Science.gov

Sample records for local strain distribution

  1. Local Strain Distributions in Silicon-on-Insulator/Stressor-Film Composites

    SciTech Connect

    Kalenci,O.; Murray, C.; Noyan, I.

    2008-01-01

    We have used scanning microdiffraction topography to determine the mismatch strains and local strain distributions in silicon-on-insulator substrates with overlying thin film stressor features. Analysis of the data using the edge-force model and the Ewald-von Laue dynamical diffraction theory shows the presence of an exponential strain gradient in the vicinity of the buried SiO2/Si-substrate interface. We show that, for simple geometries, it is possible to deduce the sign of the mismatch strain simply by inspecting the microdiffraction topograph.

  2. Visualising the strain distribution in suspended two-dimensional materials under local deformation

    PubMed Central

    Elibol, Kenan; Bayer, Bernhard C.; Hummel, Stefan; Kotakoski, Jani; Argentero, Giacomo; Meyer, Jannik C.

    2016-01-01

    We demonstrate the use of combined simultaneous atomic force microscopy (AFM) and laterally resolved Raman spectroscopy to study the strain distribution around highly localised deformations in suspended two-dimensional materials. Using the AFM tip as a nanoindentation probe, we induce localised strain in suspended few-layer graphene, which we adopt as a two-dimensional membrane model system. Concurrently, we visualise the strain distribution under and around the AFM tip in situ using hyperspectral Raman mapping via the strain-dependent frequency shifts of the few-layer graphene’s G and 2D Raman bands. Thereby we show how the contact of the nm-sized scanning probe tip results in a two-dimensional strain field with μm dimensions in the suspended membrane. Our combined AFM/Raman approach thus adds to the critically required instrumental toolbox towards nanoscale strain engineering of two-dimensional materials. PMID:27346485

  3. Visualising the strain distribution in suspended two-dimensional materials under local deformation

    NASA Astrophysics Data System (ADS)

    Elibol, Kenan; Bayer, Bernhard C.; Hummel, Stefan; Kotakoski, Jani; Argentero, Giacomo; Meyer, Jannik C.

    2016-06-01

    We demonstrate the use of combined simultaneous atomic force microscopy (AFM) and laterally resolved Raman spectroscopy to study the strain distribution around highly localised deformations in suspended two-dimensional materials. Using the AFM tip as a nanoindentation probe, we induce localised strain in suspended few-layer graphene, which we adopt as a two-dimensional membrane model system. Concurrently, we visualise the strain distribution under and around the AFM tip in situ using hyperspectral Raman mapping via the strain-dependent frequency shifts of the few-layer graphene’s G and 2D Raman bands. Thereby we show how the contact of the nm-sized scanning probe tip results in a two-dimensional strain field with μm dimensions in the suspended membrane. Our combined AFM/Raman approach thus adds to the critically required instrumental toolbox towards nanoscale strain engineering of two-dimensional materials.

  4. STRAIN LOCALIZATION IN IRRADIATED MATERIALS

    SciTech Connect

    Byun, Thak Sang; Hashimoto, Naoyuki

    2006-01-01

    Low temperature irradiation can significantly harden metallic materials and often lead to strain localization and ductility loss in deformation. This paper provides a review on the radiation effects on the deformation of metallic materials, focusing on microscopic and macroscopic strain localization phenomena. The microscopic strain localization often observed in irradiated materials are dislocation channeling and deformation twinning, in which dislocation glides are evenly distributed and well confined in the narrow bands, usually a fraction of a micron wide. Dislocation channeling is a common strain localization mechanism observed virtually in all irradiated metallic materials with ductility, while deformation twinning is an alternative localization mechanism occurring only in low stacking fault energy materials. In some high stacking fault energy materials where cross slip is easy, curved and widening channels can be formed depending on dose and stress state. Irradiation also prompts macroscopic strain localization (or plastic instability). It is shown that the plastic instability stress and true fracture stress are nearly independent of irradiation dose if there is no radiation-induced phase change or embrittlement. A newly proposed plastic instability criterion is that the metals after irradiation show necking at yield when the yield stress exceeds the dose-independent plastic instability stress. There is no evident relationship between the microscopic and macroscopic strain localizations; which is explained by the long-range back-stress hardening. It is proposed that the microscopic strain localization is a generalized phenomenon occurring at high stress.

  5. Three-Dimensional pore space and strain localization distribution in Majella limestone.

    NASA Astrophysics Data System (ADS)

    Ji, Yuntao; Hall, Stephen; Baud, Patrick; Wond, Teng-fong

    2015-04-01

    Warp code to perform 3D volumetric DIC on the pairs of images to derive the permanent displacement field and the full 3D strain tensor field of each sample. Our DIC analysis has revealed the structure of high-angle compacting shear bands in the transitional regime in Majella limestone. Our DIC data also indicate an increase of geometric complexity with increasing confinement - from a planar shear band, to a curvilinear band, and ultimately a diffuse multiplicity of bands, before shear localization is inhibited as the failure mode completes the transition to delocalized cataclastic flow.

  6. The influence of phase and grain size distribution on the dynamics of strain localization in polymineralic rocks

    NASA Astrophysics Data System (ADS)

    Czaplińska, Daria; Piazolo, Sandra; Zibra, Ivan

    2015-03-01

    Deformation microstructures of a quartzo-feldspathic pegmatite deformed at mid-crustal levels allow the study of the dynamics of strain localization in polymineralic rocks. Strain localization results from (i) difference in grain sizes between phases, both original and obtained during fluid present reactions and (ii) initial compositional banding. Due to original difference in grain size stress concentrates in the initially finer-grained phases resulting in their intense grain size reduction via subgrain rotation recrystallization (SGR). When the grain size is sufficiently reduced through either deformation or interphase coupled dissolution-precipitation replacement of the coarse grained feldspar, aggregates start to deform by dominantly diffusion accommodated grain boundary sliding (GBS). Phase mixing inhibits grain growth and sustains a grain size allowing GBS. Consequently, discontinuous microscale shear zones form locally within initially coarse grained areas. At the same time difference in strain rate between feldspar-rich and quartz-rich domains needs to be accommodated at domain boundaries. This results in the formation of continuous mesoscale shear zones deformed by GBS. Once these are formed, deformation in the coarse grained parts is arrested and strain is mainly accommodated in the mesoscale shear zones resulting in "superplastic" behaviour consistent with diffusion creep.

  7. How is strain localized in a meta-granitoid, mid-crustal basement section? Spatial distribution of deformation in the central Aar massif (Switzerland)

    NASA Astrophysics Data System (ADS)

    Wehrens, P.; Baumberger, R.; Berger, A.; Herwegh, M.

    2017-01-01

    This study investigates strain distribution in granitoid rocks formerly in the middle crust in the Central Aar massif, Switzerland and places the deformation behavior in the tectonic framework of the Alpine orogeny. Strain is heterogeneously distributed in terms of strain partitioning forming several hundreds of closely spaced shear zones (SZ) (>80 SZ/km with SZ thicknesses <10 cm; about 10 SZ/km with SZ thicknesses of 0.5-10 m) separating 3D bodies of low to moderate background strain. Both the degree of background-strain intensity as well as the number of shear zones increases from granitic to granodioritic host rocks and is controlled by primary variations in the mica content between 10 and 15 vol% (granodiorite) and <8 vol% (granite). Shear zones evolved from ductile shearing in granodiorites, whereas they often nucleated from fractures in the stronger granites. The majority of the steep shear zones preferentially accommodated upward motion by the southern block leading to an increase in peak metamorphic conditions from 250 °C in the North to 450 °C in the South of the Aar massif. The shear zones initiated at about 18-20 km depths during a stage of crustal thickening (Handegg phase). Subsequent deformation reactivated some shear zones with a gradual transition from reverse dip-slip over oblique-slip to strike-slip shear zones under local transpressional conditions (Oberaar phase).

  8. Subcellular localization and clues for the function of the HetN factor influencing heterocyst distribution in Anabaena sp. strain PCC 7120.

    PubMed

    Corrales-Guerrero, Laura; Mariscal, Vicente; Nürnberg, Dennis J; Elhai, Jeff; Mullineaux, Conrad W; Flores, Enrique; Herrero, Antonia

    2014-10-01

    In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, heterocysts are formed in the absence of combined nitrogen, following a specific distribution pattern along the filament. The PatS and HetN factors contribute to the heterocyst pattern by inhibiting the formation of consecutive heterocysts. Thus, inactivation of any of these factors produces the multiple contiguous heterocyst (Mch) phenotype. Upon N stepdown, a HetN protein with its C terminus fused to a superfolder version of green fluorescent protein (sf-GFP) or to GFP-mut2 was observed, localized first throughout the whole area of differentiating cells and later specifically on the peripheries and in the polar regions of mature heterocysts, coinciding with the location of the thylakoids. Polar localization required an N-terminal stretch comprising residues 2 to 27 that may represent an unconventional signal peptide. Anabaena strains expressing a version of HetN lacking this fragment from a mutant gene placed at the native hetN locus exhibited a mild Mch phenotype. In agreement with previous results, deletion of an internal ERGSGR sequence, which is identical to the C-terminal sequence of PatS, also led to the Mch phenotype. The subcellular localization in heterocysts of fluorescence resulting from the fusion of GFP to the C terminus of HetN suggests that a full HetN protein is present in these cells. Furthermore, the full HetN protein is more conserved among cyanobacteria than the internal ERGSGR sequence. These observations suggest that HetN anchored to thylakoid membranes in heterocysts may serve a function besides that of generating a regulatory (ERGSGR) peptide.

  9. Optical Fibers Would Sense Local Strains

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Proposed fiber-optic transducers measure local strains. Includes lead-in and lead-out lengths producing no changes in phase shifts, plus short sensing length in which phase shift is sensitive to strain. Phase shifts in single-mode fibers vary with strains. In alternative version, multiple portions of optical fiber sensitive to strains characteristic of specific vibrational mode of object. Same principle also used with two-mode fiber.

  10. Distribution of Nontuberculous Mycobacteria strains

    PubMed Central

    2013-01-01

    Aim Mycobacteria other than tuberculosis (MOTT) cause increasingly serious infections especially in immunosuppressive patients by direct transmission from the environment or after colonization. However, identification of these species is difficult because of the cost and difficulties in defining to species level. Identification and distribution of these species can help clinician in the choice of treatment. Materials and methods A total of 90 MOTT strains obtained from four different centers were included in the study. These strains were identified by sequence analysis of 16S rRNA and Hsp65 genetic regions. Results Accordingly, within the 90 MOTT strains, 17 different species were identified. In order of frequency, these species were M. gordonea (n = 21), M. abscessus (n = 13), M. lentiflavum (n = 9), M. fortuitum (n = 8), M. intracellulare (n = 6), M. kumamotonense (n = 6), M. neoaurum (n = 5), M. chimaera (n = 5), M. alvei (n = 5), M. peregrinum (n = 3), M. canariasense (n = 3), M. flavescens (n = 1), M. mucogenicum (n = 1), M. chelona (n = 1), M. elephantis (n = 1), M. terrae (n = 1) and M. xenopi (n = 1). Most frequently identified MOTT species according to the geographical origin were as follows: M. abscessus was the most common species either in Istanbul or Malatya regions (n = 6, n = 6, consequently). While M. kumamotonense was the most frequent species isolated from Ankara region (n = 6), M. gordonea was the most common for Samsun region (n = 14). Conclusion Our study revealed that frequency of MOTT varies depending on the number of clinical samples and that frequency of these species were affected by the newly identified species as a result of the use of novel molecular methods. In conclusion, when establishing diagnosis and treatment methods, it is important to know that infections caused by unidentified MOTT species may vary according to the regions in Turkey. The results

  11. Granular materials: constitutive equations and strain localization

    NASA Astrophysics Data System (ADS)

    Anand, L.; Gu, C.

    2000-08-01

    Strain localization into shear bands is commonly observed in natural soil masses, as well as in human-built embankments, footings, retaining walls and other geotechnical structures. Numerical predictions for the process of shear band formation are critically dependent on the constitutive equations employed. In this paper, the plane strain "double-shearing" constitutive model (e.g., Spencer, A.J.M., 1964. A theory of the kinematics of ideal soils under plane strain conditions. Journal of the Mechanics and Physics of Solids 12, 337-351; Spencer, A.J.M., 1982, Deformation of ideal granular materials. In: Hopkins, H.G., Sewell, M.J. (Eds.), Mechanics of Solids. Pergamon Press, Oxford and New York, pp. 607-652; Mehrabadi, M.M., Cowin, S.C., 1978. Initial planar deformation of dilatant granular materials. Journal of the Mechanics and Physics of Solids 26, 269-284; Nemat-Nasser, S., Mehrabadi, M.M., Iwakuma, T. 1981. On certain macroscopic and microscopic aspects of plastic flow of ductile materials. In: Nemat-Nasser, S. (Ed.), Three-dimensional Constitutive Relations and Ductile Fracture. North-Holland, Amsterdam, pp. 157-172; Anand, L., 1983. Plane deformations of ideal granular materials. Journal of the Mechanics and Physics of Solids 31, 105-122) is generalized to three dimensions including the effects of elastic deformation and pre-peak behavior. The constitutive model is implemented in a finite element program and is used to predict the formation of shear bands in plane strain compression, and plane strain cylindrical cavity expansion. The predictions from the model are shown to be in good quantitative agreement with the recent experiments of Han, C., Drescher, A., (1993. Shear bands in biaxial tests on dry coarse sand. Soils and Foundations 33, 118-132) and Alsiny, H., Vardoulakis, I., Drescher, A., (1992. Deformation localization in cavity inflation experiments on dry sand. Geotechnique 42, 395-410) on a dry sand. The constitutive model is also used to predict the

  12. Time-resolved local strain tracking microscopy for cell mechanics

    NASA Astrophysics Data System (ADS)

    Aydin, O.; Aksoy, B.; Akalin, O. B.; Bayraktar, H.; Alaca, B. E.

    2016-02-01

    A uniaxial cell stretching technique to measure time-resolved local substrate strain while simultaneously imaging adherent cells is presented. The experimental setup comprises a uniaxial stretcher platform compatible with inverted microscopy and transparent elastomer samples with embedded fluorescent beads. This integration enables the acquisition of real-time spatiotemporal data, which is then processed using a single-particle tracking algorithm to track the positions of fluorescent beads for the subsequent computation of local strain. The present local strain tracking method is demonstrated using polydimethylsiloxane (PDMS) samples of rectangular and dogbone geometries. The comparison of experimental results and finite element simulations for the two sample geometries illustrates the capability of the present system to accurately quantify local deformation even when the strain distribution is non-uniform over the sample. For a regular dogbone sample, the experimentally obtained value of local strain at the center of the sample is 77%, while the average strain calculated using the applied cross-head displacement is 48%. This observation indicates that considerable errors may arise when cross-head measurement is utilized to estimate strain in the case of non-uniform sample geometry. Finally, the compatibility of the proposed platform with biological samples is tested using a unibody PDMS sample with a well to contain cells and culture media. HeLa S3 cells are plated on collagen-coated samples and cell adhesion and proliferation are observed. Samples with adherent cells are then stretched to demonstrate simultaneous cell imaging and tracking of embedded fluorescent beads.

  13. Strain localization in compressed ZrO2(Y2O3) ceramics

    NASA Astrophysics Data System (ADS)

    Barannikova, S. A.; Buyakova, S. P.; Zuev, L. B.; Kul'Kov, S. N.

    2007-06-01

    Spatiotemporal distributions of local components of the distortion tensor of a nonplastic material—yttria partially stabilized tetragonal zirconia (YTZ) ceramics—have been studied under active compressive straining conditions using double-exposure speckle photography techniques. The strain localization patterns are presented and the features of macroscopic strain inhomogeneity in the elastic state of YTZ ceramics are considered.

  14. Features of plastic strain localization at the yield plateau in Hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Barannikova, S. A.; Zuev, L. B.

    2008-07-01

    Spatiotemporal distributions of local components of the plastic distortion tensor in Hadfield steel single crystals oriented for single twinning have been studied under active tensile straining conditions using the double-exposure speckle photography technique. Features of the macroscopically inhomogeneous strain localization at the yield plateau are considered. Relations between local components of the plastic distortion tensor in the zone of strain localization are analyzed.

  15. Distributed strain monitoring for bridges: temperature effects

    NASA Astrophysics Data System (ADS)

    Regier, Ryan; Hoult, Neil A.

    2014-03-01

    To better manage infrastructure assets as they reach the end of their service lives, quantitative data is required to better assess structural behavior and allow for more informed decision making. Distributed fiber optic strain sensors are one sensing technology that could provide comprehensive data for use in structural assessments as these systems potentially allow for strain to be measured with the same accuracy and gage lengths as conventional strain sensors. However, as with many sensor technologies, temperature can play an important role in terms of both the structure's and sensor's performance. To investigate this issue a fiber optic distributed strain sensor system was installed on a section of a two span reinforced concrete bridge on the TransCanada Highway. Strain data was acquired several times a day as well as over the course of several months to explore the effects of changing temperature on the data. The results show that the strain measurements are affected by the bridge behavior as a whole. The strain measurements due to temperature are compared to strain measurements that were taken during a load test on the bridge. The results show that even a small change in temperature can produce crack width and strain changes similar to those due to a fully loaded transport truck. Future directions for research in this area are outlined.

  16. Transient dynamic distributed strain sensing using photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Samad, Shafeek A.; Hegde, G. M.; Roy Mahapatra, D.; Hanagud, S.

    2014-02-01

    A technique to determine the strain field in one-dimensional (1D) photonic crystal (PC) involving high strain rate, high temperature around shock or ballistic impact is proposed. Transient strain sensing is important in aerospace and other structural health monitoring (SHM) applications. We consider a MEMS based smart sensor design with photonic crystal integrated on a silicon substrate for dynamic strain correlation. Deeply etched silicon rib waveguides with distributed Bragg reflectors are suitable candidates for miniaturization of sensing elements, replacing the conventional FBG. Main objective here is to investigate the effect of non-uniform strain localization on the sensor output. Computational analysis is done to determine the static and dynamic strain sensing characteristics of the 1D photonic crystal based sensor. The structure is designed and modeled using Finite Element Method. Dynamic localization of strain field is observed. The distributed strain field is used to calculated the PC waveguide response. The sensitivity of the proposed sensor is estimated to be 0.6 pm/μɛ.

  17. Localized long gage fiber optic strain sensors

    NASA Astrophysics Data System (ADS)

    Fan, N. Y.; Huang, S.; Measures, R. M.

    1998-04-01

    Long gage length integrated strain sensing is frequently required in structural measurement applications. An optical fiber structural sensing system based on a low-coherence Michelson interferometer was built and shown to be of low cost and capable of absolute measurement and moderate accuracy for quasistatic measurement of strain or structural deformations. This type of sensor was found to be useful for monitoring the hoop-strain around structures like shells, cylinders and columns. We have also shown that localization of the sensing section of an optical fiber can be achieved through the use of one or more Bragg gratings. In effect, the sensing section of the optical fiber acts as a Fabry-Pérot interferometer. When a low-coherence source is used, interference is only attained when the cavity length of this Fabry-Pérot matches the optical path difference (OPD) between the two mirrors of a fiber optic Michelson interferometer. Changes in the sensing length are determined from the commensurate changes that must be made to the reference Michelson interferometer to maintain some fixed degree of interference. Recently, we have developed a novel single-ended localized fiber optic sensor for making absolute strain measurements over arbitrary (cm to m) long gage lengths using a tunable laser. The sensor's gage is again defined between two in-fiber broad-bandwidth Bragg gratings or one grating and the mirror coated end of the same fiber. For this sensing system the change in the OPD of the sensing Fabry-Pérot interferometer with respect to the OPD of a fixed Michelson reference interferometer is determined from the measurement of the phase change, recorded by a low-pass filtered photodetector, associated with a known sweep of the laser wavelength. This tunable laser demodulation scheme avoids the use of moving parts and lends itself to a compact, portable system. This type of sensor is particularly well suited for certain structural applications, such as monitoring the

  18. Strain localization along micro-boudinage

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Eleftheria; Rogowitz, Anna; Grasemann, Bernhard; Habler, Gerlinde; Soukis, Konstantinos; Schneider, David

    2016-04-01

    The progressive development of boudinage strongly depends on the kinematic framework and the mechanical properties of the boudinaged layer and host rock. A common type of boudin, which can often be observed in natural examples, is the domino boudinage. This boudin type typically reflects a strong competency contrast of the interlayered rock sequences. Numerical models have shown that a relatively high amount of strain is necessary in order to develop separated boudin segments. With ongoing deformation and consequent rotation of the individual segments into the shear direction, the terminal sectors tend to experience a higher rotation rate, progressively resulting in isoclinal folding. Whereas most investigations of domino boudinage are cm- to dm-scale examples, we examined one order of magnitude smaller examples, where the deformation mechanism between the segments and the matrix could be directly investigated. The samples are from Kalymnos Island located in the southeastern Aegean Sea (Dodecanese islands-Greece). The analysed sample belongs to the upper unit of the pre-Alpidic basement, which consists of a succession of marbles, which were deformed under lower-greenschist facies conditions during the Variscan orogeny. 40Ar/39Ar geochronological dating on white micas in the adjacent upper quartz-mica schists unit yielded deformation ages between 240 and 334 Ma. The calcitic marble comprises boudinaged dolomite layers with thickness varying between 1 and 20 mm. Progressive deformation of the boudinaged layers resulted in the development of ptygmatic folds with fold axes parallel to the stretching lineation. The grain size from the host rock marbles (10 μm) decreases towards the boudinaged dolomite layer (5 μm) indicating strain localization adjacent to the dolomite layers. Furthermore, strain is localized within micro shear zones which nucleate in the necks of rotated boudin segments. Crystallographic preferred orientations (CPO) derived from electron backscatter

  19. Deformation mechanisms of antigorite and strain localization during dehydration

    NASA Astrophysics Data System (ADS)

    Proctor, B.; Hirth, G.

    2012-12-01

    Antigorite, the high temperature and pressure serpentine polytype, is thought to exist along subduction zones between the mantle wedge and the subducting oceanic crust (e.g., Wada et al., 2008). Understanding how the rheology of antigorite changes with depth along the slab may be key to understanding seismicity along the upper plate boundary (e.g., Hacker et al., 2003). To explore this phenomenon we are conducting constant strain rate general shear experiments on antigorite-rich serpentinite at shear strain rates of 5*10^-7/s to 10^-5/s, confining pressures from 1-2 GPa and temperatures from 400-700°C. We are using microstructural observations to constrain deformation mechanisms and investigate conditions where strain localization occurs. In some experiments we employ either strain rate stepping or temperature ramping to examine the stress dependence of viscosity (i.e., determine stress exponent) and syntectonic reaction during heating. The results of our general shear experiments suggest the rheologic behavior of antigorite varies significantly with changes in temperature and pressure, similar to previous work in axial compression (e.g., Chernak and Hirth, 2010). At 400°C and 1GPa confining pressure antigorite deforms initially via steady-state ductile flow with strengths as high as 1.4 GPa at a strain rate of 10^-5/s. With increasing strain we observe weakening events that correlate with the development of shear fractures within the sample. At 2GPa pressure, the flow strength of antigorite increases to ~1.8 GPa at 10^-6/s and deformation is distributed at low strain. Strain rate stepping at these conditions suggests a very weak strain rate dependence on strength with a 5-10% change in stress for an order of magnitude strain rate step. At 700C and 1 GPa, above the thermal stability of antigorite, the steady-state strength is ~120 MPa at 10^-5/s. In these samples olivine becomes the dominant phase as antigorite progressively reacts to olivine and pyroxene. At the

  20. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    DOE PAGES

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; ...

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less

  1. Strengthening and toughening of layered Ti-Al metal composites by controlling local strain contribution

    NASA Astrophysics Data System (ADS)

    Huang, M.; Chen, J. S.; Wu, H.; Fan, G. H.; Geng, L.

    2017-07-01

    Layered Ti-Al metal composites (LMCs) with different thickness ratios of the Ti and Al layers were fabricated by hot-rolling and annealing. To study the effect of layer thickness on the mechanical properties of LMCs from the viewpoint of local strain distribution, the strain evolution of LMCs was investigated via in-situ tensile testing. It is found that the mechanical properties of LMCs are correlated with the degree of strain localization. Suppressing strain localization during plastic deformation is crucial to achieve the goal of both strengthening and toughening in LMCs. Additionally, the layered structure can facilitate the redistribution of strain localization, and the transfer of strain localization can be effectively controlled by changing the thickness ratio of the Ti and Al layers.

  2. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass

    SciTech Connect

    Wu, Yuan; Bei, Hongbin; Wang, Yanli; Lu, Zhaoping; George, Easo P.; Gao, Yanfei

    2015-05-16

    Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It is found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.

  3. Strain localization and dynamic recrystallization in the ice-air aggregate: a numerical study

    NASA Astrophysics Data System (ADS)

    Steinbach, Florian; Bons, Paul D.; Griera, Albert; Jansen, Daniela; Llorens, Maria-Gema; Roessiger, Jens; Weikusat, Ilka

    2016-12-01

    We performed numerical simulations on the microdynamics of ice with air inclusions as a second phase. Our aim was to investigate the rheological effects of air inclusions and explain the onset of dynamic recrystallization in the permeable firn. The simulations employ a full-field theory crystal plasticity code coupled to codes simulating dynamic recrystallization processes and predict time-resolved microstructure evolution in terms of lattice orientations, strain distribution, grain sizes and grain-boundary network. Results show heterogeneous deformation throughout the simulations and indicate the importance of strain localization controlled by air inclusions. This strain localization gives rise to locally increased energies that drive dynamic recrystallization and induce heterogeneous microstructures that are coherent with natural firn microstructures from EPICA Dronning Maud Land ice coring site in Antarctica. We conclude that although overall strains and stresses in firn are low, strain localization associated with locally increased strain energies can explain the occurrence of dynamic recrystallization.

  4. Strain localization driven by structural relaxation in sheared amorphous solids.

    PubMed

    Jagla, E A

    2007-10-01

    A two dimensional amorphous material is modeled as an assembly of mesoscopic elemental pieces coupled together to form an elastically coherent structure. Plasticity is introduced as the existence of different minima in the energy landscape of the elemental constituents. Upon the application of an external strain rate, the material shears through the appearance of elemental slip events with quadrupolar symmetry. When the energy landscape of the elemental constituents is kept fixed, the slip events distribute uniformly throughout the sample, producing on average a uniform deformation. However, when the energy landscape at different spatial positions can be rearranged dynamically to account for structural relaxation, the system develops inhomogeneous deformation in the form of shear bands at low shear rates, and stick-slip-like motion at the shear bands for the lowest shear rates. The origin of strain localization is traced back to a region of negative correlation between strain rate and stress, which appears only if structural relaxation is present. The model also reproduces other well known effects in the rheology of amorphous materials, as a stress peak in a strain rate controlled experiment staring from rest, and the increase of the maximum of this peak with sample age.

  5. Local strain-induced band gap fluctuations and exciton localization in aged WS2 monolayers

    NASA Astrophysics Data System (ADS)

    Krustok, J.; Kaupmees, R.; Jaaniso, R.; Kiisk, V.; Sildos, I.; Li, B.; Gong, Y.

    2017-06-01

    Optical properties of aged WS2 monolayers grown by CVD method on Si/SiO2 substrates are studied using temperature dependent photoluminescence and reflectance contrast spectroscopy. Aged WS2 monolayers have a typical surface roughness about 0.5 nm and, in addition, a high density of nanoparticles (nanocaps) with the base diameter about 30 nm and average height of 7 nm. The A-exciton of aged monolayer has a peak position at 1.951 eV while in as-grown monolayer the peak is at about 24 meV higher energy at room temperature. This red-shift is explained using local tensile strain concept, where strain value of 2.1% was calculated for these nanocap regions. Strained nanocaps have lower band gap energy and excitons will funnel into these regions. At T=10K a double exciton and trion peaks were revealed. The separation between double peaks is about 20 meV and the origin of higher energy peaks is related to the optical band gap energy fluctuations caused by random distribution of local tensile strain due to increased surface roughness. In addition, a wide defect related exciton band XD was found at about 1.93 eV in all aged monolayers. It is shown that the theory of localized excitons describes well the temperature dependence of peak position and halfwidth of the A-exciton band. The possible origin of nanocaps is also discussed.

  6. Experimental and Computational Investigations of Strain Localization in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Bharathula, Ashwini

    non-localized contributions at low strains. Moreover, the magnitude of strain bursts was found to decrease with decrease in specimen size. Furthermore, Weibull statistical analysis was performed to investigate the effect of specimen size on yield strength in this metallic glass. It was revealed that the dispersion in strengths increases dramatically with decrease in sample size, attributed to the size distribution of the defects responsible for shear banding. The findings are crucial in designing systems which promote plasticity in metallic glasses by suppressing the shear-band instability and also in direct application of these materials for structural purposes as small components in micro- and nano-scale systems. On the computational front, Molecular Dynamics (MD) simulations have been employed to generate Zr-Cu metallic glass structures. In order to analyze and better understand and visualize the concepts of "free" volume and flow defects in metallic glasses, an electron density model was developed as an upgrade to the traditional hard sphere approaches. Simple tension and shear modes of deformation were simulated using MD in Zr-Cu system, and role of open volume in deformation was studied using the electron density model. In uniaxial tension simulations, effect of temperature and deformation rate is examined, and the process of accumulation of free volume to the point of catastrophic failure is visualized using the Electron Density model. In shear simulations, we find that the as-quenched glass structures undergo homogeneous deformation and do not exhibit any strain localization. However, it is found that by incorporating a cylindrical void in the glass structure as a source of "free" volume, it is possible to induce strain localization. It was found that a critical void diameter of 8A was required to successfully initialize strain localization in this system.

  7. The role of local strains from prior cold work on stress corrosion cracking

    NASA Astrophysics Data System (ADS)

    Ulaganathan, Jaganathan

    Several studies have recently reported that cold working exacerbates stress corrosion cracking (SCC) of materials in various environments, including those in which they were previously thought to be immune. While these studies usually consider cold work as a homogeneous effect, the presence of grain boundaries results in local strain concentrations that are inhomogeneously distributed within the microstructure. In order to understand the underlying mechanisms by which the local strains generated by cold work influences SCC, α-brass and Alloy 600 were used in this study. The microscopic changes in the local strains caused by cold work and by SCC were measured using electron backscatter diffraction (EBSD) and polychromatic X-ray microdiffraction (PXM). While the plastic strains were qualitatively expressed through the local misorientation calculated from the orientation data measured by both EBSD and PXM, the elastic strains were determined from the Laue patterns measured by PXM. The interaction between the local strains, and the crack initiation and propagation during SCC was studied by comparing the strain distribution from the same area measured before cold work, after cold work, and again after SCC. In this way, apart from obtaining insights on the interaction, the relative importance of pre-existing strain concentrations and those created by crack propagation can be identified. Additionally, statistical analysis of the EBSD data from uncracked and cracked grain boundaries in Alloy 600 showed the susceptibility of the boundaries to increase when they were surrounded by high local strain concentrations and when the grains sharing the boundary had similar deformation tendency, but to be independent of the grain boundary angle. Finally, one of the contributors for the changes in the strain distribution during SCC can be the corrosion process itself which was examined by intermittently measuring the changes in local strains caused by intergranular corrosion on an

  8. EVALUATION OF LOCAL STRAIN EVOLUTION FROM METALLIC WHISKER FORMATION

    SciTech Connect

    Hoffman, E.; Lam, P.

    2011-05-11

    Evolution of local strain on electrodeposited tin films upon aging has been monitored by digital image correlation (DIC) for the first time. Maps of principal strains adjacent to whisker locations were constructed via comparing pre- and post-growth scanning electron microscopy (SEM) images. Results showed that the magnitude of the strain gradient plays an important role in whisker growth. DIC visualized the dynamic growth process in which the alteration of strain field has been identified to cause growth of subsequent whiskers.

  9. Interseismic Strain Localization in the San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Lindsey, Eric O.; Sahakian, Valerie J.; Fialko, Yuri; Bock, Yehuda; Barbot, Sylvain; Rockwell, Thomas K.

    2014-11-01

    We investigate interseismic deformation across the San Jacinto fault at Anza, California where previous geodetic observations have indicated an anomalously high shear strain rate. We present an updated set of secular velocities from GPS and InSAR observations that reveal a 2-3 km wide shear zone deforming at a rate that exceeds the background strain rate by more than a factor of two. GPS occupations of an alignment array installed in 1990 across the fault trace at Anza allow us to rule out shallow creep as a possible contributor to the observed strain rate. Using a dislocation model in a heterogeneous elastic half space, we show that a reduction in shear modulus within the fault zone by a factor of 1.2-1.6 as imaged tomographically by Allam and Ben-Zion (Geophys J Int 190:1181-1196, 2012) can explain about 50 % of the observed anomalous strain rate. However, the best-fitting locking depth in this case (10.4 ± 1.3 km) is significantly less than the local depth extent of seismicity (14-18 km). We show that a deep fault zone with a shear modulus reduction of at least a factor of 2.4 would be required to explain fully the geodetic strain rate, assuming the locking depth is 15 km. Two alternative possibilities include fault creep at a substantial fraction of the long-term slip rate within the region of deep microseismicity, or a reduced yield strength within the upper fault zone leading to distributed plastic failure during the interseismic period.

  10. Local anisotropy in strained turbulence at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.; Speziale, C. G.

    1991-01-01

    It is shown that the hypothesis of local isotropy is implausible in the presence of significant mean rates of strain. In fact, it appears that in uniform shear flow near equilibrium, local isotropy can never constitute a systematic approximation, even in the limit of infinite Reynolds number. An estimate of the level of mean strain rate for which local isotropy is formally a good approximation is provided.

  11. Local structure of superconducting (La,Sr)2CuO4 under strain: Microscopic mechanism of strain-induced Tc variation

    NASA Astrophysics Data System (ADS)

    Oyanagi, H.; Tsukada, A.; Naito, M.; Saini, N. L.

    2007-01-01

    High-quality polarized x-ray absorption spectroscopy data for (La,Sr)2CuO4 thin-film single crystals reveal strain-dependent local disorder (in the oxygen radial distribution) that correlates with the superconducting critical temperature. The temperature-dependent in-plane oxygen displacement shows that local lattice distortion strongly depends on strain, i.e., the biaxial tensile strain develops domains with the bond-stretching-type local distortion which is weakened by the compressive strain. We suggest that the two-dimensional strain modifies electronic inhomogeneity that influences the superconducting critical temperature through superfluid density, rather than band structure effects.

  12. Formability Evaluation of Sheet Metals Based on Global Strain Distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Lin, Jianping; Min, Junying; Ye, You; Kang, Liugen

    2016-06-01

    According to the conventional methods for formability evaluation, e.g., forming limit curve (FLC), limit dome height, and total elongation, inconsistent results are observed when comparing the formability of four advanced high-strength steels (AHSS) with an ultimate tensile strength grade of 1000 MPa. The strain distribution analysis with the aid of digital image correlation technique shows that different uniform deformation capabilities of sheet metals under the same loading conditions are responsible for this inconsistency. In addition, metallurgical analysis suggests that inhomogeneous microstructure distribution and phase transformation during deformation in some materials play important roles in the uniform deformation capability of sheet metal. Limit strains on the commonly used FLC only relate to the major and minor strains of local deforming elements associated with the onset of necking. However, the formability of a sheet metal component is determined by the strain magnitudes of all deforming elements involved during the forming process. Hence, the formability evaluation of sheet metals from a global aspect is more applicable for practical engineering. A new method based on two indices (i.e., which represent global formability and uniform deformation capability, respectively) is proposed to evaluate the formability of sheet metals based on global strain distribution. The formability and evolution of deformation uniformity of the investigated AHSS at different stress states are studied with this new method. Compared with other formability evaluation methods, the new method is demonstrated to be more appropriate for practical engineering, and it is applicable to both in-plane and out-of-plane deformation. Additionally, the global formability of sheet metals can be more comprehensively understood with this new method.

  13. Strain localization and percolation of stable structure in amorphous solids.

    PubMed

    Shi, Yunfeng; Falk, Michael L

    2005-08-26

    Spontaneous strain localization occurs during mechanical tests of a model amorphous solid simulated using molecular dynamics. The degree of localization depends upon the extent of structural relaxation prior to mechanical testing. In the most rapidly quenched samples higher strain rates lead to increased localization, while the more gradually quenched samples exhibit the opposite strain rate dependence. This transition coincides with the k-core percolation of atoms with quasi-crystal-like short range order. The authors infer the existence of a related microstructural length scale.

  14. Localized Strain Bands Before Stress Drop - An Experimental Study

    NASA Astrophysics Data System (ADS)

    Ji, Y.; Zhuo, Y. Q.; Liu, L.; Ma, J.

    2016-12-01

    High frequency observation indicates that there is a meta-instability stage (MIS) between a fault reaching the peak differential stress and the onset of the final stress drop. MIS is crucial because a fault transits from "stick" to "slip" during it. If one can quantitatively analyze the spatial and temporal characteristics of the deformation field of a fault at MIS, the result will be of great significance both to fault mechanics and earthquake prediction study. In order to do so, a series of stick-slip experiments were conducted on a biaxial servo-controlled pressure machine. Digital images of the sample surfaces were captured by a high speed camera and processed using a digital image correlation method (DIC). In our study, sample images were captured at the rate of 1000 frame per second and the resolution of 2048 by 2048 in pixel. The displacement filed, strain filed and fault displacement were calculated from the captured images. Our data shows that (1) pre-sliding can be a two-step process, including a relative long and slow first step and a short and fast second one. (2) Localized strain bands were observed oblique or nearly perpendicular to the fault. A possible mechanism is that the pre-sliding is distributed heterogeneously along the fault, which means there are relatively adequately sliding segments and the less sliding ones, they become the constrain condition of deformation of the adjacent sub-region. The localized deformation band tends to radiate from the discontinuity point of sliding. While the adequately sliding segments are competing with the less sliding ones, the strain bands are evolving accordingly.

  15. Shear Weakening and Strain Localization in the Deeper Mantle?

    NASA Astrophysics Data System (ADS)

    Hernlund, J. W.

    2011-12-01

    Shear weakening and strain localization is an essential component of plate tectonics on Earth, and is ubiquitously observed in both crustal and mantle rocks exposed at Earth's surface at a variety of scales. However, it is commonly assumed that this process is only important in the lithosphere (because it would otherwise be strong and inhibit plate-like behavior), and that at greater depths the mantle's style of deformation is inherently diffuse and broadly distributed. This assumption strongly influences our view of processes in Earth's deep interior, such as styles of mantle mixing, and is the basis for the rheological formulation implemented in most mantle convection models. However, there are many possibilities that would permit shear localization at large scales, in a way that could alter our view of internal mantle deformation in important ways. One example is the possible presence of very weak rocks (e.g., owing to localized volatile enrichment) that may become sheared and stretched in flows to create effective weak zones between stronger bodies of rock. Another example is the possibility that weaker mineral phases in a rock can become sheared between stronger grains such that the weakest phase dominates the long-term dynamic processes operating in the mantle. Simple modeling of various scenarios reveals that differences in long-term behavior for shear localized mantle convection largely depend upon the scale of the shear zone. If the weak zones are large in scale, they acan persist over long time scales, and may be advected laterally away from the buoyancy centers where they are produced (giving rise to toroidal motion). On the other hand, if the weakening fabric occurs at the grain-scale, then the fabric can be healed by processes such as Ostwald ripening that operate on shorter time scales at higher temperatures. Regardless of the scale of shear zones, subduction of slabs through the lower mantle can occur relatively rapidly when accommodated by localized

  16. Discrete distributed strain sensing of intelligent structures

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.; Crawley, Edward F.

    1992-01-01

    Techniques are developed for the design of discrete highly distributed sensor systems for use in intelligent structures. First the functional requirements for such a system are presented. Discrete spatially averaging strain sensors are then identified as satisfying the functional requirements. A variety of spatial weightings for spatially averaging sensors are examined, and their wave number characteristics are determined. Preferable spatial weightings are identified. Several numerical integration rules used to integrate such sensors in order to determine the global deflection of the structure are discussed. A numerical simulation is conducted using point and rectangular sensors mounted on a cantilevered beam under static loading. Gage factor and sensor position uncertainties are incorporated to assess the absolute error and standard deviation of the error in the estimated tip displacement found by numerically integrating the sensor outputs. An experiment is carried out using a statically loaded cantilevered beam with five point sensors. It is found that in most cases the actual experimental error is within one standard deviation of the absolute error as found in the numerical simulation.

  17. Structural biomechanics modulate intramuscular distribution of locally delivered drugs.

    PubMed

    Wu, Peter I-Kung; Edelman, Elazer R

    2008-09-18

    As local drug delivery continues to emerge as a clinical force, so does understanding of its potentially narrow therapeutic window. Classic molecular transport studies are of value but do not typically account for the local nature of drug transport or the effects of regional dynamic function in target tissues like muscle that may undergo cyclical and variable mechanical motion and loading. We examined the impact of dynamic architecture on intramuscular drug distribution. We designed a tissue mounting technique and mechanical loading system that uniquely enables pharmacokinetics investigations in association with control of muscle biomechanics while preserving physiologic tissue architecture. The system was validated and used to elucidate the influence of architecture and controlled cyclic strain on intramuscular drug distribution. Rat soleus muscles underwent controlled deformations within a drug delivery chamber that preserved in vivo physiology. Penetration of 1mM 20 kDa FITC-dextran at planar surfaces of the soleus axial cross-section increased significantly from 0.52+/-0.09 mm under 80 min of static (0%) strain to 0.81+/-0.09 mm under cyclic (3 Hz, 0-20% peak-to-peak) strain, demonstrating the driving effect of cyclic loading on transport. Penetration at curved margins was 1.57- and 2.53-fold greater than at planar surfaces under static and cyclic strain, respectively, and was enhanced 1.6-fold more by cyclic strain, revealing architecturally dictated spatial heterogeneity in transport and modulation of motion dynamics. Architectural geometry and dynamics modulate the impact of mechanical loading on local drug penetration and intramuscular distribution. Future work will use the biomechanical test system to investigate mechanisms underlying transport effects of specific loading regimens. It is hoped that this work will initiate a broader understanding of intramuscular pharmacokinetics and guide local drug delivery strategies.

  18. Strain localization during deformation of Westerly granite

    NASA Technical Reports Server (NTRS)

    Brodsky, N. S.; Spetzler, H. A.

    1984-01-01

    A specimen of Westerly granite was cyclically loaded to near failure at 50 MPa confining pressure. Holographic interferometry provided detailed measurements of localized surface deformations during loading and unloading. The data are consistent with deformation occurring primarily elastically at low differential stress; in conjunction with one incipient fault zone between approximately 350 and 520 MPa differential stress; and in conjunction with a second incipient fault zone above 580 MPa and/or during creep. During unloading only one fault zone, that which is active at the intermediate stress levels during loading, is seen to recede.

  19. Distributed fiber optic strain sensor based on the Sagnac and Michelson interferometers

    NASA Astrophysics Data System (ADS)

    Udd, Eric

    1996-04-01

    By placing fiber optic gratings in a Sagnac loop a distributed strain sensor may be formed by using the light reflected from the fiber gratings as sources for balanced Michelson and Mach- Zehnder interferometers. In this manner the resulting fiber optic sensor is capable of measuring integrated strain over lengths determined by the fiber grating position, point strain and temperature at the fiber grating locations and localizing and measuring the position of a time varying signal such as an acoustic wave.

  20. Antibiotic susceptibility of bifidobacterial strains distributed in the Japanese market.

    PubMed

    Xiao, Jin-Zhong; Takahashi, Sachiko; Odamaki, Toshitaka; Yaeshima, Tomoko; Iwatsuki, Keiji

    2010-01-01

    The aim of the present study was to analyze the antibiotic susceptibility of bifidobacterial strains distributed in the Japanese market. A total of 23 strains, including probiotic isolates from foods, supplements, pharmaceuticals and reference strains of each species (or subspecies), were tested for susceptibility to 15 antibiotics by the broth microdilution method and examined for the presence of possible resistant determinants. The strains were susceptible overall to chloramphenicol, ampicillin, vancomycin and linezolid, and were intrinsically resistant to aminoglycoside group agents. Susceptibility to erythromycin, clindamycin, rifampicin, tetracycline and trimethoprim varied among the strains. All strains of Bifidobacterium animalis subsp. lactis were resistant to tetracycline and appeared to harbor tet(W) genes. No risk factor for safety was found for bifidobacterial strains distributed in the Japanese market in respect of their antimicrobial resistance, although the presence of the tet(W) gene in some strains stresses the need for future evaluation.

  1. Strain localization in polycrystalline material with second phase particles: Numerical modeling with application to ice mixtures

    NASA Astrophysics Data System (ADS)

    Cyprych, D.; Brune, S.; Piazolo, S.; Quinteros, J.

    2016-09-01

    We use a centimeter-scale 2-D numerical model to investigate the effect of the presence of a second phase with various volume percent, shape, and orientation on strain localization in a viscoelastic matrix. In addition, the evolution of bulk rheological behavior of aggregates during uniaxial compression is analyzed. The rheological effect of dynamic recrystallization processes in the matrix is reproduced by viscous strain softening. We show that the presence of hard particles strengthens the aggregate, but also causes strain localization and the formation of ductile shear zones in the matrix. The presence of soft particles weakens the aggregate, while strain localizes within the particles and matrix between particles. The shape and the orientation of second phases control the orientation, geometry, and connectivity of ductile shear zones. We propose an analytical scaling method that translates the bulk stress measurements of our 2-D simulations to 3-D experiments. Comparing our model to the laboratory uniaxial compression experiments on ice cylinders with hard second phases allows the analysis of transient and steady-state strain distribution in ice matrix, and strain partitioning between ice and second phases through empirical calibration of viscous softening parameters. We find that the ice matrix in two-phase aggregates accommodates more strain than the applied bulk strain, while at faster strain rates some of the load is transferred into hard particles. Our study illustrates that dynamic recrystallization processes in the matrix are markedly influenced by the presence of a second phase.

  2. Restructuring local distribution services: Possibilities and limitations

    SciTech Connect

    Duann, D.J.

    1994-08-01

    The restructuring of local distribution services is now the focus of the natural gas industry. It is the last major step in the ``reconstitution`` of the natural gas industry and a critical clement in realizing the full benefits of regulatory and market reforms that already have taken place in the wellhead and interstate markets. It could also be the most important regulatory initiative for most end-use customers because they are affected directly by the costs and reliability of distribution services. Several factors contribute to the current emphasis on distribution service restructuring. They include the unbundling and restructuring of upstream markets, a realization of the limitations of supply-side options (such as gas procurement oversight), and the increased diversity and volatility of gas demand facing local distribution companies. Local distribution service is not one but a series of activities that start with commodity gas procurement and extend to transportation, load balancing, storage, and metering and billing of services provided. There are also considerable differences in the economies of scale and scope associated with these various activities. Thus, a mixture of supply arrangements (such as a competitive market or a monopoly) is required for the most efficient delivery of local distribution services. A distinction must be made between the supply of commodity gas and the provision of a bundled distribution service. This distinction and identification of the best supply arrangements for various distribution service components are the most critical factors in developing appropriate restructuring policies. For most state public utility commissions the criteria for service restructuring should include pursuing the economies of scale and scope in gas distribution, differentiating and matching gas service reliability and quality with customer requirements, and controlling costs associated with the search, negotiation, and contracting of gas services.

  3. Synchrotron measurements of local microstructure and residual strains in ductile cast iron

    NASA Astrophysics Data System (ADS)

    Zhang, Y. B.; Andriollo, T.; Fæster, S.; Liu, W.; Sturlason, A.; Barabash, R.

    2017-07-01

    The local microstructure and distribution of thermally induced residual strains in ferrite matrix grains around an individual spherical graphite nodule in ductile cast iron (DCI) were measured using a synchrotron X-ray micro-diffraction technique. It is found that the matrix grains are deformed, containing dislocations and dislocation boundaries. Each of the residual strain components in the matrix grains exhibits a complex pattern along the circumferential direction of the nodule. Along the radial direction of the nodule, strain gradients from the interface to the grain interior are seen for some strain components, but only in some matrix grains. The observed residual strain patterns have been analysed by finite element modelling, and a comparison between the simulation and experiments is given. The present study of local residual stress by both experimental characterization and simulation provide much needed information for understanding the mechanical properties of DCI, and represent an important contribution for the microstructural design of new DCI materials.

  4. Local and transient nanoscale strain mapping during in situ deformation

    NASA Astrophysics Data System (ADS)

    Gammer, C.; Kacher, J.; Czarnik, C.; Warren, O. L.; Ciston, J.; Minor, A. M.

    2016-08-01

    The mobility of defects such as dislocations controls the mechanical properties of metals. This mobility is determined both by the characteristics of the defect and the material, as well as the local stress and strain applied to the defect. Therefore, the knowledge of the stress and strain during deformation at the scale of defects is important for understanding fundamental deformation mechanisms. Here, we demonstrate a method of measuring local stresses and strains during continuous in situ deformation with a resolution of a few nanometers using nanodiffraction strain mapping. Our results demonstrate how large multidimensional data sets captured with high speed electron detectors can be analyzed in multiple ways after an in situ TEM experiment, opening the door for true multimodal analysis from a single electron scattering experiment.

  5. Local and transient nanoscale strain mapping during in situ deformation

    SciTech Connect

    Gammer, C. E-mail: aminor@lbl.gov; Ciston, J.; Kacher, J.; Minor, A. M. E-mail: aminor@lbl.gov; Czarnik, C.; Warren, O. L.

    2016-08-22

    The mobility of defects such as dislocations controls the mechanical properties of metals. This mobility is determined both by the characteristics of the defect and the material, as well as the local stress and strain applied to the defect. Therefore, the knowledge of the stress and strain during deformation at the scale of defects is important for understanding fundamental deformation mechanisms. Here, we demonstrate a method of measuring local stresses and strains during continuous in situ deformation with a resolution of a few nanometers using nanodiffraction strain mapping. Our results demonstrate how large multidimensional data sets captured with high speed electron detectors can be analyzed in multiple ways after an in situ TEM experiment, opening the door for true multimodal analysis from a single electron scattering experiment.

  6. Local and transient nanoscale strain mapping during in situ deformation

    DOE PAGES

    Gammer, C.; Kacher, J.; Czarnik, C.; ...

    2016-08-26

    The mobility of defects such as dislocations controls the mechanical properties of metals. This mobility is determined both by the characteristics of the defect and the material, as well as the local stress and strain applied to the defect. Therefore, the knowledge of the stress and strain during deformation at the scale of defects is important for understanding fundamental deformation mechanisms. In this paper, we demonstrate a method of measuring local stresses and strains during continuous in situ deformation with a resolution of a few nanometers using nanodiffraction strain mapping. Finally, our results demonstrate how large multidimensional data sets capturedmore » with high speed electron detectors can be analyzed in multiple ways after an in situ TEM experiment, opening the door for true multimodal analysis from a single electron scattering experiment.« less

  7. Local and transient nanoscale strain mapping during in situ deformation

    SciTech Connect

    Gammer, C.; Kacher, J.; Czarnik, C.; Warren, O. L.; Ciston, J.; Minor, A. M.

    2016-08-26

    The mobility of defects such as dislocations controls the mechanical properties of metals. This mobility is determined both by the characteristics of the defect and the material, as well as the local stress and strain applied to the defect. Therefore, the knowledge of the stress and strain during deformation at the scale of defects is important for understanding fundamental deformation mechanisms. In this paper, we demonstrate a method of measuring local stresses and strains during continuous in situ deformation with a resolution of a few nanometers using nanodiffraction strain mapping. Finally, our results demonstrate how large multidimensional data sets captured with high speed electron detectors can be analyzed in multiple ways after an in situ TEM experiment, opening the door for true multimodal analysis from a single electron scattering experiment.

  8. The role of local strains from prior cold work on stress corrosion cracking of α-brass in Mattsson's solution

    SciTech Connect

    Ulaganathan, Jaganathan Newman, Roger C.

    2014-06-01

    The dynamic strain rate ahead of a crack tip formed during stress corrosion cracking (SCC) under a static load is assumed to arise from the crack propagation. The strain surrounding the crack tip would be redistributed as the crack grows, thereby having the effect of dynamic strain. Recently, several studies have shown cold work to cause accelerated crack growth rates during SCC, and the slip-dissolution mechanism has been widely applied to account for this via a supposedly increased crack-tip strain rate in cold worked material. While these interpretations consider cold work as a homogeneous effect, dislocations are generated inhomogeneously within the microstructure during cold work. The presence of grain boundaries results in dislocation pile-ups that cause local strain concentrations. The local strains generated from cold working α-brass by tensile elongation were characterized using electron backscatter diffraction (EBSD). The role of these local strains in SCC was studied by measuring the strain distributions from the same regions of the sample before cold work, after cold work, and after SCC. Though, the cracks did not always initiate or propagate along boundaries with pre-existing local strains from the applied cold work, the local strains surrounding the cracked boundaries had contributions from both the crack propagation and the prior cold work. - Highlights: • Plastic strain localization has a complex relationship with SCC susceptibility. • Surface relief created by cold work creates its own granular strain localization. • Cold work promotes crack growth but several other factors are involved.

  9. Impact of elasticity on lithospheric shortening and strain localization

    NASA Astrophysics Data System (ADS)

    Jaquet, Yoann; Schmalholz, Stefan M.; Duretz, Thibault

    2015-04-01

    The initiation of subduction is not well understood and also the mechanisms of localization in a compressive domain are incompletely understood. In order to better understand what controls strain localization during compression, we perform two dimensional numerical simulations with a finite element code using the MILAMIN solver with the Triangle mesh generator. Our model configuration consists of a lithosphere composed of an upper crust, a lower crust and a mantle with each layer having its own non-Newtonian rheology. We add a thermal perturbation (+100°C) to the right bottom side of the model. The model is then shortened with a fixed strain rate (5*10-15s-1) and we vary both the bottom temperature and the shear modulus. The latter allows variations between two extreme rheological models: visco-elasto-plastic and visco-plastic. The results show that (1) the lithosphere is subjected to buckling, (2) localization caused by shear heating can occur in one of the folds during ongoing buckling, and (3) a lower basal temperature favors higher stresses so that localization is facilitated. The visco-elasto-plastic model shows faster and more intense localization than the visco-plastic model. Moreover, as soon as strain localization initiates, strain rates suddenly increase by several orders of magnitude (>2) during a short period of time (

  10. Local operators in kinetic wealth distribution

    NASA Astrophysics Data System (ADS)

    Andrecut, M.

    2016-05-01

    The statistical mechanics approach to wealth distribution is based on the conservative kinetic multi-agent model for money exchange, where the local interaction rule between the agents is analogous to the elastic particle scattering process. Here, we discuss the role of a class of conservative local operators, and we show that, depending on the values of their parameters, they can be used to generate all the relevant distributions. We also show numerically that in order to generate the power-law tail, an heterogeneous risk aversion model is required. By changing the parameters of these operators, one can also fine tune the resulting distributions in order to provide support for the emergence of a more egalitarian wealth distribution.

  11. Local Strain Development and Property Variability in B2 Intermetallics

    DTIC Science & Technology

    2005-09-19

    COVERED (From - To) 19092005 Final Report 15 Jan 2001 - 30 Apr 2005 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER Local Strain Development and Property...Variability in B2 Intermetallics 5b. GRANT NUMBER F49620-01-1-0159 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) 5d. PROJECT NUMBER Professor Tresa M. Pollock 5e... 4 3.0 The Strain Mapping Technique .............................................. 4 4.0 Intermetallic

  12. Distribution of critical temperature at Anderson localization

    NASA Astrophysics Data System (ADS)

    Gammag, Rayda; Kim, Ki-Seok

    2016-05-01

    Based on a local mean-field theory approach at Anderson localization, we find a distribution function of critical temperature from that of disorder. An essential point of this local mean-field theory approach is that the information of the wave-function multifractality is introduced. The distribution function of the Kondo temperature (TK) shows a power-law tail in the limit of TK→0 regardless of the Kondo coupling constant. We also find that the distribution function of the ferromagnetic transition temperature (Tc) gives a power-law behavior in the limit of Tc→0 when an interaction parameter for ferromagnetic instability lies below a critical value. However, the Tc distribution function stops the power-law increasing behavior in the Tc→0 limit and vanishes beyond the critical interaction parameter inside the ferromagnetic phase. These results imply that the typical Kondo temperature given by a geometric average always vanishes due to finite density of the distribution function in the TK→0 limit while the typical ferromagnetic transition temperature shows a phase transition at the critical interaction parameter. We propose that the typical transition temperature serves a criterion for quantum Griffiths phenomena vs smeared transitions: Quantum Griffiths phenomena occur above the typical value of the critical temperature while smeared phase transitions result at low temperatures below the typical transition temperature. We speculate that the ferromagnetic transition at Anderson localization shows the evolution from quantum Griffiths phenomena to smeared transitions around the critical interaction parameter at low temperatures.

  13. Medial cortex strain distribution during noncemented total hip arthroplasty.

    PubMed

    Elias, J J; Nagao, M; Chu, Y H; Carbone, J J; Lennox, D W; Chao, E Y

    2000-01-01

    Intraoperative proximal femur fractures are a significant concern during noncemented total hip arthroplasty. The current study was performed to investigate the hypothesis that broaching the femur and inserting the stem without using mallet applied impact loads will reduce the risk of intraoperative fracture. Rosette strain gauges were applied to the medial and anteromedial cortex of six human anatomic specimen femurs to compare the strain distribution for broaching and stem insertion. Eight additional femurs were used to compare the strain distribution for stem insertion using impact loading and constant rate stem insertion. For the impact loading stem insertions, the soft tissues surrounding the femur were modeled. Constant rate stem insertions were performed using a mechanical testing machine. The largest strains measured at the medial and anteromedial sites primarily were aligned with the femur hoop axis. The largest strain magnitude, orientation, and sign (tensile or compressive) varied widely among femurs. The stem insertion strains were significantly larger than the broaching strains (two-way analysis of variance with replication). The impact stem insertion strains were not significantly different from the constant rate stem insertion strains. The results indicate that the femur geometry and material properties have a greater influence on the strain distribution than does the implantation technique.

  14. Measurement of local values of strains of the briquette by means of special resistance strain gauges

    NASA Astrophysics Data System (ADS)

    Rysz, Jozef

    1997-02-01

    Local measurement of the coal briquette strains during its destruction caused by sudden decrease of pressure of gas filling pores is difficult, because of high strain of coal (exceeds 16%), which results in bursting. A special type of an resistance-strain gauge, which is pressed into a defined position during briquette preparation was elaborated. This gauge is deformed just as the surrounding coal. The strain is measured as a difference in resistance of a mixture of coal grains (briquette material) and short, 8 micrometers dia. graphite fibers. A ca. 0.5 mm thick and ca. 1 mm long gauge was prepared. Its initial resistance constituted several hundreds ohms. The resistance vs. strain dependence is not linear but stable enough in time and does not depend on the type of gas filling briquette pores (e.g. CO2 and He).

  15. Local average height distribution of fluctuating interfaces.

    PubMed

    Smith, Naftali R; Meerson, Baruch; Sasorov, Pavel V

    2017-01-01

    Height fluctuations of growing surfaces can be characterized by the probability distribution of height in a spatial point at a finite time. Recently there has been spectacular progress in the studies of this quantity for the Kardar-Parisi-Zhang (KPZ) equation in 1+1 dimensions. Here we notice that, at or above a critical dimension, the finite-time one-point height distribution is ill defined in a broad class of linear surface growth models unless the model is regularized at small scales. The regularization via a system-dependent small-scale cutoff leads to a partial loss of universality. As a possible alternative, we introduce a local average height. For the linear models, the probability density of this quantity is well defined in any dimension. The weak-noise theory for these models yields the "optimal path" of the interface conditioned on a nonequilibrium fluctuation of the local average height. As an illustration, we consider the conserved Edwards-Wilkinson (EW) equation, where, without regularization, the finite-time one-point height distribution is ill defined in all physical dimensions. We also determine the optimal path of the interface in a closely related problem of the finite-time height-difference distribution for the nonconserved EW equation in 1+1 dimension. Finally, we discuss a UV catastrophe in the finite-time one-point distribution of height in the (nonregularized) KPZ equation in 2+1 dimensions.

  16. Local average height distribution of fluctuating interfaces

    NASA Astrophysics Data System (ADS)

    Smith, Naftali R.; Meerson, Baruch; Sasorov, Pavel V.

    2017-01-01

    Height fluctuations of growing surfaces can be characterized by the probability distribution of height in a spatial point at a finite time. Recently there has been spectacular progress in the studies of this quantity for the Kardar-Parisi-Zhang (KPZ) equation in 1 +1 dimensions. Here we notice that, at or above a critical dimension, the finite-time one-point height distribution is ill defined in a broad class of linear surface growth models unless the model is regularized at small scales. The regularization via a system-dependent small-scale cutoff leads to a partial loss of universality. As a possible alternative, we introduce a local average height. For the linear models, the probability density of this quantity is well defined in any dimension. The weak-noise theory for these models yields the "optimal path" of the interface conditioned on a nonequilibrium fluctuation of the local average height. As an illustration, we consider the conserved Edwards-Wilkinson (EW) equation, where, without regularization, the finite-time one-point height distribution is ill defined in all physical dimensions. We also determine the optimal path of the interface in a closely related problem of the finite-time height-difference distribution for the nonconserved EW equation in 1 +1 dimension. Finally, we discuss a UV catastrophe in the finite-time one-point distribution of height in the (nonregularized) KPZ equation in 2 +1 dimensions.

  17. Local Distribution Fiber Optic Cable Communication System.

    DTIC Science & Technology

    1981-03-20

    RESEARCH AND DEVELOPMENT TECHNICAL .REPORT CORADCOM-79-0508-F 1 LOCAL DISTRIBUTION FIBER OPTIC q CABLE COMMUNICATION SYSTEM 0 FINAL TECHNICAL REPORT DT[!c...Massachusetts 02194 5 September 1980 Final Report for Period Feb. 1979 - Sept. 1980 C.PREPARED FOR: Z. CORADCOM L" U S ARMY COMMUNICATIONS RESEARCH ... independently , correcting any problems that occurred. and then intearatina all three tnaether. 2.2.1.2 Problems Identified and Solutions Implemented A

  18. Local distribution of old neutron stars

    NASA Technical Reports Server (NTRS)

    Frei, Szolt; Huang, Xiaolan; Paczynski, Bohdan

    1992-01-01

    The local distribution of old disk neutron stars is approximated with a 1D model, in which the steady state distribution in the direction perpendicular to the Galactic plane is calculated, assuming a variety of the initial radio pulsar positions and velocities, and various Galactic potentials. It is found that the local distribution of old neutron stars is dominated by those that were born with very low velocities. The high-velocity neutron stars spend most of their lifetime far in the Galactic halo and do not contribute much to the local density. Therefore, the rms velocity at birth is not a good indicator of the scale height of the old population. The most likely half-density scale height for the old disk neutron stars is approximately 350 pc, the same as for the old disk G, K, and M stars. If gamma-ray bursts originate on old disk neutron stars, then 350 pc should also be the scale height for the bursters.

  19. Relationship between burgers vectors of dislocations and plastic strain localization patterns in compression-strained alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Barannikova, S. A.; Nadezhkin, M. V.; Zuev, L. B.

    2011-08-01

    Plastic strain localization patterns in compression-strained alkali halide (NaCl, KCl, and LiF) crystals have been studied using a double-exposure speckle photography technique. The main parameters of strain localization autowaves at the linear stages of deformation hardening in alkali halide crystals have been determined. A quantitative relationship between the macroscopic parameters of plastic flow localization and microscopic parameters of strained alkali halide crystals has been established.

  20. Strain localization and evolving kinematic efficiency of initiating strike-slip faults within wet kaolin experiments

    NASA Astrophysics Data System (ADS)

    Hatem, Alexandra E.; Cooke, Michele L.; Toeneboehn, Kevin

    2017-08-01

    Using wet kaolin experiments, we document the evolution of strain localization during strike-slip fault maturation under variable boundary conditions (pre-existing fault, depth of and distribution of basal shear). While the nature of the basal shear influences strain localization observed at the clay surface, similarities between experiments reveal a general conceptual model of strain accommodation. First, shear strain is accommodated as distributed shear (Stage 0), then by development of echelon faults (Stage I), then by interaction, lengthening and propagation of those echelon faults (Stage II) and, finally, by slip along through-going fault (Stage III). Stage II serves as a transitory period when the system reorganizes after sufficient strain localization. Here, active fault system complexity is maximized as faults link producing apparent rotation of active fault surfaces without material rotation. As the shear zone narrows, off-fault deformation decreases while fault slip and kinematic efficiency increases. We quantify kinematic efficiency as the ratio of fault slip to applied displacement. All fault systems reach a steady-state efficiency in excess of 80%. Despite reducing off-fault deformation, the through-going fault maintains <1.5 cm structural irregularities (i.e., stepovers), which suggests that small (<3 km) stepovers may persist along mature, efficient faults in the crust.

  1. Strain Distribution Measurement in Stainless Steels by Convergent-Beam Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Saito, Masakazu; Aoyama, Takashi; Nakata, Kiyotomo; Suzuki, Takaya

    1995-01-01

    A convergent-beam electron diffraction technique was utilized to measure local strain distributions in stainless steels. Electron beams were focused into {210} crystal planes and the higher order Laue zone (HOLZ) lines diffracted from {375} and {119} planes were characterized by measuring the distances between the intersections of these HOLZ lines. Four parameters, including strains in three directions and one magnification factor, were calculated based on the least squares method. Strain distributions near a chromium carbide precipitate were measured in sensitized SUS 304 and it was confirmed that parallel tensile strain and vertical compressive strain to the edge of the precipitate existed and that they decreased with the distance from the edge of precipitate.

  2. Local oscillator distribution using a geostationary satellite

    NASA Technical Reports Server (NTRS)

    Bardin, Joseph; Weinreb, Sander; Bagri, Durga

    2004-01-01

    A satellite communication system suitable for distribution of local oscillator reference signals for a widely spaced microwave array has been developed and tested experimentally. The system uses a round-trip correction method of the satellite This experiment was carried out using Telstar-5, a commercial Ku-band geostationary satellite. For this initial experiment, both earth stations were located at the same site to facilitate direct comparison of the received signals. The local oscillator reference frequency was chosen to be 300MHz and was sent as the difference between two Ku-band tones. The residual error after applying the round trip correction has been measured to be better than 3psec for integration times ranging from 1 to 2000 seconds. For integration times greater then 500 seconds, the system outperforms a pair of hydrogen masers with the limitation believed to be ground-based equipment phase stability. The idea of distributing local oscillators using a geostationary satellite is not new; several researchers experimented with this technique in the eighties, but the achieved accuracy was 3 to 100 times worse than the present results. Since substantially and the performance of various components has improved. An important factor is the leasing of small amounts of satellite communication bandwidth. We lease three 100kHz bands at approximately one hundredth the cost of a full 36 MHz transponder. Further tests of the system using terminal separated by large distances and comparison tests with two hydrogen masers and radio interferometry is needed.

