both species, as previously reported. FISH experiments confirmed the occurrence of multiple paracentric and pericentric inversions previously found in other species of Passeriformes, providing a cytogenetic signature for this order, and corroborating data from in silico analyses. Additionally, compared to other Passeriformes, we detected differences in the zebra finch karyotype concerning the morphology of some chromosomes, in the distribution of 5S rDNA clusters, and an inversion in chromosome 1. PMID:28129381
Protein location prediction using atomic composition and global features of the amino acid sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherian, Betsy Sheena, E-mail: betsy.skb@gmail.com; Nair, Achuthsankar S.
2010-01-22
Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectivelymore » used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.« less
Ren, Jie; Song, Kai; Deng, Minghua; Reinert, Gesine; Cannon, Charles H; Sun, Fengzhu
2016-04-01
Next-generation sequencing (NGS) technologies generate large amounts of short read data for many different organisms. The fact that NGS reads are generally short makes it challenging to assemble the reads and reconstruct the original genome sequence. For clustering genomes using such NGS data, word-count based alignment-free sequence comparison is a promising approach, but for this approach, the underlying expected word counts are essential.A plausible model for this underlying distribution of word counts is given through modeling the DNA sequence as a Markov chain (MC). For single long sequences, efficient statistics are available to estimate the order of MCs and the transition probability matrix for the sequences. As NGS data do not provide a single long sequence, inference methods on Markovian properties of sequences based on single long sequences cannot be directly used for NGS short read data. Here we derive a normal approximation for such word counts. We also show that the traditional Chi-square statistic has an approximate gamma distribution ,: using the Lander-Waterman model for physical mapping. We propose several methods to estimate the order of the MC based on NGS reads and evaluate those using simulations. We illustrate the applications of our results by clustering genomic sequences of several vertebrate and tree species based on NGS reads using alignment-free sequence dissimilarity measures. We find that the estimated order of the MC has a considerable effect on the clustering results ,: and that the clustering results that use a N: MC of the estimated order give a plausible clustering of the species. Our implementation of the statistics developed here is available as R package 'NGS.MC' at http://www-rcf.usc.edu/∼fsun/Programs/NGS-MC/NGS-MC.html fsun@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
cyclostratigraphy, sequence stratigraphy and organic matter accumulation mechanism
NASA Astrophysics Data System (ADS)
Cong, F.; Li, J.
2016-12-01
The first member of Maokou Formation of Sichuan basin is composed of well preserved carbonate ramp couplets of limestone and marlstone/shale. It acts as one of the potential shale gas source rock, and is suitable for time-series analysis. We conducted time-series analysis to identify high-frequency sequences, reconstruct high-resolution sedimentation rate, estimate detailed primary productivity for the first time in the study intervals and discuss organic matter accumulation mechanism of source rock under sequence stratigraphic framework.Using the theory of cyclostratigraphy and sequence stratigraphy, the high-frequency sequences of one outcrop profile and one drilling well are identified. Two third-order sequences and eight fourth-order sequences are distinguished on outcrop profile based on the cycle stacking patterns. For drilling well, sequence boundary and four system tracts is distinguished by "integrated prediction error filter analysis" (INPEFA) of Gamma-ray logging data, and eight fourth-order sequences is identified by 405ka long eccentricity curve in depth domain which is quantified and filtered by integrated analysis of MTM spectral analysis, evolutive harmonic analysis (EHA), evolutive average spectral misfit (eASM) and band-pass filtering. It suggests that high-frequency sequences correlate well with Milankovitch orbital signals recorded in sediments, and it is applicable to use cyclostratigraphy theory in dividing high-frequency(4-6 orders) sequence stratigraphy.High-resolution sedimentation rate is reconstructed through the study interval by tracking the highly statistically significant short eccentricity component (123ka) revealed by EHA. Based on sedimentation rate, measured TOC and density data, the burial flux, delivery flux and primary productivity of organic carbon was estimated. By integrating redox proxies, we can discuss the controls on organic matter accumulation by primary production and preservation under the high-resolution sequence stratigraphic framework. Results show that high average organic carbon contents in the study interval are mainly attributed to high primary production. The results also show a good correlation between high organic carbon accumulation and intervals of transgression.
Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ)
Mascher, Martin; Muehlbauer, Gary J; Rokhsar, Daniel S; Chapman, Jarrod; Schmutz, Jeremy; Barry, Kerrie; Muñoz-Amatriaín, María; Close, Timothy J; Wise, Roger P; Schulman, Alan H; Himmelbach, Axel; Mayer, Klaus FX; Scholz, Uwe; Poland, Jesse A; Stein, Nils; Waugh, Robbie
2013-01-01
Next-generation whole-genome shotgun assemblies of complex genomes are highly useful, but fail to link nearby sequence contigs with each other or provide a linear order of contigs along individual chromosomes. Here, we introduce a strategy based on sequencing progeny of a segregating population that allows de novo production of a genetically anchored linear assembly of the gene space of an organism. We demonstrate the power of the approach by reconstructing the chromosomal organization of the gene space of barley, a large, complex and highly repetitive 5.1 Gb genome. We evaluate the robustness of the new assembly by comparison to a recently released physical and genetic framework of the barley genome, and to various genetically ordered sequence-based genotypic datasets. The method is independent of the need for any prior sequence resources, and will enable rapid and cost-efficient establishment of powerful genomic information for many species. PMID:23998490
NASA Astrophysics Data System (ADS)
Rusyaman, E.; Parmikanti, K.; Chaerani, D.; Asefan; Irianingsih, I.
2018-03-01
One of the application of fractional ordinary differential equation is related to the viscoelasticity, i.e., a correlation between the viscosity of fluids and the elasticity of solids. If the solution function develops into function with two or more variables, then its differential equation must be changed into fractional partial differential equation. As the preliminary study for two variables viscoelasticity problem, this paper discusses about convergence analysis of function sequence which is the solution of the homogenous fractional partial differential equation. The method used to solve the problem is Homotopy Analysis Method. The results show that if given two real number sequences (αn) and (βn) which converge to α and β respectively, then the solution function sequences of fractional partial differential equation with order (αn, βn) will also converge to the solution function of fractional partial differential equation with order (α, β).
Alards-Tomalin, Doug; Walker, Alexander C; Nepon, Hillary; Leboe-McGowan, Launa C
2017-09-01
In the current study, cross-task interactions between number order and sound intensity judgments were assessed using a dual-task paradigm. Participants first categorized numerical sequences composed of Arabic digits as either ordered (ascending, descending) or non-ordered. Following each number sequence, participants then had to judge the intensity level of a target sound. Experiment 1 emphasized processing the two tasks independently (serial processing), while Experiments 2 and 3 emphasized processing the two tasks simultaneously (parallel processing). Cross-task interference occurred only when the task required parallel processing and was specific to ascending numerical sequences, which led to a higher proportion of louder sound intensity judgments. In Experiment 4 we examined whether this unidirectional interaction was the result of participants misattributing enhanced processing fluency experienced on ascending sequences as indicating a louder target sound. The unidirectional finding could not be entirely attributed to misattributed processing fluency, and may also be connected to experientially derived conceptual associations between ascending number sequences and greater magnitude, consistent with conceptual mapping theory.
Andronesi, Ovidiu C.; Ramadan, Saadallah; Mountford, Carolyn E.; Sorensen, A. Gregory
2011-01-01
Novel low-power adiabatic sequences are demonstrated for in-vivo localized two-dimensional (2D) correlated MR spectroscopy, such as COSY (Correlated Spectroscopy) and TOCSY (Total Correlated Spectroscopy). The design is based on three new elements for in-vivo 2D MRS: the use of gradient modulated constant adiabaticity GOIA-W(16,4) pulses for i) localization (COSY and TOCSY) and ii) mixing (TOCSY), and iii) the use of longitudinal mixing (z-filter) for magnetization transfer during TOCSY. GOIA-W(16,4) provides accurate signal localization, and more importantly, lowers the SAR for both TOCSY mixing and localization. Longitudinal mixing improves considerably (five-folds) the efficiency of TOCSY transfer. These are markedly different from previous 1D editing TOCSY sequences using spatially non-selective pulses and transverse mixing. Fully adiabatic (adiabatic mixing with adiabatic localization) and semi-adiabatic (adiabatic mixing with non-adiabatic localization) methods for 2D TOCSY are compared. Results are presented for simulations, phantoms, and in-vivo 2D spectra from healthy volunteers and patients with brain tumors obtained on 3T clinical platforms equipped with standard hardware. To the best of our knowledge this is the first demonstration of in-vivo adiabatic 2D TOCSY and fully adiabatic 2D COSY. It is expected that these methodological developments will advance the in-vivo applicability of multi(spectrally)dimensional MRS to reliably identify metabolic biomarkers. PMID:20890988
Bentley, Anna M.; Normand, Guillaume; Hoyt, Jonathan
2007-01-01
The mitotic cyclins promote cell division by binding and activating cyclin-dependent kinases (CDKs). Each cyclin has a unique pattern of subcellular localization that plays a vital role in regulating cell division. During mitosis, cyclin B1 is known to localize to centrosomes, microtubules, and chromatin. To determine the mechanisms of cyclin B1 localization in M phase, we imaged full-length and mutant versions of human cyclin B1-enhanced green fluorescent protein in live cells by using spinning disk confocal microscopy. In addition to centrosome, microtubule, and chromatin localization, we found that cyclin B1 also localizes to unattached kinetochores after nuclear envelope breakdown. Kinetochore recruitment of cyclin B1 required the kinetochore proteins Hec1 and Mad2, and it was stimulated by microtubule destabilization. Mutagenesis studies revealed that cyclin B1 is recruited to kinetochores through both CDK1-dependent and -independent mechanisms. In contrast, localization of cyclin B1 to chromatin and centrosomes is independent of CDK1 binding. The N-terminal domain of cyclin B1 is necessary and sufficient for chromatin association, whereas centrosome recruitment relies on sequences within the cyclin box. Our data support a role for cyclin B1 function at unattached kinetochores, and they demonstrate that separable and distinct sequence elements target cyclin B1 to kinetochores, chromatin, and centrosomes during mitosis. PMID:17881737
Program for Editing Spacecraft Command Sequences
NASA Technical Reports Server (NTRS)
Gladden, Roy; Waggoner, Bruce; Kordon, Mark; Hashemi, Mahnaz; Hanks, David; Salcedo, Jose
2006-01-01
Sequence Translator, Editor, and Expander Resource (STEER) is a computer program that facilitates construction of sequences and blocks of sequences (hereafter denoted generally as sequence products) for commanding a spacecraft. STEER also provides mechanisms for translating among various sequence product types and quickly expanding activities of a given sequence in chronological order for review and analysis of the sequence. To date, construction of sequence products has generally been done by use of such clumsy mechanisms as text-editor programs, translating among sequence product types has been challenging, and expanding sequences to time-ordered lists has involved arduous processes of converting sequence products to "real" sequences and running them through Class-A software (defined, loosely, as flight and ground software critical to a spacecraft mission). Also, heretofore, generating sequence products in standard formats has been troublesome because precise formatting and syntax are required. STEER alleviates these issues by providing a graphical user interface containing intuitive fields in which the user can enter the necessary information. The STEER expansion function provides a "quick and dirty" means of seeing how a sequence and sequence block would expand into a chronological list, without need to use of Class-A software.
33 CFR 385.30 - Master Implementation Sequencing Plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Master Implementation Sequencing... Incorporating New Information Into the Plan § 385.30 Master Implementation Sequencing Plan. (a) Not later than... of Environmental Protection, and other Federal, State, and local agencies, develop a Master...
33 CFR 385.30 - Master Implementation Sequencing Plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Master Implementation Sequencing... Incorporating New Information Into the Plan § 385.30 Master Implementation Sequencing Plan. (a) Not later than... of Environmental Protection, and other Federal, State, and local agencies, develop a Master...
33 CFR 385.30 - Master Implementation Sequencing Plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Master Implementation Sequencing... Incorporating New Information Into the Plan § 385.30 Master Implementation Sequencing Plan. (a) Not later than... of Environmental Protection, and other Federal, State, and local agencies, develop a Master...
Next-generation sequencing for targeted discovery of rare mutations in rice
USDA-ARS?s Scientific Manuscript database
Advances in DNA sequencing (i.e., next-generation sequencing, NGS) have greatly increased the power and efficiency of detecting rare mutations in large mutant populations. Targeting Induced Local Lesions in Genomes (TILLING) is a reverse genetics approach for identifying gene mutations resulting fro...
NMR polarization echoes in a nematic liquid crystal
NASA Astrophysics Data System (ADS)
Levstein, Patricia R.; Chattah, Ana K.; Pastawski, Horacio M.; Raya, Jésus; Hirschinger, Jérôme
2004-10-01
We have modified the polarization echo (PE) sequence through the incorporation of Lee-Goldburg cross polarization steps to quench the 1H-1H dipolar dynamics. In this way, the 13C becomes an ideal local probe to inject and detect polarization in the proton system. This improvement made possible the observation of the local polarization P00(t) and polarization echoes in the interphenyl proton of the liquid crystal N-(4-methoxybenzylidene)-4-butylaniline. The decay of P00(t) was well fitted to an exponential law with a characteristic time τC≈310 μs. The hierarchy of the intramolecular dipolar couplings determines a dynamical bottleneck that justifies the use of the Fermi Golden Rule to obtain a spectral density consistent with the structural parameters. The time evolution of P00(t) was reversed by the PE sequence generating echoes at the time expected by the scaling of the dipolar Hamiltonian. This indicates that the reversible 1H-1H dipolar interaction is the main contribution to the local polarization decrease and that the exponential decay for P00(t) does not imply irreversibility. The attenuation of the echoes follows a Gaussian law with a characteristic time τφ≈527 μs. The shape and magnitude of the characteristic time of the PE decay suggest that it is dominated by the unperturbed homonuclear dipolar Hamiltonian. This means that τφ is an intrinsic property of the dipolar coupled network and not of other degrees of freedom. In this case, one cannot unambiguously identify the mechanism that produces the decoherence of the dipolar order. This is because even weak interactions are able to break the fragile multiple coherences originated on the dipolar evolution, hindering its reversal. Other schemes to investigate these underlying mechanisms are proposed.
Begovic, Emina; Lindberg, David R.
2011-01-01
The seagrass limpet Tectura paleacea (Gastropoda; Patellogastropoda) belongs to a seagrass obligate lineage that has shifted from the Caribbean in the late Miocene, across the Isthmus of Panama prior to the closing of the Panamanian seaway, and then northward to its modern Baja California – Oregon distribution. To address whether larval entrainment by seagrass beds contributes to population structuring, populations were sampled at six California/Oregon localities approximately 2 degrees latitude apart during two post-settlement periods in July 2002 and June 2003. Partial cytochrome oxidase b (Cytb) sequences were obtained from 20 individuals (10 per year) from each population in order to determine the levels of population subdivision/connectivity. From the 120 individuals sequenced, there were eighty-one unique haplotypes, with the greatest haplotype diversity occurring in southern populations. The only significant genetic break detected was consistent with a peri-Point Conception (PPC) biogeographic boundary while populations north and south of Point Conception were each panmictic. The data further indicate that populations found south of the PPC biogeographic boundary originated from northern populations. This pattern of population structure suggests that seagrass patches are not entraining the larvae of T. paleacea by altering flow regimes within their environment; a process hypothesized to produce extensive genetic subdivision on fine geographic scales. In contrast to the haplotype data, morphological patterns vary significantly over very fine geographic scales that are inconsistent with the observed patterns of genetic population structure, indicating that morphological variation in T. paleacea might be attributed to differential ecophenotypic expression in response to local habitat variability throughout its distribution. These results suggest that highly localized conservation efforts may not be as effective as large-scale conservation efforts in near shore marine environments. PMID:21490969
Pea, Antonio; Yu, Jun; Rezaee, Neda; Luchini, Claudio; He, Jin; Molin, Marco Dal; Griffin, James F.; Fedor, Helen; Fesharakizadeh, Shahriar; Salvia, Roberto; Weiss, Matthew J.; Bassi, Claudio; Cameron, John L.; Zheng, Lei; Scarpa, Aldo; Hruban, Ralph H.; Lennon, Anne Marie; Goggins, Michael
2016-01-01
Objective The aim of this study was to characterize patterns of local progression following resection for pancreatic intraductal papillary mucinous neoplasms (IPMN) using targeted next-generation sequencing (NGS). Background Progression of neoplastic disease in the remnant pancreas following resection of IPMN may include development of a new IPMN or ductal adenocarcinoma (PDAC). However, it is not clear whether this progression represents recurrence of the same neoplasm or an independent second neoplasm. Methods Targeted-NGS on genes commonly mutated in IPMN and PDAC was performed on tumors from (1) 13 patients who developed disease progression in the remnant pancreas following resection of IPMN; and (2) 10 patients who underwent a resection for PDAC and had a concomitant IPMN. Mutations in the tumors were compared in order to determine the relationship between neoplasms. In parallel, clinical and pathological characteristics of 260 patients who underwent resection of noninvasive IPMN were reviewed to identify risk factors associated with local progression. Results We identified 3 mechanisms underlying local progression in the remnant pancreas: (1) residual microscopic disease at the resection margin, (2) intraparenchymal spread of neoplastic cells, leading to an anatomically separate but genetically related recurrence, and (3) multifocal disease with genetically distinct lesions. Analysis of the 260 patients with noninvasive IPMNs showed that family history of pancreatic cancer (P = 0.027) and high-grade dysplasia (HGD) (P = 0.003) were independent risk factors for the development of an IPMN with HGD or an invasive carcinoma in the remnant pancreas. Conclusions Using NGS, we identify distinct mechanisms for development of metachronous or synchronous neoplasms in patients with IPMN. Patients with a primary IPMN with HGD or with positive family history are at an increased risk to develop subsequent high-risk neoplasms in the remnant pancreas. PMID:27433916
Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks
Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao
2009-01-01
Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines. PMID:22574048
Anchor-free localization method for mobile targets in coal mine wireless sensor networks.
Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao
2009-01-01
Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes' location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines.
Guo, Kang-kang; Tang, Qing-hai; Zhang, Yan-ming; Kang, Kai; He, Lei
2011-05-18
The membrane topology and molecular mechanisms for endoplasmic reticulum (ER) localization of classical swine fever virus (CSFV) non-structural 2 (NS2) protien is unclear. We attempted to elucidate the subcellular localization, and the molecular mechanisms responsible for the localization of this protein in our study. The NS2 gene was amplified by reverse transcription polymerase chain reaction, with the transmembrane region and hydrophilicity of the NS2 protein was predicted by bioinformatics analysis. Twelve cDNAs of the NS2 gene were amplified by the PCR deletion method and cloned into a eukaryotic expression vector, which was transfected into a swine umbilical vein endothelial cell line (SUVEC). Subcellular localization of the NS2 protein was characterized by confocal microscopy, and western blots were carried out to analyze protein expression. Our results showed that the -NH2 terminal of the CSFV NS2 protein was highly hydrophobic and the protein localized in the ER. At least four transmembrane regions and two internal signal peptide sequences (amino acids103-138 and 220-262) were identified and thought to be critical for its trans-localization to the ER. This is the first study to identify the internal signal peptide sequences of the CSFV NS2 protein and its subcellular localization, providing the foundation for further exploration of this protein's function of this protein and its role in CSFV pathogenesis.
Protein subcellular localization prediction using artificial intelligence technology.
Nair, Rajesh; Rost, Burkhard
2008-01-01
Proteins perform many important tasks in living organisms, such as catalysis of biochemical reactions, transport of nutrients, and recognition and transmission of signals. The plethora of aspects of the role of any particular protein is referred to as its "function." One aspect of protein function that has been the target of intensive research by computational biologists is its subcellular localization. Proteins must be localized in the same subcellular compartment to cooperate toward a common physiological function. Aberrant subcellular localization of proteins can result in several diseases, including kidney stones, cancer, and Alzheimer's disease. To date, sequence homology remains the most widely used method for inferring the function of a protein. However, the application of advanced artificial intelligence (AI)-based techniques in recent years has resulted in significant improvements in our ability to predict the subcellular localization of a protein. The prediction accuracy has risen steadily over the years, in large part due to the application of AI-based methods such as hidden Markov models (HMMs), neural networks (NNs), and support vector machines (SVMs), although the availability of larger experimental datasets has also played a role. Automatic methods that mine textual information from the biological literature and molecular biology databases have considerably sped up the process of annotation for proteins for which some information regarding function is available in the literature. State-of-the-art methods based on NNs and HMMs can predict the presence of N-terminal sorting signals extremely accurately. Ab initio methods that predict subcellular localization for any protein sequence using only the native amino acid sequence and features predicted from the native sequence have shown the most remarkable improvements. The prediction accuracy of these methods has increased by over 30% in the past decade. The accuracy of these methods is now on par with high-throughput methods for predicting localization, and they are beginning to play an important role in directing experimental research. In this chapter, we review some of the most important methods for the prediction of subcellular localization.
Nanolayered Features of Collagen-like Peptides
NASA Technical Reports Server (NTRS)
Valluzzi, Regina; Bini, Elisabetta; Haas, Terry; Cebe, Peggy; Kaplan, David L.
2003-01-01
We have been investigating collagen-like model oligopeptides as molecular bases for complex ordered biomimetic materials. The collagen-like molecules incorporate aspects of native collagen sequence and secondary structure. Designed modifications to native primary and secondary structure have been incorporated to control the nanostructure and microstructure of the collagen-like materials produced. We find that the collagen-like molecules form a number of lyotropic rod liquid crystalline phases, which because of their strong temperature dependence in the liquid state can also be viewed as solvent intercalated thermotropic liquid crystals. The liquid crystalline phases formed by the molecules can be captured in the solid state by drying off solvent, resulting in solid nanopatterned (chemically and physically) thermally stable (to greater than 100 C) materials. Designed sequences which stabilize smectic phases have allowed a variety of nanoscale multilayered biopolymeric materials to be developed. Preliminary investigations suggest that chemical patterns running perpendicular to the smectic layer plane can be functionalized and used to localize a variety of organic, inorganic, and organometallic moieties in very simple multilayered nanocomposites. The phase behavior of collagen-like oligopeptide materials is described, emphasizing the correlation between mesophase, molecular orientation, and chemical patterning at the microscale and nanoscale. In many cases, the textures observed for smectic and hexatic phase collagens are remarkably similar to the complex (and not fully understood) helicoids observed in biological collagen-based tissues. Comparisons between biological morphologies and collagen model liquid crystalline (and solidified materials) textures may help us understand the molecular features which impart order and function to the extracellular matrix and to collagen-based mineralized tissues. Initial studies have utilized synthetic collagen-like peptides while future work will also focus on similar sequences generated via genetic engineering methods.
NASA Astrophysics Data System (ADS)
Yousif, Ibrahim M.; Abdullatif, Osman M.; Makkawi, Mohammad H.; Bashri, Mazin A.; Abdulghani, Waleed M.
2018-03-01
This study characterizes the lithofacies, paleoenvironment and stratigraphic architecture of the D5 and D6 members of carbonates Dhruma Formation outcrops in central Saudi Arabia. The study integrates detailed lithofacies analysis based on vertical and lateral profiles, in addition to thin-sections petrography to reveal the high-resolution architecture framework. Nine lithofacies types (LFTs) were defined namely: (1) skeletal peletal spiculitic wackestone (15%), (2) peloidal echinoderm packstone (19%), (3) fissile shale (36%), (4) peloidal spiculitic echinoderm pack-grainstone (5%), (5) cross-bedded peloidal skeletal oolitic grainstone (7%), (6) oolitic grainstone (2%), (7) intraformational rudstone (<1%), (8) skeletal peloidal foraminiferal packstone (12%) and (9) skeletal foraminiferal wackestone (4%). These lithofacies types were grouped into five major carbonate paleoenvironments that range from distal-to-proximal carbonate ramp setting. The detailed stratigraphic analysis revealed around 53 cycles and cycle sets with 5th to 6th orders magnitude, and thickness ranges from a few centimeters up to 6 m with an average of 1.5 m. Those are stacked to form four high-frequency sequences with thickness range from 1 m up to 14 m. The latter were grouped into a single depositional sequence of 3rd order magnitude. The architectural analysis also shows that the potential reservoir units were intensively affected by muddy-textured rocks which act as reservoir seals. These variations in the stratigraphic sequences in Middle Jurassic Dhruma Formation and its equivalents could be attributed to the eustatic sea-level changes, climate, tectonics, and local paleoenvironments. This study attempts to provide detailed insight into reservoir heterogeneity and architecture. The analog may help to understand and predict lithofacies heterogeneity, architecture, and quality in the subsurface equivalent reservoirs.
Local suppression of the hidden-order phase by impurities in URu2Si2
NASA Astrophysics Data System (ADS)
Pezzoli, Maria E.; Graf, Matthias J.; Haule, Kristjan; Kotliar, Gabriel; Balatsky, Alexander V.
2011-06-01
We consider the effects of impurities on the enigmatic hidden order (HO) state of the heavy-fermion material URu2Si2. In particular, we focus on local effects of Rh impurities as a tool to probe the suppression of the HO state. To study local properties, we introduce a lattice free energy, where the time invariant HO order parameter Ψ and local antiferromagnetic (AFM) order parameter M are competing orders. Near each Rh atom, the HO order parameter is suppressed, creating a hole in which local AFM order emerges as a result of competition. These local holes are created in the fabric of the HO state like in a Swiss cheese and “filled” with droplets of AFM order. We compare our analysis with recent NMR results on U(RhxRu1-x)2Si2 and find good agreement with the data.
