NASA Astrophysics Data System (ADS)
Ozkaya, Efe; Yilmaz, Cetin
2017-02-01
The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.
Constant pH simulations of pH responsive polymers
NASA Astrophysics Data System (ADS)
Sharma, Arjun; Smith, J. D.; Walters, Keisha B.; Rick, Steven W.
2016-12-01
Polyacidic polymers can change structure over a narrow range of pH in a competition between the hydrophobic effect, which favors a compact state, and electrostatic repulsion, which favors an extended state. Constant pH molecular dynamics computer simulations of poly(methacrylic acid) reveal that there are two types of structural changes, one local and one global, which make up the overall response. The local structural response depends on the tacticity of the polymer and leads to different cooperative effects for polymers with different stereochemistries, demonstrating both positive and negative cooperativities.
Local-global interference is modulated by age, sex and anterior corpus callosum size
Müller-Oehring, Eva M.; Schulte, Tilman; Raassi, Carla; Pfefferbaum, Adolf; Sullivan, Edith V.
2007-01-01
To identify attentional and neural mechanisms affecting global and local feature extraction, we devised a global-local hierarchical letter paradigm to test the hypothesis that aging reduces functional cerebral lateralization through corpus callosum (CC) degradation. Participants (37 men and women, 26–79 years) performed a task requiring global, local, or global+local attention and underwent structural MRI for CC measurement. Although reaction time (RT) slowed with age, all participants had faster RTs to local than global targets. This local precedence effect together with greater interference from incongruent local information and greater response conflict from local targets each correlated with older age and smaller callosal genu (anterior) areas. These findings support the hypothesis that the CC mediates lateralized local-global processes by inhibition of task-irrelevant information under selective attention conditions. Further, with advancing age smaller genu size leads to less robust inhibition, thereby reducing cerebral lateralization and permitting interference to influence processing. Sex was an additional modifier of interference, in that callosum-interference relationships were evident in women but not in men. Regardless of age, smaller splenium (posterior) areas correlated with less response facilitation from repetition priming of global targets in men, but with greater response facilitation from repetition priming of local targets in women. Our data indicate the following dissociation: Anterior callosal structure was associated with inhibitory processes (i.e., interference from incongruency and response conflict), which are vulnerable to the effects of age and sex, whereas posterior callosal structure was associated with facilitation processes from repetition priming dependent on sex and independent of age. PMID:17335783
Local-global interference is modulated by age, sex and anterior corpus callosum size.
Müller-Oehring, Eva M; Schulte, Tilman; Raassi, Carla; Pfefferbaum, Adolf; Sullivan, Edith V
2007-04-20
To identify attentional and neural mechanisms affecting global and local feature extraction, we devised a global-local hierarchical letter paradigm to test the hypothesis that aging reduces functional cerebral lateralization through corpus callosum (CC) degradation. Participants (37 men and women, 26-79 years) performed a task requiring global, local, or global+local attention and underwent structural MRI for CC measurement. Although reaction time (RT) slowed with age, all participants had faster RTs to local than global targets. This local precedence effect together with greater interference from incongruent local information and greater response conflict from local targets each correlated with older age and smaller callosal genu (anterior) areas. These findings support the hypothesis that the CC mediates lateralized local-global processes by inhibition of task-irrelevant information under selective attention conditions. Further, with advancing age smaller genu size leads to less robust inhibition, thereby reducing cerebral lateralization and permitting interference to influence processing. Sex was an additional modifier of interference, in that callosum-interference relationships were evident in women but not in men. Regardless of age, smaller splenium (posterior) areas correlated with less response facilitation from repetition priming of global targets in men, but with greater response facilitation from repetition priming of local targets in women. Our data indicate the following dissociation: anterior callosal structure was associated with inhibitory processes (i.e., interference from incongruency and response conflict), which are vulnerable to the effects of age and sex, whereas posterior callosal structure was associated with facilitation processes from repetition priming dependent on sex and independent of age.
Season-modulated responses of Neotropical bats to forest fragmentation.
Ferreira, Diogo F; Rocha, Ricardo; López-Baucells, Adrià; Farneda, Fábio Z; Carreiras, João M B; Palmeirim, Jorge M; Meyer, Christoph F J
2017-06-01
Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape-scale attributes. Generalized linear mixed-effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment-matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in resource abundance and consequently to local and landscape scale attributes.
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.; Heyliger, Paul R.; Hopkins, Dale A.
1996-01-01
Recent developments on layerwise mechanics for the analysis of composite laminates and structures with piezoelectric actuators and sensors are reviewed. The mechanics implement layerwise representations of displacements and electric potential, and can model both the global and local electromechanical response of smart composite structures. The corresponding finite-element implementations for the static and dynamic analysis of smart piezoelectric composite structures are also summarized. Select application illustrate the accuracy, robustness and capability of the developed mechanics to capture the global and local dynamic response of thin and/or thick laminated piezoelectric plates.
ERIC Educational Resources Information Center
European Social Fund, Dublin (Ireland).
Government support of microenterprise/entrepreneurship in Ireland was examined through structured interviews with 81 of 120 microentrepreneurs (68% response rate) identified as clients of local enterprise support agencies and/or completers of enterprise training and structured interviews with representatives of 25 local, voluntary, and private…
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1986-01-01
An assessment is made of the potential of different global-local analysis strategies for predicting the nonlinear and postbuckling responses of structures. Two postbuckling problems of composite panels are used as benchmarks and the application of different global-local methodologies to these benchmarks is outlined. The key elements of each of the global-local strategies are discussed and future research areas needed to realize the full potential of global-local methodologies are identified.
Monaural Sound Localization Based on Reflective Structure and Homomorphic Deconvolution
Park, Yeonseok; Choi, Anthony
2017-01-01
The asymmetric structure around the receiver provides a particular time delay for the specific incoming propagation. This paper designs a monaural sound localization system based on the reflective structure around the microphone. The reflective plates are placed to present the direction-wise time delay, which is naturally processed by convolutional operation with a sound source. The received signal is separated for estimating the dominant time delay by using homomorphic deconvolution, which utilizes the real cepstrum and inverse cepstrum sequentially to derive the propagation response’s autocorrelation. Once the localization system accurately estimates the information, the time delay model computes the corresponding reflection for localization. Because of the structure limitation, two stages of the localization process perform the estimation procedure as range and angle. The software toolchain from propagation physics and algorithm simulation realizes the optimal 3D-printed structure. The acoustic experiments in the anechoic chamber denote that 79.0% of the study range data from the isotropic signal is properly detected by the response value, and 87.5% of the specific direction data from the study range signal is properly estimated by the response time. The product of both rates shows the overall hit rate to be 69.1%. PMID:28946625
Mapping local deformation behavior in single cell metal lattice structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlton, Holly D.; Lind, Jonathan; Messner, Mark C.
The deformation behavior of metal lattice structures is extremely complex and challenging to predict, especially since strain is not uniformly distributed throughout the structure. Understanding and predicting the failure behavior for these types of light-weighting structures is of great interest due to the excellent scaling of stiffness- and strength-to weight ratios they display. Therefore, there is a need to perform simplified experiments that probe unit cell mechanisms. This study reports on high resolution mapping of the heterogeneous structural response of single unit cells to the macro-scale loading condition. Two types of structures, known to show different stress-strain responses, were evaluatedmore » using synchrotron radiation micro-tomography while performing in-situ uniaxial compression tests to capture the local micro-strain deformation. These structures included the octet-truss, a stretch-dominated lattice, and the rhombic-dodecahedron, a bend-dominated lattice. The tomographic analysis showed that the stretch- and bend-dominated lattices exhibit different failure mechanisms and that the defects built into the structure cause a heterogeneous localized deformation response. Also shown here is a change in failure mode for stretch-dominated lattices, where there appears to be a transition from buckling to plastic yielding for samples with a relative density between 10 and 20%. In conclusion, the experimental results were also used to inform computational studies designed to predict the mesoscale deformation behavior of lattice structures. Here an equivalent continuum model and a finite element model were used to predict both local strain fields and mechanical behavior of lattices with different topologies.« less
Mapping local deformation behavior in single cell metal lattice structures
Carlton, Holly D.; Lind, Jonathan; Messner, Mark C.; ...
2017-02-08
The deformation behavior of metal lattice structures is extremely complex and challenging to predict, especially since strain is not uniformly distributed throughout the structure. Understanding and predicting the failure behavior for these types of light-weighting structures is of great interest due to the excellent scaling of stiffness- and strength-to weight ratios they display. Therefore, there is a need to perform simplified experiments that probe unit cell mechanisms. This study reports on high resolution mapping of the heterogeneous structural response of single unit cells to the macro-scale loading condition. Two types of structures, known to show different stress-strain responses, were evaluatedmore » using synchrotron radiation micro-tomography while performing in-situ uniaxial compression tests to capture the local micro-strain deformation. These structures included the octet-truss, a stretch-dominated lattice, and the rhombic-dodecahedron, a bend-dominated lattice. The tomographic analysis showed that the stretch- and bend-dominated lattices exhibit different failure mechanisms and that the defects built into the structure cause a heterogeneous localized deformation response. Also shown here is a change in failure mode for stretch-dominated lattices, where there appears to be a transition from buckling to plastic yielding for samples with a relative density between 10 and 20%. In conclusion, the experimental results were also used to inform computational studies designed to predict the mesoscale deformation behavior of lattice structures. Here an equivalent continuum model and a finite element model were used to predict both local strain fields and mechanical behavior of lattices with different topologies.« less
Scleral anisotropy and its effects on the mechanical response of the optic nerve head
Coudrillier, Baptiste; Boote, Craig; Quigley, Harry A.
2012-01-01
This paper presents a computational modeling study of the effects of the collagen fiber structure on the mechanical response of the sclera and the adjacent optic nerve head (ONH). A specimen-specific inverse finite element method was developed to determine the material properties of two human sclera subjected to full-field inflation experiments. A distributed fiber model was applied to describe the anisotropic elastic behavior of the sclera. The model directly incorporated wide angle x-ray scattering measurements of the anisotropic collagen structure. The converged solution of the inverse method was used in micromechanical studies of the mechanical anisotropy of the sclera at different scales. The effects of the scleral collagen fiber structure on the ONH deformation were evaluated by progressively filtering out local anisotropic features. It was found that the majority of the midposterior sclera could be described as isotropic without significantly affecting the mechanical response of the tissues of the ONH. In contrast, removing local anisotropic features in the peripapillary sclera produced significant changes in scleral canal expansion, and lamina cribrosa deformation. Local variations in the collagen structure of the peripapillary sclera significantly influenced the mechanical response of the ONH. PMID:23188256
NASA Technical Reports Server (NTRS)
Martin, Richard E.; Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Baaklini, George Y.
2005-01-01
Impedance-based structural-health-monitoring uses piezoelectric (PZT) patches that are bonded onto or embedded in a structure. Each individual patch behaves as both an actuator of the surrounding structural area as well as a sensor of the structural response. The size of the excited area varies with the geometry and material composition of the structure, and an active patch is driven by a sinusoidal voltage sweep. When a PZT patch is subjected to an electric field, it produces a mechanical strain; and when it is stressed, it produces an electric charge. Since the patch is bonded to the structure, driving a patch deforms and vibrates the structure. The structure then produces a localized dynamic response. This structural system response is transferred back to the PZT patch, which in turn produces an electrical response. The electromechanical impedance method is based on the principle of electromechanical coupling between the active sensor and the structure, which allows researchers to assess local structural dynamics directly by interrogating a distributed sensor array. Because of mechanical coupling between the sensor and the host structure, this mechanical effect is picked up by the sensor and, through electromechanical coupling inside the active element, is reflected in electrical impedance measured at the sensor s terminals.
ERIC Educational Resources Information Center
Smith, Penny; Abbott, Ian
2014-01-01
Drawing on data from a series of semi-structured interviews this article reports on findings from a research project focusing on the responses of two local authorities and their secondary schools to the Academies Act 2010. The article considers the background and the development of the education system in both localities. It goes on to focus on…
Nonlocal response with local optics
NASA Astrophysics Data System (ADS)
Kong, Jiantao; Shvonski, Alexander J.; Kempa, Krzysztof
2018-04-01
For plasmonic systems too small for classical, local simulations to be valid, but too large for ab initio calculations to be computationally feasible, we developed a practical approach—a nonlocal-to-local mapping that enables the use of a modified local system to obtain the response due to nonlocal effects to lowest order, at the cost of higher structural complexity. In this approach, the nonlocal surface region of a metallic structure is mapped onto a local dielectric film, mathematically preserving the nonlocality of the entire system. The most significant feature of this approach is its full compatibility with conventional, highly efficient finite difference time domain (FDTD) simulation codes. Our optimized choice of mapping is based on the Feibelman's d -function formalism, and it produces an effective dielectric function of the local film that obeys all required sum rules, as well as the Kramers-Kronig causality relations. We demonstrate the power of our approach combined with an FDTD scheme, in a series of comparisons with experiments and ab initio density functional theory calculations from the literature, for structures with dimensions from the subnanoscopic to microscopic range.
Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.; Heyliger, Paul R.; Hopkins, Dale A.
1996-01-01
Laminate and structural mechanics for the analysis of laminated composite plate structures with piezoelectric actuators and sensors are presented. The theories implement layerwise representations of displacements and electric potential, and can model both the global and local electromechanical response of smart composite laminates. Finite-element formulations are developed for the quasi-static and dynamic analysis of smart composite structures containing piezoelectric layers. Comparisons with an exact solution illustrate the accuracy, robustness and capability of the developed mechanics to capture the global and local response of thin and/or thick laminated piezoelectric plates. Additional correlations and numerical applications demonstrate the unique capabilities of the mechanics in analyzing the static and free-vibration response of composite plates with distributed piezoelectric actuators and sensors.
NASA Astrophysics Data System (ADS)
Claeys, M.; Sinou, J.-J.; Lambelin, J.-P.; Todeschini, R.
2016-03-01
In presence of friction, the frequency response function of a metallic assembly is strongly dependent on the excitation level. The local stick-slip behavior at the friction interfaces induces energy dissipation and local stiffness softening. These phenomena are studied both experimentally and numerically on a test structure named "Harmony". Concerning the numerical part, a classical complete methodology from the finite element and friction modeling to the prediction of the nonlinear vibrational response is implemented. The well-known Harmonic Balance Method with a specific condensation process on the nonlinear frictional elements is achieved. Also, vibration experiments are performed to validate not only the finite element model of the test structure named "Harmony" at low excitation levels but also to investigate the nonlinear behavior of the system on several excitation levels. A scanning laser vibrometer is used to measure the nonlinear behavior and the local stick-slip movement near the contacts.
NASA Astrophysics Data System (ADS)
Dizaji, Mehrdad S.; Harris, Devin K.; Alipour, Mohamad; Ozbulut, Osman E.
2018-03-01
Structural health monitoring (SHM) describes a decision-making framework that is fundamentally guided by state change detection of structural systems. This framework typically relies on the use of continuous or semi-continuous monitoring of measured response to quantify this state change in structural system behavior, which is often related to the initiation of some form of damage. Measurement approaches used for traditional SHM are numerous, but most are limited to either describing localized or global phenomena, making it challenging to characterize operational structural systems which exhibit both. In addition to these limitations in sensing, SHM has also suffered from the inherent robustness inherent to most full-scale structural systems, making it challenging to identify local damage. These challenges highlight the opportunity for alternative strategies for SHM, strategies that are able to provide data suitable to translate into rich information. This paper describes preliminary results from a refined structural identification (St-ID) approach using fullfield measurements derived from high-speed 3D Digital Image Correlation (HSDIC) to characterize uncertain parameters (i.e. boundary and constitutive properties) of a laboratory scale structural component. The St-ID approach builds from prior work by supplementing full-field deflection and strain response with vibration response derived from HSDIC. Inclusion of the modal characteristics within a hybrid-genetic algorithm optimization scheme allowed for simultaneous integration of mechanical and modal response, thus enabling a more robust St-ID strategy than could be achieved with traditional sensing techniques. The use of full-field data is shown to provide a more comprehensive representation of the global and local behavior, which in turn increases the robustness of the St-Id framework. This work serves as the foundation for a new paradigm in SHM that emphasizes characterizing structural performance using a smaller number, but richer set of measurements.
USDA-ARS?s Scientific Manuscript database
Disease resistance (R-) genes have been isolated from many plant species. Most encode nucleotide binding leucine-rich-repeat (NLR) proteins that trigger a rapid localized programmed cell death termed the hypersensitive response (HR) upon pathogen recognition. Despite their structural similarities, d...
NASA Astrophysics Data System (ADS)
Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J.
2011-01-01
Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified.
Wingen, Andreas; Ferraro, Nathaniel M.; Shafer, Morgan W.; ...
2014-05-23
The effects of applied non-axisymmetric resonant magnetic perturbations (RMPs) are predicted without and with self-consistent plasma response by modeling of the magnetic field structure and two-fluid MHD simulations, respectively. A synthetic diagnostic is used to simulate soft X-ray (SXR) emission within the steep gradient region of the pedestal, 0.98 > ψ > 0.94. The entire pedestal and edge region is characterized by large changes in plasma rotation and current density. Those parameters are expected to strongly affect the plasma response to RMPs. The M3D-C1 code takes into account this response self-consistently. The plasma response is investigated in detail and usedmore » in the forward modeling of the simulated local SXR emission, within the framework of the synthetic diagnostic. The resulting synthetic emission is compared to measured SXR data. The latter clearly shows helical m = 11 ± 1 displacements around the 11/3 rational surface of sizes up to 5 cm, which change with the poloidal angle. The synthetic emission with plasma response is used to explain the nature of the measured displacements. Different approaches are tested. One approach is based on the magnetic field structure to simulate local emission, which shows additional structures at the separatrix, that are caused by the lobes. Especially without plasma response, almost only separatrix structures are generated while no significant displacements are found further inside. Another approach to model local emission uses the fluid quantities electron density and temperature, as calculated by M3D-C1. Compared to the previous approach, based on the magnetic field structure, the emission simulated by the fluid approach with plasma response shows better agreement with the measured SXR data. To be specific, it has comparable displacements in the steep gradient region and no lobe structures at all. The helical displacements around the 11/3 surface are identified to be directly related to the kink response, caused by non-resonant amplification of various poloidal RMP modes due to plasma response. Regarding the latter, the role of different plasma parameters is investigated, but it appears that the electron rotation plays a key role in the formation of screening and resonant amplification, while the kinking appears to be sensitive to the edge current density. As a result, it is also hypothesised that the strength of the kink response is also correlated to edge-localized-mode (ELM) stability.« less
Herdic, Peter C; Houston, Brian H; Marcus, Martin H; Williams, Earl G; Baz, Amr M
2005-06-01
The surface and interior response of a Cessna Citation fuselage section under three different forcing functions (10-1000 Hz) is evaluated through spatially dense scanning measurements. Spatial Fourier analysis reveals that a point force applied to the stiffener grid provides a rich wavenumber response over a broad frequency range. The surface motion data show global structural modes (approximately < 150 Hz), superposition of global and local intrapanel responses (approximately 150-450 Hz), and intrapanel motion alone (approximately > 450 Hz). Some evidence of Bloch wave motion is observed, revealing classical stop/pass bands associated with stiffener periodicity. The interior response (approximately < 150 Hz) is dominated by global structural modes that force the interior cavity. Local intrapanel responses (approximately > 150 Hz) of the fuselage provide a broadband volume velocity source that strongly excites a high density of interior modes. Mode coupling between the structural response and the interior modes appears to be negligible due to a lack of frequency proximity and mismatches in the spatial distribution. A high degree-of-freedom finite element model of the fuselage section was developed as a predictive tool. The calculated response is in good agreement with the experimental result, yielding a general model development methodology for accurate prediction of structures with moderate to high complexity.
Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li; Molugu, Kaivalya; Zheng, Aiping; Li, Yitong; Park, Sanghyun; Bradfield, Christopher A; Xing, Yongna
2017-05-23
The aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR-ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.
Lee, Woojong; Jiang, Li; Molugu, Kaivalya; Zheng, Aiping; Li, Yitong; Park, Sanghyun; Bradfield, Christopher A.; Xing, Yongna
2017-01-01
The aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR–ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands. PMID:28396409
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li
he aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR–ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomainmore » interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.« less
New responsibilities in purchasing and developing services.
Jerram, Soline; Fox, Ann
2014-06-01
The role of nursing in the NHS commissioning structure in England is developing. Since April 2013 more than 200 clinical commissioning groups (CCGs), which comprise all GP practices in the locality, have taken on responsibility for health budgets in their areas. This article describes the challenges ahead and nurses' responsibilities in CCGs when working with local citizens and across the health and social care system to assure the delivery of high quality, safe services.
Primary care emergency team training in situ means learning in real context
Brandstorp, Helen; Halvorsen, Peder A.; Sterud, Birgitte; Haugland, Bjørgun; Kirkengen, Anna Luise
2016-01-01
Objective The purpose of our study was to explore the local learning processes and to improve in situ team training in the primary care emergency teams with a focus on interaction. Design, setting and subjects As participating observers, we investigated locally organised trainings of teams constituted ad hoc, involving nurses, paramedics and general practitioners, in rural Norway. Subsequently, we facilitated focus discussions with local participants. We investigated what kinds of issues the participants chose to elaborate in these learning situations, why they did so, and whether and how local conditions improved during the course of three and a half years. In addition, we applied learning theories to explore and challenge our own and the local participants’ understanding of team training. Results In situ team training was experienced as challenging, engaging, and enabling. In the training sessions and later focus groups, the participants discussed a wide range of topics constitutive for learning in a sociocultural perspective, and topics constitutive for patient safety culture. The participants expanded the types of training sites, themes and the structures for participation, improved their understanding of communication and developed local procedures. The flexible structure of the model mirrors the complexity of medicine and provides space for the participants’ own sense of responsibility. Conclusion Challenging, monthly in situ team trainings organised by local health personnel facilitate many types of learning. The flexible training model provides space for the participants’ own sense of responsibility and priorities. Outcomes involve social and structural improvements, including a sustainable culture of patient safety. Key Points Challenging, monthly in situ team trainings, organised by local health personnel, facilitate many types of learning.The flexible structure of the training model mirrors the complexity of medicine and the realism of the simulation sessions.Providing room for the participants’ own priorities and sense of responsibility allows for improvement on several levels.The participants demonstrated a consistent, long-term motivation to strengthen safety, both for their patients and for themselves. PMID:27442268
Primary care emergency team training in situ means learning in real context.
Brandstorp, Helen; Halvorsen, Peder A; Sterud, Birgitte; Haugland, Bjørgun; Kirkengen, Anna Luise
2016-09-01
The purpose of our study was to explore the local learning processes and to improve in situ team training in the primary care emergency teams with a focus on interaction. As participating observers, we investigated locally organised trainings of teams constituted ad hoc, involving nurses, paramedics and general practitioners, in rural Norway. Subsequently, we facilitated focus discussions with local participants. We investigated what kinds of issues the participants chose to elaborate in these learning situations, why they did so, and whether and how local conditions improved during the course of three and a half years. In addition, we applied learning theories to explore and challenge our own and the local participants' understanding of team training. In situ team training was experienced as challenging, engaging, and enabling. In the training sessions and later focus groups, the participants discussed a wide range of topics constitutive for learning in a sociocultural perspective, and topics constitutive for patient safety culture. The participants expanded the types of training sites, themes and the structures for participation, improved their understanding of communication and developed local procedures. The flexible structure of the model mirrors the complexity of medicine and provides space for the participants' own sense of responsibility. Challenging, monthly in situ team trainings organised by local health personnel facilitate many types of learning. The flexible training model provides space for the participants' own sense of responsibility and priorities. Outcomes involve social and structural improvements, including a sustainable culture of patient safety. KEY POINTS Challenging, monthly in situ team trainings, organised by local health personnel, facilitate many types of learning. The flexible structure of the training model mirrors the complexity of medicine and the realism of the simulation sessions. Providing room for the participants' own priorities and sense of responsibility allows for improvement on several levels. The participants demonstrated a consistent, long-term motivation to strengthen safety, both for their patients and for themselves.
Similar local order in disordered fluorite and aperiodic pyrochlore structures
Shamblin, Jacob; Tracy, Cameron; Palomares, Raul; ...
2017-10-01
A major challenge to understanding the response of materials to extreme environments (e.g., nuclear fuels/waste forms and fusion materials) is to unravel the processes by which a material can incorporate atomic-scale disorder, and at the same time, remain crystalline. While it has long been known that all condensed matter, even liquids and glasses, possess short-range order, the relation between fully-ordered, disordered, and aperiodic structures over multiple length scales is not well understood. For example, when defects are introduced (via pressure or irradiation) into materials adopting the pyrochlore structure, these complex oxides either disorder over specific crystallographic sites, remaining crystalline, ormore » become aperiodic. Here we present neutron total scattering results characterizing the irradiation response of two pyrochlores, one that is known to disorder (Er2Sn2O7) and the other to amorphize (Dy2Sn2O7) under ion irradiation. The results demonstrate that in both cases, the local pyrochlore structure is transformed into similar short range configurations that are best fit by the orthorhombic weberite structure, even though the two compositions have distinctly different structures, aperiodic vs. disordered-crystalline, at longer length scales. Thus, a material's resistance to amorphization may not depend primarily on local defect formation energies, but rather on the structure's compatibility with meso-scale modulations of the local order in a way that maintains long-range periodicity.« less
Detecting Structural Failures Via Acoustic Impulse Responses
NASA Technical Reports Server (NTRS)
Bayard, David S.; Joshi, Sanjay S.