  3. Guiding Spin Spirals by Local Uniaxial Strain Relief

    NASA Astrophysics Data System (ADS)

    Hsu, Pin-Jui; Finco, Aurore; Schmidt, Lorenz; Kubetzka, André; von Bergmann, Kirsten; Wiesendanger, Roland

    2016-01-01

    We report on the influence of uniaxial strain relief on the spin spiral state in the Fe double layer grown on Ir(111). Scanning tunneling microscopy (STM) measurements reveal areas with reconstruction lines resulting from uniaxial strain relief due to the lattice mismatch of Fe and Ir atoms, as well as pseudomorphic strained areas. Magnetic field-dependent spin-polarized STM measurements of the reconstructed Fe double layer reveal cycloidal spin spirals with a period on the nm scale. Globally, the spin spiral wave fronts are guided along symmetry-equivalent [11 2 ¯ ] crystallographic directions of the fcc(111) substrate. On an atomic scale the spin spiral propagation direction is linked to the [001] direction of the bcc(110)-like Fe, leading to a zigzag shaped wave front. The isotropically strained pseudomorphic areas also exhibit a preferred magnetic periodicity on the nm scale but no long-range order. We find that already for local strain relief with a single set of reconstruction lines a strict guiding of the spin spiral is realized.

  4. Influence of vein fabric on strain distribution and fold kinematics

    NASA Astrophysics Data System (ADS)

    Torremans, Koen; Muchez, Philippe; Sintubin, Manuel

    2014-05-01

    Abundant pre-folding, bedding-parallel fibrous dolomite veins in shale are found associated with the Nkana-Mindola stratiform Cu-Co deposit in the Central African Copperbelt, Zambia. These monomineralic veins extend for several meters along strike, with a fibrous infill orthogonal to low-tortuosity vein walls. Growth morphologies vary from antitaxial with a pronounced median surface to asymmetric syntaxial, always with small but quantifiable growth competition. Subsequently, these veins were folded. In this study, we aim to constrain the kinematic fold mechanism by which strain is accommodated in these veins, estimate paleorheology at time of deformation and investigate the influence of vein fabric on deformation during folding. Finally, the influence of the deformation on known metallogenetic stages is assessed. Various deformation styles are observed, ultimately related to vein attitude across tight to close lower-order, hectometre-scale folds. In fold hinges, at low to average dips, veins are (poly-)harmonically to disharmonically folded as parasitic folds in single or multilayer systems. With increasing distance from the fold hinge, parasitic fold amplitude decreases and asymmetry increases. At high dips in the limbs, low-displacement duplication thrusts of veins at low angles to bedding are abundant. Slickenfibres and slickenlines are sub-perpendicular to fold hinges and shallow-dipping slickenfibre-step lineations are parallel to local fold hinge lines. A dip isogon analysis of reconstructed fold geometries prior to homogeneous shortening reveals type 1B parallel folds for the veins and type 1C for the matrix. Two main deformation mechanisms are identified in folded veins. Firstly, undulatory extinction, subgrains and fluid inclusions planes parallel the fibre long axis, with deformation intensity increasing away from the fold hinges, indicate intracrystalline strain accumulation. Secondly, intergranular deformation through bookshelf rotation of fibres, via

  5. Distribution of phenotypes among Bacillus thuringiensis strains.

    PubMed

    Martin, Phyllis A W; Gundersen-Rindal, Dawn E; Blackburn, Michael B

    2010-06-01

    An extensive collection of Bacillus thuringiensis isolates from around the world were phenotypically profiled using standard biochemical tests. Six phenotypic traits occurred in 20-86% of the isolates and were useful in distinguishing isolates: production of urease (U; 20.5% of isolates), hydrolysis of esculin (E; 32.3% of isolates), acid production from salicin (A; 37.4% of isolates), acid production from sucrose (S; 34.0% of isolates), production of phospholipase C or lecithinase (L; 79.7% of isolates), and hydrolysis of starch (T; 85.8% of isolates). With the exception of acid production from salicin and hydrolysis of esculin, which were associated, the traits assorted independently. Of the 64 possible combinations of these six phenotypic characteristics, 15 combinations accounted for ca. 80% of all isolates, with the most common phenotype being TL (23.6% of isolates). Surprisingly, while the biochemical traits generally assorted independently, certain phenotypic traits associated with the parasporal crystal were correlated with certain combinations of biochemical traits. Crystals that remained attached to spores (which tended to be non-toxic to insects) were highly correlated with the phenotypes that included both L and S. Among the 15 most abundant phenotypes characterizing B. thuringiensis strains, amorphous crystals were associated with TLE, TL, T, and Ø (the absence of positive tested biochemical traits). Amorphous crystal types displayed a distinct bias toward toxicity to dipteran insects. Although all common phenotypes included B. thuringiensis isolates producing bipyramidal crystals toxic to lepidopteran insects, those with the highest abundance of these toxic crystals displayed phenotypes TLU, TLUA, TLUAE, and TLAE.

  6. Local strain field fluctuations in quasi-two-dimensional colloidal glasses

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Still, Tim; Aptowicz, Kevin; Yodh, Arjun

    2013-03-01

    We investigate the local strain field fluctuations in a quasi-two-dimensional colloidal glass as a function of packing fraction as the jamming transition is approached. Using standard video microscopy and particle tracking techniques, we derive the best-fit affine strain tensor and the non-affinity for each particle in the sample; this information is obtained by analyzing the variations of local configurations around each particle due to thermal motion. The spatial and temporal distributions of this local deformation permit us to probe the mechanical properties of our colloidal systems. We study how these mechanical properties evolve as the systems approaches the jamming transition. Furthermore, we explore the connection between the mechanical heterogeneity and the onset of irreversible rearrangements. We gratefully acknowledge financial support from the National Science Foundation through DMR12-05463, the PENN MRSEC DMR11-20901, NASA NNX08AO0G, and COMPASS

  7. Strain localization driven by thermal decomposition during seismic shear

    NASA Astrophysics Data System (ADS)

    Platt, J. D.; Brantut, N.; Rice, J. R.

    2011-12-01

    De Paola et al. [2008] analyzed a series of faults in the Northern Apennines, Italy, hosted in anhydrite and dolomite rocks. They found a highly localized band of less than 100 microns, contained within a broader damage zone. Recent High-Velocity Friction (HVF) experiments on kaolinite-bearing gouge samples (Brantut et al. [2008]) have also shown extreme localization in samples undergoing thermal decomposition. They performed microstructural analysis on HVF samples and found an "ultralocalized deformation zone", less than ten microns wide, interpreted to be the main slipping zone in the experiment. By measuring relative humidity in the sample chamber they were also able to observe the thermal dehydration of kaolinite. These laboratory and field observations indicate that straining is extremely localized in fault materials where thermal decomposition reactions may occur. During thermal decomposition reactions pore fluid is released, leading to increases in pore pressure, and a corresponding drop in frictional heating. The reactions are endothermic, so heat is also absorbed as the reactions progress. Previous work by Sulem and Famin [2009] has investigated how these effects influence the evolution of pore pressure and temperature in a uniformly sheared gouge layer. They found that accounting for thermal decomposition reactions leads to significant pore pressure increases, and that the endothermic nature of the reaction acts to cap the maximum temperature achieved. In previous work (Platt, Rudnicki and Rice [2010]) we investigated strain localization using a model for shearing of a fluid-saturated gouge material, finding a formula for the localized zone width as a function of physical properties of the gouge. We now extend this model to include thermal decomposition. Using linear stability methods and an idealized reaction kinetic we infer a new localized zone width when decomposition is accounted for. Numerical simulations then allow us to compare this prediction to

  8. Microstructural and mechanical effects of strong fine-grained muscovite in soft halite matrix: Shear strain localization in torsion

    NASA Astrophysics Data System (ADS)

    Marques, F. O.; Burlini, L.; Burg, J.-P.

    2011-08-01

    Torsion experiments were performed on polymer jacketed samples of 80% halite + 20% fine mica at 373, 473, and 573 K; a confining pressure of 250 MPa; and a shear strain rate of 3 × 10-4 s-1. The strength of the aggregate depended on temperature, strain rate, mica distribution produced by cold pressing, and mica orientation emerging during experiments. Comparison with synthetic aggregates of pure halite shows that halite-mica mixtures were stronger in all cases. From strain rate stepping tests, we deduced stress exponents of 12 and 10 at 373 and 473 K, respectively, in contrast to values of approximately 4 and 3 for halite at the same temperatures. Strain localized only at 573 K, except for one run at 373 K, and high-strain shear bands formed parallel to the applied shear plane at 573 K. We infer that the strength contrast between halite and mica increased with temperature and promoted strain localization, which occurred where the local mica content was low, while unstrained domains persisted where the locally high mica content formed a strong framework. Mica reorientation and strain softening at 573 K increased with strain, from which we deduce that mica alignment promoted softening. We conclude that small amounts of a strong mineral phase can significantly increase the strength and stress dependence of a rock and that the heterogeneous connectivity between strong grains can trigger shear strain localization.

  9. Measurement of strain distributions in mouse femora with 3D-digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Yang, Lianxiang; Zhang, Ping; Liu, Sheng; Samala, Praveen R.; Su, Min; Yokota, Hiroki

    2007-08-01

    Bone is a mechanosensitive tissue that adapts its mass, architecture and mechanical properties to external loading. Appropriate mechanical loads offer an effective means to stimulate bone remodeling and prevent bone loss. A role of in situ strain in bone is considered essential in enhancement of bone formation, and establishing a quantitative relationship between 3D strain distributions and a rate of local bone formation is important. Digital speckle pattern interferometry (DSPI) can achieve whole-field, non-contacting measurements of microscopic deformation for high-resolution determination of 3D strain distributions. However, the current system does not allow us to derive accurate strain distributions because of complex surface contours inherent to biological samples. Through development of a custom-made piezoelectric loading device as well as a new DSPI-based force calibration system, we built an advanced DSPI system and integrated local contour information to deformation data. Using a mouse femur in response to a knee loading modality as a model system, we determined 3D strain distributions and discussed effectiveness and limitations of the described system.

  10. Comparison of mouse strains using the local lymph node assay.

    PubMed

    Woolhiser, M R; Munson, A E; Meade, B J

    2000-05-05

    The local lymph node assay (LLNA), as recommended by the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), only allows for the use of CBA mice. The objective of these studies was to begin to assess the response of chemical sensitizers in the LLNA across six strains of female mice (C57BL/6, SJL/J, BALB/c, B6C3F1, DBA/2 and CBA). The moderate sensitizer alpha-hexylcinnamaldehyde (HCA) was chosen as the test chemical, while toluene diisocyanate (TDI) and 2,4-dinitrofluorobenzene (DNFB) were evaluated at single concentrations as positive controls. Draining lymph node cell proliferation following acetone exposure varied across strains. SJL mice had a significantly higher degree of proliferation with 2111 d.p.m./2 nodes. The remaining five strains demonstrated responses which ranged from 345 to 887 dpm/2 nodes. DBA/2, B6C3F1, BALB/c and CBA mice had essentially equal levels of lymph node proliferation following exposure to the three chemicals. While C57BL/6 mice gave similar results as CBA mice following DNFB and HCA administration, the LLNA response to TDI was considerably lower. SJL mice provided low stimulation indexes (SI) values for all three chemicals evaluated. Regardless of the level of LLNA response, all six mouse strains identified the sensitization potential of HCA, TDI or DNFB. Based on these studies, DBA/2, B6C3F1 and BALB/c mice are good choices for continued evaluation as additional mouse strains for use in the LLNA.

  11. Externally applied cyclic strain regulates localization of focal contact components in cultured smooth muscle cells.

    PubMed

    Cunningham, James J; Linderman, Jennifer J; Mooney, David J

    2002-01-01

    Mechanical signals are critical regulators of cellular gene expression, yet little is understood of the mechanism whereby cells sense mechanical forces. In this study we have tested the hypothesis that mechanical strain applied to populations of cells via their adhesion substrate rapidly alters the cellular distribution of focal contact proteins. Focal contact-associated components (vinculin, a-actinin, paxillin) were assayed by immunofluorescence microscopy and quantitative western blotting. Application of a single step increase in strain in multiple experiments caused overall a small change in focal contact-associated vinculin. In contrast, cyclic strain induced a large and very reproducible increase in detergent-insoluble vinculin (52% relative to static) after just 1 min of strain. Insoluble paxillin was transiently enriched with a similar time course, whereas insoluble a-actinin did not change significantly in response to cyclic strain. Rhodamine-labeled chicken vinculin added to permeabilized cells preferentially localized to focal contacts in response to cyclic strain, but not a single step increase in strain. These findings establish that insoluble levels of focal contact components are altered rapidly following application of an appropriate number of mechanical perturbations, and suggest that at least one component of the mechanism does not involve soluble intermediates.

  12. Geographical distributions of lake trout strains stocked in Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.; O'Gorman, Robert; Schneider, Clifford P.; Schaner, Ted

    1996-01-01

    Geographical distributions of lake trout (Salvelinus namaycush) stocked at seven locations in U.S. waters and at four locations in Canadian waters of Lake Ontario were determined from fish caught with gill nets in September in 17 areas of U.S. waters and at 10 fixed locations in Canadian waters in 1986-95. For fish of a given strain stocked at a given location, geographical distributions were not different for immature males and immature females or for mature males and mature females. The proportion of total catch at the three locations nearest the stocking location was higher for mature fish than for immature fish in all 24 available comparisons (sexes combined) and was greater for fish stocked as yearlings than for those stocked as fingerlings in all eight comparisons. Mature fish were relatively widely dispersed from stocking locations indicating that their tendency to return to stocking locations for spawning was weak, and there was no appreciable difference in this tendency among strains. Mature lake trout were uniformly distributed among sampling locations, and the strain composition at stocking locations generally reflected the stocking history 5 to 6 years earlier. Few lake trout moved across Lake Ontario between the north and south shores or between the eastern outlet basin and the main lake basin. Limited dispersal from stocking sites supports the concept of stocking different genetic strains in various parts of the lake with the attributes of each strain selected to match environmental conditions in the portion of the lake where it is stocked.

  13. [Numerical study of tension and strain distribution around rat molars].

    PubMed

    Kawarizadeh, A; Bourauel, C; Götz, W; Jäger, A

    2003-04-01

    A knowledge of the mechanical processes triggered in the bone and periodontal ligament (PDL) by orthodontic forces applied to a tooth is of decisive importance for an understanding of the subsequent remodelling around the tooth. To investigate these mechanical relationships, three-dimensional finite element (FE) models of the first lower molar in the rat were established. On the basis of digitized serial histological sections, these FE models were generated semi-automatically. Using various simplified geometrical variations, an appropriate FE model for the analysis of the stress and strain distributions was established. The numerical analyses were carried out under a mesially directed force of 0.1 N. Stress distributions in the bone and PDL showed a similar pattern, while strains in the bone were lower than in the PDL by a factor of 10-5. The data confirm the assumption that strain patterns in the PDL may be the key stimulus of bone remodelling.

  14. Direct observation of strain localization along the differentially exhumed SEMP fault system, Austria

    NASA Astrophysics Data System (ADS)

    Frost, E.; Dolan, J. F.; Hacker, B. R.; Ratschbacher, L.; Sammis, C. G.; Seward, G.; Cole, J.

    2009-12-01

    Structural analysis of key outcrops from ~5 to ~25 km exhumation depth along the Salzach-Ennstal-Mariazell-Puchberg (SEMP) fault-zone in Austria reveal highly localized deformation in the seismogenic crust down through the brittle-ductile transition (BDT), widening into a 2-km-wide mylonite at mid-crustal levels. Specifically, grain-size distribution analysis of brittley-deformed dolomite exhumed from the seismogenic crust reveals that strain progressively localized into a 10-m-wide fault core. Microstructural analysis of marbles and greywackes exhumed from the BDT shows off-fault ductile deformation only accommodated a minor portion of the displacement along the SEMP, with most of the strain localized along the contact between these two units. Similar analysis of gneisses and amphibolite-facies metasediments exhumed from just below the BDT shows that at this depth, the majority of displacement is focused into a 100-m-wide ductile shear zone, with further evidence for strain localization along grain boundaries, creating throughgoing shear zones at the grain-scale. At deeper exhumation levels (Rosenberg and Schneider, 2008), the SEMP is a 1-2-km-wide mylonite zone that extends to depths of at least 25 km. Collectively, these data indicate that slip along the SEMP was highly localized from throughout the seismogenic crust downward into at least the mid-crust.

  15. Strain localization in usnaturated soils with large deformation

    NASA Astrophysics Data System (ADS)

    Song, X.; Borja, R. I.

    2014-12-01

    Strain localization is a ubiquitous feature of granular materials undergoing nonhomogeneous deformation. In unsaturated porous media, how the localized deformation band is formed depends crucially on the degree of saturation, since fluid in the pores of a solid imposes a volume constraint on the deformation of the solid. When fluid flow is involved, the inception of the localized deformation band also depends on the heterogeneity of a material, which is quantified in terms of the spatial variation of density, the degree of saturation, and matric suction. We present a mathematical framework for coupled solid-deformation/fluid-diffusion in unsaturated porous media that takes into account material and geometric nonlinearities [1, 2]. The framework relies on the continuum principle of thermodynamics to identify an effective, or constitutive, stress for the solid matrix, and a water retention law that highlights the interdependence of degree of saturation, suction, and porosity of the material. We discuss the role of heterogeneity, quantified either deterministically or stochastically, on the development of a persistent shear band. We derive bifurcation conditions [3] governing the initiation of such a shear band. This research is inspired by current testing techniques that allow nondestructive and non-invasive measurement of density and the degree of saturation through high-resolution imaging [4]. The numerical simulations under plane strain condition demonstrate that the bifurcation not only manifests itself on the loading response curve and but also in the space of the degree of saturation, specific volume and suction stress. References[1] Song X, Borja RI, Mathematical framework for unsaturated flow in the finite deformation range. Int. J. Numer. Meth. Engng 2014; 97: 658-686. [2] Song X, Borja RI, Finite deformation and fluid flow in unsaturated soils with random heterogeneity. Vadose Zone Journal 2014; doi:10.2136/vzj2013.07.0131. [3] Song X, Borja RI, Instability

  16. Evaluation of strain distribution in freestanding and buried lateral nanostructures

    NASA Astrophysics Data System (ADS)

    Ulyanenkov, A.; Darowski, N.; Grenzer, J.; Pietsch, U.; Wang, K. H.; Forchel, A.

    1999-12-01

    A free-standing lateral nanostructure based on GaAs[001] containing a Ga0.97In0.03As single quantum well and similar structures after the overgrowth with GaAs and AlAs, respectively, have been investigated by high-resolution x-ray grazing incidence diffraction (GID) and conventional x-ray diffraction (HRXRD). The wire shape of the freestanding structure and the lateral density variation in the overgrown samples, were determined by running scans with constant length of the scattering vector (transverse scans) across the grating truncation rods (GTR's) close to the (2¯20) reflection. The in-plane strain distribution became available crossing the (220) GTR's by a scan in the longitudinal direction. Exploiting the capability of GID for depth resolution, the in-plane strain distribution was analyzed for different values of depth below the sample surface. The strain analysis was completed by HRXRD measurements close to the (004) reflection. The x-ray measurements were interpreted in terms of the distorted wave Born approximation applied for GID geometry. The strain distribution is determined by comparing the measured GTR intensities with the corresponding simulations containing the displacement fields obtained from finite-element calculations. At the freestanding wire structure we find laterally compressive strain of about Δa/a||=-2×10-3 at the single quantum well (SQW) with a steep strain gradient close to the wire side walls. Both overgrown samples show pronounced lateral strain variation within the overgrown layer, which still appears up to the completely planar surface. Within the SQW the in-plane strain is still compressive after GaAs overgrowth and of similar amount compared to the freestanding grating. The strain is increased by about 30% after overgrowth with AlAs. For both overgrown samples the strain gradient near the wire side walls is reduced, but reaches a maximum close to the SQW. Accompanied by the defect passivation, these findings explain the

  17. Simulation of cemented granular materials. I. Macroscopic stress-strain response and strain localization.

    PubMed

    Estrada, Nicolas; Lizcano, Arcesio; Taboada, Alfredo

    2010-07-01

    This is the first of two papers investigating the mechanical response of cemented granular materials by means of contact dynamics simulations. In this paper, a two-dimensional polydisperse sample with high-void ratio is constructed and then sheared in a simple shear numerical device at different confinement levels. We study the macroscopic response of the material in terms of mean and deviatoric stresses and strains. We show that the introduction of a local force scale, i.e., the tensile strength of the cemented bonds, causes the material to behave in a rigid-plastic fashion, so that a yield surface can be easily determined. This yield surface has a concave-down shape in the mean:deviatoric stress plane and it approaches a straight line, i.e., a Coulomb strength envelope, in the limit of a very dense granular material. Beyond yielding, the cemented structure gradually degrades until the material eventually behaves as a cohesionless granular material. Strain localization is also investigated, showing that the strains concentrate in a shear band whose thickness increases with the confining stress. The void ratio inside the shear band at the steady state is shown to be a material property that depends only on contact parameters.

  18. Theoretical and numerical study of strain localization under high strain rate solicitation

    NASA Astrophysics Data System (ADS)

    Ranc, N.; Raynal, R.; Taravella, L.; Pina, V.; Hervé, P.

    2006-08-01

    Our study deals with the dynamic behavior of metallic materials and in particular of titanium alloy TA6V. For high strain rates, we can notice the occurrence of a phenomenon called adiabatic shearing. This phenomenon is about a plastic instability, which results in the appearance of a strain localization in narrow bands. In this paper we developed a thermo mechanical model to reproduce the formation and the propagation of adiabatic shear bands. A Johnson Cook thermo visco plastic behavior law was chosen for the titanium alloy TA6V. The law parameters were identified from static and dynamic torsion tests at various temperatures between ambient and 350circC. A 2D numerical simulation of torsion test was performed with the explicit finite elements code Abaqus. The thermo mechanical coupling and the heat conduction are taken into account. A roughness defect was inserted in the centre of a torsion specimen. The results showed that the strain of localization and the shear band speed increase when the amplitude and the size of the defect decrease.

  19. A Study of the Fundamental Relationships between Deformation-Induced Surface Roughness and Strain Localization in AA5754

    NASA Astrophysics Data System (ADS)

    Stoudt, M. R.; Hubbard, J. B.; Iadicola, M. A.; Banovic, S. W.

    2009-07-01

    Three-dimensional, matrix-based statistical analysis methods were developed and integrated with high-resolution topographical imaging, to assess how microstructural changes influence the evolution of plastic deformation and strain localization in a commercial AA5754-O aluminum sheet in three in-plane strain modes. Analysis of the raw surface data revealed that the general composition of the surface roughness was highly sensitive to strain mode and strain level. The microstructural conditions that promote strain localization were assessed by extending a profile-based surface roughness parameter ( Rt) to matrix form. Both analyses revealed that different strain modes produce characteristic dissimilarities in the deformation at the grain level. The localization data can be well characterized with a two-parameter Weibull distribution, suggesting that strain localization is a stochastic process that can be modeled reliably with Weibull statistics. This study clearly demonstrates that an accurate and straightforward probabilistic expression that captures the microstructural subtleties produced by plastic deformation can be developed from rigorous analyses of raw topographic data. Because variations in surface morphology profoundly influence the reliability of the numerical models used to predict strain localization, incorporating expressions of this type could greatly enhance the accuracy of these models.

  20. Mineralogically triggered strain localization: inferences from ductile paired shear zones (Tauern Window, Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Duprat-Oualid, Sylvia; Grasemann, Bernhard; Huet, Benjamin; Yamato, Philippe; Habler, Gerlinde

    2016-04-01

    Lithosphere is mainly constituted by polyphase rocks whose mineralogical, structural and textural characteristics control the spatial distribution of strain, and so, its effective mechanical strength. Variations in local mineralogical compositions may lead to drastic changes in the local microstructures and texture leading, by mechanical feedback processes, to strain hardening or weakening. Understanding these small-scale relations between the petrological characteristics, the rheological properties and the development of progressive deformation is thus of fundamental importance for understanding the strength of rocks at large-scale, especially the mechanical behavior of plates boundaries. We acknowledge the importance of brittle precursors for the localization of strain in the viscous deforming part of the crust. In this study, we focus in centimeter-wide paired ductile shear zones shaped nearby along on both sides of ep-grt-qtz veins within a late Variscan metagranodiorite of the "Zentralgneis" in the Tauern Window (Berlinerhütte, Zillertal, Austria). The paired shear zones, underlined by biotite bands, localized at some centimeters away from the veins associated with a metasomatic domain, within the relatively undeformed host rock. According to their spatial orientations, they exhibit different intensities of shearing (from incipient linking of biotites to anastomosing ultra-mylonitic bands) and thus can be explored as successive strain domains of a shear zone developing in space and time. Here, we present a combination of high-resolution petro-chemical section across the paired shear zones with microstructural and textural measurements in order to constrain mineral reactions and deformation processes associated with the development of localized shear zones. Whole rock chemical analyzes combined with continuous mineralogical mapping revealed small chemical variations induced by fluid-rock interactions in the vicinity of the veins. Although macroscopically

  1. Local lattice strain measurements in semiconductor devices by using convergent-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Toda, Akio; Ikarashi, Nobuyuki; Ono, Haruhiko

    2000-03-01

    We examined the lattice strain distribution around local oxidation of silicon (LOCOS) in a semiconductor device by using highly accurate (1.8×10 -4 standard deviation) convergent-beam electron diffraction (CBED) at a nanometer-scale spatial resolution (10 nm in diameter). The nanometer-scale measurement was done by reducing the elastic relaxation using a thick (about 600 nm) sample and by removing the inelastically scattered electrons by means of an electron energy filter. A highly accurate measurement was achieved through the analysis of higher-order Laue zone (HOLZ) patterns using the least-squares fitting of HOLZ line intersection distances between the observations and calculations. Our examination showed that the LOCOS structure gave singularities in strain distributions at the field edge. That is, compressive strain exists in both the vertical and horizontal directions of the substrate, and the shear strain increased there. Most notably, two-dimensional measurements revealed that the singularity of the normal strain in the horizontal direction of the substrate generated at the field edge propagated into the substrate.

  2. Local strain fields in two-dimensional colloidal crystals with bond strength disorder

    NASA Astrophysics Data System (ADS)

    Gratale, Matthew; Xu, Ye; Still, Tim; Yodh, Arjun

    2013-03-01

    We study the local strain fields of two-dimensional colloidal crystals consisting of random distributions of hard polystyrene particles and soft microgel particles. Using standard video microscopy and particle tracking techniques, we analyze the variations of local configurations around each particle due to thermal motion. With this information we derive the best-fit affine strain tensor and the non-affinity for each particle in the sample, which allow us to study the mechanical properties of our colloidal crystals. We than observe the changes in these properties as we transition from a predominately hard-sphere crystal to predominately soft-sphere crystal, that is we explore how the mechanical properties are affected by replacing hard inter-particle bonds with soft inter-particle bonds. We gratefully acknowledge financial support from the National Science Foundation through DMR12-05463, the PENN MRSEC DMR11-20901, and NASA NNX08AO0G.

  3. Ductility of metal alloys with grain size distribution in a wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Skripnyak, Nataliya V.; Skripnyak, Evgeniya G.

    Ductility of ultrafine grained (UFG) metal alloys with a distribution of grain size was investigated in wide loading conditions by numerical simulation. The multiscale models with a unimodal and a bimodal grain size distributions were developed using the data of structure research of hexagonal close packed and face center cubic UFG alloys. Macroscopic fracture is considered as a result of the formation of percolation clusters of damage at the mesoscopic level. The critical fracture strain of UFG alloys on the mesoscale level depends on the relative volumes of coarse grains. The nucleation of damages at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. The concentration of damages arise in the vicinity of the boundaries of coarse and ultrafine grains. The occurrence of a bimodal grain size distributions causes the increase of UFG alloys' ductility, but decrease of their tensile strength. Linkoping University, Sweden.

  4. Probing local strain and composition in Ge nanowires by means of tip-enhanced Raman scattering.

    PubMed

    Reparaz, J S; Peica, N; Kirste, R; Goñi, A R; Wagner, M R; Callsen, G; Alonso, M I; Garriga, M; Marcus, I C; Ronda, A; Berbezier, I; Maultzsch, J; Thomsen, C; Hoffmann, A

    2013-05-10

    Local strain and Ge content distribution in self-assembled, in-plane Ge/Si nanowires grown by combining molecular beam epitaxy and the metal-catalyst assisted-growth method were investigated by tip-enhanced Raman scattering. We show that this technique is essential to study variations of physical properties of single wires at the nanoscale, a task which cannot be achieved with conventional micro-Raman scattering. As two major findings, we report that (i) the Ge distribution in the (001) crystallographic direction is inhomogeneous, displaying a gradient with a higher Ge content close to the top surface, and (ii) in contrast, the (uncapped) wires exhibit essentially the same small residual compressive strain everywhere along the wire.

  5. Application of advanced reliability methods to local strain fatigue analysis

    NASA Technical Reports Server (NTRS)

    Wu, T. T.; Wirsching, P. H.

    1983-01-01

    When design factors are considered as random variables and the failure condition cannot be expressed by a closed form algebraic inequality, computations of risk (or probability of failure) might become extremely difficult or very inefficient. This study suggests using a simple, and easily constructed, second degree polynomial to approximate the complicated limit state in the neighborhood of the design point; a computer analysis relates the design variables at selected points. Then a fast probability integration technique (i.e., the Rackwitz-Fiessler algorithm) can be used to estimate risk. The capability of the proposed method is demonstrated in an example of a low cycle fatigue problem for which a computer analysis is required to perform local strain analysis to relate the design variables. A comparison of the performance of this method is made with a far more costly Monte Carlo solution. Agreement of the proposed method with Monte Carlo is considered to be good.

  6. Distributed fibre optic strain measurements on a driven pile

    NASA Astrophysics Data System (ADS)

    Woschitz, Helmut; Monsberger, Christoph; Hayden, Martin

    2016-05-01

    In civil engineering pile systems are used in unstable areas as a foundation of buildings or other structures. Among other parameters, the load capacity of the piles depends on their length. A better understanding of the mechanism of load-transfer to the soil would allow selective optimisation of the system. Thereby, the strain variations along the loaded pile are of major interest. In this paper, we report about a field trial using an optical backscatter reflectometer for distributed fibre-optic strain measurements along a driven pile. The most significant results gathered in a field trial with artificial pile loadings are presented. Calibration results show the performance of the fibre-optic system with variations in the strain-optic coefficient.

  7. Panoramic Measurement and Analysis of Strain Distribution in the Human ACL Using a Photoelastic Coating Method

    NASA Astrophysics Data System (ADS)

    Hirokawa, Shunji; Yamamoto, Kouji; Kawada, Takashi

    Large and highly variable deformations of the ACL cannot be adequately quantified by one-dimensional and/or localized measurements. Since the complex anatomy of the ACL makes uniform loading of all fiber bundles almost impossible, strains on specific portions being tested are considerably altered during knee movement. To observe the ACL's entire surface, we propose a photoelastic coating method. A simulator jig was used to allow a natural motion of the knee whose medial and lateral femoral bone parts were removed in order to expose the ACL for observation. The simulator jig with the knee was mounted on a universal stand which allows tilt and swivel rotations, so that the exposed ACL might be viewed from any direction. Measurements were performed on the strain distributions over the ACL at various knee angles. The panoramic images of the photoelastic fringe patterns yielded significant results. Special attention was paid for insight into the relation between strain distribution and the directions of fiber run.

  8. Local Earthquake Distribution Off Valparaiso, Central Chile

    NASA Astrophysics Data System (ADS)

    Thierer, P. O.; Tilmann, F.; Flueh, E. R.; Kopp, H.; Comte, D.

    2003-04-01

    The SPOC experiment was carried out as a combined on- /offshore experiment using FS SONNE (cruise SO 161) to investigate the effects of subducting seamounts and fracture zones on the seismicity and structure of the Central Chilean margin off Valparaiso, Chile. The working area is characterised by the ongoing subduction of the oceanic Nazca Plate under the South American continent and shows highly segmentation. North of Valparaiso the subduction angle is very low (flat slab) and we observe only minor sediment input into the trench. In contrast we observe a steep dip angle and high sedimentation rates in the south. Segment boundaries commonly coincide with e.g. bathymetric highs as in this case the Juan Fernandez Ridge which interrupts the lateral, south-north going material flow along the trench. Local earthquake monitoring was carried out for a period of ten weeks using two marine subarrays totally comprising 23 ocean bottom instruments (OBH and OBS). Seismological land data from the Central Chilean Network (CCN) and a number of temporary land stations supplement the marine data set. We present results of about 600 hypocenter determinations detected on the marine OBH/S recordings and the temporary land stations. The hypocenter distribution shows a considerable seismic activity below the upper part of the continental margin. Due to the geometry of the arrays which focus on the transitional domain of the slope we can map the seaward termination of the seismogenic zone using a compilation of both data sets. The southern marine subarray registered a swarm of shallow earthquakes, located on top of the already subducted Topocalma Knoll. A relation to this seamount subduction is strongly indicated. Next to the Juan Fernandez Seamount on the outer rise, we observe considerable seismic activity.

  9. Local changes in rates of group A Streptococcus disease and antibiotic resistance are associated with geographically widespread strain turnover events.

    PubMed

    Metzgar, David; McDonough, Erin A; Hansen, Christian J; Blaesing, Carl R; Baynes, Darcie; Hawksworth, Anthony W; Blair, Patrick J; Faix, Dennis J; Russell, Kevin L

    2010-01-01

    This study addresses the effects of dynamic strain turnover and antibiotic prophylaxis on rates of group A Streptococcus (GAS) antibiotic resistance and disease. The authors analyzed the strain distributions, disease rates, and patterns of antibiotic resistance of 802 GAS isolates collected from 2002 through 2007. These samples were collected from patients with GAS infection symptoms at 10 military facilities. Macrolide resistance peaked at 25% during 2004, due to the geographically widespread dominance of a single resistant strain (M75). The resistant strain was not retained regardless of local patterns of macrolide use, and resistance rates decreased upon replacement of M75 with macrolide-susceptible strains. Disease rates were similarly correlated with dominance of specific M types. Statistical analysis revealed temporal correlations between strain distributions at multiple locations. Only the most common strains yielded enough data at multiple sites for statistically significant comparison of temporal fluctuations in dominance, but these (including M44, M3, M18, M118, and M6) all yielded highly significant temporal correlations of 90% or greater on yearly scales. As expected given the complexity and variability of strain distributions on shorter time scales, analysis on a monthly scale yielded lower degrees of positive correlation (31-62%), but in this case all significant correlations were still positive. Shifts in antibiotic resistance profiles and disease rates at specific sites appear to be associated with strain replacements happening on larger scales, independent of antibiotic use at individual sites.

  10. X-Ray Microbeam Measurement of Local Texture and Strain in Metals

    SciTech Connect

    Chung, J.-S.; Tamura, N.; Ice, G.E.; Larson, B.C.; Budai, J.D.; Lowe, W.

    1999-04-06

    Synchrotron x-ray sources provide high-brilliance beams that can be focused to submicron sizes with Fresnel zone-plate and x-ray mirror optics. With these intense, tunable or broad-bandpass x-ray microbeams, it is now possible to study texture and strain distributions in surfaces, and in buried or encapsulated thin films. The full strain tensor and local texture can be determined by measuring the unit cell parameters of strained material. With monochromatic or tunable radiation, at least three independent reflections are needed to determine the orientation and unit cell parameters of an unknown crystal. With broad-bandpass or white radiation, at least four reflections and one measured energy are required to determine the orientation and the unit cell parameters of an unknown crystal. Routine measurement of local texture and strain is made possible by automatic indexing of the Laue reflections combined with precision calibration of the monochromator-focusing mirrors-CCD detector system. Methods used in implementing these techniques on the MHA-IT-CAT beam line at the Advanced Photon Source will be discussed.

  11. BOTDA road-embedded strain sensing system for landslide boundary localization

    NASA Astrophysics Data System (ADS)

    Iten, Michael; Puzrin, Alexander M.

    2009-03-01

    The determination and monitoring of landslide boundaries is essential for analysis of creeping landslides. A novel landslide boundary localization technique has been recently proposed and tested on two large creeping landslides in an urban area. The technique uses asphalt road-embedded distributed fiber optic sensors. This paper deals with the issue of interpretation of the monitoring records. It has been shown that an improved protection of the cable increases the measurement strain range, but leads to non-linear strain-frequency response. Two methods of strain data interpretation have been analyzed: the truncated average method (TAM) and the convolution product (CP). Advantage of the TAM is in its simplicity; disadvantage is that the amount of the valid sampling points is significantly reduced, especially when the fixed strain section lengths are close to the spatial resolution. The alternative CP method uses all sampling points in the vicinity of the fixation point, but is rather complex, especially considering that a proper interpretation of the measured data can be only achieved using a weighting function with parameters dependent on the strain step at the fixation point. Further signal processing and data interpretation models should be encouraged to improve system accuracy.

  12. Grana Padano cheese whey starters: microbial composition and strain distribution.

    PubMed

    Rossetti, Lia; Fornasari, Maria Emanuela; Gatti, Monica; Lazzi, Camilla; Neviani, Erasmo; Giraffa, Giorgio

    2008-09-30

    The aim of this work was to evaluate the species composition and the genotypic strain heterogeneity of dominant lactic acid bacteria (LAB) isolated from whey starter cultures used to manufacture Grana Padano cheese. Twenty-four Grana Padano cheese whey starters collected from dairies located over a wide geographic production area in the north of Italy were analyzed. Total thermophilic LAB streptococci and lactobacilli were quantified by agar plate counting. Population structure of the dominant and metabolically active LAB species present in the starters was profiled by reverse transcriptase, length heterogeneity-PCR (RT-LH-PCR), a culture-independent technique successfully applied to study whey starter ecosystems. The dominant bacterial species were Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum. Diversity in the species composition allowed the whey cultures to be grouped into four main typologies, the one containing L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus being the most frequent one (45% of the cultures analyzed), followed by that containing only the two lactobacilli (40%). Only a minor fraction of the cultures contained L. helveticus alone (4%) or all the four LAB species (11%). Five hundred and twelve strains were isolated from the 24 cultures and identified by M13-PCR fingerprinting coupled with 16S rRNA gene sequencing. Most of the strains were L. helveticus (190 strains; 37% of the total), L delbrueckii subsp. lactis (90 strains; 18%) and S. thermophilus (215 strains; 42%). This result was in good agreement with the qualitative whey starter composition observed by RT-LH-PCR. M13-PCR fingerprinting indicated a markedly low infra-species diversity, i.e. the same biotypes were often found in more than one culture. The distribution of the biotypes into the different cultures was mainly dairy plant-specific rather than correlated with the different production areas.

  13. Strain localization in pseudotachylyte veins at lower crustal conditions

    NASA Astrophysics Data System (ADS)

    Menegon, Luca; Pennacchioni, Giorgio; Malaspina, Nadia

    2017-04-01

    Viscous shearing in the dry and strong lower crust often localizes in pseudotachylyte veins (i.e. quenched molten rocks formed by the frictional heat released during seismic slip), and it has been suggested that brittle (coseismic) grain-size reduction and fluid infiltration in the fractured domains are necessary to weaken the anhydrous granulitic lower crust. However, the deformation mechanisms responsible for the associated strain weakening and viscous shear localization in pseudotachylytes are yet to be explored. This study investigates the deformation microstructures of mylonitized pseudotachylytes in anorthosites from Nusfjord, northern Norway, where ductile shear zones invariably nucleate in pseudotachylyte veins. Thus, pseudotachylytes are weaker than the host rock during superposed ductile deformation. Pristine pseudotachylytes contain microlites of plagioclase, clinopyroxene, amphibole and orthopyroxene, flow structures, and chilled margins. Some pseudotachylytes have lost the pristine microstructure and have recrystallized into a fine-grained (< 10 μm) mixture of plagioclase, amphibole, clinopyroxene, biotite, quartz ± K-feldspar ± orthopyroxene. Thus, the fine grain size in the mylonites (< 20 μm) is not the product of progressive grain-size reduction with increasing strain, but is an initial characteristic of the shear zone (pseudotachylyte) precursor. The stable mineral assemblage in the mylonitic foliation consists of plagioclase, hornblende, clinopyroxene ± quartz ± biotite ± orthoclase. Geothermobarometry and thermodynamic modelling indicate that pristine pseudotachylytes and their mylonitized equivalents formed at ca. 700˚ C and 0.6-0.9 GPa. Diffusion creep and grain boundary sliding were identified as the main deformation mechanisms in the mylonite on the basis of the lack of crystallographic preferred orientations, the high degree of phase mixing, and the nucleation of hornblende in dilatant sites. In contrast with common observations

  14. Change of Electronic Structures by Dopant-Induced Local Strain

    NASA Astrophysics Data System (ADS)

    Hyeong Kim, Gyu; Jeong, Sukmin

    2015-06-01

    Ag-induced Si(111)- surfaces (-Ag) exhibit unusual electronic structures that cannot be explained by the conventional rigid band model and charge transfer model. The (-Ag surfaces feature a free-electron-like parabolic band, the S1 band, that selectively shifts downward upon the adsorption of noble metal or alkali metal adatoms. Furthermore, the downward shift of S1 is independent of the type of dopants, Au, Ag, and Na. According to charge transfer analysis, Au adatoms accumulate electrons from the substrate and become negatively charged, whereas Na adatoms become positively charged, which indicates that S1 should shift in the opposite direction for both the adatoms. Investigation of calculated structures, calculation of model structures, and tight-binding analysis disclose that the changes in the electronic structure are closely related to the average Ag-Ag distance in the substrate and have their origin in the local strain induced by dopants (adatoms). This explanation implies that the electronic structure is irrespective of the dopant characters itself and paves a new way for understanding the electronic structures associated with the presence of dopants.

  15. Strain localization in glassy polymers under cylindrical confinement.

    PubMed

    Shavit, Amit; Riggleman, Robert A

    2014-06-14

    Although the origin of ductility in crystalline materials is well understood through the motion of dislocations and defects, a similar framework for understanding deformation in amorphous materials remains elusive. In particular, the difference in the mechanical response for small-molecule amorphous solids, such as organic glasses that are typically brittle, and polymer glasses, which are frequently very tough, has not been systematically explored. Here, we employ molecular dynamics simulations to investigate the mechanical response of model glassy polymers confined to a nanoscopic pillar under tensile deformation. We vary the chain length, cooling rate for forming the glass, and the deformation rate and investigate the changes in the mechanical response. We find that samples that are cooled at a slower rate and deformed at a slower rate are more prone to localization of the strain response, or shear banding. Interestingly, this effect is independent of chain length over the range of parameters we have investigated so far, and we believe this is the first direct observation of shear banding in deformed polymer glasses under cylindrical confinement. Finally, by using the isoconfigurational ensemble approach, we provide evidence that the location where the shear band forms is due to structural features that are frozen in place during sample preparation.

  16. Experimental deformation of partially molten granite and implications for strain localization

    NASA Astrophysics Data System (ADS)

    Goncalves, L.; Hirth, G.; Alkmim, F.; Pedrosa-Soares, A.; Goncalves, C.

    2011-12-01

    To improve our understanding of partially molten systems we conducted a set of hydrostatic, general shear and axial compression experiments on sintered aggregates composed of equal amounts by weight of quartz, albite and microcline (grain size of 37-53μm). All experiments were conducted using a Griggs solid medium apparatus at T=900°C, P=1.5GPa and strain rates from 10-4/s to 10-6/s. Previous hydrostatic and axial compression experiments conducted on partial molten granitic rocks have shown that the initial grain size, amount of melt and strain rate are important parameters for the development of distinct microstructures, LPO, and melt distribution. In addition, some of these studies demonstrated that the strength of granite and aplite decrease significantly for melt contents up to 15%, when compared to similar melt-free rocks. The rock's strength deep within the Earth decreases owing to partial melting which brings up some questions: would strain localization take place when partial melt affects rheology? Would brittle and/or ductile shear zones act as potential regions for concentration of partial melt? Is there a critical fraction of melt responsible for strain localization? How is melt distribution influenced by deformation? How does the kinematics of deformation (i.e., axial compression versus general shear) affect melt distribution? The purpose of our experiments is to investigate the role of melting on the rheological properties of crustal rocks. In addition, we seek to provide new constraints on the grain scale processes that control the properties of partially molten rocks and the importance of these processes in understanding shear localization in the lithosphere. Samples were made from crushed Amelia albite (Ab97Or2An1), Hugo Microcline (Or90) and Black Hills quartzite, which have all been used in previous experimental deformation studies. The albite is essentially pure; the microcline contains ~ 1% of muscovite. The Black Hills quartzite contains < 1

  17. Mechanical anisotropy control on strain localization in upper mantle shear zones

    NASA Astrophysics Data System (ADS)

    Herwegh, Marco; Mercolli, Ivan; Linckens, Jolien; Müntener, Othmar

    2016-05-01

    Mantle rocks at oceanic spreading centers reveal dramatic rheological changes from partially molten to solid-state ductile to brittle deformation with progressive cooling. Using the crustal-scale Wadi al Wasit mantle shear zone (SZ, Semail ophiolite, Oman), we monitor such changes based on quantitative field and microstructural investigations combined with petrological and geochemical analyses. The spatial distribution of magmatic dikes and high strain zones gives important information on the location of magmatic and tectonic activity. In the SZ, dikes derived from primitive melts (websterites) are distributed over the entire SZ but are more abundant in the center; dikes from more evolved, plagioclase saturated melts (gabbronorites) are restricted to the SZ center. Accordingly, harzburgite deformation fabrics show a transition from protomylonite (1100°C), mylonite (900-800°C) to ultramylonite (<700°C) and a serpentine foliation (<500°C) from the SZ rim to the center. The spatial correlation between solid-state deformation fabrics and magmatic features indicates progressive strain localization in the SZ on the cooling path. Three stages can be discriminated: (i) Cycles of melt injection (dunite channels and websterite dikes) and solid-state deformation (protomylonites-mylonites; 1100-900°C), (ii) dominant solid-state deformation in harzburgite mylonites (900-800°C) with some last melt injections (gabbronorites) and ultramylonites (<700°C), and (iii) infiltration of seawater inducing a serpentine foliation (<500°C) followed by cataclasis during obduction. The change of these processes in space and time indicates that early dike-related ridge-parallel deformation controls the onset of the entire strain localization history promoting nucleation sites for different strain weakening processes as a consequence of changing physicochemical conditions.

  18. Local field distribution near corrugated interfaces: Green's function formulation

    NASA Astrophysics Data System (ADS)

    Yu, K. W.; Wan, Jones T. K.

    2001-12-01

    We have developed a Green's function formalism to compute the local field distribution near an interface separating two media of different dielectric constants. The Maxwell's equations are converted into a surface integral equation; thus it greatly simplifies the solutions and yields accurate results for interfaces of arbitrary shape. The integral equation is solved and the local field distribution is obtained for a periodic interface.

  19. Multi-scale strain localization within orthogneiss during subduction and exhumation (Tenda unit, Alpine Corsica)

    NASA Astrophysics Data System (ADS)

    Beaudoin, Alexandre; Augier, Romain; Jolivet, Laurent; Raimbourg, Hugues; Jourdon, Anthony; Scaillet, Stéphane; Cardello, Giovanni Luca

    2016-04-01

    Strain localization depends upon scale-related factors resulting in a gap between small-scale studies of deformation mechanisms and large-scale numerical and tectonic models. The former often ignore the variations in composition and water content across tectonic units, while the latter oversimplify the role of the deformation mechanisms. This study aims to heal this gap, by considering microstructures and strain localization not only at a single shear zone-scale but across a 40km-wide tectonic unit and throughout its complex polyphased evolution. The Tenda unit (Alpine Corsica) is an external continental unit mainly composed of granites, bounded by the East Tenda Shear Zone (ETSZ) that separates it from the overlying oceanic-derived HP tectonic units. Previous studies substantially agreed on (1) the burial of the Tenda unit down to blueschist-facies conditions associated with top-to-the-west shearing (D1) and (2) subsequent exhumation accommodated by a localized top-to-the-east shear zone (D2). Reaction-softening is the main localizing mechanism proposed in the literature, being associated with the transformation of K-feldspar into white-mica. In this work, the Tenda unit is reviewed through (1) the construction of a new field-based strain map accompanied by cross-sections representing volumes of rock deformed at different grades related to large-scale factors of strain localization and (2) the structural study of hand-specimens and thin-sections coupled with EBSD analysis in order to target the deformation processes. We aim to find how softening and localization are in relation to the map-scale distribution of strain. The large-scale study shows that the whole Tenda unit is affected by the two successive stages of deformation. However, a more intense deformation is observed along the eastern margin, which originally led to the definition of the ETSZ, with a present-day anastomosed geometry of deformation. Strain localization is clearly linked to rheological

  20. Strain localization in ultramylonitic calcite marbles by dislocation creep-accommodated grain boundary sliding

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard; Clancy White, Joseph

    2015-04-01

    Strain localization in monomineralic rocks is often associated with brittle precursors, resulting in stress and strain concentration, followed by grain size reduction and activation of grain-size-sensitive deformation mechanisms such as diffusion creep, grain boundary sliding and cataclastic flow. The aforementioned mechanisms typically tend to produce a random crystallographic orientation or a decrease in intensity of a pre-existing texture. However, reports of fine grained polycrystalline materials showing a preferred crystallographic orientation indicate a need for subsequent grain re-organization by either static annealing or the activation of additional deformation mechanisms in conjunction with grain boundary sliding. We present observations from an almost pure calcite marble layer from Syros Island (Cyclades, Greece) deformed in lower greenschist facies conditions. The presence of a crack (i.e. cross-cutting element) that rotated during shear resulted in the formation of a flanking structure. At the location of maximum displacement (120 cm) along the cross-cutting element, the marble is extremely fine grained (3 µm) leading to anticipation of deformation by grain-size-sensitive mechanisms. Detailed microstructural analysis of the highly strained (80 < gamma < 1000) calcite ultramylonite by optical microscopy, electron backscatter diffraction and scanning transmission electron microscopy show that recrystallization by bulging results in small, strain-free grains. The change in grain size appears to be concomitant with increased activity of independent grain boundary sliding as indicated by a random misorientation angle distribution. At the same time, dislocation multiplication through Frank-Read sources produces high mean dislocation density (~ 5x10^13 m^-2) as well as a weak primary CPO; the latter all argue that grain boundary sliding was accommodated by dislocation activity. Theoretical and experimental determined relationships (paleowattmeter

  1. Object Management in Local Distributed Systems

    DTIC Science & Technology

    1985-11-01

    Theory, Vol. 2, Jack Minker et a.l. editors, Plenum Press, New York, IQ84. / A3/ Gottlob , G., P. Paolini, and R. Zicari, "Properties and Update Semantics...February 1980. /D3/ Enslow, P., "What is a ’distributed’ data processing system?" IEEE Computer, 11, 1, January 1978. /D4/ Gottlob , G. and R. Zicari

  2. Modeling and Simulation - The Effects of Grain Coarsening on Local Stresses and Strains in Solder Microstructure

    SciTech Connect

    Chanchani, R.

    1999-01-21

    A critical issue in the long-term reliability of solder connections used in electronic packages is the joint failure during thermal cycling. Presently in most finite element analysis to predict the solder joint fatigue failures, solder is assumed as a homogeneous single-phase metal. However in the last decade, several metallurgical studies have shown that solder microstructure may have a role in early solder joint failures (ref 1). Investigators have observed (ref 1) that solder microstructure coarsens in local bands during aging and during thermal cycle fatigue. In a failed solder joint, the fatigue cracks are found in these bands of coarse grains. It is speculated that the grain coarsening increases the local strains within the microstructure, thereby increasing the likelihood for a crack to initiate. The objective of this study is to model and simulate the effect of grain coarsening on local stresses and strains. During solidification of eutectic Pb/Sn solder, two types of microstructure form, namely lamellar and equiaxed. In this study, I have developed a computer code to generate both types of microstructures of varying grain coarseness. This code is incorporated into the finite element (FE) code that analyzes the local stresses and strains within the computer-generated microstructure. The FE code, specifically developed for this study, uses an algorithm involving the sparse matrix and iterative solver. This code on a typical single-processor machine will allow the analyst to use over 1 million degrees of freedom. For higher number of degrees of freedom, we have also developed a code to run on a parallel machine using message passing interface. The data reported in this paper were obtained using the single-processor code. The solder microstructure, if assumed to be homogeneous single phase, has gradual variation in local stresses and strains. In 2-phase solder, von mises stresses and strains are heterogeneously distributed. In general, the maximum von mises

  3. Development of a pattern to measure multiscale deformation and strain distribution via in situ FE-SEM observations.

    PubMed

    Tanaka, Y; Naito, K; Kishimoto, S; Kagawa, Y

    2011-03-18

    We investigated a method for measuring deformation and strain distribution in a multiscale range from nanometers to millimeters via in situ FE-SEM observations. A multiscale pattern composed of a grid as well as random and nanocluster patterns was developed to measure the localized deformation at the specimen surface. Our in situ observations of a carbon fiber-reinforced polymer matrix composite with a hierarchical microstructure subjected to loading were conducted to identify local deformation behaviors at various boundaries. We measured and analyzed the multiscale deformation and strain localizations during various stages of loading.

  4. Strain localization in shear zones during exhumation: a graphical approach to facies interpretation

    NASA Astrophysics Data System (ADS)

    Cardello, Giovanni Luca; Augier, Romain; Laurent, Valentin; Roche, Vincent; Jolivet, Laurent

    2015-04-01

    Strain localization is a fundamental process determining plate tectonics. It is expressed in the ductile field by shear zones where strain concentrates. Despite their worldwide distribution in most metamorphic units, their detailed characterization and processes comprehension are far to be fully addressed. In this work, a graphic approach to tectono-metamorphic facies identification is applied to the Delfini Shear Zone in Syros (Cyclades, Greece), which is mostly characterized by metabasites displaying different degree of retrogression from fresh eclogite to prasinite. Several exhumation mechanisms brought them from the depths of the subduction zone to the surface, from syn-orogenic exhumation to post-orogenic backarc extension. Boudinage, grain-size reduction and metamorphic reactions determinate strain localization across well-deformed volumes of rocks organized in a hierarchic frame of smaller individual shear zones (10-25 meters thick). The most representative of them can be subdivided in 5 tectono-metamorphic (Tm) facies, TmA to E. TmA records HP witnesses and older folding stages preserved within large boudins as large as 1-2 m across. TmB is characterized by much smaller and progressively more asymmetric boudins and sigmoids. TmC is defined by well-transposed sub- to plane-parallel blueschist textures crossed by chlorite-shear bands bounding the newly formed boudins. When strain increases (facies TmD-E), the texture is progressively retrograded to LP-HT greenschist-facies conditions. Those observations allowed us to establish a sequence of stages of strain localization. The first stage (1) is determined by quite symmetric folding and boudinage. In a second stage (2), grain-size reduction is associated with dense shear bands formation along previously formed glaucophane and quartz-rich veins. With progressively more localized strain, mode-I veins may arrange as tension gashes that gradually evolve to blueschist shear bands. This process determinates the

  5. Localization of 17beta-hydroxysteroid dehydrogenase in Mycobacterium sp. VKM Ac-1815D mutant strain.

    PubMed

    Egorova, O V; Nikolayeva, V M; Suzina, N E; Donova, M V

    2005-04-01

    The localization of mycobacterial 17beta-hydroxysteroid dehydrogenase (17beta-OH SDH) was studied using cell fractionation and cytochemical investigation. Mycobacterium sp. Et1 mutant strain derived from Mycobacterium sp. VKM Ac-1815D and characterized by increased 17beta-OH SDH activity was used as a model organism. Subcellular distribution study showed both soluble and membrane-bound forms of mycobacterial 17beta-hydroxysteroid dehydrogenase. The cytochemical method based on a copper ferrocyanide procedure followed by electron microscopic visualization was applied in order to investigate the intracellular localization of bacterial 17beta-OH SDH in more detail. The enzyme was found to be located in the peripheral cytoplasmic zone adjoining the cytoplasmic membrane (CM). 17beta-OH SDH was loosely membrane bound and easily released into the environment under the cell integrity failure.

  6. Structural health monitoring of cylindrical bodies under impulsive hydrodynamic loading by distributed FBG strain measurements

    NASA Astrophysics Data System (ADS)

    Fanelli, Pierluigi; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano

    2017-02-01

    Various mechanical, ocean, aerospace and civil engineering problems involve solid bodies impacting the water surface and often result in complex coupled dynamics, characterized by impulsive loading conditions, high amplitude vibrations and large local deformations. Monitoring in such problems for purposes such as remaining fatigue life estimation and real time damage detection is a technical and scientific challenge of primary concern in this context. Open issues include the need for developing distributed sensing systems able to operate at very high acquisition frequencies, to be utilized to study rapidly varying strain fields, with high resolution and very low noise, while scientific challenges mostly relate to the definition of appropriate signal processing and modeling tools enabling the extraction of useful information from distributed sensing signals. Building on previous work by some of the authors, we propose an enhanced method for real time deformed shape reconstruction using distributed FBG strain measurements in curved bodies subjected to impulsive loading and we establish a new framework for applying this method for structural health monitoring purposes, as the main focus of the work. Experiments are carried out on a cylinder impacting the water at various speeds, proving improved performance in displacement reconstruction of the enhanced method compared to its previous version. A numerical study is then carried out considering the same physical problem with different delamination damages affecting the body. The potential for detecting, localizing and quantifying this damage using the reconstruction algorithm is thoroughly investigated. Overall, the results presented in the paper show the potential of distributed FBG strain measurements for real time structural health monitoring of curved bodies under impulsive hydrodynamic loading, defining damage sensitive features in terms of strain or displacement reconstruction errors at selected locations along

  7. Strain Hardening and Long-Range Internal Stress in the Localized Deformation of Irradiated Polycrystalline Metals

    SciTech Connect

    Byun, Thak Sang; Hashimoto, Naoyuki

    2006-01-01

    Low-temperature irradiation can significantly harden metallic materials and often results in microscopic strain localization such as dislocation channeling during deformation. In true stress-true strain analyses, however, the strain localization does not significantly affect macroscopic strain-hardening behavior. It was attempted to explain the strain-hardening behavior during strain localization in terms of long-range back stresses. In theoretical modeling the long-range back stress was formulated as a function of the number of residual pileup dislocations at a grain boundary and the number of localized bands formed in a grain. The strain-hardening rates in channel deformation were calculated for ten face-centered cubic (fcc) and body-centered cubic (bcc) metals. A few residual dislocations in each channel could account for the strain-hardening rates as high as those for uniform deformation. It was also shown that the strain-hardening behavior predicted by the long-range back stress model resembled the empirical strain-hardening behaviors, which result from both localized and non-localized deformations. The predicted plastic instability stress was comparable to the tensile test data.

  8. Strain hardening and long-range internal stress in the localized deformation of irradiated polycrystalline metals

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Hashimoto, Naoyuki

    2006-08-01

    Low-temperature irradiation can significantly harden metallic materials and often results in microscopic strain localization such as dislocation channeling during deformation. In true stress-true strain analyses, however, the strain localization does not significantly affect macroscopic strain-hardening behavior. It was attempted to explain the strain-hardening behavior during strain localization in terms of long-range back stresses. In theoretical modeling the long-range back stress was formulated as a function of the number of residual pileup dislocations at a grain boundary and the number of localized bands formed in a grain. The strain-hardening rates in channel deformation were calculated for ten face-centered cubic (fcc) and body-centered cubic (bcc) metals. A few residual dislocations in each channel could account for the strain-hardening rates as high as those for uniform deformation. It was also shown that the strain-hardening behavior predicted by the long-range back stress model resembled the empirical strain-hardening behaviors, which result from both localized and non-localized deformations. The predicted plastic instability stress was comparable to the tensile test data.

  9. [Bound amino acids in local strains of Trichomonas vaginalis].

    PubMed

    Tsvetkova, A; Osinovski, E; Vasilevska, M

    1990-01-01

    Amino acid composition of water-soluble and water-insoluble proteins of 8 strains of Tr. vaginalis is studied. 17 amino acids are found in both protein hydrolyzates. Despite the complete coincidence of their qualitative compositions there are reliable differences in the quantitative contents of some amino acids. Differences in the contents of main amino acids of water-soluble proteins of different strains reflect the belonging of the latter to different sero-groups. No reliable differences in the quantitative contents of amino acids of both water-soluble and water-insoluble proteins in strains belonging to one sero-group are recognised.

  10. Different distribution patterns of ten virulence genes in Legionella reference strains and strains isolated from environmental water and patients.

    PubMed

    Zhan, Xiao-Yong; Hu, Chao-Hui; Zhu, Qing-Yi

    2016-04-01

    Virulence genes are distinct regions of DNA which are present in the genome of pathogenic bacteria and absent in nonpathogenic strains of the same or related species. Virulence genes are frequently associated with bacterial pathogenicity in genus Legionella. In the present study, an assay was performed to detect ten virulence genes, including iraA, iraB, lvrA, lvrB, lvhD, cpxR, cpxA, dotA, icmC and icmD in different pathogenicity islands of 47 Legionella reference strains, 235 environmental strains isolated from water, and 4 clinical strains isolated from the lung tissue of pneumonia patients. The distribution frequencies of these genes in reference or/and environmental L. pneumophila strains were much higher than those in reference non-L. pneumophila or/and environmental non-L. pneumophila strains, respectively. L. pneumophila clinical strains also maintained higher frequencies of these genes compared to four other types of Legionella strains. Distribution frequencies of these genes in reference L. pneumophila strains were similar to those in environmental L. pneumophila strains. In contrast, environmental non-L. pneumophila maintained higher frequencies of these genes compared to those found in reference non-L. pneumophila strains. This study illustrates the association of virulence genes with Legionella pathogenicity and reveals the possible virulence evolution of non-L. pneumophia strains isolated from environmental water.

  11. Ultrastructure and cytochemical localization of laccase in two strains of Leptosphaerulina briosiana (Pollaci) Graham and Luttrell.

    PubMed Central

    Simon, L T; Bishop, D S; Hooper, G R

    1979-01-01

    Substrate specificity tests were used to identify the presence of laccase in two strains of Leptosphaerulina briosiana (Poll.) Graham and Luttrell, an ascomycete which causes leaf spot in alfalfa. Cytochemical localization of monophenol monooxygenase (laccase) as well as the ultrastructures of the two strains were investigated. Laccase was observed in the outer layers of the cell walls of both strains. The ultrastructures of vegetative hyphae of both strains were typical of those found in most ascomycetes. Images PMID:104971

  12. Investigation of the Influence of Tool Geometry on Effective Strain Distribution in Full Forward Extrusion

    NASA Astrophysics Data System (ADS)

    Merklein, Marion; Ndzomssi, Franck; Engel, Ulf

    2011-05-01

    Due to strain hardening of the material, the hardness of cold forged parts is considerably improved. It is well known that the hardness of cold forged parts is closely related to its deformation, and that this relation is not dependent on the deformation process. The effective strain defines the local deformation, and can be determined in simulation of the cold forming process. In order to reach the required or to set specific hardness distribution with cold forging without any heat treatment processes, it is necessary to find out which manufacturing parameters influence the effective strain, and determine the effects of these parameters. The research work covered in this paper investigates the influence of the die geometry (as manufacturing parameter) on the effective strain. For that, a full forward extrusion process was modeled using the FE-software Simufact. Forming and three parameters of the die geometry, namely the deformation ratio, the shoulder radius and the opening angle were varied. The maximum effective strain from each combination is determined, and the effects of each considered parameter as well as the effects of interactions between these factors are checked.

  13. Forming Ganymede’s grooves at smaller strain: Toward a self-consistent local and global strain history for Ganymede

    USGS Publications Warehouse

    Bland, Michael; McKinnon, W. B.

    2015-01-01

    The ubiquity of tectonic features formed in extension, and the apparent absence of ones formed in contraction, has led to the hypothesis that Ganymede has undergone global expansion in its past. Determining the magnitude of such expansion is challenging however, and extrapolation of locally or regionally inferred strains to global scales often results in strain estimates that exceed those based on global constraints. Here we use numerical simulations of groove terrain formation to develop a strain history for Ganymede that is generally consistent at local, regional, and global scales. These simulations reproduce groove-like amplitudes, wavelengths, and average slopes at modest regional extensions (10–15%). The modest strains are more consistent with global constraints on Ganymede’s expansion. Yet locally, we also find that surface strains can be much larger (30–60%) in the same simulations, consistent with observations of highly-extended impact craters. Thus our simulations satisfy both the smallest-scale and largest-scale inferences of strain on Ganymede. The growth rate of the topography is consistent with (or exceeds) predictions of analytical models, and results from the use of a non-associated plastic rheology that naturally permits localization of brittle failure (plastic strain) into linear fault-like shear zones. These fault-like zones are organized into periodically-spaced graben-like structures with stepped, steeply-dipping faults. As in previous work, groove amplitudes and wavelengths depend on both the imposed heat flux and surface temperature, but because our brittle strength increases with depth, we find (for the parameters explored) that the growth rate of topography is initially faster for lower heat flows. We observe a transition to narrow rifting for higher heat flows and larger strains, which is a potential pathway for breakaway margin or band formation.

  14. Effect of Local Tidal Lung Strain on Inflammation in Normal and Lipopolysaccharide-Exposed Sheep

    PubMed Central

    Wellman, Tyler J.; Winkler, Tilo; Costa, Eduardo L.V.; Musch, Guido; Harris, R. Scott; Zheng, Hui; Venegas, Jose G.; Vidal Melo, Marcos F.