A Three-Dimensional Model of the Yeast Genome
NASA Astrophysics Data System (ADS)
Noble, William; Duan, Zhi-Jun; Andronescu, Mirela; Schutz, Kevin; McIlwain, Sean; Kim, Yoo Jung; Lee, Choli; Shendure, Jay; Fields, Stanley; Blau, C. Anthony
Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or factories for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birge, J. R.; Qi, L.; Wei, Z.
In this paper we give a variant of the Topkis-Veinott method for solving inequality constrained optimization problems. This method uses a linearly constrained positive semidefinite quadratic problem to generate a feasible descent direction at each iteration. Under mild assumptions, the algorithm is shown to be globally convergent in the sense that every accumulation point of the sequence generated by the algorithm is a Fritz-John point of the problem. We introduce a Fritz-John (FJ) function, an FJ1 strong second-order sufficiency condition (FJ1-SSOSC), and an FJ2 strong second-order sufficiency condition (FJ2-SSOSC), and then show, without any constraint qualification (CQ), that (i) ifmore » an FJ point z satisfies the FJ1-SSOSC, then there exists a neighborhood N(z) of z such that, for any FJ point y element of N(z) {l_brace}z {r_brace} , f{sub 0}(y) {ne} f{sub 0}(z) , where f{sub 0} is the objective function of the problem; (ii) if an FJ point z satisfies the FJ2-SSOSC, then z is a strict local minimum of the problem. The result (i) implies that the entire iteration point sequence generated by the method converges to an FJ point. We also show that if the parameters are chosen large enough, a unit step length can be accepted by the proposed algorithm.« less
NASA Astrophysics Data System (ADS)
Shao, Xupeng
2017-04-01
Glutenite bodies are widely developed in northern Minfeng zone of Dongying Sag. Their litho-electric relationship is not clear. In addition, as the conventional sequence stratigraphic research method drawbacks of involving too many subjective human factors, it has limited deepening of the regional sequence stratigraphic research. The wavelet transform technique based on logging data and the time-frequency analysis technique based on seismic data have advantages of dividing sequence stratigraphy quantitatively comparing with the conventional methods. Under the basis of the conventional sequence research method, this paper used the above techniques to divide the fourth-order sequence of the upper Es4 in northern Minfeng zone of Dongying Sag. The research shows that the wavelet transform technique based on logging data and the time-frequency analysis technique based on seismic data are essentially consistent, both of which divide sequence stratigraphy quantitatively in the frequency domain; wavelet transform technique has high resolutions. It is suitable for areas with wells. The seismic time-frequency analysis technique has wide applicability, but a low resolution. Both of the techniques should be combined; the upper Es4 in northern Minfeng zone of Dongying Sag is a complete set of third-order sequence, which can be further subdivided into 5 fourth-order sequences that has the depositional characteristics of fine-upward sequence in granularity. Key words: Dongying sag, northern Minfeng zone, wavelet transform technique, time-frequency analysis technique ,the upper Es4, sequence stratigraphy
Rank-order-selective neurons form a temporal basis set for the generation of motor sequences.
Salinas, Emilio
2009-04-08
Many behaviors are composed of a series of elementary motor actions that must occur in a specific order, but the neuronal mechanisms by which such motor sequences are generated are poorly understood. In particular, if a sequence consists of a few motor actions, a primate can learn to replicate it from memory after practicing it for just a few trials. How do the motor and premotor areas of the brain assemble motor sequences so fast? The network model presented here reveals part of the solution to this problem. The model is based on experiments showing that, during the performance of motor sequences, some cortical neurons are always activated at specific times, regardless of which motor action is being executed. In the model, a population of such rank-order-selective (ROS) cells drives a layer of downstream motor neurons so that these generate specific movements at different times in different sequences. A key ingredient of the model is that the amplitude of the ROS responses must be modulated by sequence identity. Because of this modulation, which is consistent with experimental reports, the network is able not only to produce multiple sequences accurately but also to learn a new sequence with minimal changes in connectivity. The ROS neurons modulated by sequence identity thus serve as a basis set for constructing arbitrary sequences of motor responses downstream. The underlying mechanism is analogous to the mechanism described in parietal areas for generating coordinate transformations in the spatial domain.
RANK-ORDER-SELECTIVE NEURONS FORM A TEMPORAL BASIS SET FOR THE GENERATION OF MOTOR SEQUENCES
Salinas, Emilio
2009-01-01
Many behaviors are composed of a series of elementary motor actions that must occur in a specific order, but the neuronal mechanisms by which such motor sequences are generated are poorly understood. In particular, if a sequence consists of a few motor actions, a primate can learn to replicate it from memory after practicing it for just a few trials. How do the motor and premotor areas of the brain assemble motor sequences so fast? The network model presented here reveals part of the solution to this problem. The model is based on experiments showing that, during the performance of motor sequences, some cortical neurons are always activated at specific times, regardless of which motor action is being executed. In the model, a population of such rank-order-selective (ROS) cells drives a layer of downstream motor neurons so that these generate specific movements at different times in different sequences. A key ingredient of the model is that the amplitude of the ROS responses must be modulated by sequence identity. Because of this modulation, which is consistent with experimental reports, the network is able not only to produce multiple sequences accurately but also to learn a new sequence with minimal changes in connectivity. The ROS neurons modulated by sequence identity thus serve as a basis set for constructing arbitrary sequences of motor responses downstream. The underlying mechanism is analogous to the mechanism described in parietal areas for generating coordinate transformations in the spatial domain. PMID:19357265
Segers, Laurent; Tiete, Jelmer; Braeken, An; Touhafi, Abdellah
2014-01-01
Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum. PMID:24553084
USDA-ARS?s Scientific Manuscript database
Rice seeds of the temperate japonica cultivar Kitaake were mutagenized with sodium azide alone and in combination with methyl nitrosourea. Using the reduced representation sequencing method Restriction Enzyme Sequence Comparative Analysis (RESCAN), the mutation densities, types and local sequence co...
Affording and Constraining Local Moral Orders in Teacher-Led Ability-Based Mathematics Groups
ERIC Educational Resources Information Center
Tait-McCutcheon, Sandi; Shuker, Mary Jane; Higgins, Joanna; Loveridge, Judith
2015-01-01
How teachers position themselves and their students can influence the development of afforded or constrained local moral orders in ability-based teacher-led mathematics lessons. Local moral orders are the negotiated discursive practices and interactions of participants in the group. In this article, the developing local moral orders of 12 teachers…
Electronic and structural ground state of heavy alkali metals at high pressure
NASA Astrophysics Data System (ADS)
Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.
2015-02-01
Alkali metals display unexpected properties at high pressure, including emergence of low-symmetry crystal structures, which appear to occur due to enhanced electronic correlations among the otherwise nearly free conduction electrons. We investigate the high-pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with a b i n i t i o theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the o C 84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudogap formation near the Fermi level and strong s p d hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.
Langevin Equation for DNA Dynamics
NASA Astrophysics Data System (ADS)
Grych, David; Copperman, Jeremy; Guenza, Marina
Under physiological conditions, DNA oligomers can contain well-ordered helical regions and also flexible single-stranded regions. We describe the site-specific motion of DNA with a modified Rouse-Zimm Langevin equation formalism that describes DNA as a coarse-grained polymeric chain with global structure and local flexibility. The approach has successfully described the protein dynamics in solution and has been extended to nucleic acids. Our approach provides diffusive mode analytical solutions for the dynamics of global rotational diffusion and internal motion. The internal DNA dynamics present a rich energy landscape that accounts for an interior where hydrogen bonds and base-stacking determine structure and experience limited solvent exposure. We have implemented several models incorporating different coarse-grained sites with anisotropic rotation, energy barrier crossing, and local friction coefficients that include a unique internal viscosity and our models reproduce dynamics predicted by atomistic simulations. The models reproduce bond autocorrelation along the sequence as compared to that directly calculated from atomistic molecular dynamics simulations. The Langevin equation approach captures the essence of DNA dynamics without a cumbersome atomistic representation.
Prediction of Human Activity by Discovering Temporal Sequence Patterns.
Li, Kang; Fu, Yun
2014-08-01
Early prediction of ongoing human activity has become more valuable in a large variety of time-critical applications. To build an effective representation for prediction, human activities can be characterized by a complex temporal composition of constituent simple actions and interacting objects. Different from early detection on short-duration simple actions, we propose a novel framework for long -duration complex activity prediction by discovering three key aspects of activity: Causality, Context-cue, and Predictability. The major contributions of our work include: (1) a general framework is proposed to systematically address the problem of complex activity prediction by mining temporal sequence patterns; (2) probabilistic suffix tree (PST) is introduced to model causal relationships between constituent actions, where both large and small order Markov dependencies between action units are captured; (3) the context-cue, especially interactive objects information, is modeled through sequential pattern mining (SPM), where a series of action and object co-occurrence are encoded as a complex symbolic sequence; (4) we also present a predictive accumulative function (PAF) to depict the predictability of each kind of activity. The effectiveness of our approach is evaluated on two experimental scenarios with two data sets for each: action-only prediction and context-aware prediction. Our method achieves superior performance for predicting global activity classes and local action units.
Molecular dynamics study of some non-hydrogen-bonding base pair DNA strands
NASA Astrophysics Data System (ADS)
Tiwari, Rakesh K.; Ojha, Rajendra P.; Tiwari, Gargi; Pandey, Vishnudatt; Mall, Vijaysree
2018-05-01
In order to elucidate the structural activity of hydrophobic modified DNA, the DMMO2-D5SICS, base pair is introduced as a constituent in different set of 12-mer and 14-mer DNA sequences for the molecular dynamics (MD) simulation in explicit water solvent. AMBER 14 force field was employed for each set of duplex during the 200ns production-dynamics simulation in orthogonal-box-water solvent by the Particle-Mesh-Ewald (PME) method in infinite periodic boundary conditions (PBC) to determine conformational parameters of the complex. The force-field parameters of modified base-pair were calculated by Gaussian-code using Hartree-Fock /ab-initio methodology. RMSD Results reveal that the conformation of the duplex is sequence dependent and the binding energy of the complex depends on the position of the modified base-pair in the nucleic acid strand. We found that non-bonding energy had a significant contribution to stabilising such type of duplex in comparison to electrostatic energy. The distortion produced within strands by such type of base-pair was local and destabilised the duplex integrity near to substitution, moreover the binding energy of duplex depends on the position of substitution of hydrophobic base-pair and the DNA sequence and strongly supports the corresponding experimental study.
Substrates of Peltigera Lichens as a Potential Source of Cyanobionts.
Zúñiga, Catalina; Leiva, Diego; Carú, Margarita; Orlando, Julieta
2017-10-01
Photobiont availability is one of the main factors determining the success of the lichenization process. Although multiple sources of photobionts have been proposed, there is no substantial evidence confirming that the substrates on which lichens grow are one of them. In this work, we obtained cyanobacterial 16S ribosomal RNA gene sequences from the substrates underlying 186 terricolous Peltigera cyanolichens from localities in Southern Chile and maritime Antarctica and compared them with the sequences of the cyanobionts of these lichens, in order to determine if cyanobacteria potentially available for lichenization were present in the substrates. A phylogenetic analysis of the sequences showed that Nostoc phylotypes dominated the cyanobacterial communities of the substrates in all sites. Among them, an overlap was observed between the phylotypes of the lichen cyanobionts and those of the cyanobacteria present in their substrates, suggesting that they could be a possible source of lichen photobionts. Also, in most cases, higher Nostoc diversity was observed in the lichens than in the substrates from each site. A better understanding of cyanobacterial diversity in lichen substrates and their relatives in the lichens would bring insights into mycobiont selection and the distribution patterns of lichens, providing a background for hypothesis testing and theory development for future studies of the lichenization process.
Delaney, Nigel F.; Marx, Christopher J.
2012-01-01
Understanding evolutionary dynamics within microbial populations requires the ability to accurately follow allele frequencies through time. Here we present a rapid, cost-effective method (FREQ-Seq) that leverages Illumina next-generation sequencing for localized, quantitative allele frequency detection. Analogous to RNA-Seq, FREQ-Seq relies upon counts from the >105 reads generated per locus per time-point to determine allele frequencies. Loci of interest are directly amplified from a mixed population via two rounds of PCR using inexpensive, user-designed oligonucleotides and a bar-coded bridging primer system that can be regenerated in-house. The resulting bar-coded PCR products contain the adapters needed for Illumina sequencing, eliminating further library preparation. We demonstrate the utility of FREQ-Seq by determining the order and dynamics of beneficial alleles that arose as a microbial population, founded with an engineered strain of Methylobacterium, evolved to grow on methanol. Quantifying allele frequencies with minimal bias down to 1% abundance allowed effective analysis of SNPs, small in-dels and insertions of transposable elements. Our data reveal large-scale clonal interference during the early stages of adaptation and illustrate the utility of FREQ-Seq as a cost-effective tool for tracking allele frequencies in populations. PMID:23118913
NASA Astrophysics Data System (ADS)
Adam, Ammar; Kaminski, Michael; Abdullatif, Osman
2017-04-01
This work reports the first discovery Earlandia foraminifera in the Triassic succession of the Middle East, within the Upper Khartam Member of the Khuff Formation. The study area is located in central Saudi Arabia where four outcrop localities were logged in detail for sedimentology and micropaleontology. More than 300 samples were collected for detailed sedimentological and micropaleontological analysis. Of these, only six samples recovered fossil Earlandia; these are dominantly observed in the interlaminated quartz-bearing recrystallized limestone lithofacies type. The Earlandia occur in associations with quartz grains, peloids, ooids, ostracods, bivalves, bryozoans, cephalopods, and stromatolites. The defined fossils of Earlandia are restricted to the lower fourth-order sequence of the Upper Khartam member; where non-skeletal grains (mostly oolitic grainstones) prevail. The skeletal grains along with the Earlandia occur as a thin (20 cm) transgressive lag. Furthermore, the regional occurrences of the Earlandia are consistent with the previously established high-frequency sequence stratigraphic scheme, therefore, the Earlandia could be used as a biomarker for regional biostratigraphic correlation and enhance the high-resolution sequence stratigraphic correlations of the Upper Khartam Member. Essentially, the detailed sedimentological and micropaleontological analysis (Earlandia foraminifera) indicates a plate-wide extensive shallow epeiric sea. The latter is gently dipping and sporadically connected to the open marine system.
LCC demons with divergence term for liver MRI motion correction
NASA Astrophysics Data System (ADS)
Oh, Jihun; Martin, Diego; Skrinjar, Oskar
2010-03-01
Contrast-enhanced liver MR image sequences acquired at multiple times before and after contrast administration have been shown to be critically important for the diagnosis and monitoring of liver tumors and may be used for the quantification of liver inflammation and fibrosis. However, over multiple acquisitions, the liver moves and deforms due to patient and respiratory motion. In order to analyze contrast agent uptake one first needs to correct for liver motion. In this paper we present a method for the motion correction of dynamic contrastenhanced liver MR images. For this purpose we use a modified version of the Local Correlation Coefficient (LCC) Demons non-rigid registration method. Since the liver is nearly incompressible its displacement field has small divergence. For this reason we add a divergence term to the energy that is minimized in the LCC Demons method. We applied the method to four sequences of contrast-enhanced liver MR images. Each sequence had a pre-contrast scan and seven post-contrast scans. For each post-contrast scan we corrected for the liver motion relative to the pre-contrast scan. Quantitative evaluation showed that the proposed method improved the liver alignment relative to the non-corrected and translation-corrected scans and visual inspection showed no visible misalignment of the motion corrected contrast-enhanced scans and pre-contrast scan.
Local backbone structure prediction of proteins
De Brevern, Alexandre G.; Benros, Cristina; Gautier, Romain; Valadié, Hélène; Hazout, Serge; Etchebest, Catherine
2004-01-01
Summary A statistical analysis of the PDB structures has led us to define a new set of small 3D structural prototypes called Protein Blocks (PBs). This structural alphabet includes 16 PBs, each one is defined by the (φ, Ψ) dihedral angles of 5 consecutive residues. The amino acid distributions observed in sequence windows encompassing these PBs are used to predict by a Bayesian approach the local 3D structure of proteins from the sole knowledge of their sequences. LocPred is a software which allows the users to submit a protein sequence and performs a prediction in terms of PBs. The prediction results are given both textually and graphically. PMID:15724288
Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns
2013-01-01
Background It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. Results We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. Conclusions The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected sublinear running time of the presented index-based algorithms, allows for the first time approximate matching of RNA sequence-structure patterns in large sequence databases. Beyond the algorithmic contributions, we provide with RaligNAtor a robust and well documented open-source software package implementing the algorithms presented in this manuscript. The RaligNAtor software is available at http://www.zbh.uni-hamburg.de/ralignator. PMID:23865810
NASA Astrophysics Data System (ADS)
Hassan, Kazi; Allen, Deonie; Haynes, Heather
2016-04-01
This paper considers 1D hydraulic model data on the effect of high flow clusters and sequencing on sediment transport. Using observed flow gauge data from the River Caldew, England, a novel stochastic modelling approach was developed in order to create alternative 50 year flow sequences. Whilst the observed probability density of gauge data was preserved in all sequences, the order in which those flows occurred was varied using the output from a Hidden Markov Model (HMM) with generalised Pareto distribution (GP). In total, one hundred 50 year synthetic flow series were generated and used as the inflow boundary conditions for individual flow series model runs using the 1D sediment transport model HEC-RAS. The model routed graded sediment through the case study river reach to define the long-term morphological changes. Comparison of individual simulations provided a detailed understanding of the sensitivity of channel capacity to flow sequence. Specifically, each 50 year synthetic flow sequence was analysed using a 3-month, 6-month or 12-month rolling window approach and classified for clusters in peak discharge. As a cluster is described as a temporal grouping of flow events above a specified threshold, the threshold condition used herein is considered as a morphologically active channel forming discharge event. Thus, clusters were identified for peak discharges in excess of 10%, 20%, 50%, 100% and 150% of the 1 year Return Period (RP) event. The window of above-peak flows also required cluster definition and was tested for timeframes 1, 2, 10 and 30 days. Subsequently, clusters could be described in terms of the number of events, maximum peak flow discharge, cumulative flow discharge and skewness (i.e. a description of the flow sequence). The model output for each cluster was analysed for the cumulative flow volume and cumulative sediment transport (mass). This was then compared to the total sediment transport of a single flow event of equivalent flow volume. Results illustrate that clustered flood events generated sediment loads up to an order of magnitude greater than that of individual events of the same flood volume. Correlations were significant for sediment volume compared to both maximum flow discharge (R2<0.8) and number of events (R2 -0.5 to -0.7) within the cluster. The strongest correlations occurred for clusters with a greater number of flow events only slightly above-threshold. This illustrates that the numerical model can capture a degree of the non-linear morphological response to flow magnitude. Analysis of the relationship between morphological change and the skewness of flow events within each cluster was also determined, illustrating only minor sensitivity to cluster peak distribution skewness. This is surprising and discussion is presented on model limitations, including the capability of sediment transport formulae to effectively account for temporal processes of antecedent flow, hysteresis, local supply etc.
Counterbalancing for serial order carryover effects in experimental condition orders.
Brooks, Joseph L
2012-12-01
Reactions of neural, psychological, and social systems are rarely, if ever, independent of previous inputs and states. The potential for serial order carryover effects from one condition to the next in a sequence of experimental trials makes counterbalancing of condition order an essential part of experimental design. Here, a method is proposed for generating counterbalanced sequences for repeated-measures designs including those with multiple observations of each condition on one participant and self-adjacencies of conditions. Condition ordering is reframed as a graph theory problem. Experimental conditions are represented as vertices in a graph and directed edges between them represent temporal relationships between conditions. A counterbalanced trial order results from traversing an Euler circuit through such a graph in which each edge is traversed exactly once. This method can be generalized to counterbalance for higher order serial order carryover effects as well as to create intentional serial order biases. Modern graph theory provides tools for finding other types of paths through such graph representations, providing a tool for generating experimental condition sequences with useful properties. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Danielsson, Frida; Wiking, Mikaela; Mahdessian, Diana; Skogs, Marie; Ait Blal, Hammou; Hjelmare, Martin; Stadler, Charlotte; Uhlén, Mathias; Lundberg, Emma
2013-01-04
One of the major challenges of a chromosome-centric proteome project is to explore in a systematic manner the potential proteins identified from the chromosomal genome sequence, but not yet characterized on a protein level. Here, we describe the use of RNA deep sequencing to screen human cell lines for RNA profiles and to use this information to select cell lines suitable for characterization of the corresponding gene product. In this manner, the subcellular localization of proteins can be analyzed systematically using antibody-based confocal microscopy. We demonstrate the usefulness of selecting cell lines with high expression levels of RNA transcripts to increase the likelihood of high quality immunofluorescence staining and subsequent successful subcellular localization of the corresponding protein. The results show a path to combine transcriptomics with affinity proteomics to characterize the proteins in a gene- or chromosome-centric manner.
Streamwise-Localized Solutions with natural 1-fold symmetry
NASA Astrophysics Data System (ADS)
Altmeyer, Sebastian; Willis, Ashley; Hof, Björn
2014-11-01
It has been proposed in recent years that turbulence is organized around unstable invariant solutions, which provide the building blocks of the chaotic dynamics. In direct numerical simulations of pipe flow we show that when imposing a minimal symmetry constraint (reflection in an axial plane only) the formation of turbulence can indeed be explained by dynamical systems concepts. The hypersurface separating laminar from turbulent motion, the edge of turbulence, is spanned by the stable manifolds of an exact invariant solution, a periodic orbit of a spatially localized structure. The turbulent states themselves (turbulent puffs in this case) are shown to arise in a bifurcation sequence from a related localized solution (the upper branch orbit). The rather complex bifurcation sequence involves secondary Hopf bifurcations, frequency locking and a period doubling cascade until eventually turbulent puffs arise. In addition we report preliminary results of the transition sequence for pipe flow without symmetry constraints.
2010-01-01
Background Cryptic species complexes are common among anophelines. Previous phylogenetic analysis based on the complete mtDNA COI gene sequences detected paraphyly in the Neotropical malaria vector Anopheles marajoara. The "Folmer region" detects a single taxon using a 3% divergence threshold. Methods To test the paraphyletic hypothesis and examine the utility of the Folmer region, genealogical trees based on a concatenated (white + 3' COI sequences) dataset and pairwise differentiation of COI fragments were examined. The population structure and demographic history were based on partial COI sequences for 294 individuals from 14 localities in Amazonian Brazil. 109 individuals from 12 localities were sequenced for the nDNA white gene, and 57 individuals from 11 localities were sequenced for the ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2). Results Distinct A. marajoara lineages were detected by combined genealogical analysis and were also supported among COI haplotypes using a median joining network and AMOVA, with time since divergence during the Pleistocene (<100,000 ya). COI sequences at the 3' end were more variable, demonstrating significant pairwise differentiation (3.82%) compared to the more moderate 2.92% detected by the Folmer region. Lineage 1 was present in all localities, whereas lineage 2 was restricted mainly to the west. Mismatch distributions for both lineages were bimodal, likely due to multiple colonization events and spatial expansion (~798 - 81,045 ya). There appears to be gene flow within, not between lineages, and a partial barrier was detected near Rio Jari in Amapá state, separating western and eastern populations. In contrast, both nDNA data sets (white gene sequences with or without the retention of the 4th intron, and ITS2 sequences and length) detected a single A. marajoara lineage. Conclusions Strong support for combined data with significant differentiation detected in the COI and absent in the nDNA suggest that the divergence is recent, and detectable only by the faster evolving mtDNA. A within subgenus threshold of >2% may be more appropriate among sister taxa in cryptic anopheline complexes than the standard 3%. Differences in demographic history and climatic changes may have contributed to mtDNA lineage divergence in A. marajoara. PMID:20929572
Ouyang, Ping; Zhang, He; Fan, Zhaolan; Wei, Pei; Huang, Zhigang; Wang, Sen; Li, Tao
2016-11-05
NKX2.5 plays important roles in heart development. Being a transcription factor, NKX2.5 exerts its biological functions in nucleus. However, the sequence motif that localize NKX2.5 into nucleus is still not clear. Here, we found a R/K-rich sequence motif from Q187 to R197 (QNRRYKCKRQR) was required for exclusive nuclear localization of NKX2.5. Eight truncated plasmids (E109X, Q149X, Q170X, Q187X, Q198X, Y256X, Y259X, and C264X) which were associated with congenital heart disease (CHD) were constructed. Compared with the wild type NKX2.5, the proteins E109X, Q149X, Q170X, Q187X without intact homeodomain (HD) showed no transcriptional activity while Q198X, Y256X, Y259X and C264X with intact HD showed 50 to 66% transcriptional activity. E109X, Q149X, Q170X, Q187X without intact HD localized in the cytoplasm and nucleus simultaneously and Q198X, Y256X, Y259X and C264X with intact HD localized completely in nucleus. These results inferred the indispensability of 187QNRRYKCKRQR197 in exclusive nucleus localization. Additionally, this sequence motif was very conservative among human, mouse and rat, indicating this motif was important for NKX2.5 function. Thus, we concluded that R/K-rich sequence motif 187QNRRYKCKRQR197 played a central role for NKX2.5 nuclear localization. Our findings provided a clue to understand the mechanisms between the truncated NKX2.5 mutants and CHD. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pichon, L.; Carn, G.; Bouric, P.