1995-01-01
Advanced method of acoustic pulse reflectivity testing developed for use in determining sizes and locations of failures within structures. Used to detect breaks in electrical transmission lines, detect faults in optical fibers, and determine mechanical properties of materials. In method, structure vibrationally excited with acoustic pulse (a "ping") at one location and acoustic response measured at same or different location. Measured acoustic response digitized, then processed by finite-impulse-response (FIR) filtering algorithm unique to method and based on acoustic-wave-propagation and -reflection properties of structure. Offers several advantages: does not require training, does not require prior knowledge of mathematical model of acoustic response of structure, enables detection and localization of multiple failures, and yields data on extent of damage at each location.
A structural design decomposition method utilizing substructuring
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
1994-01-01
A new method of design decomposition for structural analysis and optimization is described. For this method, the structure is divided into substructures where each substructure has its structural response described by a structural-response subproblem, and its structural sizing determined from a structural-sizing subproblem. The structural responses of substructures that have rigid body modes when separated from the remainder of the structure are further decomposed into displacements that have no rigid body components, and a set of rigid body modes. The structural-response subproblems are linked together through forces determined within a structural-sizing coordination subproblem which also determines the magnitude of any rigid body displacements. Structural-sizing subproblems having constraints local to the substructures are linked together through penalty terms that are determined by a structural-sizing coordination subproblem. All the substructure structural-response subproblems are totally decoupled from each other, as are all the substructure structural-sizing subproblems, thus there is significant potential for use of parallel solution methods for these subproblems.
State, Federal, and Local Regulation of Cable Television.
ERIC Educational Resources Information Center
Barnett, Stephen R.
1972-01-01
After reviewing the results of local regulation of cable television, the author feels that local governments are not fully capable of properly administering and regulating a cable system. (The Federal Communications Commission (FCC) agrees that this job should be the states' responsibility.) The article then reviews the structure of the current…
Study of improved modeling and solution procedures for nonlinear analysis. [aircraft-like structures
NASA Technical Reports Server (NTRS)
Kamat, M. P.
1979-01-01
An evaluation of the ACTION computer code on an aircraft like structure is presented. This computer program proved adequate in predicting gross response parameters in structures which undergo severe localized cross sectional deformations.
Giannini, Vincenzo; Maier, Stefan A.; Craster, Richard V.
2016-01-01
According to the hydrodynamic Drude model, surface plasmon resonances of metallic nanostructures blueshift owing to the non-local response of the metal’s electron gas. The screening length characterizing the non-local effect is often small relative to the overall dimensions of the metallic structure, which enables us to derive a coarse-grained non-local description using matched asymptotic expansions; a perturbation theory for the blueshifts of arbitrary-shaped nanometallic structures is then developed. The effect of non-locality is not always a perturbation and we present a detailed analysis of the ‘bonding’ modes of a dimer of nearly touching nanowires where the leading-order eigenfrequencies and eigenmode distributions are shown to be a renormalization of those predicted assuming a local metal permittivity. PMID:27493575
Thermoviscoplastic response of thin plates subjected to intense local heating
NASA Technical Reports Server (NTRS)
Byrom, Ted G.; Allen, David H.; Thornton, Earl A.
1992-01-01
A finite element method is employed to investigate the thermoviscoplastic response of a half-cylinder to intense localized transient heating. Thermoviscoplastic material behavior is characterized by the Bodner-Partom constitutive model. Structure geometry is modeled with a three-dimensional assembly of CST-DKT plate elements incorporating the large deflection von Karman assumptions. The paper compares the results of a dynamic analysis with a quasi-static analysis for the half-cylinder structure with a step-function transient temperature loading similar to that which may be encountered with shock wave interference on a hypersonic leading edge.
A Parametric Study of Nonlinear Seismic Response Analysis of Transmission Line Structures
Wang, Yanming; Yi, Zhenhua
2014-01-01
A parametric study of nonlinear seismic response analysis of transmission line structures subjected to earthquake loading is studied in this paper. The transmission lines are modeled by cable element which accounts for the nonlinearity of the cable based on a real project. Nonuniform ground motions are generated using a stochastic approach based on random vibration analysis. The effects of multicomponent ground motions, correlations among multicomponent ground motions, wave travel, coherency loss, and local site on the responses of the cables are investigated using nonlinear time history analysis method, respectively. The results show the multicomponent seismic excitations should be considered, but the correlations among multicomponent ground motions could be neglected. The wave passage effect has a significant influence on the responses of the cables. The change of the degree of coherency loss has little influence on the response of the cables, but the responses of the cables are affected significantly by the effect of coherency loss. The responses of the cables change little with the degree of the difference of site condition changing. The effect of multicomponent ground motions, wave passage, coherency loss, and local site should be considered for the seismic design of the transmission line structures. PMID:25133215
Spectral response modification of TiO₂ MSM photodetector with an LSPR filter.
Calışkan, Deniz; Bütün, Bayram; Ozcan, Sadan; Ozbay, Ekmel
2014-06-16
We fabricated UVB filtered TiO₂ MSM photodetectors by the localized surface plasmon resonance effect. A plasmonic filter structure was designed using FDTD simulations. Final filter structure was fabricated with Al nano-cylinders with a 70 nm radius 180 nm period on 360 nm SiO₂film. The spectral response of the TiO₂ MSM photodetector was modified and the UVB response was reduced by approx. 60% with an LSPR structure, resulting in a peak responsivity shift of more than 40 nm. To our knowledge, this is the first published result for the spectral response modification of TiO₂ photodetectors with LSPR technique.
Scaling of membrane-type locally resonant acoustic metamaterial arrays.
Naify, Christina J; Chang, Chia-Ming; McKnight, Geoffrey; Nutt, Steven R
2012-10-01
Metamaterials have emerged as promising solutions for manipulation of sound waves in a variety of applications. Locally resonant acoustic materials (LRAM) decrease sound transmission by 500% over acoustic mass law predictions at peak transmission loss (TL) frequencies with minimal added mass, making them appealing for weight-critical applications such as aerospace structures. In this study, potential issues associated with scale-up of the structure are addressed. TL of single-celled and multi-celled LRAM was measured using an impedance tube setup with systematic variation in geometric parameters to understand the effects of each parameter on acoustic response. Finite element analysis was performed to predict TL as a function of frequency for structures with varying complexity, including stacked structures and multi-celled arrays. Dynamic response of the array structures under discrete frequency excitation was investigated using laser vibrometry to verify negative dynamic mass behavior.
Temporal and spatial adaptation of transient responses to local features
O'Carroll, David C.; Barnett, Paul D.; Nordström, Karin
2012-01-01
Interpreting visual motion within the natural environment is a challenging task, particularly considering that natural scenes vary enormously in brightness, contrast and spatial structure. The performance of current models for the detection of self-generated optic flow depends critically on these very parameters, but despite this, animals manage to successfully navigate within a broad range of scenes. Within global scenes local areas with more salient features are common. Recent work has highlighted the influence that local, salient features have on the encoding of optic flow, but it has been difficult to quantify how local transient responses affect responses to subsequent features and thus contribute to the global neural response. To investigate this in more detail we used experimenter-designed stimuli and recorded intracellularly from motion-sensitive neurons. We limited the stimulus to a small vertically elongated strip, to investigate local and global neural responses to pairs of local “doublet” features that were designed to interact with each other in the temporal and spatial domain. We show that the passage of a high-contrast doublet feature produces a complex transient response from local motion detectors consistent with predictions of a simple computational model. In the neuron, the passage of a high-contrast feature induces a local reduction in responses to subsequent low-contrast features. However, this neural contrast gain reduction appears to be recruited only when features stretch vertically (i.e., orthogonal to the direction of motion) across at least several aligned neighboring ommatidia. Horizontal displacement of the components of elongated features abolishes the local adaptation effect. It is thus likely that features in natural scenes with vertically aligned edges, such as tree trunks, recruit the greatest amount of response suppression. This property could emphasize the local responses to such features vs. those in nearby texture within the scene. PMID:23087617
NASA Astrophysics Data System (ADS)
Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin
2016-08-01
This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.
Development of a Novel Method for Determination of Residual Stresses in a Friction Stir Weld
NASA Technical Reports Server (NTRS)
Reynolds, Anthony P.
2001-01-01
Material constitutive properties, which describe the mechanical behavior of a material under loading, are vital to the design and implementation of engineering materials. For homogeneous materials, the standard process for determining these properties is the tensile test, which is used to measure the material stress-strain response. However, a majority of the applications for engineering materials involve the use of heterogeneous materials and structures (i.e. alloys, welded components) that exhibit heterogeneity on a global or local level. Regardless of the scale of heterogeneity, the overall response of the material or structure is dependent on the response of each of the constituents. Therefore, in order to produce materials and structures that perform in the best possible manner, the properties of the constituents that make up the heterogeneous material must be thoroughly examined. When materials exhibit heterogeneity on a local level, such as in alloys or particle/matrix composites, they are often treated as statistically homogenous and the resulting 'effective' properties may be determined through homogenization techniques. In the case of globally heterogeneous materials, such as weldments, the standard tensile test provides the global response but no information on what is Occurring locally within the different constituents. This information is necessary to improve the material processing as well as the end product.
Fatal Attraction? Intraguild Facilitation and Suppression among Predators.
Sivy, Kelly J; Pozzanghera, Casey B; Grace, James B; Prugh, Laura R
2017-11-01
Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.
Fatal attraction? Intraguild facilitation and suppression among predators
Sivy, Kelly J.; Pozzanghera, Casey B.; Grace, James B.; Prugh, Laura R.
2017-01-01
Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Univ. of Wisconsin, Madison, WI; Miller, Brandon D.
Ferritic/Martensitic (F/M) steels with high Cr content posses the high temperature strength and low swelling rates required for advanced nuclear reactor designs. Radiation induced segregation (RIS) occurs in F/M steels due to solute atoms preferentially coupling to point defect fluxes which migrate to defect sinks, such as grain boundaries (GBs). The RIS response of F/M steels and austenitic steels has been shown to be dependent on the local structure of GBs where low energy structures have suppressed RIS responses. This relationship between local GB structure and RIS has been demonstrated primarily in ion-irradiated specimens. A 9 wt.% Cr model alloymore » steel was irradiated to 3 dpa using neutrons at the Advanced Test Reactor (ATR) to determine the effect of a neutron radiation environment on the RIS response at different GB structures. This investigation found the relationship between GB structure and RIS is also active for F/M steels irradiated using neutrons. The data generated from the neutron irradiation is also compared to RIS data generated using proton irradiations on the same heat of model alloy.« less
Robust Measurement via A Fused Latent and Graphical Item Response Theory Model.
Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang
2018-03-12
Item response theory (IRT) plays an important role in psychological and educational measurement. Unlike the classical testing theory, IRT models aggregate the item level information, yielding more accurate measurements. Most IRT models assume local independence, an assumption not likely to be satisfied in practice, especially when the number of items is large. Results in the literature and simulation studies in this paper reveal that misspecifying the local independence assumption may result in inaccurate measurements and differential item functioning. To provide more robust measurements, we propose an integrated approach by adding a graphical component to a multidimensional IRT model that can offset the effect of unknown local dependence. The new model contains a confirmatory latent variable component, which measures the targeted latent traits, and a graphical component, which captures the local dependence. An efficient proximal algorithm is proposed for the parameter estimation and structure learning of the local dependence. This approach can substantially improve the measurement, given no prior information on the local dependence structure. The model can be applied to measure both a unidimensional latent trait and multidimensional latent traits.
ECE-imaging of the H-mode pedestal (invited).
Tobias, B J; Austin, M E; Boom, J E; Burrell, K H; Classen, I G J; Domier, C W; Luhmann, N C; Nazikian, R; Snyder, P B
2012-10-01
A synthetic diagnostic has been developed that reproduces the highly structured electron cyclotron emission (ECE) spectrum radiated from the edge region of H-mode discharges. The modeled dependence on local perturbations of the equilibrium plasma pressure allows for interpretation of ECE data for diagnosis of local quantities. Forward modeling of the diagnostic response in this region allows for improved mapping of the observed fluctuations to flux surfaces within the plasma, allowing for the poloidal mode number of coherent structures to be resolved. In addition, other spectral features that are dependent on both T(e) and n(e) contain information about pedestal structure and the electron energy distribution of localized phenomena, such as edge filaments arising during edge-localized mode (ELM) activity.
Photoinduced phase separation with local structural ordering in organic molecular conductors
NASA Astrophysics Data System (ADS)
Tsuchiya, S.; Nakagawa, K.; Yamada, J.; Taniguchi, H.; Toda, Y.
2017-10-01
In this work, polarized pump-probe spectroscopy was carried out to investigate the effects of a structural ordering of molecules on photoinduced phase separation (PIPS) in the organic conductors κ -(BEDT-TTF ) 2X [X =Cu [N (CN) 2]Br (κ -B r ) and Cu (NCS) 2 (κ -NCS)]. We found that the anisotropic response for the probe polarization appeared at around Tg, where the glasslike structural transition occurs. The anisotropy can be a result of a transient destruction of the local ordering of molecules, indicating a connection between the glasslike transition and PIPS. Moreover, we found that the PIPS response gradually develops with decreasing temperature in κ -Br, whereas it steeply increases in κ -NCS. This qualitative difference suggests that the structural ordering caused by a PIPS is more crucial in κ -NCS than in κ -Br.
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Vassilakos, Gregory J.
2015-01-01
This report summarizes initial modeling of the local response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris (MMOD) impacts using a structural, non-linear, transient dynamic finite element code. Complementary test results for a local BEAM structure are presented for both hammer and projectile impacts. Review of these data provided guidance for the transient dynamic model development. The local model is intended to support predictions using the global BEAM model, described in a companion report. Two types of local models were developed. One mimics the simplified Soft-Goods (fabric envelop) part of the BEAM NASTRAN model delivered by the project. The second investigates through-the-thickness modeling challenges for MMOD-type impacts. Both the testing and the analysis summaries contain lessons learned and areas for future efforts.
Global-local methodologies and their application to nonlinear analysis
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1989-01-01
An assessment is made of the potential of different global-local analysis strategies for predicting the nonlinear and postbuckling responses of structures. Two postbuckling problems of composite panels are used as benchmarks and the application of different global-local methodologies to these benchmarks is outlined. The key elements of each of the global-local strategies are discussed and future research areas needed to realize the full potential of global-local methodologies are identified.
Deformation behavior and mechanical analysis of vertically aligned carbon nanotube (VACNT) bundles
NASA Astrophysics Data System (ADS)
Hutchens, Shelby B.
Vertically aligned carbon nanotubes (VACNTs) serve as integral components in a variety of applications including MEMS devices, energy absorbing materials, dry adhesives, light absorbing coatings, and electron emitters, all of which require structural robustness. It is only through an understanding of VACNT's structural mechanical response and local constitutive stress-strain relationship that future advancements through rational design may take place. Even for applications in which the structural response is not central to device performance, VACNTs must be sufficiently robust and therefore knowledge of their microstructure-property relationship is essential. This thesis first describes the results of in situ uniaxial compression experiments of 50 micron diameter cylindrical bundles of these complex, hierarchical materials as they undergo unusual deformation behavior. Most notably they deform via a series of localized folding events, originating near the bundle base, which propagate laterally and collapse sequentially from bottom to top. This deformation mechanism accompanies an overall foam-like stress-strain response having elastic, plateau, and densification regimes with the addition of undulations in the stress throughout the plateau regime that correspond to the sequential folding events. Microstructural observations indicate the presence of a strength gradient, due to a gradient in both tube density and alignment along the bundle height, which is found to play a key role in both the sequential deformation process and the overall stress-strain response. Using the complicated structural response as both motivation and confirmation, a finite element model based on a viscoplastic solid is proposed. This model is characterized by a flow stress relation that contains an initial peak followed by strong softening and successive hardening. Analysis of this constitutive relation results in capture of the sequential buckling phenomenon and a strength gradient effect. This combination of experimental and modeling approaches motivates discussion of the particular microstructural mechanisms and local material behavior that govern the non-trivial energy absorption via sequential, localized buckle formation in the VACNT bundles.
Winterton, Rachel
2016-01-01
This qualitative study critically explores the barriers experienced by diverse rural community stakeholders in facilitating environments that enable age-friendly social participation. Twenty-six semi-structured interviews were conducted across two rural Australian communities with stakeholders from local government, health, social care, and community organizations. Findings identify that rural community stakeholders face significant difficulties in securing resources for groups and activities catering to older adults, which subsequently impacts their capacity to undertake outreach to older adults. However, in discussing these issues, questions were raised in relation to whose responsibility it is to provide resources for community groups and organizations providing social initiatives and whose responsibility it is to engage isolated seniors. These findings provide a much-needed critical perspective on current age-friendly research by acknowledging the responsibilities of various macro-level social structures-different community-level organizations, local government, and policy in fostering environments to enable participation of diverse rural older adults.
Patel, Chirag R.; Zhang, Huiming
2014-01-01
Sodium salicylate (SS) is a widely used medication with side effects on hearing. In order to understand these side effects, we recorded sound-driven local-field potentials in a neural structure, the dorsal cortex of the inferior colliculus (ICd). Using a microiontophoretic technique, we applied SS at sites of recording and studied how auditory responses were affected by the drug. Furthermore, we studied how the responses were affected by combined local application of SS and an agonists/antagonist of the type-A or type-B γ-aminobutyric acid receptor (GABAA or GABAB receptor). Results revealed that SS applied alone enhanced auditory responses in the ICd, indicating that the drug had local targets in the structure. Simultaneous application of the drug and a GABAergic receptor antagonist synergistically enhanced amplitudes of responses. The synergistic interaction between SS and a GABAA receptor antagonist had a relatively early start in reference to the onset of acoustic stimulation and the duration of this interaction was independent of sound intensity. The interaction between SS and a GABAB receptor antagonist had a relatively late start, and the duration of this interaction was dependent on sound intensity. Simultaneous application of the drug and a GABAergic receptor agonist produced an effect different from the sum of effects produced by the two drugs released individually. These differences between simultaneous and individual drug applications suggest that SS modified GABAergic inhibition in the ICd. Our results indicate that SS can affect sound-driven activity in the ICd by modulating local GABAergic inhibition. PMID:25452744
Damage identification of supporting structures with a moving sensory system
NASA Astrophysics Data System (ADS)
Zhu, X. Q.; Law, S. S.; Huang, L.; Zhu, S. Y.
2018-02-01
An innovative approach to identify local anomalies in a structural beam bridge with an instrumented vehicle moving as a sensory system across the bridge. Accelerations at both the axle and vehicle body are measured from which vehicle-bridge interaction force on the structure is determined. Local anomalies of the structure are estimated from this interaction force with the Newton's iterative method basing on the homotopy continuation method. Numerical results with the vehicle moving over simply supported or continuous beams show that the acceleration responses from the vehicle or the bridge structure are less sensitive to the local damages than the interaction force between the wheel and the structure. Effects of different movement patterns and moving speed of the vehicle are investigated, and the effect of measurement noise on the identified results is discussed. A heavier or slower vehicle has been shown to be less sensitive to measurement noise giving more accurate results.
Realisation of a joint consumer engagement strategy in the Nepean Blue Mountains region.
Blignault, Ilse; Aspinall, Diana; Reay, Lizz; Hyman, Kay
2017-02-15
Ensuring consumer engagement at different levels of the health system - direct care, organisational design and governance and policy - has become a strategic priority. This case study explored, through interviews with six purposively selected 'insiders' and document review, how one Medicare Local (now a Primary Health Network, PHN) and Local Health District worked together with consumers, to establish a common consumer engagement structure and mechanisms to support locally responsive, integrated and consumer-centred services. The two healthcare organisations worked as partners across the health system, sharing ownership and responsibility. Critical success factors included a consumer champion working with other highly motivated consumers concerned with improving the health system, a budget, and ongoing commitment from the Medicare Local or PHN and the Local Health District at executive and board level. Shared boundaries were an enormous advantage. Activities were jointly planned and executed, with consumer participation paramount. Training and mentoring enhanced consumer capacity and confidence. Bringing everyone on board and building on existing structures required time, effort and resources. The initiative produced immediate and lasting benefits, with consumer engagement now embedded in organisational governance and practice.
Sensitivity analysis of a wing aeroelastic response
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Eldred, Lloyd B.; Barthelemy, Jean-Francois M.
1991-01-01
A variation of Sobieski's Global Sensitivity Equations (GSE) approach is implemented to obtain the sensitivity of the static aeroelastic response of a three-dimensional wing model. The formulation is quite general and accepts any aerodynamics and structural analysis capability. An interface code is written to convert one analysis's output to the other's input, and visa versa. Local sensitivity derivatives are calculated by either analytic methods or finite difference techniques. A program to combine the local sensitivities, such as the sensitivity of the stiffness matrix or the aerodynamic kernel matrix, into global sensitivity derivatives is developed. The aerodynamic analysis package FAST, using a lifting surface theory, and a structural package, ELAPS, implementing Giles' equivalent plate model are used.
Vaginal type-II mucosa is an inductive site for primary CD8+ T-cell mucosal immunity
Wang, Yichuan; Sui, Yongjun; Kato, Shingo; Hogg, Alison E.; Steel, Jason C.; Morris, John C.; Berzofsky, Jay A.
2014-01-01
The structured lymphoid tissues are considered the only inductive sites where primary T cell immune responses occur. The naïve T cells in structured lymphoid tissues, once being primed by antigen -bearing dendritic cells, differentiate into memory T cells and traffic back to the mucosal sites through the bloodstream. Contrary to this belief, here we show that the vaginal type-II mucosa itself, despite lack of structured lymphoid tissues, can act as an inductive site during primary CD8+ T cell immune responses. We provide evidence that the vaginal mucosa supports both the local immune priming of naïve CD8+ T cells and the local expansion of antigen-specific CD8+ T cells, thereby demonstrating a different paradigm for primary mucosal T cell immune induction. PMID:25600442
A new fun and robust version of an fMRI localizer for the frontotemporal language system.
Scott, Terri L; Gallée, Jeanne; Fedorenko, Evelina
2017-07-01
A set of brain regions in the frontal, temporal, and parietal lobes supports high-level linguistic processing. These regions can be reliably identified in individual subjects using fMRI, by contrasting neural responses to meaningful and structured language stimuli vs. stimuli matched for low-level properties but lacking meaning and/or structure. We here present a novel version of a language 'localizer,' which should be suitable for diverse populations including children and/or clinical populations who may have difficulty with reading or cognitively demanding tasks. In particular, we contrast responses to auditorily presented excerpts from engaging interviews or stories, and acoustically degraded versions of these materials. This language localizer is appealing because it uses (a) naturalistic and engaging linguistic materials, (b) auditory presentation, (c) a passive listening task, and can be easily adapted to new stimulus materials enabling comparisons of language activation in children and speakers of diverse languages.
The return of the city-state: urban governance and the New York City H1N1 pandemic.
Hoffman, Lily M
2013-02-01
This article examines New York City's response to the 2009 H1N1 pandemic in the context of the post-9/11 US security regime. While the federal level 'all-hazards' approach made for greater depth of support, it also generated unrealistic assumptions at odds with an effective local response. The combination of structurally induced opportunity and actor specific strengths (size, expertise) made for effective local governance by the New York City Department of Health and Mental Hygiene. By underlining the importance of locality as a first line of defence and linking defence function to policy initiative in regard to health governance, this study illustrates the continuing relevance of Weber's insight into the institutional structure of the city. © 2012 The Author. Sociology of Health & Illness © 2012 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Sugino, C.; Erturk, A.
2018-05-01
Vibration-based energy harvesting is a growing field for generating low-power electricity to use in wireless electronic devices, such as the sensor networks used in structural health monitoring applications. Locally resonant metastructures, which are structures that comprise locally resonant metamaterial components, enable bandgap formation at wavelengths much longer than the lattice size, for critical applications such as low-frequency vibration attenuation in flexible structures. This work aims to bridge the domains of energy harvesting and locally resonant metamaterials to form multifunctional structures that exhibit both low-power electricity generation and vibration attenuation capabilities. A fully coupled electromechanical modeling framework is developed for two characteristic systems and their modal analysis is presented. Simulations are performed to explore the vibration and electrical power frequency response maps for varying electrical load resistance, and optimal loading conditions are presented. Case studies are presented to understand the interaction of bandgap formation and energy harvesting capabilities of this new class of multifunctional energy-harvesting locally resonant metastructures. It is shown that useful energy can be harvested from locally resonant metastructures without significantly diminishing their dramatic vibration attenuation in the locally resonant bandgap. Thus, integrating energy harvesters into a locally resonant metastructure enables a new potential for multifunctional locally resonant metastructures that can host self-powered sensors.
Krupa, D J; Thompson, R F
1995-05-23
The localization of sites of memory formation within the mammalian brain has proven to be a formidable task even for simple forms of learning and memory. Recent studies have demonstrated that reversibly inactivating a localized region of cerebellum, including the dorsal anterior interpositus nucleus, completely prevents acquisition of the conditioned eye-blink response with no effect upon subsequent learning without inactivation. This result indicates that the memory trace for this type of learning is located either (i) within this inactivated region of cerebellum or (ii) within some structure(s) efferent from the cerebellum to which output from the interpositus nucleus ultimately projects. To distinguish between these possibilities, two groups of rabbits were conditioned (by using two conditioning stimuli) while the output fibers of the interpositus (the superior cerebellar peduncle) were reversibly blocked with microinjections of the sodium channel blocker tetrodotoxin. Rabbits performed no conditioned responses during this inactivation training. However, training after inactivation revealed that the rabbits (trained with either conditioned stimulus) had fully learned the response during the previous inactivation training. Cerebellar output, therefore, does not appear to be essential for acquisition of the learned response. This result, coupled with the fact that inactivation of the appropriate region of cerebellum completely prevents learning, provides compelling evidence supporting the hypothesis that the essential memory trace for the classically conditioned eye-blink response is localized within the cerebellum.