    2014-01-01

    Objective Regional tidal lung strain may trigger local inflammation during mechanical ventilation, particularly when additional inflammatory stimuli are present. However, it is unclear whether inflammation develops proportionally to tidal strain or only above a threshold. We aimed to: (1) assess the relationship between regional tidal strain and local inflammation in vivo during the early stages of lung injury in lungs with regional aeration heterogeneity comparable to that of humans; and (2) determine how this strain-inflammation relationship is affected by endotoxemia. Design Interventional animal study. Setting Experimental laboratory and positron emission tomography (PET) facility. Subjects Eighteen 2–4-month-old sheep. Interventions Three groups of sheep (n=6) were mechanically ventilated to the same plateau pressure (30–32 cmH2O) with High-Strain (VT=18.2±6.5 ml/kg, PEEP=0), High-Strain plus intravenous lipopolysaccharide (LPS) (VT=18.4±4.2 ml/kg, PEEP=0), or Low-Strain plus LPS (VT=8.1±0.2 ml/kg, PEEP=17±3 cmH2O). At baseline, we acquired respiratory-gated PET scans of inhaled 13NN to measure tidal strain from end-expiratory and end-inspiratory images in six regions of interest (ROIs). After 3 hours of mechanical ventilation, dynamic [18F]fluoro-2-deoxy-D-glucose (18F-FDG) scans were acquired to quantify metabolic activation, indicating local neutrophilic inflammation, in the same ROIs. Measurements and Main Results Baseline regional tidal strain had a significant effect on 18F-FDG net uptake rate Ki in High-Strain LPS (p=0.036) and on phosphorylation rate k3 in High-Strain (p=0.027) and High-Strain LPS (p=0.004). LPS exposure increased the k3-tidal strain slope 3-fold (p=0.009), without significant lung edema. The Low-Strain LPS group showed lower baseline regional tidal strain (0.33±0.17) than High-Strain (1.21±0.62; p<0.001) or High-Strain LPS (1.26±0.44; p<0.001), and lower k3 (p<0.001) and Ki (p<0.05) than High-Strain LPS. Conclusions Local

  15. Strain distribution within a km-scale, mid-crustal shear zone: The Kuckaus Mylonite Zone, Namibia

    NASA Astrophysics Data System (ADS)

    Rennie, S. F.; Fagereng, Å.; Diener, J. F. A.

    2013-11-01

    The subvertical Kuckaus Mylonite Zone (KMZ) is a km-wide, crustal-scale, Proterozoic, dextral strike-slip shear zone in the Aus granulite terrain, SW Namibia. The KMZ was active under retrograde, amphibolite to greenschist facies conditions, and deformed felsic (and minor mafic) gneisses which had previously experienced granulite facies metamorphism during the Namaqua Orogeny. Lenses of pre- to syn-tectonic leucogranite bodies are also deformed in the shear zone. Pre-KMZ deformation (D1) is preserved as moderately dipping gneissic foliations and tightly folded migmatitic layering. Shear strain within the KMZ is heterogeneous, and the shear zone comprises anastomosing high strain ultramylonite zones wrapping around less deformed to nearly undeformed lozenges. Strain is localized along the edge of leucogranites and between gneissic lozenges preserving D1 migmatitic foliations. Strain localization appears controlled by pre-existing foliations, grain size, and compositional anisotropy between leucogranite and granulite. The local presence of retrograde minerals indicate that fluid infiltration occurred in places, but most ultramylonite in the KMZ is free of retrograde minerals. In particular, rock composition and D1 fabric heterogeneity are highlighted as major contributors to the strain distribution in time and space, with deformation localization along planes of rheological contrast and along pre-existing foliations. Therefore, the spatial distribution of strain in crustal-scale ductile shear zones may be highly dependent on lithology and the orientation of pre-existing fabric elements. In addition, foliation development and grain size reduction in high strain zones further localizes strain during progressive shear, maintaining the anastomosing shear zone network established by the pre-existing heterogeneity.

  16. On the localization of plastic strain under compression of LiF crystals

    NASA Astrophysics Data System (ADS)

    Barannikova, S. A.; Nadezhkin, M. V.; Zuev, L. B.

    2010-07-01

    The plastic flow localization patterns for alkali halide LiF crystals under compression have been investigated. The main spatiotemporal regularities of the strain localization at different stages of deformation hardening in the single crystals have been established. The relation has been traced between the orientation of localized strain zones and the crystallography of slip systems of the test specimens studied simultaneously by the double-exposure speckle photography and photoelasticity methods.

  17. Strain Localization in an Oscillating Maxwell Viscoelastic Cylinder.

    PubMed

    Massouros, Panagiotis G; Bayly, Philip V; Genin, Guy M

    2014-01-15

    The transient rotation responses of simple, axisymmetric, viscoelastic structures are of interest for interpretation of experiments designed to characterize materials and closed structures such as the brain using magnetic resonance techniques. Here, we studied the response of a Maxwell viscoelastic cylinder to small, sinusoidal displacement of its outer boundary. The transient strain field can be calculated in closed form using any of several conventional approaches. The solution is surprising: the strain field develops a singularity that appears when the wavefront leaves the center of the cylinder, and persists as the wavefront reflects to the outer boundary and back to the center of the cylinder. The singularity is alternately annihilated and reinitiated upon subsequent departures of the wavefront from the center of the cylinder until it disappears in the limit of steady state oscillations. We present the solution for this strain field, characterize the nature of this singularity, and discuss its potential role in the mechanical response and evolved morphology of the brain.

  18. Photobleaching as a tool to measure the local strain field in fibrous membranes of connective tissues.

    PubMed

    Jayyosi, C; Fargier, G; Coret, M; Bruyère-Garnier, K

    2014-06-01

    Connective tissues are complex structures which contain collagen and elastin fibers. These fiber-based structures have a great influence on material mechanical properties and need to be studied at the microscopic scale. Several microscopy techniques have been developed in order to image such microstructures; among them are two-photon excited fluorescence microscopy and second harmonic generation. These observations have been coupled with mechanical characterization to link microstructural kinematics to macroscopic material parameter evolution. In this study, we present a new approach to measure local strain in soft biological tissues using a side-effect of fluorescence microscopy: photobleaching. Controlling the loss of fluorescence induced by photobleaching, we create a pattern on our sample that we can monitor during mechanical loading. The image analysis allows three-dimensional displacements of the patterns at various loading levels to be computed. Then, local strain distribution is derived using the finite element discretization on a four-node element mesh created from our photobleached pattern. Photobleaching tests on a human liver capsule have revealed that this technique is non-destructive and does not have any impact on mechanical properties. This method is likely to have other applications in biological material studies, considering that all collagen-elastin fiber-based biological tissues possess autofluorescence properties and thus can be photobleached.

  19. Strain localization at the margins of strong lithospheric domains: Insights from analog models

    NASA Astrophysics Data System (ADS)

    Calignano, Elisa; Sokoutis, Dimitrios; Willingshofer, Ernst; Gueydan, Frédéric; Cloetingh, Sierd

    2015-03-01

    The lateral variation of the mechanical properties of continental lithosphere is an important factor controlling the localization of deformation and thus the deformation history and geometry of intraplate mountain belts. A series of three-layer lithospheric-scale analog models, with a strong domain (SD) embedded at various depths, are presented to investigate the development of topography and deformation patterns by having lateral heterogeneities within a weak continental lithosphere. The experiments, performed at a constant velocity and under normal gravity, indicate that the presence or absence of the SD controls whether deformation is localized or distributed at a lithospheric scale. Deformation and topography localize above the edges of the SD, while the SD region itself is characterized by minor amounts of surficial deformation and topography. The depth of the SD (within the ductile crust, ductile mantle lithosphere, or both) controls the pattern of deformation and thus the topography. The presence of a SD in the ductile crust or in the mantle results in limited surficial topographic effects but large variations in the Moho topography. Strong Moho deflection occurs when the SD is in the ductile crust, while the Moho remains almost flat when the SD is in the mantle. When the SD occupies the ductile lithosphere, the SD is tilted. These analog experiments provide insights into intraplate strain localization and could in particular explain the topography around the Tarim Basin, a lithospheric-scale heterogeneity north of the India-Asia collision zone.

  20. Deformation behavior of continental crust during subduction and exhumation: Strain distribution over the Tenda massif (Alpine Corsica, France)

    NASA Astrophysics Data System (ADS)

    Beaudoin, Alexandre; Augier, Romain; Jolivet, Laurent; Jourdon, Anthony; Raimbourg, Hugues; Scaillet, Stéphane; Cardello, Giovanni Luca

    2017-05-01

    In order to address the question of strain localization within continental units during subduction and exhumation, a large-scale portion of an exhumed continental crust was structurally revisited. The Tenda massif (Alpine Corsica) has recorded burial (D1; top-to-the-SW kinematics) down to blueschist-facies conditions followed by exhumation (D2; top-to-the-NE kinematics). It was so far regarded as a quite rigid unit with strain localization at the upper contact with the overlying oceanic material, the East Tenda Shear Zone (ETSZ), where previous studies were focused. A structural analysis carried out from the core to the boundaries of this continental unit shows instead that deformation is pervasive in the whole section. A reappraisal of the finite structure shows that this unit corresponds to a N140°E elongated dome of D2 fabrics severely overprinting earlier D1 structures, locally preserved in the core of the dome. Field observations show that deformation was distributed at maximum burial, pervasively affecting both the Tenda massif and the overlying tectonically coupled oceanic material. Strain remained distributed during the first steps of exhumation that probably started during the last stages of subduction. After a regional switch from compression to extension, deformation localized toward the ETSZ and other internal shear zones such as the newly described Saleccia Shear Zone, as shown by strain intensity mapping in the eastern granitic protoliths. Doming occurred during this localization when crossing the brittle-ductile transition. This large-scale structural study shows that lithological boundaries controlled the place where strain localized, while the general style of deformation (distributed vs localized) was controlled by depth (i.e. pressure-temperature conditions), interacting with other parameters such as fluid circulation and protolith composition.

  1. Distributed MIMO Radar for Imaging and High Resolution Target Localization

    DTIC Science & Technology

    2012-02-02

    28-2012 Final Report 04/15/2009 - 11/30/2011 Distributed MIMO Radar for Imaging and High Resolution Target Localization FA9550-09-1-0303 Alexander M...randomly placed sensors. MIMO radar, High-Resolution radar 19 Distributed MIMO Radar for Imaging and High Resolution Target Localization Air Force Office...configured with its antennas collocated [6] or distributed over an area [7, 8]. We refer to radio elements of a MIMO radar as nodes. Nodes may be equipped

  2. Sound source localization using distributed elevated acoustic sensors

    NASA Astrophysics Data System (ADS)

    Di, Xiao; Wagstaff, Ronald A.; Anderson, John D.; Gilbert, Kenneth E.

    2009-05-01

    Detecting and localizing impulsive acoustic sources in the daytime using distributed elevated acoustic sensors with large baseline separations has distinct advantages over small ground-based arrays. There are generally two reasons for this: first, during the daytime, because of more direct and less encumbered propagation paths, signal levels are generally larger at altitude than near the ground. Second, larger baselines provide improved localization accuracy. Results are reported from a distributed array of acoustic sensors deployed during an experiment near Bourges, France during June of 2008. The distributed array consisted of microphones and GPS receivers attached to the tether lines of three widely separated aerostats. The sound sources were various impulsive devices. Results from the measurements are presented and discussed. Localization errors (GPS accuracy, propagation calculation, and aerostat motion, etc) are discussed. Possible ways to improve the localization accuracy are suggested.

  3. Stick-slip instabilities and shear strain localization in amorphous materials.

    PubMed

    Daub, Eric G; Carlson, Jean M

    2009-12-01

    We study the impact of strain localization on the stability of frictional slipping in dense amorphous materials. We model the material using shear transformation zone (STZ) theory, a continuum approximation for plastic deformation in amorphous solids. In the STZ model, the internal state is quantified by an effective disorder temperature, and the effective temperature dynamics capture the spontaneous localization of strain. We study the effect of strain localization on stick-slip instabilities by coupling the STZ model to a noninertial spring slider system. We perform a linear stability analysis to generate a phase diagram that connects the small scale physics of strain localization to the macroscopic stability of sliding. Our calculations determine the values of spring stiffness and driving velocity where steady sliding becomes unstable and we confirm our results through numerical integration. We investigate both homogeneous deformation, where no shear band forms, and localized deformation, where a narrow shear band spontaneously forms and accommodates all of the deformation. Our results show that at a given velocity, strain localization leads to unstable frictional sliding at a much larger spring stiffness compared to homogeneous deformation, and that localized deformation cannot be approximated by a homogeneous model with a narrower material. We also find that strain localization provides a physical mechanism for irregular stick-slip cycles in certain parameter ranges. Our results quantitatively connect the internal physics of deformation in amorphous materials to the larger scale frictional dynamics of stick-slip.

  4. An electron localization function study of the strain energy in carbon compounds

    NASA Astrophysics Data System (ADS)

    Chevreau, Hilaire; Sevin, Alain

    2000-05-01

    It is shown, through an electron localization function (ELF) analysis of the strain in carbon compounds, that, globally, the valence basins V(CH) and V(CC) tend to preserve a VSEPR (valence shell electron pair repulsion) geometry. This point is clearly illustrated by the valence attractors location. The properties of V(CC) basins, associated with the CC bonds, remain as constant as possible. The main effect of the strain is to modify the maximal electron localization in each V(CC) basin. This study points out once more the difficulty in relating global strain to local bond properties.

  5. Analysis of local strain in aluminum interconnects by convergent beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Krämer, Stephan; Mayer, Joachim

    1999-11-01

    Energy filtered convergent beam electron diffraction (CBED) was used to investigate localized strain in aluminum interconnects. An analysis of the higher order Laue zone (HOLZ) line positions in CBED patterns makes it possible to measure the lattice strain with high accuracy (˜104) and high spatial resolution (10 to 100 nm). The strain development in a single grain was measured during thermal cycling between -170 °C and +100 °C. The grain showed reversible, elastic behavior over the whole temperature range building up large strains at low temperatures. By comparing with finite element simulations, a detailed understanding of the tri-axial strain state could be achieved.

  6. Effect of anharmonicity of interatomic potential on strain distribution in semiconductor nanostructures

    NASA Technical Reports Server (NTRS)

    Lazarenkova, Olga L.; von Allmen, Paul; Oyafuso, Fabiano; Lee, Seungwoii; Klimeck, Gerhard

    2004-01-01

    Experiments and theory have shown that the energy spectrum of nanostructures is extremely sensitive to the built-in strain. Knowledge of the strain distribution is therefore Experiments and theory have shown that the energy spectrum of nanostructures is extremely sensitive to the built-in strain. Knowledge of the strain distribution is therefore of utmost importance for the design of optical devices with prescribed light emission spectrum.

  7. The effects of quartz recrystallization and reaction on weak phase interconnection, strain localization and evolution of microstructure

    NASA Astrophysics Data System (ADS)

    Gonçalves, Cristiane C.; Gonçalves, Leonardo; Hirth, Greg

    2015-02-01

    We conducted axial compression and general shear experiments, at T = 900 °C and P = 1.5 GPa, on samples of banded iron formation (BIF) and synthetic aggregates of quartz, hematite and magnetite to investigate how dynamic recrystallization of quartz promotes strain localization, and the role of weak second phases (oxides) on the rheology and microstructural evolution of the aggregates. Experiments showed strain localization into oxide rich layers, and that the oxide content and oxide distribution are key factors for the strength of the aggregate. Only 2-10 wt.% hematite leads to pronounced weakening and increasing hematite content above ˜10% has only a minor additional effect. Where oxide grains are dispersed, the initial strength contrast with quartz induces stress concentrations at their tips, promoting high stress recrystallization-accommodated dislocation creep of quartz. Fine recrystallized quartz reacts with oxide, forming trails of fine reaction product (ferrosilite/fayalite) leading to the interconnection/percolation of a weaker matrix. The strength contrast between the quartz framework and these fine-grained trails promotes strain localization into micro-shear zones, inducing drastic strain weakening. Thus dynamic recrystallization of quartz promotes syn-deformational reactions leading to a microstructurally-controlled evolution of phase strength contrast. It results in a rheologic transition from load-bearing framework to a matrix-controlled rheology, with transition from S-C‧ to S-C fabric with increasing strain.

  8. Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Lopatin, Craig

    2001-01-01

    A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.

  9. Atomic mobility and strain localization in amorphous metals.

    PubMed

    Delogu, Francesco

    2008-02-22

    Molecular dynamics simulations are employed to investigate the atomic mobility in Ni(50)Zr(50) amorphous alloys under both static conditions and shearing. Diffusion occurs under static conditions via cooperative stringlike motion involving atoms with large volumes. Atomic mobility is instead governed by rearrangements localized in shear transformation zones (STZs) under shearing. Local atomic volume plays in both cases a key role, the atomic ensembles involved in diffusion and STZ activity being strongly correlated.

  10. Diversity and Distribution of Frankia Strains Symbiotic with Ceanothus in California

    PubMed Central

    Oakley, Brian; North, Malcolm; Franklin, Jerry F.; Hedlund, Brian P.; Staley, James T.

    2004-01-01

    Frankia strains symbiotic with Ceanothus present an interesting opportunity to study the patterns and causes of Frankia diversity and distribution within a particular host infectivity group. We intensively sampled Frankia from nodules on Ceanothus plants along an elevational gradient in the southern Sierra Nevada of California, and we also collected nodules from a wider host taxonomic and geographic range throughout California. The two sampling scales comprised 36 samples from eight species of Ceanothus representing six of the seven major biogeographic regions in and around California. The primary objective of this study was to use a quantitative model to test the relative importance of geographic separation, host specificity, and environment in influencing the identity of Ceanothus Frankia symbionts as determined by ribosomal DNA sequence data. At both sampling scales, Frankia strains symbiotic with Ceanothus exhibited a high degree of genetic similarity. Frankia strains symbiotic with Chamaebatia (Rosaceae) were within the same clade as several Ceanothus symbionts. Results from a classification and regression tree model used to quantitatively explain Frankia phylogenetic groupings demonstrated that the only significant variable in distinguishing between phylogenetic groups at the more local sampling scale was host species. At the regional scale, Frankia phylogenetic groupings were explained by host species and the biogeographic province of sample collection. We did not find any significant correspondence between Frankia and Ceanothus phylogenies indicative of coevolution, but we concluded that the identity of Frankia strains inhabiting Ceanothus nodules may involve interactions between host species specificity and geographic isolation. PMID:15528504

  11. Effect of inclusions on strain localization during high temperature creep of marble

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Morales, L. G.; Naumann, M.; Dresen, G. H.

    2013-12-01

    The deformation of rocks in the Earth's lower crust is often localized in ductile shear zones. Strain localization in rocks deforming at high temperature and pressures may be induced by various physical, chemical, or structurally-related mechanisms. Here, we studied the initiation and propagation of localized deformation in the ductile deformation regime by high temperature deformation experiments on marble with weak or strong inclusions. As starting material we used samples of coarse-grained Carrara marble containing one or two thin artificially prepared sheets of fine-grained Solnhofen limestone or Arkansas novaculite, which act under the applied experimental conditions as soft or strong material heterogeneities, respectively. Samples were deformed in the dislocation creep regime using a Paterson-type gas deformation apparatus at 900°C temperature and confining pressures of 300-400 MPa. Torsion experiments were performed on hollow cylinder samples at a bulk shear strain rate of ≈1.9 x 10-4 s-1 to shear strains γ between 0.02 and 2.9. At low strain, twisted specimens with weak inclusions show minor strain hardening that is replaced by strain weakening at shear strains in excess of ≈0.1- 0.2. Peak shear stress at the imposed condition is about 20MPa, which is ≈8% lower than the strength of inclusion-free samples. Strain progressively localized within the weak inclusions with increasing bulk strain, approaching at γ ≈ 1 a strain ratio of ≈24 with respect to the adjacent matrix strain. This ratio is about half of the strain ratio that is expected from the creep strength contrast between pure marble and limestone at the measured bulk stress. The localization of strain extended into narrow bands in front of the inclusions, where the degree of localization decays exponentially with increasing distance from the tip of the inclusion. Microstructural analysis shows twinning, recrystallization and the development of a strong crystallographic preferred

  12. An explicit finite element formulation for dynamic strain localization and damage evolution in metals

    SciTech Connect

    Mourad, Hashem M; Bronkhorst, Curt A; Addessio, Francis L

    2010-12-16

    An explicit finite element formulation, used to study the behavior and failure mechanisms of metallic materials under high strain rate loading, is presented. The formulation is based on the assumed-strain approach of Fish and Belytschko [1988], which allows localization bands to be embedded within an element, thereby alleviating mesh sensitivity and reducing the required computational effort. The behavior of the material outside localization bands (and of the virgin material prior to the onset of strain localization) is represented using a Gurson-type coupled plasticity-damage model based on the work of Johnson and Addessio [1988]. Assuming adiabatic conditions, the response of the localization band material is represented by a set of constitutive equations for large elasticviscoplastic deformations in metals at high strain rates and high homologous temperatures (see Brown et al. [1989]). Computational results are compared to experimental data for different metallic alloys to illustrate the advantages of the proposed modeling strategy.

  13. Strain localization during high temperature creep of marble: The effect of inclusions

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Morales, L. F. G.; Naumann, M.; Dresen, G.

    2014-11-01

    The deformation of rocks in the Earth's middle and lower crust is often localized in ductile shear zones. To better understand the initiation and propagation of high-temperature shear zones induced by the presence of structural and material heterogeneities, we performed deformation experiments in the dislocation creep regime on Carrara marble samples containing weak (limestone) or strong (novaculite) second phase inclusions. The samples were mostly deformed in torsion at a bulk shear strain rate of ≈ 1.9 × 10- 4 s- 1 to bulk shear strains γ between 0.02 and 2.9 using a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure. At low strain, twisted specimens with weak inclusions show minor strain hardening that is replaced by strain weakening at γ > 0.1-0.2. Peak shear stress at the imposed conditions is about 20 MPa, which is ≈ 8% lower than the strength of intact samples. Strain progressively localized within the matrix with increasing bulk strain, but decayed rapidly with increasing distance from the inclusion tip. Microstructural analysis shows twinning and recrystallization within this process zone, with a strong crystallographic preferred orientation, dominated by {r} and (c) slip in < a >. Recrystallization-induced weakening starts at local shear strain of about 1 in the process zone, corresponding to a bulk shear strain of about 0.1. In contrast, torsion of a sample containing strong inclusions deformed at similar stress as inclusion-free samples, but do not show localization. The experiments demonstrate that the presence of weak heterogeneities initiates localized creep at local stress concentrations around the inclusion tips. Recrystallization-induced grain size reduction may only locally promote grain boundary diffusion creep. Accordingly, the bulk strength of the twisted aggregate is close to or slightly below the lower (isostress) strength bound, determined from the flow strength and volume fraction of matrix

  14. The role of material inhomogeneities in the localization of strains

    NASA Astrophysics Data System (ADS)

    Zhou, M.; Clifton, R. J.; Needleman, A.

    1994-07-01

    Pressure-shear plate impact experiments are conducted to study dynamic shear banding in a two-phase microstructure at strain rates between 105 and 106 s-1, under pressures of the order of 10 GPa. The material is a tungsten heavy alloy (WHA) which has a microstructure consisting of hard tungsten grains embedded in a soft matrix. Experiments and numerical simulations show that the two-phase alloy is more susceptible to shear banding than either of its constituent phases when tested separately.

  15. Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    PubMed

    Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.

  16. The effect of water on strain localization in calcite fault gouge sheared at seismic slip rates

    NASA Astrophysics Data System (ADS)

    Rempe, Marieke; Smith, Steven; Mitchell, Thomas; Hirose, Takehiro; Di Toro, Giulio

    2017-04-01

    Strain localization during coseismic slip in fault gouges is a critical mechanical process that has implications for understanding frictional heating, the earthquake energy budget and the evolution of fault rock microstructure. To assess the nature of strain localization during shearing of calcite fault gouges, high-velocity (vmax = 1m /s) rotary-shear experiments at normal stresses of 3-20 MPa were conducted under room-dry and wet conditions on synthetic calcite gouges containing dolomite gouge strain markers. When sheared at 1 m/s, the room-dry gouges showed a prolonged strengthening phase prior to dynamic weakening, whereas the wet gouges weakened nearly instantaneously. Microstructural analysis revealed that a thin (<600 μm) high-strain layer and through-going principal slip surface (PSS) developed after several centimeters of slip in both dry and wet gouges, and that strain localization at 1 m/s occurred progressively and rapidly. The strain accommodated in the bulk gouge layer did not change significantly with increasing displacement indicating that, once formed, the high-strain layer and PSS accommodated most of the displacement. Thus, a substantial strain gradient is present in the gouge layer. In water-dampened gouges, localization likely occurs during and after dynamic weakening. Our results suggest that natural fault zones in limestone are more prone to rapid dynamic weakening if water is present in the granular slipping zones.

  17. Imaging Local Electric Field Distribution by Plasmonic Impedance Microscopy.

    PubMed

    Wang, Yixian; Shan, Xiaonan; Wang, Shaopeng; Tao, Nongjian; Blanchard, Pierre-Yves; Hu, Keke; Mirkin, Michael V

    2016-02-02

    We report on imaging of local electric field on an electrode surface with plasmonic electrochemical impedance microscopy (P-EIM). The local electric field is created by putting an electrode inside a micropipet positioned over the electrode and applying a voltage between the two electrodes. We show that the distribution of the surface charge as well as the local electric field at the electrode surface can be imaged with P-EIM. The spatial distribution and the dependence of the local charge density and electric field on the distance between the micropipet and the surface are measured, and the results are compared with the finite element calculations. The work also demonstrates the possibility of integrating plasmonic imaging with scanning ion conductance microscopy (SICM) and other scanning probe microscopies.

  18. Spatial Distributions of Red Blood Cells Significantly Alter Local Haemodynamics

    PubMed Central

    Sherwood, Joseph M.; Holmes, David; Kaliviotis, Efstathios; Balabani, Stavroula

    2014-01-01

    Although bulk changes in red blood cell concentration between vessels have been well characterised, local distributions are generally overlooked. Red blood cells aggregate, deform and migrate within vessels, forming heterogeneous distributions which have considerable effect on local haemodynamics. The present study reports data on the local distribution of human red blood cells in a sequentially bifurcating microchannel, representing the branching geometry of the microvasculature. Imaging methodologies with simple extrapolations are used to infer three dimensional, time-averaged velocity and haematocrit distributions under a range of flow conditions. Strong correlation between the bluntness of the velocity and haematocrit profiles in the parent branch of the geometry is observed and red blood cell aggregation has a notable effect on the observed trends. The two branches of the first bifurcation show similar characteristics in terms of the shapes of the profiles and the extent of plasma skimming, despite the difference in geometric configuration. In the second bifurcation, considerable asymmetry between the branches in the plasma skimming relationship is observed, and elucidated by considering individual haematocrit profiles. The results of the study highlight the importance of considering local haematocrit distributions in the analysis of blood flow and could lead to more accurate computational models of blood flow in microvascular networks. The experimental approaches developed in this work provide a foundation for further examining the characteristics of microhaemodynamics. PMID:24950214

  19. Characterization of nanoscale local lattice strains in silicon CMOS devices by TEM/CBED

    NASA Astrophysics Data System (ADS)

    Huang, Jiang

    Strained-Si technology has become one of the leading approaches to further improve the performance of the metal-oxide-semiconductor field effect transistors (MOSFETs) as traditional device scaling faces its physical limitation. In particular, mechanical strain induced in the Si channel region is used to increase the carrier mobility and the transistor drive current. To be able to understand and engineer the local lattice strain incorporated in the nanoscale device region, a strain measurement technique with high spatial resolution and high sensitivity is essential. Currently, transmission electron microscope (TEM)/convergent beam electron diffraction (CBED) is the only method to measure local changes in lattice parameters due to strain in advanced CMOS devices, because this technique provides nanometer spatial resolution and strain sensitivity on the order of 10-4. In this study, a novel experimental methodology is developed to measure the strain effectively and efficiently. Site-specific TEM samples are prepared by focused ion beam (FIB) with controlled thickness. Zone axes such as <230>, <340>, <560> and <910> are evaluated for obtaining CBED patterns. The specimen-tilt projection and dynamical effects related to the zone axis are discussed. CBED pattern simulation and matching procedures are explained to extract the strain tensors. The accuracy of the strain measurement depends on the clarity of the CBED pattern, which can be improved by using an energy-filter or sample cooling stage. The direct strain measurements are performed in sub-100 nm CMOS devices with either structure-induced or process-induced strains. It is found that the compressive strains are induced when the shallow trench structure (STI) is filled with isolation films. The compressive strains on the order of 10 -3 are observed under the gate region in a Si <110> PMOS transistor with a 37 nm gate length. One-dimensional quantitative strain-mapping is demonstrated using the nanometer probe. The

  20. Strain localization in carbonate rocks experimentally deformed in the ductile field

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Morales, L. F. G.; Dresen, G.

    2012-04-01

    The deformation of rocks in the Earth's crust is often localized, varying from brittle fault gauges in shallow environments to mylonites in ductile shear zones at greater depth. A number of theoretical, experimental, and field studies focused on the evolution and extend of brittle fault zones, but little is known so far about initiation of ductile shear zones. Strain localization in rocks deforming at high temperature and pressure may be induced by several physical, chemical, or structurally-related mechanisms. We performed simple and pure shear deformation experiments on carbonate rocks containing structural inhomogenities in the ductile deformation regime. The results may help to gain insight into the evolution of high temperature shear zones. As starting material we used cylindrical samples of coarse-grained Carrara marble containing one or two 1 mm thin artificially prepared sheets of fine-grained Solnhofen limestone, which act as soft inclusions under the applied experimental conditions. Length and diameter of the investigated solid and hollow cylinders were 10-20 mm and 10-15 mm, respectively. Samples were deformed in a Paterson-type gas deformation apparatus at 900° C temperature and confining pressures of 300 and 400 MPa. Three samples were deformed in axial compression at a bulk strain rate of 8x10-5 s-1to axial strains between 0.02 and 0.21 and 15 samples were twisted in torsion at a bulk shear strain rate of 2x10-4 s-1 to shear strains between 0.01 and 3.74. At low strain, specimens deformed axially and in torsion show minor strain hardening that is replaced by strain weakening at shear strains in excess of about 0.2. Peak shear stress at the imposed condition is about 20 MPa. Strain localized strongly within the weak inclusions as indicated by inhomogeneous bending of initially straight strain markers on sample jackets. Maximum strain concentration within inclusions with respect to the adjacent matrix was between 4 and 40, depending on total strain and

  1. Longevity of strain localization associated with dynamic recrystallization of olivine in mantle rocks

    NASA Astrophysics Data System (ADS)

    Speciale, P. A.; Behr, W. M.; Hirth, G.; Tokle, L.

    2015-12-01

    The processes that cause strain localization in the lithosphere are fundamental to our understanding of plate tectonics. The relationship between localization and grain size reduction by dynamic recrystallization (DRX) is ubiquitous in natural shear zones, but whether localization by DRX persists to high strains is debated because of the potential role of grain growth. If DRX is associated with surface energy-driven grain boundary migration (γGBM), for example, grains will grow after recrystallization and localization will be cyclical or temporary. At high stress, low temperature conditions, however, migration is theoretically predicted to be driven by strain energy (ρGBM). At these conditions, grain growth may be suppressed even in monophase aggregates, and localization will persist over geologic timescales. Here we examine the conditions at which DRX leads to permanent, as opposed to transient, localization by evaluating the role of grain growth in olivine aggregates. We deformed as-is Balsam Gap dunite in axial compression using a Griggs rig and molten salt cell. We conducted 12 experiments at 1100 and 1200°C, a strain rate of 10-5 s-1, and a confining pressure of 1300 MPa. After samples reached strains of ~30%, we relaxed the stress, either with the motor off or at a strain rate of 10-6 s-1, for specific time increments before quenching. We perform detailed microstructural analyses to identify the transition from ρGBM to γGBM at these experimental conditions. We predict the microstructure (at time t1) will reflect ρGBM, with negligible net grain growth. After strain energy has been substantially reduced (time t1+n), evidence of γGBM will be observed in the microstructure as 120° triple junctions and increased grain sizes. By isolating the conditions at which γGBM becomes more important than ρGBM, we can infer the grainsize-stress conditions under which DRX may promote permanent strain localization in the lithosphere.

  2. Antibacterial effects of commercial essential oils over locally prevalent pathogenic strains in Mexico.

    PubMed

    Hersch-Martínez, P; Leaños-Miranda, B E; Solórzano-Santos, F

    2005-07-01

    Locally prevalent pathogenic bacteria 189 Gram (-) and 135 Gram (+) strains, all isolated from pediatric patients severely infected, were tested in vitro against 11 essential oils from commercial origin. All the strains showed resistance to selected antibiotics. Cinnamomum verum, Origanum vulgare and Thymus vulgaris exhibited the highest and broadest antibacterial activity. Emphasis is made in the potential implications of these resources, uncommon at the clinical setting of the study, employed against non-commercial, locally pathogenic strains, being a step to submit in the ensuing period essential oils from plants used in Mexican traditional medicine.

  3. Strain localization on an oceanic detachment fault system, Atlantis Massif, 30°N, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Schroeder, Timothy; John, Barbara E.

    2004-11-01

    Microstructural observations, mineral chemistry, and the spatial distribution of deformation fabrics recorded in outcrop samples collected from Atlantis Massif, the active inside corner high at 30°N, Mid-Atlantic Ridge, suggest that strain is localized near the subhorizontal domal surface hypothesized to be an exposed detachment fault. Deformation textures in peridotite and gabbro indicate that high-temperature (>500°C) strain occurred via crystal-plastic flow and diffusive mass transfer. Low-temperature (<400°C) shear zones containing brittle and semibrittle microboudinage textures in which tremolite, chlorite, and/or talc replace fractured serpentine or hornblende cut earlier formed high-temperature deformation fabrics in peridotite. Textures indicate strain was localized by cataclasis and reaction softening into zones of intense greenschist and subgreenschist grade metamorphism. Gabbro is only weakly deformed below amphibolite facies (<500°C), indicating that strain was partitioned into altered peridotite at low temperature. There is a clear relationship between deformation intensity and structural depth beneath the subhorizontal surface of the Massif. Discontinuous high-intensity crystal-plastic deformation fabrics are found at all structural depths (0-520 m) beneath the surface, indicating that high-temperature, granulite- and amphibolite-grade deformation was not localized in a single shear zone. In contrast, semibrittle and brittle low-temperature shear zones are concentrated less than 90 m structurally beneath the surface, and the most intensely brittlely deformed samples concentrated in the upper 10 m. Localization of brittle deformation fabrics near the upper surface of the massif supports the hypothesis that it is the exposed footwall of a detachment fault. The structural evolution of Atlantis Massif is therefore analogous to a continental metamorphic core complex. Strain was localized onto the fault by reaction-softening and fluid

  4. Reconstructing the three-dimensional local dark matter velocity distribution

    NASA Astrophysics Data System (ADS)

    Kavanagh, Bradley J.; O'Hare, Ciaran A. J.

    2016-12-01

    Directionally sensitive dark matter (DM) direct detection experiments present the only way to observe the full three-dimensional velocity distribution of the Milky Way halo local to Earth. In this work we compare methods for extracting information about the local DM velocity distribution from a set of recoil directions and energies in a range of hypothetical directional and nondirectional experiments. We compare a model-independent empirical parametrization of the velocity distribution based on an angular discretization with a model-dependent approach which assumes knowledge of the functional form of the distribution. The methods are tested under three distinct halo models which cover a range of possible phase space structures for the local velocity distribution: a smooth Maxwellian halo, a tidal stream and a debris flow. In each case we use simulated directional data to attempt to reconstruct the shape and parameters describing each model as well as the DM particle properties. We find that the empirical parametrization is able to make accurate unbiased reconstructions of the DM mass and cross section as well as capture features in the underlying velocity distribution in certain directions without any assumptions about its true functional form. We also find that by extracting directionally averaged velocity parameters with this method one can discriminate between halo models with different classes of substructure.

  5. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  6. Characterization of Local Strain around Through-Silicon Via Interconnects by Using X-ray Microdiffraction

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Osamu; Kitada, Hideki; Kim, Youngsuk; Mizushima, Yoriko; Nakamura, Tomoji; Ohba, Takayuki; Zaima, Shigeaki

    2011-05-01

    We have demonstrated the characterization of the local strain structure in thinned Si layers for wafer-on-a-wafer (WOW) applications by using X-ray microdiffraction with a synchrotron radiation source. The microdiffraction reveals the fluctuation of strains in the thin Si layer around through-silicon via (TSV) interconnects with a sub-micrometer scale. We can separately estimated the in-plane and out-of-plane strain structures in the Si layer, and found that the anisotropic strain is induced in the Si layer between the TSV interconnects.

  7. Strain Localization of Elastic-Damaging Frictional-Cohesive Materials: Analytical Results and Numerical Verification.

    PubMed

    Wu, Jian-Ying; Cervera, Miguel

    2017-04-20

    Damage-induced strain softening is of vital importance for the modeling of localized failure in frictional-cohesive materials. This paper addresses strain localization of damaging solids and the resulting consistent frictional-cohesive crack models. As a supplement to the framework recently established for stress-based continuum material models in rate form (Wu and Cervera 2015, 2016), several classical strain-based damage models, expressed usually in total and secant format, are considered. Upon strain localization of such damaging solids, Maxwell's kinematics of a strong (or regularized) discontinuity has to be reproduced by the inelastic damage strains, which are defined by a bounded characteristic tensor and an unbounded scalar related to the damage variable. This kinematic constraint yields a set of nonlinear equations from which the discontinuity orientation and damage-type localized cohesive relations can be derived. It is found that for the "Simó and Ju 1987" isotropic damage model, the localization angles and the resulting cohesive model heavily depend on lateral deformations usually ignored in classical crack models for quasi-brittle solids. To remedy this inconsistency, a modified damage model is proposed. Its strain localization analysis naturally results in a consistent frictional-cohesive crack model of damage type, which can be regularized as a classical smeared crack model. The analytical results are numerically verified by the recently-proposed mixed stabilized finite element method, regarding a singly-perforated plate under uniaxial tension. Remarkably, for all of the damage models discussed in this work, the numerically-obtained localization angles agree almost exactly with the closed-form results. This agreement, on the one hand, consolidates the strain localization analysis based on Maxwell's kinematics and, on the other hand, illustrates versatility of the mixed stabilized finite element method.

  8. Strain Localization of Elastic-Damaging Frictional-Cohesive Materials: Analytical Results and Numerical Verification

    PubMed Central

    Wu, Jian-Ying; Cervera, Miguel

    2017-01-01

    Damage-induced strain softening is of vital importance for the modeling of localized failure in frictional-cohesive materials. This paper addresses strain localization of damaging solids and the resulting consistent frictional-cohesive crack models. As a supplement to the framework recently established for stress-based continuum material models in rate form (Wu and Cervera 2015, 2016), several classical strain-based damage models, expressed usually in total and secant format, are considered. Upon strain localization of such damaging solids, Maxwell’s kinematics of a strong (or regularized) discontinuity has to be reproduced by the inelastic damage strains, which are defined by a bounded characteristic tensor and an unbounded scalar related to the damage variable. This kinematic constraint yields a set of nonlinear equations from which the discontinuity orientation and damage-type localized cohesive relations can be derived. It is found that for the “Simó and Ju 1987” isotropic damage model, the localization angles and the resulting cohesive model heavily depend on lateral deformations usually ignored in classical crack models for quasi-brittle solids. To remedy this inconsistency, a modified damage model is proposed. Its strain localization analysis naturally results in a consistent frictional-cohesive crack model of damage type, which can be regularized as a classical smeared crack model. The analytical results are numerically verified by the recently-proposed mixed stabilized finite element method, regarding a singly-perforated plate under uniaxial tension. Remarkably, for all of the damage models discussed in this work, the numerically-obtained localization angles agree almost exactly with the closed-form results. This agreement, on the one hand, consolidates the strain localization analysis based on Maxwell’s kinematics and, on the other hand, illustrates versatility of the mixed stabilized finite element method. PMID:28772794

  9. Multi-scale finite element modeling of strain localization in geomaterials with strong discontinuity

    NASA Astrophysics Data System (ADS)

    Lai, Timothy Yu

    2002-01-01

    Geomaterials such as soils and rocks undergo strain localization during various loading conditions. Strain localization manifests itself in the form of a shear band, a narrow zone of intense straining. It is now generally recognized that these localized deformations lead to an accelerated softening response and influence the response of structures at or near failure. In order to accurately predict the behavior of geotechnical structures, the effects of strain localization must be included in any model developed. In this thesis, a multi-scale Finite Element (FE) model has been developed that captures the macro- and micro-field deformation patterns present during strain localization. The FE model uses a strong discontinuity approach where a jump in the displacement field is assumed. The onset of strain localization is detected using bifurcation theory that checks when the governing equations lose ellipticity. Two types of bifurcation, continuous and discontinuous are considered. Precise conditions for plane strain loading conditions are reported for each type of bifurcation. Post-localization behavior is governed by the traction relations on the band. Different plasticity models such as Mohr-Coulomb, Drucker-Prager and a Modified Mohr-Coulomb yield were implemented together with cohesion softening and cutoff for the post-localization behavior. The FE model is implemented into a FORTRAN code SPIN2D-LOC using enhanced constant strain triangular (CST) elements. The model is formulated using standard Galerkin finite element method, applicable to problems under undrained conditions and small deformation theory. A band-tracing algorithm is implemented to track the propagation of the shear band. To validate the model, several simulations are performed from simple compression test of soft rock to simulation of a full-scale geosynthetic reinforced soil wall model undergoing strain localization. Results from both standard and enhanced FE method are included for comparison. The

  10. Body fat distribution and organ weights of 14 common strains and a 22-strain consomic panel of rats

    PubMed Central

    Reed, Danielle R.; Duke, Fujiko F.; Ellis, Hillary K.; Rosazza, Matthew R.; Lawler, Maureen P.; Alarcon, Laura K.; Tordoff, Michael G.

    2011-01-01

    The goal of this study was to determine the adiposity of a range of rat strains including a panel of consomics to estimate the heritability of fatness as measured by necropsy. To that end, we assessed the body fat distribution and organ weights of groups of adult male rats from 3 outbred strains, 11 inbred strains and 22 consomic strains. We measured the weights of the gonadal, retroperitoneal, mesenteric, femoral, subscapular and pericardial white fat depots, the subscapular brown fat depot, the kidneys, liver, heart, spleen, adrenals and brain. Strains were compared by the measured weight of each of these adipose depots and organs, and also for these weights adjusted statistically for body size. All individual adipose depot and organ weights were highly heritable, in most cases h2>0.50. The fourteen inbred and outbred rat strains were not very different in body length but there was a threefold difference in body weight, and up to a twenty-fold difference in the weight of some adipose depots. Comparison of the FHH-Chr nBN consomic strains with the FHH host strain revealed 98 quantitative trait loci (QTLs) for body composition and organ weight, with the introgressed chromosome reducing weight or adiposity in most cases. These results can be used to guide the choice of appropriate rat strains for future studies of the genetic architecture of obesity and body size. PMID:21504752

  11. Strain distributions and electronic property modifications in Si/Ge axial nanowire heterostructures

    SciTech Connect

    Swadener, John Gregory; Picraux, Samuel T

    2008-01-01

    Molecular dynamics simulations were carried out for Si/Ge axial nanowire heterostructures using modified effective atom method (MEAM) potentials. A Si-Ge MEAM interatomic cross potential was developed based on available experimental data and used for these studies. The atomic distortions and strain distributions near the Si/Ge interfaces are predicted for nanowires with their axes oriented along the [111] direction. The cases of 10 and 25 nm diameter SilGe biwires and of 25 nm diameter Si/Ge/Si axial heterostructures with the Ge disc 1 nm thick were studied. Substantial distortions in the height of the atoms adjacent to the interface were found for the biwires, but not for the Ge discs. Strains as high as 3.5% were found for the Ge disc and values of 2 to 2.5% were found at the Si and Ge interfacial layers in the biwires. Deformation potential theory was used to estimate the influence of the strains on the band gap, and reductions in band gap to as small as 40% of bulk values are predicted for the Ge discs. Localized regions of increased strain and resulting energy minima were also found within the Si/Ge biwire interfaces with the larger effects on the Ge side of the interface. The regions of strain maxima near and within the interfaces are anticipated to be useful for tailoring band gaps and producing quantum confinement of carriers. These results suggest nanowire heterostructures provide greater design flexibility in band structure modification than is possible with planar layer growth.

  12. Simultaneous measurement of dynamic strain and temperature distribution using high birefringence PANDA fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhu, Mengshi; Murayama, Hideaki

    2017-04-01

    New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.

  13. Effects of knee joint angle on global and local strains within human triceps surae muscle: MRI analysis indicating in vivo myofascial force transmission between synergistic muscles.

    PubMed

    Huijing, Peter A; Yaman, Alper; Ozturk, Cengizhan; Yucesoy, Can A

    2011-12-01

    Mechanical interactions between muscles have been shown for in situ conditions. In vivo data for humans is unavailable. Global and local length changes of calf muscles were studied to test the hypothesis that local strains may occur also within muscle for which global strain equals zero. For determination of globally induced strain in m. gastrocnemius in dissected human cadavers several knee joint angles were imposed, while keeping ankle joint angle constant and measuring its muscle-tendon complex length changes. In vivo local strains in both gastrocnemius and soleus muscles were calculated using MRI techniques in healthy human volunteers comparing images taken at static knee angles of 173° and 150°. Imposed global strains on gastrocnemius were much smaller than local strains. High distributions of strains were encountered, e.g. overall lengthened muscle contains locally lengthened, as well as shortened areas within it. Substantial strains were not limited to gastrocnemius, but were found also in synergistic soleus muscle, despite the latter muscle-tendon complex length remaining isometric (constant ankle angle: i.e. global strain = 0), as it does not cross the knee. Based on results of animal experiments this effect is ascribed to myofascial connections between these synergistic muscles. The most likely pathway is the neurovascular tract within the anterior crural compartment (i.e. the collagen reinforcements of blood vessels, lymphatics and nerves). However, direct intermuscular transmission of force may also occur via the perimysium shared between the two muscles. Global strains imposed on muscle (joint movement) are not good estimators of in vivo local strains within it: differing in magnitude, as well as direction of length change. Substantial mechanical interaction occurs between calf muscles, which is mediated by myofascial force transmission between these synergistic muscles. This confirms conclusions of previous in situ studies in experimental animals

  14. Gas-leak localization using distributed ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Huseynov, Javid; Baliga, Shankar; Dillencourt, Michael; Bic, Lubomir; Bagherzadeh, Nader

    2009-03-01

    We propose an ultrasonic gas leak localization system based on a distributed network of sensors. The system deploys highly sensitive miniature Micro-Electro-Mechanical Systems (MEMS) microphones and uses a suite of energy-decay (ED) and time-delay of arrival (TDOA) algorithms for localizing a source of a gas leak. Statistical tools such as the maximum likelihood (ML) and the least squares (LS) estimators are used for approximating the source location when closed-form solutions fail in the presence of ambient background nuisance and inherent electronic noise. The proposed localization algorithms were implemented and tested using a Java-based simulation platform connected to four or more distributed MEMS microphones observing a broadband nitrogen leak from an orifice. The performance of centralized and decentralized algorithms under ED and TDOA schemes is analyzed and compared in terms of communication overhead and accuracy in presence of additive white Gaussian noise (AWGN).

  15. Distributed Encoding Algorithm for Source Localization in Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, YoonHak; Ortega, Antonio

    2010-12-01

    We consider sensor-based distributed source localization applications, where sensors transmit quantized data to a fusion node, which then produces an estimate of the source location. For this application, the goal is to minimize the amount of information that the sensor nodes have to exchange in order to attain a certain source localization accuracy. We propose a distributed encoding algorithm that is applied after quantization and achieves significant rate savings by merging quantization bins. The bin-merging technique exploits the fact that certain combinations of quantization bins at each node cannot occur because the corresponding spatial regions have an empty intersection. We apply the algorithm to a system where an acoustic amplitude sensor model is employed at each node for source localization. Our experiments demonstrate significant rate savings (e.g., over 30%, 5 nodes, and 4 bits per node) when our novel bin-merging algorithms are used.

  16. Localization of strain in the RNA backbone and its functional implication

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Rabitz, Herschel

    1992-07-01

    It is known that an RNA molecule capable of self-splicing shares a common pattern of Watson-Crick base paris with other RNA species endowed with the same capability. The aim of this work is to introduce a minimal model Hamiltonian which determines a localized strain in the RNA backbone as the search for the molecular conformation is subject to the constraint imposed by the concensus secondary structure. The site where the strain is localized is shown to coincide with the splicing site of the molecule. As justified posteriori, the level of structural complexity of the model is sufficient to account for energy localization in a nontrivial fashion.

  17. Statistical behavior and strain localization patterns in the Portevin-Le Chatelier effect

    SciTech Connect

    Lebyodkin, M.; Brechet, Y.; Estrin, Y.; Kubin, L.

    1996-11-01

    Statistics of the stress drops associated with the Portevin-Le Chatelier effect in an Al-Mg alloy were studied both experimentally and theoretically. It was shown that the character of the statistics changes from a peaked distribution of the stress drop magnitudes to a monotonically decreasing one as the imposed strain rate or the temperature are increased. A discrete model based on a micromechanically founded local constitutive equation combined with spatial coupling between the elements of the system was shown to reproduce the observed statistical behavior. The mechanism of spatial coupling is connected with elastic stresses due to local plastic incompatibilities. The model was further applied to simulate spatial deformation patterns including propagative deformation bands. The systematics of the bands reported in the literature as well as the observed dependence of the band velocity on the imposed deformation rate were recovered. It was concluded that the model proposed provides an adequate description of both the statistics of stress discontinuities and the spatial features of the Portevin-Le Chatelier effect.

  18. Distributed job scheduling in SCI Local Area MultiProcessors

    SciTech Connect

    Agasaveeran, S.; Li, Qiang

    1996-12-31

    Local Area MultiProcessors (LAMP) is a network of personal workstations with distributed shared physical memory provided by high performance technologies such as SCI. LAMP is more tightly coupled than the traditional local area networks (LAN) but is more loosely coupled than the bus based multiprocessors. This paper presents a distributed scheduling algorithm which exploits the distributed shared memory in SCI-LAMP to schedule the idle remote processors among the requesting workstations. It considers fairness by allocating remote processing capacity to the requesting workstations based on their priorities according to the decay-usage scheduling approach. The performance of the algorithm in scheduling both sequential and parallel jobs is evaluated by simulation. It is found that the higher priority nodes achieve faster job response times and higher speedups than that of the lower priority nodes. Lower scheduling overhead allows finer granularity of remote processors sharing than in LAN.

  19. Slip distribution, strain accumulation and aseismic slip on the Chaman Fault system

    NASA Astrophysics Data System (ADS)

    Amelug, F.

    2015-12-01

    The Chaman fault system is a transcurrent fault system developed due to the oblique convergence of the India and Eurasia plates in the western boundary of the India plate. To evaluate the contemporary rates of strain accumulation along and across the Chaman Fault system, we use 2003-2011 Envisat SAR imagery and InSAR time-series methods to obtain a ground velocity field in radar line-of-sight (LOS) direction. We correct the InSAR data for different sources of systematic biases including the phase unwrapping errors, local oscillator drift, topographic residuals and stratified tropospheric delay and evaluate the uncertainty due to the residual delay using time-series of MODIS observations of precipitable water vapor. The InSAR velocity field and modeling demonstrates the distribution of deformation across the Chaman fault system. In the central Chaman fault system, the InSAR velocity shows clear strain localization on the Chaman and Ghazaband faults and modeling suggests a total slip rate of ~24 mm/yr distributed on the two faults with rates of 8 and 16 mm/yr, respectively corresponding to the 80% of the total ~3 cm/yr plate motion between India and Eurasia at these latitudes and consistent with the kinematic models which have predicted a slip rate of ~17-24 mm/yr for the Chaman Fault. In the northern Chaman fault system (north of 30.5N), ~6 mm/yr of the relative plate motion is accommodated across Chaman fault. North of 30.5 N where the topographic expression of the Ghazaband fault vanishes, its slip does not transfer to the Chaman fault but rather distributes among different faults in the Kirthar range and Sulaiman lobe. Observed surface creep on the southern Chaman fault between Nushki and north of City of Chaman, indicates that the fault is partially locked, consistent with the recorded M<7 earthquakes in last century on this segment. The Chaman fault between north of the City of Chaman to North of Kabul, does not show an increase in the rate of strain

  20. A theoretical approach of strain localization within thin planar bands in porous ductile materials

    NASA Astrophysics Data System (ADS)

    Leblond, Jean-Baptiste; Mottet, Gérard

    2008-01-01

    Propagation of cracks in ductile materials is well known to occur through two possible mechanisms: coalescence of cavities and formation of shear bands ('void sheet mechanism'). The classical Gurson-Tvergaard-Needleman (GTN) homogenized model for such materials incorporates some phenomenological modelling of coalescence, but not of formation of shear bands assisted by the presence of microvoids, and this generates a number of shortcomings. In order to solve these difficulties, this paper presents a unified model of both coalescence and formation of shear bands in porous plastic solids, including the possible couplings between the two. Both phenomena are viewed as expressions of the same basic effect, namely strain localization within thin planar bands, the only difference being the mode of deformation. The model is first developed assuming a periodic distribution of cavities, then critically assessed through comparison with some micromechanical numerical simulations based on the same assumption, and finally extended to the case of a random distribution of voids. To cite this article: J.-B. Leblond, G. Mottet, C. R. Mecanique 336 (2008).

  1. Local and nonlocal strain rate fields and vorticity alignment in turbulent flows.

    PubMed

    Hamlington, Peter E; Schumacher, Jörg; Dahm, Werner J A

    2008-02-01

    Local and nonlocal contributions to the total strain rate tensor S(ij) at any point x in a flow are formulated from an expansion of the vorticity field in a local spherical neighborhood of radius R centered on x. The resulting exact expression allows the nonlocal (background) strain rate tensor S(ij)(B)(x) to be obtained from S(ij)(x). In turbulent flows, where the vorticity naturally concentrates into relatively compact structures, this allows the local alignment of vorticity with the most extensional principal axis of the background strain rate tensor to be evaluated. In the vicinity of any vortical structure, the required radius R and corresponding order n to which the expansion must be carried are determined by the viscous length scale lambda(nu). We demonstrate the convergence to the background strain rate field with increasing R and n for an equilibrium Burgers vortex, and show that this resolves the anomalous alignment of vorticity with the intermediate eigenvector of the total strain rate tensor. We then evaluate the background strain field S(ij)(B)(x) in direct numerical simulations of homogeneous isotropic turbulence where, even for the limited R and n corresponding to the truncated series expansion, the results show an increase in the expected equilibrium alignment of vorticity with the most extensional principal axis of the background strain rate tensor.

  2. Distribution of local anesthetics between aqueous and liposome phases.

    PubMed

    Ruokonen, Suvi-Katriina; Duša, Filip; Rantamäki, Antti H; Robciuc, Alexandra; Holma, Paula; Holopainen, Juha M; Abdel-Rehim, Mohamed; Wiedmer, Susanne K

    2017-01-06

    Liposomes were used as biomimetic models in capillary electrokinetic chromatography (EKC) for the determination of distribution constants (KD) of certain local anesthetics and a commonly used preservative. Synthetic liposomes comprised phosphatidylcholine and phosphatidylglycerol phospholipids with and without cholesterol. In addition, ghost liposomes made from red blood cell (RBC) lipid extracts were used as pseudostationary phase to acquire information on how the liposome composition affects the interactions between anesthetics and liposomes. These results were compared with theoretical distribution coefficients at pH 7.4. In addition to 25°C, the distribution constants were determined at 37 and 42°C to simulate physiological conditions. Moreover, the usability of five electroosmotic flow markers in liposome (LEKC) and micellar EKC (MEKC) was studied. LEKC was proven to be a convenient and fast technique for obtaining data about the distribution constants of local anesthetics between liposome and aqueous phase. RBC liposomes can be utilized for more representative model of cellular membranes, and the results indicate that the distribution constants of the anesthetics are greatly dependent on the used liposome composition and the amount of cholesterol, while the effect of temperature on the distribution constants is less significant.

  3. Electron transport measurement of graphene under one-dimensional local strain

    NASA Astrophysics Data System (ADS)

    Kanda, A.; Tomori, H.; Nukui, Y.; Toyota, Y.; Karube, H.; Nihei, S.; Ootuka, Y.; Tsukagoshi, K.; Hayashi, M.; Yoshioka, H.

    2012-02-01

    Introducing a nonuniform strain is a promising technique for controlling electron transport in graphene. Theories have predicted the formation of band gaps with properly designed strain; however, reports on experimental transport properties of strained graphene are quite limited. In this presentation, we report the measurement of electron transport in graphene under one-dimensional local strain. The local strain was introduced by inserting a one-dimensional dielectric nanorod between a graphene film and its substrate, using a technique reported in [1]. We found that the conductivity across the strained region decreases around the Dirac point in comparison with the unstrained graphene attached to the substrate, although the mobility far from the Dirac point is almost unchanged. The results cannot be explained by the change of the capacitance between the graphene film and the gate electrode, indicating that the strain affects the electron transport. The experimental results on strained and unstrained graphene devices from the same graphene film as well as the numerical results will be discussed. [4pt] [1] H. Tomori et al., Appl. Phys. Express 4, 075102 (2011).

  4. Microstructural Characterization of Deformation Localization at Small Strains in a Neutron Irradiated 304 Stainless Steel

    SciTech Connect

    Field, Kevin G; Gussev, Maxim N; Busby, Jeremy T

    2014-01-01

    Deformation localization and structure evolution were investigated in an AISI 304 austenitic stainless steel deformed to 0.8% strain. Using SEM-EBSD, it was shown local plastic deformation may reach significant levels even when the bulk averaged strain level remains below 1%. Local misorientation values up to 24 were observed in these regions of high local plastic deformation. EBSD analysis of FIB lift-out specimens demonstrated that local misorientation level was highest near the free surface and diminished with increasing depth. (S)TEM observations on the same specimen indicated the local density of dislocation channels may vary up to an order of magnitude depending on local grain configuration, distance to the surface and/or local grain boundary structure. It was found that in the case of RT deformation, dislocation defect-free channels may contain twin or may be twin-free with twinning occurring inside channels. Formation of BCC-phase colonies (martensite) was observed in near-surface layer whereas no transformation in the volume of the specimen was detected at this strain level. Martensite formation was associated with channel-grain boundary intersection points where high local misorientation was observed using EBSD.

  5. Price Based Local Power Distribution Management System (Local Power Distribution Manager) v1.0

    SciTech Connect

    BROWN, RICHARD E.; CZARNECKI, STEPHEN; SPEARS, MICHAEL; NORDMAN, BRUCE; BROUGHTON, ALEX; VON HIPPEL, MICHAEL; LIAO, ANNA

    2016-11-28

    A trans-active energy micro-grid controller is implemented in the VOLTTRON distributed control platform. The system uses the price of electricity as the mechanism for conducting transactions that are used to manage energy use and to balance supply and demand. In order to allow testing and analysis of the control system, the implementation is designed to run completely as a software simulation, while allowing the inclusion of selected hardware that physically manages power. Equipment to be integrated with the micro-grid controller must have an IP (Internet Protocol)-based network connection and a software "driver" must exist to translate data communications between the device and the controller.

  6. Influence of Aerodynamic Strain Rate on Local Extinction in Turbulent Non-premixed Jet Flames

    NASA Astrophysics Data System (ADS)

    Ramachandran, Aravind; Narayanaswamy, Venkateswaran; Lyons, Kevin

    2016-11-01

    2-D velocity field measurements obtained from Particle Image Velocimetry (PIV) are used to obtain aerodynamic strain rate information in regions of local extinction in lifted turbulent non-premixed methane jet flames in coflow. Diluting the coflow to reduce the oxygen molefraction results in increased occurrences of local extinction. Statistical analysis is performed to correlate regions of high local strain rate with local extinctions in both air coflow and diluted coflow cases to study the influence of strain rate against vortical structures in extinguishing the flame front. A comparison is also made with heated and vitiated coflow cases, where autoignition is a flame stabilization mechanism and influenced by local strain rate. At high jet exit velocities (Ux > > Ur), the out-of-plane strain rate component can be neglected but the convection of extinguished pockets into the measurement plane needs to be resolved by stereoscopic (3-D) measurements which will be done in a future work. This work has been supported by the U.S. Army Research Office (Contracts W911NF1210140 and W911NF1610087) Dr. Ralph Anthenien, Technical Monitor, ARO.

  7. Local biogeomorphic feedbacks and macroscale drivers shape coastal wetland distributions

    NASA Astrophysics Data System (ADS)

    Braswell, A. E.; Heffernan, J. B.

    2016-12-01

    Recent models have demonstrated that lateral biogeomorphic processes are important for the persistence of coastal wetlands in the face of sea level rise and other anthropogenic pressures. Yet empirical studies of marsh ecomorphodynamics have largely focused on vertical accretion. Moreover, local vertical and lateral processes of marsh-building depend on external sediment supply and the wave energy environment, and thus are connected to macroscale characteristics such as estuarine morphology and watershed size. These broad scale drivers, combined with local biogeomorphic feedbacks within wetlands, determine wetland extent. Our goal is to understand the scales at which local biogeomorphic feedbacks and macroscale estuarine and watershed characteristics influence the distribution of coastal marshes. To that end, we examined the distribution of wetland extent and its potential watershed and estuarine drivers at multiple scales along the Atlantic and Gulf coasts, USA. Using existing GIS resources, we delineated extents of coastal wetlands, and generated proxies of sediment input, estuarine energy, and human alteration. We found that distributions of wetland extent were bi-modal at the finest scale of our analysis (approx. 1-100 km2), a finding that is consistent with theoretical models of local marsh feedbacks. At larger spatial scales, distributions of marsh extent were associated with both estuarine size and drainage ratio. These relationships indicate that sediment supply and erosion ultimately constrain the extent of marsh development and persistence, while local feedbacks operate at smaller scales. Our findings support and extend theory and observation at the scale of marsh platforms and lagoons, but also demonstrate the importance of macroscale watershed and estuarine characteristics for wetland establishment and persistence.

  8. Escherichia coli strains from pregnant women and neonates: intraspecies genetic distribution and prevalence of virulence factors.

    PubMed

    Watt, Stéphane; Lanotte, Philippe; Mereghetti, Laurent; Moulin-Schouleur, Maryvonne; Picard, Bertrand; Quentin, Roland

    2003-05-01

    To determine the extent to which the vagina, endocervix, and amniotic fluid screen the Escherichia coli strains responsible for neonatal infections, we studied the genetic relationships among 105 E. coli strains isolated from all of the ecosystems involved in this infectious process. Twenty-four strains were isolated from the intestinal flora, and 25 strains were isolated from the vaginas of pregnant women. Twenty-seven strains were isolated from the amniotic fluid, blood, and cerebrospinal fluid (CSF) of infected neonates. The intraspecies genetic characteristics of all of the isolates were determined by random amplified polymorphic DNA (RAPD) analysis, PCR ECOR (E. coli reference) grouping, and PCR virulence genotyping. A correlation was found between the intraspecies distributions of the strains in the A, B1, B2, and D ECOR groups and in the two major RAPD groups (I and II). Nevertheless, the distribution of the E. coli strains in the RAPD groups according to their anatomical origins was more significant than their distribution in the ECOR groups. This may be explained by the existence of an E. coli subpopulation, defined by the RAPD I group, within the ECOR B2 group. This RAPD I group presents a major risk for neonates: 75% of the strains isolated from patients with meningitis and 100% of the strains isolated from patients with bacteremia were in this group. The vagina and the amniotic fluid are two barriers that favor colonization by highly infectious strains. Indeed, only 17% of fecal strains belonged to the RAPD I group, whereas 52% of vaginal strains and 67% of amniotic fluid strains belonged to this subpopulation. The ibeA and iucC genes were significantly associated with CSF strains, whereas the hly and sfa/foc genes were more frequent in blood strains. These findings could serve as a basis for developing tools to recognize vaginal strains, which present a high risk for neonates, for use in prophylaxis programs.

  9. Distribution of elastic strains appearing in gallium arsenide as a result of doping with isovalent impurities of phosphorus and indium

    SciTech Connect

    Pavlov, D. A.; Bidus, N. V.; Bobrov, A. I.; Vikhrova, O. V.; Volkova, E. I.; Zvonkov, B. N.; Malekhonova, N. V.; Sorokin, D. S.

    2015-01-15

    The distribution of elastic strains in a system consisting of a quantum-dot layer and a buried GaAs{sub x}P{sub 1−x} layer is studied using geometric phase analysis. A hypothesis is offered concerning the possibility of controlling the process of the formation of InAs quantum dots in a GaAs matrix using a local isovalent phosphorus impurity.

  10. Local distribution and thermal ecology of two intertidal fishes.

    PubMed

    Pulgar, Jose M; Bozinovic, Francisco; Ojeda, F Patricio

    2005-02-01

    Geographic variability in the physiological attributes of widely distributed species can be a result of phenotypic plasticity or can reflect evolutionary responses to a particular habitat. In the field, we assessed thermal variability in low and high intertidal pools and the distribution of resident fish species Scartichthys viridis and transitory Girella laevifrons along this vertical intertidal gradient at three localities along the Chilean coast: Antofagasta (the northernmost and warmest habitat), Carrizal Bajo (central coast) and Las Cruces (the southernmost and coldest habitat). In the laboratory, we evaluated the thermal sensitivity of fish captured from each locality. The response to temperature was estimated as the frequency of opercular movements and as thermal selectivity in a gradient; the former being a indirect indicator of energy costs in a particular environment and the latter revealing differential occupation of habitat. Seawater temperature in intertidal pools was greatest at Antofagasta, and within each site was greatest in high intertidal pools. The two intertidal fish species showed opposite patterns of local distribution, with S. viridis primarily inhabiting the lower sectors of the intertidal zone, and G. laevifrons occupying the higher sectors of the intertidal zone. This pattern was consistent for all three localities. Locality was found to be a very important factor determining the frequency of opercular movement and thermal selectivity of both S. viridis and G. laevifrons. Our results suggest that S. viridis and G. laevifrons respond according to: (1) the thermal history of the habitat from which they came, and (2) the immediate physical conditions of their habitat. These results suggest local adaptation rather than plasticity in thermoregulatory and energetic mechanisms.

  11. Task decomposition, distribution, and localization for intelligent robot coordination

    NASA Astrophysics Data System (ADS)

    Kountouris, Vasilios G.; Stephanou, Harry E.

    1991-02-01

    Robotic applications in unstructured environments in general and in space in particular require robot systems that possess a high degree of autonomy. To achieve such a degree of autonomy a robot system must possess (I) robots with a versatile physical structure (ii) perception and (iii) elaborate techniques for (a) task decomposition distribution and localization and (b) the dynamic specification of the distributed semantics involved in sensorimotor synchronization and the coordination of multiple robots. In this paper we present our developments for the dynamic specification of the distributed semantics of hierarchical multiagent systems and the synchronization of their component agents during task execution. More specifically we present a distributed model of concurrency based on Petri net theory. The model is then applied to the hierarchical decomposition distribution and localization of a bracket assembly task. Each level of the resulting hierarchy horizontally contains the synchronization-structure of task execution and vertically is a generalization ofthe level below and a specialization ofthe level above. The horizontal synchronization-structures developed bythe Petri net model maintain the desirable properties of safeness and liveness by construction.