1996-03-01
Positional cloning strategies for the hemochromatosis gene have previously concentrated on a target area restricted to a maximum genomic expanse of 400 kb around the HLA-A and HLA-F loci. Recently, the candidate region has been extended to 2-3 Mb on the distal side of the MHC. In this study, 10 coding sequences [hemochromatosis candidate genes (HCG) I to X] were isolated by cDNA selection using YACs covering the HLA-A/HLA-F subregion. Two of these (HCG II and HCG IV) belong to multigene families, as well as other sequences already described in this region, i.e., P5, pMC 6.7, and HLA class I.more » Fingerprinting of the four YACSs overlapping the region was performed and allowed partial localization of the different multigene family sequences on each YAC without defining their exact positions. Fingerprinting on cosmids isolated from the ICRF chromosome 6-specific cosmid library allowed more precise localization of the redundant sequences in all of the multigene families and revealed their apparent organization in clusters. Further examination of these intertwined sequences demonstrated that this structural organization resulted from a succession of complex phenomena, including duplications and contractions. This study presents a precise description of the structural organization of the HLA-A/HLA-F region and a determination of the sequences involved in the megabase size polymorphism observed among the A3, A24, and A31 haplotypes. 29 refs., 2 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Astuti, Winny; Qomarun; Febela, Alfa; Putri, Rufia A.; Mukaromah, H.
2018-03-01
Concept of friendly city mentions about better employment options and more opportunities of the local communities. Tourism development and creative industry effectively enhance regional economic development and community welfare. Kampoeng Jayengan is located in Serengan District, Surakarta, which the local community was originally come from Banjar in 1746; with the main economic activity was Jewels Trader. Jayengan Jewels Kampoeng (JKP) will support development of Surakarta as a creative city integrated with other creative tourism Kampoengs. In fact, JKP has been launched by the Secretary of Surakarta Government in 2015 indicated the Government’s attention and support to development of the area. This research aims for Developing Attraction Simulation based on the local economic activities of the communities in order to stimulate Economic friendly city. The methods used mixed methods combining quantitative through field observation and qualitative approach through interview and FGD. The results developed two directions of Tourism Attraction destination, the West and the East Direction. The sequence process of the jewels craft making is challenging for creating the path of tourism attraction in JKP. This implies for increasing tourist visits, enhancing regional economic development and community welfare.
KBWS: an EMBOSS associated package for accessing bioinformatics web services.
Oshita, Kazuki; Arakawa, Kazuharu; Tomita, Masaru
2011-04-29
The availability of bioinformatics web-based services is rapidly proliferating, for their interoperability and ease of use. The next challenge is in the integration of these services in the form of workflows, and several projects are already underway, standardizing the syntax, semantics, and user interfaces. In order to deploy the advantages of web services with locally installed tools, here we describe a collection of proxy client tools for 42 major bioinformatics web services in the form of European Molecular Biology Open Software Suite (EMBOSS) UNIX command-line tools. EMBOSS provides sophisticated means for discoverability and interoperability for hundreds of tools, and our package, named the Keio Bioinformatics Web Service (KBWS), adds functionalities of local and multiple alignment of sequences, phylogenetic analyses, and prediction of cellular localization of proteins and RNA secondary structures. This software implemented in C is available under GPL from http://www.g-language.org/kbws/ and GitHub repository http://github.com/cory-ko/KBWS. Users can utilize the SOAP services implemented in Perl directly via WSDL file at http://soap.g-language.org/kbws.wsdl (RPC Encoded) and http://soap.g-language.org/kbws_dl.wsdl (Document/literal).
Discriminative object tracking via sparse representation and online dictionary learning.
Xie, Yuan; Zhang, Wensheng; Li, Cuihua; Lin, Shuyang; Qu, Yanyun; Zhang, Yinghua
2014-04-01
We propose a robust tracking algorithm based on local sparse coding with discriminative dictionary learning and new keypoint matching schema. This algorithm consists of two parts: the local sparse coding with online updated discriminative dictionary for tracking (SOD part), and the keypoint matching refinement for enhancing the tracking performance (KP part). In the SOD part, the local image patches of the target object and background are represented by their sparse codes using an over-complete discriminative dictionary. Such discriminative dictionary, which encodes the information of both the foreground and the background, may provide more discriminative power. Furthermore, in order to adapt the dictionary to the variation of the foreground and background during the tracking, an online learning method is employed to update the dictionary. The KP part utilizes refined keypoint matching schema to improve the performance of the SOD. With the help of sparse representation and online updated discriminative dictionary, the KP part are more robust than the traditional method to reject the incorrect matches and eliminate the outliers. The proposed method is embedded into a Bayesian inference framework for visual tracking. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our approach.
Staging Liver Fibrosis with Statistical Observers
NASA Astrophysics Data System (ADS)
Brand, Jonathan Frieman
Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is one of the hallmarks of the disease. Pathology diagnosis of HF is based on textural change in the liver as a lobular collagen network that develops within portal triads. The scale of collagen lobules is characteristically on order of 1mm, which close to the resolution limit of in vivo Gd-enhanced MRI. In this work the methods to collect training and testing images for a Hotelling observer are covered. An observer based on local texture analysis is trained and tested using wet-tissue phantoms. The technique is used to optimize the MRI sequence based on task performance. The final method developed is a two stage model observer to classify fibrotic and healthy tissue in both phantoms and in vivo MRI images. The first stage observer tests for the presence of local texture. Test statistics from the first observer are used to train the second stage observer to globally sample the local observer results. A decision of the disease class is made for an entire MRI image slice using test statistics collected from the second observer. The techniques are tested on wet-tissue phantoms and in vivo clinical patient data.
CFTR gene mutations in isolated chronic obstructive pulmonary disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pignatti, P.F.; Bombien, C.; Marigo, C.
1994-09-01
In order to identify a possible hereditary predisposition to the development of chronic obstructive pulmonary disease (COPD), we have looked for the presence of cystic fibrosis transmembrane regulator (CFTR) gene DNA sequence modifications in 28 unrelated patients with no signs of cystic fibrosis. The known mutations in Italian CF patients, as well as the most frequent worldwide CF mutations, were investigated. In addition, a denaturing gradient gel electrophoresis analysis of about half of the coding sequence of the gene in 56 chromosomes from the patients and in 102 chromosomes from control individuals affected by other pulmonary diseases and from normalmore » controls was performed. Nine different CFTR gene mutations and polymorphisms were found in seven patients, a highly significant increase over controls. Two of the patients were compound heterozygotes. Two frequent CF mutations were detected: deletion F508 and R117H; two rare CF mutations: R1066C and 3667ins4; and five CF sequence variants: R75Q (which was also described as a disease-causing mutation in male sterility cases due to the absence of the vasa deferentia), G576A, 2736 A{r_arrow}G, L997F, and 3271+18C{r_arrow}T. Seven (78%) of the mutations are localized in transmembrane domains. Six (86%) of the patients with defined mutations and polymorphisms had bronchiectasis. These results indicate that CFTR gene mutations and sequence alterations may be involved in the etiopathogenesis of some cases of COPD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Yasuhiro; Larimer, Frank W; Chain, Patrick S. G.
The bacterial genus Rhodopseudomonas is comprised of photosynthetic bacteria found widely distributed in aquatic sediments. Members of the genus catalyze hydrogen gas production, carbon dioxide sequestration, and biomass turnover. The genome sequence of Rhodopseudomonas palustris CGA009 revealed a surprising richness of metabolic versatility that would seem to explain its ability to live in a heterogeneous environment like sediment. However, there is considerable genotypic diversity among Rhodopseudomonas isolates. Here we report the complete genome sequences of four additional members of the genus isolated from a restricted geographical area. The sequences confirm that the isolates belong to a coherent taxonomic unit, butmore » they also have significant differences. Whole genome alignments show that the circular chromosomes of the isolates consist of a collinear backbone with a moderate number of genomic rearrangements that impact local gene order and orientation. There are 3,319 genes, 70% of the genes in each genome, shared by four or more strains. Between 10% and 18% of the genes in each genome are strain specific. Some of these genes suggest specialized physiological traits, which we verified experimentally, that include expanded light harvesting, oxygen respiration, and nitrogen fixation capabilities, as well as anaerobic fermentation. Strain-specific adaptations include traits that may be useful in bioenergy applications. This work suggests that against a backdrop of metabolic versatility that is a defining characteristic of Rhodopseudomonas, different ecotypes have evolved to take advantage of physical and chemical conditions in sediment microenvironments that are too small for human observation.« less
Integration of retinal image sequences
NASA Astrophysics Data System (ADS)
Ballerini, Lucia
1998-10-01
In this paper a method for noise reduction in ocular fundus image sequences is described. The eye is the only part of the human body where the capillary network can be observed along with the arterial and venous circulation using a non invasive technique. The study of the retinal vessels is very important both for the study of the local pathology (retinal disease) and for the large amount of information it offers on systematic haemodynamics, such as hypertension, arteriosclerosis, and diabetes. In this paper a method for image integration of ocular fundus image sequences is described. The procedure can be divided in two step: registration and fusion. First we describe an automatic alignment algorithm for registration of ocular fundus images. In order to enhance vessel structures, we used a spatially oriented bank of filters designed to match the properties of the objects of interest. To evaluate interframe misalignment we adopted a fast cross-correlation algorithm. The performances of the alignment method have been estimated by simulating shifts between image pairs and by using a cross-validation approach. Then we propose a temporal integration technique of image sequences so as to compute enhanced pictures of the overall capillary network. Image registration is combined with image enhancement by fusing subsequent frames of a same region. To evaluate the attainable results, the signal-to-noise ratio was estimated before and after integration. Experimental results on synthetic images of vessel-like structures with different kind of Gaussian additive noise as well as on real fundus images are reported.
Stabej, P; Leegwater, P A J; Imholz, S; Versteeg, S A; Zijlstra, C; Stokhof, A A; Domanjko-Petriè, A; van Oost, B A
2005-01-01
Dilated cardiomyopathy (DCM) is a common disease of the myocardium recognized in human, dog and experimental animals. Genetic factors are responsible for a large proportion of cases in humans, and 17 genes with DCM causing mutations have been identified. The genetic origin of DCM in the Dobermann dogs has been suggested, but no disease genes have been identified to date. In this paper, we describe the characterization and evaluation of the canine sarcoglycan delta (SGCD), a gene implicated in DCM in human and hamster. Bacterial artificial chromosomes (BACs) containing the canine SGCD gene were isolated with probes for exon 3 and exons 4-8 and were characterized by Southern blot analysis. BAC end sequences were obtained for four BACs. Three of the BACs overlapped and could be ordered relative to each other and the end sequences of all four BACs could be anchored on the preliminary assembly of the dog genome sequence (www. ensembl.org). One of the BACs of the partial contig was localized by fluorescent in situ hybridization to canine chromosome 4q22, in agreement with the dog genome sequence. Two highly informative polymorphic microsatellite markers in intron 7 of the SGCD gene were identified. In 25 DCM-affected and 13 non DCM-affected dogs seven different haplotypes could be distinguished. However, no association between any of the SGCD variants and the disease locus was apparent.
Cocho, Germinal; Miramontes, Pedro; Mansilla, Ricardo; Li, Wentian
2014-12-01
We examine the relationship between exponential correlation functions and Markov models in a bacterial genome in detail. Despite the well known fact that Markov models generate sequences with correlation function that decays exponentially, simply constructed Markov models based on nearest-neighbor dimer (first-order), trimer (second-order), up to hexamer (fifth-order), and treating the DNA sequence as being homogeneous all fail to predict the value of exponential decay rate. Even reading-frame-specific Markov models (both first- and fifth-order) could not explain the fact that the exponential decay is very slow. Starting with the in-phase coding-DNA-sequence (CDS), we investigated correlation within a fixed-codon-position subsequence, and in artificially constructed sequences by packing CDSs with out-of-phase spacers, as well as altering CDS length distribution by imposing an upper limit. From these targeted analyses, we conclude that the correlation in the bacterial genomic sequence is mainly due to a mixing of heterogeneous statistics at different codon positions, and the decay of correlation is due to the possible out-of-phase between neighboring CDSs. There are also small contributions to the correlation from bases at the same codon position, as well as by non-coding sequences. These show that the seemingly simple exponential correlation functions in bacterial genome hide a complexity in correlation structure which is not suitable for a modeling by Markov chain in a homogeneous sequence. Other results include: use of the (absolute value) second largest eigenvalue to represent the 16 correlation functions and the prediction of a 10-11 base periodicity from the hexamer frequencies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sequencing Adventure Activities: A New Perspective.
ERIC Educational Resources Information Center
Bisson, Christian
Sequencing in adventure education involves putting activities in an order appropriate to the needs of the group. Contrary to the common assumption that each adventure sequence is unique, a review of literature concerning five sequencing models reveals a certain universality. These models present sequences that move through four phases: group…
USDA-ARS?s Scientific Manuscript database
The advancement of next-generation sequencing technologies in conjunction with new bioinformatics tools enabled fine-tuning of sequence-based high resolution mapping strategies for complex genomes. Although genotyping-by-sequencing (GBS) provides a large number of markers, its application for assoc...
Improving the performance of minimizers and winnowing schemes.
Marçais, Guillaume; Pellow, David; Bork, Daniel; Orenstein, Yaron; Shamir, Ron; Kingsford, Carl
2017-07-15
The minimizers scheme is a method for selecting k -mers from sequences. It is used in many bioinformatics software tools to bin comparable sequences or to sample a sequence in a deterministic fashion at approximately regular intervals, in order to reduce memory consumption and processing time. Although very useful, the minimizers selection procedure has undesirable behaviors (e.g. too many k -mers are selected when processing certain sequences). Some of these problems were already known to the authors of the minimizers technique, and the natural lexicographic ordering of k -mers used by minimizers was recognized as their origin. Many software tools using minimizers employ ad hoc variations of the lexicographic order to alleviate those issues. We provide an in-depth analysis of the effect of k -mer ordering on the performance of the minimizers technique. By using small universal hitting sets (a recently defined concept), we show how to significantly improve the performance of minimizers and avoid some of its worse behaviors. Based on these results, we encourage bioinformatics software developers to use an ordering based on a universal hitting set or, if not possible, a randomized ordering, rather than the lexicographic order. This analysis also settles negatively a conjecture (by Schleimer et al. ) on the expected density of minimizers in a random sequence. The software used for this analysis is available on GitHub: https://github.com/gmarcais/minimizers.git . gmarcais@cs.cmu.edu or carlk@cs.cmu.edu. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Meyer, Sam; Everaers, Ralf
2015-02-01
The histone-DNA interaction in the nucleosome is a fundamental mechanism of genomic compaction and regulation, which remains largely unknown despite increasing structural knowledge of the complex. In this paper, we propose a framework for the extraction of a nanoscale histone-DNA force-field from a collection of high-resolution structures, which may be adapted to a larger class of protein-DNA complexes. We applied the procedure to a large crystallographic database extended by snapshots from molecular dynamics simulations. The comparison of the structural models first shows that, at histone-DNA contact sites, the DNA base-pairs are shifted outwards locally, consistent with locally repulsive forces exerted by the histones. The second step shows that the various force profiles of the structures under analysis derive locally from a unique, sequence-independent, quadratic repulsive force-field, while the sequence preferences are entirely due to internal DNA mechanics. We have thus obtained the first knowledge-derived nanoscale interaction potential for histone-DNA in the nucleosome. The conformations obtained by relaxation of nucleosomal DNA with high-affinity sequences in this potential accurately reproduce the experimental values of binding preferences. Finally we address the more generic binding mechanisms relevant to the 80% genomic sequences incorporated in nucleosomes, by computing the conformation of nucleosomal DNA with sequence-averaged properties. This conformation differs from those found in crystals, and the analysis suggests that repulsive histone forces are related to local stretch tension in nucleosomal DNA, mostly between adjacent contact points. This tension could play a role in the stability of the complex.
Insights gained from relating cumulative seismic moments to fluid injection activities
NASA Astrophysics Data System (ADS)
McGarr, A.; Barbour, A. J.
2017-12-01
The three earthquakes with magnitudes of 5 or greater that were induced in Oklahoma during 2016 motivated efforts to improve our understanding of how fluid injection operations are related to earthquake activity. In this study, we have addressed the question of whether the volume of fluid injected down wells within 10 km of the mainshock of an induced earthquake sequence can account for its total moment release. Specifically, is the total moment release equal to, or less than, twice the product of the shear modulus and the total volume injected (McGarr, JGR, 2014, equation 7)? In contrast to McGarr's (2014, equation 13) relationship for the maximum moment, M0(max), the relationship for the total moment release has the advantage of being independent of the magnitude distribution. We find that the three sequences in Oklahoma in 2016, M5.1 Fairview, M5.8 Pawnee, M5.0 Cushing, and the 2011 M5.7 Prague sequence all adhere to this relationship. We also found that eight additional sequences of earthquakes induced by various fluid injection activities, widely distributed worldwide, show the same relationship between total moment-release and injected volume. Thus, for injected volumes ranging from 103 up to 107 cubic m, the moment release of an induced earthquake sequence appears to be similarly limited. These results imply that M0(max) for a sequence induced by fluid injection could be as high as twice the product of the shear modulus and the injected volume if the mainshock in the sequence accounts for nearly all of the total moment, as was the case for the 2016 Pawnee M5.8 mainshock. This new upper bound for maximum moment is twice what was proposed by McGarr (2014, equation 13). Our new results also support the assumption in our analysis that the induced earthquake rupture is localized to the seismogenic region that is weakened owing to a pore pressure increase of the order of a seismic stress drop.
Wong, Emily S. W.; Hardy, Margaret C.; Wood, David; Bailey, Timothy; King, Glenn F.
2013-01-01
Spider neurotoxins are commonly used as pharmacological tools and are a popular source of novel compounds with therapeutic and agrochemical potential. Since venom peptides are inherently toxic, the host spider must employ strategies to avoid adverse effects prior to venom use. It is partly for this reason that most spider toxins encode a protective proregion that upon enzymatic cleavage is excised from the mature peptide. In order to identify the mature toxin sequence directly from toxin transcripts, without resorting to protein sequencing, the propeptide cleavage site in the toxin precursor must be predicted bioinformatically. We evaluated different machine learning strategies (support vector machines, hidden Markov model and decision tree) and developed an algorithm (SpiderP) for prediction of propeptide cleavage sites in spider toxins. Our strategy uses a support vector machine (SVM) framework that combines both local and global sequence information. Our method is superior or comparable to current tools for prediction of propeptide sequences in spider toxins. Evaluation of the SVM method on an independent test set of known toxin sequences yielded 96% sensitivity and 100% specificity. Furthermore, we sequenced five novel peptides (not used to train the final predictor) from the venom of the Australian tarantula Selenotypus plumipes to test the accuracy of the predictor and found 80% sensitivity and 99.6% 8-mer specificity. Finally, we used the predictor together with homology information to predict and characterize seven groups of novel toxins from the deeply sequenced venom gland transcriptome of S. plumipes, which revealed structural complexity and innovations in the evolution of the toxins. The precursor prediction tool (SpiderP) is freely available on ArachnoServer (http://www.arachnoserver.org/spiderP.html), a web portal to a comprehensive relational database of spider toxins. All training data, test data, and scripts used are available from the SpiderP website. PMID:23894279
Haigler, B E; Suen, W C; Spain, J C
1996-01-01
4-Methyl-5-nitrocatechol (MNC) is an intermediate in the degradation of 2,4-dinitrotoluene by Burkholderia sp. strain DNT. In the presence of NADPH and oxygen, MNC monooxygenase catalyzes the removal of the nitro group from MNC to form 2-hydroxy-5-methylquinone. The gene (dntB) encoding MNC monooxygenase has been previously cloned and characterized. In order to examine the properties of MNC monooxygenase and to compare it with other enzymes, we sequenced the gene encoding the MNC monooxygenase and purified the enzyme from strain DNT. dntB was localized within a 2.2-kb ApaI DNA fragment. Sequence analysis of this fragment revealed an open reading frame of 1,644 bp with an N-terminal amino acid sequence identical to that of purified MNC monooxygenase from strain DNT. Comparison of the derived amino acid sequences with those of other genes showed that DntB contains the highly conserved ADP and flavin adenine dinucleotide (FAD) binding motifs characteristic of flavoprotein hydroxylases. MNC monooxygenase was purified to homogeneity from strain DNT by anion exchange and gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single protein with a molecular weight of 60,200, which is consistent with the size determined from the gene sequence. The native molecular weight determined by gel filtration was 65,000, which indicates that the native enzyme is a monomer. It used either NADH or NADPH as electron donors, and NADPH was the preferred cofactor. The purified enzyme contained 1 mol of FAD per mol of protein, which is also consistent with the detection of an FAD binding motif in the amino acid sequence of DntB. MNC monooxygenase has a narrow substrate specificity. MNC and 4-nitrocatechol are good substrates whereas 3-methyl-4-nitrophenol, 3-methyl-4-nitrocatechol, 4-nitrophenol, 3-nitrophenol, and 4-chlorocatechol were not. These studies suggest that MNC monooxygenase is a flavoprotein that shares some properties with previously studied nitrophenol oxygenases. PMID:8830701
Development of a Serial Order in Speech Constrained by Articulatory Coordination
Oohashi, Hiroki; Watanabe, Hama; Taga, Gentaro
2013-01-01
Universal linguistic constraints seem to govern the organization of sound sequences in words. However, our understanding of the origin and development of these constraints is incomplete. One possibility is that the development of neuromuscular control of articulators acts as a constraint for the emergence of sequences in words. Repetitions of the same consonant observed in early infancy and an increase in variation of consonantal sequences over months of age have been interpreted as a consequence of the development of neuromuscular control. Yet, it is not clear how sequential coordination of articulators such as lips, tongue apex and tongue dorsum constrains sequences of labial, coronal and dorsal consonants in words over the course of development. We examined longitudinal development of consonant-vowel-consonant(-vowel) sequences produced by Japanese children between 7 and 60 months of age. The sequences were classified according to places of articulation for corresponding consonants. The analyses of individual and group data show that infants prefer repetitive and fronting articulations, as shown in previous studies. Furthermore, we reveal that serial order of different places of articulations within the same organ appears earlier and then gradually develops, whereas serial order of different articulatory organs appears later and then rapidly develops. In the same way, we also analyzed the sequences produced by English children and obtained similar developmental trends. These results suggest that the development of intra- and inter-articulator coordination constrains the acquisition of serial orders in speech with the complexity that characterizes adult language. PMID:24223827
Representation of item position in immediate serial recall: Evidence from intrusion errors.
Fischer-Baum, Simon; McCloskey, Michael
2015-09-01
In immediate serial recall, participants are asked to recall novel sequences of items in the correct order. Theories of the representations and processes required for this task differ in how order information is maintained; some have argued that order is represented through item-to-item associations, while others have argued that each item is coded for its position in a sequence, with position being defined either by distance from the start of the sequence, or by distance from both the start and the end of the sequence. Previous researchers have used error analyses to adjudicate between these different proposals. However, these previous attempts have not allowed researchers to examine the full set of alternative proposals. In the current study, we analyzed errors produced in 2 immediate serial recall experiments that differ in the modality of input (visual vs. aural presentation of words) and the modality of output (typed vs. spoken responses), using new analysis methods that allow for a greater number of alternative hypotheses to be considered. We find evidence that sequence positions are represented relative to both the start and the end of the sequence, and show a contribution of the end-based representation beyond the final item in the sequence. We also find limited evidence for item-to-item associations, suggesting that both a start-end positional scheme and item-to-item associations play a role in representing item order in immediate serial recall. (c) 2015 APA, all rights reserved).
Spatial serial order processing in schizophrenia.
Fraser, David; Park, Sohee; Clark, Gina; Yohanna, Daniel; Houk, James C
2004-10-01
The aim of this study was to examine serial order processing deficits in 21 schizophrenia patients and 16 age- and education-matched healthy controls. In a spatial serial order working memory task, one to four spatial targets were presented in a randomized sequence. Subjects were required to remember the locations and the order in which the targets were presented. Patients showed a marked deficit in ability to remember the sequences compared with controls. Increasing the number of targets within a sequence resulted in poorer memory performance for both control and schizophrenia subjects, but the effect was much more pronounced in the patients. Targets presented at the end of a long sequence were more vulnerable to memory error in schizophrenia patients. Performance deficits were not attributable to motor errors, but to errors in target choice. The results support the idea that the memory errors seen in schizophrenia patients may be due to saturating the working memory network at relatively low levels of memory load.
Karched, Maribasappa; Furgang, David; Planet, Paul J; DeSalle, Rob; Fine, Daniel H
2012-03-01
Aggregatibacter actinomycetemcomitans is implicated in localized aggressive periodontitis. We report the first genome sequence of an A. actinomycetemcomitans strain isolated from an Old World primate.
Learning word order at birth: A NIRS study.
Benavides-Varela, Silvia; Gervain, Judit
2017-06-01
In language, the relative order of words in sentences carries important grammatical functions. However, the developmental origins and the neural correlates of the ability to track word order are to date poorly understood. The current study therefore investigates the origins of infants' ability to learn about the sequential order of words, using near-infrared spectroscopy (NIRS) with newborn infants. We have conducted two experiments: one in which a word order change was implemented in 4-word sequences recorded with a list intonation (as if each word was a separate item in a list; list prosody condition, Experiment 1) and one in which the same 4-word sequences were recorded with a well-formed utterance-level prosodic contour (utterance prosody condition, Experiment 2). We found that newborns could detect the violation of the word order in the list prosody condition, but not in the utterance prosody condition. These results suggest that while newborns are already sensitive to word order in linguistic sequences, prosody appears to be a stronger cue than word order for the identification of linguistic units at birth. Copyright © 2017. Published by Elsevier Ltd.