Effect of Damping and Yielding on the Seismic Response of 3D Steel Buildings with PMRF
Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden
2014-01-01
The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions. PMID:25097892
Effect of damping and yielding on the seismic response of 3D steel buildings with PMRF.
Reyes-Salazar, Alfredo; Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden
2014-01-01
The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions.
Anisotropic particles strengthen granular pillars under compression
NASA Astrophysics Data System (ADS)
Harrington, Matt; Durian, Douglas J.
2018-01-01
We probe the effects of particle shape on the global and local behavior of a two-dimensional granular pillar, acting as a proxy for a disordered solid, under uniaxial compression. This geometry allows for direct measurement of global material response, as well as tracking of all individual particle trajectories. In general, drawing connections between local structure and local dynamics can be challenging in amorphous materials due to lower precision of atomic positions, so this study aims to elucidate such connections. We vary local interactions by using three different particle shapes: discrete circular grains (monomers), pairs of grains bonded together (dimers), and groups of three bonded in a triangle (trimers). We find that dimers substantially strengthen the pillar and the degree of this effect is determined by orientational order in the initial condition. In addition, while the three particle shapes form void regions at distinct rates, we find that anisotropies in the local amorphous structure remain robust through the definition of a metric that quantifies packing anisotropy. Finally, we highlight connections between local deformation rates and local structure.
Minimal entropy approximation for cellular automata
NASA Astrophysics Data System (ADS)
Fukś, Henryk
2014-02-01
We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.
Workshop on Measurement Needs for Local-Structure Determination in Inorganic Materials
Levin, Igor; Vanderah, Terrell
2008-01-01
The functional responses (e.g., dielectric, magnetic, catalytic, etc.) of many industrially-relevant materials are controlled by their local structure—a term that refers to the atomic arrangements on a scale ranging from atomic (sub-nanometer) to several nanometers. Thus, accurate knowledge of local structure is central to understanding the properties of nanostructured materials, thereby placing the problem of determining atomic positions on the nanoscale—the so-called “nanostructure problem”—at the center of modern materials development. Today, multiple experimental techniques exist for probing local atomic arrangements; nonetheless, finding accurate comprehensive, and robust structural solutions for the nanostructured materials still remains a formidable challenge because any one of these methods yields only a partial view of the local structure. The primary goal of this 2-day NIST-sponsored workshop was to bring together experts in the key experimental and theoretical areas relevant to local-structure determination to devise a strategy for the collaborative effort required to develop a comprehensive measurement solution on the local scale. The participants unanimously agreed that solving the nanostructure problem—an ultimate frontier in materials characterization—necessitates a coordinated interdisciplinary effort that transcends the existing capabilities of any single institution, including national laboratories, centers, and user facilities. The discussions converged on an institute dedicated to local structure determination as the most viable organizational platform for successfully addressing the nanostructure problem. The proposed “institute” would provide an intellectual infrastructure for local structure determination by (1) developing and maintaining relevant computer software integrated in an open-source global optimization framework (Fig. 2), (2) connecting industrial and academic users with experts in measurement techniques, (3) developing and maintaining pertinent databases, and (4) providing necessary education and training. PMID:27096131
Adjoint-tomography for a Local Surface Structure: Methodology and a Blind Test
NASA Astrophysics Data System (ADS)
Kubina, Filip; Michlik, Filip; Moczo, Peter; Kristek, Jozef; Stripajova, Svetlana
2017-04-01
We have developed a multiscale full-waveform adjoint-tomography method for local surface sedimentary structures with complicated interference wavefields. The local surface sedimentary basins and valleys are often responsible for anomalous earthquake ground motions and corresponding damage in earthquakes. In many cases only relatively small number of records of a few local earthquakes is available for a site of interest. Consequently, prediction of earthquake ground motion at the site has to include numerical modeling for a realistic model of the local structure. Though limited, the information about the local structure encoded in the records is important and irreplaceable. It is therefore reasonable to have a method capable of using the limited information in records for improving a model of the local structure. A local surface structure and its interference wavefield require a specific multiscale approach. In order to verify our inversion method, we performed a blind test. We obtained synthetic seismograms at 8 receivers for 2 local sources, complete description of the sources, positions of the receivers and material parameters of the bedrock. We considered the simplest possible starting model - a homogeneous halfspace made of the bedrock. Using our inversion method we obtained an inverted model. Given the starting model, synthetic seismograms simulated for the inverted model are surprisingly close to the synthetic seismograms simulated for the true structure in the target frequency range up to 4.5 Hz. We quantify the level of agreement between the true and inverted seismograms using the L2 and time-frequency misfits, and, more importantly for earthquake-engineering applications, also using the goodness-of-fit criteria based on the earthquake-engineering characteristics of earthquake ground motion. We also verified the inverted model for other source-receiver configurations not used in the inversion.
Decentralized control experiments on NASA's flexible grid
NASA Technical Reports Server (NTRS)
Ozguner, U.; Yurkowich, S.; Martin, J., III; Al-Abbass, F.
1986-01-01
Methods arising from the area of decentralized control are emerging for analysis and control synthesis for large flexible structures. In this paper the control strategy involves a decentralized model reference adaptive approach using a variable structure control. Local models are formulated based on desired damping and response time in a model-following scheme for various modal configurations. Variable structure controllers are then designed employing co-located angular rate and position feedback. In this scheme local control forces the system to move on a local sliding mode in some local error space. An important feature of this approach is that the local subsystem is made insensitive to dynamical interactions with other subsystems once the sliding surface is reached. Experiments based on the above have been performed for NASA's flexible grid experimental apparatus. The grid is designed to admit appreciable low-frequency structural dynamics, and allows for implementation of distributed computing components, inertial sensors, and actuation devices. A finite-element analysis of the grid provides the model for control system design and simulation; results of several simulations are reported on here, and a discussion of application experiments on the apparatus is presented.
Covariance of dynamic strain responses for structural damage detection
NASA Astrophysics Data System (ADS)
Li, X. Y.; Wang, L. X.; Law, S. S.; Nie, Z. H.
2017-10-01
A new approach to address the practical problems with condition evaluation/damage detection of structures is proposed based on the distinct features of a new damage index. The covariance of strain response function (CoS) is a function of modal parameters of the structure. A local stiffness reduction in structure would cause monotonous increase in the CoS. Its sensitivity matrix with respect to local damages of structure is negative and narrow-banded. The damage extent can be estimated with an approximation to the sensitivity matrix to decouple the identification equations. The CoS sensitivity can be calibrated in practice from two previous states of measurements to estimate approximately the damage extent of a structure. A seven-storey plane frame structure is numerically studied to illustrate the features of the CoS index and the proposed method. A steel circular arch in the laboratory is tested. Natural frequencies changed due to damage in the arch and the damage occurrence can be judged. However, the proposed CoS method can identify not only damage happening but also location, even damage extent without need of an analytical model. It is promising for structural condition evaluation of selected components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravalia, Ashish; Vagadia, Megha; Solanki, P. S.
2014-10-21
Present study reports the role of defects in the electrical transport in BiFeO₃ (BFO) multiferroic films and its local electronic structure investigated by near-edge X-ray absorption fine structure. Defects created by high energy 200 MeV Ag⁺¹⁵ ion irradiation with a fluence of ∼5 × 10¹¹ ions/cm² results in the increase in structural strain and reduction in the mobility of charge carriers and enhancement in resistive (I-V) and polarization (P-E) switching behaviour. At higher fluence of ∼5 × 10¹² ions/cm², there is a release in the structural strain due to local annealing effect, resulting in an increase in the mobility of charge carriers, which are releasedmore » from oxygen vacancies and hence suppression in resistive and polarization switching. Near-edge X-ray absorption fine structure studies at Fe L₃,₂- and O K-edges show a significant change in the spectral features suggesting the modifications in the local electronic structure responsible for changes in the intrinsic magnetic moment and electrical transport properties of BFO.« less
Noble, Jenny; Hann, Mark; Sheaff, Rod; Marshall, Martin
2005-01-01
Abstract Background Providing more information for the public about the range and quality of health services is an important part of improving accountability, quality and public responsiveness. Most sources of information to date have failed to address the information needs of people about their local services. The launch in England in 2002 of a new publication, Guides to Local Health Services, was designed to address this deficiency. We conducted an audit of the first Guides, and surveyed those responsible for their production, in order to examine the Guides’ development, content, presentation and dissemination, and to critique the purpose of the initiative. Methods A semi‐structured questionnaire survey of those responsible for producing the Guides, and an audit of the Guides produced by Primary Care Trusts (PCTs). Results Most PCTs complied with central guidance about structure and content, but in meeting multiple requirements the Guides lost their clarity of purpose. The content was dominated by information relating to financial and strategic accountability. In producing the Guides, external consultation was limited, particularly with the public but also with local partnership providers of health and social care. The main issues were the lack of a clear focus for Guide information, the level of central direction, the short production lead times, difficulties with distribution, and the many competing demands being made on PCT resources. Conclusions Guide content should be clearly focused on information that the public wants. Greater responsibility should be devolved to front line PCT staff to determine content in consultation with local users. PMID:15860054
Four-dimensional Printing of Liquid Crystal Elastomers.
Ambulo, Cedric P; Burroughs, Julia J; Boothby, Jennifer M; Kim, Hyun; Shankar, M Ravi; Ware, Taylor H
2017-10-25
Three-dimensional structures capable of reversible changes in shape, i.e., four-dimensional-printed structures, may enable new generations of soft robotics, implantable medical devices, and consumer products. Here, thermally responsive liquid crystal elastomers (LCEs) are direct-write printed into 3D structures with a controlled molecular order. Molecular order is locally programmed by controlling the print path used to build the 3D object, and this order controls the stimulus response. Each aligned LCE filament undergoes 40% reversible contraction along the print direction on heating. By printing objects with controlled geometry and stimulus response, magnified shape transformations, for example, volumetric contractions or rapid, repetitive snap-through transitions, are realized.
Lin, Tzu-Hsuan; Lu, Yung-Chi; Hung, Shih-Lin
2014-01-01
This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI) was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM) system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI-) based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building.
Ometto, Lino; Li, Mingai; Bresadola, Luisa; Barbaro, Enrico; Neteler, Markus; Varotto, Claudio
2015-01-01
Species evolution depends on numerous and distinct forces, including demography and natural selection. For example, local adaptation and population structure affect the evolutionary history of species living along environmental clines. This is particularly relevant in plants, which are often characterized by limited dispersal ability and the need to respond to abiotic and biotic stress factors specific to the local environment. Here we study the demographic history and the possible existence of local adaptation in two related species of Brassicaceae, Cardamine impatiens and Cardamine resedifolia, which occupy separate habitats along the elevation gradient. Previous genome-wide analyses revealed the occurrence of distinct selective pressures in the two species, with genes involved in cold response evolving particularly fast in C. resedifolia. In this study we surveyed patterns of molecular evolution and genetic variability in a set of 19 genes, including neutral and candidate genes involved in cold response, across 10 populations each of C. resedifolia and C. impatiens from the Italian Alps (Trentino). We inferred the population structure and demographic history of the two species, and tested the occurrence of signatures of local adaptation in these genes. The results indicate that, despite a slightly higher population differentiation in C. resedifolia than in C. impatiens, both species are only weakly structured and that populations sampled at high altitude experience less gene flow than low-altitude ones. None of the genes showed signatures of positive selection, suggesting that they do not seem to play relevant roles in the current evolutionary processes of adaptation to alpine environments of these species. PMID:25933225
Impact of polymer structure and composition on fully resorbable endovascular scaffold performance
Ferdous, Jahid; Kolachalama, Vijaya B.; Shazly, Tarek
2014-01-01
Fully erodible endovascular scaffolds are being increasingly considered for the treatment of obstructive arterial disease owing to their potential to mitigate long-term risks associated with permanent alternatives. While complete scaffold erosion facilitates vessel healing, generation and release of material degradation by-products from candidate materials such as poly-l-lactide (PLLA) may elicit local inflammatory responses that limit implant efficacy. We developed a computational framework to quantify how the compositional and structural parameters of PLLA-based fully erodible endovascular scaffolds affect degradation kinetics, erosion kinetics and the transient accumulation of material by-products within the arterial wall. Parametric studies reveal that, while some material properties have similar effects on these critical processes, others induce qualitatively opposing responses. For example, scaffold degradation is only mildly responsive to changes in either PLLA polydispersity or the initial degree of crystallinity, while the erosion kinetics is comparatively sensitive to crystallinity. Moreover, lactide doping can effectively tune both scaffold degradation and erosion, but a concomitant increase in local byproduct accumulation raises concerns about implant safety. Optimized erodible endovascular scaffolds must precisely balance therapeutic function and biological response over the implant lifetime, where compositional and structural parameters will have differential effects on implant performance. PMID:23261926
Signature properties of water: Their molecular electronic origins
Jones, Andrew P.; Cipcigan, Flaviu S.; Crain, Jason; Martyna, Glenn J.
2015-01-01
Water challenges our fundamental understanding of emergent materials properties from a molecular perspective. It exhibits a uniquely rich phenomenology including dramatic variations in behavior over the wide temperature range of the liquid into water’s crystalline phases and amorphous states. We show that many-body responses arising from water’s electronic structure are essential mechanisms harnessed by the molecule to encode for the distinguishing features of its condensed states. We treat the complete set of these many-body responses nonperturbatively within a coarse-grained electronic structure derived exclusively from single-molecule properties. Such a “strong coupling” approach generates interaction terms of all symmetries to all orders, thereby enabling unique transferability to diverse local environments such as those encountered along the coexistence curve. The symmetries of local motifs that can potentially emerge are not known a priori. Consequently, electronic responses unfiltered by artificial truncation are then required to embody the terms that tip the balance to the correct set of structures. Therefore, our fully responsive molecular model produces, a simple, accurate, and intuitive picture of water’s complexity and its molecular origin, predicting water’s signature physical properties from ice, through liquid–vapor coexistence, to the critical point. PMID:25941394
Gkioulekas, Eleftherios
2016-09-01
Using the fusion-rules hypothesis for three-dimensional and two-dimensional Navier-Stokes turbulence, we generalize a previous nonperturbative locality proof to multiple applications of the nonlinear interactions operator on generalized structure functions of velocity differences. We call this generalization of nonperturbative locality to multiple applications of the nonlinear interactions operator "multilocality." The resulting cross terms pose a new challenge requiring a new argument and the introduction of a new fusion rule that takes advantage of rotational symmetry. Our main result is that the fusion-rules hypothesis implies both locality and multilocality in both the IR and UV limits for the downscale energy cascade of three-dimensional Navier-Stokes turbulence and the downscale enstrophy cascade and inverse energy cascade of two-dimensional Navier-Stokes turbulence. We stress that these claims relate to nonperturbative locality of generalized structure functions on all orders and not the term-by-term perturbative locality of diagrammatic theories or closure models that involve only two-point correlation and response functions.
Quantum currents and pair correlation of electrons in a chain of localized dots
NASA Astrophysics Data System (ADS)
Morawetz, Klaus
2017-03-01
The quantum transport of electrons in a wire of localized dots by hopping, interaction and dissipation is calculated and a representation by an equivalent RCL circuit is found. The exact solution for the electric-field induced currents allows to discuss the role of virtual currents to decay initial correlations and Bloch oscillations. The dynamical response function in random phase approximation (RPA) is calculated analytically with the help of which the static structure function and pair correlation function are determined. The pair correlation function contains a form factor from the Brillouin zone and a structure factor caused by the localized dots in the wire.
NASA Astrophysics Data System (ADS)
Medvigy, D.; Levy, J.; Xu, X.; Batterman, S. A.; Hedin, L.
2013-12-01
Ecosystems, by definition, involve a community of organisms. These communities generally exhibit heterogeneity in their structure and composition as a result of local variations in climate, soil, topography, disturbance history, and other factors. Climate-driven shifts in ecosystems will likely include an internal re-organization of community structure and composition and as well as the introduction of novel species. In terms of vegetation, this ecosystem heterogeneity can occur at relatively small scales, sometimes of the order of tens of meters or even less. Because this heterogeneous landscape generally has a variable and nonlinear response to environmental perturbations, it is necessary to carefully aggregate the local competitive dynamics between individual plants to the large scales of tens or hundreds of kilometers represented in climate models. Accomplishing this aggregation in a computationally efficient way has proven to be an extremely challenging task. To meet this challenge, the Ecosystem Demography 2 (ED2) model statistically characterizes a distribution of local resource environments, and then simulates the competition between individuals of different sizes and species (or functional groupings). Within this framework, it is possible to explicitly simulate the impacts of climate change on ecosystem structure and composition, including both internal re-organization and the introduction of novel species or functional groups. This presentation will include several illustrative applications of the evolution of ecosystem structure and composition under climate change. One application pertains to the role of nitrogen-fixing species in tropical forests. Will increasing CO2 concentrations increase the demand for nutrients and perhaps give a competitive edge to nitrogen-fixing species? Will potentially warmer and drier conditions make some tropical forests more water-limited, reducing the demand for nitrogen, thereby giving a competitive advantage to non-nitrogen-fixing species? Will the response of nitrogen-fixing species to climate change be sensitive to local disturbance histories?
2017-01-01
Abstract While a topographic map of auditory space exists in the vertebrate midbrain, it is absent in the forebrain. Yet, both brain regions are implicated in sound localization. The heterogeneous spatial tuning of adjacent sites in the forebrain compared to the midbrain reflects different underlying circuitries, which is expected to affect the correlation structure, i.e., signal (similarity of tuning) and noise (trial-by-trial variability) correlations. Recent studies have drawn attention to the impact of response correlations on the information readout from a neural population. We thus analyzed the correlation structure in midbrain and forebrain regions of the barn owl’s auditory system. Tetrodes were used to record in the midbrain and two forebrain regions, Field L and the downstream auditory arcopallium (AAr), in anesthetized owls. Nearby neurons in the midbrain showed high signal and noise correlations (RNCs), consistent with shared inputs. As previously reported, Field L was arranged in random clusters of similarly tuned neurons. Interestingly, AAr neurons displayed homogeneous monotonic azimuth tuning, while response variability of nearby neurons was significantly less correlated than the midbrain. Using a decoding approach, we demonstrate that low RNC in AAr restricts the potentially detrimental effect it can have on information, assuming a rate code proposed for mammalian sound localization. This study harnesses the power of correlation structure analysis to investigate the coding of auditory space. Our findings demonstrate distinct correlation structures in the auditory midbrain and forebrain, which would be beneficial for a rate-code framework for sound localization in the nontopographic forebrain representation of auditory space. PMID:28674698
Localized structures in vibrated emulsions
NASA Astrophysics Data System (ADS)
Falcón, Claudio; Bruggeman, Jake; Pasquali, Matteo; Deegan, Robert D.
2012-04-01
We report our observations of localized structures in a thin layer of an emulsion subjected to vertical oscillations. We observe persistent holes, which are voids that span the layer depth, and kinks, which are fronts between regions with and without fluid. These structures form in response to a finite amplitude perturbation. Combining experimental and rheological measurements, we argue that the ability of these structures to withstand the hydrostatic pressure of the surrounding fluid is due to convection within their rim. For persistent holes the oscillatory component of the convection generates a normal stress which opposes contraction, while for kinks the steady component of the convection generates a shear stress which opposes the hydrostatic stress of the surrounding fluid.
Determinants of community structure of zooplankton in heavily polluted river ecosystems
NASA Astrophysics Data System (ADS)
Xiong, Wei; Li, Jie; Chen, Yiyong; Shan, Baoqing; Wang, Weimin; Zhan, Aibin
2016-02-01
River ecosystems are among the most affected habitats globally by human activities, such as the release of chemical pollutants. However, it remains largely unknown how and to what extent many communities such as zooplankton are affected by these environmental stressors in river ecosystems. Here, we aim to determine major factors responsible for shaping community structure of zooplankton in heavily polluted river ecosystems. Specially, we use rotifers in the Haihe River Basin (HRB) in North China as a case study to test the hypothesis that species sorting (i.e. species are “filtered” by environmental factors and occur at environmental suitable sites) plays a key role in determining community structure at the basin level. Based on an analysis of 94 sites across the plain region of HRB, we found evidence that both local and regional factors could affect rotifer community structure. Interestingly, further analyses indicated that local factors played a more important role in determining community structure. Thus, our results support the species sorting hypothesis in highly polluted rivers, suggesting that local environmental constraints, such as environmental pollution caused by human activities, can be stronger than dispersal limitation caused by regional factors to shape local community structure of zooplankton at the basin level.
VIP1 is very important/interesting protein 1 regulating touch responses of Arabidopsis.
Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo
2016-06-02
VIP1 (VIRE2-INTERACTING PROTEIN 1) is a bZIP transcription factor in Arabidopsis thaliana. VIP1 and its close homologs (i.e., Arabidopsis group I bZIP proteins) are present in the cytoplasm under steady conditions, but are transiently localized to the nucleus when cells are exposed to hypo-osmotic conditions, which mimic mechanical stimuli such as touch. Recently we have reported that overexpression of a repression domain-fused form of VIP1 represses the expression of some touch-responsive genes, changes structures and/or local auxin responses of the root cap cells, and enhances the touch-induced root waving. This raises the possibility that VIP1 suppresses touch-induced responses. VIP1 should be useful to further characterize touch responses of plants. Here we discuss 2 seemingly interesting perspectives about VIP1: (1) What factors are involved in regulating the nuclear localization of VIP1?; (2) What can be done to further characterize the physiological functions of VIP1 and other Arabidopsis group I bZIP proteins?
CELFE/NASTRAN Code for the Analysis of Structures Subjected to High Velocity Impact
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1978-01-01
CELFE (Coupled Eulerian Lagrangian Finite Element)/NASTRAN Code three-dimensional finite element code has the capability for analyzing of structures subjected to high velocity impact. The local response is predicted by CELFE and, for large problems, the far-field impact response is predicted by NASTRAN. The coupling of the CELFE code with NASTRAN (CELFE/NASTRAN code) and the application of the code to selected three-dimensional high velocity impact problems are described.
Chmielewski, Witold X; Beste, Christian
2016-05-25
A multitude of sensory inputs needs to be processed during sensorimotor integration. A crucial factor for detecting relevant information is its complexity, since information content can be conflicting at a perceptual level. This may be central to executive control processes, such as response inhibition. This EEG study aims to investigate the system neurophysiological mechanisms behind effects of perceptual conflict on response inhibition. We systematically modulated perceptual conflict by integrating a Global-local task with a Go/Nogo paradigm. The results show that conflicting perceptual information, in comparison to non-conflicting perceptual information, impairs response inhibition performance. This effect was evident regardless of whether the relevant information for response inhibition is displayed on the global, or local perceptual level. The neurophysiological data suggests that early perceptual/ attentional processing stages do not underlie these modulations. Rather, processes at the response selection level (P3), play a role in changed response inhibition performance. This conflict-related impairment of inhibitory processes is associated with activation differences in (inferior) parietal areas (BA7 and BA40) and not as commonly found in the medial prefrontal areas. This suggests that various functional neuroanatomical structures may mediate response inhibition and that the functional neuroanatomical structures involved depend on the complexity of sensory integration processes.
Algorithms for Determining Physical Responses of Structures Under Load
NASA Technical Reports Server (NTRS)
Richards, W. Lance; Ko, William L.