  12. Modelling non-uniform strain distributions in aerospace composites using fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    Rajabzadeh, Aydin; Groves, Roger M.; Hendriks, Richard C.; Heusdens, Richard

    2017-04-01

    In this paper the behaviour of fibre Bragg grating (FBG) sensors under non-uniform strain distributions was analysed. Using the fundamental matrix approach, the length of the FBG sensor was discretised, with each segment undergoing different strain values. FBG sensors that are embedded inside composites, also undergo such non-uniform strain distributions, when located in the vicinity of failures such as matrix cracks or delamination of layers. This non-uniform strain distribution was created in an experimental setup. Finite element analysis was used to analytically model the strain distribution along the FBG length. The measured FBG outputs were then compared to the simulated results. There was a high amplitude correlation between the results of the measured and the simulated reflection spectra with a maximum of 0.97 among all cases.

  13. Strain localization in ultramylonitic marbles by simultaneous activation of dislocation motion and grain boundary sliding (Syros, Greece)

    NASA Astrophysics Data System (ADS)

    Rogowitz, A.; White, J. C.; Grasemann, B.

    2016-03-01

    Extreme strain localization occurred in the centre of the cross-cutting element of a flanking structure in almost pure calcite marbles from Syros, Greece. At the maximum displacement of 120 cm along the cross-cutting element, evidence of grain size sensitive deformation mechanisms can be found in the ultramylonitic marbles, which are characterized by (1) an extremely small grain size ( ˜ 3 µm), (2) grain boundary triple junctions with nearly 120° angles, (3) a weak crystallographic preferred orientation with very low texture index (J = 1.4), (4) a random misorientation angle distribution curve and (5) the presence of small cavities. Using transmission electron microscopy, a deformation sequence is observed comprising recrystallization dominantly by bulging, resulting in the development of the fine-grained ultramylonite followed by the development of a high dislocation density ( ˜ 1013 m-2) with ongoing deformation of the fine-grained ultramylonite. The arrangement of dislocations in the extremely fine-grain-sized calcite differs from microstructures created by classical dislocation creep mediated by combined glide and thermally activated climb. Instead, it exhibits extensive glide and dislocation networks characteristic of recovery accommodated by cross-slip and network-assisted dislocation movement without formation of idealized subgrain walls. The enabling of grain boundary sliding to dislocation activity is deemed central to initiating and sustaining strain softening and is argued to be an important strain localization process in calcite rocks, even at a high strain rate ( ˜ 10-9 s-1) and low temperature (300 °C).

  14. Strain localization in ultramylonitic marbles by simultaneous activation of dislocation motion and grain boundary sliding (Syros, Greece)

    NASA Astrophysics Data System (ADS)

    Rogowitz, A.; White, J. C.; Grasemann, B.

    2015-09-01

    Extreme strain localization occurred in the center of the cross-cutting element of a flanking structure in almost pure calcite marbles from Syros, Greece. At the maximum displacement of 120 cm along the cross-cutting element evidence of grain size sensitive deformation mechanisms can be found in the ultramylonitic marbles, which are characterized by (1) an extremely small grain size (∼3 μm), (2) grain boundary triple junctions with nearly 120° angles, (3) a weak crystallographic preferred orientation with very low texture index (J=1.4), (4) a random misorientation angle distribution curve and (5) the presence of small cavities. Using transmission electron microscopy a deformation sequence is observed comprising, first recrystallization by bulging resulting in the development of the fine-grained ultramylonite followed by the evolution of a high dislocation density (∼1013 m-2) with ongoing deformation of the fine-grained ultramylonite. The arrangement of dislocations in the extremely fine grain sized calcite differs from microstructures created by classical dislocation creep mediated by combined glide and thermally activated climb. Instead, it exhibits extensive glide and dislocation networks characteristic of recovery accommodated by cross-slip and network-assisted dislocation movement without formation of idealized subgrain walls. The enabling of grain boundary sliding to dislocation activity is deemed central to initiating and sustaining strain softening and is argued to be an important strain localization process in calcite rocks, even at high strain rate (10-9 s-1) and low temperature (300 °C).

  15. Investigating planar distributions of satellites around Local Group analogues

    NASA Astrophysics Data System (ADS)

    Tippens, Rebecca; Boylan-Kolchin, Michael

    2017-06-01

    Recent works have claimed that observed planar distributions of galaxies in the Local Group and beyond challenge the structure formation predictions of CDM theory. We perform an analysis of distributions of satellites around 12 Local Group analogue halo pairs and 24 mass-matched isolated haloes from the high-resolution, dissipation-less ELVIS simulations (Garrison-Kimmel et al. 2014). In each analysis, we search for the thinnest plane that can be fit using half of the 30 most massive subhaloes within the virial radius of the host at z=0, and study the kinematics of the result to determine if its components are co-rotating. We then expand this analysis to consider the full kinematic evolution of these planes and others at higher redshifts in the ELVIS merger trees. We find that planes similar to those in the literature are common in the ELVIS simulations, but they are neither uniquely defined or persistent over cosmic time.

  16. Experimental study on strain distribution of ionic polymer-metal composite actuator using digital image correlation

    NASA Astrophysics Data System (ADS)

    Liu, Hongguang; Xiong, Ke; Wang, Man; Bian, Kan; Zhu, Kongjun

    2017-02-01

    Ionic polymer-metal composite (IPMC) cantilever actuators demonstrate significant bending deformation upon application of excitation voltage across the electrodes. In this paper a cantilever beam shaped IPMC actuator with platinum (Pt) electrodes is fabricated to investigate the micro-scale lateral deformation behavior under DC voltages using a digital microscope to measure the deformation. The digital image correlation (DIC) method is utilized to analyze the displacement and strain fields of the sample. The experimental results indicate that the longitudinal normal strain is linearly distributed along the thickness direction and the strain gradient is approximately exponential with excitation voltage. The amplitude of the transverse strain is bigger than the longitudinal strain, and the strains are also found to decrease along the length direction of the IPMC cantilever actuator. The longitudinal and transverse normal strains of the IPMC actuator under DC voltages are compressive strains due to water loss effect in the air.

  17. Climate Controls AM Fungal Distributions from Global to Local Scales

    NASA Astrophysics Data System (ADS)

    Kivlin, S. N.; Hawkes, C.; Muscarella, R.; Treseder, K. K.; Kazenel, M.; Lynn, J.; Rudgers, J.

    2016-12-01

    Arbuscular mycorrhizal (AM) fungi have key functions in terrestrial biogeochemical processes; thus, determining the relative importance of climate, edaphic factors, and plant community composition on their geographic distributions can improve predictions of their sensitivity to global change. Local adaptation by AM fungi to plant hosts, soil nutrients, and climate suggests that all of these factors may control fungal geographic distributions, but their relative importance is unknown. We created species distribution models for 142 AM fungal taxa at the global scale with data from GenBank. We compared climate variables (BioClim and soil moisture), edaphic variables (phosphorus, carbon, pH, and clay content), and plant variables using model selection on models with (1) all variables, (2) climatic variables only (including soil moisture) and (3) resource-related variables only (all other soil parameters and NPP) using the MaxEnt algorithm evaluated with ENMEval. We also evaluated whether drivers of AM fungal distributions were phylogenetically conserved. To test whether global correlates of AM fungal distributions were reflected at local scales, we then surveyed AM fungi in nine plant hosts along three elevation gradients in the Upper Gunnison Basin, Colorado, USA. At the global scale, the distributions of 55% of AM fungal taxa were affected by both climate and soil resources, whereas 16% were only affected by climate and 29% were only affected by soil resources. Even for AM fungi that were affected by both climate and resources, the effects of climatic variables nearly always outweighed those of resources. Soil moisture and isothermality were the main climatic and NPP and soil carbon the main resource related factors influencing AM fungal distributions. Distributions of closely related AM fungal taxa were similarly affected by climate, but not by resources. Local scale surveys of AM fungi across elevations confirmed that climate was a key driver of AM fungal

  18. Patterns of strain localization in heterogeneous, polycrystalline rocks - a numerical perspective

    NASA Astrophysics Data System (ADS)

    Gardner, Robyn; Piazolo, Sandra; Evans, Lynn; Daczko, Nathan

    2017-04-01

    The spatial and temporal patterns of strain localization in materials with pre-existing heterogeneities are investigated via a series of two-dimensional numerical models. Models include (i) a dynamic feedback process, to simulate rheological weakening in response to the transition from non-linear flow (dislocation creep) to linear flow (diffusion creep/grain boundary sliding), and (ii) a time dependent strengthening process, counteracting the weakening process. Different load bearing framework geometries with 20% weak component are used to evaluate the impact of geometry on the strength of the material and its ability to localize strain into an interconnected weak layer (IWL). Our results highlight that during simple shear, if dynamic weakening with or without strengthening feedbacks is present, strain is quickly localized into an IWL, where an increasing proportion of weak material increases the interconnections between the IWLs, thereby increasing the anastomosing character of the shear zones. We establish that not only bulk strain localization patterns but also their temporal patterns are sensitive to the dominance of the weakening or strengthening process. Consequently, shear zones are dynamic in time and space within a single deformation event. Hence, the pattern of finite strain can be an incomplete representation of the evolution of a shear zone network.

  19. Evidence for lower crustal ductile strain localization in southern New York

    USGS Publications Warehouse

    Zoback, M.D.; Prescott, W.H.; Krueger, S.W.

    1985-01-01

    Historic triangulation data have been analysed to determine whether intraplate seismicity is associated with ongoing ductile deformation in the lower crust. The model we have attempted to test is basically analogous to strain accumulation and release along plate-boundary strike-slip faults like the San Andreas Fault in California. That is, beneath an elastic-seismogenic upper crust ???20 km thick, strain is preferentially localized within ductile shear zones in the lower crust due to broad-scale plate driving forces. The localized lower-crustal ductile strain causes stress and strain to accumulate elastically in the brittle crust which is eventually released in crustal earthquakes. At greater depths, this localized shear deformation probably develops into pervasive ductile flow. Numerous geodetic measurements along the San Andreas Fault confirm that earthquakes in the brittle upper crust are produced by the release of elastic strain that results from ongoing ductile shear or slip in the lower crust1,2. We have found evidence of high rates of crustal deformation in southern New York which suggest that localized ductile shear is occurring in the lower crust. ?? 1985 Nature Publishing Group.

  20. Forming Ganymede’s grooves at smaller strains: Toward a consistent local- and global-scale strain history for Ganymede

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; McKinnon, W. B.

    2013-10-01

    Numerical simulations of the formation of Ganymede’s grooved terrain (vast swaths of periodically spaced ridges and troughs) have long struggled to reproduce the observed amplitude of Ganymede’s grooves (up to 500 m or more, peak-to-trough). Under ideal conditions, these simulations required >30% extension to form even moderate-amplitude deformation. Such large strains are at odds with Ganymede’s global strain history, which likely included a 1-6% increase in surface area (though observations suggest it may have been as high as 8% [Collins 2006, 2008]) during either late-onset differentiation [Mueller and McKinnon 1988] or resonance passage [Showman et al. 1998; Bland et al. 2009]. Whereas limited regions of the surface may have undergone large amounts of extension (50-100%), the majority of Ganymede’s grooves presumably formed at lower strains 10%) [Collins 2006, 2008]. Thus, local-scale numerical models of groove formation are inconsistent with the regional and global constraints on Ganymede’s surface strain history. Here we present numerical simulations of groove formation that reproduce the complete morphology of large-amplitude grooves (wavelengths of ~10 km, amplitudes up to 450 m, low slopes) with just 10% extensional strain. These simulations are more consistent with global strain constraints and are therefore a step toward linking a detailed mechanical understanding of groove terrain formation with the broader strain evolution of the satellite. The increased groove amplitudes result from implementing more realistic models of brittle failure in the lithosphere and, to a lesser extent, vertical temperature structure. These simulations utilize cold, polar-like surface temperatures [Dombard and McKinnon 2001]; warmer surface temperatures inhibit amplitude growth. For 10% extension, groove amplitudes decrease by ~50% at 100 K (relevant to ancient, high-albedo equatorial terrains), requiring greater extensional strains to produce grooves of equivalent

  1. Digital volume correlation can be used to estimate local strains in natural and augmented vertebrae: An organ-level study.

    PubMed

    Palanca, Marco; Cristofolini, Luca; Dall'Ara, Enrico; Curto, Marco; Innocente, Federica; Danesi, Valentina; Tozzi, Gianluca

    2016-12-08

    Digital Volume Correlation (DVC) has become popular for measuring the strain distribution inside bone structures. A number of methodological questions are still open: the reliability of DVC to investigate augmented bone tissue, the variability of the errors between different specimens of the same type, the distribution of measurement errors inside a bone, and the possible presence of preferential directions. To address these issues, five augmented and five natural porcine vertebrae were subjected to repeated zero-strain micro-CT scan (39μm voxel size). The acquired images were processed with two independent DVC approaches (a local and a global one), considering different computation sub-volume sizes, in order to assess the strain measurement uncertainties. The systematic errors generally ranged within ±100 microstrain and did not depend on the computational sub-volume. The random error was higher than 1000 microstrain for the smallest sub-volume and rapidly decreased: with a sub-volume of 48 voxels the random errors were typically within 200 microstrain for both DVC approaches. While these trends were rather consistent within the sample, two individual specimens had unpredictably larger errors. For this reason, a zero-strain check on each specimen should always be performed before any in-situ micro-CT testing campaign. This study clearly shows that, when sufficient care is dedicated to preliminary methodological work, different DVC computation approaches allow measuring the strain with a reduced overall error (approximately 200 microstrain). Therefore, DVC is a viable technique to investigate strain in the elastic regime in natural and augmented bones.

  2. Local, atomic-level elastic strain measurements of metallic glass thin films by electron diffraction.

    PubMed

    Ebner, C; Sarkar, R; Rajagopalan, J; Rentenberger, C

    2016-06-01

    A novel technique is used to measure the atomic-level elastic strain tensor of amorphous materials by tracking geometric changes of the first diffuse ring of selected area electron diffraction patterns (SAD). An automatic procedure, which includes locating the centre and fitting an ellipse to the diffuse ring with sub-pixel precision is developed for extracting the 2-dimensional strain tensor from the SAD patterns. Using this technique, atomic-level principal strains from micrometre-sized regions of freestanding amorphous Ti0.45Al0.55 thin films were measured during in-situ TEM tensile deformation. The thin films were deformed using MEMS based testing stages that allow simultaneous measurement of the macroscopic stress and strain. The calculated atomic-level principal strains show a linear dependence on the applied stress, and good correspondence with the measured macroscopic strains. The calculated Poisson's ratio of 0.23 is reasonable for brittle metallic glasses. The technique yields a strain accuracy of about 1×10(-4) and shows the potential to obtain localized strain profiles/maps of amorphous thin film samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Colwellia psychrerythraea strains from distant deep sea basins show adaptation to local conditions

    DOE PAGES

    Techtmann, Stephen M.; Fitzgerald, Kathleen S.; Stelling, Savannah C.; ...

    2016-05-09

    Many studies have shown that microbes, which share nearly identical 16S rRNA genes, can have highly divergent genomes. Microbes from distinct parts of the ocean also exhibit biogeographic patterning. Here in this study we seek to better understand how certain microbes from the same species have adapted for growth under local conditions. The phenotypic and genomic heterogeneity of three strains of Colwellia psychrerythraea was investigated in order to understand adaptions to local environments. Colwellia are psychrophilic heterotrophic marine bacteria ubiquitous in cold marine ecosystems. We have recently isolated two Colwellia strains: ND2E from the Eastern Mediterranean and GAB14E from themore » Great Australian Bight. The 16S rRNA sequence of these two strains were greater than 98.2% identical to the well-characterized C. psychrerythraea 34H, which was isolated from arctic sediments. Salt tolerance, and carbon source utilization profiles for these strains were determined using Biolog Phenotype MicoArrays. These strains exhibited distinct salt tolerance, which was not associated with the salinity of sites of isolation. The carbon source utilization profiles were distinct with less than half of the tested carbon sources being metabolized by all three strains. Whole genome sequencing revealed that the genomes of these three strains were quite diverse with some genomes having up to 1600 strain-specific genes. Many genes involved in degrading strain-specific carbon sources were identified. Finally, there appears to be a link between carbon source utilization and location of isolation with distinctions observed between the Colwellia isolate recovered from sediment compared to water column isolates.« less

  4. Strain localization parameters of AlCu4MgSi processed by high-energy electron beams

    SciTech Connect

    Lunev, A. G. Nadezhkin, M. V.; Konovalov, S. V.; Teresov, A. D.

    2015-10-27

    The influence of the electron beam surface treatment of AlCu4MgSi on the strain localization parameters and on the critical strain value of the Portevin–Le Chatelier effect has been considered. The strain localization parameters were measured using speckle imaging of the specimens subjected to the constant strain rate uniaxial tension at a room temperature. Impact of the surface treatment on the Portevin–Le Chatelier effect has been investigated.

  5. Kinetics of vertical transport and localization of electrons in strained semiconductor supperlattices

    SciTech Connect

    Gerchikov, L. G. Mamaev, Yu. A.; Yashin, Yu. P.

    2015-08-15

    The kinetics of vertical electron transport in a semiconductor superlattice is considered taking into account partial localization of electrons. The time dependences of photoemission currents from samples based on a strained semiconductor superlattice calculated by numerically solving the kinetic equation are in good agreement with experimental data. Comparison of the theory with experiment makes it possible to determine the characteristic electron localization and thermoactivation times, the diffusion length, and losses of photoelectrons in the superlattice.

  6. Local Raman spectroscopic study of BiFeO3 strained states

    NASA Astrophysics Data System (ADS)

    Huang, Yen-Chin; Chen, Yi-Chun; Chu, Feng-Nan; Liang, Wen-I.; Chen, Hsiang-Jung; Chu, Ying-Hao

    2012-02-01

    Among single-phase multiferroic materials, BiFeO3 (BFO) has relatively high Curie and N'eel temperatures, which possesses ferroelectric and antiferromagnetic couplings at room temperature, so is motivated for novel device applications. Recent studies had shown piezoelectric and magnetic properties of BFO in strained states varied significantly. For BFO epitaxial films grown on LaAlO3 substrate, high piezoelectric coefficient and spontaneous ferromagnetic moments had been demonstrated in a new kind of morphotropic tetragonal-rhombohedral phase boundary driven by substrate strain. In this study, we used Raman spectrum to investigate the local BFO distorted structure under substrate strain or strain caused by external electric fields. The crystal structure of BFO under compressive substrate strain is monoclinically distorted. The ordering of the monoclinic structures could also be controlled by electric field. These two kinds of strained states were locally studied by atomic force microscopy (AFM) equipped with on-axis Raman measurement. This study provided the basic physical insight of unique physical properties depended on distorted structures.

  7. Local Environment Distribution in Ab Initio Liquid Water

    NASA Astrophysics Data System (ADS)

    Santra, Biswajit; Distasio, Robert A., Jr.; Car, Roberto

    2013-03-01

    We have analyzed the distribution of local environments in liquid water at ambient conditions and its inherent potential energy surface (IPES) based on state-of-the-art ab initio molecular dynamics simulations performed on 128 molecules implementing hybrid PBE0 exchange [PRB 79, 085102 (2009)] and van der Waals (vdW) interactions [PRL 102, 073005 (2009)]. The local environments of molecules are characterized in terms of the local structure index (LSI) [JCP 104, 7671 (1996)] which is able to distinguish high- and low-density molecular environments. In agreement with simulations based on model potentials, we find that the distribution of LSI is unimodal at ambient conditions and bimodal in the IPES, consistent with the existence of polymorphism in amorphous phases of water. At ambient conditions spatial LSI fluctuations extend up to ~7 Å and their dynamical correlation decays on a time scale of ~3 ps, as found for density fluctuations in a recent study [PRL 106, 037801 (2011)]. DOE: DE-SC0008626, DOE: DE-SC0005180, NSF: CHE-0956500

  8. The Correlation Between the Percussive Sound and the Residual Stress/Strain Distributions in a Cymbal

    NASA Astrophysics Data System (ADS)

    Osamura, Kozo; Kuratani, Fumiyasu; Koide, Toshio; Ogawa, Wataru; Taniguchi, Hiroyasu; Monju, Yoshiyuki; Mizuta, Taiji; Shobu, Takahisa

    2016-12-01

    The artistic sound of a cymbal is produced by employing a special copper alloy as well as incorporating complicated and heterogeneous residual stress/strain distributions. In order to establish a modern engineering process that achieves high-quality control for the cymbals, it is necessary to investigate the distribution of the residual stresses/strains in the cymbal and their quantitative relation with the frequency characteristics of the sound generated from the cymbal. In the present study, we have successfully used synchrotron radiation to measure the distribution of residual strain in two kinds of cymbals—after spinforming as well as after hammering. The microstructure and the mechanical properties of the cymbals were measured as well their acoustic response. Based on our experimental data, the inhomogeneous residual stress/strain distributions in the cymbals were deduced in detail and their influence on the frequency characteristics of the sound produced by the cymbals was identified.

  9. A fiber optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets

    SciTech Connect

    van Oort, J.M.; Scanlan, R.M.; ten Kate, H.H.J.

    1994-10-17

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot Interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system or as an absolute strain detector. Combined, one can monitor the mechanical behaviour of the magnet system over time during construction, long time storage and operation. The sensing mechanism is described, together with various tests in laboratory environments. The test results of a multichannel test matrix to be incorporated first in the dummy coils and then in the final version of a 13T Nb{sub 3}Sn accelerator dipole magnet are presented. Finally, the possible use of this system as a quench localization system is proposed.

  10. Size effects and strain localization in atomic-scale cleavage modeling.

    PubMed

    Elsner, B A M; Müller, S

    2015-09-04

    In this work, we study the adhesion and decohesion of Cu(1 0 0) surfaces using density functional theory (DFT) calculations. An upper stress to surface decohesion is obtained via the universal binding energy relation (UBER), but the model is limited to rigid separation of bulk-terminated surfaces. When structural relaxations are included, an unphysical size effect arises if decohesion is considered to occur as soon as the strain energy equals the energy of the newly formed surfaces. We employ the nudged elastic band (NEB) method to show that this size effect is opposed by a size-dependency of the energy barriers involved in the transition. Further, we find that the transition occurs via a localization of bond strain in the vicinity of the cleavage plane, which resembles the strain localization at the tip of a sharp crack that is predicted by linear elastic fracture mechanics.

  11. Localization of pyruvate carboxylase in organic acid-producing Aspergillus strains.

    PubMed Central

    Bercovitz, A; Peleg, Y; Battat, E; Rokem, J S; Goldberg, I

    1990-01-01

    The localization of pyruvate carboxylase (cytosolic or mitochondrial) was studied in nine different Aspergillus species (14 strains). In some species (A. aculeatus, A. flavus, A. foetidus, A. nidulans, A. ochraceus, and A. sojae), the pyruvate carboxylase activity could be detected only in the cytosolic fraction of the cells. Pyruvate carboxylase has been found only in the mitochondrial fraction of two strains of Aspergillus wentii. In Aspergillus oryzae and in five strains of Aspergillus niger, pyruvate carboxylase activity was detected both in the mitochondrial fraction and in the cytosol. There was no quantitative or qualitative correlation between the activities of pyruvate carboxylase in the mitochondrial and cytosolic fractions of the cells and the ability of the various Aspergillus strains to accumulate different organic acids. PMID:2383004

  12. Strain-induced suppression of weak localization in CVD-grown graphene.

    PubMed

    Miao, Xiaochang; Tongay, Sefaattin; Hebard, Arthur F

    2012-11-28

    We investigate the magnetic-field- and temperature-dependent transport properties of CVD-grown graphene transferred to a flexible substrate (Kapton) and subjected to externally applied strain. In zero magnetic field, a logarithmic temperature-dependent conductivity correction, resulting from strong electron-electron interaction, becomes weaker with the application of strains as large as 0.6% because of an increased rate of chiral-symmetry-breaking scattering. With the application of a perpendicular magnetic field, we also observe positive magnetoconductance at low temperature (T = 5 K) due to weak localization. This magnetoconductance is suppressed with increasing strain, concomitant with a rapid decrease of the intervalley scattering rate (τ(i)(-1)). Our results are in good agreement with theoretical expectations and are consistent with a strain-induced decoupling between graphene and its underlying Kapton substrate.

  13. Residual Strain Distribution in Bent Composite Boiler Tubes

    SciTech Connect

    Hubbard, Camden R; Gorti, Sarma B; Tang, Fei; Keiser, James R

    2006-01-01

    Kraft recovery boilers are typically constructed of carbon steel boiler tubes clad with a corrosion resistant layer, and these composite tubes are bent and welded together to form air port panels which enable the combustion air to enter the boiler. In this paper, the through-thickness residual strain in the carbon steel layer of non-heat-treated and heat-treated composite bent tubes were measured by neutron diffraction techniques and modeled by finite element modeling. The results can be used to optimize material selection and manufacturing processes to prevent stress corrosion and corrosion fatigue cracking in the boiler tubes.

  14. Measurement-dependent locality beyond independent and identically distributed runs

    NASA Astrophysics Data System (ADS)

    Tan, Ernest Y.-Z.; Cai, Yu; Scarani, Valerio

    2016-09-01

    When conducting a Bell test, it is normal to assume that the preparation of the quantum state is independent of the measurements performed on it. Remarkably, the violation of local realism by entangled quantum systems can be certified even if this assumption is partially relaxed. Here, we allow such measurement dependence to correlate multiple runs of the experiment, going beyond previous studies that considered independent and identically distributed (i.i.d.) runs. To do so, we study the polytope defined by block-i.i.d. measurement-dependent local models. We prove that non-i.i.d. models are strictly more powerful than i.i.d. ones, and comment on the relevance of this work for the study of randomness amplification in simple Bell scenarios with suitably optimized inequalities.

  15. Local tsunamis and distributed slip at the source

    USGS Publications Warehouse

    Geist, E.L.; Dmowska, R.

    1999-01-01

    Variations in the local tsunami wave field are examined in relation to heterogeneous slip distributions that are characteristic of many shallow subduction zone earthquakes. Assumptions inherent in calculating the coseismic vertical displacement field that defines the initial condition for tsunami propagation are examined. By comparing the seafloor displacement from uniform slip to that from an ideal static crack, we demonstrate that dip-directed slip variations significantly affect the initial cross-sectional wave profile. Because of the hydrodynamic stability of tsunami wave forms, these effects directly impact estimates of maximum runup from the local tsunami. In most cases, an assumption of uniform slip in the dip direction significantly underestimates the maximum amplitude and leading wave steepness of the local tsunami. Whereas dip-directed slip variations affect the initial wave profile, strike-directed slip variations result in wavefront-parallel changes in amplitude that are largely preserved during propagation from the source region toward shore, owing to the effects of refraction. Tests of discretizing slip distributions indicate that small fault surface elements of dimensions similar to the source depth can acceptably approximate the vertical displacement field in comparison to continuous slip distributions. Crack models for tsunamis generated by shallow subduction zone earthquakes indicate that a rupture intersecting the free surface results in approximately twice the average slip. Therefore, the observation of higher slip associated with tsunami earthquakes relative to typical subduction zone earthquakes of the same magnitude suggests that tsunami earthquakes involve rupture of the seafloor, whereas rupture of deeper subduction zone earthquakes may be imbedded and not reach the seafloor.

  16. Number and localization of the implants for the fixed prosthetic reconstructions: on the strain in the anterior maxillary region.

    PubMed

    Bölükbaşı, Nilüfer; Yeniyol, Sinem

    2015-04-01

    Resorption following tooth loss and poor bone quality affect the success of implants in the anterior maxilla. Inappropriate planning can cause implant loss and aesthetics problems that are difficult to resolve. There is a limited literature on the optimum number and location of implants in anterior maxilla for fabricating fixed prosthesis in biomechanical terms. This study investigated the effect of dental implant localizations in anterior maxilla on the strain values around implants using a three dimensional finite elements analysis method. Obtained strain values were compared to the data in Frost's mechanostat theory. The entire totally edentulous maxilla was modeled using computer tomography images and five models were prepared representing different implant localizations. The distribution of implants in the models was as follows: two canines in the first model, two canines and one central incisor in the second model, two canines and central incisor in the third model, two canines and one lateral incisor in the fourth model and two canines and two lateral incisors in the fifth model. Anatomic abutments with a gingival height of 2 mm and angle of 15° were used as the abutments to fabricate one piece cemented metal fused to porcelain restoration. A chewing strength of 100 N was applied to the cingulum of all crowns at a 45° angle. Maximum strain values in all models were measured in cortical bone in implant necks. The highest strain value was measured in the first model at the cortical bone area (3037 microstrain). Except the first model, all models showed micro strain values within 1000-3000 microstrain. The fifth model was the least risky method in biomechanical terms. The results of this study should be compared with different clinical scenarios (for example different implant designs and sizes). Due to the limitations of three-dimensional finite elements analysis studies, the findings of the study need to be supported by clinical studies.

  17. Phenomenological local field enhancement factor distributions around electromagnetic hot spots

    NASA Astrophysics Data System (ADS)

    Le Ru, E. C.; Etchegoin, P. G.

    2009-05-01

    We propose a general phenomenological description of the enhancement factor distribution for surface-enhanced Raman scattering (SERS) and other related phenomena exploiting large local field enhancements at hot spots. This description extends naturally the particular case of a single (fixed) hot spot, and it is expected to be "universal" for many classes of common SERS substrates containing a collection of electromagnetic hot spots with varying geometrical parameters. We further justify it from calculations with generalized Mie theory. The description studied here provides a useful starting point for a qualitative (and semiquantitative) understanding of experimental data and, in particular, the analysis of the statistics of single-molecule SERS events.

  18. Strain distribution and crack detection in thin unbonded concrete pavement overlays with fully distributed fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Chen, Genda

    2016-01-01

    This study aims at evaluating the feasibility of strain measurement and crack detection in thin unbonded concrete pavement overlays with pulse prepump Brillouin optical time domain analysis. Single-mode optical fibers with two-layer and three-layer coatings, respectively, were applied as fully distributed sensors, their performances were compared with analytical predictions. They were successfully protected from damage during concrete casting of three full-scale concrete panels when 5 to 10-cm-thick protective mortar covers had been set for 2 h. Experimental results from three-point loading tests of the panels indicated that the strain distributions measured from the two types of sensors were in good agreement, and cracks can be detected at sharp peaks of the measured strain distributions. The two-layer and three-layer coated fibers can be used to measure strains up to 2.33% and 2.42% with a corresponding sensitivity of 5.43×10-5 and 4.66×10-5 GHz/μɛ, respectively. Two cracks as close as 7 to 9 cm can be clearly detected. The measured strains in optical fiber were lower than the analytical prediction by 10% to 25%. Their difference likely resulted from strain transfer through various coatings, idealized point loading, varying optical fiber embedment, and concrete heterogeneity.

  19. LaRC local area networks to support distributed computing

    NASA Technical Reports Server (NTRS)

    Riddle, E. P.

    1984-01-01

    The Langley Research Center's (LaRC) Local Area Network (LAN) effort is discussed. LaRC initiated the development of a LAN to support a growing distributed computing environment at the Center. The purpose of the network is to provide an improved capability (over inteactive and RJE terminal access) for sharing multivendor computer resources. Specifically, the network will provide a data highway for the transfer of files between mainframe computers, minicomputers, work stations, and personal computers. An important influence on the overall network design was the vital need of LaRC researchers to efficiently utilize the large CDC mainframe computers in the central scientific computing facility. Although there was a steady migration from a centralized to a distributed computing environment at LaRC in recent years, the work load on the central resources increased. Major emphasis in the network design was on communication with the central resources within the distributed environment. The network to be implemented will allow researchers to utilize the central resources, distributed minicomputers, work stations, and personal computers to obtain the proper level of computing power to efficiently perform their jobs.

  20. Low Temperature Bulging Recrystallization in Olivine Aggregates: a Mechanism for Strain Weakening and Localization

    NASA Astrophysics Data System (ADS)

    Holyoke, C. W.; Tullis, J.

    2003-12-01

    Evidence of strain localization in olivine aggregates has been observed in both obducted slices of upper mantle and in high stress experiments (Post, 1977). Most experimental deformation studies of olivine aggregates have been done in gas apparatus at low P (<300 MPa) and thus at low flow stress; both axial compression and shear experiments involving climb-accommodated dislocation creep show steady state flow, with little if any strain weakening. However, experimental studies of quartz and feldspar at high P have shown the existence of a low T, high stress dislocation creep regime in which climb is very limited and creep is accommodated by bulging recrystallization; in this regime extreme strain weakening and localization occur. To explore high stress dislocation creep in olivine, we have deformed natural and synthetic aggregates using a modified molten salt assembly in a Griggs apparatus at a P of 1.5 GPa, T of 950 to 1100° C, and strain rates of 5x10-5/s to 10-6/s, in both axial compression and general shear. For starting materials we used both Balsam Gap dunite (d ˜500 μ m) and synthetic aggregates hot pressed from San Carlos olivine powders (10-20 and 25-38 μ m). Prior to weld sealing in Ni and outer Pt, each sample was dried for 24 hrs at 900° C in a CO/CO2 atmosphere. The yield stress of the samples ranged from 1300 to 380 MPa and all samples strain weakened. The highest stress sample shows evidence of semi-brittle flow, with high densities of linear dislocations and a few very small recrystallized grains. A sample with an intermediate yield stress (780 MPa) strain weakened to 600 MPa by 16% strain and shows very high densities of tangled dislocations in the porphyroclasts, and small (1-2 μ m) dislocation-free recrystallized grains along their boundaries. The sample with the lowest yield stress (380 MPa) strain weakened to a steady state flow stress of 120 MPa at γ = 4.5. The few remaining porphyroclasts contain subgrains, and the recrystallized grain

  1. Strain and localization effects in InGaAs(N) quantum wells: Tuning the magnetic response

    SciTech Connect

    Lopes-Oliveira, V. Herval, L. K. S.; Orsi Gordo, V.; Cesar, D. F.; Godoy, M. P. F. de; Galvão Gobato, Y.; Henini, M.; Khatab, A.; Sadeghi, M.; Wang, S.; Schmidbauer, M.

    2014-12-21

    We investigated effects of localization and strain on the optical and magneto-optical properties of diluted nitrogen III–V quantum wells theoretically and experimentally. High-resolution x-ray diffraction, photoluminescence (PL), and magneto-PL measurements under high magnetic fields up to 15 T were performed at low temperatures. Bir-Pikus Hamiltonian formalism was used to study the influence of strain, confinement, and localization effects. The circularly polarized magneto-PL was interpreted considering localization aspects in the valence band ground state. An anomalous behavior of the electron-hole pair magnetic shift was observed at low magnetic fields, ascribed to the increase in the exciton reduced mass due to the negative effective mass of the valence band ground state.

  2. In-situ strain localization analysis in low density transformation-twinning induced plasticity steel using digital image correlation

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Yadegari-Dehnavi, M. R.; Zarei-Hanzaki, A.; Mohtadi-Bonab, M. A.; Basu, R.; Szpunar, J. A.

    2015-04-01

    The effect of deformation temperature on the strain localization has been evaluated by an adapted digital image correlation (DIC) technique during tensile deformation. The progress of strain localization was traced by the corresponding strain maps. The electron backscatter diffraction analysis and tint etching technique were utilized to determine the impact of martensitic transformation and deformation twinning on the strain localization in both elastic and plastic regimes. In elastic regime the narrow strain bands which are aligned perpendicular to the tension direction were observed in temperature range of 25 to 180 °C due to the stress-assisted epsilon martensite. The strain bands were disappeared by increasing the temperature to 300 °C and reappeared at 400 °C due to the stress-assisted deformation twinning. In plastic regime strain localization continued at 25 °C and 180 °C due to the strain-induced alfa-martensite and deformation twinning, respectively. The intensity of plastic strain localization was increased by increasing the strain due to the enhancement of martensite and twin volume fraction. The plastic strain showed more homogeneity at 300 °C due to the lack of both strain-induced martensite and deformation twinning. Effect of deformation mechanism by changing temperature on strain localization is investigated by digital image correlation. EBSD technique is served to validate deformation mechanism as well as microstructural evolution. Strain induced martensite as well as deformation twinning is activated in the present steel affecting strain localization.

  3. Local density corrected three-body distribution functions for probing local structure reorganization in liquids.

    PubMed

    Bhattacharjee, Anirban; Hofer, Thomas S; Rode, Bernd M

    2008-11-28

    Three-body distribution functions are calculated for metal ions in an aqueous medium in order to investigate and characterise solvent structure reorganization. Based on the existing formulation of three body correlation function, a local density correction is introduced to enable a comparison of different sub-regions within a solvate as well as different systems, thus taking into account the varying density arising from the influence of the solute.

  4. Simultaneous temperature and strain sensing using distributed Raman optical time-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Gorshkov, B. G.; Gorshkov, G. B.; Taranov, M. A.

    2017-01-01

    A novel method of simultaneous distributed temperature and strain sensing in optical fibers is proposed. The method is based on the dependence of spontaneous Raman scattering intensity on the applied stress. A simple Raman reflectometry arrangement similar to distributed temperature sensors is used. 30 µ strain and 0.02 K root mean square errors of the simultaneously measured strain and temperature, respectively, are demonstrated for a spatial resolution of 2 m. Realization through this method is simple and can compete with the one based on Brillouin scattering for some applications.

  5. Fluid-assisted strain localization in the shallow subcontinental lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Hidas, Károly; Tommasi, Andréa; Garrido, Carlos J.; Padrón-Navarta, José Alberto; Mainprice, David; Vauchez, Alain; Barou, Fabrice; Marchesi, Claudio

    2016-10-01

    We report microstructural evidence for fluid-assisted ductile strain localization in a ≤ 50 m-wide mylonitic-ultramylonitic shear zone in the Ronda Peridotite massif, Southern Spain. Strain localization occurred at relatively low pressure (< 0.8 GPa) and moderate temperature (750-1000 °C). Initial deformation by dislocation creep resulted in formation of mylonites. Focusing of aqueous fluids in the shear zone favored the activation of dissolution-precipitation creep, resulting in further strain localization. This process is recorded by two generations of ultramylonitic bands composed of fine-grained, well-mixed olivine-orthopyroxene aggregates. Microstructural observations in the ultramylonites suggest alternating dissolution and precipitation of olivine and orthopyroxene, which may be explained by local changes in silica molality of the percolating fluid (disequilibrium and mass transfer at scales > mm). In the mylonites, olivine shows a crystal preferred orientation (CPO) coherent with dominant (001)[100] glide, probably due to the presence of interstitial fluids during deformation. In the ultramylonites, olivine CPO is weak to very weak, consistently with a decreasing contribution of dislocation creep to deformation. In contrast, fine-grained orthopyroxene in both mylonites and ultramylonites displays a clear CPO characterized by a [001] maximum normal to the foliation, which is not consistent with dislocation glide in any known slip system for orthopyroxene. We interpret this CPO as formed by oriented crystallization during dissolution-precipitation. In the present study, dissolution-precipitation creep predominates only in small-scale ultramylonite bands due to limited fluid availability and localized dynamic permeability. However, this process may be important in intermediate temperature domains of subduction zones, where it may lead to a feedback between strain localization and fluid transport.

  6. Influence of grain size distribution on the mechanical behavior of light alloys in wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.

    2017-01-01

    Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) light alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength.

  7. Method for Estimating Operational Loads on Aerospace Structures Using Span-Wisely Distributed Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2013-01-01

    This report presents a new method for estimating operational loads (bending moments, shear loads, and torques) acting on slender aerospace structures using distributed surface strains (unidirectional strains). The surface strain-sensing stations are to be evenly distributed along each span-wise strain-sensing line. A depth-wise cross section of the structure along each strain-sensing line can then be considered as an imaginary embedded beam. The embedded beam was first evenly divided into multiple small domains with domain junctures matching the strain-sensing stations. The new method is comprised of two steps. The first step is to determine the structure stiffness (bending or torsion) using surface strains obtained from a simple bending (or torsion) loading case, for which the applied bending moment (or torque) is known. The second step is to use the strain-determined structural stiffness (bending or torsion), and a new set of surface strains induced by any other loading case to calculate the associated operational loads (bending moments, shear loads, or torques). Performance of the new method for estimating operational loads was studied in light of finite-element analyses of several example structures subjected to different loading conditions. The new method for estimating operational loads was found to be fairly accurate, and is very promising for applications to the flight load monitoring of flying vehicles with slender wings.

  8. Improved Displacement Transfer Functions for Structure Deformed Shape Predictions Using Discretely Distributed Surface Strains

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    In the formulations of earlier Displacement Transfer Functions for structure shape predictions, the surface strain distributions, along a strain-sensing line, were represented with piecewise linear functions. To improve the shape-prediction accuracies, Improved Displacement Transfer Functions were formulated using piecewise nonlinear strain representations. Through discretization of an embedded beam (depth-wise cross section of a structure along a strain-sensing line) into multiple small domains, piecewise nonlinear functions were used to describe the surface strain distributions along the discretized embedded beam. Such piecewise approach enabled the piecewise integrations of the embedded beam curvature equations to yield slope and deflection equations in recursive forms. The resulting Improved Displacement Transfer Functions, written in summation forms, were expressed in terms of beam geometrical parameters and surface strains along the strain-sensing line. By feeding the surface strains into the Improved Displacement Transfer Functions, structural deflections could be calculated at multiple points for mapping out the overall structural deformed shapes for visual display. The shape-prediction accuracies of the Improved Displacement Transfer Functions were then examined in view of finite-element-calculated deflections using different tapered cantilever tubular beams. It was found that by using the piecewise nonlinear strain representations, the shape-prediction accuracies could be greatly improved, especially for highly-tapered cantilever tubular beams.

  9. Direct evidence for local symmetry breaking during a strain glass transition.

    PubMed

    Zhou, Yumei; Xue, Dezhen; Tian, Ya; Ding, Xiangdong; Guo, Shengwu; Otsuka, Kazuhiro; Sun, Jun; Ren, Xiaobing

    2014-01-17

    Strain glass transition is a unique nanoscale displacive transition with local symmetry breaking while maintaining the macroscopic symmetry or average structure unchanged. It usually occurs in the "nonmartensitic" composition range of a martensitic system. So far, only indirect evidence exists for such a transition, essentially from macroscopic measurements and low-resolution transmission electron microscopy observations, and there is a lack of direct evidence for the speculated local symmetry breaking and the sluggish nature of the glass transition. In this Letter we report in situ high-resolution transmission electron microscopy observations on a Ti50(Pd41Cr9) strain glass alloy and direct evidence for these key issues. Our results show that at temperatures well above the strain glass transition temperature (Tg), the lattice is essentially an undistorted B2 structure. With approaching Tg, the local symmetry breaking gradually occurs with the formation and growth of nanomartensite clusters with a combined stacking period of three and four plane intervals, but the average structure measured by x-ray diffraction remains B2. These nanomartensite clusters become finally frozen below Tg. Our results provide not only a microscopic basis for the macroscopic properties of strain glass, but also new insights into a range of possible applications of this unique class of materials.

  10. The effects of strain amplitude and localization on viscoelastic mechanical behaviour of human abdominal fascia.

    PubMed

    Kirilova-Doneva, Miglena; Pashkouleva, Dessislava; Kavardzhikov, Vasil

    2016-01-01

    The purpose of the paper is to examine and compare the viscoelastic mechanical properties of human transversalis and umbilical fasciae according to chosen strain levels. A sequence of relaxation tests of finite deformation ranging from 4 to 6% strain with increment 0.3% was performed at strain rate 1.26 mm/s. Initial and equilibrium stresses T0, Teq, initial modulus E and equilibrium modulus Eeq, reduction of the stress during relaxation process ΔT, as well as the ratio (1 - Eeq /E) were calculated. The range in which parameters change their values are (0.184-1.74 MPa) for initial stress, (0.098-0.95 MPa) for equilibrium stress, (43.5-4.6 MPa) for initial modulus E. For Eeq this interval is (23.75-2.45 MPa). There are no statistically significant differences between the values of these parameters according to localization. The differences in viscoelastic properties of both fasciae are demonstrated by reduction of the stress during relaxation process and ratio (1 - Eeq /E). The values of ΔT and (1 - Eeq /E) ratio for umbilical fascia are significantly greater than that of fascia transversalis. An increase of 2% in strain leads to change of the normalized relaxation ratio of fasciae between 28%-66%. There is a weak contribution of viscous elements in fascia transversalis samples during relaxation, while in umbilical fascia the contribution of viscous component increases with strain level to 0.66 at 5.3% strain. This study adds new data for the material properties of human abdominal fascia. The results demonstrate that in chosen range of strain there is an influence of localization on visco-elastic tissue properties.

  11. Strain-Induced Localized States Within the Matrix Continuum of Self-Assembled Quantum Dots

    SciTech Connect

    Popescu, V.; Bester, G.; Zunger, A.

    2009-07-01

    Quantum dot-based infrared detectors often involve transitions from confined states of the dot to states above the minimum of the conduction band continuum of the matrix. We discuss the existence of two types of resonant states within this continuum in self-assembled dots: (i) virtual bound states, which characterize square wells even without strain and (ii) strain-induced localized states. The latter emerge due to the appearance of 'potential wings' near the dot, related to the curvature of the dots. While states (i) do couple to the continuum, states (ii) are sheltered by the wings, giving rise to sharp absorption peaks.

  12. Strain localization in <111> single crystals of Hadfield steel under compressive load

    NASA Astrophysics Data System (ADS)

    Astafurova, E. G.; Zakharova, G. G.; Melnikov, E. V.

    2010-07-01

    A study of strain localization under compression of <111> Hadfield steel single crystals at room temperature was done by light and transmission electron microscopy. At epsilon<1%, macro shear bands (MSB) form that have non-crystallographic and complex non-linear habit planes and are the results of the interaction of dislocation slip on conjugate slip planes. Mechanical twinning was experimentally found inside the MSB. After the stage of MSBs formation, deformation develops with high strain hardening coefficient and corresponds to interaction of slip and twinning inside as well as outside the MSBs.

  13. Revealing ultralarge and localized elastic lattice strains in Nb nanowires embedded in NiTi matrix

    PubMed Central

    Zang, Ketao; Mao, Shengcheng; Cai, Jixiang; Liu, Yinong; Li, Haixin; Hao, Shijie; Jiang, Daqiang; Cui, Lishan

    2015-01-01

    Freestanding nanowires have been found to exhibit ultra-large elastic strains (4 to 7%) and ultra-high strengths, but exploiting their intrinsic superior mechanical properties in bulk forms has proven to be difficult. A recent study has demonstrated that ultra-large elastic strains of ~6% can be achieved in Nb nanowires embedded in a NiTi matrix, on the principle of lattice strain matching. To verify this hypothesis, this study investigated the elastic deformation behavior of a Nb nanowire embedded in NiTi matrix by means of in situ transmission electron microscopic measurement during tensile deformation. The experimental work revealed that ultra-large local elastic lattice strains of up to 8% are induced in the Nb nanowire in regions adjacent to stress-induced martensite domains in the NiTi matrix, whilst other parts of the nanowires exhibit much reduced lattice strains when adjacent to the untransformed austenite in the NiTi matrix. These observations provide a direct evidence of the proposed mechanism of lattice strain matching, thus a novel approach to designing nanocomposites of superior mechanical properties. PMID:26625854

  14. Revealing ultralarge and localized elastic lattice strains in Nb nanowires embedded in NiTi matrix.

    PubMed

    Zang, Ketao; Mao, Shengcheng; Cai, Jixiang; Liu, Yinong; Li, Haixin; Hao, Shijie; Jiang, Daqiang; Cui, Lishan

    2015-12-02

    Freestanding nanowires have been found to exhibit ultra-large elastic strains (4 to 7%) and ultra-high strengths, but exploiting their intrinsic superior mechanical properties in bulk forms has proven to be difficult. A recent study has demonstrated that ultra-large elastic strains of ~6% can be achieved in Nb nanowires embedded in a NiTi matrix, on the principle of lattice strain matching. To verify this hypothesis, this study investigated the elastic deformation behavior of a Nb nanowire embedded in NiTi matrix by means of in situ transmission electron microscopic measurement during tensile deformation. The experimental work revealed that ultra-large local elastic lattice strains of up to 8% are induced in the Nb nanowire in regions adjacent to stress-induced martensite domains in the NiTi matrix, whilst other parts of the nanowires exhibit much reduced lattice strains when adjacent to the untransformed austenite in the NiTi matrix. These observations provide a direct evidence of the proposed mechanism of lattice strain matching, thus a novel approach to designing nanocomposites of superior mechanical properties.

  15. Isolation and purification of Gallid herpesvirus 2 strains currently distributed in Japan.

    PubMed

    Machida, Yuka; Murata, Shiro; Matsuyama-Kato, Ayumi; Isezaki, Masayoshi; Taneno, Akira; Sakai, Eishi; Konnai, Satoru; Ohashi, Kazuhiko

    2017-01-20

    Gallid herpesvirus 2 (GaHV-2) causes malignant lymphomas in chickens (Marek's disease, MD). Although MD is controlled through vaccination efforts, field isolates of GaHV-2 have increased in virulence worldwide and even cause MD in vaccinated chickens. GaHV-2 strains are classified into four categories (mild, virulent, very virulent and very virulent +) based on the virulence exhibited in experimental infection in unvaccinated or MD-vaccinated susceptible chickens. Although MD cases are sporadically reported in Japan, the recent field strains of GaHV-2 in Japan have not been characterized. During isolation of recent field strains by using primary chicken kidney cell cultures, a method classically used for GaHV-2 isolation, vaccine strains were simultaneously isolated. Therefore, it is necessary to separate vaccine strains to characterize the virulence and pathogenicity of the GaHV-2 strains currently distributed in Japan. In this study, we prepared cell suspensions from the spleens of MD-symptomatic chickens, inoculated day-old-chicks and isolated GaHV-2 strains by primary chicken kidney cell cultures at 2-3 weeks post inoculation. The isolated strains were passaged several times on chicken embryo fibroblast cells, and PCR analysis revealed that the isolated strains were not contaminated with vaccine strains. Moreover, the contaminant vaccine strains were completely removed by the purification of plaques observed in chicken kidney cells. These procedures are necessary to isolate GaHV-2 field strains from vaccine strains in order to carry out future studies to characterize these strains and glean insights into GaHV-2 virulence and pathogenicity.

  16. Isolation and purification of Gallid herpesvirus 2 strains currently distributed in Japan

    PubMed Central

    MACHIDA, Yuka; MURATA, Shiro; MATSUYAMA-KATO, Ayumi; ISEZAKI, Masayoshi; TANENO, Akira; SAKAI, Eishi; KONNAI, Satoru; OHASHI, Kazuhiko

    2016-01-01

    Gallid herpesvirus 2 (GaHV-2) causes malignant lymphomas in chickens (Marek’s disease, MD). Although MD is controlled through vaccination efforts, field isolates of GaHV-2 have increased in virulence worldwide and even cause MD in vaccinated chickens. GaHV-2 strains are classified into four categories (mild, virulent, very virulent and very virulent +) based on the virulence exhibited in experimental infection in unvaccinated or MD-vaccinated susceptible chickens. Although MD cases are sporadically reported in Japan, the recent field strains of GaHV-2 in Japan have not been characterized. During isolation of recent field strains by using primary chicken kidney cell cultures, a method classically used for GaHV-2 isolation, vaccine strains were simultaneously isolated. Therefore, it is necessary to separate vaccine strains to characterize the virulence and pathogenicity of the GaHV-2 strains currently distributed in Japan. In this study, we prepared cell suspensions from the spleens of MD-symptomatic chickens, inoculated day-old-chicks and isolated GaHV-2 strains by primary chicken kidney cell cultures at 2−3 weeks post inoculation. The isolated strains were passaged several times on chicken embryo fibroblast cells, and PCR analysis revealed that the isolated strains were not contaminated with vaccine strains. Moreover, the contaminant vaccine strains were completely removed by the purification of plaques observed in chicken kidney cells. These procedures are necessary to isolate GaHV-2 field strains from vaccine strains in order to carry out future studies to characterize these strains and glean insights into GaHV-2 virulence and pathogenicity. PMID:27725354

  17. The star formation rate distribution function of the local Universe

    NASA Astrophysics Data System (ADS)

    Bothwell, M. S.; Kennicutt, R. C.; Johnson, B. D.; Wu, Y.; Lee, J. C.; Dale, D.; Engelbracht, C.; Calzetti, D.; Skillman, E.

    2011-08-01

    We present total infrared (IR) and ultraviolet (UV) luminosity functions derived from large representative samples of galaxies at z˜ 0, selected at IR and UV wavelengths from the Imperial IRAS Faint Source Catalogue redshift data base (IIFSCz) catalogue, and the GALEX All-Sky Imaging Survey (AIS), respectively. We augment these with deep Spitzer and GALEX imaging of galaxies in the 11 Mpc Local Volume Legacy (LVL) Survey, allowing us to extend these luminosity functions to lower luminosities (˜106 L⊙), and providing good constraints on the slope of the luminosity function at the extreme faint end for the first time. Using conventional star formation prescriptions, we generate from our data the star formation rate (SFR) distribution function for the local Universe. We find that it has a Schechter form, the faint-end slope has a constant value (to the limits of our data) of α=-1.51 ± 0.08 and the ‘characteristic’ SFR ψ* is 9.2 M⊙ yr-1. We also show the distribution function of the SFR volume density; we then use this to calculate a value for the total SFR volume density at z˜ 0 of 0.025 ± 0.0016 M⊙ yr-1 Mpc-3, of which ˜20 per cent is occurring in starbursts. Decomposing the total star formation by infrared luminosity, it can be seen that 9 ± 1 per cent is due to LIRGs, and 0.7 ± 0.2 per cent is occurring in ULIRGs. By comparing UV and IR emission for galaxies in our sample, we also calculate the fraction of star formation occurring in dust-obscured environments, and examine the distribution of dusty star formation: we find a very shallow slope at the highly extincted end, which may be attributable to line-of-sight orientation effects as well as conventional internal extinction.

  18. Quantifying the impact of metamorphic reactions on strain localization in the mantle

    NASA Astrophysics Data System (ADS)

    Huet, Benjamin; Yamato, Philippe

    2014-05-01

    Metamorphic reactions are most often considered as a passive record of changes in pressure, temperature and fluid conditions that rocks experience. In that way, they provide key constraints on the tectonic evolution of the crust and the mantle. However, natural examples show that metamorphism can also modify the strength of rocks and affect the strain localization in ductile shear zones. Hence, metamorphic reactions have an active role in tectonics by inducing softening and/or hardening depending on the involved reactions. Quantifying the mechanical effect of such metamorphic reactions is, therefore, a crucial task for determining both the strength distribution in the lithosphere and its evolution. However, the estimate of the effective strength of such polyphase rocks remains still an open issue. Some flow laws (determined experimentally) already exist for monophase aggregates and polyphase rocks for rheologically important materials. They provide good constraints on lithology-controlled lithospheric strength variations. Unfortunately, since the whole range of mineralogical and chemical rock compositions cannot be experimentally tested, the variations of strength due to in metamorphism reaction cannot be systematically and fully characterized. In order to tackle this issue, we here present the results of a study coupling thermodynamical and mechanical modeling that allows us to predict the mechanical impact of metamorphic reactions on the strength of the mantle. Thermodynamic modeling (using Theriak-Domino) is used for calculating the mineralogical composition of a typical peridotite as a function of pressure, temperature and water content. The calculated modes and flow laws parameters for monophase aggregates are then used as input of the Minimized Power Geometric model for predicting the polyphase aggregate strength. Our results are then used to quantify the strength evolution of the mantle as a function of pressure, temperature and water content in two

  19. Sporadic Distribution and Distinctive Variations of Cylindrospermopsin Genes in Cyanobacterial Strains and Environmental Samples from Chinese Freshwater Bodies

    PubMed Central

    Jiang, Yongguang; Xiao, Peng; Yu, Gongliang; Shao, Jihai; Liu, Deming; Azevedo, Sandra M. F. O.

    2014-01-01

    Increasing reports of cylindrospermopsins (CYNs) in freshwater ecosystems have promoted the demand for identifying all of the potential CYN-producing cyanobacterial species. The present study explored the phylogenetic distribution and evolution of cyr genes in cyanobacterial strains and water samples from China. Four Cylindrospermopsis strains and two Raphidiopsis strains were confirmed to produce CYNs. Mutant cyrI and cyrK genes were observed in these strains. Cloned cyr gene sequences from eight water bodies were clustered with cyr genes from Cylindrospermopsis and Raphidiopsis (C/R group) in the phylogenetic trees with high similarities (99%). Four cyrI sequence types and three cyrJ sequence types were observed to have different sequence insertions and repeats. Phylogenetic analysis of the rpoC1 sequences of the C/R group revealed four conserved clades, namely, clade I, clade II, clade III, and clade V. High sequence similarities (>97%) in each clade and a divergent clade IV were observed. Therefore, CYN producers were sporadically distributed in congeneric and paraphyletic C/R group species in Chinese freshwater ecosystems. In the evolution of cyr genes, intragenomic translocations and intergenomic transfer between local Cylindrospermopsis and Raphidiopsis were emphasized and probably mediated by transposases. This research confirms the existence of CYN-producing Cylindrospermopsis in China and reveals the distinctive variations of cyr genes. PMID:24928879

  20. Local fluid flow and borehole strain in the South Iceland Seismic Zone

    NASA Astrophysics Data System (ADS)

    Jónsson, S.; Segall, P.; Ágústsson, K.; Agnew, D.

    2003-12-01

    Installation of 175 borehole strainmeters is planned for PBO. It is therefore vital to understand the behavior of existing strainmeter installations. We investigate signals recorded by three borehole dilatometers in the south Iceland seismic zone following two Mw6.5 earthquakes in June 2000. Poroelastic relaxation has been documented following these events based on InSAR and water level data [Jónsson et al., 2003, Nature]. According to poroelastic theory for a homogeneous isotropic (unfractured) medium, the anticipated post-seismic volumetric strain has the same sign as the coseismic strain step. For example, coseismic compression results in pore-pressure increases; post-earthquake fluid drainage causes additional compression. However, we find that observed strain changes vary considerably between different instruments after the earthquakes. One instrument (HEL) behaves as expected with transient strain increasing with the same sign as the coseismic strain step. Another instrument (SAU) shows partial strain relaxation, opposite in sign to the coseismic signal. The third (BUR) exhibits complete strain relaxation by 3-4 days after the earthquakes (i.e., BUR does not record any permanent strain). BUR has responded in the same fashion to three different earthquakes and two volcanic eruptions, demonstrating conclusively that the transient response is due to processes local to the borehole. Fluid drainage from cracks can explain these observations. Rapid straining results in compression (extension) of the rock and strainmeter. Fluid filled fractures near the borehole transmit normal stress, due to the relative incompressibility of water. Thus, at short time scales the instrument records a coseismic strain step. With time, however, fluid flows out of (in to) the fractures, and the normal stress transmitted across the fractures decreases (increases). As the stress relaxes the strainmeter expands (contracts), reversing the coseismic strain. Barometric responses are

  1. Highly toxic and broad-spectrum insecticidal local Bacillus strains engineered using protoplast fusion.

    PubMed

    El-Kawokgy, Tahany M A; Hussein, Hashem A; Aly, Nariman A H; Mohamed, Shereen A H

    2015-01-01

    Protoplast fusion was performed between a local Bacillus thuringiensis UV-resistant mutant 66/1a (Bt) and Bacillus sphaericus GHAI (Bs) to produce new Bacillus strains with a wider spectrum of action against different insects. Bt is characterized as sensitive to polymyxin and streptomycin and resistant to rifampicin and has shown 87% mortality against Spodoptera littoralis larvae at concentration of 1.5 × 10(7) cells/mL after 7 days of feeding; Bs is characterized as resistant to polymyxin and streptomycin and sensitive to rifampicin and has been shown to have 100% mortality against Culex pipiens after 1 day of feeding at the same concentration as that of Bt. Among a total of 64 Bt::Bs fusants produced on the selective medium containing polymyxin, streptomycin, and rifampicin, 17 fusants were selected because of their high mortality percentages against S. littoralis (Lepidoptera) and C. pipiens (Diptera). While Bt harboured 3 plasmids (600, 350, and 173 bp) and Bs had 2 plasmids (544 and 291 bp), all the selected fusants acquired plasmids from both parental strains. SDS-PAGE protein analysis of the 17 selected fusants and their parental strains confirmed that all fusant strains acquired and expressed many specific protein bands from the 2 parental strains, especially the larvicidal proteins to both lepidopteran and dipteran species with molecular masses of 65, 70, 80, 88, 100, and 135 kDa. Four protein bands with high molecular masses of 281, 263, 220, and 190 kDa, which existed in the Bt parental strain and did not exist in the Bs parental strain, and 2 other protein bands with high molecular masses of 185 and 180 kDa, which existed in the Bs parental strain and did not exist in the Bt parental strain, were expressed in most fusants. The results indicated the expression of some cry genes encoded for insecticidal crystal proteins from Bt and the binary toxin genes from Bs in all fusant strains. The recombinant fusants have more efficient and potential values for

  2. Local strain and damage mapping in single trabeculae during three-point bending tests.

    PubMed

    Jungmann, R; Szabo, M E; Schitter, G; Tang, Raymond Yue-Sing; Vashishth, D; Hansma, P K; Thurner, P J

    2011-05-01

    The use of bone mineral density as a surrogate to diagnose bone fracture risk in individuals is of limited value. However, there is growing evidence that information on trabecular microarchitecture can improve the assessment of fracture risk. One current strategy is to exploit finite element analysis (FEA) applied to 3D image data of several mm-sized trabecular bone structures obtained from non-invasive imaging modalities for the prediction of apparent mechanical properties. However, there is a lack of FE damage models, based on solid experimental facts, which are needed to validate such approaches and to provide criteria marking elastic-plastic deformation transitions as well as microdamage initiation and accumulation. In this communication, we present a strategy that could elegantly lead to future damage models for FEA: direct measurements of local strains involved in microdamage initiation and plastic deformation in single trabeculae. We use digital image correlation to link stress whitening in bone, reported to be correlated to microdamage, to quantitative local strain values. Our results show that the whitening zones, i.e. damage formation, in the presented loading case of a three-point bending test correlate best with areas of elevated tensile strains oriented parallel to the long axis of the samples. The average local strains along this axis were determined to be (1.6±0.9)% at whitening onset and (12±4)% just prior to failure. Overall, our data suggest that damage initiation in trabecular bone is asymmetric in tension and compression, with failure originating and propagating over a large range of tensile strains.

  3. Local strain and damage mapping in single trabeculae during three-point bending tests

    PubMed Central

    Jungmann, R.; Szabo, M.E.; Schitter, G.; Tang, Raymond Yue-Sing; Vashishth, D.; Hansma, P.K.; Thurner, P.J.

    2012-01-01

    The use of bone mineral density as a surrogate to diagnose bone fracture risk in individuals is of limited value. However, there is growing evidence that information on trabecular microarchitecture can improve the assessment of fracture risk. One current strategy is to exploit finite element analysis (FEA) applied to 3D image data of several mm-sized trabecular bone structures obtained from non-invasive imaging modalities for the prediction of apparent mechanical properties. However, there is a lack of FE damage models, based on solid experimental facts, which are needed to validate such approaches and to provide criteria marking elastic–plastic deformation transitions as well as microdamage initiation and accumulation. In this communication, we present a strategy that could elegantly lead to future damage models for FEA: direct measurements of local strains involved in microdamage initiation and plastic deformation in single trabeculae. We use digital image correlation to link stress whitening in bone, reported to be correlated to microdamage, to quantitative local strain values. Our results show that the whitening zones, i.e. damage formation, in the presented loading case of a three-point bending test correlate best with areas of elevated tensile strains oriented parallel to the long axis of the samples. The average local strains along this axis were determined to be (1.6 ± 0.9)% at whitening onset and (12 ± 4)% just prior to failure. Overall, our data suggest that damage initiation in trabecular bone is asymmetric in tension and compression, with failure originating and propagating over a large range of tensile strains. PMID:21396601

  4. Stress and strain localization in stretched collagenous tissues via a multiscale modelling approach.

    PubMed

    Marino, Michele; Vairo, Giuseppe

    2014-01-01

    Mechanobiology of cells in soft collagenous tissues is highly affected by both tissue response at the macroscale and stress/strain localization mechanisms due to features at lower scales. In this paper, the macroscale mechanical behaviour of soft collagenous tissues is modelled by a three-level multiscale approach, based on a multi-step homogenisation technique from nanoscale up to the macroscale. Nanoscale effects, related to both intermolecular cross-links and collagen mechanics, are accounted for, together with geometric nonlinearities at the microscale. Moreover, an effective submodelling procedure is conceived in order to evaluate the local stress and strain fields at the microscale, which is around and within cells. Numerical results, obtained by using an incremental finite element formulation and addressing stretched tendinous tissues, prove consistency and accuracy of the model at both macroscale and microscale, confirming also the effectiveness of the multiscale modelling concept for successfully analysing physiopathological processes in biological tissues.

  5. Nondestructive Evaluation of Strain Distribution and Fatigue Distribution from Austenitic Stainless Steel by Using Magnetic Sensors

    SciTech Connect

    Tsuchida, Y.; Enokizono, M.; Oka, M.; Yakushiji, T.

    2007-03-21

    Austenitic stainless steel transforms from austenitic crystal structure to martensitic crystal structure after applying strain or stress. Because martensitic crystal structures have magnetization, strain evaluation and fatigue evaluation can be performed by measuring magnetic properties. This paper describes the measurement of leakage magnetic flux density of remanent magnetization for the strain evaluation and the fatigue evaluation by a typical Hall element sensor for SUS 304 and SUS 304L and by a high-sensitivity thin-film flux-gate magnetic sensor for SUS 316 and SUS 316L.