Kazerounian, Sohrob; Grossberg, Stephen
2014-01-01
How are sequences of events that are temporarily stored in a cognitive working memory unitized, or chunked, through learning? Such sequential learning is needed by the brain in order to enable language, spatial understanding, and motor skills to develop. In particular, how does the brain learn categories, or list chunks, that become selectively tuned to different temporal sequences of items in lists of variable length as they are stored in working memory, and how does this learning process occur in real time? The present article introduces a neural model that simulates learning of such list chunks. In this model, sequences of items are temporarily stored in an Item-and-Order, or competitive queuing, working memory before learning categorizes them using a categorization network, called a Masking Field, which is a self-similar, multiple-scale, recurrent on-center off-surround network that can weigh the evidence for variable-length sequences of items as they are stored in the working memory through time. A Masking Field hereby activates the learned list chunks that represent the most predictive item groupings at any time, while suppressing less predictive chunks. In a network with a given number of input items, all possible ordered sets of these item sequences, up to a fixed length, can be learned with unsupervised or supervised learning. The self-similar multiple-scale properties of Masking Fields interacting with an Item-and-Order working memory provide a natural explanation of George Miller's Magical Number Seven and Nelson Cowan's Magical Number Four. The article explains why linguistic, spatial, and action event sequences may all be stored by Item-and-Order working memories that obey similar design principles, and thus how the current results may apply across modalities. Item-and-Order properties may readily be extended to Item-Order-Rank working memories in which the same item can be stored in multiple list positions, or ranks, as in the list ABADBD. Comparisons with other models, including TRACE, MERGE, and TISK, are made. PMID:25339918
BLAST and FASTA similarity searching for multiple sequence alignment.
Pearson, William R
2014-01-01
BLAST, FASTA, and other similarity searching programs seek to identify homologous proteins and DNA sequences based on excess sequence similarity. If two sequences share much more similarity than expected by chance, the simplest explanation for the excess similarity is common ancestry-homology. The most effective similarity searches compare protein sequences, rather than DNA sequences, for sequences that encode proteins, and use expectation values, rather than percent identity, to infer homology. The BLAST and FASTA packages of sequence comparison programs provide programs for comparing protein and DNA sequences to protein databases (the most sensitive searches). Protein and translated-DNA comparisons to protein databases routinely allow evolutionary look back times from 1 to 2 billion years; DNA:DNA searches are 5-10-fold less sensitive. BLAST and FASTA can be run on popular web sites, but can also be downloaded and installed on local computers. With local installation, target databases can be customized for the sequence data being characterized. With today's very large protein databases, search sensitivity can also be improved by searching smaller comprehensive databases, for example, a complete protein set from an evolutionarily neighboring model organism. By default, BLAST and FASTA use scoring strategies target for distant evolutionary relationships; for comparisons involving short domains or queries, or searches that seek relatively close homologs (e.g. mouse-human), shallower scoring matrices will be more effective. Both BLAST and FASTA provide very accurate statistical estimates, which can be used to reliably identify protein sequences that diverged more than 2 billion years ago.
Rapid evolution of cis-regulatory sequences via local point mutations
NASA Technical Reports Server (NTRS)
Stone, J. R.; Wray, G. A.
2001-01-01
Although the evolution of protein-coding sequences within genomes is well understood, the same cannot be said of the cis-regulatory regions that control transcription. Yet, changes in gene expression are likely to constitute an important component of phenotypic evolution. We simulated the evolution of new transcription factor binding sites via local point mutations. The results indicate that new binding sites appear and become fixed within populations on microevolutionary timescales under an assumption of neutral evolution. Even combinations of two new binding sites evolve very quickly. We predict that local point mutations continually generate considerable genetic variation that is capable of altering gene expression.
NASA Astrophysics Data System (ADS)
Khalaf, Ezz El Din Abdel Hakim
Fatira area in the Central Eastern Desert, Egypt, is a composite terrane consisting of Neoproterozoic volcanics and sediments laid down in submarine to subaerial environment, intruded by voluminous old to young granitic rocks. The various lithofacies of the study area can be grouped in three distinct lithostratigraphic sequences, which are described here in stratigraphic order, from base to top as the Fatira El Beida, Fatira El Zarqa and Gabal Fatira sequences. Each depositional sequence, is intimately related to volcanic activity separated by time intervals of volcanic inactivity, such as marked hiatuses, reworked volcaniclasts, and or turbidite sedimentation. Four submarine facies groups have been recognized within the oldest, folded eruption sequence of Fatira El Beida. The southern part of the study area is occupied by sheet lava (SL), pillow lavas (PL), pillow breccias (PB), and overlying Bouma turbiditic volcaniclastites (VC). The four facies groups of Fatira El Beida sequence occur in a predictable upward-deepening succession, essentially from base to top, an SL-PL-PB-VC stacking pattern. The coeval tholeiitic mafic and felsic volcaniclastic rocks of this sequence indicate an extensional back-arc tectonic setting. The El Beida depositional sequence appears to fit a submarine-fan and slope-apron environment in an intra-arc site. The Fatira El Zarqa sequence involves a large volume of subaerial calc-alkaline intermediate to felsic volcanics and an unconformably overlying siliciclastic succession comprising clast-supported conglomerates (Gm), massive sandstone sheet floods (Sm) and mudstones (FI), together with a lateritic argillite paleosol (P) top formed in an alluvial-fan system. The youngest rock of Gabal Fatira sequence comprises anorogenic trachydacites and rhyolites with locally emergent domes associated with autobrecciation and sill-dyke rock swarms that could be interpreted as feeders and subvolcanic intrusions. Unconformity and lithofacies assemblages define seven events and three unconformity-bounded tectonic stages that record uplift-subsidence cycles in the study area. A proximal-distal relationship has been established within the depositional products, based on the relative dominance of erosional and depositional features.
Theta oscillations promote temporal sequence learning.
Crivelli-Decker, Jordan; Hsieh, Liang-Tien; Clarke, Alex; Ranganath, Charan
2018-05-17
Many theoretical models suggest that neural oscillations play a role in learning or retrieval of temporal sequences, but the extent to which oscillations support sequence representation remains unclear. To address this question, we used scalp electroencephalography (EEG) to examine oscillatory activity over learning of different object sequences. Participants made semantic decisions on each object as they were presented in a continuous stream. For three "Consistent" sequences, the order of the objects was always fixed. Activity during Consistent sequences was compared to "Random" sequences that consisted of the same objects presented in a different order on each repetition. Over the course of learning, participants made faster semantic decisions to objects in Consistent, as compared to objects in Random sequences. Thus, participants were able to use sequence knowledge to predict upcoming items in Consistent sequences. EEG analyses revealed decreased oscillatory power in the theta (4-7 Hz) band at frontal sites following decisions about objects in Consistent sequences, as compared with objects in Random sequences. The theta power difference between Consistent and Random only emerged in the second half of the task, as participants were more effectively able to predict items in Consistent sequences. Moreover, we found increases in parieto-occipital alpha (10-13 Hz) and beta (14-28 Hz) power during the pre-response period for objects in Consistent sequences, relative to objects in Random sequences. Linear mixed effects modeling revealed that single trial theta oscillations were related to reaction time for future objects in a sequence, whereas beta and alpha oscillations were only predictive of reaction time on the current trial. These results indicate that theta and alpha/beta activity preferentially relate to future and current events, respectively. More generally our findings highlight the importance of band-specific neural oscillations in the learning of temporal order information. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Cross cultural differences in unconscious knowledge.
Kiyokawa, Sachiko; Dienes, Zoltán; Tanaka, Daisuke; Yamada, Ayumi; Crowe, Louise
2012-07-01
Previous studies have indicated cross cultural differences in conscious processes, such that Asians have a global preference and Westerners a more analytical one. We investigated whether these biases also apply to unconscious knowledge. In Experiment 1, Japanese and UK participants memorized strings of large (global) letters made out of small (local) letters. The strings constituted one sequence of letters at a global level and a different sequence at a local level. Implicit learning occurred at the global and not the local level for the Japanese but equally at both levels for the English. In Experiment 2, the Japanese preference for global over local processing persisted even when structure existed only at the local but not global level. In Experiment 3, Japanese and UK participants were asked to attend to just one of the levels, global or local. Now the cultural groups performed similarly, indicating that the bias largely reflects preference rather than ability (although the data left room for residual ability differences). In Experiment 4, the greater global advantage of Japanese rather English was confirmed for strings made of Japanese kana rather than Roman letters. That is, the cultural difference is not due to familiarity of the sequence elements. In sum, we show for the first time that cultural biases strongly affect the type of unconscious knowledge people acquire. Copyright © 2012 Elsevier B.V. All rights reserved.
Kowialiewski, Benjamin; Majerus, Steve
2016-01-01
Several models in the verbal domain of short-term memory (STM) consider a dissociation between item and order processing. This view is supported by data demonstrating that different types of time-based interference have a greater effect on memory for the order of to-be-remembered items than on memory for the items themselves. The present study investigated the domain-generality of the item versus serial order dissociation by comparing the differential effects of time-based interfering tasks, such as rhythmic interference and articulatory suppression, on item and order processing in verbal and musical STM domains. In Experiment 1, participants had to maintain sequences of verbal or musical information in STM, followed by a probe sequence, this under different conditions of interference (no-interference, rhythmic interference, articulatory suppression). They were required to decide whether all items of the probe list matched those of the memory list (item condition) or whether the order of the items in the probe sequence matched the order in the memory list (order condition). In Experiment 2, participants performed a serial order probe recognition task for verbal and musical sequences ensuring sequential maintenance processes, under no-interference or rhythmic interference conditions. For Experiment 1, serial order recognition was not significantly more impacted by interfering tasks than was item recognition, this for both verbal and musical domains. For Experiment 2, we observed selective interference of the rhythmic interference condition on both musical and verbal order STM tasks. Overall, the results suggest a similar and selective sensitivity to time-based interference for serial order STM in verbal and musical domains, but only when the STM tasks ensure sequential maintenance processes. PMID:27992565
Gorin, Simon; Kowialiewski, Benjamin; Majerus, Steve
2016-01-01
Several models in the verbal domain of short-term memory (STM) consider a dissociation between item and order processing. This view is supported by data demonstrating that different types of time-based interference have a greater effect on memory for the order of to-be-remembered items than on memory for the items themselves. The present study investigated the domain-generality of the item versus serial order dissociation by comparing the differential effects of time-based interfering tasks, such as rhythmic interference and articulatory suppression, on item and order processing in verbal and musical STM domains. In Experiment 1, participants had to maintain sequences of verbal or musical information in STM, followed by a probe sequence, this under different conditions of interference (no-interference, rhythmic interference, articulatory suppression). They were required to decide whether all items of the probe list matched those of the memory list (item condition) or whether the order of the items in the probe sequence matched the order in the memory list (order condition). In Experiment 2, participants performed a serial order probe recognition task for verbal and musical sequences ensuring sequential maintenance processes, under no-interference or rhythmic interference conditions. For Experiment 1, serial order recognition was not significantly more impacted by interfering tasks than was item recognition, this for both verbal and musical domains. For Experiment 2, we observed selective interference of the rhythmic interference condition on both musical and verbal order STM tasks. Overall, the results suggest a similar and selective sensitivity to time-based interference for serial order STM in verbal and musical domains, but only when the STM tasks ensure sequential maintenance processes.
Endo, Megumi; Hirose, Mamiko; Honda, Masanao; Koga, Hiroyuki; Morino, Yoshiaki; Kiyomoto, Masato; Wada, Hiroshi
2018-06-15
The marine environment around Japan experienced significant changes during the Cenozoic Era. In this study, we report findings suggesting that this dynamic history left behind traces in the genome of the Japanese sand dollar species Peronella japonica and P. rubra. Although mitochondrial Cytochrome C Oxidase I sequences did not indicate fragmentation of the current local populations of P. japonica around Japan, two different types of intron sequence were found in the Alx1 locus. We inferred that past fragmentation of the populations account for the presence of two types of nuclear sequences as alleles in the Alx1 intron of P. japonica. It is likely that the split populations have intermixed in recent times; hence, we did not detect polymorphisms in the sequences reflecting the current localization of the species. In addition, we found two allelic sequences of theAlx1 intron in the sister species P. rubra. The divergence times of the two types of Alx1 intron sequences were estimated at approximately 14.9 and 4.0 million years ago for P. japonica and P. rubra, respectively. Our study indicates that information from the intron sequences of nuclear genes can enhance our understanding of past genetic events in organisms. Copyright © 2018 Elsevier B.V. All rights reserved.
Two distinct DNA sequences recognized by transcription factors represent enthalpy and entropy optima
Yin, Yimeng; Das, Pratyush K; Jolma, Arttu; Zhu, Fangjie; Popov, Alexander; Xu, You; Nilsson, Lennart
2018-01-01
Most transcription factors (TFs) can bind to a population of sequences closely related to a single optimal site. However, some TFs can bind to two distinct sequences that represent two local optima in the Gibbs free energy of binding (ΔG). To determine the molecular mechanism behind this effect, we solved the structures of human HOXB13 and CDX2 bound to their two optimal DNA sequences, CAATAAA and TCGTAAA. Thermodynamic analyses by isothermal titration calorimetry revealed that both sites were bound with similar ΔG. However, the interaction with the CAA sequence was driven by change in enthalpy (ΔH), whereas the TCG site was bound with similar affinity due to smaller loss of entropy (ΔS). This thermodynamic mechanism that leads to at least two local optima likely affects many macromolecular interactions, as ΔG depends on two partially independent variables ΔH and ΔS according to the central equation of thermodynamics, ΔG = ΔH - TΔS. PMID:29638214
Infrared thermal facial image sequence registration analysis and verification
NASA Astrophysics Data System (ADS)
Chen, Chieh-Li; Jian, Bo-Lin
2015-03-01
To study the emotional responses of subjects to the International Affective Picture System (IAPS), infrared thermal facial image sequence is preprocessed for registration before further analysis such that the variance caused by minor and irregular subject movements is reduced. Without affecting the comfort level and inducing minimal harm, this study proposes an infrared thermal facial image sequence registration process that will reduce the deviations caused by the unconscious head shaking of the subjects. A fixed image for registration is produced through the localization of the centroid of the eye region as well as image translation and rotation processes. Thermal image sequencing will then be automatically registered using the two-stage genetic algorithm proposed. The deviation before and after image registration will be demonstrated by image quality indices. The results show that the infrared thermal image sequence registration process proposed in this study is effective in localizing facial images accurately, which will be beneficial to the correlation analysis of psychological information related to the facial area.
ABACAS: algorithm-based automatic contiguation of assembled sequences
Assefa, Samuel; Keane, Thomas M.; Otto, Thomas D.; Newbold, Chris; Berriman, Matthew
2009-01-01
Summary: Due to the availability of new sequencing technologies, we are now increasingly interested in sequencing closely related strains of existing finished genomes. Recently a number of de novo and mapping-based assemblers have been developed to produce high quality draft genomes from new sequencing technology reads. New tools are necessary to take contigs from a draft assembly through to a fully contiguated genome sequence. ABACAS is intended as a tool to rapidly contiguate (align, order, orientate), visualize and design primers to close gaps on shotgun assembled contigs based on a reference sequence. The input to ABACAS is a set of contigs which will be aligned to the reference genome, ordered and orientated, visualized in the ACT comparative browser, and optimal primer sequences are automatically generated. Availability and Implementation: ABACAS is implemented in Perl and is freely available for download from http://abacas.sourceforge.net Contact: sa4@sanger.ac.uk PMID:19497936
Chen, C N; Su, Y; Baybayan, P; Siruno, A; Nagaraja, R; Mazzarella, R; Schlessinger, D; Chen, E
1996-01-01
Ordered shotgun sequencing (OSS) has been successfully carried out with an Xq25 YAC substrate. yWXD703 DNA was subcloned into lambda phage and sequences of insert ends of the lambda subclones were used to generate a map to select a minimum tiling path of clones to be completely sequenced. The sequence of 135 038 nt contains the entire ANT2 cDNA as well as four other candidates suggested by computer-assisted analyses. One of the putative genes is homologous to a gene implicated in Graves' disease and it, ANT2 and two others are confirmed by EST matches. The results suggest that OSS can be applied to YACs in accord with earlier simulations and further indicate that the sequence of the YAC accurately reflects the sequence of uncloned human DNA. PMID:8918809
Anticipatory activity in primary motor cortex codes memorized movement sequences.
Lu, Xiaofeng; Ashe, James
2005-03-24
Movement sequences, defined both by the component movements and by the serial order in which they are produced, are fundamental building blocks of motor behavior. The serial order of sequence production is strongly encoded in medial motor areas. It is not known to what extent sequences are further elaborated or encoded in primary motor cortex. Here, we describe cells in the primary motor cortex of the monkey that show anticipatory activity exclusively related to a specific memorized sequence of upcoming movements. In addition, the injection of muscimol, a GABA agonist, into motor cortex resulted in an increase in the error rate during sequence production, without concomitant effects on nonsequenced motor performance. Our results challenge the role of medial motor areas in the control of well-practiced movement sequences and suggest that motor cortex contains a complete apparatus for the planning and production of this complex behavior.
DeepLoc: prediction of protein subcellular localization using deep learning.
Almagro Armenteros, José Juan; Sønderby, Casper Kaae; Sønderby, Søren Kaae; Nielsen, Henrik; Winther, Ole
2017-11-01
The prediction of eukaryotic protein subcellular localization is a well-studied topic in bioinformatics due to its relevance in proteomics research. Many machine learning methods have been successfully applied in this task, but in most of them, predictions rely on annotation of homologues from knowledge databases. For novel proteins where no annotated homologues exist, and for predicting the effects of sequence variants, it is desirable to have methods for predicting protein properties from sequence information only. Here, we present a prediction algorithm using deep neural networks to predict protein subcellular localization relying only on sequence information. At its core, the prediction model uses a recurrent neural network that processes the entire protein sequence and an attention mechanism identifying protein regions important for the subcellular localization. The model was trained and tested on a protein dataset extracted from one of the latest UniProt releases, in which experimentally annotated proteins follow more stringent criteria than previously. We demonstrate that our model achieves a good accuracy (78% for 10 categories; 92% for membrane-bound or soluble), outperforming current state-of-the-art algorithms, including those relying on homology information. The method is available as a web server at http://www.cbs.dtu.dk/services/DeepLoc. Example code is available at https://github.com/JJAlmagro/subcellular_localization. The dataset is available at http://www.cbs.dtu.dk/services/DeepLoc/data.php. jjalma@dtu.dk. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Emergence of spike correlations in periodically forced excitable systems
NASA Astrophysics Data System (ADS)
Reinoso, José A.; Torrent, M. C.; Masoller, Cristina
2016-09-01
In sensory neurons the presence of noise can facilitate the detection of weak information-carrying signals, which are encoded and transmitted via correlated sequences of spikes. Here we investigate the relative temporal order in spike sequences induced by a subthreshold periodic input in the presence of white Gaussian noise. To simulate the spikes, we use the FitzHugh-Nagumo model and to investigate the output sequence of interspike intervals (ISIs), we use the symbolic method of ordinal analysis. We find different types of relative temporal order in the form of preferred ordinal patterns that depend on both the strength of the noise and the period of the input signal. We also demonstrate a resonancelike behavior, as certain periods and noise levels enhance temporal ordering in the ISI sequence, maximizing the probability of the preferred patterns. Our findings could be relevant for understanding the mechanisms underlying temporal coding, by which single sensory neurons represent in spike sequences the information about weak periodic stimuli.
You, Min Kyoung; Kim, Jin Hwa; Lee, Yeo Jin; Jeong, Ye Sol; Ha, Sun-Hwa
2016-12-22
Plastoglobules (PGs) are thylakoid membrane microdomains within plastids that are known as specialized locations of carotenogenesis. Three rice phytoene synthase proteins (OsPSYs) involved in carotenoid biosynthesis have been identified. Here, the N-terminal 80-amino-acid portion of OsPSY2 (PTp) was demonstrated to be a chloroplast-targeting peptide by displaying cytosolic localization of OsPSY2(ΔPTp):mCherry in rice protoplast, in contrast to chloroplast localization of OsPSY2:mCherry in a punctate pattern. The peptide sequence of a PTp was predicted to harbor two transmembrane domains eligible for a putative PG-targeting signal. To assess and enhance the PG-targeting ability of PTp, the original PTp DNA sequence ( PTp ) was modified to a synthetic DNA sequence ( stPTp ), which had 84.4% similarity to the original sequence. The motivation of this modification was to reduce the GC ratio from 75% to 65% and to disentangle the hairpin loop structures of PTp . These two DNA sequences were fused to the sequence of the synthetic green fluorescent protein (sGFP) and drove GFP expression with different efficiencies. In particular, the RNA and protein levels of stPTp-sGFP were slightly improved to 1.4-fold and 1.3-fold more than those of sGFP, respectively. The green fluorescent signals of their mature proteins were all observed as speckle-like patterns with slightly blurred stromal signals in chloroplasts. These discrete green speckles of PTp - sGFP and stPTp - sGFP corresponded exactly to the red fluorescent signal displayed by OsPSY2:mCherry in both etiolated and greening protoplasts and it is presumed to correspond to distinct PGs. In conclusion, we identified PTp as a transit peptide sequence facilitating preferential translocation of foreign proteins to PGs, and developed an improved PTp sequence, a s tPTp , which is expected to be very useful for applications in plant biotechnologies requiring precise micro-compartmental localization in plastids.
2010-01-01
Background Comparative genomics methods such as phylogenetic profiling can mine powerful inferences from inherently noisy biological data sets. We introduce Sites Inferred by Metabolic Background Assertion Labeling (SIMBAL), a method that applies the Partial Phylogenetic Profiling (PPP) approach locally within a protein sequence to discover short sequence signatures associated with functional sites. The approach is based on the basic scoring mechanism employed by PPP, namely the use of binomial distribution statistics to optimize sequence similarity cutoffs during searches of partitioned training sets. Results Here we illustrate and validate the ability of the SIMBAL method to find functionally relevant short sequence signatures by application to two well-characterized protein families. In the first example, we partitioned a family of ABC permeases using a metabolic background property (urea utilization). Thus, the TRUE set for this family comprised members whose genome of origin encoded a urea utilization system. By moving a sliding window across the sequence of a permease, and searching each subsequence in turn against the full set of partitioned proteins, the method found which local sequence signatures best correlated with the urea utilization trait. Mapping of SIMBAL "hot spots" onto crystal structures of homologous permeases reveals that the significant sites are gating determinants on the cytosolic face rather than, say, docking sites for the substrate-binding protein on the extracellular face. In the second example, we partitioned a protein methyltransferase family using gene proximity as a criterion. In this case, the TRUE set comprised those methyltransferases encoded near the gene for the substrate RF-1. SIMBAL identifies sequence regions that map onto the substrate-binding interface while ignoring regions involved in the methyltransferase reaction mechanism in general. Neither method for training set construction requires any prior experimental characterization. Conclusions SIMBAL shows that, in functionally divergent protein families, selected short sequences often significantly outperform their full-length parent sequence for making functional predictions by sequence similarity, suggesting avenues for improved functional classifiers. When combined with structural data, SIMBAL affords the ability to localize and model functional sites. PMID:20102603
Decomposition of conditional probability for high-order symbolic Markov chains.
Melnik, S S; Usatenko, O V
2017-07-01
The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.
Decomposition of conditional probability for high-order symbolic Markov chains
NASA Astrophysics Data System (ADS)
Melnik, S. S.; Usatenko, O. V.
2017-07-01
The main goal of this paper is to develop an estimate for the conditional probability function of random stationary ergodic symbolic sequences with elements belonging to a finite alphabet. We elaborate on a decomposition procedure for the conditional probability function of sequences considered to be high-order Markov chains. We represent the conditional probability function as the sum of multilinear memory function monomials of different orders (from zero up to the chain order). This allows us to introduce a family of Markov chain models and to construct artificial sequences via a method of successive iterations, taking into account at each step increasingly high correlations among random elements. At weak correlations, the memory functions are uniquely expressed in terms of the high-order symbolic correlation functions. The proposed method fills the gap between two approaches, namely the likelihood estimation and the additive Markov chains. The obtained results may have applications for sequential approximation of artificial neural network training.
Nullomers and High Order Nullomers in Genomic Sequences
Vergni, Davide; Santoni, Daniele
2016-01-01
A nullomer is an oligomer that does not occur as a subsequence in a given DNA sequence, i.e. it is an absent word of that sequence. The importance of nullomers in several applications, from drug discovery to forensic practice, is now debated in the literature. Here, we investigated the nature of nullomers, whether their absence in genomes has just a statistical explanation or it is a peculiar feature of genomic sequences. We introduced an extension of the notion of nullomer, namely high order nullomers, which are nullomers whose mutated sequences are still nullomers. We studied different aspects of them: comparison with nullomers of random sequences, CpG distribution and mean helical rise. In agreement with previous results we found that the number of nullomers in the human genome is much larger than expected by chance. Nevertheless antithetical results were found when considering a random DNA sequence preserving dinucleotide frequencies. The analysis of CpG frequencies in nullomers and high order nullomers revealed, as expected, a high CpG content but it also highlighted a strong dependence of CpG frequencies on the dinucleotide position, suggesting that nullomers have their own peculiar structure and are not simply sequences whose CpG frequency is biased. Furthermore, phylogenetic trees were built on eleven species based on both the similarities between the dinucleotide frequencies and the number of nullomers two species share, showing that nullomers are fairly conserved among close species. Finally the study of mean helical rise of nullomers sequences revealed significantly high mean rise values, reinforcing the hypothesis that those sequences have some peculiar structural features. The obtained results show that nullomers are the consequence of the peculiar structure of DNA (also including biased CpG frequency and CpGs islands), so that the hypermutability model, also taking into account CpG islands, seems to be not sufficient to explain nullomer phenomenon. Finally, high order nullomers could emphasize those features that already make simple nullomers useful in several applications. PMID:27906971
Sequence stratigraphy and a revised sea-level curve for the Middle Devonian of eastern North America
Brett, Carlton E.; Baird, G.C.; Bartholomew, A.J.; DeSantis, M.K.; Ver Straeten, C.A.