2012-01-01
Ultra-efficient real-time structural monitoring algorithms have been developed to provide extensive information about the physical response of structures under load. These algorithms are driven by actual strain data to measure accurately local strains at multiple locations on the surface of a structure. Through a single point load calibration test, these structural strains are then used to calculate key physical properties of the structure at each measurement location. Such properties include the structure s flexural rigidity (the product of the structure's modulus of elasticity, and its moment of inertia) and the section modulus (the moment of inertia divided by the structure s half-depth). The resulting structural properties at each location can be used to determine the structure s bending moment, shear, and structural loads in real time while the structure is in service. The amount of structural information can be maximized through the use of highly multiplexed fiber Bragg grating technology using optical time domain reflectometry and optical frequency domain reflectometry, which can provide a local strain measurement every 10 mm on a single hair-sized optical fiber. Since local strain is used as input to the algorithms, this system serves multiple purposes of measuring strains and displacements, as well as determining structural bending moment, shear, and loads for assessing real-time structural health. The first step is to install a series of strain sensors on the structure s surface in such a way as to measure bending strains at desired locations. The next step is to perform a simple ground test calibration. For a beam of length l (see example), discretized into n sections and subjected to a tip load of P that places the beam in bending, the flexural rigidity of the beam can be experimentally determined at each measurement location x. The bending moment at each station can then be determined for any general set of loads applied during operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, Nikolai; Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder; Scheid, Claire
2016-07-01
The interaction of light with metallic nanostructures is increasingly attracting interest because of numerous potential applications. Sub-wavelength metallic structures, when illuminated with a frequency close to the plasma frequency of the metal, present resonances that cause extreme local field enhancements. Exploiting the latter in applications of interest requires a detailed knowledge about the occurring fields which can actually not be obtained analytically. For the latter mentioned reason, numerical tools are thus an absolute necessity. The insight they provide is very often the only way to get a deep enough understanding of the very rich physics at play. For the numericalmore » modeling of light-structure interaction on the nanoscale, the choice of an appropriate material model is a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with no interaction between electrons) dispersive models, e.g. Drude or Drude–Lorentz models. From the mathematical point of view, when a time-domain modeling is considered, these models lead to an additional system of ordinary differential equations coupled to Maxwell's equations. However, recent experiments have shown that the repulsive interaction between electrons inside the metal makes the response of metals intrinsically non-local and that this effect cannot generally be overlooked. Technological achievements have enabled the consideration of metallic structures in a regime where such non-localities have a significant influence on the structures' optical response. This leads to an additional, in general non-linear, system of partial differential equations which is, when coupled to Maxwell's equations, significantly more difficult to treat. Nevertheless, dealing with a linearized non-local dispersion model already opens the route to numerous practical applications of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the system of Maxwell's equations coupled to a linearized non-local dispersion model relevant to plasmonics. While the method is presented in the general 3D case, numerical results are given for 2D simulation settings.« less
Local and Average Structures in Ferroelectrics under Perturbing Fields
NASA Astrophysics Data System (ADS)
Usher, Tedi-Marie
Ferroelectric and dielectric ceramics are used in a multitude of applications including sonar, micro-positioning, actuators, transducers, and capacitors. The most widely used compositions are lead (Pb)-based, however there is an ongoing effort to reduce lead-based materials in consumer applications. Many lead-free compositions are under investigation; some are already in production and others have been identified as suitable for certain applications. For any such material system, there is a need to thoroughly characterize the structure in order to develop robust structure-property relationships, particularly during in situ application of different stimuli (e.g. electric field and mechanical stress). This work investigates two lead-free material systems of interest, (1-x)Na1/2Bi1/2TiO3 - (x)BaTiO3 (NBT-xBT) and (1-x)BaTiO3 - (x)Bi(Zn1/2Ti1/2)O3 (BT-xBZT), as well as the constituent compounds Na1/2Bi1/2TiO3 and BaTiO3. Both systems exhibit compositional boundaries between unique phases exhibiting different functional properties. Advanced scattering techniques are used to characterize the atomic structures and how they change during in situ application of different stimuli. The long-range, average structures are probed using high-resolution X-ray diffraction (HRXRD) and neutron diffraction (ND) and local scale structures are probed using X-ray or neutron total scattering, which are converted to pair distribution functions (PDFs). First, two in situ ND experiments which investigate structural changes to NBT-xBT in response to uniaxial stresses and electric fields are presented. In response to stresses, different crystallographic directions strain differently. The elastic anisotropy, (i.e., the orientation-dependence of elastic stiffness) for the studied compositions is characterized. A general inverse relationship between elastic anisotropy and piezoelectric anisotropy is demonstrated for three common ferroelectric point groups. In response to electric fields, different crystallographic directions respond by either domain reorientation or lattice strain, as governed by the material's symmetry. The composition at the phase boundary responds at a lower field and undergoes a phase transition. Next, the PDF method is described and then applied to a structural study of BT-xBZT in combination with HRXRD and ND studies. For BZT >9%, the structure is pseudocubic at the long-range with short-range tetragonal distortions. This structural length-scale dependence is characterized with a box-car fitting method and suggests that with sufficient BZT content, local tetragonal distortions are disrupted at length scales > 40 A. By combining long- and short-range studies, structural variations from the sub-nm to long-range are characterized and enhance the understanding of this and similar material systems. In the final chapters, the local-scale responses of ferroelectric and dielectric materials to electric fields are investigated by PDFs. The novel methodology of measuring X-ray total scattering during in situ application of electric fields is presented and results are shown for piezoelectric (BT), relaxor-ferroelectric (NBT), and dielectric materials (SrTiO3 and HfO2), as well as for NBT-xBT. Local-scale cation reorientation in NBT is evidenced and corresponds to an electric-field-induced phase transition. The ability to quantify local-scale atomic rearrangements during field application is unique to in situ PDF studies; it is not possible through in situ diffraction methods like those presented earlier. This method is extended to neutron-PDFs and ex situ results for NBT are shown. In order to interpret the local scale-changes observed in the in situ PDF studies, the local structures of a series of models with different real, physical effects (strains, polarization, changes in thermal motion, etc) are analyzed and characterized. Finally, the samples used are characterized in terms of grain size/appearance and piezoelectric and ferroelectric properties. In summary, this research demonstrates the use of detailed and in situ structural studies that contribute new knowledge to structure-property relationships for several ferroelectric and dielectric material systems. Additionally, the novel technique of in situ PDFs with electric fields is evidenced to provide unique information on atomic rearrangements caused by in situ stimuli.
NASA Technical Reports Server (NTRS)
Curry, Mark A (Inventor); Senibi, Simon D (Inventor); Banks, David L (Inventor)
2010-01-01
A system and method for detecting damage to a structure is provided. The system includes a voltage source and at least one capacitor formed as a layer within the structure and responsive to the voltage source. The system also includes at least one sensor responsive to the capacitor to sense a voltage of the capacitor. A controller responsive to the sensor determines if damage to the structure has occurred based on the variance of the voltage of the capacitor from a known reference value. A method for sensing damage to a structure involves providing a plurality of capacitors and a controller, and coupling the capacitors to at least one surface of the structure. A voltage of the capacitors is sensed using the controller, and the controller calculates a change in the voltage of the capacitors. The method can include signaling a display system if a change in the voltage occurs.
Akrami, Haleh; Moghimi, Sahar
2017-01-01
We investigated the role of culture in processing hierarchical syntactic structures in music. We examined whether violation of non-local dependencies manifest in event related potentials (ERP) for Western and Iranian excerpts by recording EEG while participants passively listened to sequences of modified/original excerpts. We also investigated oscillatory and synchronization properties of brain responses during processing of hierarchical structures. For the Western excerpt, subjective ratings of conclusiveness were marginally significant and the difference in the ERP components fell short of significance. However, ERP and behavioral results showed that while listening to culturally familiar music, subjects comprehended whether or not the hierarchical syntactic structure was fulfilled. Irregularities in the hierarchical structures of the Iranian excerpt elicited an early negativity in the central regions bilaterally, followed by two later negativities from 450-700 to 750-950 ms. The latter manifested throughout the scalp. Moreover, violations of hierarchical structure in the Iranian excerpt were associated with (i) an early decrease in the long range alpha phase synchronization, (ii) an early increase in the oscillatory activity in the beta band over the central areas, and (iii) a late decrease in the theta band phase synchrony between left anterior and right posterior regions. Results suggest that rhythmic structures and melodic fragments, representative of Iranian music, created a familiar context in which recognition of complex non-local syntactic structures was feasible for Iranian listeners. Processing of neural responses to the Iranian excerpt indicated neural mechanisms for processing of hierarchical syntactic structures in music at different levels of cortical integration.
Palao, Teresa; van Weert, Angela; de Leeuw, Anne; de Vos, Judith; Bakker, Erik N T P; van Bavel, Ed
2018-05-21
Conduction of vasomotor responses may contribute to long-term regulation of resistance artery function and structure. Most previous studies have addressed conduction of vasoactivity only during very brief stimulations. We developed a novel setup that allows the local pharmacological stimulation of arteries in vitro for extended periods of time, and studied the conduction of vasomotor responses in rat mesenteric arteries under those conditions. The new in vitro set up was based on the pressure myograph. The superfusion chamber was divided halfway along the vessel into two compartments, allowing an independent superfusion of the arterial segment in each compartment. Local and remote cumulative concentration-response curves were obtained for a range of vasoactive agents. Additional experiments were performed with the gap junction inhibitor 18β-glycyrrhetinic acid and in absence of the endothelium. Phenylephrine-induced constriction and acetylcholine-induced dilation were conducted over a measured distance up to 2.84 mm, and this conduction was maintained for 5 minutes. Conduction of acetylcholine-induced dilation was inhibited by 18β-glycyrrhetinic acid and conduction of phenylephrine-induced constriction was abolished in absence of the endothelium. Constriction in response to high K + was not conducted. Absence of remote stimulation dampened the local response to phenylephrine. This study demonstrates maintained conduction of vasoactive responses to physiological agonists in rat mesenteric small arteries likely via gap junctions and endothelial cells, providing a possible mechanism for the sustained functional and structural control of arterial networks. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Fuselage Structure Response to Boundary Layer, Tonal Sound, and Jet Noise
NASA Technical Reports Server (NTRS)
Maestrello, L.
2004-01-01
Experiments have been conducted to study the response of curved aluminum and graphite-epoxy fuselage structures to flow and sound loads from turbulent boundary layer, tonal sound, and jet noise. Both structures were the same size. The aluminum structure was reinforced with tear stoppers, while the graphite-epoxy structure was not. The graphite-epoxy structure weighed half as much as the aluminum structure. Spatiotemporal intermittence and chaotic behavior of the structural response was observed, as jet noise and tonal sound interacted with the turbulent boundary layer. The fundamental tone distributed energy to other components via wave interaction with the turbulent boundary layer. The added broadband sound from the jet, with or without a shock, influenced the responses over a wider range of frequencies. Instantaneous spatial correlation indicates small localized spatiotemporal regions of convected waves, while uncorrelated patterns dominate the larger portion of the space. By modifying the geometry of the tear stoppers between panels and frame, the transmitted and reflected waves of the aluminum panels were significantly reduced. The response level of the graphite-epoxy structure was higher, but the noise transmitted was nearly equal to that of the aluminum structure. The fundamental shock mode is between 80 deg and 150 deg and the first harmonic is between 20 deg and 80 deg for the underexpanded supersonic jet impinging on the turbulent boundary layer influencing the structural response. The response of the graphite-epoxy structure due to the fundamental mode of the shock impingement was stabilized by an externally fixed oscillator.
Local lattice distortion in high-entropy alloys
NASA Astrophysics Data System (ADS)
Song, Hongquan; Tian, Fuyang; Hu, Qing-Miao; Vitos, Levente; Wang, Yandong; Shen, Jiang; Chen, Nanxian
2017-07-01
The severe local lattice distortion, induced mainly by the large atomic size mismatch of the alloy components, is one of the four core effects responsible for the unprecedented mechanical behaviors of high-entropy alloys (HEAs). In this work, we propose a supercell model, in which every lattice site has similar local atomic environment, to describe the random distributions of the atomic species in HEAs. Using these supercells in combination with ab initio calculations, we investigate the local lattice distortion of refractory HEAs with body-centered-cubic structure and 3 d HEAs with face-centered-cubic structure. Our results demonstrate that the local lattice distortion of the refractory HEAs is much more significant than that of the 3 d HEAs. We show that the atomic size mismatch evaluated with the empirical atomic radii is not accurate enough to describe the local lattice distortion. Both the lattice distortion energy and the mixing entropy contribute significantly to the thermodynamic stability of HEAs. However the local lattice distortion has negligible effect on the equilibrium lattice parameter and bulk modulus.
Analysis of high speed flow, thermal and structural interactions
NASA Technical Reports Server (NTRS)
Thornton, Earl A.
1994-01-01
Research for this grant focused on the following tasks: (1) the prediction of severe, localized aerodynamic heating for complex, high speed flows; (2) finite element adaptive refinement methodology for multi-disciplinary analyses; (3) the prediction of thermoviscoplastic structural response with rate-dependent effects and large deformations; (4) thermoviscoplastic constitutive models for metals; and (5) coolant flow/structural heat transfer analyses.
Usher, Tedi -Marie; Levin, Igor; Daniels, John E.; ...
2015-10-01
In this study, the atomic-scale response of dielectrics/ferroelectrics to electric fields is central to their functionality. Here we introduce an in situ characterization method that reveals changes in the local atomic structure in polycrystalline materials under fields. The method employs atomic pair distribution functions (PDFs), determined from X-ray total scattering that depends on orientation relative to the applied field, to probe structural changes over length scales from sub-Ångstrom to several nanometres. The PDF is sensitive to local ionic displacements and their short-range order, a key uniqueness relative to other techniques. The method is applied to representative ferroelectrics, BaTiO 3 andmore » Na ½Bi ½TiO 3, and dielectric SrTiO 3. For Na ½Bi ½TiO 3, the results reveal an abrupt field-induced monoclinic to rhombohedral phase transition, accompanied by ordering of the local Bi displacements and reorientation of the nanoscale ferroelectric domains. For BaTiO 3 and SrTiO 3, the local/nanoscale structural changes observed in the PDFs are dominated by piezoelectric lattice strain and ionic polarizability, respectively.« less
Hassan, Sergio A
2012-08-21
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.
NASA Astrophysics Data System (ADS)
Hassan, Sergio A.
2012-08-01
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.
Hassan, Sergio A.
2012-01-01
A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response. PMID:22920098
Damage localization of marine risers using time series of vibration signals
NASA Astrophysics Data System (ADS)
Liu, Hao; Yang, Hezhen; Liu, Fushun
2014-10-01
Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average (ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive (AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.
On the Locality of Transient Electromagnetic Soundings with a Single-Loop Configuration
NASA Astrophysics Data System (ADS)
Barsukov, P. O.; Fainberg, E. B.
2018-03-01
The possibilities of reconstructing two-dimensional (2D) cross sections based on the data of the profile soundings by the transient electromagnetic method (TEM) with a single ungrounded loop are illustrated on three-dimensional (3D) models. The process of reconstruction includes three main steps: transformation of the responses in the depth dependence of resistivity ρ(h) measured along the profile, with their subsequent stitching into the 2D pseudo section; point-by-point one-dimensional (1D) inversion of the responses with the starting model constructed based on the transformations; and correction of the 2D cross section with the use of 2.5-dimensional (2.5D) block inversion. It is shown that single-loop TEM soundings allow studying the geological media within a local domain the lateral dimensions of which are commensurate with the depth of the investigation. The structure of the medium beyond this domain insignificantly affects the sounding results. This locality enables the TEM to reconstruct the geoelectrical structure of the medium from the 2D cross sections with the minimal distortions caused by the lack of information beyond the profile of the transient response measurements.
Responses in large-scale structure
NASA Astrophysics Data System (ADS)
Barreira, Alexandre; Schmidt, Fabian
2017-06-01
We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ``bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients, which are only a function of the hard wavenumber k. Further, the responses up to n-th order completely describe the (n+2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance CovNGl=0(k1,k2), in the limit where one of the modes, say k2, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k2 lesssim 0.06 h Mpc-1, and for any k1 gtrsim 2k2. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.
A Semi-Structured MODFLOW-USG Model to Evaluate Local Water Sources to Wells for Decision Support.
Feinstein, Daniel T; Fienen, Michael N; Reeves, Howard W; Langevin, Christian D
2016-07-01
In order to better represent the configuration of the stream network and simulate local groundwater-surface water interactions, a version of MODFLOW with refined spacing in the topmost layer was applied to a Lake Michigan Basin (LMB) regional groundwater-flow model developed by the U.S. Geological. Regional MODFLOW models commonly use coarse grids over large areas; this coarse spacing precludes model application to local management issues (e.g., surface-water depletion by wells) without recourse to labor-intensive inset models. Implementation of an unstructured formulation within the MODFLOW framework (MODFLOW-USG) allows application of regional models to address local problems. A "semi-structured" approach (uniform lateral spacing within layers, different lateral spacing among layers) was tested using the LMB regional model. The parent 20-layer model with uniform 5000-foot (1524-m) lateral spacing was converted to 4 layers with 500-foot (152-m) spacing in the top glacial (Quaternary) layer, where surface water features are located, overlying coarser resolution layers representing deeper deposits. This semi-structured version of the LMB model reproduces regional flow conditions, whereas the finer resolution in the top layer improves the accuracy of the simulated response of surface water to shallow wells. One application of the semi-structured LMB model is to provide statistical measures of the correlation between modeled inputs and the simulated amount of water that wells derive from local surface water. The relations identified in this paper serve as the basis for metamodels to predict (with uncertainty) surface-water depletion in response to shallow pumping within and potentially beyond the modeled area, see Fienen et al. (2015a). Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Model reference, sliding mode adaptive control for flexible structures
NASA Technical Reports Server (NTRS)
Yurkovich, S.; Ozguner, U.; Al-Abbass, F.
1988-01-01
A decentralized model reference adaptive approach using a variable-structure sliding model control has been developed for the vibration suppression of large flexible structures. Local models are derived based upon the desired damping and response time in a model-following scheme, and variable structure controllers are then designed which employ colocated angular rate and position feedback. Numerical simulations have been performed using NASA's flexible grid experimental apparatus.
Ash, S; Johnson, C; Shohat, M; Shohat, T; Schlesinger, M
1994-08-01
The properdin deficiency gene has been localized to Xp21.1-Xcen; however, it is not clear whether the mutation responsible for the disease co-maps exactly with the structural properdin gene. Based on a recent study on a total of six families, the gene was found linked to DXS255 (theta = 0.00). As only a few families have been studied, it is not known whether the same gene is responsible for the disease in all families. In order to better localize the disease gene in Israel, we studied a Tunisian Jewish family with properdin deficiency for linkage with various X-markers. A maximum lod score of 1.93 at theta = 0.00 was calculated with the DXS7 probe while there was one recombination with DXS255. This study helps to better localize the properdin deficiency gene to Xp11.3-p21.1 proximal to DXS255 locus and confirms that there is no indication of genetic heterogeneity. Whether the properdin structural gene (PFC) and properdin deficiency locus are one and the same await demonstration of mutations in the structural gene in patients with properdin deficiency.
Granular metamaterials for vibration mitigation
NASA Astrophysics Data System (ADS)
Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.
2013-09-01
Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.
Numerical Characterization of a Composite Bonded Wing-Box
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III; Lovejoy, Andrew E.; Satyanarayana, Arunkumar
2008-01-01
The development of composite wing structures has focused on the use of mechanical fasteners to join heavily-loaded areas, while bonded joints have been used only for select locations. The focus of this paper is the examination of the adhesive layer in a generic bonded wing box that represents a "fastenerless" or unitized structure in order to characterize the general behavior and failure mechanisms. A global/local approach was applied to study the response of the adhesive layer using a global shell model and a local shell/solid model. The wing box was analyzed under load to represent a high-g up-bending condition such that the strains in the composite sandwich face sheets are comparable to an expected design allowable. The global/local analysis indicates that at these wing load levels the strains in the adhesive layer are well within the adhesive's elastic region, such that yielding would not be expected in the adhesive layer. The global/local methodology appears to be a promising approach to evaluate the structural integrity of the adhesively bonded structures.
Accounting for Local Dependence with the Rasch Model: The Paradox of Information Increase.
Andrich, David
Test theories imply statistical, local independence. Where local independence is violated, models of modern test theory that account for it have been proposed. One violation of local independence occurs when the response to one item governs the response to a subsequent item. Expanding on a formulation of this kind of violation between two items in the dichotomous Rasch model, this paper derives three related implications. First, it formalises how the polytomous Rasch model for an item constituted by summing the scores of the dependent items absorbs the dependence in its threshold structure. Second, it shows that as a consequence the unit when the dependence is accounted for is not the same as if the items had no response dependence. Third, it explains the paradox, known, but not explained in the literature, that the greater the dependence of the constituent items the greater the apparent information in the constituted polytomous item when it should provide less information.
Local self-uniformity in photonic networks.
Sellers, Steven R; Man, Weining; Sahba, Shervin; Florescu, Marian
2017-02-17
The interaction of a material with light is intimately related to its wavelength-scale structure. Simple connections between structure and optical response empower us with essential intuition to engineer complex optical functionalities. Here we develop local self-uniformity (LSU) as a measure of a random network's internal structural similarity, ranking networks on a continuous scale from crystalline, through glassy intermediate states, to chaotic configurations. We demonstrate that complete photonic bandgap structures possess substantial LSU and validate LSU's importance in gap formation through design of amorphous gyroid structures. Amorphous gyroid samples are fabricated via three-dimensional ceramic printing and the bandgaps experimentally verified. We explore also the wing-scale structuring in the butterfly Pseudolycaena marsyas and show that it possesses substantial amorphous gyroid character, demonstrating the subtle order achieved by evolutionary optimization and the possibility of an amorphous gyroid's self-assembly.
Local self-uniformity in photonic networks
NASA Astrophysics Data System (ADS)
Sellers, Steven R.; Man, Weining; Sahba, Shervin; Florescu, Marian
2017-02-01
The interaction of a material with light is intimately related to its wavelength-scale structure. Simple connections between structure and optical response empower us with essential intuition to engineer complex optical functionalities. Here we develop local self-uniformity (LSU) as a measure of a random network's internal structural similarity, ranking networks on a continuous scale from crystalline, through glassy intermediate states, to chaotic configurations. We demonstrate that complete photonic bandgap structures possess substantial LSU and validate LSU's importance in gap formation through design of amorphous gyroid structures. Amorphous gyroid samples are fabricated via three-dimensional ceramic printing and the bandgaps experimentally verified. We explore also the wing-scale structuring in the butterfly Pseudolycaena marsyas and show that it possesses substantial amorphous gyroid character, demonstrating the subtle order achieved by evolutionary optimization and the possibility of an amorphous gyroid's self-assembly.
Residential water demand with endogenous pricing: The Canadian Case
NASA Astrophysics Data System (ADS)
Reynaud, Arnaud; Renzetti, Steven; Villeneuve, Michel
2005-11-01
In this paper, we show that the rate structure endogeneity may result in a misspecification of the residential water demand function. We propose to solve this endogeneity problem by estimating a probabilistic model describing how water rates are chosen by local communities. This model is estimated on a sample of Canadian local communities. We first show that the pricing structure choice reflects efficiency considerations, equity concerns, and, in some cases, a strategy of price discrimination across consumers by Canadian communities. Hence estimating the residential water demand without taking into account the pricing structures' endogeneity leads to a biased estimation of price and income elasticities. We also demonstrate that the pricing structure per se plays a significant role in influencing price responsiveness of Canadian residential consumers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, R.P.; Kincaid, R.H.; Short, S.A.
This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. Task I of the study, which is presented in NUREG/CR-3805, Vol. 1, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in four parts: (1) effects of ground motion characteristics onmore » structural response of a typical PWR reactor building with localized nonlinearities and soil-structure interaction effects; (2) empirical data on spatial variations of earthquake ground motion; (3) soil-structure interaction effects on structural response; and (4) summary of conclusions and recommendations based on Tasks I and II studies. This report presents the results of the first part of Task II. The results of the other parts will be presented in NUREG/CR-3805, Vols. 3 to 5.« less
Complex auditory behaviour emerges from simple reactive steering
NASA Astrophysics Data System (ADS)
Hedwig, Berthold; Poulet, James F. A.
2004-08-01
The recognition and localization of sound signals is fundamental to acoustic communication. Complex neural mechanisms are thought to underlie the processing of species-specific sound patterns even in animals with simple auditory pathways. In female crickets, which orient towards the male's calling song, current models propose pattern recognition mechanisms based on the temporal structure of the song. Furthermore, it is thought that localization is achieved by comparing the output of the left and right recognition networks, which then directs the female to the pattern that most closely resembles the species-specific song. Here we show, using a highly sensitive method for measuring the movements of female crickets, that when walking and flying each sound pulse of the communication signal releases a rapid steering response. Thus auditory orientation emerges from reactive motor responses to individual sound pulses. Although the reactive motor responses are not based on the song structure, a pattern recognition process may modulate the gain of the responses on a longer timescale. These findings are relevant to concepts of insect auditory behaviour and to the development of biologically inspired robots performing cricket-like auditory orientation.
A shock absorber model for structure-borne noise analyses
NASA Astrophysics Data System (ADS)
Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice
2015-08-01
Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.
ERIC Educational Resources Information Center
Kaihlavirta, Auri; Isomöttönen, Ville; Kärkkäinen, Tommi
2015-01-01
This paper provides a self-ethnographic investigation of a continuing education program in engineering in Central Finland. The program was initiated as a response to local economic structural change, in order to offer re-education possibilities for a higher educated workforce currently under unemployment threat. We encountered considerable…
ERIC Educational Resources Information Center
Schroeders, Ulrich; Robitzsch, Alexander; Schipolowski, Stefan
2014-01-01
C-tests are a specific variant of cloze tests that are considered time-efficient, valid indicators of general language proficiency. They are commonly analyzed with models of item response theory assuming local item independence. In this article we estimated local interdependencies for 12 C-tests and compared the changes in item difficulties,…
NASA Astrophysics Data System (ADS)
Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Greatbatch, Richard; Bader, Jürgen
2017-04-01
Climate change simulations robustly show a warming hole in the sub-polar North Atlantic that results from slowing of the AMOC countering the global warming signal. Here we investigate how the distinct SST spatial structures, which include a sharpening of the Gulf Stream SST gradients, influence climate change in the NA sector in winter. For this we analyse the RCP8.5 scenario simulation of the MPI Earth System Model. Additional sensitivity experiments with the atmospheric model component, ECHAM5, are performed to deconstruct the effect of the local spatial structure of the SST change from those arising from large-scale warming of the ocean, remote SST pattern changes and changed radiative forcings. The MPI model simulation shows a signifcant decrease in precipitation to the south of the GS extension region in the future, despite a strong increase in underlying SST. While directly to the north there is a significant increase in precipitation. These distinct features in the precipitation response over the North Atlantic result from the local SST. Over the Gulf Stream, the differential structure of the precipitation changes reflects the changes of the local SST gradients there. Over the subpolar gyre the increase in precipitation is partly suppressed. In this region the Subpolar Gyre the weakened AMOC causes a SST warming, that is much weaker than the warming other regions of the ocean show at the same latitude. The large-scale response, which includes the overall increase in precipitation over the NA is due to the overall warming, remote SSTs and/or directly connected to the radiative forcing.
Dynamic Structure Factor: An Introduction
NASA Astrophysics Data System (ADS)
Sturm, K.