  6. Valorization of solid olive mill wastes by cultivation of a local strain of edible mushrooms.

    PubMed

    Mansour-Benamar, Malika; Savoie, Jean-Michel; Chavant, Louis

    2013-08-01

    Olive oil industry generates huge quantities of solid olive mill wastes (SOMW), causing environmental damage. Cultivation of edible mushrooms, such as Pleurotus ostreatus is a valuable approach for SOMW valorization. A local strain mycelium (Tizi-Ouzou, Algeria) of P. ostreatus (LPO) was isolated from castor oil plants. Oyster mushroom spawn, produced on barley grains, was used to inoculate wet SOMW, steamed in a traditional steamer during 45 min. The mycelium growth rate on SOMW was first estimated in Petri dish by measuring the surface colonized by the mycelium. The fruit body yields were estimated on culture bags containing 2 kg each of SOMW inoculated at 7% (w/w). The local strain potential was compared with that of a commercial one. Both strains produced high-quality mushrooms, but with low yields. The supplementation of the SOMW with wheat straw at the rate of 10% and 2% of CaCO3 had significantly enhanced the productivity of the two strains, multiplying it by 3.2 for LPO and by 2.6 for CPO.

  7. Damage localization in beam-like structures using changes in modal strain energy

    NASA Astrophysics Data System (ADS)

    Ouali, M.; Mellel, N.; Dougdag, M.

    2017-02-01

    This paper investigates the application and reliability of using modal strain energy in damage localization estimation of beam-like structures. This is based on the fact that damage often cause a loss of stiffness that increase the modal displacement of two ends of beam element containing the damage, So the modal strain energy after damage will be increased and Modal Strain Energy Change Ratio (MSECR) in this element is larger than other elements and the location of damage is detected by finding the element with higher MSECR. To conduct this investigation, an experimental modal analysis program was carried out on a cantilever beam subjected to a controlled crack levels and the first seven mode shapes were extracted and used to calculate the modal strain energy change. The experimental MSECR was computed and the location of the damage was accurately identified especially for crack sizing as small as 10% of the beam height. Finally, finite elements models were built and validated, MSE change method was applied and the results demonstrate that the method is capable of localizing the damage for beam structure.

  8. Fiber optic distributed temperature sensing for fire source localization

    NASA Astrophysics Data System (ADS)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong

    2017-08-01

    A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.

  9. Tensile plastic strain localization in single crystals of austenite steel electrolytically saturated with hydrogen

    NASA Astrophysics Data System (ADS)

    Barannikova, S. A.; Nadezhkin, M. V.; Mel'Nichuk, V. A.; Zuev, L. B.

    2011-09-01

    The effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested Fe-18Cr-12Ni-2Mo single crystals of austenite steel with low stacking-fault energy has been studied using a double-exposure speckle photography technique. The main parameters of plastic-flow localization at various stages of the deformation hardening of crystals have been determined in single crystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential.

  10. Functional brain networks develop from a "local to distributed" organization.

    PubMed

    Fair, Damien A; Cohen, Alexander L; Power, Jonathan D; Dosenbach, Nico U F; Church, Jessica A; Miezin, Francis M; Schlaggar, Bradley L; Petersen, Steven E

    2009-05-01

    The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength) between regions close in anatomical space and 'integration' (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have

  11. Distribution of AdeABC efflux system genes in genotypically diverse strains of clinical Acinetobacter baumannii.

    PubMed

    Wieczorek, Piotr; Sacha, Paweł; Czaban, Sławomir; Hauschild, Tomasz; Ojdana, Dominika; Kowalczuk, Oksana; Milewski, Robert; Poniatowski, Bogusław; Nikliński, Jacek; Tryniszewska, Elżbieta

    2013-10-01

    Acinetobacter baumannii has emerged as a highly problematic hospital-associated pathogen. Different mechanisms contribute to the formation of multidrug resistance in A. baumannii, including the AdeABC efflux system. Distribution of the structural and regulatory genes encoding the AdeABC efflux system among genetically diverse clinical A. baumannii strains was achieved by using PCR and pulsed-field gel electrophoresis techniques. The distribution of adeABRS genes is extremely high among our A. baumannii strains, except the adeC gene. We have observed a large proportion of strains presenting multidrug-resistance phenotype for several years. The efflux pump could be an important mechanism in these strains in resistance to antibiotics.

  12. CHARACTERIZING LOCALIZED STRAIN OF IN0.83Al0.17As/In0.83Ga0.17As DETECTOR USING LOW FREQUENCY ATOMIC FORCE ACOUSTIC MICROSCOPE

    NASA Astrophysics Data System (ADS)

    Su, Weitao; Dou, Honglei; Huo, Dexuan; Yu, Guolin; Dai, Ning

    2016-01-01

    Localized strain accumulation and related defects strongly affect the performance of optoelectronic detectors. However, characterizing distribution of the localized strain and defects still challenges usability and spatial resolution of many measurements. In current study, the defects and surface strain accumulation of In0.83Al0.17As/In0.83Ga0.17As multilayer detectors are investigated using low-frequency atomic force acoustic microscope (AFAM) and Raman spectroscopy. With AFAM, the strain accumulation and defects can be easily identified and measured with spatial resolution as good as that of atomic force microscope (AFM).

  13. Disruption of Thermally-Stable Nanoscale Grain Structures by Strain Localization

    PubMed Central

    Khalajhedayati, Amirhossein; Rupert, Timothy J.

    2015-01-01

    Nanocrystalline metals with average grain sizes of only a few nanometers have recently been observed to fail through the formation of shear bands. Here, we investigate this phenomenon in nanocrystalline Ni which has had its grain structure stabilized by doping with W, with a specific focus on understanding how strain localization drives evolution of the nanoscale grain structure. Shear banding was initiated with both microcompression and nanoindentation experiments, followed by site-specific transmission electron microscopy to characterize the microstructure. Grain growth and texture formation were observed inside the shear bands, which had a wide variety of thicknesses. These evolved regions have well-defined edges, which rules out local temperature rise as a possible formation mechanism. No structural evolution was found in areas away from the shear bands, even in locations where significant plastic deformation had occurred, showing that plastic strain alone is not enough to cause evolution. Rather, intense strain localization is needed to induce mechanically-driven grain growth in a thermally-stable nanocrystalline alloy. PMID:26030826

  14. Disruption of thermally-stable nanoscale grain structures by strain localization.

    PubMed

    Khalajhedayati, Amirhossein; Rupert, Timothy J

    2015-06-01

    Nanocrystalline metals with average grain sizes of only a few nanometers have recently been observed to fail through the formation of shear bands. Here, we investigate this phenomenon in nanocrystalline Ni which has had its grain structure stabilized by doping with W, with a specific focus on understanding how strain localization drives evolution of the nanoscale grain structure. Shear banding was initiated with both microcompression and nanoindentation experiments, followed by site-specific transmission electron microscopy to characterize the microstructure. Grain growth and texture formation were observed inside the shear bands, which had a wide variety of thicknesses. These evolved regions have well-defined edges, which rules out local temperature rise as a possible formation mechanism. No structural evolution was found in areas away from the shear bands, even in locations where significant plastic deformation had occurred, showing that plastic strain alone is not enough to cause evolution. Rather, intense strain localization is needed to induce mechanically-driven grain growth in a thermally-stable nanocrystalline alloy.

  15. Strain localization in a shear transformation zone model for amorphous solids.

    PubMed

    Manning, M L; Langer, J S; Carlson, J M

    2007-11-01

    We model a sheared disordered solid using the theory of shear transformation zones (STZs). In this mean-field continuum model the density of zones is governed by an effective temperature that approaches a steady state value as energy is dissipated. We compare the STZ model to simulations by Shi [Phys. Rev. Lett. 98, 185505 (2007)], finding that the model generates solutions that fit the data, exhibit strain localization, and capture important features of the localization process. We show that perturbations to the effective temperature grow due to an instability in the transient dynamics, but unstable systems do not always develop shear bands. Nonlinear energy dissipation processes interact with perturbation growth to determine whether a material exhibits strain localization. By estimating the effects of these interactions, we derive a criterion that determines which materials exhibit shear bands based on the initial conditions alone. We also show that the shear band width is not set by an inherent diffusion length scale but instead by a dynamical scale that depends on the imposed strain rate.

  16. Error localization of finite element updating model based on element strain energy

    NASA Astrophysics Data System (ADS)

    Huang, Zi; Zang, Chaoping; Wang, Xiaowei; Jiang, Yuying

    2016-09-01

    An error localization indicator based on modal strain energy changes is proposed and used for selecting design parameters to be updated in model updating process. Taking an aeroengine combustor casing structure as an example, the ‘supermodel’ of combustor casing was established and validated with the test data and the reduced model (also called the design model) was built with the simplification of modelling. By comparing the modal strain energy changes between ‘supermodel’ and design model of combustor casing, the error locations of the reduced combustor casing modelling was highlighted by the error localization indicator. Then, the updating parameters of the design model were selected as the areas with significant variations of modal strain energy changes based on the error localization indicator. Defining the updating object function with the minimum of natural frequency errors between the FE model prediction and the modal test data, model updating of the design combustor casing model based sensitivity analysis method was carried out using the experimental modal data. After model updating, the maximum frequency error of the first ten modes was decreased from 27.1% to 1.2%, compared with the test data. The result shows the effectiveness of the proposed method and certain significance in parameter selection for model updating.

  17. Localizing and extracting filament distributions from microscopy images.

    PubMed

    Basu, S; Liu, C; Rohde, G K

    2015-04-01

    Detailed quantitative measurements of biological filament networks represent a crucial step in understanding architecture and structure of cells and tissues, which in turn explain important biological events such as wound healing and cancer metastases. Microscopic images of biological specimens marked for different structural proteins constitute an important source for observing and measuring meaningful parameters of biological networks. Unfortunately, current efforts at quantitative estimation of architecture and orientation of biological filament networks from microscopy images are predominantly limited to visual estimation and indirect experimental inference. Here, we describe a new method for localizing and extracting filament distributions from 2D microscopy images of different modalities. The method combines a filter-based detection of pixels likely to contain a filament with a constrained reverse diffusion-based approach for localizing the filaments centrelines. We show with qualitative and quantitative experiments, using both simulated and real data, that the new method can provide more accurate centreline estimates of filament in comparison to other approaches currently available. In addition, we show the algorithm is more robust with respect to variations in the initial filter-based filament detection step often used. We demonstrate the application of the method in extracting quantitative parameters from confocal microscopy images of actin filaments and atomic force microscopy images of DNA fragments.

  18. Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes.

    PubMed

    Törrönen, Kari; Nikunen, Kaisa; Kärnä, Riikka; Tammi, Markku; Tammi, Raija; Rilla, Kirsi

    2014-01-01

    Hyaluronan synthases (HAS) are unique plasma membrane glycosyltransferases secreting this glycosaminoglycan directly to the extracellular space. The three HAS isoenzymes (HAS1, HAS2, and HAS3) expressed in mammalian cells differ in their enzymatic properties and regulation by external stimuli, but clearly distinct functions have not been established. To overview the expression of different HAS isoenzymes during embryonic development and their subcellular localization, we immunostained mouse embryonic samples and cultured cells with HAS antibodies, correlating their distribution to hyaluronan staining. Their subcellular localization was further studied by GFP-HAS fusion proteins. Intense hyaluronan staining was observed throughout the development in the tissues of mesodermal origin, like heart and cartilages, but also for example during the maturation of kidneys and stratified epithelia. In general, staining for one or several HASs correlated with hyaluronan staining. The staining of HAS2 was most widespread, both spatially and temporally, correlating with hyaluronan staining especially in early mesenchymal tissues and heart. While epithelial cells were mostly negative for HASs, stratified epithelia became HAS positive during differentiation. All HAS isoenzymes showed cytoplasmic immunoreactivity, both in tissue sections and cultured cells, while plasma membrane staining was also detected, often in cellular extensions. HAS1 had brightest signal in Golgi, HAS3 in Golgi and microvillous protrusions, whereas most of the endogenous HAS2 immunoreactivity was localized in the ER. This differential pattern was also observed with transfected GFP-HASs. The large proportion of intracellular HASs suggests that HAS forms a reserve that is transported to the plasma membrane for rapid activation of hyaluronan synthesis.

  19. The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments.

    PubMed

    Vetter, A; Liu, Y; Witt, F; Manjubala, I; Sander, O; Epari, D R; Fratzl, P; Duda, G N; Weinkamer, R

    2011-02-03

    During secondary fracture healing, various tissue types including new bone are formed. The local mechanical strains play an important role in tissue proliferation and differentiation. To further our mechanobiological understanding of fracture healing, a precise assessment of local strains is mandatory. Until now, static analyses using Finite Elements (FE) have assumed homogenous material properties. With the recent quantification of both the spatial tissue patterns (Vetter et al., 2010) and the development of elastic modulus of newly formed bone during healing (Manjubala et al., 2009), it is now possible to incorporate this heterogeneity. Therefore, the aim of this study is to investigate the effect of this heterogeneity on the strain patterns at six successive healing stages. The input data of the present work stemmed from a comprehensive cross-sectional study of sheep with a tibial osteotomy (Epari et al., 2006). In our FE model, each element containing bone was described by a bulk elastic modulus, which depended on both the local area fraction and the local elastic modulus of the bone material. The obtained strains were compared with the results of hypothetical FE models assuming homogeneous material properties. The differences in the spatial distributions of the strains between the heterogeneous and homogeneous FE models were interpreted using a current mechanobiological theory (Isakson et al., 2006). This interpretation showed that considering the heterogeneity of the hard callus is most important at the intermediate stages of healing, when cartilage transforms to bone via endochondral ossification. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Distributed SLAM Using Improved Particle Filter for Mobile Robot Localization

    PubMed Central

    Pei, Fujun; Wu, Mei; Zhang, Simin

    2014-01-01

    The distributed SLAM system has a similar estimation performance and requires only one-fifth of the computation time compared with centralized particle filter. However, particle impoverishment is inevitably because of the random particles prediction and resampling applied in generic particle filter, especially in SLAM problem that involves a large number of dimensions. In this paper, particle filter use in distributed SLAM was improved in two aspects. First, we improved the important function of the local filters in particle filter. The adaptive values were used to replace a set of constants in the computational process of importance function, which improved the robustness of the particle filter. Second, an information fusion method was proposed by mixing the innovation method and the number of effective particles method, which combined the advantages of these two methods. And this paper extends the previously known convergence results for particle filter to prove that improved particle filter converges to the optimal filter in mean square as the number of particles goes to infinity. The experiment results show that the proposed algorithm improved the virtue of the DPF-SLAM system in isolate faults and enabled the system to have a better tolerance and robustness. PMID:24883362

  1. Distributed SLAM using improved particle filter for mobile robot localization.

    PubMed

    Pei, Fujun; Wu, Mei; Zhang, Simin

    2014-01-01

    The distributed SLAM system has a similar estimation performance and requires only one-fifth of the computation time compared with centralized particle filter. However, particle impoverishment is inevitably because of the random particles prediction and resampling applied in generic particle filter, especially in SLAM problem that involves a large number of dimensions. In this paper, particle filter use in distributed SLAM was improved in two aspects. First, we improved the important function of the local filters in particle filter. The adaptive values were used to replace a set of constants in the computational process of importance function, which improved the robustness of the particle filter. Second, an information fusion method was proposed by mixing the innovation method and the number of effective particles method, which combined the advantages of these two methods. And this paper extends the previously known convergence results for particle filter to prove that improved particle filter converges to the optimal filter in mean square as the number of particles goes to infinity. The experiment results show that the proposed algorithm improved the virtue of the DPF-SLAM system in isolate faults and enabled the system to have a better tolerance and robustness.

  2. Note: Improving distributed strain sensing sensitivity in OFDR by reduced-cladding single mode fiber.

    PubMed

    Ding, Zhenyang; Yang, Di; Du, Yang; Zhou, Yonghan; Xu, Zhexi; Liu, Kun; Jiang, Junfeng; Liu, Tiegen

    2016-12-01

    We present a method to improve distributed strain sensing sensitivity by a reduced-cladding single mode fiber (RC SMF) using a Rayleigh backscattering spectra shift in optical frequency domain reflectometry. Comparing with a standard SMF with 250 μm diameter, a commercial low attenuation RC SMF with 165 μm diameter is shown to enhance the strain sensing sensitivity by about four-fold. Using this property, the system using the RC SMF can achieve smaller minimal measurable strain (MMS) in the same sensing spatial resolution (SSR) or smaller SSR in the same MMS than using the standard SMF. In our experiment, the system using RC SMF can achieve the MMS of 15 μstrain with a SSR of 4.5 cm or the MMS of 3 μstrain with a SSR of 18 cm.

  3. Note: Improving distributed strain sensing sensitivity in OFDR by reduced-cladding single mode fiber

    NASA Astrophysics Data System (ADS)

    Ding, Zhenyang; Yang, Di; Du, Yang; Zhou, Yonghan; Xu, Zhexi; Liu, Kun; Jiang, Junfeng; Liu, Tiegen

    2016-12-01

    We present a method to improve distributed strain sensing sensitivity by a reduced-cladding single mode fiber (RC SMF) using a Rayleigh backscattering spectra shift in optical frequency domain reflectometry. Comparing with a standard SMF with 250 μm diameter, a commercial low attenuation RC SMF with 165 μm diameter is shown to enhance the strain sensing sensitivity by about four-fold. Using this property, the system using the RC SMF can achieve smaller minimal measurable strain (MMS) in the same sensing spatial resolution (SSR) or smaller SSR in the same MMS than using the standard SMF. In our experiment, the system using RC SMF can achieve the MMS of 15 μstrain with a SSR of 4.5 cm or the MMS of 3 μstrain with a SSR of 18 cm.

  4. Load/Strain Distribution between Ulna and Radius in the Mouse Forearm Compression Loading Model

    PubMed Central

    Lu, Yunkai; Thiagarajan, Ganesh; Nicolella, Daniel P.; Johnson, Mark L.

    2011-01-01

    Finite element analysis (FEA) of the mouse forearm compression loading model is used to relate strain distributions with downstream changes in bone formation and responses of bone cells. The objective of this study was to develop two FEA models – the first one with the traditional ulna only and the second one in which both the ulna and radius are included, in order to examine the effect of the inclusion of the radius on the strain distributions in the ulna. The entire mouse forearm was scanned using microCT and images were converted into FEA tetrahedral meshes using a suite of software programs. The performance of both linear and quadratic tetrahedral elements and coarse and fine meshes were studied. A load of 2 N was applied to the ulna/radius model and a 1.3 N load (based on previous investigations of load sharing between the ulna and radius in rats) was applied to the ulna only model for subsequent simulations. The results showed differences in the cross sectional strain distributions and magnitude within the ulna for the combined ulna/radius model versus the ulna only model. The maximal strain in the combined model occurred about 4 mm towards the distal end from the ulna mid-shaft in both models. Results from the FEA model simulations were also compared to experimentally determined strain values. We conclude that inclusion of the radius in FE models to predict strains during in vivo forearm loading increases the magnitude of the estimated ulna strains compared to those predicted from a model of the ulna alone but the distribution was similar. This has important ramifications for future studies to understand strain thresholds needed to activate bone cell responses to mechanical loading. PMID:21903442

  5. Tunable optical-path correlator for distributed strain or temperature-sensing application.

    PubMed

    Yuan, Yonggui; Wu, Bing; Yang, Jun; Yuan, Libo

    2010-10-15

    Based on a cavity-length tunable fiber-loop resonator, a multibeam optical path difference is generated. It can be used to match and correlate the reflective signals from the partial reflective ends of each sensing fiber gauge. The correlation signals correspond to the sensing gauge lengths, and the shift of the correlation peak is related with the fiber sensing gauge elongation caused by strain or temperature. Therefore, it can be used to measure distributed strain or deformation for smart structural monitoring.

  6. Strength Profiles of the Continental Lithosphere: Fabric Dependence, Strain Dependence, and Implications for Stability and Localization

    NASA Astrophysics Data System (ADS)

    Montesi, L.; Gueydan, F.

    2014-12-01

    -independent strain rate after the structural changes are in place. In both approaches, the enhancement of strain rate corresponds to a measure of localization achieved by the structural change.

  7. Variations in mineralization affect the stress and strain distributions in cortical and trabecular bone.

    PubMed

    van Ruijven, L J; Mulder, L; van Eijden, T M G J

    2007-01-01

    The mechanical properties of bone depend largely on its degree and distribution of mineralization. The present study analyzes the effect of an inhomogeneous distribution of mineralization on the stress and strain distributions in the human mandibular condyle during static clenching. A condyle was scanned with a micro-CT scanner to create a finite element model. For every voxel the degree of mineralization (DMB) was determined from the micro-CT scan. The Young's moduli of the elements were calculated from the DMB using constant, linear, and cubic relations, respectively. Stresses, strains, and displacements in cortical and trabecular bone, as well as the condylar deformation (extension along the antero-posterion axis) and compliance were compared. Over 90% of the bone mineral was located in the cortical bone. The DMB showed large variations in both cortical bone (mean: 884, SD: 111 mg/cm(3)) and trabecular bone (mean: 738, SD: 101 mg/cm(3)). Variations of the stresses and the strains were small in cortical bone, but large in trabecular bone. In the cortical bone an inhomogeneous mineral distribution increased the stresses and the strains. In the trabecular bone, however, it decreased the stresses and increased the strains. Furthermore, the condylar compliance remained relatively constant, but the condylar deformation doubled. It was concluded that neglect of the inhomogeneity of the mineral distribution results in a large underestimation of the stresses and strains of possibly more than 50%. The stiffness of trabecular bone strongly influences the condylar deformation. Vice versa, the condylar deformation largely determines the magnitude of the strains in the trabecular bone.

  8. 18 CFR 284.224 - Certain transportation and sales by local distribution companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and sales by local distribution companies. 284.224 Section 284.224 Conservation of Power and Water... Transportation by Interstate Pipelines on Behalf of Others and Services by Local Distribution Companies § 284.224 Certain transportation and sales by local distribution companies. (a) Applicability. This section...

  9. A novel fiber optic distributed temperature and strain sensor for building applications

    NASA Astrophysics Data System (ADS)

    Tregubov, A. V.; Svetukhin, V. V.; Novikov, S. G.; Berintsev, A. V.; Prikhodko, V. V.

    A novel fiber optic distributed sensor for temperature and strain measurements in building constructions has been developed and studied which is a composite optical element in the form of a reinforced single-mode optical fiber placed directly in the body of a fiberglass armature. The sensor has a reasonably high sensitivity to changes in external temperature and strain and a good spatial resolution. Besides, it is characterized by a high mechanical strength as compared to conventional fiber sensor elements. The experimental results obtained on a prototype show the value of the temperature sensitivity of 0.1 MHz/deg and the sensitivity to strain of 2.7 MHz/mm.

  10. Ribotyping of Erwinia chrysanthemi Strains in Relation to Their Pathogenic and Geographic Distribution

    PubMed Central

    Nassar, Atef; Bertheau, Yves; Dervin, Catherine; Narcy, Jean-Paul; Lemattre, Monique

    1994-01-01

    16S and 23S rRNAs from Escherichia coli were used to study the relationship among a representative collection of strains of Erwinia chrysanthemi differing in their original host and geographical origin. Phenetic analysis of restriction fragment length polymorphisms allowed the distribution of the studied strains into seven clusters. These clusters were similar to those obtained by cladistic methods and appeared to correlate well with the established pathovars and biovars but to a lesser extent with geographical distribution. Except for two groups of strains defined as tropical and temperate isolates (clusters 3 and 4, respectively), our clustering correlated well with botanical classifications of host plants. However, the rRNA groupings were shown to be more discriminative than biovar analysis. To assess the relationship between rRNA clusters and pathogenicity, 12 representative strains from different clusters were tested for pathogenicity on different plants. The two typical symptoms, maceration and wilting, were observed for these strains. The occurrence of the tobacco hypersensitivity reaction for a subset of these strains is discussed in light of recent results concerning the presence of an hrp gene. Considering symptom expression only, rather than the capacity for plant infection, strains from the same cluster were shown to induce similar symptoms in test plants. Thus, since host specificity is still quite controversial, rRNA patterns may constitute a useful tool in taxonomic and epidemiological studies of Erwinia chrysanthemi species. Images PMID:16349416

  11. Strain localization during tensile Hopkinson bar testing of commercially pure titanium and Ti6Al4V titanium alloy

    NASA Astrophysics Data System (ADS)

    Moćko, Wojciech; Kruszka, Leopold; Brodecki, Adam

    2015-09-01

    The goal of the analysis was to determine the strain localization for various specimen shapes (type A and type B according to PN-EN ISO 26203-1 standard) and different loading conditions, i.e. quasi- static and dynamic. Commercially pure titanium (Grade 2) and titanium alloy Ti6Al4V (Grade 5) were selected for the tests. Tensile loadings were applied out using servo-hydraulic testing machine and tensile Hopkinson bar with pre-tension. The results were recorded using ARAMIS system cameras and fast camera Phantom V1210, respectively at quasi-static and dynamic loading conditions. Further, specimens outline was determined on the basis of video data using TEMA MOTION software. The strain distribution on the specimen surface was estimated using digital image correlation method. The larger radius present in the specimen of type B in comparison to specimen of type A, results in slight increase of the elongation for commercially pure titanium at both quasi-static and dynamic loading conditions. However this effect disappears for Ti6Al4V alloy. The increase of the elongation corresponds to the stronger necking effect. Material softening due to increase of temperature induced by plastic work was observed at dynamic loading conditions. Moreover lower elongation at fracture point was found at high strain rates for both materials.

  12. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique.

    PubMed

    Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio

    2016-09-01

    We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique.

  13. Measuring Local Strain Rates In Ductile Shear Zones: A New Approach From Deformed Syntectonic Dykes

    NASA Astrophysics Data System (ADS)

    Sassier, C.; Leloup, P.; Rubatto, D.; Galland, O.; Yue, Y.; Ding, L.

    2006-12-01

    At the Earth surface, deformation is mostly localized in fault zones in between tectonic plates. In the upper crust, the deformation is brittle and the faults are narrow and produce earthquakes. In contrast, deformation in the lower ductile crust results in larger shear zones. While it is relatively easy to measure in situ deformation rates at the surface using for example GPS data, it is more difficult to determinate in situ values of strain rate in the ductile crust. Such strain rates can only be estimated in paleo-shear zones. Various methods have been used to assess paleo-strain rates in paleo-shear zones. For instance, cooling and/or decompression rates associated with assumptions on geothermic gradients and shear zone geometry can lead to such estimates. Another way to estimate strain rates is the integration of paleo-stress measurements in a power flow law. But these methods are indirect and imply strong assumptions. Dating of helicitic garnets or syntectonic fibres are more direct estimates. However these last techniques have been only applied in zones of low deformation and not in major shear zones. We propose a new direct method to measure local strain rates in major ductile shear zones from syntectonic dykes by coupling quantification of deformation and geochronology. We test our method in a major shear zone in a well constrained tectonic setting: the Ailao-Shan - Red River Shear Zone (ASRRsz) located in SE Asia. For this 10 km wide shear zone, large-scale fault rates, determined in three independent ways, imply strain rates between 1.17×10^{-13 s-1 and 1.52×10^{-13 s-1 between 35 and 16 Ma. Our study focused on one outcrop where different generations of syntectonic dykes are observed. First, we quantified the minimum shear strain γ for each dyke using several methods: (1) by measuring the stretching of dykes with a surface restoration method (2) by measuring the final angle of the dykes with respect to the shear direction and (3) by combining the two

  14. Strain Localization Within a Syn-Tectonic Pluton in a Back-Arc Extensional Context: the Naxos granodiorite (Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Bessiere, Eloïse; Rabillard, Aurélien; Arbaret, Laurent; Jolivet, Laurent; Augier, Romain; Menant, Armel

    2016-04-01

    Naxos Island is part of the central Cyclades (Aegean Sea, Greece) where a series of migmatite-cored metamorphic domes were exhumed below large-scale detachment systems during a Cenozoic back-arc extension. On Naxos, the Miocene exhumation history of the high-temperature metamorphic dome was notably achieved through two anastomosing and closely spaced top-to-the-north detachments belonging to the Naxos-Paros detachment system. According to previous contributions, the late exhumation stages were accompanied by the emplacement of a syn-kinematic I-type granodiorite that intruded a ductile-then-brittle detachment. Later the detachment migrated at the interface between the pluton and the metamorphic unit under ductile-to-brittle conditions. To clarify how extensional deformation was precisely distributed within the pluton, a multi-scale approach from field observations to laboratory investigations was undertaken. Through macro- to micro-structural observations, we show a continuous deformation history from magmatic to solid-state ductile/brittle conditions under an overall north-directed shearing deformation. The early magmatic or sub-solidus deformation is evidenced in a large part of the granodiorite, notably in its southern part where the original intrusive contact is still preserved. Solid-state deformation is recorded further north when approaching the detachment zone, highlighted by a thicker cataclastic zone and numerous pseudotachylite veins. From these field observations, we defined six strain facies, leading us to propose a qualitative strain map of the Naxos granodiorite. Based on field pictures and X-ray tomography of oriented samples collected along the strain gradient, we quantified the intensity of mineralogical fabrics in 2D and 3D. This step required the treatment of 600 rocks samples and pictures using SPO2003 (Shape Preferred Orientation) and Intercepts2003. Measured shape variations of the strain ellipsoid thus corroborate the large-scale strain

  15. Spatio-temporal skin strain distributions evoke low variability spike responses in cuneate neurons

    PubMed Central

    Hayward, Vincent; Terekhov, Alexander V.; Wong, Sheng-Chao; Geborek, Pontus; Bengtsson, Fredrik; Jörntell, Henrik

    2014-01-01

    A common method to explore the somatosensory function of the brain is to relate skin stimuli to neurophysiological recordings. However, interaction with the skin involves complex mechanical effects. Variability in mechanically induced spike responses is likely to be due in part to mechanical variability of the transformation of stimuli into spiking patterns in the primary sensors located in the skin. This source of variability greatly hampers detailed investigations of the response of the brain to different types of mechanical stimuli. A novel stimulation technique designed to minimize the uncertainty in the strain distributions induced in the skin was applied to evoke responses in single neurons in the cat. We show that exposure to specific spatio-temporal stimuli induced highly reproducible spike responses in the cells of the cuneate nucleus, which represents the first stage of integration of peripheral inputs to the brain. Using precisely controlled spatio-temporal stimuli, we also show that cuneate neurons, as a whole, were selectively sensitive to the spatial and to the temporal aspects of the stimuli. We conclude that the present skin stimulation technique based on localized differential tractions greatly reduces response variability that is exogenous to the information processing of the brain and hence paves the way for substantially more detailed investigations of the brain's somatosensory system. PMID:24451390

  16. Characterization of the process of the strain localization in some porous rocks in plane strain condition using a new true triaxial apparatus

    NASA Astrophysics Data System (ADS)

    Besuelle, P.

    2012-04-01

    Failure by strain localization is commonly observed in geomaterials. Generaly, experimental characterization of the localization in a porous sandstone are performed with classical axisymmetric triaxial compression tests. The effect of the confining pressure is observed on several aspects: onset of localization, pattern of localization, porosity evolution inside bands, grain scale mechanisms of deformation. Complex patterns of localization can be observed at high confining pressure in the transition between the brittle and ductile regime, showing several deformation bands in the specimens ([1]). However the history (time evolution) of the localization is not accessible because the observations are post-mortem. Strain field measurement and evolution in time of the strain field are particularly useful to study the strain localization (initiation of the deformation bands) and the post-localization regime. Such tools have been developed for soils (e.g., sand specimens in plane strain condition [2] or in triaxial conditions using X-ray tomography [3]). Similar developments for rocks are still difficult, especially because the pertinent confining pressure to reproduce in situ stresses are higher than for soils. We present here first results obtained in a new true triaxial apparatus that allows observation of the rock specimen under loading and especially the complex development of deformation bands and faults. As for [4] and [5], the three principal stresses are different, however the intermediate stress is controlled in order to impose a plane strain condition (zero strain in this direction). Observation of a specimen under load is possible as one surface of the prismatic specimen, which is orthogonal to the plane strain direction, is in contact with a hard transparent window. The deformation of this surface is representative of the deformation in the whole specimen, up to and beyond strain localization. Therefore the evolution of the strain field in the sample can be

  17. The distribution of parasite strains among hosts affects disease spread in a social insect.

    PubMed

    Ulrich, Yuko; Schmid-Hempel, Paul

    2015-06-01

    Social insects present highly interesting and experimentally amenable systems for the study of disease transmission because they naturally live in dense groups of frequently interacting individuals. Using experimental inoculations of five trypanosomatid strains into groups of its natural host, the bumblebee Bombus terrestris, we investigate the effects of the initial parasite strain distribution across group members on the establishment and transmission success of the different strains to new hosts. For a given number of parasite strains circulating within a host group, transmission to new hosts was increased when the strains were initially inoculated as mixed infections (as opposed to separate single infections), presumably because mixed infections generally favored fast replicating strains. In contrast, separate single infections reduced transmission at least in part through a precedence effect, whereby weak strains appeared to persist by making their host unavailable to superinfection. These results suggest that host groups could benefit from 'compartmentalizing' infections by different parasite strains across different group members, which might be achieved in social insects, for example, by division of labor.

  18. Strain Modal Analysis of Small and Light Pipes Using Distributed Fibre Bragg Grating Sensors.

    PubMed

    Huang, Jun; Zhou, Zude; Zhang, Lin; Chen, Juntao; Ji, Chunqian; Pham, Duc Truong

    2016-09-25

    Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications.

  19. Strain Modal Analysis of Small and Light Pipes Using Distributed Fibre Bragg Grating Sensors

    PubMed Central

    Huang, Jun; Zhou, Zude; Zhang, Lin; Chen, Juntao; Ji, Chunqian; Pham, Duc Truong

    2016-01-01

    Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications. PMID:27681728

  20. Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions.

    PubMed

    Hu, Ping Ping; Morales, Rodrigo; Duran-Aniotz, Claudia; Moreno-Gonzalez, Ines; Khan, Uffaf; Soto, Claudio

    2016-06-10

    One intriguing feature of prion diseases is their strain variation. Prion strains are differentiated by the clinical consequences they generate in the host, their biochemical properties, and their potential to infect other animal species. The selective targeting of these agents to specific brain structures have been extensively used to characterize prion strains. However, the molecular basis dictating strain-specific neurotropism are still elusive. In this study, isolated brain structures from animals infected with four hamster prion strains (HY, DY, 139H, and SSLOW) were analyzed for their content of protease-resistant PrP(Sc) Our data show that these strains have different profiles of PrP deposition along the brain. These patterns of accumulation, which were independent of regional PrP(C) production, were not reproduced by in vitro replication when different brain regions were used as substrate for the misfolding-amplification reaction. On the contrary, our results show that in vitro replication efficiency depended exclusively on the amount of PrP(C) present in each part of the brain. Our results suggest that the variable regional distribution of PrP(Sc) in distinct strains is not determined by differences on prion formation, but on other factors or cellular pathways. Our findings may contribute to understand the molecular mechanisms of prion pathogenesis and strain diversity.

  1. Décollement controls on strain distribution in mountain belts: insights from numerical models.

    NASA Astrophysics Data System (ADS)

    Grool, Arjan R.; Huismans, Ritske S.; Ford, Mary

    2016-04-01

    Pyrenees, the décollement is missing in the model's retro-wedge, the required convergence would be reduced to 180 km. Assuming deformation localizes along the path of least resistance, meaning a force balance exists between the pro- and retro-wedge, anything that changes the force required to deform one side of the orogen will have direct consequences for the other side as the strain distribution adjusts. In our models a viscous décollement enables the sedimentary cover of the pro-wedge to be transported into the pro-foredeep, increasing the force required for pro-wedge frontal accretion and thus promoting shortening in the retro-wedge. In models with no décollement in the retro-wedge, higher friction along existing crustal shear zones will accelerate formation of a new, more external shear zone. This mechanism alone cannot explain frontal accretion in the retro-wedge after only 145 km of convergence, meaning other factors such as more pre-existing extensional shear zones may also play a role in the Eastern Pyrenees.

  2. Localized slip and distributed deformation in oblique settings: the example of the Denali fault system, Alaska

    NASA Astrophysics Data System (ADS)

    Vallage, Amaury; Devès, Maud H.; Klinger, Yann; King, Geoffrey C. P.; Ruppert, Natalia A.

    2014-06-01

    In most fault systems the direction of the relative plate motion is oblique to the azimuth of the existing faults. Hence, during earthquakes the displacement may be partitioned between several faults that accommodate different components of the total motion. Here, we quantify the effect of the obliquity of the fault system relatively to the plate-motion direction on the distribution of the deformation in the fault system, during distinct periods of the seismic cycle. The 2002 November, Mw 7.9, Denali strike-slip earthquake ruptured 341 km of the Denali fault. The azimuth of the fault varies by more than 50° over the total rupture length, making the Denali fault an ideal system to test the effect of obliquity. From west to east, thrust dominates the first part of the rupture while strike-slip dominates the central and eastern sections. Using a kinematic model that considers the obliquity of the plate-motion direction relative to the local fault azimuth, we explored how much of the far-field tectonic loading is accommodated on the main strike-slip fault during the earthquake, and how much is accommodated by distributed deformation off the main fault, on secondary structures. Using a dataset of 735 focal mechanisms, we represent the deformation using strain rosettes and we compare seismological data with model results using the areal strain. Then we developed the parameter Ca, the coefficient of accommodation, which allows a direct quantification of the efficiency of a fault to accommodate oblique motion. Using these indicators, we show that in oblique setting, such as in the Denali case, the aftershocks and the background seismicity are organized to accommodate a significant part of the deformation that is not taken on the Denali strike-slip fault during the main earthquakes. The westward increase of the obliquity actually increases the amount of such deformation accommodated through distributed thrust faults, leading to the westward widening of the Alaska Range

  3. Local, three-dimensional strain measurements within largely deformed extracellular matrix constructs.

    PubMed

    Roeder, Blayne A; Kokini, Klod; Robinson, J Paul; Voytik-Harbin, Sherry L

    2004-12-01

    The ability to create extracellular matrix (ECM) constructs that are mechanically and biochemically similar to those found in vivo and to understand how their properties affect cellular responses will drive the next generation of tissue engineering strategies. To date, many mechanisms by which cells biochemically communicate with the ECM are known. However the mechanisms by which mechanical information is transmitted between cells and their ECM remain to be elucidated. "Self-assembled" collagen matrices provide an in vitro-model system to study the mechanical behavior of ECM. To begin to understand how the ECM and the cells interact mechanically, the three-dimensional (3D) mechanical properties of the ECM must be quantified at the micro-(local) level in addition to information measured at the macro-(global) level. Here we describe an incremental digital volume correlation (IDVC) algorithm to quantify large (>0.05) 3D mechanical strains in the microstructure of 3D collagen matrices in response to applied mechanical loads. Strain measurements from the IDVC algorithm rely on 3D confocal images acquired from collagen matrices under applied mechanical loads. The accuracy and the precision of the IDVC algorithm was verified by comparing both image volumes collected in succession when no deformation was applied to the ECM (zero strain) and image volumes to which simulated deformations were applied in both ID and 3D (simulated strains). Results indicate that the IDVC algorithm can accurately and precisely determine the 3D strain state inside largely deformed collagen ECMs. Finally, the usefulness of the algorithm was demonstrated by measuring the microlevel 3D strain response of a collagen ECM loaded in tension.

  4. Failure mode, strain localization and permeability evolution in porous sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Vajdova, Veronika

    Laboratory study was undertaken to investigate failure mode, strain localization and permeability evolution in the brittle-ductile transition of porous sandstone and limestone. Conventional triaxial compression experiments and permeability measurements were conducted at high pressure and room temperature, and microstructural observations were performed on failed samples using optical microscopy. Strain localization was investigated on Bentheim sandstone where besides shear localization, a new failure mode represented by discrete compaction bands was recently reported. To study the effect of stress heterogeneity on initiation and propagation of the compaction bands, triaxial experiments were conducted on dry cylindrical samples with a circumferential notch as a stress concentrator. Acoustic emission data were recorded to underscore the temporal aspect. Mechanical and microstructural data revealed sensitivity of initiation of compaction bands to stress concentration at the notch. The band propagated by sequential increments as "anti-crack" in direction perpendicular to the maximum principal stress. With increasing axial strain an array formed of parallel compaction bands. The effect of strain localization on hydraulic permeability was studied on cylindrical samples in triaxial compression for fluid flow parallel to maximum principal stress. The permeability decreased with deformation for both failure modes, shear and compaction bands. A dramatic decrease of more than one order of magnitude occurred over a relatively narrow range of axial strain when the first few compaction bands developed. Motivated by microstructural observations, the failed sample was modeled as a layered medium with permeability contrast between the compaction bands and the relatively undeformed matrix. Unlike in sandstone, the failure in the brittle-ductile transition in limestone is affected by crystal plasticity of calcite. The interplay of crystal plastic and cataclastic mechanisms was

  5. Deformation temperature, strain rate, and irradiation microstructure effects on localized plasticity in 304L SS

    SciTech Connect

    Cole, J.I.; Brimhall, J.L.; Vetrano, J.S.; Bruemmer, S.M.

    1995-12-31

    The present study examines the deformation behavior of ion-irradiated, low-carbon 304L stainless steel to investigate the influence of irradiation microstructure, deformation temperature and strain rate on localized plasticity. Dislocation loop character, size and density are linked to changes in deformation character. Lower doses produce small faulted loops and stacking fault tetrahedra that impede dislocation mobility. Dislocations are pinned at defects and require higher stress to break free from the defects. Larger defects take the form of faulted Frank loops that can interact with glide dislocations to form microtwins at lower temperatures and faster strain rates. Deformation at higher temperatures and slower strain rates promotes interactions between glide dislocations and loops leading to loop annihilation. Dislocation free zones or ``channels`` form where further plastic deformation is highly localized. Results are compared to limited observations for neutron-irradiated materials. These irradiation-induced changes can be an important concern for light-water reactor (LWR) stainless steel (SS) structural components due to a reduced damage tolerance, and potential susceptibility to environmental cracking such as irradiation-assisted stress corrosion cracking (IASCC).

  6. Hollow Cylinder Tests on Boom Clay: Modelling of Strain Localization in the Anisotropic Excavation Damaged Zone

    NASA Astrophysics Data System (ADS)

    François, Bertrand; Labiouse, Vincent; Dizier, Arnaud; Marinelli, Ferdinando; Charlier, Robert; Collin, Frédéric

    2014-01-01

    Boom Clay is extensively studied as a potential candidate to host underground nuclear waste disposal in Belgium. To guarantee the safety of such a disposal, the mechanical behaviour of the clay during gallery excavation must be properly predicted. In that purpose, a hollow cylinder experiment on Boom Clay has been designed to reproduce, in a small-scale test, the Excavation Damaged Zone (EDZ) as experienced during the excavation of a disposal gallery in the underground. In this article, the focus is made on the hydro-mechanical constitutive interpretation of the displacement (experimentally obtained by medium resolution X-ray tomography scanning). The coupled hydro-mechanical response of Boom Clay in this experiment is addressed through finite element computations with a constitutive model including strain hardening/softening, elastic and plastic cross-anisotropy and a regularization method for the modelling of strain localization processes. The obtained results evidence the directional dependency of the mechanical response of the clay. The softening behaviour induces transient strain localization processes, addressed through a hydro-mechanical second grade model. The shape of the obtained damaged zone is clearly affected by the anisotropy of the materials, evidencing an eye-shaped EDZ. The modelling results agree with experiments not only qualitatively (in terms of the shape of the induced damaged zone), but also quantitatively (for the obtained displacement in three particular radial directions).

  7. Dislocation structures in the bands of localized cyclic plastic strain in austenitic 316L and austenitic-ferritic duplex stainless steels

    SciTech Connect

    Kruml, T.; Polak, J.; Obrtlik, K.; Degallaix, S.

    1997-12-01

    Dislocation structures in bands corresponding to cyclic strain localization have been studied in two types of stainless steels, single phase austenitic 316L steel and two-phase austenitic-ferritic duplex steel. Dislocation structures are documented in thin foils oriented approximately perpendicular to the active slip plane of individual grains and parallel to the primary Burgers vector. Persistent slip bands, with the structure more or less reminiscent of the well-known ladder structure, were found in austenitic grains of both steels. These bands can be correlated with the distinct surface relief consisting of extrusions, intrusions and shallow surface cracks in austenitic grains were found. The distribution of the wall and labyrinth structure embedded in the matrix structure in ferritic grains, which was proposed to be responsible for the localization of the cyclic strain, however, does not correspond to the distribution of the distinct surface slip lines on the surface.

  8. Biocontrol Activity of the Local Strain of Metschnikowia pulcherrima on Different Postharvest Pathogens.

    PubMed

    Türkel, Sezai; Korukluoğlu, Mihriban; Yavuz, Mümine

    2014-01-01

    The strains of the yeast Metschnikowia pulcherrima have strong biocontrol activity against various microorganisms. Biocontrol activity of M. pulcherrima largely depends on its iron immobilizing pigment pulcherrimin. Biocontrol activity of pulcherrimin producing strain, M. pulcherrima UMY15, isolated from local vineyards, was tested on different molds that cause food spoilage. M. pulcherrima UMY15 was a very effective biocontrol agent against Penicillium roqueforti, P. italicum, P. expansum, and Aspergillus oryzae in in-vitro plate tests. However, the inhibitory activity of M. pulcherrima UMY15 was less effective on Fusarium sp. and A. niger species in biocontrol assays. In addition, M. pulcherrima UMY15 strain completely inhibited the germination and mycelia growth of A. oryzae, A. parasiticus, and Fusarium sp. spores on artificial wounds of apples when they coinoculated with M. pulcherrima UMY15. Moreover, when coinoculated, M. pulcherrima UMY15 strain also inhibited the growth of P. roqueforti, P. italicum, P. expansum, A. oryzae, Fusarium sp., and Rhizopus sp. in grape juice, indicating that M. pulcherrima UMY15 can be used as a very effective biocontrol yeast against various species of postharvest pathogens, including Penicillium, Aspergillus, Fusarium, and Rhizopus.

  9. Biocontrol Activity of the Local Strain of Metschnikowia pulcherrima on Different Postharvest Pathogens

    PubMed Central

    Türkel, Sezai; Korukluoğlu, Mihriban; Yavuz, Mümine

    2014-01-01

    The strains of the yeast Metschnikowia pulcherrima have strong biocontrol activity against various microorganisms. Biocontrol activity of M. pulcherrima largely depends on its iron immobilizing pigment pulcherrimin. Biocontrol activity of pulcherrimin producing strain, M. pulcherrima UMY15, isolated from local vineyards, was tested on different molds that cause food spoilage. M. pulcherrima UMY15 was a very effective biocontrol agent against Penicillium roqueforti, P. italicum, P. expansum, and Aspergillus oryzae in in-vitro plate tests. However, the inhibitory activity of M. pulcherrima UMY15 was less effective on Fusarium sp. and A. niger species in biocontrol assays. In addition, M. pulcherrima UMY15 strain completely inhibited the germination and mycelia growth of A. oryzae, A. parasiticus, and Fusarium sp. spores on artificial wounds of apples when they coinoculated with M. pulcherrima UMY15. Moreover, when coinoculated, M. pulcherrima UMY15 strain also inhibited the growth of P. roqueforti, P. italicum, P. expansum, A. oryzae, Fusarium sp., and Rhizopus sp. in grape juice, indicating that M. pulcherrima UMY15 can be used as a very effective biocontrol yeast against various species of postharvest pathogens, including Penicillium, Aspergillus, Fusarium, and Rhizopus. PMID:24860671

  10. Analysis of local lattice strain around oxygen precipitates in silicon crystals using CBED technique

    NASA Astrophysics Data System (ADS)

    Yonemura, Mitsuharu; Sueoka, Koji; Kamei, Kazuhito

    1998-06-01

    Oxygen precipitates (SiO x) in Czochralski-grown silicon single crystals (CZ-Si) have been used for the `getter' sink for impurities introduced during the LSI wafer manufacturing process. In order to understand the `gettering' phenomena, lattice strain fields around the precipitates have been measured quantitatively using convergent beam electron diffraction (CBED). The local lattice strain can be measured from higher order Laue zone (HOLZ) patterns since the HOLZ pattern in the bright field disk is sensitive to the lattice displacement. As a result, a tetragonal distortion of silicon lattices was found in the vicinity of a platelet of an oxygen precipitate. That is, the strain due to the displacement of (001) Si planes is compressive along the direction normal to [001] Si and is tensile along the direction parallel to [001] Si. The normal strain is estimated to be about 0.3% near the flat plane of the platelet and 0.1% near the edge of the platelet whose edge length is about 500 nm. The results are discussed and compared to those from the finite element method (FEM) simulation.

  11. Distributed strain measurement with polymer optical fibers integrated into multifunctional geotextiles

    NASA Astrophysics Data System (ADS)

    Liehr, Sascha; Lenke, Philipp; Krebber, Katerina; Seeger, Monika; Thiele, Elke; Metschies, Heike; Gebreselassie, Berhane; Münich, Johannes Christian; Stempniewski, Lothar

    2008-04-01

    Fiber optic sensors based on polymer optical fibers (POF) have the advantage of being very elastic and robust at the same time. Unlike silica fibers, standard PMMA POF fibers can be strained to more than 40% while fully maintaining their light guiding properties. We investigated POF as a distributed strain sensor by analysing the backscatter increase at the strained section using the optical time domain reflectometry (OTDR) technique. This sensing ability together with its high robustness and break-down strain makes POF well-suited for integration into technical textiles for structural health monitoring purposes. Within the European research project POLYTECT (Polyfunctional textiles against natural hazards) technical textiles with integrated POF sensors, among others sensors are being developed for online structural health monitoring of geotechnical structures. Mechanical deformation in slopes, dams, dikes, embankments and retrofitted masonry structures is to be detected before critical damage occurs. In this paper we present the POF strain sensor properties, reactions to disturbing influences as temperature and bends as well as the results of the different model tests we conducted within POLYTECT. We further show the potential of perfluorinated graded-index POF for distributed strain sensing with increased spatial resolution and measurement lengths.

  12. Investigation of thermomechanical couplings, strain localization and shape memory properties in a shape memory polymer subjected to loading at various strain rates

    NASA Astrophysics Data System (ADS)

    Pieczyska, E. A.; Staszczak, M.; Maj, M.; Kowalczyk-Gajewska, K.; Golasiński, K.; Cristea, M.; Tobushi, H.; Hayashi, S.

    2016-08-01

    This paper presents experimental and modeling results of the effects of thermomechanical couplings occurring in a polyurethane shape memory polymer (SMP) subjected to tension at various strain rates within large strains. The SMP mechanical curves, recorded using a testing machine, and the related temperature changes, measured in a contactless manner using an IR camera, were used to investigate the polymer deformation process at various loading stages. The effects of thermomechanical couplings allowed the determination of the material yield point in the initial loading stage, the investigation of nucleation and development of the strain localization at larger strains and the estimation of the effects of thermoelastic behavior during the unloading process. The obtained stress-strain and thermal characteristics, the results of the dynamic mechanical analysis and estimated values of the shape fixity and shape recovery parameters confirmed that the shape memory polymer (T g = 45 °C) is characterized by good mechanical and shape memory properties, as well as high sensitivity to the strain rate. The mechanical response of the SMP subjected to tension was simulated using the finite element method and applying the large strain, two-phase model. Strain localization observed in the experiment was well reproduced in simulations and the temperature spots were correlated with the accumulated viscoplastic deformation of the SMP glassy phase.

  13. Geographic distribution and genetic diversity of Ceanothus-infective Frankia strains.

    PubMed

    Ritchie, N J; Myrold, D D

    1999-04-01

    Little is known about Ceanothus-infective Frankia strains because no Frankia strains that can reinfect the host plants have been isolated from Ceonothus spp. Therefore, we studied the diversity of the Ceonothus-infective Frankia strains by using molecular techniques. Frankia strains inhabiting root nodules of nine Ceanothus species were characterized. The Ceanothus species used represent the taxonomic diversity and geographic range of the genus; therefore, the breadth of the diversity of Frankia strains that infect Ceanothus spp. was studied. DNA was amplified directly from nodular material by using the PCR. The amplified region included the 3' end of the 16S rRNA gene, the intergenic spacer, and a large portion of the 23S rRNA gene. A series of restriction enzyme digestions of the PCR product allowed us to identify PCR-restriction fragment length polymorphism (RFLP) groups among the Ceanothus-infective Frankia strains tested. Twelve different enzymes were used, which resulted in four different PCR-RFLP groups. The groups did not follow the taxonomic lines of the Ceanothus host species. Instead, the Frankia strains present were related to the sample collection locales.

  14. Quantification of the spatial strain distribution of scoliosis using a thin-plate spline method.

    PubMed

    Kiriyama, Yoshimori; Watanabe, Kota; Matsumoto, Morio; Toyama, Yoshiaki; Nagura, Takeo

    2014-01-03

    The objective of this study was to quantify the three-dimensional spatial strain distribution of a scoliotic spine by nonhomogeneous transformation without using a statistically averaged reference spine. The shape of the scoliotic spine was determined from computed tomography images from a female patient with adolescent idiopathic scoliosis. The shape of the scoliotic spine was enclosed in a rectangular grid, and symmetrized using a thin-plate spline method according to the node positions of the grid. The node positions of the grid were determined by numerical optimization to satisfy symmetry. The obtained symmetric spinal shape was enclosed within a new rectangular grid and distorted back to the original scoliotic shape using a thin-plate spline method. The distorted grid was compared to the rectangular grid that surrounded the symmetrical spine. Cobb's angle was reduced from 35° in the scoliotic spine to 7° in the symmetrized spine, and the scoliotic shape was almost fully symmetrized. The scoliotic spine showed a complex Green-Lagrange strain distribution in three dimensions. The vertical and transverse compressive/tensile strains in the frontal plane were consistent with the major scoliotic deformation. The compressive, tensile and shear strains on the convex side of the apical vertebra were opposite to those on the concave side. These results indicate that the proposed method can be used to quantify the three-dimensional spatial strain distribution of a scoliotic spine, and may be useful in quantifying the deformity of scoliosis.

  15. Flutter of wings involving a locally distributed flexible control surface

    NASA Astrophysics Data System (ADS)

    Mozaffari-Jovin, S.; Firouz-Abadi, R. D.; Roshanian, J.

    2015-11-01

    This paper undertakes to facilitate appraisal of aeroelastic interaction of a locally distributed, flap-type control surface with aircraft wings operating in a subsonic potential flow field. The extended Hamilton's principle serves as a framework to ascertain the Euler-Lagrange equations for coupled bending-torsional-flap vibration. An analytical solution to this boundary-value problem is then accomplished by assumed modes and the extended Galerkin's method. The developed aeroelastic model considers both the inherent flexibility of the control surface displaced on the wing and the inertial coupling between these two flexible bodies. The structural deformations also obey the Euler-Bernoulli beam theory, along with the Kelvin-Voigt viscoelastic constitutive law. Meanwhile, the unsteady thin-airfoil and strip theories are the tools of producing the three-dimensional airloads. The origin of aerodynamic instability undergoes analysis in light of the oscillatory loads as well as the loads owing to arbitrary motions. After successful verification of the model, a systematic flutter survey was conducted on the theoretical effects of various control surface parameters. The results obtained demonstrate that the flapping modes and parameters of the control surface can significantly impact the flutter characteristics of the wings, which leads to a series of pertinent conclusions.

  16. Constraining particle dark matter using local galaxy distribution

    SciTech Connect

    Ando, Shin’ichiro; Ishiwata, Koji

    2016-06-27

    It has been long discussed that cosmic rays may contain signals of dark matter. In the last couple of years an anomaly of cosmic-ray positrons has drawn a lot of attentions, and recently an excess in cosmic-ray anti-proton has been reported by AMS-02 collaboration. Both excesses may indicate towards decaying or annihilating dark matter with a mass of around 1–10 TeV. In this article we study the gamma rays from dark matter and constraints from cross correlations with distribution of galaxies, particularly in a local volume. We find that gamma rays due to inverse-Compton process have large intensity, and hence they give stringent constraints on dark matter scenarios in the TeV scale mass regime. Taking the recent developments in modeling astrophysical gamma-ray sources as well as comprehensive possibilities of the final state products of dark matter decay or annihilation into account, we show that the parameter regions of decaying dark matter that are suggested to explain the excesses are excluded. We also discuss the constrains on annihilating scenarios.

  17. Cellular localization and tissue distribution of endogenous DFCP1 protein.

    PubMed

    Nanao, Tomohisa; Koike, Masato; Yamaguchi, Junji; Sasaki, Mitsuho; Uchiyama, Yasuo

    2015-01-01

    Autophagy is essential for the maintenance of cellular metabolism. Once autophagy is induced in cells, the isolation membrane forms a so-called phagophore. The endoplasmic reticulum (ER) is one of several candidates for the membrane source for phagophores. Recently, LC3-positive isolation membranes were found to emerge from a DFCP1 (double FYVE domain-containing protein)-positive, ER-associated compartment called the omegasome. Although the GFP-tagged DFCP1 protein has been examined in cultured cells, little is known about the precise cellular and tissue distribution of this endogenous protein. To determine the expression of the endogenous DFCP1 protein, we produced antibodies specific to mouse DFCP1 protein. The antibody recognized both human and mouse DFCP1 proteins, both of which have molecular masses of approximately 87 kDa. In HeLa cells under normal conditions, immunoreactivity for DFCP1 was found dotted or tubular along Tom20-positive filamentous mitochondria and was only partially co-localized in the ER or Golgi apparatus. Moreover, under starved conditions, distinct DFCP1-positive structures became more dotted and scattered in the cytoplasm, while one part of the LC3-positive autophagosomes were immunopositive for DFCP1. These results indicate that an antibody raised against DFCP1 could be a useful tool in explaining the mechanism of phagophore formation from omegasome compartments.

  18. Micro-diffraction Investigation of Localized Strain in Mesa-etched HgCdTe Photodiodes

    NASA Astrophysics Data System (ADS)

    Tuaz, Aymeric; Ballet, Philippe; Biquard, Xavier; Rieutord, François

    2017-09-01

    We present an x-ray micro-diffraction investigation of localized strain and lattice disorientation in HgCdTe layers with a submicronic resolution using a synchrotron white beam in Laue configuration. Diffraction peak displacement mapping evidences bending of the crystal planes around mesa-etched photodiodes, with strong dependence upon the processing steps. The etching step by itself does not induce any deformation within the layer, while the passivation step leads to sufficient strain for plastic deformation to occur at the lateral edges of the etching. The annealing step is found to have a healing effect on the layer, which reduces the overall deformation and even re-crystallizes plastically deformed areas of the layer.

  19. Study of plastic strain localization mechanisms caused by nonequilibrium transitions in mesodefect ensembles under high-speed loading

    SciTech Connect

    Sokovikov, Mikhail Chudinov, Vasiliy; Bilalov, Dmitry; Oborin, Vladimir; Uvarov, Sergey; Plekhov, Oleg; Naimark, Oleg

    2015-10-27

    The behavior of specimens dynamically loaded during split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in-situ using a high-speed infrared camera CEDIP Silver 450M. The temperature field distribution obtained at different time allowed one to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infrared camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profiler and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically.

  20. Molecular polymorphism distribution in phenotypically distinct populations of wine yeast strains.

    PubMed Central

    Nadal, D; Colomer, B; Piña, B

    1996-01-01

    Electrophoretic karyotyping and mitochondrial DNA restriction analysis were used to analyze natural yeast populations from fermenting musts in El Penedès, Spain. Both analyses revealed a considerable degree of polymorphism, indicating heterogeneous natural populations. By specifically designed genetic selection protocols, strains showing potentially interesting phenotypes, such as high tolerance to ethanol and temperature or the ability to grow and to ferment in wine-water-sugar mixtures, were isolated from these natural populations. Genetic analysis showed a strong correlation between the selected phenotypes and mitochondrial DNA polymorphisms. Karyotype analysis revealed several genetically similar yeast lineages in the natural yeast microflora, which we interpret as genetically isolated subpopulations of yeast strains with distinct genetic traits, which may correspond to specific microenvironments. Thus, molecular polymorphism analysis may be useful not only to study the geographical distribution of natural yeast strains but also to identify strains with specific phenotypic properties. PMID:8787392

  1. Distributed Temperature and Strain Discrimination with Stimulated Brillouin Scattering and Rayleigh Backscatter in an Optical Fiber

    PubMed Central

    Zhou, Da-Peng; Li, Wenhai; Chen, Liang; Bao, Xiaoyi

    2013-01-01

    A distributed optical fiber sensor with the capability of simultaneously measuring temperature and strain is proposed using a large effective area non-zero dispersion shifted fiber (LEAF) with sub-meter spatial resolution. The Brillouin frequency shift is measured using Brillouin optical time-domain analysis (BOTDA) with differential pulse-width pair technique, while the spectrum shift of the Rayleigh backscatter is measured using optical frequency-domain reflectometry (OFDR). These shifts are the functions of both temperature and strain, and can be used as two independent parameters for the discrimination of temperature and strain. A 92 m measurable range with the spatial resolution of 50 cm is demonstrated experimentally, and accuracies of ±1.2 °C in temperature and ±15 με in strain could be achieved. PMID:23385406

  2. Distributed temperature and strain discrimination with stimulated brillouin scattering and rayleigh backscatter in an optical fiber.

    PubMed

    Zhou, Da-Peng; Li, Wenhai; Chen, Liang; Bao, Xiaoyi

    2013-01-31

    A distributed optical fiber sensor with the capability of simultaneously measuring temperature and strain is proposed using a large effective area non-zero dispersion shifted fiber (LEAF) with sub-meter spatial resolution. The Brillouin frequency shift is measured using Brillouin optical time-domain analysis (BOTDA) with differential pulse-width pair technique, while the spectrum shift of the Rayleigh backscatter is measured using optical frequency-domain reflectometry (OFDR). These shifts are the functions of both temperature and strain, and can be used as two independent parameters for the discrimination of temperature and strain. A 92 m measurable range with the spatial resolution of 50 cm is demonstrated experimentally, and accuracies of ±1.2 °C in temperature and ±15 με in strain could be achieved.

  3. Strain distribution and Raman spectroscopy in individual Ge/CdSe biaxial nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Wang, Chunrui; Xu, Jing; Wu, Binhe; Ouyang, Lizhi; Parthasarathy, Ranganathan; Chen, Xiaoshuang

    2015-02-01

    The interface property modulated by strain is one of the key factors that determine the performance of heterostructure nanowire devices. In this study, the strain distribution in a Ge/CdSe biaxial nanowire was calculated by a finite element method using boundary conditions. The components of the strain tensor of the biaxial nanowire show different characteristics from those of core-shell nanowires. The relationship between the strain and Raman mode of a Ge sub-nanowire is then revealed. The calculated and measured Raman modes of a Ge sub-nanowire in a Ge/CdSe biaxial nanowire have the same variation in redshift and wide peak as those of unstrained Ge nanowires.

  4. Feedback of fluids on ductile strain localization in the upper mantle

    NASA Astrophysics Data System (ADS)

    Hidas, Károly; Garrido, Carlos J.; Tommasi, Andréa; Padrón Navarta, José Alberto; Mainprice, David; Vauchez, Alain; Marchesi, Claudio; Barou, Fabrice

    2016-04-01

    Here we report microstructural evidence for fluid-assisted ductile strain localization in mylonitic to ultramylonitic peridotite and pyroxenite shear zones that have been formed during exhumation of the subcontinental lithospheric mantle (Ronda Peridotite massif, Betic Cordillera, S-Spain). Geothermobarometry and thermodynamic modeling indicate that strain localization took place at low pressure (<0.8 GPa) and moderate temperature (700-1000°C). Pyroxenite shear zones occur as thin (below 10 cm) and discontinuous bands, whereas the width of peridotite shear zones varies along their length from dozens of meters to a few cm. In either cases strain localization is associated with a marked decrease of grain size of both olivine and pyroxenes, but in the pyroxenite shear zones with increasing volume fractions of plagioclase and amphibole too, as a result of a spinel to plagioclase phase transformation reaction during decompression. This reaction fostered hydrogen extraction ('dehydroxylation') from clinopyroxene producing effective fluid saturation that catalyzed the synkinematic net-transfer reaction. As a result, fine-grained, wet olivine and plagioclase were produced, allowing the onset of grain-size sensitive creep and further strain localization in these pyroxenite bands, however it has led to a weak Crystal Preferred Orientation (CPO) and a nearly random fabric of the shear zone. Strain localization in peridotite shear zones is associated with redistribution of orthopyroxene in the finest grained microstructural domains (ultramylonites), where it forms trails of fine grains with interstitial shapes, perfectly intermixed with fine-grained olivine and, in many cases, still preserving a spatial relation to the coarse-grained porphyroclasts inherited from the protolith. In the mylonitic domains of the peridotite shear zones, olivine shows a CPO coherent with dominant (001)[100] glide, probably due to the presence of interstitial fluids during deformation. In the

  5. Coupled deformation and metamorphism: Strain localization facilitated by solution mass transfer

    NASA Astrophysics Data System (ADS)

    Hunter, R. A.; Andronicos, C. L.

    2011-12-01

    The Vallecito Conglomerate of the Needle Mountains, Colorado, is a Paleoproterozoic conglomerate with interbedded layers of aluminous schist that experienced deformation and contact metamorphism associated with emplacement of a pluton with a U/Pb age of ~1.435 Ga. The well-defined contact aureole includes sillimanite close to the pluton, andalusite and sillimanite together in a diffuse zone ~2 km from the pluton, and andalusite alone at greater distance from the pluton. Samples bearing both andalusite and sillimanite show a high degree of strain partitioning along discrete shear zones. Samples of both high strain (N09-5A) and low strain (N09-5) regimes were collected. The high strain sample, N09-5A, is characterized by shear bands of sillimanite separated by lower strain regions of quartz and andalusite. Samples N09-5 and N09-5A contain identical mineral assemblages of muscovite, paragonite, chloritoid, quartz, andalusite, sillimanite, rutile and ilmenite and were collected from the same outcrop. Based on their mineral assemblages and proximity of the two samples, it was assumed that N09-5A and N09-5 initially had the same chemical composition. An isoconcentration diagram was created using whole rock chemical analyses. This diagram shows that N09-5A is enriched in Ti, Zr, Th and La - all high field strength elements (HFS) - when compared to N09-5. Under the assumption that HFS are immobile, we interpret this result as evidence for depletion of the major elements from N09-5A relative to N09-5. Electron microprobe X-ray element intensity maps support the interpretation of the isoconcentration diagram. X-ray maps of sample N09-5A cover high strain sillimanite shear bands and low strain regions of quartz and andalusite. Quantitative analysis of the abundance of elements in each region shows a significant depletion of K, Al, and Si in high strain regions relative to low strain regions. Textural observations made at the thin section scale suggest that strain localization

  6. Diversity and distribution of Frankia strains symbiotic with Ceanothus in California

    Treesearch

    Brian Oakley; Malcolm North; Jerry F. Franklin; Brian P. Hedlund; James T. Staley

    2004-01-01

    Frankia strains symbiotic with Ceanothus present an interesting opportunity to study the patterns and causes of Frankia diversity and distribution within a particular host infectivity group. We intensively sampled Frankia from nodules on Ceanothus plants along an elevational gradient in the...