2011-01-01
The well-exposed Middle Devonian rocks of the Appalachian foreland basin (Onondaga Formation; Hamilton Group, Tully Formation, and the Genesee Group of New York State) preserve one of the most detailed records of high-order sea-level oscillation cycles for this time period in the world. Detailed examination of coeval units in distal areas of the Appalachian Basin, as well as portions of the Michigan and Illinois basins, has revealed that the pattern of high-order sea-level oscillations documented in the New York-Pennsylvania section can be positively identified in all areas of eastern North America where coeval units are preserved. The persistence of the pattern of high-order sea-level cycles across such a wide geographic area suggests that these cycles are allocyclic in nature with primary control on deposition being eustatic sea-level oscillation, as opposed to autocylic controls, such as sediment supply, which would be more local in their manifestation. There is strong evidence from studies of cyclicity and spectral analysis that these cycles are also related to Milankovitch orbital variations, with the short and long-term eccentricity cycles (100. kyr and 405. kyr) being the dominant oscillations in many settings. Relative sea-level oscillations of tens of meters are likely and raise considerable issues about the driving mechanism, given that the Middle Devonian appears to record a greenhouse phase of Phanerozoic history. These new correlations lend strong support to a revised high-resolution sea-level oscillation curve for the Middle Devonian for the eastern portion of North America. Recognized third-order sequences are: Eif-1 lower Onondaga Formation, Eif-2: upper Onondaga and Union Springs formations; Eif-Giv: Oatka Creek Formation; Giv-1: Skaneateles, Giv-2: Ludlowville, Giv-3: lower Moscow, Giv-4: upper Moscow-lower Tully, and Giv-5: middle Tully-Geneseo formations. Thus, in contrast with the widely cited eustatic curve of Johnson et al. (1985), which recognizes just one major transgressive-regressive (T-R) cycle in the early-mid Givetian (If) prior to the major late Givetian Taghanic unconformity (IIa, upper Tully-Geneseo Shale), we recognize four T-R cycles: If (restricted), Ig, Ih, and Ii. We surmise that third-order sequences record eustatic sea-level fluctuations of tens of meters with periodicities of 0.8-2. myr, while their medial-scale (fourth-order) subdivisions record lesser variations primarily of 405. kyr duration (long-term eccentricity). This high-resolution record of sea-level change provides strong evidence for high-order eustatic cycles with probable Milankovitch periodicities, despite the fact that no direct evidence for Middle Devonian glacial sediments has been found to date. ?? 2010.
Wu, Chi; Xie, Zuowei; Zhang, Guangzhao; Zi, Guofu; Tu, Yingfeng; Yang, Yali; Cai, Ping; Nie, Ting
2002-12-07
A combination of polymer physics and synthetic chemistry has enabled us to develop self-assembly assisted polymerization (SAAP), leading to the preparation of long multi-block copolymers with an ordered chain sequence and controllable block lengths.
Diagnosis of Lung Cancer by Fractal Analysis of Damaged DNA
Namazi, Hamidreza; Kiminezhadmalaie, Mona
2015-01-01
Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to study the cancer genes, DNA walk plots of genomes of patients with lung cancer were generated using a program written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA sequences. So we confirmed this method can be used for early detection of lung cancer. The method introduced in this research not only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers. PMID:26539245
Lahrech, H; Briguet, A
1990-11-01
It is shown that the modified stimulated echo sequence, [theta](+/- x +/- y)-t1-[theta](+ x)-t2/2-[2 theta](+ x)-t2/2- [theta](+ x)-t1-Acq(+/- x +/- y), denoted as MSTE[2 theta]x according to the exciter phase of the 2 theta pulse, is able to perform proton spectral editing without difference spectra. On the other hand, this sequence appears to be suitable for spatial localization. Sensitivity and spatial selectivity of MSTE and conventional stimulated echo sequence (STE) are briefly compared. MSTE is applied to editing lactate in the rat brain using the locally restricted excitation of a surface coil.
Philipp, W J; Poulet, S; Eiglmeier, K; Pascopella, L; Balasubramanian, V; Heym, B; Bergh, S; Bloom, B R; Jacobs, W R; Cole, S T
1996-01-01
An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis, was constructed by using a twin-pronged approach. Pulsed-field gel electrophoretic analysis enabled cleavage sites for Asn I and Dra I to be positioned on the 4.4-Mb circular chromosome, while, in parallel, clones from two cosmid libraries were ordered into contigs by means of fingerprinting and hybridization mapping. The resultant contig map was readily correlated with the physical map of the genome via the landmarked restriction sites. Over 165 genes and markers were localized on the integrated map, thus enabling comparisons with the leprosy bacillus, Mycobacterium leprae, to be undertaken. Mycobacterial genomes appear to have evolved as mosaic structures since extended segments with conserved gene order and organization are interspersed with different flanking regions. Repetitive sequences and insertion elements are highly abundant in M. tuberculosis, but the distribution of IS6110 is apparently nonrandom. Images Fig. 1 Fig. 2 PMID:8610181
FPGA design of correlation-based pattern recognition
NASA Astrophysics Data System (ADS)
Jridi, Maher; Alfalou, Ayman
2017-05-01
Optical/Digital pattern recognition and tracking based on optical/digital correlation are a well-known techniques to detect, identify and localize a target object in a scene. Despite the limited number of treatments required by the correlation scheme, computational time and resources are relatively high. The most computational intensive treatment required by the correlation is the transformation from spatial to spectral domain and then from spectral to spatial domain. Furthermore, these transformations are used on optical/digital encryption schemes like the double random phase encryption (DRPE). In this paper, we present a VLSI architecture for the correlation scheme based on the fast Fourier transform (FFT). One interesting feature of the proposed scheme is its ability to stream image processing in order to perform correlation for video sequences. A trade-off between the hardware consumption and the robustness of the correlation can be made in order to understand the limitations of the correlation implementation in reconfigurable and portable platforms. Experimental results obtained from HDL simulations and FPGA prototype have demonstrated the advantages of the proposed scheme.
Th unnatural order of things: A history of the high school science sequence
NASA Astrophysics Data System (ADS)
Robbins, Dennis M.
Historical studies of US high school science education are rare. This study examines the historical origins of a unique characteristic of the secondary science curriculum, the Biology-Chemistry-Physics (B-C-P) order of courses. Statements from scientists, educators and the media claim that B-C-P has been the traditional curriculum sequence for over a century and can be traced back to the influential educational commission known as the Committee of Ten (CoT) of 1893. This study examines the history of the ordering of high school science subjects over the last 150 years. The reports and primary documents of important national educational commissions, such as the CoT, were searched for their recommendations on secondary science, particularly on course ordering. These recommendations were then compared to national, state and local statistical data on subject offerings and student enrollments to measure the effect of these national commissions on school policy. This study concludes that the Committee of Ten did not create B-P-C. The CoT made six recommendations, five placed Chemistry before Physics (P-C). One recommendation for C-P met with strong disagreement because it was thought an illogical order. Biology as a "uniform" course did not exist at this time and so the CoT made no recommendations for its grade placement. Statistical data shows that B-C-P evolved over many decades. From 1860 up to 1920 most schools used a P-C curriculum believing Physics was a foundational prerequisite of Chemistry. Biology was introduced in the early 1900s and it assumed a position before the physical sciences. Through the 1920s Chemistry and Physics were placed equally likely in 11th or 12 th grades and Biology was in the 10th grade. After World War II, B-C-P became the dominant pattern, exhibited in over 90% of schools. But up to this point in time no educational body or national commission had recommended B-C-P. The Biology-Chemistry-Physics order of courses is a product of many historical accidents and not the result of educational planning for the US high school curriculum.
NASA Astrophysics Data System (ADS)
Simonneau, Anaëlle; Galop, Didier; Chapron, Emmanuel; Guyard, Hervé; Tachikawa, Kazuyo; Mazier, Florence; Bard, Edouard
2016-04-01
Enhanced erosive phases reconstructed from lake sediments from the Eastern Pyrenees (Ariege, France) have been related to past meteorological to climate variations over the Neoglacial period, and more particularly to the impact of snowmelt processes enhancing erosion of mountainous drainage basins (1, 2, 3). The distinctive feature of this study is to perform integrative source to sink approaches, classically developed for diachronic climate reconstructions, on five lacustrine sedimentary infills, both sensitive to extreme meteorological events and located within a radius of only 20 km, in order to distinguish local meteorological from global climatic dynamics, and further discuss the influence of westerlies and North Atlantic Oscillation on clastic supply in contrasted lake basins. For each site, age-depth models are based on radionuclides and radiocarbon dating, and the minerogenic properties of the sediment have been characterized combining X-ray imaging, magnetic susceptibility, grain size, X-ray microfluorescence and laser ICP-MS, in order to document clastic sediment source areas. For instance, titanium and potassium are particularly relevant to track metamorphic rocks erosion, whereas rubidium is specific of the granite one. Combined with the grain texture results, such characterization allowed us to order different types of deposits over the Neoglacial period, interpreted as reflecting enhanced local hydrological events, and more particularly the impact of local snowmelt processes. 13 main phases of enhanced erosion associated with climate deterioration phases have been identified and dated to 4715, 4455, 3875, 2620, 1670, 1380, 1035, 845 (AD1105), 620 (AD1330), 430 (AD1520), 215 (AD1735) et 105 (AD1845) cal BP, and to AD1955 et AD1985. Beyond local meteorological fluctuations, the inter-sites comparison of the five lacustrine sequences studied makes the discussion of global climate dynamics possible, performing wavelets analysis, and identifying characteristic frequencies. We therefore demonstrated that the regional Pyrenean meteorological signal is contemporaneous to Alpine deterioration phases, and remarkably matches negative North Atlantic Oscillation phases and solar minima over the Mid-Late Holocene (4, 5). (1) Simonneau et al., 2013, Climate of the Past, 9: 825-840. (2) Simonneau et al., 2013, The Holocene, 23: 1764-1777. (3) Vannière et al ;, 2013, Climate of the Past, 9: 1193-1209. (4) Olsen et al., 2012, Nature Geoscience, 5 : 808-812. (5) Delaygue and Bard, 2011, Climate Dynamic, 36: 2201-2218.
Karched, Maribasappa; Furgang, David; Planet, Paul J.; DeSalle, Rob
2012-01-01
Aggregatibacter actinomycetemcomitans is implicated in localized aggressive periodontitis. We report the first genome sequence of an A. actinomycetemcomitans strain isolated from an Old World primate. PMID:22328766
Hmrbase: a database of hormones and their receptors
Rashid, Mamoon; Singla, Deepak; Sharma, Arun; Kumar, Manish; Raghava, Gajendra PS
2009-01-01
Background Hormones are signaling molecules that play vital roles in various life processes, like growth and differentiation, physiology, and reproduction. These molecules are mostly secreted by endocrine glands, and transported to target organs through the bloodstream. Deficient, or excessive, levels of hormones are associated with several diseases such as cancer, osteoporosis, diabetes etc. Thus, it is important to collect and compile information about hormones and their receptors. Description This manuscript describes a database called Hmrbase which has been developed for managing information about hormones and their receptors. It is a highly curated database for which information has been collected from the literature and the public databases. The current version of Hmrbase contains comprehensive information about ~2000 hormones, e.g., about their function, source organism, receptors, mature sequences, structures etc. Hmrbase also contains information about ~3000 hormone receptors, in terms of amino acid sequences, subcellular localizations, ligands, and post-translational modifications etc. One of the major features of this database is that it provides data about ~4100 hormone-receptor pairs. A number of online tools have been integrated into the database, to provide the facilities like keyword search, structure-based search, mapping of a given peptide(s) on the hormone/receptor sequence, sequence similarity search. This database also provides a number of external links to other resources/databases in order to help in the retrieving of further related information. Conclusion Owing to the high impact of endocrine research in the biomedical sciences, the Hmrbase could become a leading data portal for researchers. The salient features of Hmrbase are hormone-receptor pair-related information, mapping of peptide stretches on the protein sequences of hormones and receptors, Pfam domain annotations, categorical browsing options, online data submission, DrugPedia linkage etc. Hmrbase is available online for public from . PMID:19589147
Rhythm sensitivity in macaque monkeys
Selezneva, Elena; Deike, Susann; Knyazeva, Stanislava; Scheich, Henning; Brechmann, André; Brosch, Michael
2013-01-01
This study provides evidence that monkeys are rhythm sensitive. We composed isochronous tone sequences consisting of repeating triplets of two short tones and one long tone which humans perceive as repeating triplets of two weak and one strong beat. This regular sequence was compared to an irregular sequence with the same number of randomly arranged short and long tones with no such beat structure. To search for indication of rhythm sensitivity we employed an oddball paradigm in which occasional duration deviants were introduced in the sequences. In a pilot study on humans we showed that subjects more easily detected these deviants when they occurred in a regular sequence. In the monkeys we searched for spontaneous behaviors the animals executed concomitant with the deviants. We found that monkeys more frequently exhibited changes of gaze and facial expressions to the deviants when they occurred in the regular sequence compared to the irregular sequence. In addition we recorded neuronal firing and local field potentials from 175 sites of the primary auditory cortex during sequence presentation. We found that both types of neuronal signals differentiated regular from irregular sequences. Both signals were stronger in regular sequences and occurred after the onset of the long tones, i.e., at the position of the strong beat. Local field potential responses were also significantly larger for the durational deviants in regular sequences, yet in a later time window. We speculate that these temporal pattern-selective mechanisms with a focus on strong beats and their deviants underlie the perception of rhythm in the chosen sequences. PMID:24046732
NASA Astrophysics Data System (ADS)
Marzolino, Ugo; Prosen, Tomaž
2017-09-01
We investigated quantum critical behaviors in the nonequilibrium steady state of a XXZ spin chain with boundary Markovian noise using Fisher information. The latter represents the distance between two infinitesimally close states, and its superextensive size scaling witnesses a critical behavior due to a phase transition since all the interaction terms are extensive. Perturbatively, in the noise strength, we found superextensive Fisher information at anisotropy |Δ |⩽1 and irrational arccosΔ/π irrespective of the order of two noncommuting limits, i.e., the thermodynamic limit and the limit of sending arccosΔ/π to an irrational number via a sequence of rational approximants. From this result we argue the existence of a nonequilibrium quantum phase transition with a critical phase |Δ |⩽1 . From the nonsuperextensivity of the Fisher information of reduced states, we infer that this nonequilibrium quantum phase transition does not have local order parameters but has nonlocal ones, at least at |Δ |=1 . In the nonperturbative regime for the noise strength, we numerically computed the reduced Fisher information which lower bounds the full-state Fisher information and is superextensive only at |Δ |=1 . From the latter result, we derived local order parameters at |Δ |=1 in the nonperturbative case. The existence of critical behavior witnessed by the Fisher information in the phase |Δ |<1 is still an open problem. The Fisher information also represents the best sensitivity for any estimation of the control parameter, in our case the anisotropy Δ , and its superextensivity implies enhanced estimation precision which is also highly robust in the presence of a critical phase.
Roy, Catherine; Foudi, Fatah; Charton, Jeanne; Jung, Michel; Lang, Hervé; Saussine, Christian; Jacqmin, Didier
2013-04-01
The aim of this retrospective study was to determine the respective accuracies of three types of functional MRI sequences-diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) MRI, and 3D (1)H-MR spectroscopy (MRS)-in the depiction of local prostate cancer recurrence after two different initial therapy options. From a cohort of 83 patients with suspicion of local recurrence based on prostate-specific antigen (PSA) kinetics who were imaged on a 3-T MRI unit using an identical protocol including the three functional sequences with an endorectal coil, we selected 60 patients (group A, 28 patients who underwent radical prostatectomy; group B, 32 patients who underwent external-beam radiation) who had local recurrence ascertained on the basis of a transrectal ultrasound-guided biopsy results and a reduction in PSA level after salvage therapy. All patients presented with a local relapse. Sensitivity with T2-weighted MRI and 3D (1)H-MRS sequences was 57% and 53%, respectively, for group A and 71% and 78%, respectively, for group B. DCE-MRI alone showed a sensitivity of 100% and 96%, respectively, for groups A and B. DWI alone had a higher sensitivity for group B (96%) than for group A (71%). The combination of T2-weighted imaging plus DWI plus DCE-MRI provided a sensitivity as high as 100% in group B. The performance of functional imaging sequences for detecting recurrence is different after radical prostatectomy and external-beam radiotherapy. DCE-MRI is a valid and efficient tool to detect prostate cancer recurrence in radical prostatectomy as well as in external-beam radiotherapy. The combination of DCE-MRI and DWI is highly efficient after radiation therapy. Three-dimensional (1)H-MRS needs to be improved. Even though it is not accurate enough, T2-weighted imaging remains essential for the morphologic analysis of the area.
Rasty, S; Poliani, P L; Fink, D J; Glorioso, J C
1997-08-01
A distinctive feature of the genetic make-up of herpes simplex virus type 1 (HSV-1), a human neurotropic virus, is that approximately half of the 81 known viral genes are not absolutely required for productive infection in Vero cells, and most can be individually deleted without substantially impairing viral replication in cell culture. If large blocks of contiguous viral genes could be replaced with foreign DNA sequences, it would be possible to engineer highly attenuated recombinant HSV-1 gene transfer vectors capable of carrying large cellular genes or multiple genes having related functions. We report the isolation and characterization of an HSV-1 mutant, designated d311, containing a 12 kb deletion of viral DNA located between the L-S Junction a sequence and the U(S)6 gene, spanning the S component inverted repeat sequence c' and the nonessential genes U(S)1 through U(S)5. Replication of d311 was totally inhibited in rat B103 and mouse Neuro-2A neuroblastoma cell lines, and was reduced by over three orders of magnitude in human SK-N-SH neuroblastoma cells compared to wild-type (wt) HSV-1 KOS. This suggested that the deleted genes, while nonessential for replication in Vero cells, play an important role in HSV replication in neuronal cells, particularly those of rodent origin. Unlike wt KOS which replicated locally and spread to other regions of brain following stereotactic inoculation into rat hippocampus, d311 was unable to replicate and spread within the brain, and did not cause any apparent local neuronal cell damage. These results demonstrate that d311 is highly attenuated for the rat central nervous system. d311 and other mutants of HSV containing major deletions of the nonessential genes within U(S) have the potential to serve as useful tools for gene transfer applications to brain.
Pappas, Eleftherios P; Seimenis, Ioannis; Dellios, Dimitrios; Kollias, Georgios; Lampropoulos, Kostas I; Karaiskos, Pantelis
2018-06-25
This work focuses on MR-related sequence dependent geometric distortions, which are associated with B 0 inhomogeneity and patient-induced distortion (susceptibility differences and chemical shift effects), in MR images used in stereotactic radiosurgery (SRS) applications. Emphasis is put on characterizing distortion at target brain areas identified by gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) paramagnetic contrast agent uptake. A custom-made phantom for distortion detection was modified to accommodate two small cylindrical inserts, simulating small brain targets. The inserts were filled with Gd-DTPA solutions of various concentrations (0-20 mM). The phantom was scanned at 1.5 T unit using both the reversed read gradient polarity (to determine the overall distortion as reflected by the inserts centroid offset) and the field mapping (to determine B 0 inhomogeneity related distortion in the vicinity of the inserts) techniques. Post-Gd patient images involving a total of 10 brain metastases/targets were also studied using a similar methodology. For the specific imaging conditions, contrast agent presence was found to evidently affect phantom insert position, with centroid offset extending up to 0.068 mm mM -1 (0.208 ppm mM -1 ). The Gd-DTPA induced distortion in patient images was of the order of 0.5 mm for the MRI protocol used, in agreement with the phantom results. Total localization uncertainty of metastases-targets in patient images ranged from 0.35 mm to 0.87 mm, depending on target location, with an average value of 0.54 mm (2.24 ppm). This relative wide range of target localization uncertainty results from the fact that the B 0 inhomogeneity distortion vector in a specific location may add to or partly counterbalance Gd-DTPA induced distortion, thus increasing or decreasing, respectively, the total sequence dependent distortion. Although relatively small, the sequence dependent distortion in Gd-DTPA enhanced brain images can be easily taken into account for SRS treatment planning and target definition purposes by carefully inspecting both the forward and reversed polarity series.
Schendan, Haline E.; Tinaz, Sule; Maher, Stephen M.; Stern, Chantal E.
2015-01-01
Sequence learning depends on the striatal system, but recent findings also implicate the mediotemporal lobe (MTL) system. Schendan, Searl, Melrose, & Stern (2003) found higher-order associative, learning-related activation in the striatum, dorsolateral prefrontal cortex, and the MTL during the early acquisition phase of both implicit and explicit variants of a serial response time task. This functional magnetic resonance imaging (fMRI) study capitalized on this task to determine how changes in MTL function observed in aging and compromised frontostriatal function characteristic of Parkinson’s disease (PD) patients impacts sequence learning and memory under implicit instructions. Brain activity was compared between “Sequence” and “Random” conditions in 12 non-demented PD patients and education and gender matched healthy control participants of whom 12 were age matched (MC) and 14 were younger (YC). Behaviorally, sequence-specific learning of higher-order associations was reduced with aging and changed further with PD and resulted primarily in implicit knowledge in the older participants. FMRI revealed reduced intensity and extent of sequence learning-related activation in older relative to younger people in frontostriatal circuits and the MTL. This was because signal was greater for the Sequence than Random condition in younger people, whereas older people, especially those with PD, showed the opposite pattern. Both older groups also showed increased activation to the task itself relative to baseline fixation. In addition, right MTL showed hypoactivation and left MTL hyperactivation in PD relative to the MC group. The results suggest changes in frontostriatal and MTL activity occur during aging that affect task-related activity and the initial acquisition phase of implicit higher-order sequence learning. In addition, the results suggest that Parkinson’s disease adversely affects processes in the MTL including sequence learning and memory. PMID:23565935
A Novel Cylindrical Representation for Characterizing Intrinsic Properties of Protein Sequences.
Yu, Jia-Feng; Dou, Xiang-Hua; Wang, Hong-Bo; Sun, Xiao; Zhao, Hui-Ying; Wang, Ji-Hua
2015-06-22
The composition and sequence order of amino acid residues are the two most important characteristics to describe a protein sequence. Graphical representations facilitate visualization of biological sequences and produce biologically useful numerical descriptors. In this paper, we propose a novel cylindrical representation by placing the 20 amino acid residue types in a circle and sequence positions along the z axis. This representation allows visualization of the composition and sequence order of amino acids at the same time. Ten numerical descriptors and one weighted numerical descriptor have been developed to quantitatively describe intrinsic properties of protein sequences on the basis of the cylindrical model. Their applications to similarity/dissimilarity analysis of nine ND5 proteins indicated that these numerical descriptors are more effective than several classical numerical matrices. Thus, the cylindrical representation obtained here provides a new useful tool for visualizing and charactering protein sequences. An online server is available at http://biophy.dzu.edu.cn:8080/CNumD/input.jsp .
Variational submanifolds of Euclidean spaces
NASA Astrophysics Data System (ADS)
Krupka, D.; Urban, Z.; Volná, J.
2018-03-01
Systems of ordinary differential equations (or dynamical forms in Lagrangian mechanics), induced by embeddings of smooth fibered manifolds over one-dimensional basis, are considered in the class of variational equations. For a given non-variational system, conditions assuring variationality (the Helmholtz conditions) of the induced system with respect to a submanifold of a Euclidean space are studied, and the problem of existence of these "variational submanifolds" is formulated in general and solved for second-order systems. The variational sequence theory on sheaves of differential forms is employed as a main tool for the analysis of local and global aspects (variationality and variational triviality). The theory is illustrated by examples of holonomic constraints (submanifolds of a configuration Euclidean space) which are variational submanifolds in geometry and mechanics.
Statistical short-term earthquake prediction.
Kagan, Y Y; Knopoff, L
1987-06-19
A statistical procedure, derived from a theoretical model of fracture growth, is used to identify a foreshock sequence while it is in progress. As a predictor, the procedure reduces the average uncertainty in the rate of occurrence for a future strong earthquake by a factor of more than 1000 when compared with the Poisson rate of occurrence. About one-third of all main shocks with local magnitude greater than or equal to 4.0 in central California can be predicted in this way, starting from a 7-year database that has a lower magnitude cut off of 1.5. The time scale of such predictions is of the order of a few hours to a few days for foreshocks in the magnitude range from 2.0 to 5.0.
Function-Based Algorithms for Biological Sequences
ERIC Educational Resources Information Center
Mohanty, Pragyan Sheela P.
2015-01-01
Two problems at two different abstraction levels of computational biology are studied. At the molecular level, efficient pattern matching algorithms in DNA sequences are presented. For gene order data, an efficient data structure is presented capable of storing all gene re-orderings in a systematic manner. A common characteristic of presented…
Properties of Cordonnier, Perrin and Van der Laan Numbers
ERIC Educational Resources Information Center
Shannon, A. G.; Anderson, P. G.; Horadam, A. F.
2006-01-01
This paper aims to explore some properties of certain third-order linear sequences which have some properties analogous to the better known second-order sequences of Fibonacci and Lucas. Historical background issues are outlined. These, together with the number and combinatorial theoretical results, provide plenty of pedagogical opportunities for…
Regularization in Short-Term Memory for Serial Order
ERIC Educational Resources Information Center
Botvinick, Matthew; Bylsma, Lauren M.