1993-02-01
The doubly differential cross-section for weak inelastic scattering of waves or particles by manybody systems is derived in Born approximation and expressed in terms of the dynamic structure factor according to van Hove. The application of this very general scheme to scattering of neutrons, x-rays and high-energy electrons is discussed briefly. The dynamic structure factor, which is the space and time Fourier transform of the density-density correlation function, is a property of the many-body system independent of the external probe and carries information on the excitation spectrum of the system. The relation of the electronic structure factor to the density-density response function defined in linear-response theory is shown using the fluctuation-dissipation theorem. This is important for calculations, since the response function can be calculated approximately from the independent-particle response function in self-consistent field approximations, such as the random-phase approximation or the local-density approximation of the density functional theory. Since the density-density response function also determines the dielectric function, the dynamic structure can be expressed by the dielectric function.
Random local temporal structure of category fluency responses.
Meyer, David J; Messer, Jason; Singh, Tanya; Thomas, Peter J; Woyczynski, Wojbor A; Kaye, Jeffrey; Lerner, Alan J
2012-04-01
The Category Fluency Test (CFT) provides a sensitive measurement of cognitive capabilities in humans related to retrieval from semantic memory. In particular, it is widely used to assess progress of cognitive impairment in patients with dementia. Previous research shows that, in the first approximation, the intensity of tested individuals' responses within a standard 60-s test period decays exponentially with time, with faster decay rates for more cognitively impaired patients. Such decay rate can then be viewed as a global (macro) diagnostic parameter of each test. In the present paper we focus on the statistical properties of the properly de-trended time intervals between consecutive responses (inter-call times) in the Category Fluency Test. In a sense, those properties reflect the local (micro) structure of the response generation process. We find that a good approximation for the distribution of the de-trended inter-call times is provided by the Weibull Distribution, a probability distribution that appears naturally in this context as a distribution of a minimum of independent random quantities and is the standard tool in industrial reliability theory. This insight leads us to a new interpretation of the concept of "navigating a semantic space" via patient responses.
Nonlinear decoding of a complex movie from the mammalian retina
Deny, Stéphane; Martius, Georg
2018-01-01
Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed “pixel-by-pixel”. We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs. We constructed nonlinear (kernelized and neural network) decoders that improved significantly over linear results. An important contribution to this was the ability of nonlinear decoders to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous-like activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. We propose a general principle by which downstream circuitry could discriminate between spontaneous and stimulus-driven activity based solely on higher-order statistical structure in the incoming spike trains. PMID:29746463
Thunes, James R.; Pal, Siladitya; Fortunato, Ronald N.; Phillippi, Julie A.; Gleason, Thomas G.; Vorp, David A.; Maiti, Spandan
2016-01-01
Incorporation of collagen structural information into the study of biomechanical behavior of ascending thoracic aortic (ATA) wall tissue should provide better insight into the pathophysiology of ATA. Structurally motivated constitutive models that include fiber dispersion and recruitment can successfully capture overall mechanical response of the arterial wall tissue. However, these models cannot examine local microarchitectural features of the collagen network, such as the effect of fiber disruptions and interaction between fibrous and non-fibrous components, which may influence emergent biomechanical properties of the tissue. Motivated by this need, we developed a finite element based three-dimensional structural model of the lamellar units of the ATA media that directly incorporates the collagen fiber microarchitecture. The fiber architecture was computer generated utilizing network features, namely fiber orientation distribution, intersection density and areal concentration, obtained from image analysis of multiphoton microscopy images taken from human aneurysmal ascending thoracic aortic media specimens with bicuspid aortic valve (BAV) phenotype. Our model reproduces the typical J-shaped constitutive response of the aortic wall tissue. We found that the stress state in the non-fibrous matrix was homogeneous until the collagen fibers were recruited, but became highly heterogeneous after that event. The degree of heterogeneity was dependent upon local network architecture with high stresses observed near disrupted fibers. The magnitude of non-fibrous matrix stress at higher stretch levels was negatively correlated with local fiber density. The localized stress concentrations, elucidated by this model, may be a factor in the degenerative changes in aneurysmal ATA tissue. PMID:27113538
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Rose, Cheryl A.; Rankin, Charles C.
1996-01-01
The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for various combinations of internal pressure and mechanical loads, and the effects of crack orientation on the shell response are described. The effects of combined loading conditions and the effects of varying structural parameters on the stress-intensity factors associated with a crack are presented.
Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures
NASA Technical Reports Server (NTRS)
Potyondy, David O.; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1994-01-01
A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modeling strategy. The structural response for each cracked configuration is obtained using a geometrically nonlinear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology and its applicability to performing practical analyses of realistic structures is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.
NASA Astrophysics Data System (ADS)
Yang, Junwei; Guo, Liwei; Huang, Jiao; Mao, Qi; Guo, Yunlong; Jia, Yuping; Peng, Tonghua; Chen, Xiaolong
2017-10-01
A rectified photocurrent behaviour is demonstrated in a simple planar structure of ITO-graphene-ITO formed on a SiC substrate when an ultraviolet (UV) light is locally incident on one of the edges between the graphene and ITO electrode. The photocurrent has similar characteristics as those of a vertical structure graphene/semiconductor junction photodiode, but is clearly different from those found in a planar structure metal-graphene-metal device. Furthermore, the device behaves multi-functionally as a photodiode with sensitive UV photodetection capability (responsivity of 11.7 mA W-1 at 0.3 V) and a self-powered UV photodetector (responsivity of 4.4 mA W-1 at zero bias). Both features are operative in a wide dynamic range and with a fast speed of response in about gigahertz. The linear I-V behaviour with laser power at forward bias and cutoff at reverse bias leads to a conceptual photodiode, which is compatible with modern semiconductor planar device architecture. This paves a potential way to realize ultrafast graphene planar photodiodes for monolithic integration of graphene-based devices on the same SiC substrate.
45 CFR 2551.24 - What are a sponsor's responsibilities for securing community participation?
Code of Federal Regulations, 2010 CFR
2010-10-01
...? (a) A sponsor shall secure community participation in local project operation by establishing an Advisory Council or a similar organizational structure with a membership that includes people: (1...
45 CFR 2552.24 - What are a sponsor's responsibilities for securing community participation?
Code of Federal Regulations, 2010 CFR
2010-10-01
...? (a) A sponsor shall secure community participation in local project operation by establishing an Advisory Council or a similar organizational structure with a membership that includes people: (1...
NASA Astrophysics Data System (ADS)
Farías, Cristian; Galván, Boris; Miller, Stephen A.
2017-09-01
Earthquake triggering of hydrothermal and volcanic systems is ubiquitous, but the underlying processes driving these systems are not well-understood. We numerically investigate the influence of seismic wave interaction with volcanic systems simulated as a trapped, high-pressure fluid reservoir connected to a fluid-filled fault system in a 2-D poroelastic medium. Different orientations and earthquake magnitudes are studied to quantify dynamic and static stress, and pore pressure changes induced by a seismic event. Results show that although the response of the system is mainly dominated by characteristics of the radiated seismic waves, local structures can also play an important role on the system dynamics. The fluid reservoir affects the seismic wave front, distorts the static overpressure pattern induced by the earthquake, and concentrates the kinetic energy of the incoming wave on its boundaries. The static volumetric stress pattern inside the fault system is also affected by the local structures. Our results show that local faults play an important role in earthquake-volcanic systems dynamics by concentrating kinetic energy inside and acting as wave-guides that have a breakwater-like behavior. This generates sudden changes in pore pressure, volumetric expansion, and stress gradients. Local structures also influence the regional Coulomb yield function. Our results show that local structures affect the dynamics of volcanic and hydrothermal systems, and should be taken into account when investigating triggering of these systems from nearby or distant earthquakes.
Nagamitsu, Teruyoshi; Yasuda, Mika; Saito-Morooka, Fuki; Inoue, Maki N.; Nishiyama, Mio; Goka, Koichi; Sugiura, Shinji; Maeto, Kaoru; Okabe, Kimiko; Taki, Hisatomo
2016-01-01
Declines in honeybee populations have been a recent concern. Although causes of the declines remain unclear, environmental factors may be responsible. We focused on the potential environmental determinants of local populations of wild honeybees, Apis cerana japonica, in Japan. This subspecies has little genetic variation in terms of its mitochondrial DNA sequences, and genetic variations at nuclear loci are as yet unknown. We estimated the genetic structure and environmental determinants of local genetic diversity in nuclear microsatellite genotypes of fathers and mothers, inferred from workers collected at 139 sites. The genotypes of fathers and mothers showed weak isolation by distance and negligible genetic structure. The local genetic diversity was high in central Japan, decreasing toward the peripheries, and depended on the climate and land use characteristics of the sites. The local genetic diversity decreased as the annual precipitation increased, and increased as the proportion of urban and paddy field areas increased. Positive effects of natural forest area, which have also been observed in terms of forager abundance in farms, were not detected with respect to the local genetic diversity. The findings suggest that A. cerana japonica forms a single population connected by gene flow in its main distributional range, and that climate and landscape properties potentially affect its local genetic diversity. PMID:27898704
Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo
2018-01-20
The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Water: a responsive small molecule.
Shultz, Mary Jane; Vu, Tuan Hoang; Meyer, Bryce; Bisson, Patrick
2012-01-17
Unique among small molecules, water forms a nearly tetrahedral yet flexible hydrogen-bond network. In addition to its flexibility, this network is dynamic: bonds are formed or broken on a picosecond time scale. These unique features make probing the local structure of water challenging. Despite the challenges, there is intense interest in developing a picture of the local water structure due to water's fundamental importance in many fields of chemistry. Understanding changes in the local network structure of water near solutes likely holds the key to unlock problems from analyzing parameters that determine the three dimensional structure of proteins to modeling the fate of volatile materials released into the atmosphere. Pictures of the local structure of water are heavily influenced by what is known about the structure of ice. In hexagonal I(h) ice, the most stable form of solid water under ordinary conditions, water has an equal number of donor and acceptor bonds; a kind of symmetry. This symmetric tetrahedral coordination is only approximately preserved in the liquid. The most obvious manifestation of this altered tetrahedral bonding is the greater density in the liquid compared with the solid. Formation of an interface or addition of solutes further modifies the local bonding in water. Because the O-H stretching frequency is sensitive to the environment, vibrational spectroscopy provides an excellent probe for the hydrogen-bond structure in water. In this Account, we examine both local interactions between water and small solutes and longer range interactions at the aqueous surface. Locally, the results suggest that water is not a symmetric donor or acceptor, but rather has a propensity to act as an acceptor. In interactions with hydrocarbons, action is centered at the water oxygen. For soluble inorganic salts, interaction is greater with the cation than the anion. The vibrational spectrum of the surface of salt solutions is altered compared with that of neat water. Studies of local salt-water interactions suggest that the picture of the local water structure and the ion distribution at the surface deduced from the surface vibrational spectrum should encompass both ions of the salt.
Modeling non-locality of plasmonic excitations with a fictitious film
NASA Astrophysics Data System (ADS)
Kong, Jiantao; Shvonski, Alexander; Kempa, Krzysztof
Non-local effects, requiring a wavevector (q) dependent dielectric response are becoming increasingly important in studies of plasmonic and metamaterial structures. The phenomenological hydrodynamic approximation (HDA) is the simplest, and most often used model, but it often fails. We show that the d-function formalism, exact to first order in q, is a powerful and simple-to-use alternative. Recently, we developed a mapping of the d-function formalism into a purely local fictitious film. This geometric mapping allows for non-local extensions of any local calculation scheme, including FDTD. We demonstrate here, that such mapped FDTD simulation of metallic nanoclusters agrees very well with various experiments.
Global Influences and Local Responses: The Restructuring of the University of Botswana, 1990-2000
ERIC Educational Resources Information Center
Tabulawa, Richard
2007-01-01
The University of Botswana has not escaped the reform fever currently gripping higher education institutions the world-over. In the late 1980s the University initiated an administrative/management restructuring exercise whose resultant structure was implemented between 1998 and 2000. The exercise, in many respects, was a response to globalization.…
NASA Astrophysics Data System (ADS)
Silverberg, Jesse; Bonassar, Lawrence; Cohen, Itai
2013-03-01
Contemporary developments in therapeutic tissue engineering have been enabled by basic research efforts in the field of biomechanics. Further integration of technology in medicine requires a deeper understanding of the mechanical properties of soft biological materials and the structural origins of their response under extreme stresses and strains. Drawing on the science generated by the ``Extreme Mechanics'' community, we present experimental results on the mechanical properties of articular cartilage, a hierarchically structured soft biomaterial found in the joints of mammalian long bones. Measurements of the spatially localized structure and mechanical properties will be compared with theoretical descriptions based on networks of deformed rods, poro-visco-elasticity, and standard continuum models. Discrepancies between experiment and theory will be highlighted, and suggestions for how models can be improved will be given.
Sato, Shogo; Jung, Hunmin; Nakagawa, Tsutomu; Pawlosky, Robert; Takeshima, Tomomi; Lee, Wan-Ru; Sakiyama, Haruhiko; Laxman, Sunil; Wynn, R. Max; Tu, Benjamin P.; MacMillan, John B.; De Brabander, Jef K.; Veech, Richard L.; Uyeda, Kosaku
2016-01-01
The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis. PMID:26984404
Lineations and structural mapping of Io's paterae and mountains: Implications for internal stresses
NASA Astrophysics Data System (ADS)
Ahern, Alexandra A.; Radebaugh, Jani; Christiansen, Eric H.; Harris, Ronald A.; Tass, E. Shannon
2017-11-01
The mountains of Jupiter's volcanic moon Io are tall, steep, and tectonic in origin, yet their precise modes of formation and their associations with volcanic paterae are not fully understood. Global spatial statistics of paterae and mountains and their associated lineations reveal that both types of features are more common at low latitudes and tectonic lineations have preferred orientations, whereas straight patera margins are randomly oriented. Additionally, structurally controlled lineations tend to cluster with each other, and in areas of high concentrations these tectonic lineations are shorter in length than their global average. These results indicate that global-scale (rather than local or regional) processes are involved in forming Io's tectonic structures, but that the diversity of mountain characteristics and the collapse of paterae adjacent to mountain complexes are more locally controlled. Regional structural mapping of the Hi'iaka, Shamshu, Tohil, and Zal regions reveals Io's mountains reside in large, fault-bounded crustal blocks that have undergone modification through local responses of subsurface structures to variable stresses. Strike-slip motion along reactivated faults led to the formation of transpressional and transtensional features, creating tall peaks and low basins, some of which are now occupied by paterae. We propose Io's mountains result from a combination of crustal stresses involving global and local-scale processes, dominantly volcanic loading and tidal flexing. These stresses sometimes are oriented at oblique angles to pre-existing faults, reactivating them as reverse, normal, or strike-slip faults, modifying the large, cohesive crustal blocks that many of Io's mountains reside in. Further degradation of mountains and burial of faults has occurred from extensive volcanism, mass wasting, gravitational collapse, and erosion by sublimation and sapping of sulfur-rich layers. This model of fault-bounded blocks being modified by global stresses and local structural response accounts for the variation and patterns of mountain sizes, shapes, and orientations, along with their isolation and interactions with other features. It also provides a context for the operation and extent of global and regional stresses in shaping Io's surface.
76 FR 48162 - FDIC Advisory Committee on Community Banking; Notice of Charter Renewal
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... Advisory Committee on Community Banking (``the Committee'') is in the public interest in connection with... services in their local markets in the current market environment. The structure and responsibilities of...
78 FR 46949 - FDIC Advisory Committee on Community Banking; Notice of Charter Renewal
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... Advisory Committee on Community Banking (``the Committee'') is in the public interest in connection with... services in their local markets in the current market environment. The structure and responsibilities of...
45 CFR 2553.24 - What are a sponsor's responsibilities for securing community participation?
Code of Federal Regulations, 2010 CFR
2010-10-01
... community participation? (a) A sponsor shall secure community participation in local project operation by establishing an Advisory Council or a similar organizational structure with a membership that includes people...
Hachtel, Jordan A.; Davidson, II, Roderick B.; Kovalik, Elena R.; ...
2018-02-15
Asymmetric nanophotonic structures enable a wide range of opportunities in optical nanotechnology because they support efficient optical nonlinearities mediated by multiple plasmon resonances over a broad spectral range. The Archimedean nanospiral is a canonical example of a chiral plasmonic structure because it supports even-order nonlinearities that are not generally accessible in locally symmetric geometries. However, the complex spiral response makes nanoscale experimental characterization of the plasmonic near-field structure highly desirable. As a result, we employ high-efficiency, high-spatial-resolution cathodoluminescence imaging in a scanning transmission electron microscope to describe the spatial, spectral, and polarization response of plasmon modes in the nanospiral geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hachtel, Jordan A.; Davidson, II, Roderick B.; Kovalik, Elena R.
Asymmetric nanophotonic structures enable a wide range of opportunities in optical nanotechnology because they support efficient optical nonlinearities mediated by multiple plasmon resonances over a broad spectral range. The Archimedean nanospiral is a canonical example of a chiral plasmonic structure because it supports even-order nonlinearities that are not generally accessible in locally symmetric geometries. However, the complex spiral response makes nanoscale experimental characterization of the plasmonic near-field structure highly desirable. As a result, we employ high-efficiency, high-spatial-resolution cathodoluminescence imaging in a scanning transmission electron microscope to describe the spatial, spectral, and polarization response of plasmon modes in the nanospiral geometry.
Issel, L Michele; Olorunsaiye, Comfort; Snebold, Laura; Handler, Arden
2015-04-01
We explored the relationships between local health department (LHD) structure, capacity, and macro-context variables and performance of essential public health services (EPHS). In 2012, we assessed a stratified, random sample of 195 LHDs that provided data via an online survey regarding performance of EPHS, the services provided or contracted out, the financial strategies used in response to budgetary pressures, and the extent of collaborations. We performed weighted analyses that included analysis of variance, pairwise correlations by jurisdiction population size, and linear regressions. On average, LHDs provided approximately 13 (36%) of 35 possible services either directly or by contract. Rather than cut services or externally consolidating, LHDs took steps to generate more revenue and maximize capacity. Higher LHD performance of EPHS was significantly associated with delivering more services, initiating more financial strategies, and engaging in collaboration, after adjusting for the effects of the Affordable Care Act and jurisdiction size. During changing economic and health care environments, we found that strong structural capacity enhanced local health department EPHS performance for maternal, child, and adolescent health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
Homeland Security Presidential Directive HSPD-5 requires all federal departments and agencies to adopt a National Incident Management System (NIMS)/Incident Command System (ICS) and use it in their individual domestic incident management and emergency prevention, preparedness, response, recovery, and mitigation programs and activities, as well as in support of those actions taken to assist state and local entities. This system provides a consistent nationwide template to enable federal, state, local, and tribal governments, private-sector, and nongovernmental organizations to work together effectively and efficiently to prepare for, prevent, respond to, and recover from domestic incidents, regardless of cause, size, or complexity, includingmore » acts of catastrophic terrorism. This document identifies the operational concepts of the Federal Radiological Monitoring and Assessment Center's (FRMAC) implementation of the NIMS/ICS response structure under the National Response Plan (NRP). The construct identified here defines the basic response template to be tailored to the incident-specific response requirements. FRMAC's mission to facilitate interagency environmental data management, monitoring, sampling, analysis, and assessment and link this information to the planning and decision staff clearly places the FRMAC in the Planning Section. FRMAC is not a mitigating resource for radiological contamination but is present to conduct radiological impact assessment for public dose avoidance. Field monitoring is a fact-finding mission to support this effort directly. Decisions based on the assessed data will drive public protection and operational requirements. This organizational structure under NIMS is focused by the mission responsibilities and interface requirements following the premise to provide emergency responders with a flexible yet standardized structure for incident response activities. The coordination responsibilities outlined in the NRP are based on the NIMS/ICS construct and Unified Command (UC) for management of a domestic incident. The NRP Nuclear/Radiological Incident Annex (NUC) further provides requirements and protocols for coordinating federal government capabilities to respond to nuclear/radiological Incidents of National Significance (INS) and other radiological incidents. When a FRMAC is established, it operates under the parameters of NIMS as defined in the NRP. FRMAC and its operations have been modified to reflect NIMS/ICS concepts and principles and to facilitate working in a Unified Command structure. FRMAC is established at or near the scene of the incident to coordinate radiological monitoring and assessment and is established in coordination with the U.S. Department of Homeland Security (DHS); the coordinating agency; other federal agencies; and state, local, and tribal authorities. However, regardless of the coordinating agency designation, U.S. Department of Energy (DOE) coordinates radiological monitoring and assessment activities for the initial phases of the offsite federal incident response through the Radiological Assistance Program (RAP) and FRMAC assets. Monitoring and assessment data are managed by FRMAC in an accountable, secure, and retrievable format. Monitoring data interpretations, including exposure rate contours, dose projections, and any requested radiological assessments are to be provided to the DHS; to the coordinating agency; and to state, local, and tribal government agencies.« less
Structuring Light to Manipulate Multipolar Resonances for Metamaterial Applications
NASA Astrophysics Data System (ADS)
Das, Tanya
Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart of metamaterial science and technology. Typically, researchers engineer multipolar light-matter interactions by modifying the size, shape, and composition of the resonators. Here, we instead engineer multipolar interactions by modifying properties of the incident radiation. In this dissertation, we propose a new framework for determining the scattering response of resonators based on properties of the local excitation field. First, we derive an analytical theory to determine the scattering response of spherical nanoparticles under any type of illumination. Using this theory, we demonstrate the ability to drastically manipulate the scattering properties of a spherical nanoparticle by varying the illumination and demonstrate excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. Next, we investigate the response of dielectric dimer structures illuminated by cylindrical vector beams. Using finite-difference time-domain simulations, we demonstrate significant modification of the scattering spectra of dimer antennas and reveal how the illumination condition gives rise to these spectra through manipulation of electric and magnetic mode hybridization. Finally, we present a simple and efficient numerical simulation based on local field principles for extracting the multipolar response of any resonator under illumination by structured light. This dissertation enhances the understanding of fundamental light-matter interactions in metamaterials and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.
Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures
NASA Astrophysics Data System (ADS)
Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en
2015-08-01
Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.
Opening complete band gaps in two dimensional locally resonant phononic crystals
NASA Astrophysics Data System (ADS)
Zhou, Xiaoling; Wang, Longqi
2018-05-01
Locally resonant phononic crystals (LRPCs) which have low frequency band gaps attract a growing attention in both scientific and engineering field recently. Wide complete locally resonant band gaps are the goal for researchers. In this paper, complete band gaps are achieved by carefully designing the geometrical properties of the inclusions in two dimensional LRPCs. The band structures and mechanisms of different types of models are investigated by the finite element method. The translational vibration patterns in both the in-plane and out-of-plane directions contribute to the full band gaps. The frequency response of the finite periodic structures demonstrate the attenuation effects in the complete band gaps. Moreover, it is found that the complete band gaps can be further widened and lowered by increasing the height of the inclusions. The tunable properties by changing the geometrical parameters provide a good way to open wide locally resonant band gaps.
Quantum order, entanglement and localization in many-body systems
NASA Astrophysics Data System (ADS)
Khemani, Vedika
The interplay of disorder and interactions can have remarkable effects on the physics of quantum systems. A striking example is provided by the long conjectured--and recently confirmed--phenomenon of many-body localization. Many-body localized (MBL) phases violate foundational assumptions about ergodicity and thermalization in interacting systems, and represent a new frontier for non-equilibrium quantum statistical mechanics. We start with a study of the dynamical response of MBL phases to time-dependent perturbations. We find that that an asymptotically slow, local perturbation induces a highly non-local response, a surprising result for a localized insulator. A complementary calculation in the linear-response regime elucidates the structure of many-body resonances contributing to the dynamics of this phase. We then turn to a study of quantum order in MBL systems. It was shown that localization can allow novel high-temperature phases and phase transitions that are disallowed in equilibrium. We extend this idea of "localization protected order'' to the case of symmetry-protected topological phases and to the elucidation of phase structure in periodically driven Floquet systems. We show that Floquet systems can display nontrivial phases, some of which show a novel form of correlated spatiotemporal order and are absolutely stable to all generic perturbations. The next part of the thesis addresses the role of quantum entanglement, broadly speaking. Remarkably, it was shown that even highly-excited MBL eigenstates have low area-law entanglement. We exploit this feature to develop tensor-network based algorithms for efficiently computing and representing highly-excited MBL eigenstates. We then switch gears from disordered, localized systems and examine the entanglement Hamiltonian and its low energy spectrum from a statistical mechanical lens, particularly focusing on issues of universality and thermalization. We close with two miscellaneous results on topologically ordered phases. The first studies the nonequilibrium "Kibble-Zurek'' dynamics resulting from driving a system through a phase transition from a topologically ordered phase to a trivial one at a finite rate. The second shows that the four-state Potts model on the pyrochlore lattice exhibits a "Coulomb Phase'' characterized by three emergent gauge fields.
Discontinuities, cross-scale patterns, and the organizationof ecosystems
Ecological structures and processes occur at specific spatiotemporal scales, and interactions that occur across multiple scales mediate scale-specific (e.g., individual,community, local, or regional) responses to disturbance. Despite the importance of scale,explicitly incorporat...