  7. Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Xu, Jinlong; Dong, Yongkang; Zhang, Zhaohui; Li, Shunlong; He, Shaoyang; Li, Hui

    2016-12-01

    This paper investigated field monitoring of a 1108 m suspension bridge during an assessment load test, using integrated distributed fibre-optic sensors (DFOSs). In addition to the conventional Brillouin time domain analysis system, a high spatial resolution Brillouin system using the differential pulse-width pair (DPP) technique was adopted. Temperature compensation was achieved using a Raman distributed temperature sensing system. This is the first full scale field application of DFOSs using the Brillouin time domain analysis technique in a thousand-meter-scale suspension bridge. Measured strain distributions along the whole length of the bridge were presented. The interaction between the main cables and the steel-box-girder was highlighted. The Brillouin fibre-optic monitoring systems exhibited great facility for the purposes of long distance distributed strain monitoring, with up to 0.05 m spatial resolution, and 0.01 m/point sampling interval. The performance of the Brillouin system using DPP technique was discussed. The measured data was also employed for assessing bridge design and for the assessment of structural condition. The results show that the symmetrical design assumptions were consistent with the actual bridge, and that the strain values along the whole bridge were within the safety range. This trial field study serves as an example, demonstrating the feasibility of highly dense strain and temperature measurement for large scale civil infrastructures using integrated DFOSs.

  8. Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies

    NASA Astrophysics Data System (ADS)

    Xia, Wenjie; Ruiz, Luis; Pugno, Nicola M.; Keten, Sinan

    2016-03-01

    Multi-layer graphene assemblies (MLGs) or fibers with a staggered architecture exhibit high toughness and failure strain that surpass those of the constituent single sheets. However, how the architectural parameters such as the sheet overlap length affect these mechanical properties remains unknown due in part to the limitations of mechanical continuum models. By exploring the mechanics of MLG assemblies under tensile deformation using our established coarse-grained molecular modeling framework, we have identified three different critical interlayer overlap lengths controlling the strength, plastic stress, and toughness of MLGs, respectively. The shortest critical length scale Lsc governs the strength of the assembly as predicted by the shear-lag model. The intermediate critical length Lpc is associated with a dynamic frictional process that governs the strain localization propensity of the assembly, and hence the failure strain. The largest critical length scale LTc corresponds to the overlap length necessary to achieve 90% of the maximum theoretical toughness of the material. Our analyses provide the general guidelines for tuning the constitutive properties and toughness of multilayer 2D nanomaterials using elasticity, interlayer adhesion energy and geometry as molecular design parameters.Multi-layer graphene assemblies (MLGs) or fibers with a staggered architecture exhibit high toughness and failure strain that surpass those of the constituent single sheets. However, how the architectural parameters such as the sheet overlap length affect these mechanical properties remains unknown due in part to the limitations of mechanical continuum models. By exploring the mechanics of MLG assemblies under tensile deformation using our established coarse-grained molecular modeling framework, we have identified three different critical interlayer overlap lengths controlling the strength, plastic stress, and toughness of MLGs, respectively. The shortest critical length scale

  9. Electrical Resistivity, Crustal Melting and Strain Localization beneath the Himalayan-Tibetan Belt

    NASA Astrophysics Data System (ADS)

    Hashim, L.; Gaillard, F.; Champallier, R.; Le Breton, N.; Arbaret, L.; Scaillet, B.

    2012-12-01

    The construction of mountain belts resulting from continental collisions involves crustal thickening, regional deformation and high-grade metamorphism. As observed in many ancient orogenic terrains, elevated temperatures locally induce melting and strain weakening, which may profoundly affect the rheology of the continental crust, its deformation regime and hence the development of these orogens. The Himalaya-Tibetan system is an active collisional belt allowing us to probe the three-dimensional thermo-mechanical distribution of an archetypal continent-continent orogen. Several magnetotelluric and seismic field campaigns (INDEPTH, Hi-CLIMB and HIMPROBE projects) have identified low resistivity layers with well-constrained tops at a depth of 10-15 km in southern Tibet (10 Ω.m) and 20-25 km in northwestern Himalaya (3 Ω.m), coincident with low velocity zones. Such electrical anomalies have been interpreted as evidence of high concentrations of interconnected fluids. Despite numerous field and numerical studies on the Himalayan range, identification and quantification of hydrous melting and potential strain weakening of the crust remains unaddressed by the appropriate experimental studies. Laboratory resistivity and viscosity measurements were performed in a gas-medium deformation apparatus (Paterson press), which was coupled to an impedance spectrometer. These measurements were conducted on natural muscovite-bearing metapelitic samples containing ca. 2 wt% water. Dehydration-melting of muscovite crystals leads to the production of hydrous melts. Electrical measurements show that with increasing temperature, the electrical resistivity decreases dramatically from 1830 Ω.m at 550°C to 8 Ω.m at 850°C. Image and chemical analyses of the partially molten samples after experiments indicate 23 vol.% hydrous melts, which are leucogranitic in composition. Our electrical measurements thus show that geophysical data clearly pinpoint ca. 25 vol.% partial melting at 750-800

  10. Phase mixing induced by granular fluid pump during mantle strain localization

    NASA Astrophysics Data System (ADS)

    Précigout, Jacques; Prigent, Cécile; Palasse, Laurie; Pochon, Anthony

    2014-05-01

    Mantle viscous strain localization is often attributed to feedbacks between grain boundary sliding (GBS) and phase mixing, as GBS could promote mixing through grain switching, and phase mixing would enhance grain-size-sensitive granular flow through grain boundary pinning. However, although GBS and phase mixing are intimately related, recent data show that GBS alone cannot end-up with randomly mixed phases. Here we show natural observations of an ultramylonitic shear zone from the Ronda peridotite (Spain) where both GBS and phase mixing occur. Microprobe analyses and coupled EDX/EBSD data first document enrichment in pyroxenes and amphibole concomitant with both phase mixing and complete randomization of the olivine fabric in fine-grained layers (5-20 microns) where strain has been localized. Both the fabric randomization and some microstructural observations indicate that these layers mostly deformed by granular flow, i.e., by GBS. Based on petrological pseudo-sections, we also show that phase enrichment does not result from metamorphic reaction, but instead from dissolution-precipitation phenomena. Finally, we document in adjacent areas a change of olivine fabric geometry that highlights syn-tectonic water draining towards fine-grained layers. While olivine fabric switches from E-type (moderately hydrated fabric) to C-type (highly hydrated fabric) towards fine-grained layers, it changes from E-type to D-type (highly hydrated fabric) in coarse-grained bands between E/C-type layers. Altogether, our findings suggest that water converges as a result of GBS-induced creep cavitation and subsequent granular fluid pump in fine-grained layers. We propose that phase mixing originates here from such a creep cavitation through dissolution-precipitation of secondary phases in newly formed cavities, giving rise to a key process for the relationships between GBS and phase mixing, and hence, for the origin of viscous strain localization in the upper mantle.

  11. Dynamic monitoring of compliant bodies impacting the water surface through local strain measurements

    NASA Astrophysics Data System (ADS)

    Panciroli, Riccardo; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano

    2016-04-01

    The understanding and the experimental characterization of the evolution of impulsive loading is crucial in several fields in structural, mechanical and ocean engineering, naval architecture and aerospace. In this regards, we developed an experimental methodology to reconstruct the deformed shape of compliant bodies subjected to impulsive loadings, as those encountered in water entry events, starting from a finite number of local strain measurements performed through Fiber Bragg Gratings. The paper discusses the potential applications of the proposed methodology for: i) real-time damage detection and structural health monitoring, ii) fatigue assessment and iii) impulsive load estimation.

  12. Extreme strain localization and sliding friction in physically associating polymer gels.

    PubMed

    Erk, Kendra A; Martin, Jeffrey D; Hu, Y Thomas; Shull, Kenneth R

    2012-03-06

    Model physically associating gels deformed in shear over a wide range of reduced rates displayed evidence of strain localization. The nonlinear stress responses and inhomogeneous velocity profiles observed during shear rheometry coupled with particle tracking velocimetry were associated with the occurrence of rate-dependent banding and fracture-like responses in the gel. Scaling law analysis from traditional sliding friction studies suggests that, at the molecular level, deformation is confined to a shear zone with thickness comparable to the mesh size of the gel, the smallest structurally relevant length scale in the gel.

  13. Effect of hydrogen on plastic strain localization and fracture of steels

    NASA Astrophysics Data System (ADS)

    Nadjozhkin, M. V.; Lunev, A. G.; Li, Yu V.; Barannikova, S. A.

    2016-02-01

    The effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested specimens of low-carbon steels have been studied using a double exposure speckle photography technique. It is found that the mechanical properties of low-carbon steels are affected adversely by hydrogen embrittlement. The deformation diagrams were examined for the deformed samples of low-carbon steels. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation.

  14. Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection

    DOE PAGES

    Qi, Bing; Lougovski, Pavel; Pooser, Raphael C.; ...

    2015-10-21

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In our paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a “locally” generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct amore » coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad2), which is small enough to enable secure key distribution. This technology opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.« less

  15. Rock mechanics observations pertinent to the rheology of the continental lithosphere and the localization of strain along shear zones

    USGS Publications Warehouse

    Kirby, S.H.

    1985-01-01

    the general phenomenon of ductile faulting in which ductile strains are localized into shear zones. Ductile faults have been produced in experiments of five different rock types and is generally expressed as strain softening in constant-strain-rate tests or as an accelerating-creep-rate stage at constant differential stress. A number of physical mechanisms have been identified that may be responsible for ductile faulting, including the onset of dynamic recrystallization, phase changes, hydrothermal alteration and hydrolytic weakening. Microscopic evidence for these processes as well as larger-scale geological and geophysical observations suggest that ductile faulting in the middle to lower crust and upper mantle may greatly influence the distribution and magnitudes of differential stresses and the style of deformation in the overlying upper continental lithosphere. ?? 1985.

  16. Early local cytokine profiles in strains of mice with different outcomes from chlamydial genital tract infection.

    PubMed

    Darville, T; Andrews, C W; Sikes, J D; Fraley, P L; Rank, R G

    2001-06-01

    In this study, we expand on the examination of genetically determined differences in host responses that correlate with clearance of Chlamydia trachomatis from the genital tract. We infected C57BL/6, BALB/c, and C3H/HeN mice with the mouse pneumonitis agent of C. trachomatis (MoPn). C57BL/6 mice had the shortest course of infection (22 days) and the lowest incidence of severe hydrosalpinx. BALB/c mice also had a short course of infection (25 days), but all developed hydrosalpinx. C3H/HeN mice had the longest course of infection (38 days), and all developed severe hydrosalpinx. Determination of local cytokine responses by enzyme-linked immunosorbent assay (ELISA) of genital tract secretions revealed that the levels of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) were significantly increased in the C57BL/6 and BALB/c strains compared to those in the C3H/HeN strain whereas the level of IL-6 was not different. The level of the neutrophil chemokine macrophage inflammatory protein 2 (MIP-2) was increased during the first week of infection in all three strains but was significantly higher in the BALB/c strain, the strain with the most rapid influx of neutrophils into the genital tract. Prolonged detection of MIP-2 in C3H/HeN mice was associated with a protracted presence of neutrophils in the genital tract. Early increases in the levels of the proinflammatory cytokines TNF-alpha and IL-1beta are associated with earlier eradication of infection in the C57BL/6 and BALB/c strains than in the C3H/HeN strain. Increased levels of MIP-2 and neutrophils in BALB/c and C3H/HeN mice relative to C57BL/6 mice suggest that these responses may contribute to pathology.

  17. Distribution of protein D, an immunoglobulin D-binding protein, in Haemophilus strains.

    PubMed Central

    Akkoyunlu, M; Ruan, M; Forsgren, A

    1991-01-01

    Protein D, a novel surface protein of the bacterial species Haemophilus influenzae with specific affinity for human immunoglobulin (Ig) D was detected in all 127 H. influenzae strains studied. All strains representing different serotypes of encapsulated strains and different biotypes of nonencapsulated strains bound 125I-labeled IgD to a high degree (38 to 74%). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis showed that protein D from all H. influenzae strains had the same apparent molecular weight (i.e., 42,000) and reacted with all three different anti-protein D monoclonal antibodies. By Scatchard analysis, the number of protein D residues on a nontypeable H. influenzae strain was estimated to be approximately 2,800 per organism. The equilibrium constant for the reaction between a human IgD myeloma protein and IgD was found to be 5.8 x 10(8) M-1. Also, all strains of H. haemolyticus and H. aegypticus strains tested bound IgD, 21 to 28% and 41 to 48%, respectively. In extracts of those bacteria, a 42,000-molecular-weight protein reactive with IgD and all three anti-protein D monoclonal antibodies was found. In H. parainfluenzae, H. aphrophilus, H. paraphrophilus, and Actinobacillus actinomycetemcomitans, a 42,000-molecular-weight protein that was reactive with one to three of three anti-protein D monoclonal antibodies but not reactive with human IgD was detected with Western blot analysis. Other Haemophilus species (H. ducreyi, H. parasuis, H. parahaemolyticus, H. segnis, and H. haemoglobinophilus) did not react with human monoclonal IgD or anti-protein D antibodies. On the basis of the wide distribution of protein D among H. influenzae strains, we suggest that protein D could be a vaccine candidate. Images PMID:1900807

  18. Distributed and Localized Deformation Along the Lebanese Restraining Bend from Geomorphic Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Goren, L.; Castelltort, S.; Klinger, Y.

    2014-12-01

    The Dead Sea Fault System changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh Fault (YF), is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates and strain partitioning in Lebanon still prevail. Here, we use morphometric analysis together with analytical and numerical models to constrain rates and modes of distributed and localized deformation along the Lebanese restraining bend.The rivers that drain the western flank of Mount Lebanon show a consistent counterclockwise rotation with respect to an expected orogen perpendicular orientation. Moreover, a pattern of divide disequilibrium in between these rivers emerges from an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. These geometrical patterns are compatible with simulation results using a landscape evolution model, which imposes a distributed velocity field along a domain that represents the western flank of Mount Lebanon. We further develop an analytical model that relates the river orientation to a set of kinematic parameters that represents a combined pure and simple shear strain field, and we find the parameters that best explain the present orientation of the western Lebanon rivers. Our results indicate that distributed deformation to the west of the YF takes as much as 30% of the relative Arabia-Sinai plate velocity since the late Miocene, and that the average slip rate along the YF during the same time interval has been 3.8-4.4 mm/yr. The theoretical model can further explain the inferred rotation from Paleomagnetic measurements.

  19. Heterogeneous Distribution of Fetal Microchimerism in Local Breast Cancer Environment.

    PubMed

    Nemescu, Dragos; Ursu, Ramona Gabriela; Nemescu, Elena Roxana; Negura, Lucian

    2016-01-01

    Fetal cells enter maternal circulation during pregnancy and persist in the woman's body for decades, achieving a form of physiological microchimerism. These cells were also evidenced in tumors. We investigated the frequency and concentration of fetal microchimerism in the local breast cancer environment. From 19 patients with confirmed breast neoplasia, after breast surgical resection, we collected three fresh specimens from the tumor core, breast tissue at tumor periphery, and adjacent normal breast tissue. The presence of male DNA was analyzed with a quantitative PCR assay for the sex determining region gene (SRY) gene. In the group of women who had given birth to at least one son, we detected fetal microchimerism in 100% of samples from tumors and their periphery and in 64% (9 of 14) of those from normal breast tissue. The tissues from the tumor and its periphery carry a significantly increased number of SRY copies compared to its neighboring common breast tissue (p = 0.005). The median of the normalized SRY-signal was about 77 (range, 3.2-21467) and 14-fold (range, 1.3-2690) greater in the tumor and respectively in the periphery than in the normal breast tissue. In addition, the relative expression of the SRY gene had a median 5.5 times larger in the tumor than in its periphery (range, 1.1-389.4). We found a heterogeneous distribution of fetal microchimerism in breast cancer environment. In women with sons, breast neoplasia harbors male cells at significantly higher levels than in peripheral and normal breast tissue.

  20. Heterogeneous Distribution of Fetal Microchimerism in Local Breast Cancer Environment

    PubMed Central

    Nemescu, Dragos; Ursu, Ramona Gabriela; Nemescu, Elena Roxana; Negura, Lucian

    2016-01-01

    Fetal cells enter maternal circulation during pregnancy and persist in the woman’s body for decades, achieving a form of physiological microchimerism. These cells were also evidenced in tumors. We investigated the frequency and concentration of fetal microchimerism in the local breast cancer environment. From 19 patients with confirmed breast neoplasia, after breast surgical resection, we collected three fresh specimens from the tumor core, breast tissue at tumor periphery, and adjacent normal breast tissue. The presence of male DNA was analyzed with a quantitative PCR assay for the sex determining region gene (SRY) gene. In the group of women who had given birth to at least one son, we detected fetal microchimerism in 100% of samples from tumors and their periphery and in 64% (9 of 14) of those from normal breast tissue. The tissues from the tumor and its periphery carry a significantly increased number of SRY copies compared to its neighboring common breast tissue (p = 0.005). The median of the normalized SRY-signal was about 77 (range, 3.2–21467) and 14-fold (range, 1.3–2690) greater in the tumor and respectively in the periphery than in the normal breast tissue. In addition, the relative expression of the SRY gene had a median 5.5 times larger in the tumor than in its periphery (range, 1.1–389.4). We found a heterogeneous distribution of fetal microchimerism in breast cancer environment. In women with sons, breast neoplasia harbors male cells at significantly higher levels than in peripheral and normal breast tissue. PMID:26808509

  1. Genomic distribution of SINEs in Entamoeba histolytica strains: implication for genotyping

    PubMed Central

    2013-01-01

    Background The major clinical manifestations of Entamoeba histolytica infection include amebic colitis and liver abscess. However the majority of infections remain asymptomatic. Earlier reports have shown that some E. histolytica isolates are more virulent than others, suggesting that virulence may be linked to genotype. Here we have looked at the genomic distribution of the retrotransposable short interspersed nuclear elements EhSINE1 and EhSINE2. Due to their mobile nature, some EhSINE copies may occupy different genomic locations among isolates of E. histolytica possibly affecting adjacent gene expression; this variability in location can be exploited to differentiate strains. Results We have looked for EhSINE1- and EhSINE2-occupied loci in the genome sequence of Entamoeba histolytica HM-1:IMSS and searched for homologous loci in other strains to determine the insertion status of these elements. A total of 393 EhSINE1 and 119 EhSINE2 loci were analyzed in the available sequenced strains (Rahman, DS4-868, HM1:CA, KU48, KU50, KU27 and MS96-3382. Seventeen loci (13 EhSINE1 and 4 EhSINE2) were identified where a EhSINE1/EhSINE2 sequence was missing from the corresponding locus of other strains. Most of these loci were unoccupied in more than one strain. Some of the loci were analyzed experimentally for SINE occupancy using DNA from strain Rahman. These data helped to correctly assemble the nucleotide sequence at three loci in Rahman. SINE occupancy was also checked at these three loci in 7 other axenically cultivated E. histolytica strains and 16 clinical isolates. Each locus gave a single, specific amplicon with the primer sets used, making this a suitable method for strain typing. Based on presence/absence of SINE and amplification with locus-specific primers, the 23 strains could be divided into eleven genotypes. The results obtained by our method correlated with the data from other typing methods. We also report a bioinformatic analysis of EhSINE2 copies

  2. Strain distribution due to surface domains: a self-consistent approach with respect to surface elasticity

    PubMed Central

    Fuhr, Javier

    2015-01-01

    Summary Elastically mediated interactions between surface domains are classically described in terms of point forces. Such point forces lead to local strain divergences that are usually avoided by introducing a poorly defined cut-off length. In this work, we develop a self-consistent approach in which the strain field induced by the surface domains is expressed as the solution of an integral equation that contains surface elastic constants, S ij. For surfaces with positive S ij the new approach avoids the introduction of a cut-off length. The classical and the new approaches are compared in case of 1-D periodic ribbons. PMID:25821670

  3. 18 CFR 284.268 - Local distribution company emergency transportation rates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Exchange Transactions § 284.268 Local distribution company emergency transportation rates. (a) Rate on file. A local distribution company that has a rate on file with an appropriate state regulatory agency for... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Local...

  4. Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement.

    PubMed

    Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin

    2016-11-09

    Recently the distributed fibre optic strain sensing (DFOSS) technique has been applied to monitor deformations of various earth structures. However, the reliability of soil deformation measurements remains unclear. Here we present an integrated DFOSS- and photogrammetry-based test study on the deformation behaviour of a soil foundation model to highlight the role of strain sensing fibre-soil interface in DFOSS-based geotechnical monitoring. Then we investigate how the fibre-soil interfacial behaviour is influenced by environmental changes, and how the strain distribution along the fibre evolves during progressive interface failure. We observe that the fibre-soil interfacial bond is tightened and the measurement range of the fibre is extended under high densities or low water contents of soil. The plastic zone gradually occupies the whole fibre length when the soil deformation accumulates. Consequently, we derive a theoretical model to simulate the fibre-soil interfacial behaviour throughout the progressive failure process, which accords well with the experimental results. On this basis, we further propose that the reliability of measured strain can be determined by estimating the stress state of the fibre-soil interface. These findings may have important implications for interpreting and evaluating fibre optic strain measurements, and implementing reliable DFOSS-based geotechnical instrumentation.

  5. Micro/Nano-scale Strain Distribution Measurement from Sampling Moiré Fringes.

    PubMed

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi

    2017-05-23

    This work describes the measurement procedure and principles of a sampling moiré technique for full-field micro/nano-scale deformation measurements. The developed technique can be performed in two ways: using the reconstructed multiplication moiré method or the spatial phase-shifting sampling moiré method. When the specimen grid pitch is around 2 pixels, 2-pixel sampling moiré fringes are generated to reconstruct a multiplication moiré pattern for a deformation measurement. Both the displacement and strain sensitivities are twice as high as in the traditional scanning moiré method in the same wide field of view. When the specimen grid pitch is around or greater than 3 pixels, multi-pixel sampling moiré fringes are generated, and a spatial phase-shifting technique is combined for a full-field deformation measurement. The strain measurement accuracy is significantly improved, and automatic batch measurement is easily achievable. Both methods can measure the two-dimensional (2D) strain distributions from a single-shot grid image without rotating the specimen or scanning lines, as in traditional moiré techniques. As examples, the 2D displacement and strain distributions, including the shear strains of two carbon fiber-reinforced plastic specimens, were measured in three-point bending tests. The proposed technique is expected to play an important role in the non-destructive quantitative evaluations of mechanical properties, crack occurrences, and residual stresses of a variety of materials.

  6. Hydromechanics in dentine: role of dentinal tubules and hydrostatic pressure on mechanical stress-strain distribution.

    PubMed

    Kishen, A; Vedantam, S

    2007-10-01

    This investigation is to understand the role of free water in the dentinal tubules on the mechanical integrity of bulk dentine. Three different experiments were conducted in this study. In experiment 1, three-dimensional models of dentine with gradient elastic modulus, homogenous elastic modulus, and with and without hydrostatic pressure were simulated using the finite element method. Static compressive loads of 15, 50 and 100 N were applied and the distribution of the principal stresses, von Mises stresses, and strains in loading direction were determined. In experiment 2, experimental compression testing of fully hydrated and partially dehydrated dentine (21 degrees C for 72 h) was conducted using a Universal testing machine. In experiment 3, Fourier transform infrared spectroscopic analysis of hydrated and partially dehydrated dentine was carried out. The finite element analysis revealed that the dentine model with simulated hydrostatic pressure displayed residual tensile stresses and strains in the inner region adjacent to the root canal. When external compressive loads were applied to the model, the residual stresses and strains counteracted the applied loads. Similarly the hydrated specimens subjected to experimental compression loads showed greater toughness when compared to the partially dehydrated specimens. The stress at fracture was significantly higher in partially dehydrated specimens (p=0.014), while the strain at fracture was significantly higher in hydrated dentine specimens (p=0.037). These experiments highlighted the distinct role of free water in the dentinal tubules and hydrostatic pressure on the stress-strain distribution within the bulk dentine.

  7. Changes in lipid distribution in E. coli strains in response to norfloxacin.

    PubMed

    Schenk, Emily R; Nau, Frederic; Thompson, Christopher J; Tse-Dinh, Yuk-Ching; Fernandez-Lima, Francisco

    2015-01-01

    Bacterial resistance to antibiotics has become an increasing threat, requiring not only the development of new targets in drug discovery, but more importantly, a better understanding of cellular response. In the current study, three closely related Escherichia coli strains, a wild type (MG1655) and an isogenic pair derived from the wild type (DPB635 and DPB636) are studied following exposure to sub lethal concentrations of antibiotic (norfloxacin) over time. In particular, genotype similarities between the three strains were assessed based on the lipid regulation response (e.g. presence/absence and up/down regulation). Lipid identification was performed using direct surface probe analysis (matrix-assisted laser desorption/ionization, MALDI), coupled to high-resolution mass spectrometry (Fourier transform ion cyclotron resonance mass spectrometry, FT-ICR MS) followed by statistical analysis of variability and reproducibility across batches using internal standards. Inspection of the lipid profile showed that for the MG1655, DPB635 and DPB636 E. coli strains, a similar distribution of the altered lipids was observed after exposure to norfloxacin antibiotic (e.g. fatty acids and glycerol phospholipids are up and down regulated, respectively). Additionally, variations in the lipid distribution resemble the extent to which each strain can combat the antibiotic exposure. That is, the topA66 topoisomerase I mutation of DPB636 translates into diminished response related to antibiotic sensitivity when compared to MG1655 and the DPB635 strains. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Changes in lipid distribution in E. coli strains in response to norfloxacin

    PubMed Central

    Schenk, Emily R.; Nau, Frederic; Thompson, Christopher J.; Tse-Dinh, Yuk-Ching; Fernandez-Lima, Francisco

    2014-01-01

    Bacterial resistance to antibiotics has become an increasing threat, requiring not only the development of new targets in drug discovery, but more importantly, a better understanding of cellular response. In the current study, three closely related Escherichia coli strains, a wild type (MG1655), and an isogenic pair derived from the wild type (DPB635 and DPB636) are studied following exposure to sub lethal concentrations of antibiotic (norfloxacin) over time. In particular, genotype similarities between the three strains were assessed based on the lipid regulation response (e.g., presence/absence and up/down regulation). Lipid identification was performed using direct surface probe analysis (Matrix-assisted laser desorption/ionization, MALDI), coupled to high-resolution mass spectrometry (Fourier transform ion cyclotron resonance mass spectrometry, FT-ICR MS) followed by statistical analysis of variability and reproducibility across batches using internal standards. Inspection of the lipid profile showed that for the MG1655, DPB635 and DPB636 E. coli strains, a similar distribution of the altered lipids were observed after exposure to norfloxacin antibiotic (e.g., fatty acids and glycerol phospholipids are up and down regulated, respectively). Additionally, variations in the lipid distribution resemble the extent to which each strain can combat the antibiotic exposure. That is, the topA66 topoisomerase I mutation of DPB636 translates into diminished response related to antibiotic sensitivity when compared to MG1655 and the DPB635 strains. PMID:25601679

  9. Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement

    PubMed Central

    Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin

    2016-01-01

    Recently the distributed fibre optic strain sensing (DFOSS) technique has been applied to monitor deformations of various earth structures. However, the reliability of soil deformation measurements remains unclear. Here we present an integrated DFOSS- and photogrammetry-based test study on the deformation behaviour of a soil foundation model to highlight the role of strain sensing fibre–soil interface in DFOSS-based geotechnical monitoring. Then we investigate how the fibre–soil interfacial behaviour is influenced by environmental changes, and how the strain distribution along the fibre evolves during progressive interface failure. We observe that the fibre–soil interfacial bond is tightened and the measurement range of the fibre is extended under high densities or low water contents of soil. The plastic zone gradually occupies the whole fibre length when the soil deformation accumulates. Consequently, we derive a theoretical model to simulate the fibre–soil interfacial behaviour throughout the progressive failure process, which accords well with the experimental results. On this basis, we further propose that the reliability of measured strain can be determined by estimating the stress state of the fibre–soil interface. These findings may have important implications for interpreting and evaluating fibre optic strain measurements, and implementing reliable DFOSS-based geotechnical instrumentation. PMID:27827385

  10. Limited geographic distribution of certain strains of the bioluminescent symbiont Photobacterium leiognathi.

    PubMed

    Urbanczyk, Henryk; Kiwaki, Naomi; Furukawa, Takashi; Iwatsuki, Yukio

    2012-08-01

    Photobacterium leiognathi is a facultative bioluminescent symbiont of marine animals. Strains of P. leiognathi that are merodiploid for the luminescence genes (lux-rib operon) have been previously obtained only from Japan. In contrast, strains bearing a single lux-rib operon have been obtained from all the areas sampled in Japan and the western Pacific. In this study, we tested whether distribution of merodiploid P. leiognathi is limited by physical barriers in the environment, or because fish in the western Pacific preferentially form symbiosis with bacteria bearing a single lux-rib operon. We collected light organ symbionts from Secutor indicius, a fish species that is typically found in the western Pacific and has only recently expanded its geographic range to Japan. We found that all S. indicius specimens collected from Japan formed symbiosis only with single lux-rib operon-bearing strains, although fish from other species collected from the same geographic area frequently contained merodiploid strains. This result shows that S. indicius were preferentially colonized by bacteria bearing a single lux-rib operon and suggests that the limited geographic distribution of merodiploid P. leiognathi can be attributed to preferential colonization of fish species found in the western Pacific by strains bearing only a single lux-rib operon.

  11. Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin

    2016-11-01

    Recently the distributed fibre optic strain sensing (DFOSS) technique has been applied to monitor deformations of various earth structures. However, the reliability of soil deformation measurements remains unclear. Here we present an integrated DFOSS- and photogrammetry-based test study on the deformation behaviour of a soil foundation model to highlight the role of strain sensing fibre–soil interface in DFOSS-based geotechnical monitoring. Then we investigate how the fibre–soil interfacial behaviour is influenced by environmental changes, and how the strain distribution along the fibre evolves during progressive interface failure. We observe that the fibre–soil interfacial bond is tightened and the measurement range of the fibre is extended under high densities or low water contents of soil. The plastic zone gradually occupies the whole fibre length when the soil deformation accumulates. Consequently, we derive a theoretical model to simulate the fibre–soil interfacial behaviour throughout the progressive failure process, which accords well with the experimental results. On this basis, we further propose that the reliability of measured strain can be determined by estimating the stress state of the fibre–soil interface. These findings may have important implications for interpreting and evaluating fibre optic strain measurements, and implementing reliable DFOSS-based geotechnical instrumentation.

  12. Grain fragmentation in sheared granular flow: weakening effects, energy dissipation, and strain localization

    NASA Astrophysics Data System (ADS)

    Lieou, Charles K. C.; Elbanna, Ahmed E.; Carlson, Jean M.

    2014-03-01

    We describe the shear flow of a disordered granular material subject to grain fracture using the shear-transformation-zone (STZ) theory of amorphous plasticity adapted to systems with a hard-core inter-particle interaction. To this end, we develop the equations of motion for this system within a statistical-thermodynamic framework analogous to that used in the analysis of molecular glasses. For hard-core systems, the amount of internal, configurational disorder is characterized by the compactivity X = ∂V / ∂SC , where V and SC are respectively the volume and configurational entropy. Grain breakage is described by a constitutive equation for the temporal evolution of a characteristic grain size a, based on fracture mechanics. We show that grain breakage is a weakening mechanism, significantly lowering the flow stress at large strain rates, if the material is rate-strengthening in character. We show in addition that if the granular material is sufficiently aged, spatial inhomogeneity in configurational disorder results in strain localization. We also show that grain splitting contributes significantly to comminution at small shear strains, while grain abrasion becomes dominant at large shear displacements.

  13. Grain fragmentation in sheared granular flow: Weakening effects, energy dissipation, and strain localization

    NASA Astrophysics Data System (ADS)

    Lieou, Charles K. C.; Elbanna, Ahmed E.; Carlson, Jean M.

    2014-02-01

    We describe the shear flow of a disordered granular material in the presence of grain fracture using the shear-transformation-zone theory of amorphous plasticity adapted to systems with a hard-core interparticle interaction. To this end, we develop the equations of motion for this system within a statistical-thermodynamic framework analogous to that used in the analysis of molecular glasses. For hard-core systems, the amount of internal, configurational disorder is characterized by the compactivity X =∂V/∂SC, where V and SC are, respectively, the volume and configurational entropy. Grain breakage is described by a constitutive equation for the temporal evolution of a characteristic grain size a, based on fracture mechanics. We show that grain breakage is a weakening mechanism, significantly lowering the flow stress at large strain rates, if the material is rate strengthening in character. We show in addition that if the granular material is sufficiently aged, spatial inhomogeneity in configurational disorder results in strain localization. We also show that grain splitting contributes significantly to comminution at small shear strains, while grain abrasion becomes dominant at large shear displacements.

  14. Shear-enhanced compaction and strain localization: Inelastic deformation and constitutive modeling of four porous sandstones

    NASA Astrophysics Data System (ADS)

    Baud, Patrick; Vajdova, Veronika; Wong, Teng-Fong

    2006-12-01

    We studied the mechanics of compactant failure in four sandstones associated with a broad range of failure modes in the brittle-ductile transition. While Berea and Bentheim sandstones can fail by compaction localization, homogeneous cataclastic flow dominates failure modes in Adamswiller and Darley Dale sandstones at high effective pressures. We acquired new experimental data to complement previous studies, focusing on the strain hardening behavior in samples under drained conditions. The initial yield stresses were identified as the critical stresses at the onset of shear-enhanced compaction, subsequent yield stresses were considered to depend on hardening given by plastic volumetric strain. The yield stresses were described by elliptical yield caps in the stress space, and we compared the cap evolution with two constitutive models: the critical state model and the cap model. Bentheim sandstone showed the best agreement with both models to relatively large strains. Darley Dale sandstone showed the best agreement with the associated flow rule as prescribed by the normality condition, which is implicitly assumed in both constitutive models. Shear-enhanced compaction in Bentheim and Berea sandstones was appreciably more than that predicted for an associative flow rule, with the implication that a nonassociative model is necessary for capturing the inelastic and failure behavior of these sandstones over a broad range of effective pressures. With reference to the nonassociative model formulated by Rudnicki and Rice, bifurcation analysis would predict the transition of failure mode from shear band to compaction band and ultimately to cataclastic flow, in qualitative agreement with the experimental observations.

  15. Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies.

    PubMed

    Xia, Wenjie; Ruiz, Luis; Pugno, Nicola M; Keten, Sinan

    2016-03-28

    Multi-layer graphene assemblies (MLGs) or fibers with a staggered architecture exhibit high toughness and failure strain that surpass those of the constituent single sheets. However, how the architectural parameters such as the sheet overlap length affect these mechanical properties remains unknown due in part to the limitations of mechanical continuum models. By exploring the mechanics of MLG assemblies under tensile deformation using our established coarse-grained molecular modeling framework, we have identified three different critical interlayer overlap lengths controlling the strength, plastic stress, and toughness of MLGs, respectively. The shortest critical length scale L(C)(S) governs the strength of the assembly as predicted by the shear-lag model. The intermediate critical length L(C)(P) is associated with a dynamic frictional process that governs the strain localization propensity of the assembly, and hence the failure strain. The largest critical length scale L(C)(T) corresponds to the overlap length necessary to achieve 90% of the maximum theoretical toughness of the material. Our analyses provide the general guidelines for tuning the constitutive properties and toughness of multilayer 2D nanomaterials using elasticity, interlayer adhesion energy and geometry as molecular design parameters.

  16. Grain fragmentation in sheared granular flow: weakening effects, energy dissipation, and strain localization.

    PubMed

    Lieou, Charles K C; Elbanna, Ahmed E; Carlson, Jean M

    2014-02-01

    We describe the shear flow of a disordered granular material in the presence of grain fracture using the shear-transformation-zone theory of amorphous plasticity adapted to systems with a hard-core interparticle interaction. To this end, we develop the equations of motion for this system within a statistical-thermodynamic framework analogous to that used in the analysis of molecular glasses. For hard-core systems, the amount of internal, configurational disorder is characterized by the compactivity X = ∂V / ∂S(C), where V and S(C) are, respectively, the volume and configurational entropy. Grain breakage is described by a constitutive equation for the temporal evolution of a characteristic grain size a, based on fracture mechanics. We show that grain breakage is a weakening mechanism, significantly lowering the flow stress at large strain rates, if the material is rate strengthening in character. We show in addition that if the granular material is sufficiently aged, spatial inhomogeneity in configurational disorder results in strain localization. We also show that grain splitting contributes significantly to comminution at small shear strains, while grain abrasion becomes dominant at large shear displacements.

  17. Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control.

    PubMed

    Park, Kyoung-Duck; Khatib, Omar; Kravtsov, Vasily; Clark, Genevieve; Xu, Xiaodong; Raschke, Markus B

    2016-04-13

    Many classes of two-dimensional (2D) materials have emerged as potential platforms for novel electronic and optical devices. However, their physical properties are strongly influenced by nanoscale heterogeneities in the form of edges, twin boundaries, and nucleation sites. Using combined tip-enhanced Raman scattering and photoluminescence (PL) nanospectroscopy and nanoimaging, we study the associated effects on the excitonic properties in monolayer WSe2 grown by physical vapor deposition. With ∼15 nm spatial resolution, we resolve nanoscale correlations of PL spectral intensity and shifts with crystal edges and internal twin boundaries associated with the expected exciton diffusion length. Through an active atomic force tip interaction we can control the crystal strain on the nanoscale and tune the local bandgap in reversible (up to 24 meV shift) and irreversible (up to 48 meV shift) fashion. This allows us to distinguish the effect of strain from the dominant influence of defects on the PL modification at the different structural heterogeneities. Hybrid nano-optical spectroscopy and imaging with nanomechanical strain control thus enables the systematic study of the coupling of structural and mechanical degrees of freedom to the nanoscale electronic and optical properties in layered 2D materials.

  18. Stress distributions and material properties determined in articular cartilage from MRI-based finite strains.

    PubMed

    Butz, Kent D; Chan, Deva D; Nauman, Eric A; Neu, Corey P

    2011-10-13

    The noninvasive measurement of finite strains in biomaterials and tissues by magnetic resonance imaging (MRI) enables mathematical estimates of stress distributions and material properties. Such methods allow for non-contact and patient-specific modeling in a manner not possible with traditional mechanical testing or finite element techniques. Here, we employed three constitutive (i.e. linear Hookean, and nonlinear Neo-Hookean and Mooney-Rivlin) relations with known loading conditions and MRI-based finite strains to estimate stress patterns and material properties in the articular cartilage of tibiofemoral joints. Displacement-encoded MRI was used to determine two-dimensional finite strains in juvenile porcine joints, and an iterative technique estimated stress distributions and material properties with defined constitutive relations. Stress distributions were consistent across all relations, although the stress magnitudes varied. Material properties for femoral and tibial cartilage were found to be consistent with those reported in literature. Further, the stress estimates from Hookean and Neo-Hookean, but not Mooney-Rivlin, relations agreed with finite element-based simulations. A nonlinear Neo-Hookean relation provided the most appropriate model for the characterization of complex and spatially dependent stresses using two-dimensional MRI-based finite strain. These results demonstrate the feasibility of a new and computationally efficient technique incorporating MRI-based deformation with mathematical modeling to non-invasively evaluate the mechanical behavior of biological tissues and materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The Relationship Between Atomic Structure and Strain Distribution of Misfit Dislocation Cores at Cubic Heteroepitaxial Interfaces.

    PubMed

    Wen, Cai

    2017-06-01

    The atomic reconstruction of a misfit dislocation (MD) core causes change in the strain distribution around the core. Several MD cores at the AlSb/GaAs (001) cubic zincblende interface, including a symmetrical glide set Lomer dislocation (LD), a left-displaced glide set LD, a glide set LD with an atomic step, a symmetrical shuffle set LD, and a 60° dislocation pair, were studied using simulated projected potential and aberration-corrected transmission electron microscope images. Image deconvolution was also used to restore structure images from nonoptimum-defocus images. The corresponding biaxial strain maps, ε xx (in-plane) and ε yy (out-of-plane), were obtained by geometric phase analysis using the GaAs substrate as the reference lattice. The results show that atomic structure characteristics of MD cores can be revealed by the strain maps. The strain maps should be measured from optimum-defocus images or restored structure images. Furthermore, the ε xx strain map has been found more accurate than the ε yy strain map for MD cores, and the specimen thickness should be below the critical thickness due to the influence of dynamical scattering.

  20. Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites

    PubMed Central

    Dai, Hongbo; Thostenson, Erik T.; Schumacher, Thomas

    2015-01-01

    This paper describes the development of an innovative carbon nanotube-based non-woven composite sensor that can be tailored for strain sensing properties and potentially offers a reliable and cost-effective sensing option for structural health monitoring (SHM). This novel strain sensor is fabricated using a readily scalable process of coating Carbon nanotubes (CNT) onto a nonwoven carrier fabric to form an electrically-isotropic conductive network. Epoxy is then infused into the CNT-modified fabric to form a free-standing nanocomposite strain sensor. By measuring the changes in the electrical properties of the sensing composite the deformation can be measured in real-time. The sensors are repeatable and linear up to 0.4% strain. Highest elastic strain gage factors of 1.9 and 4.0 have been achieved in the longitudinal and transverse direction, respectively. Although the longitudinal gage factor of the newly formed nanocomposite sensor is close to some metallic foil strain gages, the proposed sensing methodology offers spatial coverage, manufacturing customizability, distributed sensing capability as well as transverse sensitivity. PMID:26197323

  1. Resonance line shape, strain and electric potential distributions of composite magnetoelectric sensors

    NASA Astrophysics Data System (ADS)

    Gerken, Martina

    2013-06-01

    Multiferroic composite magnetoelectric (ME) sensors are based on the elastic coupling of a magnetostrictive phase and a piezoelectric phase. A deformation of the magnetostrictive phase causes strain in the piezoelectric phase and thus an induced voltage. Such sensors may be applied both for static as well as for dynamic magnetic field measurements. Particularly high sensitivities are achieved for operation at a mechanical resonance. Here, the resonance line shape of layered (2-2 composite) cantilever ME sensors at the first bending-mode resonance is investigated theoretically. Finite element method (FEM) simulations using a linear material model reveal an asymmetric resonance profile and a zero-response frequency for the ME coefficient. Frequency-dependent strain and electric potential distributions inside the magnetoelectric composite are studied for the case of a magnetostrictive-piezoelectric bilayer. It is demonstrated that a positive or a negative voltage may be induced across the piezoelectric layer depending on the position of the neutral plane. The frequency-dependent induced electric potential is investigated for structured cantilevers that exhibit magnetostriction only at specific positions. For static operation an induced voltage is obtained locally at positions with magnetostriction. In addition to this direct effect a resonance-assisted effect is observed for dynamic operation. Magnetostriction in a limited area of the cantilever causes a global vibration of the cantilever. Thus, deformation of the piezoelectric layer and an induced electric potential also occur in areas of the cantilever without magnetostriction. The direct and the resonance-assisted pathway may induce voltages of equal or of opposite sign. The net induced voltage results from the superposition of the two effects. As the resonance-assisted induced voltage changes sign upon passing the resonance frequency, while the direct component is constant, an asymmetric line shape and a zero

  2. Nanospectroscopy of single quantum dots with local strain control using a phase-change mask

    NASA Astrophysics Data System (ADS)

    Saiki, Toshiharu; Shintani, Toshimichi; Kuwahara, Masashi; Regreny, Philippe; Gendry, Michel

    2017-08-01

    Herein, we describe a new technique that allows high-sensitivity near-field imaging spectroscopic analysis of individual quantum constituents in semiconductors. This method employs an optical mask composed of a phase-change material (PCM) and operates at optical telecommunication wavelengths. Superior collection efficiency and spatial resolution are achieved by using an amorphous nanoaperture as a result of the extreme optical contrast between the PCM in amorphous and crystalline phases at visible wavelengths and the good near-infrared transparency of this material. Fine tuning of quantum dot (QD) emission levels via localized strain as a result of the increase in volume of the PCM upon amorphization has also been demonstrated. Both red and blue shifts of the energy levels were predicted to occur beneath the flat and edge regions of the amorphous mask, respectively, using finite element simulations. The viability of localized strain tuning as an approach to nanospectroscopy employing phase changes was confirmed by measurements of the photoluminescence of individual InAs/InP QDs. In addition, the emission levels of two neighboring QDs were matched based on modifying the shift magnitudes and directions via careful adjustment of the indenter size and position.

  3. Strain distribution across the Greater Himalayan Sequence, Annapurna-Dhaulagiri, Nepal

    NASA Astrophysics Data System (ADS)

    Parsons, A. J.; Phillips, R. J.; Lloyd, G. E.; Searle, M. P.; Law, R. D.; Ferre, E. C.

    2012-12-01

    The Himalaya provides a unique natural laboratory to observe orogenic processes at a variety of temporal and spatial scales. The potential for these observations to serve as kinematic and geodynamic analogues for past orogens relies on a robust understanding of the evolution of the Himalayan mountain belt. Field structural data, supported by thermobaromety, geochronology and thermodynamic modelling, generally support a channel flow model in which a partially molten middle crust layer, the Greater Himalaya Sequence (GHS), was extruded to the south during Miocene time bounded by high-strain ductile shears above and below. This model suggests that the GHS, the metamorphic core of the orogen, represents an exhumed, rheologically weak, mid-crustal channel. Lateral flow of the channel was driven southwards by the lithostatic pressure gradient between the 5 km high Tibetan plateau and the < 1 km elevation and average crustal thickness of the Indian plate. The vertical distribution of strain across the GHS is one element of the channel flow hypothesis that is yet to be fully investigated. This project considers this issue by examining specifically, the vertical distribution and evolution of strain across the GHS and bounding units. A variety of techniques, that include SEM electron back scattered diffraction (EBSD) and anisotropy of magnetic susceptibility (AMS) will be used to analyse samples collected during recent field work in the Annapurna-Dhaulagiri Himal, central Nepal. These samples were collected from two transects along the Modi Khola valley and the Kali Gandaki valley. EBSD will be used to measure the lattice preferred orientation of individual mineral phases of these samples, providing a proxy for strain and valuable information on deformation mechanisms. Given specific magnetic carriers, AMS will be used to provide a proxy for finite strain in samples that are too heterogeneous for EBSD. Combined EBSD and AMS data will be augmented by additional strain and

  4. In vitro bone strain distributions in a sample of primate pelves.

    PubMed

    Lewton, Kristi L

    2015-05-01

    The pelvis is a critical link in the hindlimb locomotor system and has a central role in resisting loads associated with locomotion, but our understanding of its structural biomechanics is quite limited. Empirical data on how the pelvis responds to the loads it encounters are important for understanding pelvic adaptation to locomotion, and for testing hypotheses regarding how the pelvis is adapted to its mechanical demands. This paper presents in vitro strain gauge data on a sample of monkey and ape cadaveric specimens (Macaca, Papio, Ateles, Hylobates), and assesses strain magnitudes and distributions through the bones of the pelvis: the ilium, ischium and pubis. Pelves were individually mounted in a materials testing system, loads were applied across three hindlimb angular positions, and strains were recorded from 18 locations on the pelvic girdle. Peak principal strains range from 2000 to 3000 με, similar to peak strains recorded from other mammals in vivo. Although previous work has suggested that the bones of the pelvis may act as bent beams, this study suggests that there are likely additional loading regimes superimposed on bending. Specifically, these data suggest that the ilium is loaded in axial compression and torsion, the ischium in torsion, the pubic rami in mediolateral bending, and the pubic symphysis is loaded in a combination of compression and torsion. Compressive strains dominate the pelves of all species representatives. Shear strains change with limb position; hip flexion at 45° induces smaller shear strains than mid-stance (90°) or hip extension (105°). The pelvic girdle is a complex structure that does not lend itself easily to modeling, but finite element analyses may prove useful to generate and refine hypotheses of pelvic biomechanics.

  5. In vitro bone strain distributions in a sample of primate pelves

    PubMed Central

    Lewton, Kristi L

    2015-01-01

    The pelvis is a critical link in the hindlimb locomotor system and has a central role in resisting loads associated with locomotion, but our understanding of its structural biomechanics is quite limited. Empirical data on how the pelvis responds to the loads it encounters are important for understanding pelvic adaptation to locomotion, and for testing hypotheses regarding how the pelvis is adapted to its mechanical demands. This paper presents in vitro strain gauge data on a sample of monkey and ape cadaveric specimens (Macaca, Papio, Ateles, Hylobates), and assesses strain magnitudes and distributions through the bones of the pelvis: the ilium, ischium and pubis. Pelves were individually mounted in a materials testing system, loads were applied across three hindlimb angular positions, and strains were recorded from 18 locations on the pelvic girdle. Peak principal strains range from 2000 to 3000 με, similar to peak strains recorded from other mammals in vivo. Although previous work has suggested that the bones of the pelvis may act as bent beams, this study suggests that there are likely additional loading regimes superimposed on bending. Specifically, these data suggest that the ilium is loaded in axial compression and torsion, the ischium in torsion, the pubic rami in mediolateral bending, and the pubic symphysis is loaded in a combination of compression and torsion. Compressive strains dominate the pelves of all species representatives. Shear strains change with limb position; hip flexion at 45 ° induces smaller shear strains than mid-stance (90 °) or hip extension (105 °). The pelvic girdle is a complex structure that does not lend itself easily to modeling, but finite element analyses may prove useful to generate and refine hypotheses of pelvic biomechanics. PMID:25846322

  6. Influence of Grain Size Distribution on the Mechanical Behavior of Light Alloys in Wide Range of Strain Rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.

    2015-06-01

    Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) Al 1560 aluminum and Ma2-1 magnesium alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength. The increasing of fine precipitations concentration not only causes the hardening but increasing of ductility of UFG alloys with bimodal grain size distribution. This research carried out in 2014-2015 was supported by grant from ``The Tomsk State University Academic D.I. Mendeleev Fund Program''.

  7. Localized Slip and Distributed Deformation in Oblique Settings: The Example of the Denali Fault System, Alaska

    NASA Astrophysics Data System (ADS)

    Vallage, A.; Deves, M.; Klinger, Y.; King, G. C. P.; Ruppert, N. A.

    2014-12-01

    Earthquakes occurring in oblique tectonic settings often partition between several faults that accommodate different components of the total motion. The 2002 Mw 7.9 Denali strike-slip earthquake, which azimuth varies by more than 50° over the 341 km total rupture length, offers a unique opportunity to look at partitioning in details, thanks to a large seismological dataset. Using a kinematic model that incorporates the obliquity of the plate-motion direction relative to the local fault azimuth, we show that the co-seismic deformation is consistent with the general northwestward displacement of the Wrangell block relative to stable North America. Hence we quantify the efficiency of the Denali fault to accommodate such oblique far field tectonic conditions by defining a coefficient of accommodation Ca, and we evaluate how much remains to be accommodated by distributed deformation off the strike-slip fault. We represent the distributed deformation using strain rosette for a catalog of 735 focal mechanisms between 1987 and 2011. We show that in oblique settings, such as in the Denali case, the aftershocks and the background seismicity are organized to accommodate the deformation that is not localized on the Denali strike-slip fault during the main earthquakes. Actually the westward increase of the obliquity increases the amount of such deformation accommodated through distributed thrust faults, leading to the westward widening of the Alaska Range. In addition we use a simple 2D boundary element elastic model to investigate the difference between geodetic data, showing a rotation of the block south of the fault, and our oblique boundary conditions. We show that it is possible to reproduce the rotation of such block while it is subjected to a northwestward oblique displacement applied on the curved Denali fault system.

  8. Experimental study of steel welded joints localization with using fiber Bragg grating strain sensor

    NASA Astrophysics Data System (ADS)

    Harasim, Damian

    2015-12-01

    Optical sensing systems has a not weakening research and development in recent years. Because of its unique properties of being unsusceptible to electromagnetic interference, having wide range of operational temperature and having extreme small physical dimensions, optical fiber sensors has increasing acceptance. Fiber Bragg Gratings (FBG) is the most frequently used type of optical sensor types because of its huge multiplexing potential and potentiality of being embedded into composite material (e.g. in structural health monitoring) or attached into measured structure. Embedding or attaching FBG into an inhomogeneous environment, spectral characteristic of the sensing grating do not retain full symmetry, which is due to related differences in the distribution of the axial stress of the grating. When periodicity of the grating is constant, the peak of FBG reflection spectrum should be narrow and sharp. An inhomogeneous axial strain distribution will cause a distorsion in measured transmission or reflection spectrum. This paper shows an distorsions in FBG reflection spectrum measured from sensor attached on surface with welded joint. The sensor strain-to-wavelength shift processing characteristics obtained for homogeneous and welded steel samples were compared.

  9. Largely defocused probe scanning transmission electron microscopy for imaging local modulation of strain field in a hetero interface

    SciTech Connect

    Kim, Suhyun Jung, Younheum; Kim, Joong Jung; Lee, Sunyoung; Lee, Haebum; Oshima, Yoshifumi

    2014-10-13

    We present an innovative method for characterizing the strain field in three dimensions in a hetero interface. Largely defocused probe scanning transmission electron microscopy (LDP-STEM) was employed for imaging the inhomogeneous strain field in a germanium (Ge) layer deposited on a silicon (Si) substrate. In the LDP-STEM image, Ge-atomic columns that are relaxed or strained to the Si substrate in the Si/Ge hetero interface were observed to be distinguishable, allowing for the qualitative characterization of the coherency of the crystal growth. Our results revealed that the strain field is locally modulated along the in-plane direction in the Si/Ge hetero interface.

  10. Parameters driving strain localization in the lithosphere are highly scale-dependent

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent

    2016-04-01

    Modelling lithospheric deformation requires specifying mechanisms that promote strain localization. This can be done in different ways, such as the inclusion of weaker zones in the model setup (to initiate subduction or slab tearing, for instance) or using various sorts of weakening processes depending upon temperature, grain-size, fluid content or metamorphic reactions, among others. In most cases, this choice is ad hoc because the relevant parameters are largely unknown, especially at the scale of geodynamic models. Two lines of research have been developed, a traditional one which seeks to determine the rheological parameters of natural or synthetic rocks experimentally, and a more recent one, promoted by the development of fast computing, which aims at reproducing a natural tectonic or rheological evolution through time, not only geometries. The latter requires that the parameters allowing this reproduction are significant at the scale of the model, and which may be different from those obtained in the experimental lab, thus questioning the extrapolation through a wide range of scales of experimental parameters. This apparent discrepancy is due to the intrinsic complexity of the lithosphere, and even more so for the continental lithosphere with its highly heterogeneous crust and its long tectonic history, which implies the co-existence of many different parameters active in nature. In this presentation, we review the main localizing factors and look to the range of scales in which they are significant. Small-scale processes such as grain-size reduction, coexistence of several mineralogical phases with different strength and rheological behaviour, fluid-rock interactions and/or metamorphic reactions, often cannot initiate strain localization in nature but are all efficient to locally reduce the strength of rock material once localization has started. Some exceptions to this rule, however, exist, such as the mixing of ductile and brittle behaviour in the same

  11. Thermal strain along optical fiber in lightweight composite FOG : Brillouin-based distributed measurement and finite element analysis

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Sanada, Teruhisa; Takeda, Nobuo; Mitani, Shinji; Mizutani, Tadahito; Sasaki, Yoshinobu; Shinozaki, Keisuke

    2014-05-01

    Thermal strain significantly affects stability of fiber optic gyroscope (FOG) performance. This study investigates thermal strain development in a lightweight carbon fiber reinforced plastic (CFRP) FOG under thermal vacuum condition simulating space environment. First, we measure thermal strain distribution along an optical fiber in a CFRP FOG using a Brillouin-based high-spatial resolution system. The key strain profile is clarified and the strain development is simulated using finite element analysis. Finally, several constituent materials for FOG are quantitatively compared from the aspect of the maximum thermal strain and the density, confirming the clear advantage of CFRP.

  12. Phenotypic and genotypic characterization of locally isolated Salmonella strains used in preparation of Salmonella antigens in Egypt.

    PubMed

    Ibrahim, Hazem Mohammed; El-Moaty, Dalia Ahmed Mohammed Abd; Ahmed, Hanan Ali; El-Enbaawy, Mona Ibrahim

    2016-12-01

    This work was conducted to study the phenotypic and genotypic characterization of locally isolated Salmonella strains (Salmonella Pullorum, Salmonella Enteritidis, and Salmonella Typhimurium) from poultry used in the preparation of Salmonella antigens in Egypt. The phenotypic characterization of Salmonella strains was done using standard microbiological, biochemical, and serological techniques. Molecular identification was done using different sets of primers on different genes using different polymerase chain reaction (PCR) techniques. The phenotypic characterization of Salmonella strains was confirmed. Molecular identification revealed detection of 284 bp fragment of InvA gene in all studied Salmonella strains. Furthermore, multiplex PCR was used for more confirmation of being Salmonella spp., generally at 429 bp as well as genotyping of Salmonella Typhimurium and Salmonella Enteritidis at 559 and 312 bp, respectively, in one reaction. The locally isolated field Salmonella strains were confirmed phenotypically and genotypically to be Salmonella Enteritidis, and Salmonella Typhimurium and could be used for the preparation of Salmonella antigens.

  13. Allometric ecological distributions in a local community of Hymenoptera

    NASA Astrophysics Data System (ADS)

    Ulrich, Werner

    2004-05-01

    The present paper describes basic ecological distributions in a community of beech forest Hymenoptera. It shows that the species diversity-body weight and the density-body weight distributions give rise to a new distribution that relates total community biomass to species diversity. For Hymenoptera this distribution follows a power function with a slope of 1.3. Combining this relation with the species-area and the individuals-area relations resulted in two other distributions that relate community biomass to area and individual numbers. It appeared that population densities decrease when computed over larger areas. The biomass-species diversity relation offers a new and simple way to estimate total community biomass from samples. The possible implications of this distribution to the productivity-diversity debate are discussed.

  14. Cloning, expression, and cell surface localization of Paenibacillus sp. strain W-61 xylanase 5, a multidomain xylanase.

    PubMed

    Ito, Yasuko; Tomita, Toshio; Roy, Narayan; Nakano, Akito; Sugawara-Tomita, Noriko; Watanabe, Seiji; Okai, Naoko; Abe, Naoki; Kamio, Yoshiyuki

    2003-12-01

    We have shown that a xylan-degrading bacterium, W-61, excretes multiple xylanases, including xylanase 5 with a molecular mass of 140 kDa. Here, we emend the previously used classification of the bacterium (i.e., Aeromonas caviae W-61) to Paenibacillus sp. strain W-61 on the basis of the nucleotide sequence of the 16S rRNA gene, and we clone and express the xyn5 gene encoding xylanase 5 (Xyn5) in Escherichia coli and study the subcellular localization of Xyn5. xyn5 encodes 1,326 amino acid residues, including a 27-amino-acid signal sequence. Sequence analysis indicated that Xyn5 comprises two family 22 carbohydrate-binding modules (CBM), a family 10 catalytic domain of glycosyl hydrolases, a family 9 CBM, a domain similar to the lysine-rich region of Clostridium thermocellum SdbA, and three S-layer-homologous (SLH) domains. Recombinant Xyn5 bound to a crystalline cellulose, Avicel PH-101, while an N-terminal 90-kDa fragment of Xyn5, which lacks the C-terminal half of the family 9 CBM, did not bind to Avicel PH-101. Xyn5 was cell bound, and the cell-bound protein was digested by exogenous trypsin to produce immunoreactive and xylanolytic fragments with molecular masses of 80 and 60 kDa. Xyn5 was exclusively distributed in the cell envelope fraction consisting of a peptidoglycan-containing layer and an associated S layer. Thus, Paenibacillus sp. strain W-61 Xyn5 is a cell surface-anchored modular xylanase possessing a functional cellulose-binding module and SLH domains. Possible cooperative action of multiple xylanases produced by strain W-61 is discussed on the basis of the modular structure of Xyn5.

  15. Cranial sutures work collectively to distribute strain throughout the reptile skull

    PubMed Central

    Curtis, Neil; Jones, M. E. H.; Evans, S. E.; O'Higgins, P.; Fagan, M. J.

    2013-01-01

    The skull is composed of many bones that come together at sutures. These sutures are important sites of growth, and as growth ceases some become fused while others remain patent. Their mechanical behaviour and how they interact with changing form and loadings to ensure balanced craniofacial development is still poorly understood. Early suture fusion often leads to disfiguring syndromes, thus is it imperative that we understand the function of sutures more clearly. By applying advanced engineering modelling techniques, we reveal for the first time that patent sutures generate a more widely distributed, high level of strain throughout the reptile skull. Without patent sutures, large regions of the skull are only subjected to infrequent low-level strains that could weaken the bone and result in abnormal development. Sutures are therefore not only sites of bone growth, but could also be essential for the modulation of strains necessary for normal growth and development in reptiles. PMID:23804444

  16. Residual thermal and moisture influences on the strain energy release rate analysis of local delaminations from matrix cracks

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1991-01-01

    An analysis utilizing laminated plate theory is developed to calculate the strain energy release rate associated with local delaminations originating at off-axis, single ply, matrix cracks in laminates subjected to uniaxial loads. The analysis includes the contribution of residual thermal and moisture stresses to the strain energy released. Examples are calculated for the strain energy release rate associated with local delaminations originating at 90 degrees and angle-ply (non-90 degrees) matrix ply cracks in glass epoxy and graphite epoxy laminates. The solution developed may be used to assess the relative contribution of mechanical, residual thermal, and moisture stresses on the strain energy release rate for local delamination for a variety of layups and materials.

  17. Usage of Leptospira spp. local strains as antigens increases the sensitivity of the serodiagnosis of bovine leptospirosis.

    PubMed

    Pinto, Priscila S; Loureiro, Ana P; Penna, Bruno; Lilenbaum, Walter

    2015-09-01

    Leptospirosis is a zoonotic disease that occurs worldwide, particularly in tropical countries. In livestock the agent is responsible for reproductive problems such as infertility and abortion. Serogroup Sejroe, particularly serovar Hardjo, prevails in cattle in several regions. The microscopic agglutination test (MAT) is the current method for diagnosing leptospirosis. It has been proposed that the inclusion of local strains could detect a larger set of seroreactive animals. In that context, the aim of the present study was to evaluate if the usage of local strains as antigens increases the sensitivity of the serodiagnosis of bovine leptospirosis. Blood and urine samples were collected from 314 bovines from several herds randomly selected in a slaughterhouse in Rio de Janeiro, Brazil. Serological diagnosis was made with MAT using a 21 reference-strains panel (MAT21). Additionally, 12 local strains (MAT33) were included as antigens. PCR was performed with the urine samples and it was positive on 71 out of 222 samples (31.9%). MAT21 identified as seroreactive 173 (55.1%) out of the 314 animals studied, with Sejroe the most common (38.1%). In MAT33, 204 (65.0%) animals were seroreactive with a significant increase on seroreactivity (9.9%). In conclusion, MAT presented with a significant increase of sensitivity when local strains were used as antigens. Among the local strains, 2013_U152 (KP263062) (serogroup Shermani) and 2013_U280 (KP263069) (serogroup Grippotyphosa) showed to be more antigenic. Copyright © 2015. Published by Elsevier B.V.

  18. Physics of friction and strain rate localization in synthetic fault gouge

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.; Richardson, Eliza; Marone, Chris

    2000-11-01

    Data on synthetic fault gouge previously collected by Richardson and Marone [1999] were compared with the predictions of a unified theory for rate- and state-dependent friction compiled by Sleep [1997]. The theory treats the gouge as a continuum one-dimensional fluid sheared between parallel plates. It is predicted that the strain rate localized into a shear band of width called Wss during steady state sliding from the nominal width of the gouge zone Wnom. The critical displacement during velocity stepping tests is predicted to be Wss ɛint, where ɛint is the critical strain, an intrinsic material property. It is predicted that the strain rate for renewed sliding after holds delocalizes to a width Wnew which is greater than Wss and for long holds approaches the full gouge zone width Wnom. The displacement for recovery of the shear traction to its steady state value is predicted to be Wnewɛint, which for long holds is much greater than the critical displacement obtained by velocity stepping. Only the macroscopic effects of this process could be studied using the laboratory data in hand. Compaction during the hold and the difference between peak shear traction upon restart and the steady state shear traction during sliding (healing) were measured. To simulate more complex normal traction variations on real faults, the normal traction was varied sinusoidally about its previous value during some holds. The theory reasonably predicts the observed relationship between healing and compaction and healing versus hold time. It predicts the slip needed for recovery of shear traction following holds but poorly predicts the shear traction versus time during recovery. We attribute this failure to the fact that the laboratory gouge is a heterogeneous three-dimensional substance. Qualitatively, the delocalized width Wnew varies with position within the gouge plane, and slip is required for localized shear to organize in three dimensions. As strain rate was not observed as a

  19. Experimental study of the relationship between local particle-size distributions and local ordering in random close packing.

    PubMed

    Kurita, Rei

    2015-12-01

    We experimentally study the structural properties of a sediment of size distributed colloids. By determining each particle size using a size estimation algorithm, we are able to investigate the relationship between local environment and local ordering. Our results show that ordered environments of particles tend to generate where the local particle-size distribution is within 5%. In addition, we show that particles whose size is close to the average size have 12 coordinate neighbors, which matches the coordination number of the fcc and hcp crystals. On the other hand, bcc structures are observed around larger particles. Our results represent experiments to show a size dependence of the specific ordering in colloidal systems.

  20. Wide Distribution of Mitochondrial Genome Rearrangements in Wild Strains of the Cultivated Basidiomycete Agrocybe aegerita

    PubMed Central

    Barroso, G.; Blesa, S.; Labarere, J.