2005-01-01
Previous research has shown that short-term memory for serial order can be influenced by background knowledge concerning regularities of sequential structure. Specifically, it has been shown that recall is superior for sequences that fit well with familiar sequencing constraints. The authors report a corresponding effect pertaining to serial…
Dendrites, deep learning, and sequences in the hippocampus.
Bhalla, Upinder S
2017-10-12
The hippocampus places us both in time and space. It does so over remarkably large spans: milliseconds to years, and centimeters to kilometers. This works for sensory representations, for memory, and for behavioral context. How does it fit in such wide ranges of time and space scales, and keep order among the many dimensions of stimulus context? A key organizing principle for a wide sweep of scales and stimulus dimensions is that of order in time, or sequences. Sequences of neuronal activity are ubiquitous in sensory processing, in motor control, in planning actions, and in memory. Against this strong evidence for the phenomenon, there are currently more models than definite experiments about how the brain generates ordered activity. The flip side of sequence generation is discrimination. Discrimination of sequences has been extensively studied at the behavioral, systems, and modeling level, but again physiological mechanisms are fewer. It is against this backdrop that I discuss two recent developments in neural sequence computation, that at face value share little beyond the label "neural." These are dendritic sequence discrimination, and deep learning. One derives from channel physiology and molecular signaling, the other from applied neural network theory - apparently extreme ends of the spectrum of neural circuit detail. I suggest that each of these topics has deep lessons about the possible mechanisms, scales, and capabilities of hippocampal sequence computation. © 2017 Wiley Periodicals, Inc.
Optimal digital dynamical decoupling for general decoherence via Walsh modulation
NASA Astrophysics Data System (ADS)
Qi, Haoyu; Dowling, Jonathan P.; Viola, Lorenza
2017-11-01
We provide a general framework for constructing digital dynamical decoupling sequences based on Walsh modulation—applicable to arbitrary qubit decoherence scenarios. By establishing equivalence between decoupling design based on Walsh functions and on concatenated projections, we identify a family of optimal Walsh sequences, which can be exponentially more efficient, in terms of the required total pulse number, for fixed cancellation order, than known digital sequences based on concatenated design. Optimal sequences for a given cancellation order are highly non-unique—their performance depending sensitively on the control path. We provide an analytic upper bound to the achievable decoupling error and show how sequences within the optimal Walsh family can substantially outperform concatenated decoupling in principle, while respecting realistic timing constraints.
NASA Astrophysics Data System (ADS)
Kiran Kumar, Kalla; Nagaraju, Dega; Gayathri, S.; Narayanan, S.
2017-05-01
Priority Sequencing Rules provide the guidance for the order in which the jobs are to be processed at a workstation. The application of different priority rules in job shop scheduling gives different order of scheduling. More experimentation needs to be conducted before a final choice is made to know the best priority sequencing rule. Hence, a comprehensive method of selecting the right choice is essential in managerial decision making perspective. This paper considers seven different priority sequencing rules in job shop scheduling. For evaluation and selection of the best priority sequencing rule, a set of eight criteria are considered. The aim of this work is to demonstrate the methodology of evaluating and selecting the best priority sequencing rule by using hybrid multi criteria decision making technique (MCDM), i.e., analytical hierarchy process (AHP) with technique for order preference by similarity to ideal solution (TOPSIS). The criteria weights are calculated by using AHP whereas the relative closeness values of all priority sequencing rules are computed based on TOPSIS with the help of data acquired from the shop floor of a manufacturing firm. Finally, from the findings of this work, the priority sequencing rules are ranked from most important to least important. The comprehensive methodology presented in this paper is very much essential for the management of a workstation to choose the best priority sequencing rule among the available alternatives for processing the jobs with maximum benefit.
NASA Astrophysics Data System (ADS)
Cipollari, Paola; Cosentino, Domenico
1995-12-01
This paper shows the results obtained from an integrated study (geology, biostratigraphy and geochemistry) carried out on the Miocene edimentary deposits in Central Italy in order to define the timing of the sedimentary basin evolution. This paper deals also with the causes of the unconformities recorded in these basins. In the Miocene deposits of the Latina Valley and the Ernici-Simbruini Mts. several unconformities which distinguish different stratigraphic sequences have been recognized (D 0, D 1, D 2 D 3 and D 4). For each unconformity a general description together with a geodynamical significance is provided. In particular, D 0 unconformity appears to be related to a regional tectonic event (Adria-Europe collision). As a consequence, the Adria lithosphere folded and the area underwent a regional erosive event. D 1, D 2 and D 3 unconformities have had a more local tectonic control since they represent the stratigraphic record of the migration of the Apennines thrust belt/foredeep system. D 1 and D 2 unconformities are related to the late Tortonian foredeep stage, whereas D 3 is linked to the early Messinian piggy-back stage. Moreover, the D 4 unconformity, which took place during the Messinian piggy-back stage, is strictly linked to the sea-level drop of the Messinian salinity crisis. In this paper the genesis and evolution of a late Tortonian foreland basin is also stressed (Latina Valley foredeep basin). Finally, taking into account sequence boundaries, nannofossil biostratigraphy and geochemistry isotopic data, a comparison with the curve of the 3rd order of the relative coastal onlap (Haq et al., 1988) has been attempted in order to distinguish the unconformities controlled either by tectonic or eustatic processes.
Alant, Erna; du Plooy, Amelia; Dada, Shakila
2007-01-01
Although the sequence of graphic or pictorial symbols displayed on a communication board can have an impact on the language output of children, very little research has been conducted to describe this. Research in this area is particularly relevant for prioritising the importance of specific visual and graphic features in providing more effective and user-friendly access to communication boards. This study is concerned with understanding the impact ofspecific sequences of graphic symbol input on the graphic and spoken output of children who have acquired language. Forty participants were divided into two comparable groups. Each group was exposed to graphic symbol input with a certain word order sequence. The structure of input was either in typical English word order sequence Subject- Verb-Object (SVO) or in the word order sequence of Subject-Object-Verb (SOV). Both input groups had to answer six questions by using graphic output as well as speech. The findings indicated that there are significant differences in the PCS graphic output patterns of children who are exposed to graphic input in the SOV and SVO sequences. Furthermore, the output produced in the graphic mode differed considerably to the output produced in the spoken mode. Clinical implications of these findings are discussed
Development of a Novel Technology for Label Free DNA Sequencing
2012-05-21
of the C-H bond stretch vibrations in the planes of the corresponding DNA bases , and in the higher-frequency side, sequence-identifier region is...composed of the N-H bond stretch vibrations in the planes of the corresponding DNA bases . In addition, the sequence-identifier dividing region almost...regions are localized at the corresponding DNA bases and exhibit a definable dependence on the sequence form of the codons under study. Final
de Miranda, R L; O'Dwyer, L H; de Castro, J R; Metzger, B; Rubini, A S; Mundim, A V; Eyal, O; Talmi-Frank, D; Cury, M C; Baneth, G
2014-10-01
The objective of this survey was to investigate the prevalence of Hepatozoon infection in dogs in the rural and urban areas of Uberlândia, Brazil by PCR and molecular characterization. DNA was obtained from blood samples collected from 346 local dogs from both genders and various ages. Seventeen PCR products from positive blood samples of urban dogs and 13 from the rural dogs were sequenced. Partial sequences of the 18S rRNA gene indicated that all 30 dogs were infected with Hepatozoon canis similar in sequence to H. canis from southern Europe. Four local dog sequences were submitted to GenBank (accessions JN835188; KF692038; KF692039; KF692040). This study indicates that H. canis is the cause of canine hepatozoonosis in Uberlândia and that infection is similarly widespread in rural and urban dogs. Copyright © 2014. Published by Elsevier Ltd.
Kwasigroch, Jean Marc; Rooman, Marianne
2006-07-15
Prelude&Fugue are bioinformatics tools aiming at predicting the local 3D structure of a protein from its amino acid sequence in terms of seven backbone torsion angle domains, using database-derived potentials. Prelude(&Fugue) computes all lowest free energy conformations of a protein or protein region, ranked by increasing energy, and possibly satisfying some interresidue distance constraints specified by the user. (Prelude&)Fugue detects sequence regions whose predicted structure is significantly preferred relative to other conformations in the absence of tertiary interactions. These programs can be used for predicting secondary structure, tertiary structure of short peptides, flickering early folding sequences and peptides that adopt a preferred conformation in solution. They can also be used for detecting structural weaknesses, i.e. sequence regions that are not optimal with respect to the tertiary fold. http://babylone.ulb.ac.be/Prelude_and_Fugue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuskan, Gerald A; Gunter, Lee E; DiFazio, Stephen P
The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis -type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequencemore » assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.« less
ERIC Educational Resources Information Center
Du, Wenchong; Kelly, Steve W.
2013-01-01
The present study examines implicit sequence learning in adult dyslexics with a focus on comparing sequence transitions with different statistical complexities. Learning of a 12-item deterministic sequence was assessed in 12 dyslexic and 12 non-dyslexic university students. Both groups showed equivalent standard reaction time increments when the…
Buried mine detection using fractal geometry analysis to the LWIR successive line scan data image
NASA Astrophysics Data System (ADS)
Araki, Kan
2012-06-01
We have engaged in research on buried mine/IED detection by remote sensing method using LWIR camera. A IR image of a ground, containing buried objects can be assumed as a superimposed pattern including thermal scattering which may depend on the ground surface roughness, vegetation canopy, and effect of the sun light, and radiation due to various heat interaction caused by differences in specific heat, size, and buried depth of the objects and local temperature of their surrounding environment. In this cumbersome environment, we introduce fractal geometry for analyzing from an IR image. Clutter patterns due to these complex elements have oftentimes low ordered fractal dimension of Hausdorff Dimension. On the other hand, the target patterns have its tendency of obtaining higher ordered fractal dimension in terms of Information Dimension. Random Shuffle Surrogate method or Fourier Transform Surrogate method is used to evaluate fractional statistics by applying shuffle of time sequence data or phase of spectrum. Fractal interpolation to each line scan was also applied to improve the signal processing performance in order to evade zero division and enhance information of data. Some results of target extraction by using relationship between low and high ordered fractal dimension are to be presented.
A state space based approach to localizing single molecules from multi-emitter images.
Vahid, Milad R; Chao, Jerry; Ward, E Sally; Ober, Raimund J
2017-01-28
Single molecule super-resolution microscopy is a powerful tool that enables imaging at sub-diffraction-limit resolution. In this technique, subsets of stochastically photoactivated fluorophores are imaged over a sequence of frames and accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Available localization methods typically first determine the regions of the image that contain emitting fluorophores through a process referred to as detection. Then, the locations of the fluorophores are estimated accurately in an estimation step. We propose a novel localization method which combines the detection and estimation steps. The method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix, and determines the locations of intensity peaks in the image as the pole locations of the resulting system. The locations of the most significant peaks correspond to the locations of single molecules in the original image. Although the accuracy of the location estimates is reasonably good, we demonstrate that, by using the estimates as the initial conditions for a maximum likelihood estimator, refined estimates can be obtained that have a standard deviation close to the Cramér-Rao lower bound-based limit of accuracy. We validate our method using both simulated and experimental multi-emitter images.
Houseknecht, D.W.; Bird, K.J.
2004-01-01
Beaufortian strata (Jurassic-Lower Cretaceous) in the National Petroleum Reserve in Alaska (NPRA) are a focus of exploration since the 1994 discovery of the nearby Alpine oil field (>400 MMBO). These strata include the Kingak Shale, a succession of depositional sequences influenced by rift opening of the Arctic Ocean Basin. Interpretation of sequence stratigraphy and depositional facies from a regional two-dimensional seismic grid and well data allows the definition of four sequence sets that each displays unique stratal geometries and thickness trends across NPRA. A Lower to Middle Jurassic sequence set includes numerous transgressive-regressive sequences that collectively built a clastic shelf in north-central NPRA. Along the south-facing, lobate shelf margin, condensed shales in transgressive systems tracts downlap and coalesce into a basinal condensed section that is likely an important hydrocarbon source rock. An Oxfordian-Kimmeridgian sequence set, deposited during pulses of uplift on the Barrow arch, includes multiple transgressive-regressive sequences that locally contain well-winnowed, shoreface sandstones at the base of transgressive systems tracts. These shoreface sandstones and overlying shales, deposited during maximum flooding, form stratigraphic traps that are the main objective of exploration in the Alpine play in NPRA. A Valanginian sequence set includes at least two transgressive-regressive sequences that display relatively distal characteristics, suggesting high relative sea level. An important exception is the presence of a basal transgressive systems tract that locally contains shoreface sandstones of reservoir quality. A Hauterivian sequence set includes two transgressive-regressive sequences that constitute a shelf-margin wedge developed as the result of tectonic uplift along the Barrow arch during rift opening of the Arctic Ocean Basin. This sequence set displays stratal geometries suggesting incision and synsedimentary collapse of the shelf margin. ?? 2004. The American Association of Petroleum Geologists. All rights reserved.
2012-01-01
Background The Batrachoididae family is a group of marine teleosts that includes several species with more complicated physiological characteristics, such as their excretory, reproductive, cardiovascular and respiratory systems. Previous studies of the 5S rDNA gene family carried out in four species from the Western Atlantic showed two types of this gene in two species but only one in the other two, under processes of concerted evolution and birth-and-death evolution with purifying selection. Here we present results of the 5S rDNA and another two gene families in Halobatrachus didactylus, an Eastern Atlantic species, and draw evolutionary inferences regarding the gene families. In addition we have also mapped the genes on the chromosomes by two-colour fluorescence in situ hybridization (FISH). Results Two types of 5S rDNA were observed, named type α and type β. Molecular analysis of the 5S rDNA indicates that H. didactylus does not share the non-transcribed spacer (NTS) sequences with four other species of the family; therefore, it must have evolved in isolation. Amplification with the type β specific primers amplified a specific band in 9 specimens of H. didactylus and two of Sparus aurata. Both types showed regulatory regions and a secondary structure which mark them as functional genes. However, the U2 snRNA gene and the ITS-1 sequence showed one electrophoretic band and with one type of sequence. The U2 snRNA sequence was the most variable of the three multigene families studied. Results from two-colour FISH showed no co-localization of the gene coding from three multigene families and provided the first map of the chromosomes of the species. Conclusions A highly significant finding was observed in the analysis of the 5S rDNA, since two such distant species as H. didactylus and Sparus aurata share a 5S rDNA type. This 5S rDNA type has been detected in other species belonging to the Batrachoidiformes and Perciformes orders, but not in the Pleuronectiformes and Clupeiformes orders. Two hypotheses have been outlined: one is the possible vertical permanence of the shared type in some fish lineages, and the other is the possibility of a horizontal transference event between ancient species of the Perciformes and Batrachoidiformes orders. This finding opens a new perspective in fish evolution and in the knowledge of the dynamism of the 5S rDNA. Cytogenetic analysis allowed some evolutionary trends to be roughed out, such as the progressive change in the U2 snDNA and the organization of (GATA)n repeats, from dispersed to localized in one locus. The accumulation of (GATA)n repeats in one chromosome pair could be implicated in the evolution of a pair of proto-sex chromosomes. This possibility could situate H. didactylus as the most highly evolved of the Batrachoididae family in terms of sex chromosome biology. PMID:23039906
Arbitrarily accurate twin composite π -pulse sequences
NASA Astrophysics Data System (ADS)
Torosov, Boyan T.; Vitanov, Nikolay V.
2018-04-01
We present three classes of symmetric broadband composite pulse sequences. The composite phases are given by analytic formulas (rational fractions of π ) valid for any number of constituent pulses. The transition probability is expressed by simple analytic formulas and the order of pulse area error compensation grows linearly with the number of pulses. Therefore, any desired compensation order can be produced by an appropriate composite sequence; in this sense, they are arbitrarily accurate. These composite pulses perform equally well as or better than previously published ones. Moreover, the current sequences are more flexible as they allow total pulse areas of arbitrary integer multiples of π .
Deiana, Antonio; Giansanti, Andrea
2010-04-21
Natively unfolded proteins lack a well defined three dimensional structure but have important biological functions, suggesting a re-assignment of the structure-function paradigm. To assess that a given protein is natively unfolded requires laborious experimental investigations, then reliable sequence-only methods for predicting whether a sequence corresponds to a folded or to an unfolded protein are of interest in fundamental and applicative studies. Many proteins have amino acidic compositions compatible both with the folded and unfolded status, and belong to a twilight zone between order and disorder. This makes difficult a dichotomic classification of protein sequences into folded and natively unfolded ones. In this work we propose an operational method to identify proteins belonging to the twilight zone by combining into a consensus score good performing single predictors of folding. In this methodological paper dichotomic folding indexes are considered: hydrophobicity-charge, mean packing, mean pairwise energy, Poodle-W and a new global index, that is called here gVSL2, based on the local disorder predictor VSL2. The performance of these indexes is evaluated on different datasets, in particular on a new dataset composed by 2369 folded and 81 natively unfolded proteins. Poodle-W, gVSL2 and mean pairwise energy have good performance and stability in all the datasets considered and are combined into a strictly unanimous combination score SSU, that leaves proteins unclassified when the consensus of all combined indexes is not reached. The unclassified proteins: i) belong to an overlap region in the vector space of amino acidic compositions occupied by both folded and unfolded proteins; ii) are composed by approximately the same number of order-promoting and disorder-promoting amino acids; iii) have a mean flexibility intermediate between that of folded and that of unfolded proteins. Our results show that proteins unclassified by SSU belong to a twilight zone. Proteins left unclassified by the consensus score SSU have physical properties intermediate between those of folded and those of natively unfolded proteins and their structural properties and evolutionary history are worth to be investigated.
2010-01-01
Background Natively unfolded proteins lack a well defined three dimensional structure but have important biological functions, suggesting a re-assignment of the structure-function paradigm. To assess that a given protein is natively unfolded requires laborious experimental investigations, then reliable sequence-only methods for predicting whether a sequence corresponds to a folded or to an unfolded protein are of interest in fundamental and applicative studies. Many proteins have amino acidic compositions compatible both with the folded and unfolded status, and belong to a twilight zone between order and disorder. This makes difficult a dichotomic classification of protein sequences into folded and natively unfolded ones. In this work we propose an operational method to identify proteins belonging to the twilight zone by combining into a consensus score good performing single predictors of folding. Results In this methodological paper dichotomic folding indexes are considered: hydrophobicity-charge, mean packing, mean pairwise energy, Poodle-W and a new global index, that is called here gVSL2, based on the local disorder predictor VSL2. The performance of these indexes is evaluated on different datasets, in particular on a new dataset composed by 2369 folded and 81 natively unfolded proteins. Poodle-W, gVSL2 and mean pairwise energy have good performance and stability in all the datasets considered and are combined into a strictly unanimous combination score SSU, that leaves proteins unclassified when the consensus of all combined indexes is not reached. The unclassified proteins: i) belong to an overlap region in the vector space of amino acidic compositions occupied by both folded and unfolded proteins; ii) are composed by approximately the same number of order-promoting and disorder-promoting amino acids; iii) have a mean flexibility intermediate between that of folded and that of unfolded proteins. Conclusions Our results show that proteins unclassified by SSU belong to a twilight zone. Proteins left unclassified by the consensus score SSU have physical properties intermediate between those of folded and those of natively unfolded proteins and their structural properties and evolutionary history are worth to be investigated. PMID:20409339
A Multicultural Sequence of Humanities Electives.
ERIC Educational Resources Information Center
Anderson, Gwendolyn; Ewing, Dessa
In order to promote multi-cultural literacy among its students, Delaware County Community College (DCCC) developed a multi-cultural sequence of humanities electives. The sequence emerged as a response to the predominantly White student body's lack of knowledge or curiosity about other cultures. The first of the four courses in the sequence is…
Sequencing in SLA: Phonological Memory, Chunking, and Points of Order.
ERIC Educational Resources Information Center
Ellis, Nick C.
1996-01-01
Argues that much of language acquisition is sequence learning and that the resultant long-term knowledge base of language sequences serves as the database for grammar acquisition. The article also proposes mechanisms to analyze sequence information that result in knowledge of underlying grammar. (184 references) (Author/CK)
Thomsen, Rune; Pallesen, Jonatan; Daugaard, Tina F; Børglum, Anders D; Nielsen, Anders L
2013-11-01
Subcellular RNA localization plays an important role in development, cell differentiation, and cell migration. For a comprehensive description of the population of protrusion localized mRNAs in astrocytes we separated protrusions from cell bodies in a Boyden chamber and performed high-throughput direct RNA sequencing. The mRNAs with localization in astrocyte protrusions encode proteins belonging to a variety of functional groups indicating involvement of RNA localization for a palette of cellular functions. The mRNA encoding the intermediate filament protein Nestin was among the identified mRNAs. By RT-qPCR and RNA FISH analysis we confirmed Nestin mRNA localization in cell protrusions and also protrusion localization of Nestin protein. Nestin mRNA localization was dependent of Fragile X mental retardation syndrome proteins Fmrp and Fxr1, and the Nestin 3'-UTR was sufficient to mediate protrusion mRNA localization. The mRNAs for two other intermediate filament proteins in astrocytes, Gfap and Vimentin, have moderate and no protrusion localization, respectively, showing that individual intermediate filament components have different localization mechanisms. The correlated localization of Nestin mRNA with Nestin protein in cell protrusions indicates the presence of a regulatory mechanism at the mRNA localization level for the Nestin intermediate filament protein with potential importance for astrocyte functions during brain development and maintenance. Copyright © 2013 Wiley Periodicals, Inc.
BnNHL18A shows a localization change by stress-inducing chemical treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Suk-Bae; Ham, Byung-Kook; Park, Jeong Mee
2006-01-06
The two genes, named BnNHL18A and BnNHL18B, showing sequence homology with Arabidopsis NDR1/HIN1-like (NHL) genes, were isolated from cDNA library prepared with oilseed rape (Brassica napus) seedlings treated with NaCl. The transcript level of BnNHL18A was increased by sodium chloride, ethephon, hydrogen peroxide, methyl jasmonate, or salicylic acid treatment. The coding regions of BnNHL18A and BnNHL18B contain a sarcolipin (SLN)-like sequence. Analysis of the localization of smGFP fusion proteins showed that BnNHL18A is mainly localized to endoplasmic reticulum (ER). This result suggests that the SLN-like sequence plays a role in retaining proteins in ER membrane in plants. In response tomore » NaCl, hydrogen peroxide, ethephon, and salicylic acid treatments, the protein localization of BnNHL18A was changed. Our findings suggest a common function of BnNHL18A in biotic and abiotic stresses, and demonstrate the presence of the shared mechanism of protein translocalization between the responses to plant pathogen and to osmotic stress.« less
NASA Astrophysics Data System (ADS)
Lazo, Edmundo; Saavedra, Eduardo; Humire, Fernando; Castro, Cristobal; Cortés-Cortés, Francisco
2015-09-01
We study the localization properties of direct transmission lines when we distribute two values of inductances LA and LB according to a generalized Thue-Morse aperiodic sequence generated by the inflation rule: A → ABm-1, B → BAm-1, m ≥ 2 and integer. We regain the usual Thue-Morse sequence for m = 2. We numerically study the changes produced in the localization properties of the I (ω) electric current function with increasing m values. We demonstrate that the m = 2 case does not belong to the family m ≥ 3, because when m changes from m = 2 to m = 3, the number of extended states decreases significantly. However, for m ≫ 3, the localization properties become similar to the m = 2 case. Also, the
Michalovova, M; Vyskot, B; Kejnovsky, E
2013-10-01
We analysed the size, relative age and chromosomal localization of nuclear sequences of plastid and mitochondrial origin (NUPTs-nuclear plastid DNA and NUMTs-nuclear mitochondrial DNA) in six completely sequenced plant species. We found that the largest insertions showed lower divergence from organelle DNA than shorter insertions in all species, indicating their recent origin. The largest NUPT and NUMT insertions were localized in the vicinity of the centromeres in the small genomes of Arabidopsis and rice. They were also present in other chromosomal regions in the large genomes of soybean and maize. Localization of NUPTs and NUMTs correlated positively with distribution of transposable elements (TEs) in Arabidopsis and sorghum, negatively in grapevine and soybean, and did not correlate in rice or maize. We propose a model where new plastid and mitochondrial DNA sequences are inserted close to centromeres and are later fragmented by TE insertions and reshuffled away from the centromere or removed by ectopic recombination. The mode and tempo of TE dynamism determines the turnover of NUPTs and NUMTs resulting in their species-specific chromosomal distributions.
Sequence independent amplification of DNA
Bohlander, S.K.
1998-03-24
The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example, the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei. 25 figs.
Sequence independent amplification of DNA
Bohlander, Stefan K.
1998-01-01
The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei.
Building Higher-Order Markov Chain Models with EXCEL
ERIC Educational Resources Information Center
Ching, Wai-Ki; Fung, Eric S.; Ng, Michael K.