Local mechanical stimulation induces components of the pathogen defense response in parsley
Gus-Mayer, Sabine; Naton, Beatrix; Hahlbrock, Klaus; Schmelzer, Elmon
1998-01-01
Cell suspension cultures of parsley (Petroselinum crispum) have previously been used as a suitable system for studies of the nonhost resistance response to Phytophthora sojae. In this study, we replaced the penetrating fungus by local mechanical stimulation by using a needle of the same diameter as a fungal hypha, by local application of a structurally defined fungus-derived elicitor, or by a combination of the two stimuli. Similar to the fungal infection hypha, the local mechanical stimulus alone induced the translocation of cytoplasm and nucleus to the site of stimulation, the generation of intracellular reactive oxygen intermediates (ROI), and the expression of some, but not all, elicitor-responsive genes. When the elicitor was applied locally to the cell surface without mechanical stimulation, intracellular ROI also accumulated rapidly, but morphological changes were not detected. A combination of the mechanical stimulus with simultaneous application of low doses of elicitor closely simulated early reactions to fungal infection, including cytoplasmic aggregation, nuclear migration, and ROI accumulation. By contrast, cytoplasmic rearrangements were impaired at high elicitor concentrations. Neither papilla formation nor hypersensitive cell death occurred under the conditions tested. These results suggest that mechanical stimulation by the invading fungus is responsible for the observed intracellular rearrangements and may trigger some of the previously demonstrated changes in the activity of elicitor-responsive genes, whereas chemical stimulation is required for additional biochemical processes. As yet unidentified signals may be involved in papilla formation and hypersensitive cell death. PMID:9653198
NASA Astrophysics Data System (ADS)
Hu, Cheng-Yu; Hashizume, Tamotsu
2012-04-01
For AlGaN/GaN heterojunction field-effect transistors, on-state-bias-stress (on-stress)-induced trapping effects were observed across the entire drain access region, not only at the gate edge. However, during the application of on-stress, the highest electric field was only localized at the drain side of the gate edge. Using the location of the highest electric field as a reference, the trapping effects at the gate edge and at the more distant access region were referred to as localized and non-localized trapping effect, respectively. Using two-dimensional-electron-gas sensing-bar (2DEG-sensing-bar) and dual-gate structures, the non-localized trapping effects were investigated and the trap density was measured to be ˜1.3 × 1012 cm-2. The effect of passivation was also discussed. It was found that both surface leakage currents and hot electrons are responsible for the non-localized trapping effects with hot electrons having the dominant effect. Since hot electrons are generated from the 2DEG channel, it is highly likely that the involved traps are mainly in the GaN buffer layer. Using monochromatic irradiation (1.24-2.81 eV), the trap levels responsible for the non-localized trapping effects were found to be located at 0.6-1.6 eV from the valence band of GaN. Both trap-assisted impact ionization and direct channel electron injection are proposed as the possible mechanisms of the hot-electron-related non-localized trapping effect. Finally, using the 2DEG-sensing-bar structure, we directly confirmed that blocking gate injected electrons is an important mechanism of Al2O3 passivation.
ERIC Educational Resources Information Center
Li, Ying; Jiao, Hong; Lissitz, Robert W.
2012-01-01
This study investigated the application of multidimensional item response theory (IRT) models to validate test structure and dimensionality. Multiple content areas or domains within a single subject often exist in large-scale achievement tests. Such areas or domains may cause multidimensionality or local item dependence, which both violate the…
A Simulation Framework for Battery Cell Impact Safety Modeling Using LS-DYNA
Marcicki, James; Zhu, Min; Bartlett, Alexander; ...
2017-02-04
The development process of electrified vehicles can benefit significantly from computer-aided engineering tools that predict themultiphysics response of batteries during abusive events. A coupled structural, electrical, electrochemical, and thermal model framework has been developed within the commercially available LS-DYNA software. The finite element model leverages a three-dimensional mesh structure that fully resolves the unit cell components. The mechanical solver predicts the distributed stress and strain response with failure thresholds leading to the onset of an internal short circuit. In this implementation, an arbitrary compressive strain criterion is applied locally to each unit cell. A spatially distributed equivalent circuit model providesmore » an empirical representation of the electrochemical responsewith minimal computational complexity.The thermalmodel provides state information to index the electrical model parameters, while simultaneously accepting irreversible and reversible sources of heat generation. The spatially distributed models of the electrical and thermal dynamics allow for the localization of current density and corresponding temperature response. The ability to predict the distributed thermal response of the cell as its stored energy is completely discharged through the short circuit enables an engineering safety assessment. A parametric analysis of an exemplary model is used to demonstrate the simulation capabilities.« less
NASA Technical Reports Server (NTRS)
Rose, Cheryl A.; Starnes, James H., Jr.
1996-01-01
An efficient, approximate analysis for calculating complete three-dimensional stress fields near regions of geometric discontinuities in laminated composite structures is presented. An approximate three-dimensional local analysis is used to determine the detailed local response due to far-field stresses obtained from a global two-dimensional analysis. The stress results from the global analysis are used as traction boundary conditions for the local analysis. A generalized plane deformation assumption is made in the local analysis to reduce the solution domain to two dimensions. This assumption allows out-of-plane deformation to occur. The local analysis is based on the principle of minimum complementary energy and uses statically admissible stress functions that have an assumed through-the-thickness distribution. Examples are presented to illustrate the accuracy and computational efficiency of the local analysis. Comparisons of the results of the present local analysis with the corresponding results obtained from a finite element analysis and from an elasticity solution are presented. These results indicate that the present local analysis predicts the stress field accurately. Computer execution-times are also presented. The demonstrated accuracy and computational efficiency of the analysis make it well suited for parametric and design studies.
Fiber-Optic Ultrasound Sensors for Smart Structures Applications
2000-01-25
Introduction 1 1.1 Objectives 1 1.2 Relevance to Air Force 1 1.3 Fiber Optics Ultrasound Sensors 2 2. Research Accomplishments 2 2.1 Fabry - Perot ...fiber-optic ultrasound receivers: - Fabry - Perot (FOFP) sensors, - Sagnac Ultrasound Sensor (SUS), and - Bragg-Grating Ultrasound (BGU) sensors. We...ultrasound receivers with excellent normal-incidence response can be configured as local ( Fabry - Perot ) or non-local (Sagnac) sensors. The Sagnac
Quantitative Proteomic Profiling of Low-Dose Ionizing Radiation Effects in a Human Skin Model
Hengel, Shawna M.; Aldrich, Joshua T.; Waters, Katrina M.; Pasa-Tolic, Ljiljana; Stenoien, David L.
2014-01-01
To assess responses to low-dose ionizing radiation (LD-IR) exposures potentially encountered during medical diagnostic procedures, nuclear accidents or terrorist acts, a quantitative proteomic approach was used to identify changes in protein abundance in a reconstituted human skin tissue model treated with 0.1 Gy of ionizing radiation. To improve the dynamic range of the assay, subcellular fractionation was employed to remove highly abundant structural proteins and to provide insight into radiation-induced alterations in protein localization. Relative peptide quantification across cellular fractions, control and irradiated samples was performing using 8-plex iTRAQ labeling followed by online two-dimensional nano-scale liquid chromatography and high resolution MS/MS analysis. A total of 107 proteins were detected with statistically significant radiation-induced change in abundance (>1.5 fold) and/or subcellular localization compared to controls. The top biological pathways identified using bioinformatics include organ development, anatomical structure formation and the regulation of actin cytoskeleton. From the proteomic data, a change in proteolytic processing and subcellular localization of the skin barrier protein, filaggrin, was identified, and the results were confirmed by western blotting. This data indicate post-transcriptional regulation of protein abundance, localization and proteolytic processing playing an important role in regulating radiation response in human tissues. PMID:28250387
Digital Sequences and a Time Reversal-Based Impact Region Imaging and Localization Method
Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Qian, Weifeng
2013-01-01
To reduce time and cost of damage inspection, on-line impact monitoring of aircraft composite structures is needed. A digital monitor based on an array of piezoelectric transducers (PZTs) is developed to record the impact region of impacts on-line. It is small in size, lightweight and has low power consumption, but there are two problems with the impact alarm region localization method of the digital monitor at the current stage. The first one is that the accuracy rate of the impact alarm region localization is low, especially on complex composite structures. The second problem is that the area of impact alarm region is large when a large scale structure is monitored and the number of PZTs is limited which increases the time and cost of damage inspections. To solve the two problems, an impact alarm region imaging and localization method based on digital sequences and time reversal is proposed. In this method, the frequency band of impact response signals is estimated based on the digital sequences first. Then, characteristic signals of impact response signals are constructed by sinusoidal modulation signals. Finally, the phase synthesis time reversal impact imaging method is adopted to obtain the impact region image. Depending on the image, an error ellipse is generated to give out the final impact alarm region. A validation experiment is implemented on a complex composite wing box of a real aircraft. The validation results show that the accuracy rate of impact alarm region localization is approximately 100%. The area of impact alarm region can be reduced and the number of PZTs needed to cover the same impact monitoring region is reduced by more than a half. PMID:24084123
A semi-structured MODFLOW-USG model to evaluate local water sources to wells for decision support
Feinstein, Daniel T.; Fienen, Michael N.; Reeves, Howard W.; Langevin, Christian D.
2016-01-01
In order to better represent the configuration of the stream network and simulate local groundwater-surface water interactions, a version of MODFLOW with refined spacing in the topmost layer was applied to a Lake Michigan Basin (LMB) regional groundwater-flow model developed by the U.S. Geological. Regional MODFLOW models commonly use coarse grids over large areas; this coarse spacing precludes model application to local management issues (e.g., surface-water depletion by wells) without recourse to labor-intensive inset models. Implementation of an unstructured formulation within the MODFLOW framework (MODFLOW-USG) allows application of regional models to address local problems. A “semi-structured” approach (uniform lateral spacing within layers, different lateral spacing among layers) was tested using the LMB regional model. The parent 20-layer model with uniform 5000-foot (1524-m) lateral spacing was converted to 4 layers with 500-foot (152-m) spacing in the top glacial (Quaternary) layer, where surface water features are located, overlying coarser resolution layers representing deeper deposits. This semi-structured version of the LMB model reproduces regional flow conditions, whereas the finer resolution in the top layer improves the accuracy of the simulated response of surface water to shallow wells. One application of the semi-structured LMB model is to provide statistical measures of the correlation between modeled inputs and the simulated amount of water that wells derive from local surface water. The relations identified in this paper serve as the basis for metamodels to predict (with uncertainty) surface-water depletion in response to shallow pumping within and potentially beyond the modeled area, see Fienen et al. (2015a).
Bertazzoni, Umberto; Turci, Marco; Avesani, Francesca; Di Gennaro, Gianfranco; Bidoia, Carlo; Romanelli, Maria Grazia
2011-01-01
Human T-lymphotropic viruses type 1 (HTLV-1) and type 2 (HTLV-2) present very similar genomic structures but HTLV-1 is more pathogenic than HTLV-2. Is this difference due to their transactivating Tax proteins, Tax-1 and Tax-2, which are responsible for viral and cellular gene activation? Do Tax-1 and Tax-2 differ in their cellular localization and in their interaction pattern with cellular factors? In this review, we summarize Tax-1 and Tax-2 structural and phenotypic properties, their interaction with factors involved in signal transduction and their localization-related behavior within the cell. Special attention will be given to the distinctions between Tax-1 and Tax-2 that likely play an important role in their transactivation activity. PMID:21994745
NASA Technical Reports Server (NTRS)
Lagace, Paul A.
1999-01-01
Work was conducted over a ten-year period to address the central issue of damage in primary load-bearing aircraft composite structure, specifically fuselage structure. This included the three facets of damage resistance, damage tolerance, and damage arrest. Experimental, analytical, and numerical work was conducted in order to identify and better understand the mechanisms that control the structural behavior of fuselage structures in their response to the three aspects of damage. Furthermore, work was done to develop straightforward design methodologies that can be employed by structural designers in preliminary design stages to make intelligent choices concerning the material, layup, and structural configurations so that a more efficient structure with structural integrity can be designed and built. Considerable progress was made towards achieving these goals via this work. In regard to damage tolerance considerations, the following were identified as important effects: composite layup and associated orthotropy/structural anisotropy, specifics of initial local damage mechanisms, role of longitudinal versus hoop stress, and large deformation and associated geometric nonlinearity. Means were established to account for effects of radius and for the nonlinear response. In particular, nondimensional parameters were identified to characterize the importance of nonlinearity in the response of pressurized cylinders. This led to the establishment of a iso-nonlinear-error plot for reference in structural design. Finally, in the case of damage tolerance, the general approach of the original methodology to predict the failure pressure involving extending basic plate failure data by accounting for the local stress intensification was accomplished for the general case by accounting for the mechanisms noted by utilizing the capability of the STAGS finite element code and numerically calculating the local stress intensification for the particular configuration to be considered. For the issue of damage arrest, placement of and configuration of stiffeners (including stiffener curvature), and magnitude and orientation of principal strains due to local bending were found to be key considerations. Means were established to account for stiffener effectiveness quantitatively based on radius, slit size, stiffener curvature' and relative bending stifffiesses involved. Geometric nonlinearity was also found to play an - 24 - important role here. Furthermore, it was determined that damage propagation is controlled by different mechanisms (hoop stress versus flapping stress and the associated factors involved in each) depending upon the direction of damage propagation. This latter item results in an inability to scale these phenomena in one test due to the different factors involved. Finally, the importance of shell curvature and associated instability in response to transverse loading including impact were found to be important considerations in damage resistance. A technique, involving asymmetric meshing of a finite element mesh, was developed to predict this behavior and showed excellent correlation with experimental results. Further details of these ten years of work are presented herein with references made to the fourteen documents produced during this work where full details can be found. Implications of this work are discussed and recommendations made. Although it is clear that there is more work to be done to fully understand composite fuselage technology and specifically the overall issue of damage in primary load-bearing composite structures, important understanding and capability has been extended via this work.
Seismic damage identification for steel structures using distributed fiber optics.
Hou, Shuang; Cai, C S; Ou, Jinping
2009-08-01
A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.
Bayes Factor Covariance Testing in Item Response Models.
Fox, Jean-Paul; Mulder, Joris; Sinharay, Sandip
2017-12-01
Two marginal one-parameter item response theory models are introduced, by integrating out the latent variable or random item parameter. It is shown that both marginal response models are multivariate (probit) models with a compound symmetry covariance structure. Several common hypotheses concerning the underlying covariance structure are evaluated using (fractional) Bayes factor tests. The support for a unidimensional factor (i.e., assumption of local independence) and differential item functioning are evaluated by testing the covariance components. The posterior distribution of common covariance components is obtained in closed form by transforming latent responses with an orthogonal (Helmert) matrix. This posterior distribution is defined as a shifted-inverse-gamma, thereby introducing a default prior and a balanced prior distribution. Based on that, an MCMC algorithm is described to estimate all model parameters and to compute (fractional) Bayes factor tests. Simulation studies are used to show that the (fractional) Bayes factor tests have good properties for testing the underlying covariance structure of binary response data. The method is illustrated with two real data studies.
Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey
2016-08-04
High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.
NASA Astrophysics Data System (ADS)
Trützschler, Julia; Sentosun, Kadir; Mozooni, Babak; Mattheis, Roland; McCord, Jeffrey
2016-08-01
High density magnetic domain wall gratings are imprinted in ferromagnetic-antiferromagnetic thin films by local ion irradiation by which alternating head-to-tail-to-head-to-tail and head-to-head-to-tail-to-tail spatially overlapping domain wall networks are formed. Unique magnetic domain processes result from the interaction of anchored domain walls. Non-linear magnetization response is introduced by the laterally distributed magnetic anisotropy phases. The locally varying magnetic charge distribution gives rise to localized and guided magnetization spin-wave modes directly constrained by the narrow domain wall cores. The exchange coupled multiphase material structure leads to unprecedented static and locally modified dynamic magnetic material properties.
NASA Astrophysics Data System (ADS)
Hsu, C. C.; Pao, C. W.; Chen, J. L.; Chen, C. L.; Dong, C. L.; Liu, Y. S.; Lee, J. F.; Chan, T. S.; Chang, C. L.; Kuo, Y. K.; Lue, C. S.
2014-05-01
We report the effects of Ge partial substitution for Si on local atomic and electronic structures of thermoelectric materials in binary compound cobalt monosilicides (\\text{CoSi}_{1-x}\\text{Ge}_{x}\\text{:}\\ 0 \\le x \\le 0.15 ). Correlations between local atomic/electronic structure and thermoelectric properties are investigated by means of X-ray absorption spectroscopy. The spectroscopic results indicate that as Ge is partially substituted onto Si sites at x \\le 0.05 , Co in CoSi1-xGex gains a certain amount of charge in its 3d orbitals. Contrarily, upon further replacing Si with Ge at x \\ge 0.05 , the Co 3d orbitals start to lose some of their charge. Notably, thermopower is strongly correlated with charge redistribution in the Co 3d orbital, and the observed charge transfer between Ge and Co is responsible for the variation of Co 3d occupancy number. In addition to Seebeck coefficient, which can be modified by tailoring the Co 3d states, local lattice disorder may also be beneficial in enhancing the thermoelectric properties. Extended X-ray absorption fine structure spectrum results further demonstrate that the lattice phonons can be enhanced by Ge doping, which results in the formation of the disordered Co-Co pair. Improvements in the thermoelectric properties are interpreted based on the variation of local atomic and electronic structure induced by lattice distortion through chemical substitution.
NASA Astrophysics Data System (ADS)
Chan, Chun-Kai; Loh, Chin-Hsiung; Wu, Tzu-Hsiu
2015-04-01
In civil engineering, health monitoring and damage detection are typically carry out by using a large amount of sensors. Typically, most methods require global measurements to extract the properties of the structure. However, some sensors, like LVDT, cannot be used due to in situ limitation so that the global deformation remains unknown. An experiment is used to demonstrate the proposed algorithms: a one-story 2-bay reinforce concrete frame under weak and strong seismic excitation. In this paper signal processing techniques and nonlinear identification are used and applied to the response measurements of seismic response of reinforced concrete structures subject to different level of earthquake excitations. Both modal-based and signal-based system identification and feature extraction techniques are used to study the nonlinear inelastic response of RC frame using both input and output response data or output only measurement. From the signal-based damage identification method, which include the enhancement of time-frequency analysis of acceleration responses and the estimation of permanent deformation using directly from acceleration response data. Finally, local deformation measurement from dense optical tractor is also use to quantify the damage of the RC frame structure.
Stochastic Nonlinear Response of Woven CMCs
NASA Technical Reports Server (NTRS)
Kuang, C. Liu; Arnold, Steven M.
2013-01-01
It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the influence of scale specific architectural features of woven ceramic composite are examined stochastically at both the macroscale (woven repeating unit cell (RUC)) and structural scale (idealized using multiple RUCs). The recently developed MultiScale Generalized Method of Cells methodology is used to determine the overall deformation response, proportional elastic limit (first matrix cracking), and failure under tensile loading conditions and associated probability distribution functions. Prior results showed that the most critical architectural parameter to account for is weave void shape and content with other parameters being less in severity. Current results show that statistically only the post-elastic limit region (secondary hardening modulus and ultimate tensile strength) is impacted by local uncertainties both at the macro and structural level.
Appel, Alyssa A.; Ibarra, Veronica; Somo, Sami I.; ...
2016-10-31
Transplantation of functional islets encapsulated in stable biomaterials has the potential to cure Type I diabetes. However, the success of these materials requires the ability to understand their stability in vivo. Imaging techniques that enable monitoring of biomaterial performance are critical to further development in the field. In this study, we demonstrate for the first time that X-ray phase contrast (XPC) imaging techniques enable 3D imaging and evaluation of islet volume, alginate hydrogel structure and local soft tissue response. Islets were encapsulated in alginate systems prepared in methods used in clinical trials and implanted in a rodent omentum pouch modelmore » as a treatment for type I diabetes. Microbeads were imaged with XPC prior to implantation and following implantation into an omentum pouch. Islets could be identified within alginate beads and the islet volume quantified. Omental adipose tissue could be distinguished from inflammatory regions resulting from implanted beads. Individual beads and the local encapsulation response were visualized and quantifiable. Measurements were in agreement with histology. The 3D structure of the microbeads could be characterized with XPC and failed beads could also be identified. These results point to the substantial potential of XPC as a tool for imaging biomaterials in small animal models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Alyssa A.; Ibarra, Veronica; Somo, Sami I.
Transplantation of functional islets encapsulated in stable biomaterials has the potential to cure Type I diabetes. However, the success of these materials requires the ability to understand their stability in vivo. Imaging techniques that enable monitoring of biomaterial performance are critical to further development in the field. In this study, we demonstrate for the first time that X-ray phase contrast (XPC) imaging techniques enable 3D imaging and evaluation of islet volume, alginate hydrogel structure and local soft tissue response. Islets were encapsulated in alginate systems prepared in methods used in clinical trials and implanted in a rodent omentum pouch modelmore » as a treatment for type I diabetes. Microbeads were imaged with XPC prior to implantation and following implantation into an omentum pouch. Islets could be identified within alginate beads and the islet volume quantified. Omental adipose tissue could be distinguished from inflammatory regions resulting from implanted beads. Individual beads and the local encapsulation response were visualized and quantifiable. Measurements were in agreement with histology. The 3D structure of the microbeads could be characterized with XPC and failed beads could also be identified. These results point to the substantial potential of XPC as a tool for imaging biomaterials in small animal models.« less
Local elasticity map and plasticity in a model Lennard-Jones glass.
Tsamados, Michel; Tanguy, Anne; Goldenberg, Chay; Barrat, Jean-Louis
2009-08-01
In this work we calculate the local elastic moduli in a weakly polydispersed two-dimensional Lennard-Jones glass undergoing a quasistatic shear deformation at zero temperature. The numerical method uses coarse-grained microscopic expressions for the strain, displacement, and stress fields. This method allows us to calculate the local elasticity tensor and to quantify the deviation from linear elasticity (local Hooke's law) at different coarse-graining scales. From the results a clear picture emerges of an amorphous material with strongly spatially heterogeneous elastic moduli that simultaneously satisfies Hooke's law at scales larger than a characteristic length scale of the order of five interatomic distances. At this scale, the glass appears as a composite material composed of a rigid scaffolding and of soft zones. Only recently calculated in nonhomogeneous materials, the local elastic structure plays a crucial role in the elastoplastic response of the amorphous material. For a small macroscopic shear strain, the structures associated with the nonaffine displacement field appear directly related to the spatial structure of the elastic moduli. Moreover, for a larger macroscopic shear strain we show that zones of low shear modulus concentrate most of the strain in the form of plastic rearrangements. The spatiotemporal evolution of this local elasticity map and its connection with long term dynamical heterogeneity as well as with the plasticity in the material is quantified. The possibility to use this local parameter as a predictor of subsequent local plastic activity is also discussed.
Quinn, Emma; Johnstone, Travers; Najjar, Zeina; Cains, Toni; Tan, Geoff; Huhtinen, Essi; Nilsson, Sven; Burgess, Stuart; Dunn, Matthew; Gupta, Leena
2017-09-05
The incident command system (ICS) provides a common structure to control and coordinate an emergency response, regardless of scale or predicted impact. The lessons learned from the application of an ICS for large infectious disease outbreaks are documented. However, there is scant evidence on the application of an ICS to manage a local multiagency response to a disease cluster with environmental health risks. The Sydney Local Health District Public Health Unit (PHU) in New South Wales, Australia, was notified of 5 cases of Legionnaires' disease during 2 weeks in May 2016. This unusual incident triggered a multiagency investigation involving an ICS with staff from the PHU, 3 local councils, and the state health department to help prevent any further public health risk. The early and judicious use of ICS enabled a timely and effective response by supporting clear communication lines between the incident controller and field staff. The field team was key in preventing any ongoing public health risk through inspection, sampling, testing, and management of water systems identified to be at-risk for transmission of legionella. Good working relationships between partner agencies and trust in the technical proficiency of environmental health staff aided in the effective management of the response. (Disaster Med Public Health Preparedness. 2017;page 1 of 4).
Neuropeptide Signaling Networks and Brain Circuit Plasticity.
McClard, Cynthia K; Arenkiel, Benjamin R
2018-01-01
The brain is a remarkable network of circuits dedicated to sensory integration, perception, and response. The computational power of the brain is estimated to dwarf that of most modern supercomputers, but perhaps its most fascinating capability is to structurally refine itself in response to experience. In the language of computers, the brain is loaded with programs that encode when and how to alter its own hardware. This programmed "plasticity" is a critical mechanism by which the brain shapes behavior to adapt to changing environments. The expansive array of molecular commands that help execute this programming is beginning to emerge. Notably, several neuropeptide transmitters, previously best characterized for their roles in hypothalamic endocrine regulation, have increasingly been recognized for mediating activity-dependent refinement of local brain circuits. Here, we discuss recent discoveries that reveal how local signaling by corticotropin-releasing hormone reshapes mouse olfactory bulb circuits in response to activity and further explore how other local neuropeptide networks may function toward similar ends.
Sato, Shogo; Jung, Hunmin; Nakagawa, Tsutomu; Pawlosky, Robert; Takeshima, Tomomi; Lee, Wan-Ru; Sakiyama, Haruhiko; Laxman, Sunil; Wynn, R Max; Tu, Benjamin P; MacMillan, John B; De Brabander, Jef K; Veech, Richard L; Uyeda, Kosaku
2016-05-13
The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Yeh, Shu-Jen; Khalil, Omar S; Hanna, Charles F; Kantor, Stanislaw
2003-07-01
We observed a difference in the thermal response of localized reflectance signal of human skin between type 2 diabetics and nondiabetics. We investigated the use of this thermo-optical behavior as the basis for a noninvasive method for the determination of the diabetic status of a subject. We used a two-site temperature differential method, which is predicated upon the measurement of localized reflectance from two areas on the surface of the skin. Each of these areas is subjected to a different thermal perturbation. The response of localized reflectance to temperature perturbation was measured and used in a classification algorithm. We used a discriminant function to classify subjects as diabetic or nondiabetic. In a prediction set of twenty-four noninvasive tests collected from six diabetic and six nondiabetic subjects, the sensitivity ranged between 73 and 100%, and the specificity ranged between 75 and 100%, depending on the thermal conditions and the probe-skin contact time. The difference in the thermo-optical response of the skin of the two groups is explained in terms of a difference in the response of cutaneous microcirculation, which is manifested as a difference in the near-infrared light absorption. Another factor is the difference in the temperature response of the scattering coefficient between the two groups, which may be caused by cutaneous structural differences induced by nonenzymatic glycation of skin protein fibers, and possibly by the difference in blood cell aggregation. (c) 2003 Society of Photo-Optical Instrumentation Engineers.