    1995-01-01

    We used restriction fragment length polymorphisms to examine mitochondrial genome rearrangements in 36 wild strains of the cultivated basidiomycete Agrocybe aegerita, collected from widely distributed locations in Europe. We identified two polymorphic regions within the mitochondrial DNA which varied independently: one carrying the Cox II coding sequence and the other carrying the Cox I, ATP6, and ATP8 coding sequences. Two types of mutations were responsible for the restriction fragment length polymorphisms that we observed and, accordingly, were involved in the A. aegerita mitochondrial genome evolution: (i) point mutations, which resulted in strain-specific mitochondrial markers, and (ii) length mutations due to genome rearrangements, such as deletions, insertions, or duplications. Within each polymorphic region, the length differences defined only two mitochondrial types, suggesting that these length mutations were not randomly generated but resulted from a precise rearrangement mechanism. For each of the two polymorphic regions, the two molecular types were distributed among the 36 strains without obvious correlation with their geographic origin. On the basis of these two polymorphisms, it is possible to define four mitochondrial haplotypes. The four mitochondrial haplotypes could be the result of intermolecular recombination between allelic forms present in the population long enough to reach linkage equilibrium. All of the 36 dikaryotic strains contained only a single mitochondrial type, confirming the previously described mitochondrial sorting out after cytoplasmic mixing in basidiomycetes. PMID:16534984

  1. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    NASA Technical Reports Server (NTRS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  2. Hole weak anti-localization in a strained-Ge surface quantum well

    NASA Astrophysics Data System (ADS)

    Mizokuchi, R.; Torresani, P.; Maurand, R.; Zeng, Z.; Niquet, Y.-M.; Myronov, M.; De Franceschi, S.

    2017-08-01

    We report a magneto-transport study of a two-dimensional hole gas confined to a strained Ge quantum well grown on a relaxed Si0.2Ge0.8 virtual substrate. The conductivity of the hole gas measured as a function of a perpendicular magnetic field exhibits a zero-field peak resulting from weak anti-localization. The peak develops and becomes stronger upon increasing the hole density by means of a top gate electrode. This behavior is consistent with a Rashba-type spin-orbit coupling whose strength is proportional to the perpendicular electric field and hence to the carrier density. In the low-density, the single-subband regime, by fitting the weak anti-localization peak to an analytic model, we extract the characteristic transport time scales and a spin splitting energy ΔSO˜ 1 meV. Tight-binding calculations show that ΔSO is dominated by a cubic term in the in-plane wave vector. Finally, we observe a weak anti-localization peak also for magnetic fields parallel to the quantum well and associate this finding to an effect of intersubband scattering induced by interface defects.

  3. Distributed Brillouin fiber optic strain monitoring applications in advanced composite materials

    NASA Astrophysics Data System (ADS)

    Bastianini, Filippo; Cargnelutti, Mario; Di Tommaso, Angelo; Toffanin, Massimo

    2003-08-01

    Composite materials based on glass, carbon and aramid fibers have many advantages such as fast application, lightweight and corrosion resistance, and are widely diffused for manufacturing of tanks, pipings and for restoration, upgrade and seismic retrofit of structures and historical heritage. As several questions regarding long term durability of composite strengthenings remains still unsolved, monitoring of strain and temperature is strongly recommended, respectively to assess proper load transfer and no glass phase transition of the polymeric matrix. In this research work strain and temperature distributed sensing trough Brillouin scattering in single-mode optical fibers was used in different tests in order to understand the influence of different fiber coatings and embedding techniques. Pressure tests were performed on a GFRP piping with inhomogeneous strengthening layout and Brillouin strain data were compared with conventional strain gages. A smart CFRP material has been also developed and evaluated in a seismic retrofit application on an historical building dated 1500 that was seriously damaged in the earthquake of 1997. The developed embedding technique has been demonstrated successful to obtain fiber-optic smart composites with low optical losses, and the data comparison between Brillouin and resistive strain gauges confirms Brillouin technique is very effective for composite monitoring.

  4. Local duality and charge symmetry violation in quark distributions

    SciTech Connect

    Steffens, F.M.; Tsushima, K.

    2004-11-01

    We use local quark-hadron duality to calculate the nucleon structure function as seen by neutrino and muon beams. Our result indicates a possible signal of charge symmetry violation at the parton level in the very large x region.

  5. Modified Michelson fiber-optic interferometer: A remote low-coherence distributed strain sensor array

    NASA Astrophysics Data System (ADS)

    Yuan, Libo

    2003-01-01

    A simple modified Michelson fiber-optic low-coherence interferometric quasi-distributed sensing system permitting absolute length measurement in remote reflective sensor array is proposed. The sensor reflective signals characteristics have been analyzed and the relationship between light signal intensities and sensors number was given for multiplexing potential evaluation. The proposed sensing scheme will be useful for the remote measurement of strain. An important application could be deformation sensing in smart structures. Experimentally, a three sensors array has been demonstrated.

  6. Data Locality via Coordinated Caching for Distributed Processing

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Kuehn, E.; Giffels, M.; Jung, C.

    2016-10-01

    To enable data locality, we have developed an approach of adding coordinated caches to existing compute clusters. Since the data stored locally is volatile and selected dynamically, only a fraction of local storage space is required. Our approach allows to freely select the degree at which data locality is provided. It may be used to work in conjunction with large network bandwidths, providing only highly used data to reduce peak loads. Alternatively, local storage may be scaled up to perform data analysis even with low network bandwidth. To prove the applicability of our approach, we have developed a prototype implementing all required functionality. It integrates seamlessly into batch systems, requiring practically no adjustments by users. We have now been actively using this prototype on a test cluster for HEP analyses. Specifically, it has been integral to our jet energy calibration analyses for CMS during run 2. The system has proven to be easily usable, while providing substantial performance improvements. Since confirming the applicability for our use case, we have investigated the design in a more general way. Simulations show that many infrastructure setups can benefit from our approach. For example, it may enable us to dynamically provide data locality in opportunistic cloud resources. The experience we have gained from our prototype enables us to realistically assess the feasibility for general production use.

  7. FEM × DEM: a new efficient multi-scale approach for geotechnical problems with strain localization

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Kien; Claramunt, Albert Argilaga; Caillerie, Denis; Combe, Gaël; Dal Pont, Stefano; Desrues, Jacques; Richefeu, Vincent

    2017-06-01

    The paper presents a multi-scale modeling of Boundary Value Problem (BVP) approach involving cohesive-frictional granular materials in the FEM × DEM multi-scale framework. On the DEM side, a 3D model is defined based on the interactions of spherical particles. This DEM model is built through a numerical homogenization process applied to a Volume Element (VE). It is then paired with a Finite Element code. Using this numerical tool that combines two scales within the same framework, we conducted simulations of biaxial and pressuremeter tests on a cohesive-frictional granular medium. In these cases, it is known that strain localization does occur at the macroscopic level, but since FEMs suffer from severe mesh dependency as soon as shear band starts to develop, the second gradient regularization technique has been used. As a consequence, the objectivity of the computation with respect to mesh dependency is restored.

  8. Revealing Differences in Metabolic Flux Distributions between a Mutant Strain and Its Parent Strain Gluconacetobacter xylinus CGMCC 2955

    PubMed Central

    Liu, Miao; Yang, Xiao-Ning; Zhu, Hui-Xia; Jia, Yuan-Yuan; Jia, Shi-Ru; Piergiovanni, Luciano

    2014-01-01

    A better understanding of metabolic fluxes is important for manipulating microbial metabolism toward desired end products, or away from undesirable by-products. A mutant strain, Gluconacetobacter xylinus AX2-16, was obtained by combined chemical mutation of the parent strain (G. xylinus CGMCC 2955) using DEC (diethyl sulfate) and LiCl. The highest bacterial cellulose production for this mutant was obtained at about 11.75 g/L, which was an increase of 62% compared with that by the parent strain. In contrast, gluconic acid (the main byproduct) concentration was only 5.71 g/L for mutant strain, which was 55.7% lower than that of parent strain. Metabolic flux analysis indicated that 40.1% of the carbon source was transformed to bacterial cellulose in mutant strain, compared with 24.2% for parent strain. Only 32.7% and 4.0% of the carbon source were converted into gluconic acid and acetic acid in mutant strain, compared with 58.5% and 9.5% of that in parent strain. In addition, a higher flux of tricarboxylic acid (TCA) cycle was obtained in mutant strain (57.0%) compared with parent strain (17.0%). It was also indicated from the flux analysis that more ATP was produced in mutant strain from pentose phosphate pathway (PPP) and TCA cycle. The enzymatic activity of succinate dehydrogenase (SDH), which is one of the key enzymes in TCA cycle, was 1.65-fold higher in mutant strain than that in parent strain at the end of culture. It was further validated by the measurement of ATPase that 3.53–6.41 fold higher enzymatic activity was obtained from mutant strain compared with parent strain. PMID:24901455

  9. Local serotonin mediates cyclic strain-induced phenotype transformation, matrix degradation, and glycosaminoglycan synthesis in cultured sheep mitral valves.

    PubMed

    Lacerda, Carla M R; Kisiday, John; Johnson, Brennan; Orton, E Christopher

    2012-05-15

    This study addressed the following questions: 1) Does cyclic tensile strain induce protein expression patterns consistent with myxomatous degeneration in mitral valves? 2) Does cyclic strain induce local serotonin synthesis in mitral valves? 3) Are cyclic strain-induced myxomatous protein expression patterns in mitral valves dependent on local serotonin? Cultured sheep mitral valve leaflets were subjected to 0, 10, 20, and 30% cyclic strain for 24 and 72 h. Protein levels of activated myofibroblast phenotype markers, α-smooth muscle actin (α-SMA) and nonmuscle embryonic myosin (SMemb); matrix catabolic enzymes, matrix metalloprotease (MMP) 1 and 13, and cathepsin K; and sulfated glycosaminoglycan (GAG) content in mitral valves increased with increased cyclic strain. Serotonin was present in the serum-free media of cultured mitral valves and concentrations increased with cyclic strain. Expression of the serotonin synthetic enzyme tryptophan hydroxylase 1 (TPH1) increased in strained mitral valves. Pharmacologic inhibition of the serotonin 2B/2C receptor or TPH1 diminished expression of phenotype markers (α-SMA and SMemb) and matrix catabolic enzyme (MMP1, MMP13, and cathepsin K) expression in 10- and 30%-strained mitral valves. These results provide first evidence that mitral valves synthesize serotonin locally. The results further demonstrate that tensile loading modulates local serotonin synthesis, expression of effector proteins associated with mitral valve degeneration, and GAG synthesis. Inhibition of serotonin diminishes strain-mediated protein expression patterns. These findings implicate serotonin and tensile loading in mitral degeneration, functionally link the pathogeneses of serotoninergic (carcinoid, drug-induced) and degenerative mitral valve disease, and have therapeutic implications.

  10. Strain Localization near the Brittle-Ductile-Transition along the Cordillera Blanca Shear Zone, Peru

    NASA Astrophysics Data System (ADS)

    Hughes, C. A.; Jessup, M. J.; Shaw, C. A.

    2016-12-01

    We present a case study of strain localization near the brittle-ductile-transition (BDT) from the Cordillera Blanca Shear Zone (CBSZ), Peru, a `natural laboratory' that preserves a record of changing differential stress, temperature, and deformation mechanisms associated with exhumation along a low-angle normal detachment fault in an active extensional setting. The CBSZ accommodates deformation associated with exhumation of a granodiorite batholith across the BDT along an active, 200 km long, WSW dipping low-angle normal detachment fault situated above the Peruvian flat-slab segment of the Andean margin. In the footwall, magmatic fabrics become increasingly overprinted by solid-state fabrics. An overall trend of increasing degrees of mylonitization and grain size reduction occurs from the undeformed batholith towards the detachment fault. Outstanding exposure of the shear zone in conjunction with its young age and well-constrained tectonic setting make the CBSZ an excellent venue for applying paleopiezometry and thermometry tools to link natural deformation with experimental studies. We characterize deformation associated with strain localization using quartz recrystallized grain size paleopiezometry and crystallographic preferred orientations derived from electron backscatter diffraction (EBSD) analyses in conjunction with microstructural analysis and two-feldspar thermometry. Quartz slip systems, differential stress estimates, and deformation temperatures from three transects spanning 50 km of the 200 km long shear zone are compared. Crystallographic slip systems range from dominant prism slip at positions away from the detachment to dominant basal slip nearest the detachment, with intermediate positions involving variable components of prism , rhomb , and basal slip, though not all slip systems are observed in each transect. Linked paleostress and temperature estimates allow for first-order approximations of a crustal strength profile for the CBSZ. Collectively

  11. Quantum localization of chaotic eigenstates and the level spacing distribution

    NASA Astrophysics Data System (ADS)

    Batistić, Benjamin; Robnik, Marko

    2013-11-01

    The phenomenon of quantum localization in classically chaotic eigenstates is one of the main issues in quantum chaos (or wave chaos), and thus plays an important role in general quantum mechanics or even in general wave mechanics. In this work we propose two different localization measures characterizing the degree of quantum localization, and study their relation to another fundamental aspect of quantum chaos, namely the (energy) spectral statistics. Our approach and method is quite general, and we apply it to billiard systems. One of the signatures of the localization of chaotic eigenstates is a fractional power-law repulsion between the nearest energy levels in the sense that the probability density to find successive levels on a distance S goes like ∝Sβ for small S, where 0≤β≤1, and β=1 corresponds to completely extended states. We show that there is a clear functional relation between the exponent β and the two different localization measures. One is based on the information entropy and the other one on the correlation properties of the Husimi functions. We show that the two definitions are surprisingly linearly equivalent. The approach is applied in the case of a mixed-type billiard system [M. Robnik, J. Phys. A: Math. Gen.JPHAC50305-447010.1088/0305-4470/16/17/014 16, 3971 (1983)], in which the separation of regular and chaotic eigenstates is performed.

  12. 18 CFR 284.269 - Intrastate pipeline and local distribution company emergency sales rates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Intrastate pipeline and..., Transportation, and Exchange Transactions § 284.269 Intrastate pipeline and local distribution company emergency sales rates. An intrastate pipeline or local distribution company must determine its rates for sales...

  13. 18 CFR 284.269 - Intrastate pipeline and local distribution company emergency sales rates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Intrastate pipeline and..., Transportation, and Exchange Transactions § 284.269 Intrastate pipeline and local distribution company emergency sales rates. An intrastate pipeline or local distribution company must determine its rates for sales...

  14. Morphometry and strain distribution in guinea pig duodenum with reference to the zero-stress state.

    PubMed

    Gregersen, H; Kassab, G; Pallencaoe, E; Lee, C; Chien, S; Skalak, R; Fung, Y C

    1997-10-01

    The aim of the present study is to determine the distribution of residual circumferential strains along the duodenum in anesthetized guinea pigs. A silicone elastomer was allowed to harden in the duodenal lumen under a pressure of 0.7 kPa. The duodenum was excised with the cast and photographed. The zero-stress state was obtained by cutting rings of duodenum radially. The geometric configuration at the zero-stress state is of fundamental importance, because it is the basic state with respect to which the physical stresses and strains are defined. A basic piece of information is the way the tangent vector rotates from one end of the circumference to the other. In the duodenum at zero-stress state, the total rotation of the tangent from one tip to the other is -500 to -850 , with the lowest absolute value in the proximal duodenum. In other words, the duodenum usually turns itself inside out on changing from a loaded state to the zero-stress state. The serosal circumference, the duodenal wall thickness, and the ratio of wall thickness to mucosal circumference decreased in the distal direction. In the pressurized state, the serosal Cauchy strain was tensile and increased in the distal direction; the mucosal Cauchy strain was compressive in the proximal half of the duodenum and tensile in the distal half. The large circumferential residual strains must be taken into account in a study of physiological problems in which the stresses and strains are important, e.g., the bolus transport function.

  15. Spatial distributions of local illumination color in natural scenes.

    PubMed

    Nascimento, Sérgio M C; Amano, Kinjiro; Foster, David H

    2016-03-01

    In natural complex environments, the elevation of the sun and the presence of occluding objects and mutual reflections cause variations in the spectral composition of the local illumination across time and location. Unlike the changes in time and their consequences for color appearance and constancy, the spatial variations of local illumination color in natural scenes have received relatively little attention. The aim of the present work was to characterize these spatial variations by spectral imaging. Hyperspectral radiance images were obtained from 30 rural and urban scenes in which neutral probe spheres were embedded. The spectra of the local illumination at 17 sample points on each sphere in each scene were extracted and a total of 1904 chromaticity coordinates and correlated color temperatures (CCTs) derived. Maximum differences in chromaticities over spheres and over scenes were similar. When data were pooled over scenes, CCTs ranged from 3000 K to 20,000 K, a variation of the same order of magnitude as that occurring over the day. Any mechanisms that underlie stable surface color perception in natural scenes need to accommodate these large spatial variations in local illumination color. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Supervisor Localization: A Top-Down Approach to Distributed Control of Discrete-Event Systems

    SciTech Connect

    Cai, K.; Wonham, W. M.

    2009-03-05

    A purely distributed control paradigm is proposed for discrete-event systems (DES). In contrast to control by one or more external supervisors, distributed control aims to design built-in strategies for individual agents. First a distributed optimal nonblocking control problem is formulated. To solve it, a top-down localization procedure is developed which systematically decomposes an external supervisor into local controllers while preserving optimality and nonblockingness. An efficient localization algorithm is provided to carry out the computation, and an automated guided vehicles (AGV) example presented for illustration. Finally, the 'easiest' and 'hardest' boundary cases of localization are discussed.

  17. CNS Cell Distribution and Axon Orientation Determine Local Spinal Cord Mechanical Properties

    PubMed Central

    Koser, David E.; Moeendarbary, Emad; Hanne, Janina; Kuerten, Stefanie; Franze, Kristian

    2015-01-01

    Mechanical signaling plays an important role in cell physiology and pathology. Many cell types, including neurons and glial cells, respond to the mechanical properties of their environment. Yet, for spinal cord tissue, data on tissue stiffness are sparse. To investigate the regional and direction-dependent mechanical properties of spinal cord tissue at a spatial resolution relevant to individual cells, we conducted atomic force microscopy (AFM) indentation and tensile measurements on acutely isolated mouse spinal cord tissue sectioned along the three major anatomical planes, and correlated local mechanical properties with the underlying cellular structures. Stiffness maps revealed that gray matter is significantly stiffer than white matter irrespective of directionality (transverse, coronal, and sagittal planes) and force direction (compression or tension) (Kg= ∼130 Pa vs. Kw= ∼70 Pa); both matters stiffened with increasing strain. When all data were pooled for each plane, gray matter behaved like an isotropic material under compression; however, subregions of the gray matter were rather heterogeneous and anisotropic. For example, in sagittal sections the dorsal horn was significantly stiffer than the ventral horn. In contrast, white matter behaved transversely isotropic, with the elastic stiffness along the craniocaudal (i.e., longitudinal) axis being lower than perpendicular to it. The stiffness distributions we found under compression strongly correlated with the orientation of axons, the areas of cell nuclei, and cellular in plane proximity. Based on these morphological parameters, we developed a phenomenological model to estimate local mechanical properties of central nervous system (CNS) tissue. Our study may thus ultimately help predicting local tissue stiffness, and hence cell behavior in response to mechanical signaling under physiological and pathological conditions, purely based on histological data. PMID:25954872

  18. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    DOE PAGES

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; ...

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulatingmore » internal strain fields in BMGs for the purpose of ductility enhancement.« less

  19. Evidence for strain-induced local conductance modulations in single-layer graphene on SiO2.

    PubMed

    Teague, M L; Lai, A P; Velasco, J; Hughes, C R; Beyer, A D; Bockrath, M W; Lau, C N; Yeh, N-C

    2009-07-01

    Graphene has emerged as an electronic material that is promising for device applications and for studying two-dimensional electron gases with relativistic dispersion near two Dirac points. Nonetheless, deviations from Dirac-like spectroscopy have been widely reported with varying interpretations. Here we show evidence for strain-induced spatial modulations in the local conductance of single-layer graphene on SiO(2) substrates from scanning tunneling microscopic (STM) studies. We find that strained graphene exhibits parabolic, U-shaped conductance vs bias voltage spectra rather than the V-shaped spectra expected for Dirac fermions, whereas V-shaped spectra are recovered in regions of relaxed graphene. Strain maps derived from the STM studies further reveal direct correlation with the local tunneling conductance. These results are attributed to a strain-induced frequency increase in the out-of-plane phonon mode that mediates the low-energy inelastic charge tunneling into graphene.

  20. Direct synchrotron x-ray measurements of local strain fields in elastically and plastically bent metallic glasses

    SciTech Connect

    Wu, Yuan; Stoica, Alexandru Dan; Ren, Yang; Ma, Dong; Gao, Yanfei F.; Bei, Hongbin

    2015-09-03

    In situ high-energy synchrotron X-ray diffraction was conducted on elastically and plastically bent bulk metallic glass (BMG) thin plates, from which distinct local elastic strain fields were mapped spatially. These directly measured residual strain fields can be nicely interpreted by our stress analysis, and also validate a previously proposed indirect residual-stress-measurement method by relating nanoindentation hardness to residual stresses. Local shear strain variations on the cross sections of these thin plates were found in the plastically bent BMG, which however cannot be determined from the indirect indentation method. As a result, this study has important implications in designing and manipulating internal strain fields in BMGs for the purpose of ductility enhancement.

  1. Timing of strain localization in high-pressure low-temperature shear zones: The argon isotopic record

    NASA Astrophysics Data System (ADS)

    Laurent, Valentin; Scaillet, Stéphane; Jolivet, Laurent; Augier, Romain

    2017-04-01

    The complex interplay between rheology, temperature and deformation profoundly influences how crustal-scale shear zones form and then evolve across a deforming lithosphere. Understanding early exhumation processes in subduction zones requires quantitative age constraints on the timing of strain localization within high-pressure shear zones. Using both the in situ laser ablation and conventional step-heating 40Ar/39Ar dating (on phengite single grains and populations) methods, this study aims at quantifying the duration of ductile deformation and the timing of strain localization within HP-LT shear zones of the Cycladic Blueschist Unit (CBU, Greece). The rate of this progressive strain localization is unknown, and in general, poorly known in similar geological contexts. Critical to retrieve realistic estimates of rates of strain localization during exhumation, dense 40Ar/39Ar age transects were sampled along shear zones recently identified on Syros and Sifnos islands. There, field observations suggest that deformation progressively localized downward in the CBU during exhumation. In parallel, these shear zones are characterized by different degrees of retrogression from blueschist-facies to greenschist-facies P-T conditions overprinting eclogite-facies record throughout the CBU. Results show straightforward correlations between the degree of retrogression, the finite strain intensity and 40Ar/39Ar ages; the most ductilely deformed and retrograded rocks yielded the youngest 40Ar/39Ar ages. The possible effects of strain localization during exhumation on the record of the argon isotopic system in HP-LT shear zones are addressed. Our results show that strain has localized in shear zones over a 30 Ma long period and that individual shear zones evolve during 7-15 Ma. We also discuss these results at small-scale to see whether deformation and fluid circulations, channelled within shear bands, can homogenize chemical compositions and reset the 40Ar/39Ar isotopic record

  2. Influence of water on rheology and strain localization in the lower continental crust

    NASA Astrophysics Data System (ADS)

    Getsinger, A. J.; Hirth, G.; Stünitz, H.; Goergen, E. T.

    2013-07-01

    We investigated deformation processes within a lower crustal shear zone exposed in gabbros from Arnøya, Norway. Over a distance of ˜1 m, the gabbro progresses from nominally undeformed to highly sheared where it is adjacent to a hydrous pegmatite. With increasing proximity to the pegmatite, there is a significant increase in the abundance of amphibole and zoisite (which form at the expense of pyroxene and calcic plagioclase) and a slight increase in the strength of plagioclase lattice-preferred orientation, but there is little change in recrystallized plagioclase grain size. Phase diagrams, the presence of hydrous reaction products, and deformation mechanism maps all indicate that the water activity (aH2O) during deformation must have been high (˜1) in the sheared gabbro compared with the nonhydrated, surrounding host gabbro. These observations indicate that fluid intrusion into mafic lower crust initiates syn-deformational, water-consuming reactions, creating a rheological contrast between wet and dry lithologies that promote strain localization. Thus, deformation of lower continental crust can be accommodated in highly localized zones of enhanced fluid infiltration. These results provide an example of how fluid weakens lower continental crust lithologies at high pressures and temperatures.

  3. Measurement of distributed strain and temperature based on higher order and higher mode Bragg conditions

    NASA Technical Reports Server (NTRS)

    Sirkis, James S. (Inventor); Sivanesan, Ponniah (Inventor); Venkat, Venki S. (Inventor)

    2001-01-01

    A Bragg grating sensor for measuring distributed strain and temperature at the same time comprises an optical fiber having a single mode operating wavelength region and below a cutoff wavelength of the fiber having a multimode operating wavelength region. A saturated, higher order Bragg grating having first and second order Bragg conditions is fabricated in the optical fiber. The first order of Bragg resonance wavelength of the Bragg grating is within the single mode operating wavelength region of the optical fiber and the second order of Bragg resonance wavelength is below the cutoff wavelength of the fiber within the multimode operating wavelength region. The reflectivities of the saturated Bragg grating at the first and second order Bragg conditions are less than two orders of magnitude of one another. In use, the first and second order Bragg conditions are simultaneously created in the sensor at the respective wavelengths and a signal from the sensor is demodulated with respect to each of the wavelengths corresponding to the first and second order Bragg conditions. Two Bragg conditions have different responsivities to strain and temperature, thus allowing two equations for axial strain and temperature to be found in terms of the measure shifts in the primary and second order Bragg wavelengths. This system of equations can be solved for strain and temperature.

  4. Mapping the Strain Distributions in Deformed Bulk Metallic Glasses Using Hard X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Bednarcik, J.; Chen, L. Y.; Wang, X. D.; Jiang, J. Z.; Franz, H.

    2012-05-01

    The deformation behavior of Cu45 Zr46.5 Al7Ti1.5 bulk metallic glass (BMG) under bending was investigated in-situ using high-energy X-ray synchrotron diffraction. Samples were bent using two different benders with radii of 10 and 20 mm. The components of the strain tensor were determined from the change of positions of the first maximum of the diffracted intensity in reciprocal space. The procedure of data treatment was improved by the introduction of direct beam off-center correction. Comparing results for the two different bending radii, we found that the zero stress region does not necessarily lay within the central part of the specimen. Bending with smaller radius resulted in symmetric strain distribution, whereas a larger bending radius revealed strong asymmetry. Furthermore, bending with a smaller radius (10 mm) shows steeper strain gradients as compared with the situation in which the larger bending radius (20 mm) was used. Using a smaller bending radius implies reaching higher tensile/compressive stresses and reveals the signs of the plastic deformation, which are demonstrated as a saturation of elastic strains.

  5. Impact of weightlessness on cardiac shape and left ventricular stress/strain distributions.

    PubMed

    Iskovitz, Ilana; Kassemi, Mohammad; Thomas, James D

    2013-12-01

    In this paper, a finite element model of the heart is developed to investigate the impact of different gravitational loadings of Earth, Mars, Moon, and microgravity on the cardiac shape and strain/stress distributions in the left ventricle. The finite element model is based on realistic 3D heart geometry, detailed fiber/sheet micro-architecture, and a validated orthotropic cardiac tissue model and constitutive relationship that capture the passive behavior of the heart at end-diastole. The model predicts the trend and magnitude of cardiac shape change at different gravitational levels with great fidelity in comparison to recent cardiac sphericity measurements performed during simulated reduced-gravity parabolic flight experiments. Moreover, the numerical predictions indicate that although the left ventricular strain distributions remain relatively unaltered across the gravitational fields and the strain extrema values occur at the same relative locations, their values change noticeably with decreasing gravity. As for the stress, however, both the magnitude and location of the extrema change with a decrease in the gravitational field. Consequently, tension regions of the heart on Earth can change into compression regions in space.

  6. Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring

    NASA Astrophysics Data System (ADS)

    Arsenault, Tyler J.; Achuthan, Ajit; Marzocca, Pier; Grappasonni, Chiara; Coppotelli, Giuliano

    2013-07-01

    The development of a fiber Bragg grating (FBG) based distributed strain sensor system for real time structural health monitoring of a wind turbine rotor and its validation under a laboratory scale test setup is discussed in this paper. A 1 kW, 1.6 m diameter rotor, horizontal axis wind turbine with three instrumented blades is used in this study. The sensor system consists of strain sensors, surface mounted at various locations on the blade. At first the sensors are calibrated under static loading conditions to validate the FBG mounting and the proposed data collection techniques. Then, the capability of the sensor system coupled with the operational modal analysis (OMA) methods to capture natural frequencies and corresponding mode shapes in terms of distributed strains are validated under various non-rotating dynamic loading conditions. Finally, the sensor system is tested under rotating conditions using the wind flow from an open-jet wind tunnel, for both a baseline wind turbine and a wind turbine with a structurally modified blade. The blade was modified by attaching a lumped mass at the blade tip simulating structural damage or ice accretion. The dynamic characteristics of the baseline (healthy) blade and modified (altered) blade are compared to validate the sensor system’s ability for real time structural health monitoring of the rotor.

  7. Modeling for IFOG Vibration Error Based on the Strain Distribution of Quadrupolar Fiber Coil.

    PubMed

    Gao, Zhongxing; Zhang, Yonggang; Zhang, Yunhao

    2016-07-21

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environment, especially in vibrational environment, is necessary for its practical applications. This paper presents a mathematical model for IFOG to theoretically compute the short-term rate errors caused by mechanical vibration. The computational procedures are mainly based on the strain distribution of quadrupolar fiber coil measured by stress analyzer. The definition of asymmetry of strain distribution (ASD) is given in the paper to evaluate the winding quality of the coil. The established model reveals that the high ASD and the variable fiber elastic modulus in large strain situation are two dominant reasons that give rise to nonreciprocity phase shift in IFOG under vibration. Furthermore, theoretical analysis and computational results indicate that vibration errors of both open-loop and closed-loop IFOG increase with the raise of vibrational amplitude, vibrational frequency and ASD. Finally, an estimation of vibration-induced IFOG errors in aircraft is done according to the proposed model. Our work is meaningful in designing IFOG coils to achieve a better anti-vibration performance.

  8. Modeling for IFOG Vibration Error Based on the Strain Distribution of Quadrupolar Fiber Coil

    PubMed Central

    Gao, Zhongxing; Zhang, Yonggang; Zhang, Yunhao

    2016-01-01

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environment, especially in vibrational environment, is necessary for its practical applications. This paper presents a mathematical model for IFOG to theoretically compute the short-term rate errors caused by mechanical vibration. The computational procedures are mainly based on the strain distribution of quadrupolar fiber coil measured by stress analyzer. The definition of asymmetry of strain distribution (ASD) is given in the paper to evaluate the winding quality of the coil. The established model reveals that the high ASD and the variable fiber elastic modulus in large strain situation are two dominant reasons that give rise to nonreciprocity phase shift in IFOG under vibration. Furthermore, theoretical analysis and computational results indicate that vibration errors of both open-loop and closed-loop IFOG increase with the raise of vibrational amplitude, vibrational frequency and ASD. Finally, an estimation of vibration-induced IFOG errors in aircraft is done according to the proposed model. Our work is meaningful in designing IFOG coils to achieve a better anti-vibration performance. PMID:27455257

  9. Characterization of Vibrio parahaemolyticus clinical strains from Maryland (2012–2013) and comparisons to a locally and globally diverse V. parahaemolyticus strains by whole-genome sequence analysis

    PubMed Central

    Haendiges, Julie; Timme, Ruth; Allard, Marc W.; Myers, Robert A.; Brown, Eric W.; Gonzalez-Escalona, Narjol

    2015-01-01

    Vibrio parahaemolyticus is the leading cause of foodborne illnesses in the US associated with the consumption of raw shellfish. Previous population studies of V. parahaemolyticus have used Multi-Locus Sequence Typing (MLST) or Pulsed Field Gel Electrophoresis (PFGE). Whole genome sequencing (WGS) provides a much higher level of resolution, but has been used to characterize only a few United States (US) clinical isolates. Here we report the WGS characterization of 34 genomes of V. parahaemolyticus strains that were isolated from clinical cases in the state of Maryland (MD) during 2 years (2012–2013). These 2 years saw an increase of V. parahaemolyticus cases compared to previous years. Among these MD isolates, 28% were negative for tdh and trh, 8% were tdh positive only, 11% were trh positive only, and 53% contained both genes. We compared this set of V. parahaemolyticus genomes to those of a collection of 17 archival strains from the US (10 previously sequenced strains and 7 from NCBI, collected between 1988 and 2004) and 15 international strains, isolated from geographically-diverse environmental and clinical sources (collected between 1980 and 2010). A WGS phylogenetic analysis of these strains revealed the regional outbreak strains from MD are highly diverse and yet genetically distinct from the international strains. Some MD strains caused outbreaks 2 years in a row, indicating a local source of contamination (e.g., ST631). Advances in WGS will enable this type of analysis to become routine, providing an excellent tool for improved surveillance. Databases built with phylogenetic data will help pinpoint sources of contamination in future outbreaks and contribute to faster outbreak control. PMID:25745421

  10. Strain localization in a fossilized subduction channel: Insights from the Cycladic Blueschist Unit (Syros, Greece)

    NASA Astrophysics Data System (ADS)

    Laurent, Valentin; Jolivet, Laurent; Roche, Vincent; Augier, Romain; Scaillet, Stéphane; Cardello, Giovanni Luca

    2016-03-01

    Syros Island is worldwide known for its preservation of HP-LT parageneses in the Cycladic Blueschist Unit (CBU) providing one of the best case-studies to understand the tectonometamorphic evolution of a subduction channel. Conflicting structural interpretations have been proposed to explain the geological architecture of Syros, in part reflecting a lack of consensus about the tectonic structure of the CBU. In this study, the geological and tectonometamorphic maps of Syros have been entirely redrawn in order to decipher the structure of a fossilized subduction channel. Based on structural and petrological observations, the CBU has been subdivided into three subunits separated by major ductile shear zones. New observations of the Vari Unit confirm that it rests on top of the CBU through a detachment or exhumation fault. While retrograde top-to-the E/NE shearing overprinting prograde deformation is widespread across the island, the prograde deformation has been only locally preserved within the less retrograded units. We show that after the prograde top-to-the S/SW shearing deformation, the CBU was exhumed by an overall top-to-the E/NE shearing from the depth of the eclogite-facies all the way to the depth of the greenschist-facies and finally, to the brittle crust. The exhumation process encompassed the syn-orogenic stage (contemporaneous of subduction, within the subduction channel - Eocene) to the post-orogenic stage (contemporaneous with the formation of the Aegean Sea - Oligocene to Miocene). From syn-orogenic to post-orogenic exhumation, deformation progressively localized toward the base of the CBU, along large-scale ductile shear zones, allowing the preservation of earlier HP-LT structures and HP-LT metamorphic parageneses. Finally, this study brings new insights on the tectonometamorphic evolution of a subduction channel showing how strain localizes during the history of an accretionary complex, both during the prograde and retrograde history.

  11. Long-gauge FBGs interrogated by DTR3 for dynamic distributed strain measurement of helicopter blade model

    NASA Astrophysics Data System (ADS)

    Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.

    2014-05-01

    In this paper, we describe characteristics of distributed strain sensing based on a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme with a long-gauge Fiber Bragg Grating (FBG), which is attractive to dynamic structural deformation monitoring such as a helicopter blade and an airplane wing. The DTR3 interrogator using the longgauge FBG has capability of detecting distributed strain with 50 cm spatial resolution in 100 Hz sampling rate. We evaluated distributed strain sensing characteristics of the long-gauge FBG attached on a 5.5 m helicopter blade model in static tests and free vibration dynamic tests.

  12. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Koizumi, Yuichiro; Chiba, Akihiko

    2014-04-01

    Locally developed strains caused by athermal γ face-centered cubic (fcc)→ε hexagonal close-packed (hcp) martensitic transformation were investigated for the γ matrix of Ni-free Co-29Cr-6Mo (wt%) alloys prepared with or without added nitrogen. Electron-backscatter-diffraction-(EBSD)-based strain analysis revealed that in addition to ε-martensite interiors, the N-free alloy that had a duplex microstructure consisting of the γ matrix and athermal ε-martensite plates showed larger magnitudes of both elastic and plastic strains in the γ phase matrix than the N-doped counterpart that did not have a ε-martensite phase. Transmission electron microscopy (TEM) results indicated that the ε-martensite microplates were aggregates of thin ε-layers, which were formed by three different {111}γ〈112¯〉γ Shockley partial dislocations in accordance with a previously proposed mechanism (Putaux and Chevalier, 1996) that canceled the shear strains of the individual variants. The plastic strains are believed to have originated from the martensitic transformation itself, and the activity of dislocations is believed to be the origin of the transformation. We have revealed that the elastic strains in the γ matrix originate from interactions among the ε-martensite phase, extended dislocations, and/or thin ε-layers. The dislocations highly dissociated into stacking faults, making stress relaxation at intersections difficult and further introducing local strain evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. HpaA shows variable surface localization but the gene expression is similar in different Helicobacter pylori strains.

    PubMed

    Lundström, A M; Blom, K; Sundaeus, V; Bölin, I

    2001-11-01

    Due to earlier contradictory results regarding the localization of the putative Helicobacter pylori adhesin A (HpaA), we aimed to compare the gene and protein expression and surface localization of HpaA in different H. pylori strains. Five H. pylori strains were cultivated for 11 days and analysed by Northern blot analysis, flow cytometry (FCM), semi-quantitative dot blot, colony blot, immuno-electron microscopy (IEM), and phase-contrast microscopy. The highest transcriptional activity of the hapA gene as observed after 3-4 days of cultivation and two mRNA transcripts of 1600 and 3100 nucleotides, respectively, were detected in all five strains with the hpaA probe. We also showed by reverse transcription-polymerase chain reaction (RT-PCR) that the hpaA gene is co-transcribed with the downstream omp18 gene. The highest total HpaA protein production in bacteria occurred between day 3 and 7, as determined by semi-quantitative dot blot, and was similar in the different strains. The maximal proportion of cells with HpaA on the bacterial surface, detected by FCM, was for strain SS1, 90%; Hel 344, 60%; CCUG 17875, 61%; CCUG 17874, 86% and for strain AH 244 only 35%. By IEM HpaA was detected in all strains both on the bacterial surface and on the flagellar sheath. Copyright 2001 Academic Press.

  14. Pressure, stress, and strain distribution in the double-stage diamond anvil cell

    SciTech Connect

    Lobanov, Sergey S.; Prakapenka, Vitali B.; Prescher, Clemens; Konôpková, Zuzana; Liermann, Hanns-Peter; Crispin, Katherine L.; Zhang, Chi; Goncharov, Alexander F.

    2015-07-21

    Double stage diamond anvil cells (DACs) of two designs have been assembled and tested. We used a standard symmetric DAC with flat or beveled culets as a primary stage and CVD microanvils machined by a focused ion beam as a second. We evaluated pressure, stress, and strain distributions in gold and a mixture of gold and iron as well as in secondary anvils using synchrotron x-ray diffraction with a micro-focused beam. A maximum pressure of 240 GPa was reached independent of the first stage anvil culet size. We found that the stress field generated by the second stage anvils is typical of conventional DAC experiments. The maximum pressures reached are limited by strains developing in the secondary anvil and by cupping of the first stage diamond anvil in the presented experimental designs. Also, our experiments show that pressures of several megabars may be reached without sacrificing the first stage diamond anvils.

  15. Experimental and numerical analysis of HPTE on mechanical properties of materials and strain distribution

    NASA Astrophysics Data System (ADS)

    Omranpour, B.; Kulagin, R.; Ivanisenko, Y.; Garcia Sanchez, E.

    2017-05-01

    High Pressure Torsion Extrusion (HPTE) is a novel technique which has been recently introduced to the society of Nano-SPD researchers. HPTE exploits the deformation mechanics of HPT but in a larger scale within rod-shape samples and is capable of applying high values of strain to materials in one pass. This research aims to evaluate the effect of HPTE on mechanical properties of materials and also to study the effect of geometry of HPTE die on strain distribution in deformed samples by using Finite Element Method (FEM). Commercial pure Aluminium AA1050 was used for experimental work; and eccentric dies with parallel-misaligned channels were developed for evaluation by numerical modelling. Results of this research will help us better understand the effect of process parameters and also geometry of the die on materials.

  16. Design of atomic step networks on Si(111) through strain distribution control

    NASA Astrophysics Data System (ADS)

    Omi, Hiroo; Homma, Yoshikazu; Ogino, Toshio; Stoyanov, Stoyan; Tonchev, Vesselin

    2004-01-01

    We propose an alternative method to control atomic step networks on silicon for future wafer-scale integration of self-assembling nanostructures. The method is the strain-distribution-control method that we have recently proposed in [H. Omi, D. J. Bottomley, and T. Ogino, Appl. Phys. Lett. 80, 1073 (2002)], which we apply here to design atomic step networks on vicinal Si(111) wafer. Si(111) with its strain patterned by buried silicon oxide inclusions was annealed at 1230 °C in ultrahigh vacuum and observed by in situ secondary electron microscopy and ex situ atomic force microscopy. The images show that the method enables us to create the desired arrays of atomic step networks on an arbitrary area of planar silicon wafer. The arrays remain stable during the 1230 °C annealing.

  17. Influence of protein or cystein deficiency on hepatic subcellular distribution of methyl mercury in two rat strains.

    PubMed

    Beije, B; Arrhenius, E

    1978-02-01

    The influence of protein deprivation and cystein deficiency on the distribution of methyl mercury between 4 subcellular fractions of liver was studied in 2 rat strains (Wistar, strain R and Sprague-Dawley). Kept on a standard diet, the 2 strains showed a similar distribution pattern, with the highest mercury level found in the cytosol, followed by the mitochondrial, microsomal and nuclei fractions. The protein free diet caused on increase in the total amount of bound mercury in both strains, the greatest increase, being found in livers from strain R rats. The cystein deficient diet, on the other hand, gave rise to diverging results. Whereas the level of mercury bound to the subcellular fractions was increased in livers from strain R rats, it was markedly reduced in livers from Sprague-Dawley rats.

  18. Two-dimensional Moiré phase analysis for accurate strain distribution measurement and application in crack prediction.

    PubMed

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Koyama, Motomichi; Tsuzaki, Kaneaki

    2017-06-12

    Aimed at the low accuracy problem of shear strain measurement in Moiré methods, a two-dimensional (2D) Moiré phase analysis method is proposed for full-field deformation measurement with high accuracy. A grid image is first processed by the spatial phase-shifting sampling Moiré technique to get the Moiré phases in two directions, which are then conjointly analyzed for measuring 2D displacement and strain distributions. The strain especially the shear strain measurement accuracy is remarkably improved, and dynamic deformation is measurable from automatic batch processing of single-shot grid images. As an application, the 2D microscale strain distributions of a titanium alloy were measured, and the crack occurrence location was successfully predicted from strain concentration.

  19. A distributed optical fiber sensing system for dynamic strain measurement based on artificial reflector

    NASA Astrophysics Data System (ADS)

    Sun, Zhenhong; Shan, Yuanyuan; Li, Yanting; Zhang, Yixin; Zhang, Xuping

    2016-10-01

    Phase sensitive optical time domain reflectometry (Φ-OTDR) has been widely used in many applications for its distributed sensing ability on weak disturbance all along the sensing fiber. However, traditional Φ-OTDR cannot make quantitative measurement on the external disturbance due to the randomly distributed position and reflectivity of scatters within the optical fiber. Recently, some methods have been proposed to realize quantitative measurement of dynamic strain. In these literatures, the fiber with or without FBGs in practice was easily damaged and with difficulty of maintenance. PZT is employed to generate strain event in the fiber. There is a large gap compared with the real detecting environment, which will not reveal the full performance of the sensing system. In this paper, a distributed optical fiber sensing (DOFS) system for dynamic strain measurement based on artificial reflector is proposed and demonstrated experimentally. The fiber under test (FUT) is composed by four 20-meter long single mode optical fiber patch cords (OFPCs), which are cascaded with ferrule contactor/physical contact (FC/PC) connectors via fiber flanges. The fiber facet of FC/PC connector forms an artificial reflector. When the interval between the two reflectors is changed, the phase of the interference signal will also be changed. A symmetric 3×3 coupler with table-look-up scheme is introduced to discriminate the phase change through interference intensity. In our experiment, the center 10m section of the second OFPC is attached to the bottom of an aluminum alloy plate. An ordinary loudspeaker box was located on the top of the aluminum alloy plate. The dynamic strain generated by the loudspeaker box is transmitted from the aluminum alloy plate to the OFPC. Experimental results show that the proposed method has a good frequency response characteristic up to 3.2 kHz and a linear intensity response of R2=0.9986 while the optical probe pulse width and repetition rate were 100ns

  20. Draft Genome Sequence of Two Sphingopyxis sp. Strains, Dominant Members of the Bacterial Community Associated with a Drinking Water Distribution System Simulator

    EPA Science Inventory

    We report the draft genome of two Sphingopyxis spp. strains isolated from a chloraminated drinking water distribution system simulator. Both strains are ubiquitous residents and early colonizers of water distribution systems. Genomic annotation identified a class 1 integron (in...

  1. Draft Genome Sequence of Two Sphingopyxis sp. Strains, Dominant Members of the Bacterial Community Associated with a Drinking Water Distribution System Simulator

    EPA Science Inventory

    We report the draft genome of two Sphingopyxis spp. strains isolated from a chloraminated drinking water distribution system simulator. Both strains are ubiquitous residents and early colonizers of water distribution systems. Genomic annotation identified a class 1 integron (in...

  2. Local or distributed activation? The view from biology

    NASA Astrophysics Data System (ADS)

    Reimers, Mark

    2011-06-01

    There is considerable disagreement among connectionist modellers over whether to represent distinct properties by distinct nodes of a network or whether properties should be represented by patterns of activity across all nodes. This paper draws on the literature of neuroscience to say that a more subtle way of describing how different brain regions contribute to a behaviour, in terms of individual learning and in terms of degrees of importance, may render the current debate moot: both sides of the 'localist' versus 'distributed' debate emphasise different aspects of biology.

  3. Localized bedrock aquifer distribution explains discharge from a headwater catchment

    NASA Astrophysics Data System (ADS)

    Kosugi, Ken'ichirou; Fujimoto, Masamitsu; Katsura, Shin'ya; Kato, Hiroyuki; Sando, Yoshiki; Mizuyama, Takahisa

    2011-07-01

    Understanding a discharge hydrograph is one of the leading interests in catchment hydrology. Recent research has provided credible information on the importance of bedrock groundwater on discharge hydrographs from headwater catchments. However, intensive monitoring of bedrock groundwater is rare in mountains with steep topography. Hence, how bedrock groundwater controls discharge from a steep headwater catchment is in dispute. In this study, we conducted long-term hydrological observations using densely located bedrock wells in a headwater catchment underlain by granitic bedrock. The catchment has steep topography affected by diastrophic activities. Results showed a fairly regionalized distribution of bedrock aquifers within a scale of tens of meters, consisting of upper, middle, and lower aquifers, instead of a gradual and continuous decline in water level from ridge to valley bottom. This was presumably attributable to the unique bedrock structure; fault lines developed in the watershed worked to form divides between the bedrock aquifers. Spatial expanse of each aquifer and the interaction among aquifers were key factors to explain gentle and considerable variations in the base flow discharge and triple-peak discharge responses of the observed hydrograph. A simple model was developed to simulate the discharge hydrograph, which computed each of the contributions from the soil mantle groundwater, from the lower aquifer, and from the middle aquifer to the discharge. The modeling results generally succeeded in reproducing the observed hydrograph. Thus, this study demonstrated that understanding regionalized bedrock aquifer distribution is pivotal for explaining discharge hydrograph from headwater catchments that have been affected by diastrophic activities.

  4. An Autonomous Distributed Fault-Tolerant Local Positioning System

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2017-01-01

    We describe a fault-tolerant, GPS-independent (Global Positioning System) distributed autonomous positioning system for static/mobile objects and present solutions for providing highly-accurate geo-location data for the static/mobile objects in dynamic environments. The reliability and accuracy of a positioning system fundamentally depends on two factors; its timeliness in broadcasting signals and the knowledge of its geometry, i.e., locations and distances of the beacons. Existing distributed positioning systems either synchronize to a common external source like GPS or establish their own time synchrony using a scheme similar to a master-slave by designating a particular beacon as the master and other beacons synchronize to it, resulting in a single point of failure. Another drawback of existing positioning systems is their lack of addressing various fault manifestations, in particular, communication link failures, which, as in wireless networks, are increasingly dominating the process failures and are typically transient and mobile, in the sense that they typically affect different messages to/from different processes over time.

  5. Cutaneous distribution and localization of Cercopithifilaria sp. microfilariae in dogs.

    PubMed

    Otranto, Domenico; Brianti, Emanuele; Abramo, Francesca; Gaglio, Gabriella; Napoli, Ettore; Latrofa, Maria Stefania; Ramos, Rafael Antonio; Dantas-Torres, Filipe; Bain, Odile

    2012-11-23

    The aim of this study was to investigate the anatomical distribution of microfilariae of a recently described Cercopithifilaria sp. and the relationship with the preferred attachment sites of its vector, the brown dog tick Rhipicephalus sanguineus. Skin samples from 20 dogs were collected from eight anatomical sites and soaked twice in saline solution at 37°C. All samples were also molecularly processed for the specific amplification of partial cytochrome c oxidase 1 gene. Microfilariae were unevenly distributed on the body, with higher frequencies on interscapular region (n=13; 68.4%) and on the head (n=9; 47.4%). Larval abundance in dogs was positively correlated with the number of positive anatomical sites with a higher percentage of skin samples scoring positive at the microscopic examination of the first sediment (n=47; 30.9%) than of the second (n=8; 5.3%). Histological examination revealed that microfilariae were scattered in the dermis, in association with inflammatory cells. Molecular analysis of skin samples showed a lower frequency of positive sites (n=37; 24.3%) when compared to the microscopic examination (n=53; 34.9%) with five haplotypes sequenced. The results here presented suggested a close co-evolution of this filarioid with its vector.

  6. Phase and strain distributions associated with reactive contaminants inside of a solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Liu, Di-Jia; Almer, Jonathan

    2009-06-01

    A microfocused synchrotron x-ray diffraction method was used to reveal the quantitative distributions of phase fractions, internal strains, and their interdependences at different layer depths inside of a planar solid oxide fuel cell, which was deactivated by chromium contamination through direct contact with the metallic interconnect under typical operating conditions. These observations provide insight into the mechanism of Cr poisoning. The method can serve as a versatile tool for studying the electrochemical devices with thin-layered construction such as batteries and fuel cells under static or in situ conditions.

  7. Method of Quantifying Three Dimensional Strain Distribution in Skeletal Muscle Using Cine Phase Contrast MRI

    PubMed Central

    Jensen, Elisabeth R.; Morrow, Duane A.; Felmlee, Joel P.; Murthy, Naveen S.; Kaufman, Kenton R.

    2016-01-01

    Intramuscular pressure (IMP), a correlate of muscle tension, may fill an important clinical testing void. A barrier to implementing this measure clinically is its non-uniform distribution, which is not fully understood. Pressure is generated by changes in fluid mass and volume, therefore 3D volumetric strain distribution may affect IMP distribution. The purpose of this study was to develop a method for quantifying 3D volumetric strain distribution in the human tibialis anterior (TA) during passive tension using cine Phase Contrast (CPC) MRI and to assess its accuracy and precision. Five healthy subjects each participated in three data collections. A custom MRI-compatible apparatus repeatedly rotated the subjects’ ankle between 0 and 26 degrees plantarflexion while CPC MRI data were collected. Additionally, T2-weighted images of the lower leg were collected both before and after the CPC data collection with the ankle stationary at both 0 and 26 degrees plantarflexion for TA muscle segmentation. A 3D hexahedral mesh was generated based on the TA surface before CPC data collection with the ankle at 0 degrees plantarflexion and the node trajectories were tracked using the CPC data. The volumetric strain of each element was quantified. Three tests were employed to assess the measure accuracy and precision. First, to quantify leg position drift, the TA segmentations were compared before and after CPC data collection. This error was 1.5±0.7 mm. Second, to assess the surface node trajectory accuracy, the deformed mesh surface was compared to the TA segmented at 26 degrees of ankle plantarflexion. This error was 0.6±0.2 mm. Third, the standard deviation of volumetric strain across the three data collections was calculated for each element and subject. The median between-day variability across subjects and mesh elements was 0.06 mm3/mm3 (95% confidence interval 0.01 to 0.18 mm3/mm3). Overall the results demonstrated excellent accuracy and precision. PMID:26595686

  8. Colwellia psychrerythraea strains from distant deep sea basins show adaptation to local conditions

    SciTech Connect

    Techtmann, Stephen M.; Fitzgerald, Kathleen S.; Stelling, Savannah C.; Joyner, Dominique C.; Utturkar, Sagar M.; Harris, Austin P.; Alshibli, Noor K.; Brown, Steven D.; Hazen, Terry C.

    2016-05-09

    Many studies have shown that microbes, which share nearly identical 16S rRNA genes, can have highly divergent genomes. Microbes from distinct parts of the ocean also exhibit biogeographic patterning. Here in this study we seek to better understand how certain microbes from the same species have adapted for growth under local conditions. The phenotypic and genomic heterogeneity of three strains of Colwellia psychrerythraea was investigated in order to understand adaptions to local environments. Colwellia are psychrophilic heterotrophic marine bacteria ubiquitous in cold marine ecosystems. We have recently isolated two Colwellia strains: ND2E from the Eastern Mediterranean and GAB14E from the Great Australian Bight. The 16S rRNA sequence of these two strains were greater than 98.2% identical to the well-characterized C. psychrerythraea 34H, which was isolated from arctic sediments. Salt tolerance, and carbon source utilization profiles for these strains were determined using Biolog Phenotype MicoArrays. These strains exhibited distinct salt tolerance, which was not associated with the salinity of sites of isolation. The carbon source utilization profiles were distinct with less than half of the tested carbon sources being metabolized by all three strains. Whole genome sequencing revealed that the genomes of these three strains were quite diverse with some genomes having up to 1600 strain-specific genes. Many genes involved in degrading strain-specific carbon sources were identified. Finally, there appears to be a link between carbon source utilization and location of isolation with distinctions observed between the Colwellia isolate recovered from sediment compared to water column isolates.

  9. The influence of metasomatic reactions on distributed vs. localized slip in ultramafic shear zones

    NASA Astrophysics Data System (ADS)

    Tarling, Matthew S.; Tulley, Chris J.; Smith, Steven A. F.

    2016-04-01

    The Livingstone Fault is a >1000 km long terrane boundary in New Zealand that juxtaposes ultramafic rocks of the Dun Mountain Ophiolite Belt against quartzofeldspathic rocks of the continental Caples Terrane. The fault is characterized by a zone of sheared serpentinite mélange tens to several hundreds of meters wide with a generally well-defined scaly fabric, containing entrained pods of massive serpentinite, volcanic rocks and quartzofeldspathic rocks. Talc- and tremolite- forming metasomatic reactions occurred frequently within the mélange zone, along the margins of the mélange and at the edges of entrained pods. These reactions were the result of the interaction between the serpentine minerals and silica bearing fluids derived from the quartzofeldspathic Caples Terrane. In the bulk of the mélange, structures such as distributed scaly fabrics, S-C fabrics, and networks of fibrous serpentine veins suggest a broad delocalization of strain, likely accommodated by pressure-solution mechanisms along the serpentinite- and talc-bearing fabrics. However, at the margins of the mélange zone and the edges of pods, layers of tremolite tens of centimeters thick are characterized by a highly indurated microstructure consisting of networks of tightly interwoven, acicular tremolite crystals forming a semi-nephritic to nephritic texture. In these metasomatic regions, discrete cataclastic slip zones associated with well-polished slickenlined surfaces are observed at the interfaces of the serpentinite and Caples Terrane quartzofeldspathics. In the Livingstone Fault, this style of highly-localized slip is uniquely associated withthe development of the indurated nephritic textures. Because tremolite is a frictionally-strong and generally velocity-weakening calc-silicate, we speculate that the tremolite-forming metasomatic reactions may have promoted localized and unstable fault slip within a shear zone that was otherwise deforming by creep. Employing scanning and transmission

  10. Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy.

    PubMed

    Rahaman, Mahfujur; Rodriguez, Raul D; Plechinger, Gerd; Moras, Stefan; Schüller, Christian; Korn, Tobias; Zahn, Dietrich R T

    2017-09-19

    Tip-enhanced Raman spectroscopy (TERS) has been rapidly improved over the last decade and opened up opportunities to study phonon properties of materials at the nanometer scale. In this contribution we report on tip-enhanced Raman spectroscopy (TERS) of an ultra-thin MoS2 flake on a nanostructured Au on silicon surface forming a two-dimensional (2D) crystal/plasmonic heterostructure. Au nanostructures (shaped in triangles) are prepared by nanosphere lithography and then MoS2 is mechanically exfoliated on top of them. The TERS spectra acquired under resonance conditions at 638 nm excitation wavelength evidence strain changes spatially localized to regions as small as 25 nm in TERS imaging. We observe the highest Raman intensity enhancement for MoS2 on top of Au nanotriangles due to the strong electromagnetic confinement between the tip and a single triangle. Our results enable us to determine the local strain in MoS2 induced during heterostructure formation. The maximum frequency shift of E2g mode is determined to be (4.2 ± 0.8) cm(-1) corresponding to 1.4 % of biaxial strain induced in the MoS2 layer. We find that the regions of maximum local strain correspond to the regions of maximum topographic curvature as extracted from atomic force microscopy measurements. This tip-enhanced Raman spectroscopy study allows us to determine the built-in strain that arises when 2D materials interact with other nanostructures.

  11. Finite Element Analysis of Progressive Failure and Strain Localization of Carbon Fiber/Epoxy Composite Laminates by ABAQUS

    NASA Astrophysics Data System (ADS)

    Liu, P. F.; Yang, Y. H.; Gu, Z. P.; Zheng, J. Y.

    2015-12-01

    Interaction mechanism between the intralaminar damage and interlaminar delamination of composite laminates is always a challenging issue. It is important to consider the progressive failure and strain softening behaviors simultaneously during the damage modeling and numerical simulation of composites using FEA. This paper performs three-dimensional finite element analysis of the progressive failure and strain localization of composites using FEA. An intralaminar progressive failure model based on the strain components is proposed and the nonlinear cohesive model is used to predict the delamination growth. In particular, the nonlocal integral theory which introduces a length scale into the governing equations is used to regularize the strain localization problems of composite structures. Special finite element codes are developed using ABAQUS to predict the intralaminar and interlaminar damage evolution of composites simultaneously. The carbon fiber/epoxy composite laminates with a central hole demonstrates the developed theoretical models and numerical algorithm by discussing the effects of the mesh sizes and layups patterns. It is shown the strain localization problem can be well solved in the progressive failure analysis of composites when the energy dissipation due to the damage of the fiber, matrix and interface occurs at a relatively wide area.

  12. Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy.

    PubMed

    Wang, Li; Chen, Yunjie; Pan, Xiaohua; Hong, Xunning; Xia, Deshen

    2010-05-15

    This paper presents a variational level set approach in a multi-phase formulation to segmentation of brain magnetic resonance (MR) images with intensity inhomogeneity. In our model, the local image intensities are characterized by Gaussian distributions with different means and variances. We define a local Gaussian distribution fitting energy with level set functions and local means and variances as variables. The means and variances of local intensities are considered as spatially varying functions. Therefore, our method is able to deal with intensity inhomogeneity without inhomogeneity correction. Our method has been applied to 3T and 7T MR images with promising results.

  13. Cones of localized shear strain in incompressible elasticity with prestress: Green's function and integral representations

    PubMed Central

    Argani, L. P.; Bigoni, D.; Capuani, D.; Movchan, N. V.

    2014-01-01

    The infinite-body three-dimensional Green's function set (for incremental displacement and mean stress) is derived for the incremental deformation of a uniformly strained incompressible, nonlinear elastic body. Particular cases of the developed formulation are the Mooney–Rivlin elasticity and the J2-deformation theory of plasticity. These Green's functions are used to develop a boundary integral equation framework, by introducing an ad hoc potential, which paves the way for a boundary element formulation of three-dimensional problems of incremental elasticity. Results are used to investigate the behaviour of a material deformed near the limit of ellipticity and to reveal patterns of shear failure. In fact, within the investigated three-dimensional framework, localized deformations emanating from a perturbation are shown to be organized in conical geometries rather than in planar bands, so that failure is predicted to develop through curved and thin surfaces of intense shearing, as can for instance be observed in the cup–cone rupture of ductile metal bars. PMID:25197258

  14. Cones of localized shear strain in incompressible elasticity with prestress: Green's function and integral representations.

    PubMed

    Argani, L P; Bigoni, D; Capuani, D; Movchan, N V

    2014-09-08

    The infinite-body three-dimensional Green's function set (for incremental displacement and mean stress) is derived for the incremental deformation of a uniformly strained incompressible, nonlinear elastic body. Particular cases of the developed formulation are the Mooney-Rivlin elasticity and the J2-deformation theory of plasticity. These Green's functions are used to develop a boundary integral equation framework, by introducing an ad hoc potential, which paves the way for a boundary element formulation of three-dimensional problems of incremental elasticity. Results are used to investigate the behaviour of a material deformed near the limit of ellipticity and to reveal patterns of shear failure. In fact, within the investigated three-dimensional framework, localized deformations emanating from a perturbation are shown to be organized in conical geometries rather than in planar bands, so that failure is predicted to develop through curved and thin surfaces of intense shearing, as can for instance be observed in the cup-cone rupture of ductile metal bars.

  15. Fatty acid preference of mycelium-bound lipase from a locally isolated strain of Geotrichum candidum.

    PubMed

    Loo, Joo Ling; Lai, Oi Mlng; Long, Kamariah; Ghazali, Hasanah Mohd

    2007-12-01

    Mycelium-bound lipase (MBL) was prepared using a strain of Geotrichum candidum isolated from local soil. At the time of maximum lipase activity (54 h), the mycelia to which the lipase was bound were harvested by filtration and centrifugation. Dry MBL was prepared by lyophilizing the mycelia obtained. The yield of MBL was 3.66 g/l with a protein content of 44.11 mg/g. The lipase activity and specific lipase activity were 22.59 and 510 U/g protein, respectively. The moisture content of the MBL was 3.85%. The activity of free (extracellular) lipase in the culture supernatant (after removal of mycelia) was less than 0.2 U/ml. The MBL showed selectivity for oleic acid over palmitic acid during hydrolysis of palm olein, indicating that the lipase from G. candidum displayed high substrate selectivity for unsaturated fatty acid containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.

  16. Mycelium-bound lipase from a locally isolated strain of Geotrichum candidum.

    PubMed

    Loo, Joo Ling; Khoramnia, Anahita; Lai, Oi Ming; Long, Kamariah; Ghazali, Hasanah Mohd

    2014-06-23

    Mycelium-bound lipase (MBL), from a locally isolated Geotrichum candidum strain, was produced and characterized as a natural immobilized lipase. A time course study of its lipolytic activity in 1 L liquid broth revealed the maximum MBL activity at 4 h for mycelium cells harvested after 54 h. The yield and specific activity of MBL were 3.87 g/L dry weight and 508.33 U/g protein, respectively, while less than 0.2 U/mL lipase activity was detected in the culture supernatant. Prolonged incubation caused release of the bound lipase into the growth medium. The growth pattern of G. candidum, and production and properties of MBL were not affected by the scale. The stability of mycelia harboring lipase (MBL), harvested and lyophilized after 54 h, studied at 4 °C depicted a loss of 4.3% and 30% in MBL activity after 1 and 8 months, while the activity of free lipase was totally lost after 14 days of storage. The MBL from G. candidum displayed high substrate selectivity for unsaturated fatty acids containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.

  17. [Serotype distribution and antimicrobial susceptibilities of Salmonella strains recovered from environmental samples between 2008-2014].

    PubMed

    Güleşen, Revasiye; Levent, Belkıs; Üvey, Mehmet; Bayrak, Hasan; Akgeyik, Mesut

    2016-07-01

    Despite the measures taken and control applications worldwide, Salmonella infections continue to threat the public health. Since these infections also cause significant economical loss, the salmonellas continue to be forefront globally. The determination of Salmonella serotypes and their sources is important for epidemiological point of view. In this study, serotype distribution and antimicrobial resistance of environmental isolates of Salmonella spp. recovered from the poultry farms, that were send for confirmation and serotyping between seven years period, 2008-2014, were evaluated. Strains isolated from environmental samples that were sent to Public Health Institute, Department of Microbiology Reference Laboratory, National Reference Laboratory for Enteric Pathogens, were inoculated onto Salmonella-Shigella and Xylose Lysine Desoxycholate agar and evaluated after 18-24 hours of incubation at 37°C. The identification of the strains was performed by using standard biochemical tests from the suspected colonies. Strains compatible with Salmonella spp. were serotyped using polyvalent and monovalent Salmonella O and H antisera by slide agglutination method. Antibiotic susceptibility tests were performed and evaluated according to CLSI recommendation using Kirby-Bauer disk diffusion method. In our study, a total of 2011 Salmonella strains were evaluated and 15 different serogroups and 75 different serotypes were identified. The most common Salmonella serotypes were S.Infantis (30.6%), followed by S.Enteritidis (21.8%), S.Typhimurium (6.5%), S.Kottbus (5.2%), S.Tennessee (4.3%), S.Mbandaka (4.1%), S.Indiana (3.9%), S.Kentucky (3%), S.Corvallis (2.5%), S.Paratyphi B (1.9%) and S.Hadar (1.7%). Among the isolates, 50.1% (1008/2011) were found susceptible to all of the tested antimicrobials. The rate of isolates that were resistant to only one drug was found to be 15.6%, whereas 30.9% of the strains showed multi-drug resistance (resistant to ≥ 3 antimicrobial drugs

  18. Strain localization in the lower crust: brittle precursors versus lithological heterogeneities (Musgrave Ranges, Central Australia)

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Mancktelow, Neil; Wex, Sebastian; Pennacchioni, Giorgio; Camacho, Alfredo

    2016-04-01

    The Davenport shear zone in Central Australia is a strike-slip ductile shear zone developed during the Petermann Orogeny (~ 550 Ma). The conditions of shearing are estimated to be amphibolite-eclogite facies (650 °C, 1.2 GPa). The up to seven kilometre thick mylonite zone encloses several large low strain domains with excellent exposure, thus allowing a thorough study of the initiation of shear zones. Quartzo-feldspathic gneisses and granitoids inherit a suite of lithological heterogeneities such as quartz-rich pegmatites, mafic layers and dykes. When in a favourable orientation to the shortening direction, these rheologically different pre-existing layers might be expected to localize deformation. However, with the singular exception of long, continuous and fine-grained dolerite dykes, this is not observed. Quartz-rich pegmatites are mostly unsheared, even if in a favourable orientation, and sometimes boudinaged or folded. There are instead many shear zones only a few mm to cm in width, extending up to tens of metres, which are in fact oriented at a very high angle to the shortening direction. Parallel to these, a network of little to moderately overprinted brittle fractures are observed, commonly marked by pseudotachylyte (pst) and sometimes new biotite. Shear reactivation of these precursor fractures is generally limited to the length of the initial fracture and typically re-uses and shears the pst. The recrystallized mineral assemblage in the sheared pst consists of Cpx+Grt+Fsp±Ky and is the same to that in the adjacent sheared gneiss, with the same PT estimates (650 °C, 1.2 GPa). In some cases, multiple generations of cross-cutting and sheared pst demonstrate alternating fracture and flow during progressive shear zone development and a clear tendency for subsequent pst formation to also localize in the existing shear zone. The latest pst may be both unsheared and unrecrystallized (no grt) and is probably related to a late stage, still localized within the

  19. Modal analysis of a cantilever beam by use of Brillouin based distributed dynamic strain measurements

    NASA Astrophysics Data System (ADS)

    Minardo, Aldo; Coscetta, Agnese; Pirozzi, Salvatore; Bernini, Romeo; Zeni, Luigi

    2012-12-01

    In this work we report an experimental modal analysis of a cantilever beam, carried out by use of a Brillouin optical time-domain analysis (BOTDA) setup operated at a fixed pump-probe frequency shift. The employed technique permitted us to carry out distributed strain measurements along the vibrating beam at a maximum acquisition rate of 108 Hz. The mode shapes of the first three bending modes (1.7, 10.8, 21.6 Hz) were measured for the structure under test. The good agreement between the experimental and numerical results based on a finite-element method (FEM) analysis demonstrates that Brillouin based distributed sensors are well suited to perform the modal analysis of a vibrating structure. This type of analysis may be useful for applications in structural health monitoring where changes in mode shapes are used as indicators of the damage to the structure.