2004-01-01
Categorical data sequences occur in many applications such as forecasting, data mining and bioinformatics. In this note, we present higher-order Markov chain models for modelling categorical data sequences with an efficient algorithm for solving the model parameters. The algorithm can be implemented easily in a Microsoft EXCEL worksheet. We give a…
Hills, Ronald D.; Kathuria, Sagar V.; Wallace, Louise A.; Day, Iain J.; Brooks, Charles L.; Matthews, C. Robert
2010-01-01
The thermodynamic hypothesis of Anfinsen postulates that structures and stabilities of globular proteins are determined by their amino acid sequences. Chain topology, however, is known to influence the folding reaction, in that motifs with a preponderance of local interactions typically fold more rapidly than those with a larger fraction of non-local interactions. Together, the topology and sequence can modulate the energy landscape and influence the rate at which the protein folds to the native conformation. To explore the relationship of sequence and topology in the folding of βα–repeat proteins, which are dominated by local interactions, a combined experimental and simulation analysis was performed on two members of the flavodoxin-like, α/β/α sandwich fold. Spo0F and the N-terminal receiver domain of NtrC (NT-NtrC) have similar topologies but low sequence identity, enabling a test of the effects of sequence on folding. Experimental results demonstrated that both response-regulator proteins fold via parallel channels through highly structured sub-millisecond intermediates before accessing their cis prolyl peptide bond-containing native conformations. Global analysis of the experimental results preferentially places these intermediates off the productive folding pathway. Sequence-sensitive Gō-model simulations conclude that frustration in the folding in Spo0F, corresponding to the appearance of the off-pathway intermediate, reflects competition for intra-subdomain van der Waals contacts between its N- and C-terminal subdomains. The extent of transient, premature structure appears to correlate with the number of isoleucine, leucine and valine (ILV) side-chains that form a large sequence-local cluster involving the central β-sheet and helices α2, α3 and α4. The failure to detect the off-pathway species in the simulations of NT-NtrC may reflect the reduced number of ILV side-chains in its corresponding hydrophobic cluster. The location of the hydrophobic clusters in the structure may also be related to the differing functional properties of these response regulators. Comparison with the results of previous experimental and simulation analyses on the homologous CheY argues that prematurely-folded unproductive intermediates are a common property of the βα-repeat motif. PMID:20226790
Exploiting three kinds of interface propensities to identify protein binding sites.
Liu, Bin; Wang, Xiaolong; Lin, Lei; Dong, Qiwen; Wang, Xuan
2009-08-01
Predicting the binding sites between two interacting proteins provides important clues to the function of a protein. In this study, we present a building block of proteins called order profiles to use the evolutionary information of the protein sequence frequency profiles and apply this building block to produce a class of propensities called order profile interface propensities. For comparisons, we revisit the usage of residue interface propensities and binary profile interface propensities for protein binding site prediction. Each kind of propensities combined with sequence profiles and accessible surface areas are inputted into SVM. When tested on four types of complexes (hetero-permanent complexes, hetero-transient complexes, homo-permanent complexes and homo-transient complexes), experimental results show that the order profile interface propensities are better than residue interface propensities and binary profile interface propensities. Therefore, order profile is a suitable profile-level building block of the protein sequences and can be widely used in many tasks of computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the protein remote homology detection.
A Generative Angular Model of Protein Structure Evolution
Golden, Michael; García-Portugués, Eduardo; Sørensen, Michael; Mardia, Kanti V.; Hamelryck, Thomas; Hein, Jotun
2017-01-01
Abstract Recently described stochastic models of protein evolution have demonstrated that the inclusion of structural information in addition to amino acid sequences leads to a more reliable estimation of evolutionary parameters. We present a generative, evolutionary model of protein structure and sequence that is valid on a local length scale. The model concerns the local dependencies between sequence and structure evolution in a pair of homologous proteins. The evolutionary trajectory between the two structures in the protein pair is treated as a random walk in dihedral angle space, which is modeled using a novel angular diffusion process on the two-dimensional torus. Coupling sequence and structure evolution in our model allows for modeling both “smooth” conformational changes and “catastrophic” conformational jumps, conditioned on the amino acid changes. The model has interpretable parameters and is comparatively more realistic than previous stochastic models, providing new insights into the relationship between sequence and structure evolution. For example, using the trained model we were able to identify an apparent sequence–structure evolutionary motif present in a large number of homologous protein pairs. The generative nature of our model enables us to evaluate its validity and its ability to simulate aspects of protein evolution conditioned on an amino acid sequence, a related amino acid sequence, a related structure or any combination thereof. PMID:28453724
Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian
2011-08-30
Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.
Vlahovicek, K; Munteanu, M G; Pongor, S
1999-01-01
Bending is a local conformational micropolymorphism of DNA in which the original B-DNA structure is only distorted but not extensively modified. Bending can be predicted by simple static geometry models as well as by a recently developed elastic model that incorporate sequence dependent anisotropic bendability (SDAB). The SDAB model qualitatively explains phenomena including affinity of protein binding, kinking, as well as sequence-dependent vibrational properties of DNA. The vibrational properties of DNA segments can be studied by finite element analysis of a model subjected to an initial bending moment. The frequency spectrum is obtained by applying Fourier analysis to the displacement values in the time domain. This analysis shows that the spectrum of the bending vibrations quite sensitively depends on the sequence, for example the spectrum of a curved sequence is characteristically different from the spectrum of straight sequence motifs of identical basepair composition. Curvature distributions are genome-specific, and pronounced differences are found between protein-coding and regulatory regions, respectively, that is, sites of extreme curvature and/or bendability are less frequent in protein-coding regions. A WWW server is set up for the prediction of curvature and generation of 3D models from DNA sequences (http:@www.icgeb.trieste.it/dna).
Memory-efficient dynamic programming backtrace and pairwise local sequence alignment.
Newberg, Lee A
2008-08-15
A backtrace through a dynamic programming algorithm's intermediate results in search of an optimal path, or to sample paths according to an implied probability distribution, or as the second stage of a forward-backward algorithm, is a task of fundamental importance in computational biology. When there is insufficient space to store all intermediate results in high-speed memory (e.g. cache) existing approaches store selected stages of the computation, and recompute missing values from these checkpoints on an as-needed basis. Here we present an optimal checkpointing strategy, and demonstrate its utility with pairwise local sequence alignment of sequences of length 10,000. Sample C++-code for optimal backtrace is available in the Supplementary Materials. Supplementary data is available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Kanamori, Keiko; Ross, Brian D.
1999-08-01
Three-dimensional image-selected in vivo spectroscopy (ISIS) was combined with phase-cycled 1H-15N heteronuclear multiple-quantum coherence (HMQC) transfer NMR for localized selective observation of protons J-coupled to 15N in phantoms and in vivo. The ISIS-HMQC sequence, supplemented by jump-return water suppression, permitted localized selective observation of 2-5 μmol of [15Nindole]tryptophan, a precursor of the neurotransmitter serotonin, through the 15N-coupled proton in 20-40 min of acquisition in vitro at 4.7 T. In vivo, the amide proton of [5-15N]glutamine was selectively observed in the brain of spontaneously breathing 15NH4+-infused rats, using a volume probe with homogeneous 1H and 15N fields. Signal recovery after three-dimensional localization was 72-82% in phantoms and 59 ± 4% in vivo. The result demonstrates that localized selective observation of 15N-coupled protons, with complete cancellation of all other protons except water, can be achieved in spontaneously breathing animals by the ISIS-HMQC sequence. This sequence performs both volume selection and heteronuclear editing through an addition/subtraction scheme and predicts the highest intrinsic sensitivity for detection of 15N-coupled protons in the selected volume. The advantages and limitations of this method for in vivo application are compared to those of other localized editing techniques currently in use for non-exchanging protons.
Sadowska, Agnieszka; Paukszto, Lukasz; Nynca, Anna; Szczerbal, Izabela; Orlowska, Karina; Swigonska, Sylwia; Ruszkowska, Monika; Molcan, Tomasz; Jastrzebski, Jan P; Panasiewicz, Grzegorz; Ciereszko, Renata E
2017-03-01
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor best known for mediating xenobiotic-induced toxicity. AhR requires aryl hydrocarbon receptor nuclear translocator (ARNT) to form an active transcription complex and promote the activation of genes which have dioxin responsive element in their regulatory regions. The present study was performed to determine the complete cDNA sequences of porcine AhR and ARNT genes and their chromosomal localization. Total RNA from porcine livers were used to obtain the sequence of the entire porcine transcriptome by next-generation sequencing (NGS; lllumina HiSeq2500). In addition, both, in silico analysis and fluorescence in situ hybridization (FISH) were used to determine chromosomal localization of porcine AhR and ARNT genes. In silico analysis of nucleotide sequences showed that there were two transcript variants of AhR and ARNT genes in the pig. In addition, computer analysis revealed that AhR gene in the pig is located on chromosome 9 and ARNT on chromosome 4. The results of FISH experiment confirmed the localization of porcine AhR and ARNT genes. In the present study, for the first time, the full cDNAs of AhR and ARNT were demonstrated in the pig. In future, it would be interesting to determine the tissue distribution of AhR and ARNT transcript variants in the pig and to test whether these variants are associated with different biological functions and/or different activation pathways.
Modulating the DNA affinity of Elk-1 with computationally selected mutations.
Park, Sheldon; Boder, Eric T; Saven, Jeffery G
2005-04-22
In order to regulate gene expression, transcription factors must first bind their target DNA sequences. The affinity of this binding is determined by both the network of interactions at the interface and the entropy change associated with the complex formation. To study the role of structural fluctuation in fine-tuning DNA affinity, we performed molecular dynamics simulations of two highly homologous proteins, Elk-1 and SAP-1, that exhibit different sequence specificity. Simulation studies show that several residues in Elk have significantly higher main-chain root-mean-square deviations than their counterparts in SAP. In particular, a single residue, D69, may contribute to Elk's lower DNA affinity for P(c-fos) by structurally destabilizing the carboxy terminus of the recognition helix. While D69 does not contact DNA directly, the increased mobility in the region may contribute to its weaker binding. We measured the ability of single point mutants of Elk to bind P(c-fos) in a reporter assay, in which D69 of wild-type Elk has been mutated to other residues with higher helix propensity in order to stabilize the local conformation. The gains in transcriptional activity and the free energy of binding suggested from these measurements correlate well with stability gains computed from helix propensity and charge-macrodipole interactions. The study suggests that residues that are distal to the binding interface may indirectly modulate the binding affinity by stabilizing the protein scaffold required for efficient DNA interaction.
Simple chained guide trees give high-quality protein multiple sequence alignments
Boyce, Kieran; Sievers, Fabian; Higgins, Desmond G.
2014-01-01
Guide trees are used to decide the order of sequence alignment in the progressive multiple sequence alignment heuristic. These guide trees are often the limiting factor in making large alignments, and considerable effort has been expended over the years in making these quickly or accurately. In this article we show that, at least for protein families with large numbers of sequences that can be benchmarked with known structures, simple chained guide trees give the most accurate alignments. These also happen to be the fastest and simplest guide trees to construct, computationally. Such guide trees have a striking effect on the accuracy of alignments produced by some of the most widely used alignment packages. There is a marked increase in accuracy and a marked decrease in computational time, once the number of sequences goes much above a few hundred. This is true, even if the order of sequences in the guide tree is random. PMID:25002495
Ordered fast Fourier transforms on a massively parallel hypercube multiprocessor
NASA Technical Reports Server (NTRS)
Tong, Charles; Swarztrauber, Paul N.
1991-01-01
The present evaluation of alternative, massively parallel hypercube processor-applicable designs for ordered radix-2 decimation-in-frequency FFT algorithms gives attention to the reduction of computation time-dominating communication. A combination of the order and computational phases of the FFT is accordingly employed, in conjunction with sequence-to-processor maps which reduce communication. Two orderings, 'standard' and 'cyclic', in which the order of the transform is the same as that of the input sequence, can be implemented with ease on the Connection Machine (where orderings are determined by geometries and priorities. A parallel method for trigonometric coefficient computation is presented which does not employ trigonometric functions or interprocessor communication.
Satoh, Takashi P; Miya, Masaki; Endo, Hiromitsu; Nishida, Mutsumi
2006-07-01
The gene order of mitochondrial genomes (mitogenomes) has been employed as a useful phylogenetic marker in various metazoan animals, because it may represent uniquely derived characters shared by members of monophyletic groups. During the course of molecular phylogenetic studies of the order Gadiformes (cods and their relatives) based on whole mitogenome sequences, we found that two deep-sea grenadiers (Squalogadus modificatus and Trachyrincus murrayi: family Macrouridae) revealed a unusually identical gene order (translocation of the tRNA(Leu (UUR))). Both are members of the same family, although their external morphologies differed so greatly (e.g., round vs. pointed head) that they have been placed in different subfamilies Macrouroidinae and Trachyrincinae, respectively. Additionally, we determined the whole mitogenome sequences of two other species, Bathygadus antrodes and Ventrifossa garmani, representing a total of four subfamilies currently recognized within Macrouridae. The latter two species also exhibited gene rearrangements, resulting in a total of three different patterns of unique gene order being observed in the four subfamilies. Partitioned Bayesian analysis was conducted using available whole mitogenome sequences from five macrourids plus five outgroups. The resultant trees clearly indicated that S. modificatus and T. murrayi formed a monophyletic group, having a sister relationship to other macrourids. Thus, monophyly of the two species with disparate head morphologies was corroborated by two different lines of evidence (nucleotide sequences and gene order). The overall topology of the present tree differed from any of the previously proposed, morphology-based phylogenetic hypotheses.
New Tertiary stratigraphy for the Florida Keys and southern peninsula of Florida
Cunningham, K.J.; McNeill, D.F.; Guertin, L.A.; Ciesielski, P.F.; Scott, T.M.; De Verteuil, L.
1998-01-01
Seven lithologic formations, ranging in age from Oligocene to Pleistocene, were recently penetrated by core holes in southernmost Florida. From bottom to top, they are the early Oligocene Suwannee Limestone; late-early Oligocene-to-Miocene Arcadia Formation, basal Hawthorn Group; late Miocene Peace River Formation, upper Hawthorn Group; newly proposed late Miocene-to-Pliocene Long Key and Stock Island Formations; and Pleistocene Key Largo and Miami Limestones. The rocks of the Suwannee Limestone form a third-order sequence. Although the entire thickness was not penetrated, 96 m of Suwannee core from one well contains at least 50 vertically stacked, exposure-capped limestone cycles, presumably related to rapid eustatic fluctuations while experiencing tropical to subtropical conditions. The Arcadia Formation is a composite sequence containing four high-frequency sequences composed of multiple vertically stacked carbonate cycles. Most cycles do not show evidence of subaerial exposure and were deposited under more temperate conditions, relative to the Suwannee Limestone. The Arcadia Formation in southernmost Florida is bounded by regional unconformities representing third-order sequence boundaries. Post-Arcadia transgression produced a major backstepping of sediment accumulation above the upper sequence boundary of the Arcadia Formation. The Peace River Formation, composed of diatomaceous mudstones, has been identified only beneath the Florida peninsula and is not present beneath the Florida Keys. Deposition occurred during marine transgressive to high-stand conditions and a local phosphatization event (recorded in northeast Florida). The transgression is possibly related to a global rise in sea level, which resulted in upwelling of relatively cooler, relatively nutrient-rich water masses onto the Florida Platform. It is proposed that the absence of Peace River sediments beneath the Keys is due to sediment bypass of the upper surface of the Arcadia, a result of sediment sweeping by an ancestral Florida current. During late Miocene to Pliocene time in the Florida Keys, siliciclastics of the Long Key Formation and fine-grained carbonates of the Stock Island Formation prograded toward the southern edge of the Florida Platform and downlapped onto the regional unconformity at the top of the Arcadia. Shallow-marine Pleistocene limestones (Key Largo and Miami Limestones), deposited during tropical to subtropical conditions, drape over accretionary successions of the Long Key and Stock Island Formations.
Methods for 2-D and 3-D Endobronchial Ultrasound Image Segmentation.
Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher; Toth, Jennifer; Higgins, William
2016-07-01
Endobronchial ultrasound (EBUS) is now commonly used for cancer-staging bronchoscopy. Unfortunately, EBUS is challenging to use and interpreting EBUS video sequences is difficult. Other ultrasound imaging domains, hampered by related difficulties, have benefited from computer-based image-segmentation methods. Yet, so far, no such methods have been proposed for EBUS. We propose image-segmentation methods for 2-D EBUS frames and 3-D EBUS sequences. Our 2-D method adapts the fast-marching level-set process, anisotropic diffusion, and region growing to the problem of segmenting 2-D EBUS frames. Our 3-D method builds upon the 2-D method while also incorporating the geodesic level-set process for segmenting EBUS sequences. Tests with lung-cancer patient data showed that the methods ran fully automatically for nearly 80% of test cases. For the remaining cases, the only user-interaction required was the selection of a seed point. When compared to ground-truth segmentations, the 2-D method achieved an overall Dice index = 90.0% ±4.9%, while the 3-D method achieved an overall Dice index = 83.9 ± 6.0%. In addition, the computation time (2-D, 0.070 s/frame; 3-D, 0.088 s/frame) was two orders of magnitude faster than interactive contour definition. Finally, we demonstrate the potential of the methods for EBUS localization in a multimodal image-guided bronchoscopy system.
Zheng, Deyou
2008-01-01
Background Sequencing and annotation of several mammalian genomes have revealed that segmental duplications are a common architectural feature of primate genomes; in fact, about 5% of the human genome is composed of large blocks of interspersed segmental duplications. These segmental duplications have been implicated in genomic copy-number variation, gene novelty, and various genomic disorders. However, the molecular processes involved in the evolution and regulation of duplicated sequences remain largely unexplored. Results In this study, the profile of about 20 histone modifications within human segmental duplications was characterized using high-resolution, genome-wide data derived from a ChIP-Seq study. The analysis demonstrates that derivative loci of segmental duplications often differ significantly from the original with respect to many histone methylations. Further investigation showed that genes are present three times more frequently in the original than in the derivative, whereas pseudogenes exhibit the opposite trend. These asymmetries tend to increase with the age of segmental duplications. The uneven distribution of genes and pseudogenes does not, however, fully account for the asymmetry in the profile of histone modifications. Conclusion The first systematic analysis of histone modifications between segmental duplications demonstrates that two seemingly 'identical' genomic copies are distinct in their epigenomic properties. Results here suggest that local chromatin environments may be implicated in the discrimination of derived copies of segmental duplications from their originals, leading to a biased pseudogenization of the new duplicates. The data also indicate that further exploration of the interactions between histone modification and sequence degeneration is necessary in order to understand the divergence of duplicated sequences. PMID:18598352
Harrigan, Robert L; Smith, Alex K; Mawn, Louise A; Smith, Seth A; Landman, Bennett A
2016-02-27
The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short-term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON.
Singh, B N; Mudgil, Yashwanti; Sopory, S K; Reddy, M K
2003-07-01
We have successfully expressed enzymatically active plant topoisomerase II in Escherichia coli for the first time, which has enabled its biochemical characterization. Using a PCR-based strategy, we obtained a full-length cDNA and the corresponding genomic clone of tobacco topoisomerase II. The genomic clone has 18 exons interrupted by 17 introns. Most of the 5' and 3' splice junctions follow the typical canonical consensus dinucleotide sequence GU-AG present in other plant introns. The position of introns and phasing with respect to primary amino acid sequence in tobacco TopII and Arabidopsis TopII are highly conserved, suggesting that the two genes are evolved from the common ancestral type II topoisomerase gene. The cDNA encodes a polypeptide of 1482 amino acids. The primary amino acid sequence shows a striking sequence similarity, preserving all the structural domains that are conserved among eukaryotic type II topoisomerases in an identical spatial order. We have expressed the full-length polypeptide in E. coli and purified the recombinant protein to homogeneity. The full-length polypeptide relaxed supercoiled DNA and decatenated the catenated DNA in a Mg(2+)- and ATP-dependent manner, and this activity was inhibited by 4'-(9-acridinylamino)-3'-methoxymethanesulfonanilide (m-AMSA). The immunofluorescence and confocal microscopic studies, with antibodies developed against the N-terminal region of tobacco recombinant topoisomerase II, established the nuclear localization of topoisomerase II in tobacco BY2 cells. The regulated expression of tobacco topoisomerase II gene under the GAL1 promoter functionally complemented a temperature-sensitive TopII(ts) yeast mutant.
NASA Astrophysics Data System (ADS)
Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.
2016-03-01
The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short- term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON.
Poag, C.W.; Commeau, J.A.
1995-01-01
The Paleocene to Middle Miocene sedimentary fill of the southwestern Salisbury Embayment contains a fragmental depositional record, interrupted by numerous local diastems and regional unconformities. Using planktic foraminiferal biostratigraphy, 15 unconformity-bounded depositional units have been identified, assigned to six formations and seven alloformations previously recognized in the embayment. The units correlate with second- and third-order sequences of the Exxon sequence stratigraphy model, and include transgressive and highstand systems tracts. Alloformation, formation, and sequence boundaries are marked by abrupt, scoured, burrowed, erosional surfaces, which display lag deposits, biostratigraphic gaps, and intense reworking of microfossils above and below the boundaries.Paleocene deposits represent the upper parts of upper Pleocene Biochronozones P4 and P5, and rest uncomformably on Cretaceous sedimentary beds of various ages (Maastrichtian to Albian). Lower Eocene deposits represent parts of Biochronozones P6 and P9. Middle Eocene strata represent mainly parts of Biochronozones P11, P12, and P14. Upper Eocene sediments include parts of Biochronozones P15, P16, and P17. Oligocene deposits encompass parts of Biochronozones. N4b to N7 undifferentiated, P21a, and, perhaps, N4a. Lower Miocene deposits encompass parts of Biochronozones N4b to N7 undifferentiated. Middle Miocene strata represent mainly parts of Biochronorones N8, N9, and N10.Nine plates of scanning electron micrographs illustrate the principal planktic foraminifera used to establish the biostratigraphic framework. Two new informal formine of Praeterenuitella praegemma Li, 1987, are introduced.
NASA Astrophysics Data System (ADS)
Krajewski, K. P.; Leśniak, P. M.; Łącka, B.; Zawidzki, P.
2000-10-01
The Turonian stromatolite-bearing condensed sequence in the Polish Jura Chain (the European epicontinental basin) provides good insight into the environment of formation of Cretaceous phosphatic stromatolites, owing to their purely phosphatic development and negligible post-depositional alteration. The sequence developed as a result of slow pelagic sedimentation and microbial mat phosphatization on a submarine swell surrounded by local basins with non-condensed carbonate deposition. Diagenesis of organic matter and dissolution of biogenic apatite were the major sources of reactive phosphorus for the microbial mat phosphatization. Stromatolite growth occurred due to pulses of amorphous or poorly ordered calcium phosphate precipitation followed by crystallization of carbonate fluorapatite (CFA). The phosphogenic environment left an imprint on the isotopic composition of limestone carbon and lattice-bound carbon and sulphur in CFA, and on the light rare-earth element (LREE) distribution in CFA. The δ13C of the stromatolite-bearing sequence shows a negative excursion (-1 to -3‰), standing in marked contrast to positive carbon values of the surrounding basinal carbonate. Most of the δ34S values of CFA (+20 to +21‰) fit the value range of the coeval seawater sulphate, and the LREE distribution shows a well-defined seawater pattern. This geochemical signature is indicative of intense diagenesis of organic matter at the seafloor, pelagic carbonate dissolution, and prolonged exposure of the deposited phosphate towards the water column. The enhanced deposition and diagenesis of organic phosphorus in the stromatolitic environment reflects elevated levels of the epicontinental basin nutrification related to sea-level rises and the associated oceanographic and geochemical changes.
Teichmann, A Lina; Nieuwenstein, Mark R; Rich, Anina N
2015-01-01
Digit-color synesthetes report experiencing colors when perceiving letters and digits. The conscious experience is typically unidirectional (e.g., digits elicit colors but not vice versa) but recent evidence shows subtle bidirectional effects. We examined whether short-term memory for colors could be affected by the order of presentation reflecting more or less structure in the associated digits. We presented a stream of colored squares and asked participants to report the colors in order. The colors matched each synesthete's colors for digits 1-9 and the order of the colors corresponded either to a sequence of numbers (e.g., [red, green, blue] if 1 = red, 2 = green, 3 = blue) or no systematic sequence. The results showed that synesthetes recalled sequential color sequences more accurately than pseudo-randomized colors, whereas no such effect was found for the non-synesthetic controls. Synesthetes did not differ from non-synesthetic controls in recall of color sequences overall, providing no evidence of a general advantage in memory for serial recall of colors.
Vallée, Geneviève C; Muñoz, Daniella Santos; Sankoff, David
2016-11-11
Of the approximately two hundred sequenced plant genomes, how many and which ones were sequenced motivated by strictly or largely scientific considerations, and how many by chiefly economic, in a wide sense, incentives? And how large a role does publication opportunity play? In an integration of multiple disparate databases and other sources of information, we collect and analyze data on the size (number of species) in the plant orders and families containing sequenced genomes, on the trade value of these species, and of all the same-family or same-order species, and on the publication priority within the family and order. These data are subjected to multiple regression and other statistical analyses. We find that despite the initial importance of model organisms, it is clearly economic considerations that outweigh others in the choice of genome to be sequenced. This has important implications for generalizations about plant genomes, since human choices of plants to harvest (and cultivate) will have incurred many biases with respect to phenotypic characteristics and hence of genomic properties, and recent genomic evolution will also have been affected by human agricultural practices.
Scaling exponents for ordered maxima
Ben-Naim, E.; Krapivsky, P. L.; Lemons, N. W.