Photoinduced local heating in silica photonic crystals for fast and reversible switching.
Gallego-Gómez, Francisco; Blanco, Alvaro; López, Cefe
2012-12-04
Fast and reversible photonic-bandgap tunability is achieved in silica artificial opals by local heating. The effect is fully reversible as heat rapidly dissipates through the non-irradiated structure without active cooling and water is readsorbed. The performance is strongly enhanced by decreasing the photoirradiated opal volume, allowing bandgap shifts of 12 nm and response times of 20 ms. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Community groups as ‘critical enablers’ of the HIV response in Zimbabwe
2013-01-01
Background The Investment Framework for a more effective HIV response has become integral to discussions on how best to respond to the HIV epidemic. The Framework calls for greater synergy and attention to factors that serve as ‘critical enablers’ and optimise HIV programmes. In this paper we argue for recognition of informal and indigenous community groups as ‘critical enablers’ of the HIV response. Methods This qualitative study was conducted in Matobo district of the Matabeleland South province in Zimbabwe. It draws on 19 individual in-depth interviews and 9 focus group discussions conducted by local researchers in September and October 2011. Data was thematically analysed. Results Four core themes highlight the possibilities and limitations of community groups in the HIV response: (i) Membership of indigenous community groups and group-based dialogue were found to encourage group members to engage with HIV prevention, mitigation and care efforts; (ii) local networks and partnerships between groups and NGOs were said to play an important role in accessing much needed resources to aid indigenous coping with AIDS; (iii) community strengths and resources were recognised and drawn upon in the community group response; (iv) frequent droughts, poverty and stigma served as obstacles to an effective HIV response. Conclusions In this context, social groups, although to varying degrees and in direct or indirect ways, play a key role in the HIV response. This suggest that community groups and networks can indeed act as ‘critical enablers’ to the HIV response, and that efforts need to be made to facilitate the contributions of already existing indigenous responses. Local community groups are developing local and collective solutions to structural problems, often independently of external NGO or health service efforts, and begging for synergy and collaboration between local community groups and networks, the health services and other external HIV service delivery sectors. PMID:23705939
Analysis of Crushing Response of Composite Crashworthy Structures
NASA Astrophysics Data System (ADS)
David, Matthew; Johnson, Alastair F.; Voggenreiter, H.
2013-10-01
The paper describes quasi-static and dynamic tests to characterise the energy absorption properties of polymer composite crash energy absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens are used to identify local compression crush failure mechanisms at the crush front. The varied crushing morphology between the compression strain rates identified in this paper is observed to be due to the differences in the response modes and mechanical properties of the strain dependent epoxy matrix. The importance of understanding the role of strain rate effects in composite crash energy absorbing structures is highlighted in this paper.
The CLAIR model: Extension of Brodmann areas based on brain oscillations and connectivity.
Başar, Erol; Düzgün, Aysel
2016-05-01
Since the beginning of the last century, the localization of brain function has been represented by Brodmann areas, maps of the anatomic organization of the brain. They are used to broadly represent cortical structures with their given sensory-cognitive functions. In recent decades, the analysis of brain oscillations has become important in the correlation of brain functions. Moreover, spectral connectivity can provide further information on the dynamic connectivity between various structures. In addition, brain responses are dynamic in nature and structural localization is almost impossible, according to Luria (1966). Therefore, brain functions are very difficult to localize; hence, a combined analysis of oscillation and event-related coherences is required. In this study, a model termed as "CLAIR" is described to enrich and possibly replace the concept of the Brodmann areas. A CLAIR model with optimum function may take several years to develop, but this study sets out to lay its foundation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Earthquake disaster mitigation of Lembang Fault West Java with electromagnetic method
NASA Astrophysics Data System (ADS)
Widodo
2015-04-01
The Lembang fault is located around eight kilometers from Bandung City, West Java, Indonesia. The existence of this fault runs through densely populated settlement and tourism area. It is an active fault structure with increasing seismic activity where the 28 August 2011 earthquake occurred. The seismic response at the site is strongly influenced by local geological conditions. The ambient noise measurements from the western part of this fault give strong implication for a complex 3-D tectonic setting. Hence, near surface Electromagnetic (EM) measurements are carried out to understand the location of the local active fault of the research area. Hence, near surface EM measurements are carried out to understand the location of the local active fault and the top of the basement structure of the research area. The Transientelectromagnetic (TEM) measurements are carried out along three profiles, which include 35 TEM soundings. The results indicate that TEM data give detailed conductivity distribution of fault structure in the study area.
Earthquake disaster mitigation of Lembang Fault West Java with electromagnetic method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widodo, E-mail: widodo@gf.itb.ac.id
The Lembang fault is located around eight kilometers from Bandung City, West Java, Indonesia. The existence of this fault runs through densely populated settlement and tourism area. It is an active fault structure with increasing seismic activity where the 28 August 2011 earthquake occurred. The seismic response at the site is strongly influenced by local geological conditions. The ambient noise measurements from the western part of this fault give strong implication for a complex 3-D tectonic setting. Hence, near surface Electromagnetic (EM) measurements are carried out to understand the location of the local active fault of the research area. Hence,more » near surface EM measurements are carried out to understand the location of the local active fault and the top of the basement structure of the research area. The Transientelectromagnetic (TEM) measurements are carried out along three profiles, which include 35 TEM soundings. The results indicate that TEM data give detailed conductivity distribution of fault structure in the study area.« less
Landscape Pattern Determines Neighborhood Size and Structure within a Lizard Population
Ryberg, Wade A.; Hill, Michael T.; Painter, Charles W.; Fitzgerald, Lee A.
2013-01-01
Although defining population structure according to discrete habitat patches is convenient for metapopulation theories, taking this approach may overlook structure within populations continuously distributed across landscapes. For example, landscape features within habitat patches direct the movement of organisms and define the density distribution of individuals, which can generate spatial structure and localized dynamics within populations as well as among them. Here, we use the neighborhood concept, which describes population structure relative to the scale of individual movements, to illustrate how localized dynamics within a population of lizards (Sceloporus arenicolus) arise in response to variation in landscape pattern within a continuous habitat patch. Our results emphasize links between individual movements at small scales and the emergence of spatial structure within populations which resembles metapopulation dynamics at larger scales. We conclude that population dynamics viewed in a landscape context must consider the explicit distribution and movement of individuals within continuous habitat as well as among habitat patches. PMID:23441217
What Can Interfacial Water Molecules Tell Us About Solute Structure?
NASA Astrophysics Data System (ADS)
Willard, Adam
The molecular structure of bulk liquid water reflects a molecular tendency to engage in tetrahedrally coordinated hydrogen bonding. At a solute interface waters preferred three-dimensional hydrogen bonding network must conform to a locally anisotropy interfacial environment. Interfacial water molecules adopt configurations that balance water-solute and water-water interactions. The arrangements of interfacial water molecules, therefore encode information about the effective solute-water interactions. This solute-specific information is difficult to extract, however, because interfacial structure also reflects waters collective response to an anisotropic hydrogen bonding environment. Here I present a methodology for characterizing the molecular-level structure of liquid water interface from simulation data. This method can be used to explore waters static and/or dynamic response to a wide range of chemically and topologically heterogeneous solutes such as proteins.
Liu, Xuedan; Li, Aisen; Xu, Weiqing; Ma, Zhiyong; Jia, Xinru
2018-05-08
We herein report a newly synthesized simple molecule, named TPE[double bond, length as m-dash]C4, with twisted D-A structure. TPE[double bond, length as m-dash]C4 showed two intrinsic emission bands ascribed to the locally excited (LE) state and the intramolecular charge transfer (ICT) state, respectively. In the crystal state, the LE emission band is usually observed. However, by applying hydrostatic pressure to the powder sample and the single crystal sample of TPE[double bond, length as m-dash]C4, dual-fluorescence (445 nm and 532 nm) was emerged under high pressure, owing to the pressure-induced emission band separation of the hybridized local and charge transfer excited state (HLCT). It is found that the emission of TPE[double bond, length as m-dash]C4 is generally determined by the ratio of the LE state to the ICT state. The ICT emission band is much more sensitive to the external pressure than the LE emission band. The HLCT state leads to a sample with different responsiveness to grinding and hydrostatic pressure. This study is of significance in the molecular design of such D-A type molecules and in the control of photoluminescence features by molecular structure. Such results are expected to pave a new way to further understand the relationship between the D-A molecular structure and stimuli-responsive properties.
Lau, Joseph T F; Kim, Yoona; Wu, Anise M S; Wang, Zixin; Huang, Bishan; Mo, Phoenix K H
2017-05-01
Political tension, as expressed by mass movements such as the Occupy Central movement (2014) in Hong Kong, is a potential but understudied structural factor of population mental health. A random population-based telephone survey anonymously interviewed 344 Hong Kong Chinese adults aged 18-65 years during the 2 weeks since the termination date of the 2-month-long Occupy Central movement (15/12/2014). Linear regression models were fit using mental distress (depression, anxiety and negative mood) and self-perceived changes in mood/sleeping quality as dependent variables. Prevalence of participation in the movement was 10.5% (self), 17.7% (family members/relatives), and 34.0% (peers); 8.5% had participated for ≥2 days. Young age, but not participation, was associated with mental distress. In adjusted analysis, three types of responses to the movement (worry about safety, negative emotional responses to media reports, and conflicts with peers about the movement) and emotional responses to local political situations were significantly associated with all/some of the dependent variables related to mental distress. The variable on emotions toward local political situations was correlated with the three responses to the movement; it fully mediated the associations between such responses and mental distress. Many citizens participated in the movement, which was led by youths and might have increased the general public's mental distress. Negative personal responses to the movement and emotions toward political situations were potential risk factors. As the political tension would last and political pessimism is globally found, politics may have become a regular and persistent structural risk factor negatively affecting population mental health.
Hunter, Jennifer C.; Yang, Jane E.; Crawley, Adam W.; Biesiadecki, Laura; Aragón, Tomás J.
2013-01-01
As part of their core mission, public health agencies attend to a wide range of disease and health threats, including those that require routine, acute, and emergency responses. While each incident is unique, the number and type of response activities are finite; therefore, through comparative analysis, we can learn about commonalities in the response patterns that could improve predictions and expectations regarding the resources and capabilities required to respond to future acute events. In this study, we interviewed representatives from more than 120 local health departments regarding their recent experiences with real-world acute public health incidents, such as infectious disease outbreaks, severe weather events, chemical spills, and bioterrorism threats. We collected highly structured data on key aspects of the incident and the public health response, particularly focusing on the public health activities initiated and community partners engaged in the response efforts. As a result, we are able to make comparisons across event types, create response profiles, and identify functional and structural response patterns that have import for future public health preparedness and response. Our study contributes to clarifying the complexity of public health response systems and our analysis reveals the ways in which these systems are adaptive to the character of the threat, resulting in differential activation of functions and partners based on the type of incident. Continued and rigorous examination of the experiences of health departments throughout the nation will refine our very understanding of what the public health response system is, will enable the identification of organizational and event inputs to performance, and will allow for the construction of rich, relevant, and practical models of response operations that can be employed to strengthen public health systems. PMID:24236137
Electromagnetically induced acoustic emission—novel NDT technique for damage evaluation
NASA Astrophysics Data System (ADS)
Finkel, P.; Godinez, V.; Miller, R.; Finlayson, R.
2001-04-01
A recently developed electromagnetically induced acoustic emission technique (EM AE) which can be used for damage assessment of thin walled conducting structures is described. This technique allows a structure to be loaded locally by applying an electromagnetic field in order to produce an AE response, which may be captured by conventional or fiber optic (FO) AE sensors. The advantage of this technique is that the localized dynamic stresses induced by a short current pulse in the presence of an external magnetic field aid in the detection of cracks. Also, it is shown that electromagnetic stimulation can be applied to enhance conventional ultrasonics by modulation of the scattered signal from the defect (EM UT). Experimental data is presented for the case of a fatigue crack near rivet holes in thin walled aluminum structures.
Grazers structure the bacterial and algal diversity of aquatic metacommunities.
Birtel, Julia; Matthews, Blake
2016-12-01
Consumers can have strong effects on the biotic and abiotic dynamics of spatially-structured ecosystems. In metacommunities, dispersing consumers can alter local assembly dynamics either directly through trophic interactions or indirectly by modifying local environmental conditions. In aquatic systems, very little is known about how key grazers, such as Daphnia, structure the microbial diversity of metacommunities and influence bacterial-mediated ecosystem functions. In an outdoor mesocosm experiment with replicate metacommunities (two 300 L mesocosms), we tested how the presence and absence of Daphnia and the initial density of the microbial community (manipulated via dilution) influenced the diversity and community structure of algae and bacteria, and several ecosystem properties (e.g., pH, dissolved substances) and functions (e.g., enzyme activity, respiration). We found that Daphnia strongly affected the local and regional diversity of both phytoplankton and bacteria, the taxonomic composition of bacterial communities, the biomass of algae, and ecosystem metabolism (i.e., respiration). Diluting the microbial inoculum (0.2-5 μm size fraction) to the metacommunities increased local phytoplankton diversity, decreased bacteria beta-diversity, and changed the relative abundance of bacterial classes. Changes in the rank abundance of different bacterial groups exhibited phylogenetic signal, implying that closely related bacteria species might share similar responses to the presence of Daphnia. © 2016 by the Ecological Society of America.
Exercise does not enhance aged bone's impaired response to artificial loading in C57Bl/6 mice.
Meakin, Lee B; Udeh, Chinedu; Galea, Gabriel L; Lanyon, Lance E; Price, Joanna S
2015-12-01
Bones adapt their structure to their loading environment and so ensure that they become, and are maintained, sufficiently strong to withstand the loads to which they are habituated. The effectiveness of this process declines with age and bones become fragile fracturing with less force. This effect in humans also occurs in mice which experience age-related bone loss and reduced adaptation to loading. Exercise engenders many systemic and local muscular physiological responses as well as engendering local bone strain. To investigate whether these physiological responses influence bones' adaptive responses to mechanical strain we examined whether a period of treadmill exercise influenced the adaptive response to an associated period of artificial loading in young adult (17-week) and old (19-month) mice. After treadmill acclimatization, mice were exercised for 30 min three times per week for two weeks. Three hours after each exercise period, right tibiae were subjected to 40 cycles of non-invasive axial loading engendering peak strain of 2250 με. In both young and aged mice exercise increased cross-sectional muscle area and serum sclerostin concentration. In young mice it also increased serum IGF1. Exercise did not affect bone's adaptation to loading in any measured parameter in young or aged bone. These data demonstrate that a level of exercise sufficient to cause systemic changes in serum, and adaptive changes in local musculature, has no effect on bone's response to loading 3h later. This study provides no support for the beneficial effects of exercise on bone in the elderly being mediated by systemic or local muscle-derived effects rather than local adaptation to altered mechanical strain. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Uniaxial, Pure Bending, and Column Buckling Experiments on Superelastic NiTi Rods and Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, Ryan T.; Reedlunn, Benjamin; Daly, Samantha
Many existing shape memory alloy (SMA) devices consist of slender beams and frames. To better understand SMA beam behavior, we experimentally examined the isothermal, room temperature response of superelastic NiTi rods and tubes, of similar outer diameters, subjected to four different modes of loading. Pure tension, pure compression, and pure bending experiments were first performed to establish and compare the baseline uniaxial and bending behaviors of rods and tubes. Column buckling experiments were then performed on rod and tube columns of several slenderness ratios to investigate their mechanical responses, phase transformation kinetics under combined uniaxial and bending deformation, and themore » interaction between material and structural instabilities. In all experiments, stereo digital image correlation measured local displacement fields in order to capture phenomena such as strain localization and propagating phase boundaries. Superelastic mechanical behavior and the nature of stress-induced phase transformation were found to be strongly affected by specimen geometry and the deformation mode. Under uniaxial tension, both the rod and tube had well-defined loading and unloading plateaus in their superelastic responses, during which stress-induced phase transformation propagated along the length of the specimen in the form of a high/low strain front. Due to the dependence of strain localization on kinematic compatibility, the high/low strain front morphologies differed between the rod and tube: for the rod, the high/low strain front consisted of a diffuse “neck”, while the high/low strain front in the tube consisted of distinct, criss-crossing “fingers.” During uniaxial compression, both cross-sectional forms exhibited higher transformation stresses and smaller transformation strains than uniaxial tension, highlighting the now well-known tension-compression asymmetry of SMAs. Additionally, phase transformation localization and propagation were absent under compressive loading. During pure bending, the moment-curvature response of both forms exhibited plateaus and strain localization during forward and reverse transformations. Rod specimens developed localized, high-curvature regions that propagated along the specimen axis and caused shear strain near the high/low curvature interface; whereas, the tube specimens exhibited finger/wedge-like high strain regions over the tensile side of the tube which caused nonlinear strain profiles through the thickness of the specimen that did not propagate. Here, it was therefore found that classical beam theory assumptions did not hold in the presence of phase transformation localization (although, the assumptions did hold on average for the tube). During column buckling, the structures were loaded into the post-buckling regime yet recovered nearly-straight forms upon unloading. Strain localization was observed only for high aspect ratio (slender) tubes, but the mechanical responses were similar to that of rods of the same slenderness ratio. Also, an interesting “unbuckling” phenomenon was discovered in certain low aspect ratio (stout) columns, where late post-buckling straightening was observed despite continuous monotonic loading. Thus, these behaviors are some of the challenging phenomena which must be captured when developing SMA constitutive models and executing structural simulations.« less
Uniaxial, Pure Bending, and Column Buckling Experiments on Superelastic NiTi Rods and Tubes
Watkins, Ryan T.; Reedlunn, Benjamin; Daly, Samantha; ...
2018-03-23
Many existing shape memory alloy (SMA) devices consist of slender beams and frames. To better understand SMA beam behavior, we experimentally examined the isothermal, room temperature response of superelastic NiTi rods and tubes, of similar outer diameters, subjected to four different modes of loading. Pure tension, pure compression, and pure bending experiments were first performed to establish and compare the baseline uniaxial and bending behaviors of rods and tubes. Column buckling experiments were then performed on rod and tube columns of several slenderness ratios to investigate their mechanical responses, phase transformation kinetics under combined uniaxial and bending deformation, and themore » interaction between material and structural instabilities. In all experiments, stereo digital image correlation measured local displacement fields in order to capture phenomena such as strain localization and propagating phase boundaries. Superelastic mechanical behavior and the nature of stress-induced phase transformation were found to be strongly affected by specimen geometry and the deformation mode. Under uniaxial tension, both the rod and tube had well-defined loading and unloading plateaus in their superelastic responses, during which stress-induced phase transformation propagated along the length of the specimen in the form of a high/low strain front. Due to the dependence of strain localization on kinematic compatibility, the high/low strain front morphologies differed between the rod and tube: for the rod, the high/low strain front consisted of a diffuse “neck”, while the high/low strain front in the tube consisted of distinct, criss-crossing “fingers.” During uniaxial compression, both cross-sectional forms exhibited higher transformation stresses and smaller transformation strains than uniaxial tension, highlighting the now well-known tension-compression asymmetry of SMAs. Additionally, phase transformation localization and propagation were absent under compressive loading. During pure bending, the moment-curvature response of both forms exhibited plateaus and strain localization during forward and reverse transformations. Rod specimens developed localized, high-curvature regions that propagated along the specimen axis and caused shear strain near the high/low curvature interface; whereas, the tube specimens exhibited finger/wedge-like high strain regions over the tensile side of the tube which caused nonlinear strain profiles through the thickness of the specimen that did not propagate. Here, it was therefore found that classical beam theory assumptions did not hold in the presence of phase transformation localization (although, the assumptions did hold on average for the tube). During column buckling, the structures were loaded into the post-buckling regime yet recovered nearly-straight forms upon unloading. Strain localization was observed only for high aspect ratio (slender) tubes, but the mechanical responses were similar to that of rods of the same slenderness ratio. Also, an interesting “unbuckling” phenomenon was discovered in certain low aspect ratio (stout) columns, where late post-buckling straightening was observed despite continuous monotonic loading. Thus, these behaviors are some of the challenging phenomena which must be captured when developing SMA constitutive models and executing structural simulations.« less
Calibration of aero-structural reduced order models using full-field experimental measurements
NASA Astrophysics Data System (ADS)
Perez, R.; Bartram, G.; Beberniss, T.; Wiebe, R.; Spottswood, S. M.
2017-03-01
The structural response of hypersonic aircraft panels is a multi-disciplinary problem, where the nonlinear structural dynamics, aerodynamics, and heat transfer models are coupled. A clear understanding of the impact of high-speed flow effects on the structural response, and the potential influence of the structure on the local environment, is needed in order to prevent the design of overly-conservative structures, a common problem in past hypersonic programs. The current work investigates these challenges from a structures perspective. To this end, the first part of this investigation looks at the modeling of the response of a rectangular panel to an external heating source (thermo-structural coupling) where the temperature effect on the structure is obtained from forward looking infrared (FLIR) measurements and the displacement via 3D-digital image correlation (DIC). The second part of the study uses data from a previous series of wind-tunnel experiments, performed to investigate the response of a compliant panel to the effects of high-speed flow, to train a pressure surrogate model. In this case, the panel aero-loading is obtained from fast-response pressure sensitive paint (PSP) measurements, both directly and from the pressure surrogate model. The result of this investigation is the use of full-field experimental measurements to update the structural model and train a computational efficient model of the loading environment. The use of reduced order models, informed by these full-field physical measurements, is a significant step toward the development of accurate simulation models of complex structures that are computationally tractable.
Disorder-Enhanced Dielectric Response of Nanoscale and Mesoscopic Insulators
NASA Astrophysics Data System (ADS)
Onoda, Shigeki; Chern, Chyh-Hong; Murakami, Shuichi; Ogimoto, Yasushi; Nagaosa, Naoto
2006-12-01
Enhancement of the dielectric response of insulators by disorder is theoretically proposed, where the quantum interference of electronic waves through the nanoscale or mesoscopic system and its change due to external perturbations control the polarization. In the disordered case with all the states being localized, the resonant tunneling, which is topologically protected, plays a crucial role, and enhances the dielectric response by a factor 30 40 compared with the pure case. The realization of this idea with accessible materials or structures is also discussed.
Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; ...
2015-07-28
Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons ismore » readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.« less
Cognitive Abilities Explain Wording Effects in the Rosenberg Self-Esteem Scale.
Gnambs, Timo; Schroeders, Ulrich
2017-12-01
There is consensus that the 10 items of the Rosenberg Self-Esteem Scale (RSES) reflect wording effects resulting from positively and negatively keyed items. The present study examined the effects of cognitive abilities on the factor structure of the RSES with a novel, nonparametric latent variable technique called local structural equation models. In a nationally representative German large-scale assessment including 12,437 students competing measurement models for the RSES were compared: a bifactor model with a common factor and a specific factor for all negatively worded items had an optimal fit. Local structural equation models showed that the unidimensionality of the scale increased with higher levels of reading competence and reasoning, while the proportion of variance attributed to the negatively keyed items declined. Wording effects on the factor structure of the RSES seem to represent a response style artifact associated with cognitive abilities.
NASA Astrophysics Data System (ADS)
Lu, Shaoying; Seong, Jihye; Wang, Yi; Chang, Shiou-Chi; Eichorst, John Paul; Ouyang, Mingxing; Li, Julie Y.-S.; Chien, Shu; Wang, Yingxiao
2014-07-01
Focal adhesions (FAs) are dynamic subcellular structures crucial for cell adhesion, migration and differentiation. It remains an enigma how enzymatic activities in these local complexes regulate their structural remodeling in live cells. Utilizing biosensors based on fluorescence resonance energy transfer (FRET), we developed a correlative FRET imaging microscopy (CFIM) approach to quantitatively analyze the subcellular coordination between the enzymatic Src activation and the structural FA disassembly. CFIM reveals that the Src kinase activity only within the microdomain of lipid rafts at the plasma membrane is coupled with FA dynamics. FA disassembly at cell periphery was linearly dependent on this raft-localized Src activity, although cells displayed heterogeneous levels of response to stimulation. Within lipid rafts, the time delay between Src activation and FA disassembly was 1.2 min in cells seeded on low fibronectin concentration ([FN]) and 4.3 min in cells on high [FN]. CFIM further showed that the level of Src-FA coupling, as well as the time delay, was regulated by cell-matrix interactions, as a tight enzyme-structure coupling occurred in FA populations mediated by integrin αvβ3, but not in those by integrin α5β1. Therefore, different FA subpopulations have distinctive regulation mechanisms between their local kinase activity and structural FA dynamics.
A Proposal for a Civics Study Program
ERIC Educational Resources Information Center
Marcus, Stuart Paul; Richman, Paul Jeffrey
1978-01-01
Two high school students recommend a civics study program which would include (1) a required course on governmental structure, responsibilities, and the U.S. Constitution, and (2) elective courses on crime, juvenile delinquency, state and local government, and history of constitutional law. (AV)
40 CFR 300.205 - Planning and coordination structure.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES... appropriate federal, state, and local officials to enhance the contingency planning of those officials and to assure pre-planning of joint response efforts, including appropriate procedures for mechanical recovery...