  20. The role of silicon, vacancies, and strain in carbon distribution for low temperature bainite

    SciTech Connect

    Sampath, S.; Rementeria, R.; Huang, X.; Caballero, Francesca G.; Janisch, R.; Poplawsky, J. D.; Garcia-Mateo, C.

    2016-02-19

    Here, we investigated the phenomenon of carbon supersaturation and carbon clustering in bainitic ferrite with atom probe tomography (APT) and ab-initio density functional theory (DFT) calculations. The experimental results show a homogeneous distribution of silicon in the microstructure, which contains both ferrite and retained austenite. This distribution is mimicked well by the computational approach. In addition, an accumulation of C in certain regions of the bainitic ferrite with C concentrations up to 13 at % is observed. Based on the DFT results, these clusters are explained as strained, tetragonal regions in the ferritic bainite, in which the solution enthalpy of C can reach large, negative values. It seems that Si itself only has a minor influence on this phenomenon.

  1. The role of silicon, vacancies, and strain in carbon distribution for low temperature bainite

    DOE PAGES

    Sampath, S.; Rementeria, R.; Huang, X.; ...

    2016-02-19

    Here, we investigated the phenomenon of carbon supersaturation and carbon clustering in bainitic ferrite with atom probe tomography (APT) and ab-initio density functional theory (DFT) calculations. The experimental results show a homogeneous distribution of silicon in the microstructure, which contains both ferrite and retained austenite. This distribution is mimicked well by the computational approach. In addition, an accumulation of C in certain regions of the bainitic ferrite with C concentrations up to 13 at % is observed. Based on the DFT results, these clusters are explained as strained, tetragonal regions in the ferritic bainite, in which the solution enthalpy ofmore » C can reach large, negative values. It seems that Si itself only has a minor influence on this phenomenon.« less

  2. Three-axis distributed fiber optic strain measurement in 3D woven composite structures

    NASA Astrophysics Data System (ADS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-03-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading.

  3. HPV strain distribution in patients with genital warts in a female population sample

    PubMed Central

    Boda, Daniel; Neagu, Monica; Constantin, Carolina; Voinescu, Razvan Nicolae; Caruntu, Constantin; Zurac, Sabina; Spandidos, Demetrios A.; Drakoulis, Nikolaos; Tsoukalas, Dimitrios; Tsatsakis, Aristides M.

    2016-01-01

    The incidence of human papillomavirus (HPV) in the human cancer domain is still a subject of intensive study. In this study, we examined cervical swab samples from 713 females with genital warts, and tested the samples for high- and low-risk genital HPV. HPV genotyping was assessed using a Genotyping test that detects HPV by the amplification of target DNA using polymerase chain reaction and nucleic acid hybridization. In total, we detected 37 anogenital HPV DNA genotypes [6, 11, 16, 18, 26, 31, 33, 35, 39, 40, 42, 45, 51, 52, 53, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73 (MM9), 81, 82 (MM4), 83 (MM7), 84 (MM8), IS39 and CP6108] and investigated the incidence of these genotypes in the patients with genital warts. We found differences in the distribution of high-/low-risk strains and the incidence of high-risk strains was found to occur mainly in females under 35 years of age. The data from our study suggest that a detailed oral, rectal and genital identification of high-risk strains should be performed to visualize the entire pattern of possible triggers of carcinogenesis. PMID:27602111

  4. [Dynamic distribution of the avian infectious bronchitis virus isolate strain Jin-13 in SPF chickens].

    PubMed

    Li, Huan; Yang, Xia; Zhao, Jun; Wang, Zhong-Tian; Chen, Lu; Wang, Xin-Wei; Chang, Hong-Tao; Li, Yong-Tao; Liu, Hong-Ying; Wang, Chuan-Qing

    2014-07-01

    This study aimed to understand the dynamic distribution of infectious bronchitis virus (IBV) Jin-13 strain in SPF chickens. Ninety-day-old SPF chickens were inoculated with Jin-13, a virulent strain, and dissected at day 1, 4, 7, 10, 14, 21, 28 or 35 post-inoculation (dpi). Samples of heart, liver, spleen, lung, trachea, kidney and duodenum were collected and the N gene was detected by Sybr Green I real-time quantitative RT-PCR assays. The established method had a good linear correlation from 7.77 x 10(8) to 10(0) copies/microL. SPF chickens developed typical clinical signs of IBV at the 4th dpi, and the IBV viral concentration of tissues and organs gradually increased with a peak of up to 7.13 x 10(4) copies/microL. The viral concentration of most organs decreased by the 10th dpi, but those of the kidney, trachea and lung remained positive for IBV at 28 dpi and the heart was still positive for IBV at > 35 dpi. The results of this study, showed that the Jin-13 strain can cause prolonged virus excertion in chickens with severe renal damage.

  5. CT-Based Local Distribution Metric Improves Characterization of COPD.

    PubMed

    Hoff, Benjamin A; Pompe, Esther; Galbán, Stefanie; Postma, Dirkje S; Lammers, Jan-Willem J; Ten Hacken, Nick H T; Koenderman, Leo; Johnson, Timothy D; Verleden, Stijn E; de Jong, Pim A; Mohamed Hoesein, Firdaus A A; van den Berge, Maarten; Ross, Brian D; Galbán, Craig J

    2017-06-07

    Parametric response mapping (PRM) of paired CT lung images has been shown to improve the phenotyping of COPD by allowing for the visualization and quantification of non-emphysematous air trapping component, referred to as functional small airways disease (fSAD). Although promising, large variability in the standard method for analyzing PRM(fSAD) has been observed. We postulate that representing the 3D PRM(fSAD) data as a single scalar quantity (relative volume of PRM(fSAD)) oversimplifies the original 3D data, limiting its potential to detect the subtle progression of COPD as well as varying subtypes. In this study, we propose a new approach to analyze PRM. Based on topological techniques, we generate 3D maps of local topological features from 3D PRM(fSAD) classification maps. We found that the surface area of fSAD (S(fSAD)) was the most robust and significant independent indicator of clinically meaningful measures of COPD. We also confirmed by micro-CT of human lung specimens that structural differences are associated with unique S(fSAD) patterns, and demonstrated longitudinal feature alterations occurred with worsening pulmonary function independent of an increase in disease extent. These findings suggest that our technique captures additional COPD characteristics, which may provide important opportunities for improved diagnosis of COPD patients.

  6. Energy gradients and the geographic distribution of local ant diversity.

    PubMed

    Kaspari, Michael; Ward, Philip S; Yuan, May

    2004-08-01

    Geographical diversity gradients, even among local communities, can ultimately arise from geographical differences in speciation and extinction rates. We evaluated three models--energy-speciation, energy-abundance, and area--that predict how geographic trends in net diversification rates generate trends in diversity. We sampled 96 litter ant communities from four provinces: Australia, Madagascar, North America, and South America. The energy-speciation hypothesis best predicted ant species richness by accurately predicting the slope of the temperature diversity curve, and accounting for most of the variation in diversity. The communities showed a strong latitudinal gradient in species richness as well as inter-province differences in diversity. The former vanished in the temperature-diversity residuals, suggesting that the latitudinal gradient arises primarily from higher diversification rates in the tropics. However, inter-province differences in diversity persisted in those residuals--South American communities remained more diverse than those in North America and Australia even after the effects of temperature were removed.

  7. Detection and monitoring of FRP-concrete debonding using distributed fiber optic strain sensor

    NASA Astrophysics Data System (ADS)

    Imai, M.; Feng, M.

    2009-03-01

    To develop a simple method for detecting and monitoring FRP-concrete debonding with the use of distributed Brillouinbased fiber optic strain sensor, this study proposes a model that takes into consideration both the steady and the transient Brillouin interaction states. Assuming that the transient term has an analogous effect on the steady state term, two parameters, the effective transient length and the intensity reduction ratio, are introduced. The proposed model shows that the stimulated Brillouin signal intensity distribution at the specific frequency, which corresponds to the maximum strain at the debonded region, is sensitive to the occurrence of debonding. For evaluation of the model, experiments are carried out on a reinforced concrete beam retrofitted with glass FRP sheets on which sensing fibers are mounted, and the results agree with the observation. This numerical and experimental study demonstrates the effectiveness of the proposed model that incorporates not only the steady Brillouin interaction state. The model enables debonding detection without baseline measurement, leveraging the stimulated Brillouin scattering principle with high spatial resolution and high accuracy.

  8. Effect of the local clay distribution on the effective electrical conductivity of clay rocks

    NASA Astrophysics Data System (ADS)

    Cosenza, P.; Prêt, D.; Zamora, M.

    2015-01-01

    The "local porosity theory" proposed by Hilfer was revisited to develop a "local clay theory" (LCT) that establishes a quantitative relationship between the effective electrical conductivity and clay distribution in clay rocks. This theory is primarily based on a "local simplicity" assumption; under this assumption, the complexity of spatial clay distribution can be captured by two local functions, namely, the local clay distribution and the local percolation probability, which are calculated from a partitioning of a mineral map. The local clay distribution provides information about spatial clay fluctuations, and the local percolation probability describes the spatial fluctuations in the clay connectivity. This LCT was applied to (a) a mineral map made from a Callovo-Oxfordian mudstone sample and (b) (macroscopic) electrical conductivity measurements performed on the same sample. The direct and inverse modeling shows two results. First, the textural and classical model assuming that the electrical anisotropy of clay rock is mainly controlled by the anisotropy of the sole clay matrix provides inconsistent inverted values. Another textural effect, the anisotropy induced by elongated and oriented nonclayey grains, should be considered. Second, the effective conductivity values depend primarily on the choice of the inclusion-based models used in the LCT. The impact of local fluctuations of clay content and connectivity on the calculated effective conductivity is lower.

  9. Distribution of stress and strain along the porcine aorta and coronary arterial tree.

    PubMed

    Guo, Xiaomei; Kassab, Ghassan S

    2004-06-01

    The existence of a homeostatic state of stresses and strains has been axiomatic in the cardiovascular system. The objective of this study was to determine the distribution of circumferential stress and strain along the aorta and throughout the coronary arterial tree to test this hypothesis. Silicone elastomer was perfused through the porcine aorta and coronary arterial tree to cast the arteries at physiological pressure. The loaded and zero-stress dimensions of the vessels were measured. The aorta (1.8 cm) and its secondary branches were considered down to 1.5 mm diameter. The left anterior descending artery (4.5 mm) and its branches down to 10 microm were also measured. The Cauchy mean circumferential stress and midwall stretch ratio were calculated. Our results show that the stretch ratio and Cauchy stress were lower in the thoracic than in the abdominal aorta and its secondary branches. The opening angle (theta) and midwall stretch ratio (lambda) showed a linear variation with order number (n) as follows: theta = 10.2n + 63.4 (R(2) = 0.989) and lambda = 4.47 x 10(-2)n + 1.1 (R(2) = 0.995). Finally, the stretch ratio and stress varied between 1.2 and 1.6 and between 10 and 150 kPa, respectively, along the aorta and left anterior descending arterial tree. The relative uniformity of strain (50% variation) from the proximal aorta to a 10-microm arteriole implies that the vascular system closely regulates the degree of deformation. This suggests a homeostasis of strain in the cardiovascular system, which has important implications for mechanotransduction and for vascular growth and remodeling.

  10. Free-standing carbon nanotube composite sensing skin for distributed strain sensing in structures

    NASA Astrophysics Data System (ADS)

    Burton, Andrew R.; Minegishi, Kaede; Kurata, Masahiro; Lynch, Jerome P.

    2014-04-01

    The technical challenges of managing the health of critical infrastructure systems necessitate greater structural sensing capabilities. Among these needs is the ability for quantitative, spatial damage detection on critical structural components. Advances in material science have now opened the door for novel and cost-effective spatial sensing solutions specially tailored for damage detection in structures. However, challenges remain before spatial damage detection can be realized. Some of the technical challenges include sensor installations and extensive signal processing requirements. This work addresses these challenges by developing a patterned carbon nanotube composite thin film sensor whose pattern has been optimized for measuring the spatial distribution of strain. The carbon nanotube-polymer nanocomposite sensing material is fabricated on a flexible polyimide substrate using a layer-by-layer deposition process. The thin film sensors are then patterned into sensing elements using optical lithography processes common to microelectromechanical systems (MEMS) technologies. The sensor array is designed as a series of sensing elements with varying width to provide insight on the limitations of such patterning and implications of pattern geometry on sensing signals. Once fabrication is complete, the substrate and attached sensor are epoxy bonded to a poly vinyl composite (PVC) bar that is then tested with a uniaxial, cyclic load pattern and mechanical response is characterized. The fabrication processes are then utilized on a larger-scale to develop and instrument a component-specific sensing skin in order to observe the strain distribution on the web of a steel beam. The instrumented beam is part of a larger steel beam-column connection with a concrete slab in composite action. The beam-column subassembly is laterally loaded and strain trends in the web are observed using the carbon nanotube composite sensing skin. The results are discussed in the context of

  11. Stress and strain distribution in three different mini dental implant designs using in implant retained overdenture: a finite element analysis study

    PubMed Central

    AUNMEUNGTONG, W.; KHONGKHUNTHIAN, P.; RUNGSIYAKULL, P.

    2016-01-01

    SUMMARY Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process. Purpose Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs. Materials and methods Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution. Results There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models. Conclusions Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models. Clinical implications Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant

  12. METALLICITY DISTRIBUTION FUNCTIONS OF FOUR LOCAL GROUP DWARF GALAXIES

    SciTech Connect

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J. E-mail: holtz@nmsu.edu

    2015-06-15

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color–color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color–color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%–50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution.

  13. Evolution of residual-strain distribution through an overload-induced retardation period during fatigue-crack growth

    NASA Astrophysics Data System (ADS)

    Lee, S. Y.; Sun, Y.; An, K.; Choo, H.; Hubbard, C. R.; Liaw, P. K.

    2010-01-01

    Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of the large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.

  14. Full-field, high-spatial-resolution detection of local structural damage from low-resolution random strain field measurements

    NASA Astrophysics Data System (ADS)

    Yang, Yongchao; Sun, Peng; Nagarajaiah, Satish; Bachilo, Sergei M.; Weisman, R. Bruce

    2017-07-01

    Structural damage is typically a local phenomenon that initiates and propagates within a limited area. As such high spatial resolution measurement and monitoring is often needed for accurate damage detection. This requires either significantly increased costs from denser sensor deployment in the case of global simultaneous/parallel measurements, or increased measurement time and labor in the case of global sequential measurements. This study explores the feasibility of an alternative approach to this problem: a computational solution in which a limited set of randomly positioned, low-resolution global strain measurements are used to reconstruct the full-field, high-spatial-resolution, two-dimensional (2D) strain field and rapidly detect local damage. The proposed approach exploits the implicit low-rank and sparse data structure of the 2D strain field: it is highly correlated without many edges and hence has a low-rank structure, unless damage-manifesting itself as sparse local irregularity-is present and alters such a low-rank structure slightly. Therefore, reconstruction of the full-field, high-spatial-resolution strain field from a limited set of randomly positioned low-resolution global measurements is modeled as a low-rank matrix completion framework and damage detection as a sparse decomposition formulation, enabled by emerging convex optimization techniques. Numerical simulations on a plate structure are conducted for validation. The results are discussed and a practical iterative global/local procedure is recommended. This new computational approach should enable the efficient detection of local damage using limited sets of strain measurements.

  15. Microstructure evolution and strain localization in Cu and Cu-8Al single crystals subjected to channel-die compression.

    PubMed

    Lewandowska, Małgorzata; Swiatnicki, Wiesław; Piatkowski, Andrzej; Jasienski, Zdzisław

    2006-09-01

    Single crystals of pure Cu and Cu-8%Al with two initial orientations, {112}111 and {112}110, were subjected to monotonic compression in channel-die at room temperature (293 K). The dislocation microstructure and local crystallography were investigated by transmission electron microscopy after different amounts of deformation. Various factors, such as initial single crystal orientation, chemical composition and amount of plastic deformation, were analysed in order to determine their influence on the microstructure evolution, local orientation variations and strain localization phenomena.

  16. Metallicity Distribution Functions of Four Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Ross, Teresa L.; Holtzman, Jon; Saha, Abhijit; Anthony-Twarog, Barbara J.

    2015-06-01

    We present stellar metallicities in Leo I, Leo II, IC 1613, and Phoenix dwarf galaxies derived from medium (F390M) and broad (F555W, F814W) band photometry using the Wide Field Camera 3 instrument on board the Hubble Space Telescope. We measured metallicity distribution functions (MDFs) in two ways, (1) matching stars to isochrones in color-color diagrams and (2) solving for the best linear combination of synthetic populations to match the observed color-color diagram. The synthetic technique reduces the effect of photometric scatter and produces MDFs 30%-50% narrower than the MDFs produced from individually matched stars. We fit the synthetic and individual MDFs to analytical chemical evolution models (CEMs) to quantify the enrichment and the effect of gas flows within the galaxies. Additionally, we measure stellar metallicity gradients in Leo I and II. For IC 1613 and Phoenix our data do not have the radial extent to confirm a metallicity gradient for either galaxy. We find the MDF of Leo I (dwarf spheroidal) to be very peaked with a steep metal-rich cutoff and an extended metal-poor tail, while Leo II (dwarf spheroidal), Phoenix (dwarf transition), and IC 1613 (dwarf irregular) have wider, less peaked MDFs than Leo I. A simple CEM is not the best fit for any of our galaxies; therefore we also fit the “Best Accretion Model” of Lynden-Bell. For Leo II, IC 1613, and Phoenix we find similar accretion parameters for the CEM even though they all have different effective yields, masses, star formation histories, and morphologies. We suggest that the dynamical history of a galaxy is reflected in the MDF, where broad MDFs are seen in galaxies that have chemically evolved in relative isolation and narrowly peaked MDFs are seen in galaxies that have experienced more complicated dynamical interactions concurrent with their chemical evolution. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is

  17. Phenotypic and genotypic characterization of locally isolated Salmonella strains used in preparation of Salmonella antigens in Egypt

    PubMed Central

    Ibrahim, Hazem Mohammed; El-Moaty, Dalia Ahmed Mohammed Abd; Ahmed, Hanan Ali; El-Enbaawy, Mona Ibrahim

    2016-01-01

    Aim: This work was conducted to study the phenotypic and genotypic characterization of locally isolated Salmonella strains (Salmonella Pullorum, Salmonella Enteritidis, and Salmonella Typhimurium) from poultry used in the preparation of Salmonella antigens in Egypt. Materials and Methods: The phenotypic characterization of Salmonella strains was done using standard microbiological, biochemical, and serological techniques. Molecular identification was done using different sets of primers on different genes using different polymerase chain reaction (PCR) techniques. Results: The phenotypic characterization of Salmonella strains was confirmed. Molecular identification revealed detection of 284 bp fragment of InvA gene in all studied Salmonella strains. Furthermore, multiplex PCR was used for more confirmation of being Salmonella spp., generally at 429 bp as well as genotyping of Salmonella Typhimurium and Salmonella Enteritidis at 559 and 312 bp, respectively, in one reaction. Conclusion: The locally isolated field Salmonella strains were confirmed phenotypically and genotypically to be Salmonella Enteritidis, and Salmonella Typhimurium and could be used for the preparation of Salmonella antigens. PMID:28096617

  18. Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains.

    PubMed

    Abatángelo, Virginia; Peressutti Bacci, Natalia; Boncompain, Carina A; Amadio, Ariel A; Carrasco, Soledad; Suárez, Cristian A; Morbidoni, Héctor R

    2017-01-01

    Staphylococcus aureus is a very successful opportunistic pathogen capable of causing a variety of diseases ranging from mild skin infections to life-threatening sepsis, meningitis and pneumonia. Its ability to display numerous virulence mechanisms matches its skill to display resistance to several antibiotics, including β-lactams, underscoring the fact that new anti-S. aureus drugs are urgently required. In this scenario, the utilization of lytic bacteriophages that kill bacteria in a genus -or even species- specific way, has become an attractive field of study. In this report, we describe the isolation, characterization and sequencing of phages capable of killing S. aureus including methicillin resistant (MRSA) and multi-drug resistant S. aureus local strains from environmental, animal and human origin. Genome sequencing and bio-informatics analysis showed the absence of genes encoding virulence factors, toxins or antibiotic resistance determinants. Of note, there was a high similarity between our set of phages to others described in the literature such as phage K. Considering that reported phages were obtained in different continents, it seems plausible that there is a commonality of genetic features that are needed for optimum, broad host range anti-staphylococcal activity of these related phages. Importantly, the high activity and broad host range of one of our phages underscores its promising value to control the presence of S. aureus in fomites, industry and hospital environments and eventually on animal and human skin. The development of a cocktail of the reported lytic phages active against S. aureus-currently under way- is thus, a sensible strategy against this pathogen.

  19. Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains

    PubMed Central

    Boncompain, Carina A.; Amadio, Ariel A.; Carrasco, Soledad; Suárez, Cristian A.

    2017-01-01

    Staphylococcus aureus is a very successful opportunistic pathogen capable of causing a variety of diseases ranging from mild skin infections to life-threatening sepsis, meningitis and pneumonia. Its ability to display numerous virulence mechanisms matches its skill to display resistance to several antibiotics, including β-lactams, underscoring the fact that new anti-S. aureus drugs are urgently required. In this scenario, the utilization of lytic bacteriophages that kill bacteria in a genus -or even species- specific way, has become an attractive field of study. In this report, we describe the isolation, characterization and sequencing of phages capable of killing S. aureus including methicillin resistant (MRSA) and multi-drug resistant S. aureus local strains from environmental, animal and human origin. Genome sequencing and bio-informatics analysis showed the absence of genes encoding virulence factors, toxins or antibiotic resistance determinants. Of note, there was a high similarity between our set of phages to others described in the literature such as phage K. Considering that reported phages were obtained in different continents, it seems plausible that there is a commonality of genetic features that are needed for optimum, broad host range anti-staphylococcal activity of these related phages. Importantly, the high activity and broad host range of one of our phages underscores its promising value to control the presence of S. aureus in fomites, industry and hospital environments and eventually on animal and human skin. The development of a cocktail of the reported lytic phages active against S. aureus–currently under way- is thus, a sensible strategy against this pathogen. PMID:28742812

  20. Strain localization and rheological weakening of a high-grade metamorphic massif

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz; Liu, Junlai; Cheng, Xuemei; Yu, Zunpu

    2017-04-01

    We present a detailed case study of Diancang Shan high-grade metamorphic massif, to investigate how deformation promotes strain localization, and how weak secondary phases and hydrous fluids trigger rheological weakening during retrogression near the ductile to brittle transition zone during exhumation. In the Diancang Shan metamorphic massif, high-temperature ductile deformation (D1) pervasively occurred during shearing and exhumation since late Oligocene. The high-temperature microstructures and textures are in part or entirely altered by subsequent low-temperature shearing (D2) since late Miocene, which is under transitional frictional-viscous conditions of K-feldspar during further exhumation to the upper crustal levels. D2 microstructures and shear bands overprinted high-temperature intracrystalline plasticity phases (D1) in mylonitic rocks. Depending on the main rock-forming minerals, the results also demonstrate that the brittle-ductile transition involves a combination of different deformation mechanisms and possible rheological paths. As a result, grain-size reduction associated with fluids circulating within the Diancang Shan metamorphic massif at brittle-ductile transition level leads to reaction and texture weakening. Rheological weakening is the consequence of the syntectonic deformation, fluid flow, reaction softening, and textural softening. The hydrous fluids resulted in hydration of silicates. Decompression occurred during shearing and as a result of tectonic exhumation. All these results demonstrate that the exhumation of Diancang Shan metamorphic massif through the ductile to ductile-brittle transition involves a combination of different deformation mechanisms, rheological transition features and feedbacks between deformation, decreasing temperature and fluids. Discussed rheological softening mechanisms, particularly fluid flow, lead to shear concentration along the boundary of the hot metamorphic massif to overlying cool units, which always

  1. Regional distribution shifts help explain local changes in wintering raptor abundance: implications for interpreting population trends.

    PubMed

    Paprocki, Neil; Heath, Julie A; Novak, Stephen J

    2014-01-01

    Studies of multiple taxa across broad-scales suggest that species distributions are shifting poleward in response to global climate change. Recognizing the influence of distribution shifts on population indices will be an important part of interpreting trends within management units because current practice often assumes that changes in local populations reflect local habitat conditions. However, the individual- and population-level processes that drive distribution shifts may occur across a large, regional scale and have little to do with the habitats within the management unit. We examined the latitudinal center of abundance for the winter distributions of six western North America raptor species using Christmas Bird Counts from 1975-2011. Also, we considered whether population indices within western North America Bird Conservation Regions (BCRs) were explained by distribution shifts. All six raptors had significant poleward shifts in their wintering distributions over time. Rough-legged Hawks (Buteo lagopus) and Golden Eagles (Aquila chrysaetos) showed the fastest rate of change, with 8.41 km yr(-1) and 7.74 km yr(-1) shifts, respectively. Raptors may be particularly responsive to warming winters because of variable migration tendencies, intraspecific competition for nesting sites that drives males to winter farther north, or both. Overall, 40% of BCR population trend models were improved by incorporating information about wintering distributions; however, support for the effect of distribution on BCR indices varied by species with Rough-legged Hawks showing the most evidence. These results emphasize the importance of understanding how regional distribution shifts influence local-scale population indices. If global climate change is altering distribution patterns, then trends within some management units may not reflect changes in local habitat conditions. The methods used to monitor and manage bird populations within local BCRs will fundamentally change as

  2. Regional Distribution Shifts Help Explain Local Changes in Wintering Raptor Abundance: Implications for Interpreting Population Trends

    PubMed Central

    Paprocki, Neil; Heath, Julie A.; Novak, Stephen J.

    2014-01-01

    Studies of multiple taxa across broad-scales suggest that species distributions are shifting poleward in response to global climate change. Recognizing the influence of distribution shifts on population indices will be an important part of interpreting trends within management units because current practice often assumes that changes in local populations reflect local habitat conditions. However, the individual- and population-level processes that drive distribution shifts may occur across a large, regional scale and have little to do with the habitats within the management unit. We examined the latitudinal center of abundance for the winter distributions of six western North America raptor species using Christmas Bird Counts from 1975–2011. Also, we considered whether population indices within western North America Bird Conservation Regions (BCRs) were explained by distribution shifts. All six raptors had significant poleward shifts in their wintering distributions over time. Rough-legged Hawks (Buteo lagopus) and Golden Eagles (Aquila chrysaetos) showed the fastest rate of change, with 8.41 km yr−1 and 7.74 km yr−1 shifts, respectively. Raptors may be particularly responsive to warming winters because of variable migration tendencies, intraspecific competition for nesting sites that drives males to winter farther north, or both. Overall, 40% of BCR population trend models were improved by incorporating information about wintering distributions; however, support for the effect of distribution on BCR indices varied by species with Rough-legged Hawks showing the most evidence. These results emphasize the importance of understanding how regional distribution shifts influence local-scale population indices. If global climate change is altering distribution patterns, then trends within some management units may not reflect changes in local habitat conditions. The methods used to monitor and manage bird populations within local BCRs will fundamentally change as

  3. Localization of shear strain and shear band formation induced by deformation in semi-solid Al-Cu alloys

    NASA Astrophysics Data System (ADS)

    Nagira, T.; Morita, S.; Yasuda, H.; Gourlay, C. M.; Yoshiya, M.; Sugiyama, A.; Uesugi, K.

    2015-06-01

    In situ observation of deformation in globular Al-Cu samples at a solid fraction of ∼⃒50% and a global shear strain rate of 10-1 s-1 was performed using time-resolved X-ray imaging. The solid particle motion during shear was quantitatively analysed. The force was transmitted though the contacts between solid particles over a long distance parallel to the shear plane (18 mean grain size, d) after only a 1d increment of the Al2O3 push-plate motion. On the other hand, the distance of transmitted force in the perpendicular direction to the shear plane was restricted to approximately 11d even for a high displacement of the Al2O3 push-plate. A relatively high shear strain rate became localized at the shear domain after a small amount of deformation (a 1d increment). The solid fraction decreased in the region of localized shear strain rate. The shear band width, where the shear strain was localized and the solid fraction decreased, remained mostly unchanged over a 4 d increment of Al2O3 push-plate motion.

  4. Final Report: Hardening and Strain Localization in Single and Polycrystalline Materials Under Cyclic and Monotonic Deformation, January 11, 1985 - July 31, 1997

    SciTech Connect

    Laird, Campbell; Bassani, John L.

    2000-03-03

    The subject program on substructure evolution initially focused on strain localization produced by fatigue cycling and especially how such localization affects the cyclic response of polycrystalline pure metal. The latter stages have dealt with strain localization in the heavy monotonic deformation of alloys, which eventually produces forms of localized deformation that include coarse slip bands (CSB's), which are aligned to slip planes and macroscopic shear bands (MSB's), which are not aligned to slip planes. These forms of strain localization are important in that they limit the usable ductility of the material in forming processes.

  5. Reliable local strain characterization in silicon/silicon-germanium based electronic materials system

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjun

    2007-12-01

    For the first time, we developed a new approach combined with CBED and finite element (FE) modeling and quantitatively investigated the correlation of the strain in a thin TEM sample with that in the bulk. The new method successfully determined the strain in the strained Si layer on a blanket strained Si/SiGe wafer, in a good agreement with other measurements. The new results also gave some insight in strain relaxation in a TEM sample. We found the [-1,-1,0] strain component which is perpendicular to the TEM sample thinning direction stays the same in the TEM sample and in the bulk, while the [001]) strain component is relaxed because it is along the same direction as the TEM sample thinning direction. This relaxation causes the deformation of the TEM foil and HOLZ line splitting. Therefore a clear CBED pattern can not be obtained from a TEM sample with a biaxial stain state. Our findings from a recessed SiGe PMOS test structure with a uniaxial compressive strain showed a different strain redistribution behavior. The data showed that the epsilonx [-1,1,0] strain is actually more than 20% higher in a TEM sample than in the bulk. The epsilony [-1,-1,0] strain which is parallel to the TEM sample thinning direction turns to tensile in the TEM sample due to the loss of constraints, while it is zero in the bulk. The new results can explain our experimental data and others' (which could not be explained before) and are consistent with UV Raman measurements.

  6. Shape index distribution based local surface complexity applied to the human cortex

    PubMed Central

    Kim, Sun Hyung; Fonov, Vladimir; Collins, D. Louis; Gerig, Guido; Styner, Martin A.

    2015-01-01

    The quantification of local surface complexity in the human cortex has shown to be of interest in investigating population differences as well as developmental changes in neurodegenerative or neurodevelopment diseases. We propose a novel assessment method that represents local complexity as the difference between the observed distributions of local surface topology to its best-fit basic topology model within a given local neighborhood. This distribution difference is estimated via Earth Move Distance (EMD) over the histogram within the local neighborhood of the surface topology quantified via the Shape Index (SI) measure. The EMD scores have a range from simple complexity (0.0), which indicates a consistent local surface topology, up to high complexity (1.0), which indicates a highly variable local surface topology. The basic topology models are categorized as 9 geometric situation modeling situations such as crowns, ridges and fundi of cortical gyro and sulci. We apply a geodesic kernel to calculate the local SI histrogram distribution within a given region. In our experiments, we obtained the results of local complexity that shows generally higher complexity in the gyral/sulcal wall regions and lower complexity in some gyral ridges and lowest complexity in sulcal fundus areas. In addition, we show expected, preliminary results of increased surface complexity across most of the cortical surface within the first years of postnatal life, hypothesized to be due to the changes such as development of sulcal pits. PMID:26028803

  7. Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities

    PubMed Central

    Sentjabrskaja, T.; Chaudhuri, P.; Hermes, M.; Poon, W. C. K.; Horbach, J.; Egelhaaf, S. U.; Laurati, M.

    2015-01-01

    Mechanical properties are of central importance to materials sciences, in particular if they depend on external stimuli. Here we investigate the rheological response of amorphous solids, namely colloidal glasses, to external forces. Using confocal microscopy and computer simulations, we establish a quantitative link between the macroscopic creep response and the microscopic single-particle dynamics. We observe dynamical heterogeneities, namely regions of enhanced mobility, which remain localized in the creep regime, but grow for applied stresses leading to steady flow. These different behaviors are also reflected in the average particle dynamics, quantified by the mean squared displacement of the individual particles, and the fraction of active regions. Both microscopic quantities are found to be proportional to the macroscopic strain, despite the non-equilibrium and non-linear conditions during creep and the transient regime prior to steady flow. PMID:26153523

  8. An Adaptive Likelihood Distribution Algorithm for the Localization of Passive RFID Tags

    NASA Astrophysics Data System (ADS)

    Ota, Yuuki; Hori, Toshihiro; Onishi, Taiki; Wada, Tomotaka; Mutsuura, Kouichi; Okada, Hiromi

    The RFID (Radio Frequency IDentification) tag technology is expected as a tool of localization. By the localization of RFID tags, a mobile robot which installs in RFID readers can recognize surrounding environments. In addition, RFID tags can be applied to a navigation system for walkers. In this paper, we propose an adaptive likelihood distribution scheme for the localization of RFID tags. This method adjusts the likelihood distribution depending on the signal intensity from RFID tags. We carry out the performance evaluation of estimated position error by both computer simulations and implemental experiments. We show that the proposed system is more effective than the conventional system.

  9. Creating periodic local strain in monolayer graphene with nanopillars patterned by self-assembled block copolymer

    SciTech Connect

    Mi, Hongyi; Mikael, Solomon; Seo, Jung-Hun; Gui, Gui; Ma, Alice L.; Ma, Zhenqiang E-mail: mazq@engr.wisc.edu; Liu, Chi-Chun; Nealey, Paul F. E-mail: mazq@engr.wisc.edu

    2015-10-05

    A simple and viable method was developed to produce biaxial strain in monolayer graphene on an array of SiO{sub 2} nanopillars. The array of SiO{sub 2} nanopillars (1 cm{sup 2} in area, 80 nm in height, and 40 nm in pitch) was fabricated by employing self-assembled block copolymer through simple dry etching and deposition processes. According to high resolution micro-Raman spectroscopy and atomic force microscopy analyses, 0.9% of maximum biaxial tensile strain and 0.17% of averaged biaxial tensile strain in graphene were created. This technique provides a simple and viable method to form biaxial tensile strain in graphene and offers a practical platform for future studies in graphene strain engineering.

  10. Cartilage Strain Distributions Are Different Under the Same Load in the Central and Peripheral Tibial Plateau Regions

    PubMed Central

    Briant, Paul; Bevill, Scott; Andriacchi, Thomas

    2015-01-01

    There is increasing evidence that the regional spatial variations in the biological and mechanical properties of articular cartilage are an important consideration in the pathogenesis of knee osteoarthritis (OA) following kinematic changes at the knee due to joint destabilizing events (such as an anterior cruciate ligament (ACL) injury). Thus, given the sensitivity of chondrocytes to the mechanical environment, understanding the internal mechanical strains in knee articular cartilage under macroscopic loads is an important element in understanding knee OA. The purpose of this study was to test the hypothesis that cartilage from the central and peripheral regions of the tibial plateau has different internal strain distributions under the same applied load. The internal matrix strain distribution for each specimen was measured on osteochondral blocks from the tibial plateau of mature ovine stifle joints. Each specimen was loaded cyclically for 20 min, after which the specimen was cryofixed in its deformed position and freeze fractured. The internal matrix was viewed in a scanning electron microscope (SEM) and internal strains were measured by quantifying the deformation of the collagen fiber network. The peak surface tensile strain, maximum principal strain, and maximum shear strain were compared between the regions. The results demonstrated significantly different internal mechanical strain distributions between the central and peripheral regions of tibial plateau articular cartilage under both the same applied load and same applied nominal strain. These differences in the above strain measures were due to differences in the deformation patterns of the collagen network between the central and peripheral regions. Taken together with previous studies demonstrating differences in the biochemical response of chondrocytes from the central and peripheral regions of the tibial plateau to mechanical load, the differences in collagen network deformation observed in this

  11. The Distribution of 18 Enterotoxin and Enterotoxin-Like Genes in Staphylococcus aureus Strains from Different Sources in East China.

    PubMed

    Cheng, Jinghua; Wang, Yan; Cao, Yongzhong; Yan, Wenguang; Niu, Xiaosai; Zhou, Liping; Chen, Jianhao; Sun, Ying; Li, Chenxi; Zhang, Xiaorong; Wu, Yantao

    2016-04-01

    The distribution of 18 staphylococcal enterotoxin (SE) or SE-like (SEl) genes in Staphylococcus aureus strains from different sources in east China was investigated. Among all 496 S. aureus strains, 291 strains carried one or more SE genes. The more frequently occurred genes were sea, seb, seg, selk, sell, selm, selo, and seq; the less frequent occurred genes were sec, selj, and ser. The classic SE genes and the enterotoxin gene cluster (egc) (seg, sei, selm, seln, selo, and/or selu) accounted for 25.67% and 61.68% of all detected genes, respectively. There were three gene clusters (egc, sea-sek-seq, and sed-sej-ser), of which the egc cluster was the important one that could generate novel complexes, and the sea-sek-seq cluster was a close relative to the hospital-acquired methicillin-resistant S. aureus. The SE gene distributions were different among strains of different sources and formed diverse toxin gene profiles. The human- and foodborne-origin strains harbored classic and novel SE and SEl genes, whereas animal-origin strains harbored egc and other novel SE and SEl genes mainly. The foodborne- and human-origin strains were the main dangerous factors of classic staphylococcal foodborne poisoning, whereas the strains (especially from animals) that carried egc and other novel genes mainly should be new potential dangerous factors for food safety.

  12. Strain localization in direct shear experiments on Solnhofen limestone at high temperature Effects of transpression

    NASA Astrophysics Data System (ADS)

    Llana-Fúnez, Sergio; Rutter, Ernest H.

    2008-11-01

    Some features of natural shear zones formed under non-coaxial strain geometries, including some effects of transpression, can be simulated in the laboratory by using the direct shear experimental configuration. Slices of ˜1 mm thick Solnhofen limestone were deformed in direct shear between two stronger forcing blocks of cores of Tennessee sandstone pre-cut at 45° to the cylinder axis. Experiments were run dry at 600 °C, 200 MPa confining pressure and bulk shear strain rates of ˜5 × 10 -3 s -1, at which conditions Solnhofen limestone deformed by dislocation creep with a stress exponent of 4.7. When loaded, strain concentrates in the limestone band, producing non-coaxial deformation as one pre-cut block slides past the other. The orientation and intensity of the shape fabric developed in calcite grains indicate that strain is heterogeneous across the specimen, with the formation of two high-strain shear bands close to the limestone-sandstone interface, separated by a central zone of low strain. Crystallographic preferred orientation patterns in the calcite grains measured by electron backscatter diffraction are consistent with a switch in deformation geometry from flattening-dominated in the middle of the specimen towards shear-dominated in the high-strain bands. From tests on thin slices of the same material compressed axisymmetrically (without shearing) normal to the layer, heterogeneous thinning of the slice develops, from a maximum in the centre of the slice to zero at the edges. The formation of the paired shear zones observed in the sheared experiments is interpreted in terms of superposed strain fields, with shearing in the centre of the slice being inhibited by the strain hardening that accompanies the higher flattening strain in the centre of the specimen.

  13. Astrophysical uncertainties on the local dark matter distribution and direct detection experiments

    NASA Astrophysics Data System (ADS)

    Green, Anne M.

    2017-08-01

    The differential event rate in weakly interacting massive particle (WIMP) direct detection experiments depends on the local dark matter density and velocity distribution. Accurate modelling of the local dark matter distribution is therefore required to obtain reliable constraints on the WIMP particle physics properties. Data analyses typically use a simple standard halo model which might not be a good approximation to the real Milky Way (MW) halo. We review observational determinations of the local dark matter density, circular speed and escape speed and also studies of the local dark matter distribution in simulated MW-like galaxies. We discuss the effects of the uncertainties in these quantities on the energy spectrum and its time and direction dependence. Finally, we conclude with an overview of various methods for handling these astrophysical uncertainties.

  14. Novel active contour model based on multi-variate local Gaussian distribution for local segmentation of MR brain images

    NASA Astrophysics Data System (ADS)

    Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong

    2017-09-01

    Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.

  15. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    NASA Astrophysics Data System (ADS)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust

  16. Strain distribution across magmatic margins during the breakup stage: Seismicity patterns in the Afar rift zone

    NASA Astrophysics Data System (ADS)

    Brown, C.; Ebinger, C. J.; Belachew, M.; Gregg, T.; Keir, D.; Ayele, A.; Aronovitz, A.; Campbell, E.

    2008-12-01

    Fault patterns record the strain history along passive continental margins, but geochronological constraints are, in general, too sparse to evaluate these patterns in 3D. The Afar depression in Ethiopia provides a unique setting to evaluate the time and space relations between faulting and magmatism across an incipient passive margin that formed above a mantle plume. The margin comprises a high elevation flood basalt province with thick, underplated continental crust, a narrow fault-line escarpment underlain by stretched and intruded crust, and a broad zone of highly intruded, mafic crust lying near sealevel. We analyze fault and seismicity patterns across and along the length of the Afar rift zone to determine the spatial distribution of strain during the final stages of continental breakup, and its relation to active magmatism and dike intrusions. Seismicity data include historic data and 2005-2007 data from the collaborative US-UK-Ethiopia Afar Geodynamics Project that includes the 2005-present Dabbahu rift episode. Earthquake epicenters cluster within discrete, 50 km-long magmatic segments that lack any fault linkage. Swarms also cluster along the fault-line scarp between the unstretched and highly stretched Afar rift zone; these earthquakes may signal release of stresses generated by large lateral density contrasts. We compare Coulomb static stress models with focal mechanisms and fault kinematics to discriminate between segmented magma intrusion and crank- arm models for the central Afar rift zone.

  17. Integration of distributed strain and temperature sensors in composite coiled tubing

    NASA Astrophysics Data System (ADS)

    Inaudi, Daniele; Glisic, Branko

    2006-03-01

    Composite coiled tubing is an emerging technology in the oil and gas sector that presents important advantages compared to the steel coiled tubing and conventional drilling. The composite tube has reduced weight, allowing extended reach and improved fatigue life. An additional advantage resides in the fact that the coiled tube wall can contain and protect additional functional elements, such as electrical conductors and fiber optics for sensing and data communication. Sensing systems based on Brillouin and Raman scattering can be used to verify the pipe operational parameters, prevent failure, optimize oil production from the well, provide strain distribution along the tubing and detect hot-spots in high-power cables. The integration of such sensing elements into composite tubing presents additional advantages and challenges. On one hand the embedded sensors are protected by the composite material and can be installed during production, avoiding external installation that could interfere with the tubing operations. In the other hand, the integration of optical fiber sensors into the composite structure requires the development of appropriate packaging and installation techniques that allow easy handling during production and avoid and damage to the sensor and the composite structure itself. This contribution presents the sensing cable designs for temperature and strain sensing in a composite coiled tubing as well as testing results form initial field demonstrations.

  18. Clinical distribution and antibiotic sensitivities of staphylococcal strains isolated over an eight-month period.

    PubMed Central

    Varaldo, P E; Soro, O; Grazi, G; Biavasco, F

    1981-01-01

    A total of 842 staphylococci isolated from clinical material over an eight-month period and regarded as probable pathogens were identified according to lyogroup. Almost half the isolates belonged to lyogroups other than lyogroup I (Staphylococcus aureus), suggesting that coagulase-negative staphylococci are increasingly involved in human infections. All isolates were tested for sensitivity to 12 antibiotics. A greater resistance was observed in non-lyogroup I isolates, which again suggests a pathogenic significance of coagulase-negative staphylococci. Only lyogroup I strains, however, were obtained more frequently from clinical isolates than from healthy human skin. The distribution of the isolates in each lyogroup according to their clinical source is reported. PMID:7240433

  19. Distributed Brillouin optical fiber sensing for dynamic strain with frequency agility based on dual-modulation

    NASA Astrophysics Data System (ADS)

    Ba, Dexin; Zhou, Dengwang; Wang, Benzhang; Yin, Mingjing; Dong, Yongkang; Lu, Zhiwei; Fan, Zhigang

    2017-04-01

    A dynamic distributed Brillouin optical fiber sensing based on dual-modulation is proposed, in which the scanning of the Brillouin gain spectrum (BGS) is implemented by the combination of a single-frequency modulation and a frequency-agility modulation. The frequency of the single-frequency modulation is a little less than the Brillouin frequency shift of the fiber ( 10.8 GHz for silica fiber), while the tuning range of the frequency-agility modulation is required to cover only several-hundred MHz for the scanning of BGS, which can significantly reduce the bandwidth requirement for the arbitrary waveform generator and ultimately reduce the cost of dynamic Brillouin sensors. With a 30-m fiber, a 11.8-Hz strain is measured. The spatial resolution and the sampling rate are 1 m and 200 Hz, respectively.

  20. Fiber optic distributed temperature and strain sensing system based on Brillouin light scattering.

    PubMed

    Chang, Tianying; Li, David Y; Koscica, Thomas E; Cui, Hong-Liang; Sui, Qingmei; Jia, Lei

    2008-11-20

    We present an original method to improve the spatial resolution of a Brillouin distributed temperature and strain sensing system (DTSS). This method is shown to substantially improve the spatial resolution, while simultaneously strengthening the Brillouin backscattered light, which is based on the combination of an internal modulation of the laser source and an external modulator to generate two separate light pulses with different central wavelengths and pulse widths. Moreover, a novel Brillouin signal detection method, which we called isogenous heterodyne detection, is introduced, which is equivalent to a heterodyne detection scheme but is only with Rayleigh and Brillouin backscattered light without the need of an extra reference light. These new technical approaches have been incorporated into a fiber optic DTSS with 13 km single-mode fiber, which clearly successfully demonstrated all the advantages over conventional DTSS approaches in theory and the feasibility in experiment.

  1. Inverse modeling of InSAR and ground leveling data for 3D volumetric strain distribution

    NASA Astrophysics Data System (ADS)

    Gallardo, L. A.; Glowacka, E.; Sarychikhina, O.

    2015-12-01

    Wide availability of modern Interferometric Synthetic aperture Radar (InSAR) data have made possible the extensive observation of differential surface displacements and are becoming an efficient tool for the detailed monitoring of terrain subsidence associated to reservoir dynamics, volcanic deformation and active tectonism. Unfortunately, this increasing popularity has not been matched by the availability of automated codes to estimate underground deformation, since many of them still rely on trial-error subsurface model building strategies. We posit that an efficient algorithm for the volumetric modeling of differential surface displacements should match the availability of current leveling and InSAR data and have developed an algorithm for the joint inversion of ground leveling and dInSAR data in 3D. We assume the ground displacements are originated by a stress free-volume strain distribution in a homogeneous elastic media and determined the displacement field associated to an ensemble of rectangular prisms. This formulation is then used to develop a 3D conjugate gradient inversion code that searches for the three-dimensional distribution of the volumetric strains that predict InSAR and leveling surface displacements simultaneously. The algorithm is regularized applying discontinuos first and zero order Thikonov constraints. For efficiency, the resulting computational code takes advantage of the resulting convolution integral associated to the deformation field and some basic tools for multithreading parallelization. We extensively test our algorithm on leveling and InSAR test and field data of the Northwest of Mexico and compare to some feasible geological scenarios of underground deformation.

  2. Localization of WSN using Distributed Particle Swarm Optimization algorithm with precise references

    NASA Astrophysics Data System (ADS)

    Janapati, Ravi Chander; Balaswamy, Ch.; Soundararajan, K.

    2016-08-01

    Localization is the key research area in Wireless Sensor Networks. Finding the exact position of the node is known as localization. Different algorithms have been proposed. Here we consider a cooperative localization algorithm with censoring schemes using Crammer Rao Bound (CRB). This censoring scheme can improve the positioning accuracy and reduces computation complexity, traffic and latency. Particle swarm optimization (PSO) is a population based search algorithm based on the swarm intelligence like social behavior of birds, bees or a school of fishes. To improve the algorithm efficiency and localization precision, this paper presents an objective function based on the normal distribution of ranging error and a method of obtaining the search space of particles. In this paper Distributed localization algorithm PSO with CRB is proposed. Proposed method shows better results in terms of position accuracy, latency and complexity.

  3. Strain distribution in an Si single crystal measured by interference fringes of X-ray mirage diffraction

    PubMed Central

    Jongsukswat, Sukswat; Fukamachi, Tomoe; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki

    2013-01-01

    In X-ray interference fringes accompanied by mirage diffraction, variations have been observed in the spacing and position of the fringes from a plane-parallel Si single crystal fixed at one end as a function of distance from the incident plane of the X-rays to the free crystal end. The variations can be explained by distortion of the sample crystal due to gravity. From the variations and positions of the fringes, the strain gradient of the crystal has been determined. The distribution of the observed strain agrees with that expected from rod theory except for residual strain. When the distortion is large, the observed strain distribution does not agree with that expected from rod theory. PMID:24068841

  4. Strain distribution in an Si single crystal measured by interference fringes of X-ray mirage diffraction.

    PubMed

    Jongsukswat, Sukswat; Fukamachi, Tomoe; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki

    2013-10-01

    In X-ray interference fringes accompanied by mirage diffraction, variations have been observed in the spacing and position of the fringes from a plane-parallel Si single crystal fixed at one end as a function of distance from the incident plane of the X-rays to the free crystal end. The variations can be explained by distortion of the sample crystal due to gravity. From the variations and positions of the fringes, the strain gradient of the crystal has been determined. The distribution of the observed strain agrees with that expected from rod theory except for residual strain. When the distortion is large, the observed strain distribution does not agree with that expected from rod theory.

  5. Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes-Tresviso local varieties of blue-veined cheeses.

    PubMed

    Fernández-Bodega, M A; Mauriz, E; Gómez, A; Martín, J F

    2009-11-30

    High quality local varieties of blue-veined cheese are made in the villages of the valleys of Cabrales, Valdeón and Bejes-Tresviso in North Spain. Penicillium roqueforti strains have been isolated from each of those blue cheeses and compared with the collection strain P. roqueforti CECT 2905 (ATCC 10110) and a strain 'Valdeón-industrial' used for large scale production of Valdeón cheese. Using molecular genetics techniques and 5.8S and 18S rRNAs and the D1-D2 regions of 28S rRNA all strains were identified as authentic P. roqueforti. These strains from local varieties of blue cheese could be distinguished from the Valdeón-industrial strain and the control strain CECT 2905 by the mitochondrial DNA restriction pattern. The industrial strain showed high levels of aspartylprotease AspA, whereas the culture collection strain showed barely detectable levels of this enzyme, as shown by proteolysis tests and by immunodetection with anti-AspA antibodies. The lipolytic activity was similar in the strains isolated from the three types of local blue cheeses. The strains isolated from the local varieties of the blue cheese produced moderate levels of PR toxin, whereas the Valdeón-industrial strains showed a higher content of this mycotoxin. All strains (except the control strain CECT 2905) showed similar levels of roquefortine C. The antitumoral compound andrastin A was produced by all strains at different levels. P. roqueforti CECT 2905 showed high ability to synthesize this compound. Andrastin A was present in all industrial and local varieties of blue cheese. The content of andrastin A was similar to that of other well-known blue cheeses from France and Denmark.

  6. The effects of perturbations on the strain distribution in numerical simulations - elasto-viscoplastic modeling of boudinage as a case study

    NASA Astrophysics Data System (ADS)

    Peters, Max; Karrech, Ali; Poulet, Thomas; Herwegh, Marco; Regenauer-Lieb, Klaus

    2014-05-01

    During necking of a mechanically stiffer layer embedded in a weaker matrix, relatively large amounts of strain localize in small areas. As this deformation style appears under distinct geological conditions, necking phenomena, e.g. boudinaged veins, are associated with a variety of deformation modes. So far, there exists rather limited knowledge about the origin of instabilities and their role as precursory structures, i.e. strong localization of elastic energy affecting further plastic deformation (e.g. Regenauer-Lieb & Yuen, 1998; 2004; Karrech et al., 2011a). We applied the finite element solver ABAQUS in order to investigate the 2-D strain distribution in layers including different mechanical material properties during plane strain co-axial deformation. First, linear perturbation analyses were performed in order to evaluate the imperfection sensitivity in the elastic and viscous regimes. We perform a classical modal analysis to determine the natural mode shapes and frequencies of our geological structure during arbitrary vibrations. This analysis aims at detecting the eigenmodes of the geological structure, which are sinusoidal vibrations with geometry specific natural modal shapes and frequencies. The eigenvalues represent the nodal points where the onset of (visco)-elasto-plastic localization can initiate in the structure (Rice, 1977). The eigenmodes, eigenvalues and eigenvectors are highly sensitive to the layer-box' aspect ratio and differences in Young's moduli, or effective viscosity, respectively. Boundary effect-free strain propagation occurs for layer-box aspect ratios smaller than 1:10. Second, these preloading structures were used as seeds for imperfections in elasto-viscoplastic numerical modeling of continuous necking of a coarse-grained mineral layer embedded in a finer-grained matrix (pinch-and-swell type of boudinage), following the thermo-mechanical coupling of grain size evolutions by Herwegh et al. (in press). The evolution of symmetric necks

  7. From ductile to brittle deformation: structural development and strain distribution along a crustal-scale shear zone in SW Finland

    NASA Astrophysics Data System (ADS)

    Torvela, Taija; Ehlers, Carl

    2010-07-01

    This study demonstrates the impact of variations in overall crustal rheology on crustal strength in relatively high P- T conditions at mid- to lower mid-crustal levels. In a crustal-scale shear zone, along-strike variations in the rheological competence result in large-scale deformation partitioning and differences in the deformation style and strain distribution. The structural behaviour of the crustal-scale Sottunga-Jurmo shear zone (SJSZ) in SW Finland is described. The shear zone represents a discontinuity between the amphibolite-to-granulite facies, dome-and-basin style crustal block to the north and the amphibolite facies rocks with dominantly steeply dipping structures to the south. The overall deformation style and resulting strains along the shear zone are greatly affected by the local lithology. The results of this study also have implications for the current tectonic models of the Palaeoproterozoic Fennoscandia. The most important implication is that the SJSZ, together with other structurally related shear zones, compartmentalised the far-field stresses, so that the late ductile structures within and south of the SJSZ can be allocated to a convergence from the south as late as ~1.79 Ga rather than to the Nordic orogeny from the west-northwest. It is further suggested that at ~1.79 Ga the stress regime was still compressive/transpressive and that the ~1.79 Ga magmatism in Åland at least initiated in a compressive setting. No extension or orogenic collapse, therefore, occurred in the Åland area while the rocks still were within the ductile regime.

  8. Strain localization during stress-loading and stress-relaxation cycles recorded in mylonitic peridotites from experiments and nature

    NASA Astrophysics Data System (ADS)

    Trepmann, Claudia; Matysiak, Agnes

    2017-04-01

    For the development of localized high-strain zones generally some "strain-weakening", i.e., a lower effective viscosity of shear zones compared to the host rocks, is assumed. A related question is, whether the strength of the lithosphere should be considered the strength of "weakened" shear zones or whether it should be considered as the strength of the intact rock. Based on our observations from mylonitic peridotites and experimental peridotite deformation, we find it useful to consider two stages for the development of localized high-strain zones: (1) stress-loading, where deformation at transient high stresses results not necessarily in a high amount of strain on sample scale, but in localized highly damaged zones enabling grain-size reduction during (2) stress-relaxation, where a high amount of strain can be accumulated. Mylonitic peridotites from the Finero complex, Southern Alps, record strain localization during stress-loading and stress-relaxation cycles within their prolonged geological history. We differentiate the heterogeneous olivine microstructure into host rock, mylonite, ultramylonite and protomylonite, by their amount and size of recrystallized grains as well as whether a foam structure is present or not. In host rocks and mylonites, a well-developed foam structure is preserved. Recrystallized grains have diameters on the order of mm in host rocks and on the order of a few hundred µm in mylonites. Mylonites represent an early stage of localized dynamic recrystallization with grain size reduction compared to the host rock. At quasi-static stress conditions, the strain energy was reduced such that a reduction in surface energy controlled grain boundary migration generating the foam structure in both rocks. During a second stage of deformation ultramylonites and protomylonites that both do not show a foam structure developed. Ultramylonites are characterized by a second generation of small recrystallized grains with diameter of a few tens of µm and

  9. Strain distribution of confined Ge/GeO2 core/shell nanoparticles engineered by growth environments

    NASA Astrophysics Data System (ADS)

    Wei, Wenyan; Yuan, Cailei; Luo, Xingfang; Yu, Ting; Wang, Gongping

    2016-02-01

    The strain distributions of Ge/GeO2 core/shell nanoparticles confined in different host matrix grown by surface oxidation are investigated. The simulated results by finite element method demonstrated that the strains of the Ge core and the GeO2 shell strongly depend on the growth environments of the nanoparticles. Moreover, it can be found that there is a transformation of the strain on Ge core from tensile to compressive strain during the growth of Ge/GeO2 core/shell nanoparticles. And, the transformation of the strain is closely related with the Young's modulus of surrounding materials of Ge/GeO2 core/shell nanoparticles.

  10. Strain distribution in the intervertebral disc under unconfined compression and tension load by the optimized digital image correlation technique.

    PubMed

    Liu, Qing; Wang, Tai-Yong; Yang, Xiu-Ping; Li, Kun; Gao, Li-Lan; Zhang, Chun-Qiu; Guo, Yue-Hong

    2014-05-01

    The unconfined compression and tension experiments of the intervertebral disc were conducted by applying an optimized digital image correlation technique, and the internal strain distribution was analysed for the disc. It was found that the axial strain values of different positions increased obviously with the increase in loads, while inner annulus fibrosus and posterior annulus fibrosus experienced higher axial strains than the outer annulus fibrosus and anterior annulus fibrosus. Deep annulus fibrosus exhibited higher compressive and tensile axial strains than superficial annulus fibrosus for the anterior region, while there was an opposite result for the posterior region. It was noted that all samples demonstrated a nonlinear stress-strain profile in the process of deforming, and an elastic region was shown once the sample was deformed beyond its toe region.

  11. Soleus aponeurosis strain distribution following chronic unloading in humans: an in vivo MR phase-contrast study.

    PubMed

    Lee, Hae-Dong; Finni, Taija; Hodgson, John A; Lai, Alex M; Edgerton, V Reggie; Sinha, Shantanu

    2006-06-01

    The in vivo strain properties of human skeletal muscle-tendon complexes are poorly understood, particularly following chronic periods of reduced load bearing. We studied eight healthy volunteers who underwent 4 wk of unilateral lower limb suspension (ULLS) to induce chronic unloading. Before and after the ULLS, maximum isometric ankle plantar flexion torque was determined by using a magnetic resonance (MR)-compatible dynamometry. Volumes of the triceps surae muscles and strain distribution of the soleus aponeurosis and the Achilles tendon at a constant submaximal plantar flexion (20% pre-maximal voluntary contraction) were measured by using MRI and velocity-encoded, phase-contrast MRI techniques. Following ULLS, volumes of the soleus and the medial gastrocnemius and the maximum isometric ankle plantar flexion (maximum voluntary contraction) decreased by 5.5+/-1.9, 7.5+/-2.7, and 48.1+/-6.1%, respectively. The strain of the aponeurosis along the length of the muscle before the ULLS was 0.3+/-0.3%, ranging from -1.5 to 2.7% in different locations of the aponeurosis. Following ULLS, the mean strain was -6.4+/-0.3%, ranging from -1.6 to 1.3%. The strain distribution of the midregion of the aponeurosis was significantly influenced by the ULLS, whereas the more distal component showed no consistent changes. Achilles tendon strain was not affected by the ULLS. These results raise the issue as to whether these changes in strain distribution affect the functional properties of the triceps surae and whether the probability of strain injuries within the triceps surae increases following chronic unloading in those regions of this muscle complex in which unusual strains occur.

  12. Strain Measurements within Fiber Boards. Part I: Inhomogeneous Strain Distribution within Medium Density Fiberboards (MDF) Loaded Perpendicularly to the Plane of the Board

    PubMed Central

    Rathke, Jörn; Sinn, Gerhard; Konnerth, Johannes; Müller, Ulrich

    2012-01-01

    Internal bond strength testing is a widely used approach for testing quality traits of wood based panels. Generally, failure of internal bond specimens is due to adhesion and/or wood failure in the specimen. It has been reported that a composite product with a large variation in the vertical density profile fails in the center part of the board which is either the middle of the core layer or the transition zone between core layer and face layer. The density in the failure zone is typically 50% lower than the maximum density in the face layers. The aim of this study was to analyze the strain distribution in a specimen under tension perpendicular to the panel plane. The results showed that a high variety of strain magnitude occurred in the specimen. The strain is either aligned with the tension direction or a tension zone is built in one of the edge zones leading to failure. Vector graphics of the specimen show the problematic test setup of internal bond strength measurement. Strain spots in the edges lead to the assumption of an uneven stress distribution due to the momentum which results from non-perfect alignment or irregularities in the test setup. PMID:28817026

  13. Strain Measurements within Fiber Boards. Part I: Inhomogeneous Strain Distribution within Medium Density Fiberboards (MDF) Loaded Perpendicularly to the Plane of the Board.

    PubMed

    Rathke, Jörn; Sinn, Gerhard; Konnerth, Johannes; Müller, Ulrich

    2012-06-19

    Internal bond strength testing is a widely used approach for testing quality traits of wood based panels. Generally, failure of internal bond specimens is due to adhesion and/or wood failure in the specimen. It has been reported that a composite product with a large variation in the vertical density profile fails in the center part of the board which is either the middle of the core layer or the transition zone between core layer and face layer. The density in the failure zone is typically 50% lower than the maximum density in the face layers. The aim of this study was to analyze the strain distribution in a specimen under tension perpendicular to the panel plane. The results showed that a high variety of strain magnitude occurred in the specimen. The strain is either aligned with the tension direction or a tension zone is built in one of the edge zones leading to failure. Vector graphics of the specimen show the problematic test setup of internal bond strength measurement. Strain spots in the edges lead to the assumption of an uneven stress distribution due to the momentum which results from non-perfect alignment or irregularities in the test setup.

  14. Strains distribution in biaxial Ge/CdSe nanowire analyzed by a new finite element method based on boundary conditions

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Wang, Chunrui; Zhang, Yao; Zhang, Shasha; Xu, Xiaofeng; Yang, Qinyu

    2013-12-01

    A new finite element method based on boundary conditions is proposed here to obtain the complete strains distribution in Ge/CdSe biaxial nanowires. The results show that the strains in nanowire is essentially uniform along the nanowire axis, whereas turn to be complex in cross-section. Additionally, Raman spectrum of Ge subnanowire was calculated on base of those strain data. Raman frequency shifts in Ge subnanowire in Ge/CdSe biaxial nanowires is a good agreement with that of Raman spectrum, which confirms the validity of this model.

  15. XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique

    USGS Publications Warehouse

    Drits, V.A.; Eberl, D.D.; Srodon, J.

    1998-01-01

    A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-A?? periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.

  16. Experimental strain modal analysis for beam-like structure by using distributed fiber optics and its damage detection

    NASA Astrophysics Data System (ADS)

    Cheng, Liangliang; Busca, Giorgio; Cigada, Alfredo

    2017-07-01

    Modal analysis is commonly considered as an effective tool to obtain the intrinsic characteristics of structures including natural frequencies, modal damping ratios, and mode shapes, which are significant indicators for monitoring the health status of engineering structures. The complex mode indicator function (CMIF) can be regarded as an effective numerical tool to perform modal analysis. In this paper, experimental strain modal analysis based on the CMIF has been introduced. Moreover, a distributed fiber-optic sensor, as a dense measuring device, has been applied to acquire strain data along a beam surface. Thanks to the dense spatial resolution of the distributed fiber optics, more detailed mode shapes could be obtained. In order to test the effectiveness of the method, a mass lump—considered as a linear damage component—has been attached to the surface of the beam, and damage detection based on strain mode shape has been carried out. The results manifest that strain modal parameters can be estimated effectively by utilizing the CMIF based on the corresponding simulations and experiments. Furthermore, damage detection based on strain mode shapes benefits from the accuracy of strain mode shape recognition and the excellent performance of the distributed fiber optics.

  17. A practical approach for outdoors distributed target localization in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Béjar, Benjamín; Zazo, Santiago

    2012-12-01

    Wireless sensor networks are posed as the new communication paradigm where the use of small, low-complexity, and low-power devices is preferred over costly centralized systems. The spectra of potential applications of sensor networks is very wide, ranging from monitoring, surveillance, and localization, among others. Localization is a key application in sensor networks and the use of simple, efficient, and distributed algorithms is of paramount practical importance. Combining convex optimization tools with consensus algorithms we propose a distributed localization algorithm for scenarios where received signal strength indicator readings are used. We approach the localization problem by formulating an alternative problem that uses distance estimates locally computed at each node. The formulated problem is solved by a relaxed version using semidefinite relaxation technique. Conditions under which the relaxed problem yields to the same solution as the original problem are given and a distributed consensus-based implementation of the algorithm is proposed based on an augmented Lagrangian approach and primal-d