2015-12-22
We study extreme value statistics of multiple sequences of random variables. For each sequence with N variables, independently drawn from the same distribution, the running maximum is defined as the largest variable to date. We compare the running maxima of m independent sequences and investigate the probability S N that the maxima are perfectly ordered, that is, the running maximum of the first sequence is always larger than that of the second sequence, which is always larger than the running maximum of the third sequence, and so on. The probability S N is universal: it does not depend on themore » distribution from which the random variables are drawn. For two sequences, S N~N –1/2, and in general, the decay is algebraic, S N~N –σm, for large N. We analytically obtain the exponent σ 3≅1.302931 as root of a transcendental equation. Moreover, the exponents σ m grow with m, and we show that σ m~m for large m.« less
Analysis of noise-induced temporal correlations in neuronal spike sequences
NASA Astrophysics Data System (ADS)
Reinoso, José A.; Torrent, M. C.; Masoller, Cristina
2016-11-01
We investigate temporal correlations in sequences of noise-induced neuronal spikes, using a symbolic method of time-series analysis. We focus on the sequence of time-intervals between consecutive spikes (inter-spike-intervals, ISIs). The analysis method, known as ordinal analysis, transforms the ISI sequence into a sequence of ordinal patterns (OPs), which are defined in terms of the relative ordering of consecutive ISIs. The ISI sequences are obtained from extensive simulations of two neuron models (FitzHugh-Nagumo, FHN, and integrate-and-fire, IF), with correlated noise. We find that, as the noise strength increases, temporal order gradually emerges, revealed by the existence of more frequent ordinal patterns in the ISI sequence. While in the FHN model the most frequent OP depends on the noise strength, in the IF model it is independent of the noise strength. In both models, the correlation time of the noise affects the OP probabilities but does not modify the most probable pattern.
Shimizu, Renee E; Wu, Allan D; Knowlton, Barbara J
2016-12-01
Effective learning results not only in improved performance on a practiced task, but also in the ability to transfer the acquired knowledge to novel, similar tasks. Using a modified serial reaction time (RT) task, the authors examined the ability to transfer to novel sequences after practicing sequences in a repetitive order versus a nonrepeating interleaved order. Interleaved practice resulted in better performance on new sequences than repetitive practice. In a second study, participants practiced interleaved sequences in a functional MRI (fMRI) scanner and received a transfer test of novel sequences. Transfer ability was positively correlated with cerebellar blood oxygen level dependent activity during practice, indicating that greater cerebellar engagement during training resulted in better subsequent transfer performance. Interleaved practice may thus result in a more generalized representation that is robust to interference, and the degree of activation in the cerebellum may be a reflection of the instantiation and engagement of internal models. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Elimination sequence optimization for SPAR
NASA Technical Reports Server (NTRS)
Hogan, Harry A.
1986-01-01
SPAR is a large-scale computer program for finite element structural analysis. The program allows user specification of the order in which the joints of a structure are to be eliminated since this order can have significant influence over solution performance, in terms of both storage requirements and computer time. An efficient elimination sequence can improve performance by over 50% for some problems. Obtaining such sequences, however, requires the expertise of an experienced user and can take hours of tedious effort to affect. Thus, an automatic elimination sequence optimizer would enhance productivity by reducing the analysts' problem definition time and by lowering computer costs. Two possible methods for automating the elimination sequence specifications were examined. Several algorithms based on the graph theory representations of sparse matrices were studied with mixed results. Significant improvement in the program performance was achieved, but sequencing by an experienced user still yields substantially better results. The initial results provide encouraging evidence that the potential benefits of such an automatic sequencer would be well worth the effort.
Zheng, P; Fay, D S; Burton, J; Xiao, H; Pinkham, J L; Stern, D F
1993-09-01
SPK1 was originally discovered in an immunoscreen for tyrosine-protein kinases in Saccharomyces cerevisiae. We have used biochemical and genetic techniques to investigate the function of this gene and its encoded protein. Hybridization of an SPK1 probe to an ordered genomic library showed that SPK1 is adjacent to PEP4 (chromosome XVI L). Sporulation of spk1/+ heterozygotes gave rise to spk1 spores that grew into microcolonies but could not be further propagated. These colonies were greatly enriched for budded cells, especially those with large buds. Similarly, eviction of CEN plasmids bearing SPK1 from cells with a chromosomal SPK1 disruption yielded viable cells with only low frequency. Spk1 protein was identified by immunoprecipitation and immunoblotting. It was associated with protein-Ser, Thr, and Tyr kinase activity in immune complex kinase assays. Spk1 was localized to the nucleus by immunofluorescence. The nucleotide sequence of the SPK1 5' noncoding region revealed that SPK1 contains two MluI cell cycle box elements. These elements confer S-phase-specific transcription to many genes involved in DNA synthesis. Northern (RNA) blotting of synchronized cells verified that the SPK1 transcript is coregulated with other MluI box-regulated genes. The SPK1 upstream region also includes a domain highly homologous to sequences involved in induction of RAD2 and other excision repair genes by agents that induce DNA damage. spk1 strains were hypersensitive to UV irradiation. Taken together, these findings indicate that SPK1 is a dual-specificity (Ser/Thr and Tyr) protein kinase that is essential for viability. The cell cycle-dependent transcription, presence of DNA damage-related sequences, requirement for UV resistance, and nuclear localization of Spk1 all link this gene to a crucial S-phase-specific role, probably as a positive regulator of DNA synthesis.
SIMBA: a web tool for managing bacterial genome assembly generated by Ion PGM sequencing technology.
Mariano, Diego C B; Pereira, Felipe L; Aguiar, Edgar L; Oliveira, Letícia C; Benevides, Leandro; Guimarães, Luís C; Folador, Edson L; Sousa, Thiago J; Ghosh, Preetam; Barh, Debmalya; Figueiredo, Henrique C P; Silva, Artur; Ramos, Rommel T J; Azevedo, Vasco A C
2016-12-15
The evolution of Next-Generation Sequencing (NGS) has considerably reduced the cost per sequenced-base, allowing a significant rise of sequencing projects, mainly in prokaryotes. However, the range of available NGS platforms requires different strategies and software to correctly assemble genomes. Different strategies are necessary to properly complete an assembly project, in addition to the installation or modification of various software. This requires users to have significant expertise in these software and command line scripting experience on Unix platforms, besides possessing the basic expertise on methodologies and techniques for genome assembly. These difficulties often delay the complete genome assembly projects. In order to overcome this, we developed SIMBA (SImple Manager for Bacterial Assemblies), a freely available web tool that integrates several component tools for assembling and finishing bacterial genomes. SIMBA provides a friendly and intuitive user interface so bioinformaticians, even with low computational expertise, can work under a centralized administrative control system of assemblies managed by the assembly center head. SIMBA guides the users to execute assembly process through simple and interactive pages. SIMBA workflow was divided in three modules: (i) projects: allows a general vision of genome sequencing projects, in addition to data quality analysis and data format conversions; (ii) assemblies: allows de novo assemblies with the software Mira, Minia, Newbler and SPAdes, also assembly quality validations using QUAST software; and (iii) curation: presents methods to finishing assemblies through tools for scaffolding contigs and close gaps. We also presented a case study that validated the efficacy of SIMBA to manage bacterial assemblies projects sequenced using Ion Torrent PGM. Besides to be a web tool for genome assembly, SIMBA is a complete genome assemblies project management system, which can be useful for managing of several projects in laboratories. SIMBA source code is available to download and install in local webservers at http://ufmg-simba.sourceforge.net .
Exercise order in resistance training.
Simão, Roberto; de Salles, Belmiro Freitas; Figueiredo, Tiago; Dias, Ingrid; Willardson, Jeffrey M
2012-03-01
Resistance training (RT) is now an integral component of a well rounded exercise programme. For a correct training prescription, it is of the utmost importance to understand the interaction among training variables, such as the load, volume, rest interval between sets and exercises, frequency of sessions, exercise modality, repetition velocity and, finally, exercise order. Sports medicine research has indicated that exercise order is an important variable that affects both acute responses and chronic adaptations to RT programmes. Therefore, the purpose of this review was to analyse and discuss exercise order with relevance to acute responses (e.g. repetition performance) and also the expression of chronic adaptable characteristics (e.g. maximal strength and hypertrophy). To accomplish this purpose, the Scielo, Science Citation Index, National Library of Medicine, MEDLINE, Scopus, SPORTDiscus™ and CINAHL® databases were accessed to locate previously conducted original scientific investigations. The studies reviewed examined both acute responses and chronic adaptations with exercise order as the experimental variable. Generally, with relevance to acute responses, a key finding was that exercise order affects repetition performance over multiple sets, indicating that the total repetitions, and thus the volume, is greater when an exercise is placed at the beginning of an RT session, regardless of the relative amount of muscle mass involved. The pre-exhaustion method might not be an effective technique to increase the extent of neuromuscular recruitment for larger muscle groups (e.g. pectoralis major for the bench press) when preceded by a single-joint movement (e.g. pec-deck fly). With relevance to localized muscular endurance performance, oxygen consumption and ratings of perceived exertion, the limited amount of research conducted thus far indicates that exercise order does not appear to impact the acute expression of these variables. In terms of chronic adaptations, greater strength increases were evident by untrained subjects for the first exercise of a given sequence, while strength increases were inhibited for the last exercise of a given sequence. Additionally, based on strength and hypertrophy (i.e. muscle thickness and volume) effect-size data, the research suggests that exercises be ordered based on priority of importance as dictated by the training goal of a programme, irrespective of whether the exercise involves a relatively large or small muscle group. In summary, exercise order is an important variable that should receive greater attention in RT prescription. When prescribed appropriately with other key prescriptive variables (i.e. load, volume, rest interval between sets and exercises), the exercise order can influence the efficiency, safety and ultimate effectiveness of an RT programme.
NASA Astrophysics Data System (ADS)
Dimaggio, E. N.; Campisano, C. J.; Arrowsmith, J. R.; Dupont-Nivet, G.; Johnson, R. A.; Warren, M. B.
2008-12-01
Sedimentary sequences preserved in East African rift basins record the long-term response of past depositional environments to climatic and tectonic forcing. Motivations for recent field investigations at the Ledi-Geraru site, part of the greater Hadar sedimentary basin in the Afar region of Ethiopia, stem from a need to characterize local basin structure and expand and refine interpretations of the complex mid-late Pliocene history of local and regional-scale landscape change during a time of critical importance for understanding hominin evolution. Detailed geologic mapping (1:7,000), measured stratigraphic sections, and seismic reflection surveys provide the datasets necessary for basin evaluation. The Ledi-Geraru sedimentary sequence (>250m thick) exposes nearly the entirety of the hominin-bearing Hadar Formation of west- central Afar. Both primary unmodified lake deposits and intervals modified by subsequent subaerial exposure and pedogenesis are well-exposed. The lacustrine-dominated signature is indicated by the prevalence of laminated silty clays that contain leaf impressions, fish scales, and gastropod shells, undisturbed laminated diatomite and clays, and pedogenically modified diatomaceous silts. The sequence is generally flat lying, with low bedding dips ranging from 0-2° NNW to <1° NNE and minor NNW trending faults with <5 m vertical offset. Whereas coeval fluvio-lacustrine sediments associated with hominin and archaeological sites west of Ledi-Geraru (e.g., Hadar and Gona) are marked by comparatively slow and episodic sedimentation, sedimentation rates in the Ledi-Geraru sequence are extremely high and consistent, on the order of ~0.9-1.0mm/yr. Laterally extensive tephra marker beds and paleomagnetic records provide excellent age control for sedimentation rate estimates and correlation to nearby fossil-rich sequences. As the Hadar basin sediments preserve a rich paleoanthropologic and archaeological record, this work provides the geologic framework necessary for a proposed (2011) continental drilling effort to obtain a near-continuous, ultra-high resolution terrestrial record of past climate variability from multiple paleo-lake basins in East Africa, including the Ledi-Geraru. A seismic reflection survey was completed there in spring 2008, below the planned drilling site. Gently east-dipping coherent reflections interpreted to be from the Ledi-Geraru sedimentary sequence are imaged in the seismic data to at least 0.2 to 0.3 s (two-way travel time). Preliminary average velocities of about 2000 m/s suggest a sequence thickness of 200-300 m. Furthermore, there is no indication of large-offset faults or of buried basalt ridges that would disrupt or reduce the stratigraphic column available for coring. The anticipated cores from Ledi-Geraru should yield a high-resolution chronostratigraphic framework and paleoenvironmental record from >3.5 to 2.9Ma. Combined geologic and seismic evaluations of depositional sequences are central for evaluating the geometry, tectonic evolution, and stratigraphic history of basins and facilitate interpretations of the space-time progression of evolving paleosurfaces.
NASA Astrophysics Data System (ADS)
Carlo Ponzo, Felice; Ditommaso, Rocco; Nigro, Antonella; Nigro, Domenico S.; Iacovino, Chiara
2017-04-01
After the Mw 6.0 mainshock of August 24, 2016 at 03.36 a.m. (local time), with the epicenter located between the towns of Accumoli (province of Rieti), Amatrice (province of Rieti) and Arquata del Tronto (province of Ascoli Piceno), several activities were started in order to perform some preliminary evaluations on the characteristics of the recent seismic sequence in the areas affected by the earthquake. Ambient vibration acquisitions have been performed using two three-directional velocimetric synchronized stations, with a natural frequency equal to 0.5Hz and a digitizer resolution of equal to 24bit. The activities are continuing after the events of the seismic sequence of October 26 and October 30, 2016. In this paper, in order to compare recorded and code provision values in terms of peak (PGA, PGV and PGD), spectral and integral (Housner Intensity) seismic parameters, several preliminary analyses have been performed on accelerometric time-histories acquired by three near fault station of the RAN (Italian Accelerometric Network): Amatrice station (station code AMT), Norcia station (station code NRC) and Castelsantangelo sul Nera station (station code CNE). Several comparisons between the elastic response spectra derived from accelerometric recordings and the elastic demand spectra provided by the Italian seismic code (NTC 2008) have been performed. Preliminary results retrieved from these analyses highlight several apparent difference between experimental data and conventional code provision. Then, the ongoing seismic sequence appears compatible with the historical seismicity in terms of integral parameters, but not in terms of peak and spectral values. It seems appropriate to reconsider the necessity to revise the simplified design approach based on the conventional spectral values. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, R.A.; Said, Md.J.; Bedingfield, J.R.
1994-07-01
The group J stratigraphic interval is lower Miocene (18.5-21 Ma) in age and was deposited during the early sag phase of the Malay Basin structural development. Reduction in depositional relief and first evidence of widespread marine influence characterize the transition into this interval. Twelve group J sequences have been identified. Reservoirs consist of progradational to aggradational tidally-dominated paralic to shallow marine sands deposited in the lowstand systems tract. Transgressive and highstand deposits are dominantly offshore shales. In PM-9, the original lift-related depocenters, coupled with changes in relative sea level, have strongly influenced group J unit thickness and the distribution ofmore » reservoir and seal facies. Two important reservoir intervals in PM-9 are the J18/20 and J15 sands. The reservoirs in these intervals are contained within the lowstand systems tracts of fourth-order sequences. These fourth-order sequences stack to form sequence sets in response to a third-order change in relative sea level. The sequences of the J18/20 interval stack to form part of a lowstand sequence set, whereas the J15 interval forms part of the transgressive sequence set. Reservoir facies range from tidal bars and subtidal shoals in the J18/20 interval to lower shoreface sands in the J15. Reservoir quality and continuity in group J reservoirs are dependent on depositional facies. An understanding of the controls on the distribution of facies types is crucial to the success of the current phase of field development and exploration programs in PM-9.« less
Sequence periodicity in nucleosomal DNA and intrinsic curvature.
Nair, T Murlidharan
2010-05-17
Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.
NASA Astrophysics Data System (ADS)
Guo, Chuan; Chen, Daizhao; Song, Yafang; Zhou, Xiqiang; Ding, Yi; Zhang, Gongjing
2018-06-01
During the Early Ordovician, the Tarim Basin (NW China) was mainly occupied by an extensive shallow-water carbonate platform, on which a carbonate ramp system was developed in the Bachu-Keping area of the western part of the basin. Three well-exposed typical outcrop sections of the Lower Ordovician Penglaiba Formation were investigated in order to identify the depositional facies and to clarify origins of meter-scale cycles and depositional sequences, thereby the platform evolution. Thirteen lithofacies are identified and further grouped into three depositional facies (associations): peritidal, restricted and open-marine subtidal facies. These lithofacies are vertically stacked into meter-scale, shallowing-upward peritidal and subtidal cycles. The peritidal cycles are mainly distributed in the lower and uppermost parts of the Penglaiba Formation deposited in the inner-middle ramp, and commonly start with shallow subtidal to intertidal facies followed by inter- to supratidal facies. In contrast, the subtidal cycles occur throughout the formation mostly in the middle-outer ramp and are dominated by shallow to relatively deep (i.e., intermediate) subtidal facies. The dominance of asymmetrical and incomplete cycles suggests a dominant control of Earth's orbital forcing on the cyclic deposition on the platform. On the basis of vertical facies and cycle stacking patterns, and accommodation changes illustrated by the Fischer plots from all studied sections, five third-order depositional sequences are recognized in the Penglaiba Formation. Individual sequences comprise a lower transgressive part and an upper regressive one. In shallow-water depositional environments, the transgressive packages are dominated by thicker-than-average subtidal cycles, indicating an increase in accommodation space, whereas regressive parts are mainly represented by thinner-than-average peritidal and subtidal cycles, denoting a decrease in accommodation space. In contrast, in intermediate to deep subtidal environments, transgressive and regressive packages display an opposite trend in accommodation space changes. Sequence boundaries (except the basal and top boundaries of the Penglaiba Formation) are usually represented by laterally traceable, transitional boundary zones without apparent subaerial exposure features. Good correlation of the long-term changes in accommodation space (or sea-level) inferred from vertical stacking patterns of facies and cycles suggests an overriding eustatic control on the formation of meter-scale cycles and third-order depositional sequences as well as platform evolution superimposed with local and/or regional tectonic influence during the Early Ordovician. This study would help understand the controls on the tempo-spatial facies distribution, stratal cyclicity and carbonate platform evolution in the western Tarim Basin during the Early Ordovician, facilitating prediction for favorable subsurface carbonate reservoirs and future hydrocarbon exploration and production in the Penglaiba Formation.
The effect of presentation rate on implicit sequence learning in aging.
Foster, Chris M; Giovanello, Kelly S
2017-02-01
Implicit sequence learning is thought to be preserved in aging when the to-be learned associations are first-order; however, when associations are second-order, older adults (OAs) tend to experience deficits as compared to young adults (YAs). Two experiments were conducted using a first (Experiment 1) and second-order (Experiment 2) serial-reaction time task. Stimuli were presented at a constant rate of either 800 milliseconds (fast) or 1200 milliseconds (slow). Results indicate that both age groups learned first-order dependencies equally in both conditions. OAs and YAs also learned second-order dependencies, but the learning of lag-2 information was significantly impacted by the rate of presentation for both groups. OAs showed significant lag-2 learning in slow condition while YAs showed significant lag-2 learning in the fast condition. The sensitivity of implicit sequence learning to the rate of presentation supports the idea that OAs and YAs different processing speeds impact the ability to build complex associations across time and intervening events.
TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders
Tarr, D Ellen K; Alexander, Helen M
2009-01-01
Background Plant resistance (R) gene products recognize pathogen effector molecules. Many R genes code for proteins containing nucleotide binding site (NBS) and C-terminal leucine-rich repeat (LRR) domains. NBS-LRR proteins can be divided into two groups, TIR-NBS-LRR and non-TIR-NBS-LRR, based on the structure of the N-terminal domain. Although both classes are clearly present in gymnosperms and eudicots, only non-TIR sequences have been found consistently in monocots. Since most studies in monocots have been limited to agriculturally important grasses, it is difficult to draw conclusions. The purpose of our study was to look for evidence of these sequences in additional monocot orders. Findings Using degenerate PCR, we amplified NBS sequences from four monocot species (C. blanda, D. marginata, S. trifasciata, and Spathiphyllum sp.), a gymnosperm (C. revoluta) and a eudicot (C. canephora). We successfully amplified TIR-NBS-LRR sequences from dicot and gymnosperm DNA, but not from monocot DNA. Using databases, we obtained NBS sequences from additional monocots, magnoliids and basal angiosperms. TIR-type sequences were not present in monocot or magnoliid sequences, but were present in the basal angiosperms. Phylogenetic analysis supported a single TIR clade and multiple non-TIR clades. Conclusion We were unable to find monocot TIR-NBS-LRR sequences by PCR amplification or database searches. In contrast to previous studies, our results represent five monocot orders (Poales, Zingiberales, Arecales, Asparagales, and Alismatales). Our results establish the presence of TIR-NBS-LRR sequences in basal angiosperms and suggest that although these sequences were present in early land plants, they have been reduced significantly in monocots and magnoliids. PMID:19785756
DNA sequence chromatogram browsing using JAVA and CORBA.
Parsons, J D; Buehler, E; Hillier, L
1999-03-01
DNA sequence chromatograms (traces) are the primary data source for all large-scale genomic and expressed sequence tags (ESTs) sequencing projects. Access to the sequencing trace assists many later analyses, for example contig assembly and polymorphism detection, but obtaining and using traces is problematic. Traces are not collected and published centrally, they are much larger than the base calls derived from them, and viewing them requires the interactivity of a local graphical client with local data. To provide efficient global access to DNA traces, we developed a client/server system based on flexible Java components integrated into other applications including an applet for use in a WWW browser and a stand-alone trace viewer. Client/server interaction is facilitated by CORBA middleware which provides a well-defined interface, a naming service, and location independence. [The software is packaged as a Jar file available from the following URL: http://www.ebi.ac.uk/jparsons. Links to working examples of the trace viewers can be found at http://corba.ebi.ac.uk/EST. All the Washington University mouse EST traces are available for browsing at the same URL.
Teaching Civil Procedure with the Aid of Local Tort Litigation.
ERIC Educational Resources Information Center
Anderson, Lloyd C.; Kirkwood, Charles E.
1987-01-01
A course in civil procedure using local tort litigation and classroom simulation of the trial has been enthusiastically recevied by students and useful in teaching appropriate procedure, sequencing, questioning, and professional cooperation. (MSE)
Draft Genome Sequence of a Rare Smut Relative, Tilletiaria anomala UBC 951
Toome, Merje; Kuo, Alan; Henrissat, Bernard; ...
2014-06-12
We present the draft genome sequence of the smut fungus Tilletiaria anomala UBC 951 (Basidiomycota, Ustilaginomycotina). The sequenced genome size is 18.7 Mb, consisting of 289 scaffolds and a total of 6,810 predicted genes. This is the first genome sequence published for a fungus in the order Georgefisheriales (Exobasidiomycetes).
Two-Stage orders sequencing system for mixed-model assembly
NASA Astrophysics Data System (ADS)
Zemczak, M.; Skolud, B.; Krenczyk, D.
2015-11-01
In the paper, the authors focus on the NP-hard problem of orders sequencing, formulated similarly to Car Sequencing Problem (CSP). The object of the research is the assembly line in an automotive industry company, on which few different models of products, each in a certain number of versions, are assembled on the shared resources, set in a line. Such production type is usually determined as a mixed-model production, and arose from the necessity of manufacturing customized products on the basis of very specific orders from single clients. The producers are nowadays obliged to provide each client the possibility to determine a huge amount of the features of the product they are willing to buy, as the competition in the automotive market is large. Due to the previously mentioned nature of the problem (NP-hard), in the given time period only satisfactory solutions are sought, as the optimal solution method has not yet been found. Most of the researchers that implemented inaccurate methods (e.g. evolutionary algorithms) to solving sequencing problems dropped the research after testing phase, as they were not able to obtain reproducible results, and met problems while determining the quality of the received solutions. Therefore a new approach to solving the problem, presented in this paper as a sequencing system is being developed. The sequencing system consists of a set of determined rules, implemented into computer environment. The system itself works in two stages. First of them is connected with the determination of a place in the storage buffer to which certain production orders should be sent. In the second stage of functioning, precise sets of sequences are determined and evaluated for certain parts of the storage buffer under certain criteria.
Phosphorylation-dependent mineral-type specificity for apatite-binding peptide sequences.
Addison, William N; Miller, Sharon J; Ramaswamy, Janani; Mansouri, Ahmad; Kohn, David H; McKee, Marc D
2010-12-01
Apatite-binding peptides discovered by phage display provide an alternative design method for creating functional biomaterials for bone and tooth tissue repair. A limitation of this approach is the absence of display peptide phosphorylation--a post-translational modification important to mineral-binding proteins. To refine the material specificity of a recently identified apatite-binding peptide, and to determine critical design parameters (net charge, charge distribution, amino acid sequence and composition) controlling peptide affinity for mineral, we investigated the effects of phosphorylation and sequence scrambling on peptide adsorption to four different apatites (bone-like mineral, and three types of apatite containing initially 0, 5.6 and 10.5% carbonate). Phosphorylation of the VTKHLNQISQSY peptide (VTK peptide) led to a 10-fold increase in peptide adsorption (compared to nonphosphorylated peptide) to bone-like mineral, and a 2-fold increase in adsorption to the carbonated apatite, but there was no effect of phosphorylation on peptide affinity to pure hydroxyapatite (without carbonate). Sequence scrambling of the nonphosphorylated VTK peptide enhanced its specificity for the bone-like mineral, but scrambled phosphorylated VTK peptide (pVTK) did not significantly alter mineral-binding suggesting that despite the importance of sequence order and/or charge distribution to mineral-binding, the enhanced binding after phosphorylation exceeds any further enhancement by altered sequence order. Osteoblast culture mineralization was dose-dependently inhibited by pVTK and to a significantly lesser extent by scrambled pVTK, while the nonphosphorylated and scrambled forms had no effect, indicating that inhibition of osteoblast mineralization is dependent on both peptide sequence and charge. Computational modeling of peptide-mineral interactions indicated a favorable change in binding energy upon phosphorylation that was unaffected by scrambling. In conclusion, phosphorylation of serine residues increases peptide specificity for bone-like mineral, whose adsorption is determined primarily by sequence composition and net charge as opposed to sequence order. However, sequence order in addition to net charge modulates the mineralization of osteoblast cultures. The ability of such peptides to inhibit mineralization has potential utility in the management of pathologic calcification. Copyright © 2010 Elsevier Ltd. All rights reserved.