Bedbrook, Claire N; Yang, Kevin K; Rice, Austin J; Gradinaru, Viviana; Arnold, Frances H
2017-10-01
There is growing interest in studying and engineering integral membrane proteins (MPs) that play key roles in sensing and regulating cellular response to diverse external signals. A MP must be expressed, correctly inserted and folded in a lipid bilayer, and trafficked to the proper cellular location in order to function. The sequence and structural determinants of these processes are complex and highly constrained. Here we describe a predictive, machine-learning approach that captures this complexity to facilitate successful MP engineering and design. Machine learning on carefully-chosen training sequences made by structure-guided SCHEMA recombination has enabled us to accurately predict the rare sequences in a diverse library of channelrhodopsins (ChRs) that express and localize to the plasma membrane of mammalian cells. These light-gated channel proteins of microbial origin are of interest for neuroscience applications, where expression and localization to the plasma membrane is a prerequisite for function. We trained Gaussian process (GP) classification and regression models with expression and localization data from 218 ChR chimeras chosen from a 118,098-variant library designed by SCHEMA recombination of three parent ChRs. We use these GP models to identify ChRs that express and localize well and show that our models can elucidate sequence and structure elements important for these processes. We also used the predictive models to convert a naturally occurring ChR incapable of mammalian localization into one that localizes well.
Rice, Austin J.; Gradinaru, Viviana; Arnold, Frances H.
2017-01-01
There is growing interest in studying and engineering integral membrane proteins (MPs) that play key roles in sensing and regulating cellular response to diverse external signals. A MP must be expressed, correctly inserted and folded in a lipid bilayer, and trafficked to the proper cellular location in order to function. The sequence and structural determinants of these processes are complex and highly constrained. Here we describe a predictive, machine-learning approach that captures this complexity to facilitate successful MP engineering and design. Machine learning on carefully-chosen training sequences made by structure-guided SCHEMA recombination has enabled us to accurately predict the rare sequences in a diverse library of channelrhodopsins (ChRs) that express and localize to the plasma membrane of mammalian cells. These light-gated channel proteins of microbial origin are of interest for neuroscience applications, where expression and localization to the plasma membrane is a prerequisite for function. We trained Gaussian process (GP) classification and regression models with expression and localization data from 218 ChR chimeras chosen from a 118,098-variant library designed by SCHEMA recombination of three parent ChRs. We use these GP models to identify ChRs that express and localize well and show that our models can elucidate sequence and structure elements important for these processes. We also used the predictive models to convert a naturally occurring ChR incapable of mammalian localization into one that localizes well. PMID:29059183
Compression Strength of Composite Primary Structural Components
NASA Technical Reports Server (NTRS)
Johnson, Eric R.
1998-01-01
Research conducted under NASA Grant NAG-1-537 focussed on the response and failure of advanced composite material structures for application to aircraft. Both experimental and analytical methods were utilized to study the fundamental mechanics of the response and failure of selected structural components subjected to quasi-static loads. Most of the structural components studied were thin-walled elements subject to compression, such that they exhibited buckling and postbuckling responses prior to catastrophic failure. Consequently, the analyses were geometrically nonlinear. Structural components studied were dropped-ply laminated plates, stiffener crippling, pressure pillowing of orthogonally stiffened cylindrical shells, axisymmetric response of pressure domes, and the static crush of semi-circular frames. Failure of these components motivated analytical studies on an interlaminar stress postprocessor for plate and shell finite element computer codes, and global/local modeling strategies in finite element modeling. These activities are summarized in the following section. References to literature published under the grant are listed on pages 5 to 10 by a letter followed by a number under the categories of journal publications, conference publications, presentations, and reports. These references are indicated in the text by their letter and number as a superscript.
Effects of local and global mechanical distortions to hypervelocity boundary layers
NASA Astrophysics Data System (ADS)
Flaherty, William P.
The response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature is examined. Surface heat transfer, visual boundary layer thickness, and pressure sensitive paint (PSP) data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. It is demonstrated that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortical structures to an adverse pressure gradient is investigated. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values, though for higher turning angle cases, a relaxation to below undisturbed values is reported at turning angles between 10 and 15 degrees. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures. PSP measurements indicated that natural streaks form over concave models even when imposed vorticity is present. Correlations found between the heat transfer and natural streak formation are discussed and indicate possible vortex interactions.
H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response.
Levine, A; Tenhaken, R; Dixon, R; Lamb, C
1994-11-18
Microbial elicitors or attempted infection with an avirulent pathogen strain causes the rapid production of reactive oxygen intermediates. We report here that H2O2 from this oxidative burst not only drives the cross-linking of cell wall structural proteins, but also functions as a local trigger of programmed death in challenged cells and as a diffusible signal for the induction in adjacent cells of genes encoding cellular protectants such as glutathione S-transferase and glutathione peroxidase. Thus, H2O2 from the oxidative burst plays a key role in the orchestration of a localized hypersensitive response during the expression of plant disease resistance.
Real-Time Maps of Fluid Flow Fields in Porous Biomaterials
Mack, Julia J.; Youssef, Khalid; Noel, Onika D.V.; Lake, Michael P.; Wu, Ashley; Iruela-Arispe, M. Luisa; Bouchard, Louis-S.
2013-01-01
Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells is limited because the local flow patterns and associated metrics are not precisely known. Here we present real-time, noninvasive measures of local hydrodynamics in 3D biomaterials based on nuclear magnetic resonance. Microflow maps were further used to derive pressure, shear and fluid permeability fields. Finally, remodeling of collagen gels in response to precise fluid flow parameters was correlated with structural changes. It is anticipated that accurate flow maps within 3D matrices will be a critical step towards understanding cell behavior in response to controlled flow dynamics. PMID:23245922
NASA Astrophysics Data System (ADS)
Urade, Yoshiro; Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W.; Kitano, Masao
2016-03-01
This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide ($\\mathrm{VO}_2$), the proposed metamaterial is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.
Urade, Yoshiro; Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W; Kitano, Masao
2016-03-07
This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide (VO 2 ), the proposed meta-material is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.
Spatial Control of Functional Response in 4D-Printed Active Metallic Structures
NASA Astrophysics Data System (ADS)
Ma, Ji; Franco, Brian; Tapia, Gustavo; Karayagiz, Kubra; Johnson, Luke; Liu, Jun; Arroyave, Raymundo; Karaman, Ibrahim; Elwany, Alaa
2017-04-01
We demonstrate a method to achieve local control of 3-dimensional thermal history in a metallic alloy, which resulted in designed spatial variations in its functional response. A nickel-titanium shape memory alloy part was created with multiple shape-recovery stages activated at different temperatures using the selective laser melting technique. The multi-stage transformation originates from differences in thermal history, and thus the precipitate structure, at various locations created from controlled variations in the hatch distance within the same part. This is a first example of precision location-dependent control of thermal history in alloys beyond the surface, and utilizes additive manufacturing techniques as a tool to create materials with novel functional response that is difficult to achieve through conventional methods.
Microgeographical study of insecticide resistance in Triatoma infestans from Argentina.
Germano, Mónica D; Picollo, María Inés; Mougabure-Cueto, Gastón A
2013-12-01
Chagas disease is a chronic parasitic infection restricted to America where it is currently estimated that 90 million people are at risk of acquiring the infection. Chemical control with pyrethroid insecticides has been effective to reduce disease transmission in several areas of the Southern Cone, although insecticide resistance has evolved and diminished the campaigns' results. Considering previous reports on the different levels of resistance between Triatoma infestans from different geographical areas, the objective of this work was to determine if T. infestans populations are toxicologically structured within localities. Response to the insecticide was measured and compared between houses of two Argentine localities. Different toxicity of deltamethrin was detected between dwellings of Chaco province, accounting for both susceptible and resistant houses within the same locality. However no difference was found among houses of Salta province. The results obtained in this work suggest that geographical structure is present not only at the between localities level, but also at the microgeograhical level. Copyright © 2013 Elsevier B.V. All rights reserved.
Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manley, Michael E.; Abernathy, Douglas L.; Sahul, Raffi
Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarizationmore » rotations in relaxor-based ferroelectric PMN-xPT {(1 x)[Pb(Mg 1/3Nb 2/3)O 3] xPbTiO 3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening.« less
Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations
Manley, Michael E.; Abernathy, Douglas L.; Sahul, Raffi; Parshall, Daniel E.; Lynn, Jeffrey W.; Christianson, Andrew D.; Stonaha, Paul J.; Specht, Eliot D.; Budai, John D.
2016-01-01
Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarization rotations in relaxor-based ferroelectric PMN-xPT {(1 − x)[Pb(Mg1/3Nb2/3)O3] – xPbTiO3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening. PMID:27652338
Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations
Manley, Michael E.; Abernathy, Douglas L.; Sahul, Raffi; ...
2016-09-01
Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarizationmore » rotations in relaxor-based ferroelectric PMN-xPT {(1 x)[Pb(Mg 1/3Nb 2/3)O 3] xPbTiO 3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening.« less
Salcedo, Eugenia C.
2018-01-01
The ubiquitous presence of SPFH (Stomatin, Prohibitin, Flotillin, HflK/HflC) proteins in all domains of life suggests that their function would be conserved. However, SPFH functions are diverse with organism-specific attributes. SPFH proteins play critical roles in physiological processes such as mechanosensation and respiration. Here, we characterize the stomatin ORF19.7296/SLP3 in the opportunistic human pathogen Candida albicans. Consistent with the localization of stomatin proteins, a Slp3p-Yfp fusion protein formed visible puncta along the plasma membrane. We also visualized Slp3p within the vacuolar lumen. Slp3p primary sequence analyses identified four putative S-palmitoylation sites, which may facilitate membrane localization and are conserved features of stomatins. Plasma membrane insertion sequences are present in mammalian and nematode SPFH proteins, but are absent in Slp3p. Strikingly, Slp3p was present in yeast cells, but was absent in hyphal cells, thus categorizing it as a yeast-phase specific protein. Slp3p membrane fluorescence significantly increased in response to cellular stress caused by plasma membrane, cell wall, oxidative, or osmotic perturbants, implicating SLP3 as a general stress-response gene. A slp3Δ/Δ homozygous null mutant had no detected phenotype when slp3Δ/Δ mutants were grown in the presence of a variety of stress agents. Also, we did not observe a defect in ion accumulation, filamentation, endocytosis, vacuolar structure and function, cell wall structure, or cytoskeletal structure. However, SLP3 over-expression triggered apoptotic-like death following prolonged exposure to oxidative stress or when cells were induced to form hyphae. Our findings reveal the cellular localization of Slp3p, and for the first time associate Slp3p function with the oxidative stress response. PMID:29389961
System identification of a tied arch bridge using reference-based wireless sensor networks
NASA Astrophysics Data System (ADS)
Hietbrink, Colby; Whelan, Matthew J.
2012-04-01
Vibration-based methods of structural health monitoring are generally founded on the principle that localized damage to a structure would exhibit changes within the global dynamic response. Upon this basis, accelerometers provide a unique health monitoring strategy in that a distributed network of sensors provides the technical feasibility to isolate the onset of damage without requiring that any sensor be located exactly on or in close proximity to the damage. While in theory this may be sufficient, practical experience has shown significant improvement in the application of damage diagnostic routines when mode shapes characterized by strongly localized behavior of specific elements are captured by the instrumentation array. In traditional applications, this presents a challenge since the cost and complexity of cable-based systems often effectively limits the number of instrumented locations thereby constraining the modal parameter extraction to only global modal responses. The advent of the low-cost RF chip transceiver with wireless networking capabilities has afforded a means by which a substantial number of output locations can be measured through referencebased testing using large-scale wireless sensor networks. In the current study, this approach was applied to the Prairie du Chien Bridge over the Mississippi River to extract operational mode shapes with high spatial reconstruction, including strongly localized modes. The tied arch bridge was instrumented at over 230 locations with single-axis accelerometers conditioned and acquired over a high-rate lossless wireless sensor network with simultaneous sampling capabilities. Acquisition of the dynamic response of the web plates of the arch rib was specifically targeted within the instrumentation array for diagnostic purposes. Reference-based operational modal analysis of the full structure through data-driven stochastic subspace identification is presented alongside finite element analysis results for confirmation of modal parameter plausibility. Particular emphasis is placed on the identification and reconstruction of modal response with large contribution from the arch rib web plates.
NASA Astrophysics Data System (ADS)
Dong, Buwen; Sutton, Rowan T.; Highwood, Eleanor J.; Wilcox, Laura J.
2016-03-01
In this study, the atmospheric component of a state-of-the-art climate model (HadGEM2-ES) that includes earth system components such as interactive chemistry and eight species of tropospheric aerosols considering aerosol direct, indirect, and semi-direct effects, has been used to investigate the impacts of local and non-local emissions of anthropogenic sulphur dioxide on the East Asian summer monsoon (EASM). The study focuses on the fast responses (including land surface feedbacks, but without sea surface temperature feedbacks) to sudden changes in emissions from Asia and Europe. The initial responses, over days 1-40, to Asian and European emissions show large differences. The response to Asian emissions involves a direct impact on the sulphate burden over Asia, with immediate consequences for the shortwave energy budget through aerosol-radiation and aerosol-cloud interactions. These changes lead to cooling of East Asia and a weakening of the EASM. In contrast, European emissions have no significant impact on the sulphate burden over Asia, but they induce mid-tropospheric cooling and drying over the European sector. Subsequently, however, this cold and dry anomaly is advected into Asia, where it induces atmospheric and surface feedbacks over Asia and the Western North Pacific (WNP), which also weaken the EASM. In spite of very different perturbations to the local aerosol burden in response to Asian and European sulphur dioxide emissions, the large scale pattern of changes in land-sea thermal contrast, atmospheric circulation and local precipitation over East Asia from days 40 onward exhibits similar structures, indicating a preferred response, and suggesting that emissions from both regions likely contributed to the observed weakening of the EASM. Cooling and drying of the troposphere over Asia, together with warming and moistening over the WNP, reduces the land-sea thermal contrast between the Asian continent and surrounding oceans. This leads to high sea level pressure (SLP) anomalies over Asia and low SLP anomalies over the WNP, associated with a weakened EASM. In response to emissions from both regions warming and moistening over the WNP plays an important role and determines the time scale of the response.
Recent advances in approximation concepts for optimum structural design
NASA Technical Reports Server (NTRS)
Barthelemy, Jean-Francois M.; Haftka, Raphael T.
1991-01-01
The basic approximation concepts used in structural optimization are reviewed. Some of the most recent developments in that area since the introduction of the concept in the mid-seventies are discussed. The paper distinguishes between local, medium-range, and global approximations; it covers functions approximations and problem approximations. It shows that, although the lack of comparative data established on reference test cases prevents an accurate assessment, there have been significant improvements. The largest number of developments have been in the areas of local function approximations and use of intermediate variable and response quantities. It also appears that some new methodologies are emerging which could greatly benefit from the introduction of new computer architecture.
Linking Knowledge and Action: PRI's Community Consultant.
ERIC Educational Resources Information Center
Spencer, Gregory P.
Within the Partnership for Rural Improvement (PRI), community consultants operate within three complex sets of relationships: client groups, the organizational structure of PRI, and the local operational base. Community consultants are responsible for developing and facilitating rural development and for providing assistance in community and…
Design and Simulation of Optically Actuated Bistable MEMS
NASA Astrophysics Data System (ADS)
Lucas, Thomas; Moiseeva, Evgeniya; Harnett, Cindy
2012-02-01
In this project, bistable three-dimensional MEMS actuators are designed to be optically switched between stable states for biological research applications. The structure is a strained rectangular frame created with stress-mismatched metal-oxide bilayers. The devices curl into an arc in one of two directions tangent to the substrate, and can switch orientation when regions are selectively heated. The heating is powered by infrared laser, and localized with patterned infrared-resonant gold nanoparticles on critical regions. The enhanced energy absorption on selected areas provides switching control and heightened response to narrow-band infrared light. Coventorware has been used for finite element analysis of the system. The numerical simulations indicate that it has two local minimum states with extremely rapid transition time (<<0.1 s) when the structure is thermally deformed. Actuation at laser power and thermal limits compatible with physiological applications will enable microfluidic pumping elements and fundamental studies of tissue response to three-dimensional mechanical stimuli, artificial-muscle based pumps and other biomedical devices triggered by tissue-permeant infrared light.
Chillón, Isabel; Pyle, Anna M.
2016-01-01
LincRNA-p21 is a long intergenic non-coding RNA (lincRNA) involved in the p53-mediated stress response. We sequenced the human lincRNA-p21 (hLincRNA-p21) and found that it has a single exon that includes inverted repeat Alu elements (IRAlus). Sense and antisense Alu elements fold independently of one another into a secondary structure that is conserved in lincRNA-p21 among primates. Moreover, the structures formed by IRAlus are involved in the localization of hLincRNA-p21 in the nucleus, where hLincRNA-p21 colocalizes with paraspeckles. Our results underscore the importance of IRAlus structures for the function of hLincRNA-p21 during the stress response. PMID:27378782
Dynamics of periodic spring-mass chain coupled with an electric transmission line
NASA Astrophysics Data System (ADS)
Belloni, Edoardo; Cenedese, Mattia; Braghin, Francesco
2017-04-01
Periodic structures have received large interest due to their peculiar behavior: they have band gaps, that is portions of the frequency response along with any wave incoming in the structure is reflected. Numerous are the applications, like metamaterials and locally resonant structures. Nowadays, new possibilities could come from mechanical periodic structures that are connected to an electrical transmission line, periodic in turn. Starting from this idea, this paper analyses ideal a mono-atomic spring-mass chain, considering the springs connected to a periodic electric network, composed by inductances (and resistors): these simple examples will show how the frequency response is affected. In particular, the mutual influence between the electric and mechanical domain is highlighted, and the contribution of parameters on band gap positioning and design is explored. Details are provided about vibration modes and wave transmission.
Plasmonics simulations including nonlocal effects using a boundary element method approach
NASA Astrophysics Data System (ADS)
Trügler, Andreas; Hohenester, Ulrich; García de Abajo, F. Javier
2017-09-01
Spatial nonlocality in the photonic response of metallic nanoparticles is actually known to produce near-field quenching and significant plasmon frequency shifts relative to local descriptions. As the control over size and morphology of fabricated nanostructures is truly reaching the nanometer scale, understanding and accounting for nonlocal phenomena is becoming increasingly important. Recent advances clearly point out the need to go beyond the local theory. We here present a general formalism for incorporating spatial dispersion effects through the hydrodynamic model and generalizations for arbitrary surface morphologies. Our method relies on the boundary element method, which we supplement with a nonlocal interaction potential. We provide numerical examples in excellent agreement with the literature for individual and paired gold nanospheres, and critically examine the accuracy of our approach. The present method involves marginal extra computational cost relative to local descriptions and facilitates the simulation of spatial dispersion effects in the photonic response of complex nanoplasmonic structures.
Correlations between Energy and Displacement Demands for Performance-Based Seismic Engineering
NASA Astrophysics Data System (ADS)
Mollaioli, Fabrizio; Bruno, Silvia; Decanini, Luis; Saragoni, Rodolfo
2011-01-01
The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy (that can be considered as parameters representative of the amplitude, frequency content and duration of earthquake ground motions) and displacement-based response measures that are well correlated to structural and non-structural damage. For the purpose of quantifying the EDPs to be related to the energy measures, for comprehensive range of ground motion and structural characteristics, both simplified and more accurate numerical models will be used in this study for the estimation of local and global displacement and energy demands. Parametric linear and nonlinear time-history analyses will be performed on elastic and inelastic SDOF and MDOF systems, in order to assume information on the seismic response of a wide range of current structures. Hysteretic models typical of frame force/displacement behavior will be assumed for the local inelastic cyclic response of the systems. A wide range of vibration periods will be taken into account so as to define displacement, interstory drift and energy spectra for MDOF systems. Various scalar measures related to the deformation demand will be used in this research. These include the spectral displacements, the peak roof drift ratio, and the peak interstory drift ratio. A total of about 900 recorded ground motions covering a broad variety of condition in terms of frequency content, duration and amplitude will be used as input in the dynamic analyses. The records are obtained from 40 earthquakes and grouped as a function of magnitude of the event, source-to-site condition and site soil condition. In addition, in the data-set of records a considerable number of near-fault signals is included, in recognition of the particular significance of pulse-like time histories in causing large seismic demands to the structures.
Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug
Vannozzi, Lorenzo; Ricotti, Leonardo; Filippeschi, Carlo; Sartini, Stefania; Coviello, Vito; Piazza, Vincenzo; Pingue, Pasqualantonio; La Motta, Concettina; Dario, Paolo; Menciassi, Arianna
2016-01-01
This work aims to demonstrate the possibility to fabricate ultra-thin polymeric films loaded with an anti-restenotic drug and capable of tunable drug release kinetics for the local treatment of restenosis. Vascular nanopatches are composed of a poly(lactic acid) supporting membrane (thickness: ~250 nm) on which 20 polyelectrolyte bilayers (overall thickness: ~70 nm) are alternatively deposited. The anti-restenotic drug is embedded in the middle of the polyelectrolyte structure, and released by diffusion mechanisms. Nanofilm fabrication procedure and detailed morphological characterization are reported here. Barium titanate nanoparticles (showing piezoelectric properties) are included in the polymeric support and their role is investigated in terms of influence on nanofilm morphology, drug release kinetics, and cell response. Results show an efficient drug release from the polyelectrolyte structure in phosphate-buffered saline, and a clear antiproliferative effect on human smooth muscle cells, which are responsible for restenosis. In addition, preliminary evidences of ultrasound-mediated modulation of drug release kinetics are reported, thus evaluating the influence of barium titanate nanoparticles on the release mechanism. Such data were integrated with quantitative piezoelectric and thermal measurements. These results open new avenues for a fine control of local therapies based on smart responsive materials. PMID:26730191
NASA Astrophysics Data System (ADS)
Hosseini-Golgoo, S. M.; Bozorgi, H.; Saberkari, A.
2015-06-01
Performances of three neural networks, consisting of a multi-layer perceptron, a radial basis function, and a neuro-fuzzy network with local linear model tree training algorithm, in modeling and extracting discriminative features from the response patterns of a temperature-modulated resistive gas sensor are quantitatively compared. For response pattern recording, a voltage staircase containing five steps each with a 20 s plateau is applied to the micro-heater of the sensor, when 12 different target gases, each at 11 concentration levels, are present. In each test, the hidden layer neuron weights are taken as the discriminatory feature vector of the target gas. These vectors are then mapped to a 3D feature space using linear discriminant analysis. The discriminative information content of the feature vectors are determined by the calculation of the Fisher’s discriminant ratio, affording quantitative comparison among the success rates achieved by the different neural network structures. The results demonstrate a superior discrimination ratio for features extracted from local linear neuro-fuzzy and radial-basis-function networks with recognition rates of 96.27% and 90.74%, respectively.
Structural Dynamic Behavior of Wind Turbines
NASA Technical Reports Server (NTRS)
Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III
2009-01-01
The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).
NASA Astrophysics Data System (ADS)
Yonten, Karma
As a multi-phase material, soil exhibits highly nonlinear, anisotropic, and inelastic behavior. While it may be impractical for one constitutive model to address all features of the soil behavior, one can identify the essential aspects of the soil's stress-strainstrength response for a particular class of problems and develop a suitable constitutive model that captures those aspects. Here, attention is given to two important features of the soil stress-strain-strength behavior: anisotropy and post-failure response. An anisotropic soil plasticity model is implemented to investigate the significance of initial and induced anisotropy on the response of geo-structures founded on cohesive soils. The model is shown to produce realistic responses for a variety of over-consolidation ratios. Moreover, the performance of the model is assessed in a boundary value problem in which a cohesive soil is subjected to the weight of a newly constructed soil embankment. Significance of incorporating anisotropy is clearly demonstrated by comparing the results of the simulation using the model with those obtained by using an isotropic plasticity model. To investigate post-failure response of soils, the issue of strain localization in geostructures is considered. Post-failure analysis of geo-structures using numerical techniques such as mesh-based or mesh-free methods is often faced with convergence issues which may, at times, lead to incorrect failure mechanisms. This is due to the fact that majority of existing constitutive models are formulated within the framework of classical continuum mechanics that leads to ill-posed governing equations at the onset of localization. To overcome this challenge, a critical state two-surface plasticity model is extended to incorporate the micro-structural mechanisms that become significant within the shear band. The extended model is implemented to study the strain localization of granular soils in drained and undrained conditions. It is demonstrated that the extended model is capable of capturing salient features of soil behavior in pre- and post-failure regimes. The effects of soil particle size, initial density and confining pressure on the thickness and orientation of shear band are investigated and compared with the observed behavior of soils.
A discrete element model for damage and fracture of geomaterials under fatigue loading
NASA Astrophysics Data System (ADS)
Gao, Xiaofeng; Koval, Georg; Chazallon, Cyrille
2017-06-01
Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc.) under fatigue loading (repeated moving loads, cycles of temperature, etc.) are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.). Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.
Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics
NASA Astrophysics Data System (ADS)
Paillusson, Fabien; Blossey, Ralf
2010-11-01
Polar liquids like water carry a characteristic nanometric length scale, the correlation length of orientation polarizations. Continuum theories that can capture this feature commonly run under the name of “nonlocal” electrostatics since their dielectric response is characterized by a scale-dependent dielectric function ɛ(q) , where q is the wave vector; the Poisson(-Boltzmann) equation then turns into an integro-differential equation. Recently, “local” formulations have been put forward for these theories and applied to water, solvated ions, and proteins. We review the local formalism and show how it can be applied to a structured liquid in slit and plate geometries, and solve the Poisson-Boltzmann theory for a charged plate in a structured solvent with counterions. Our results establish a coherent picture of the local version of nonlocal electrostatics and show its ease of use when compared to the original formulation.
Obstructions in Vascular Networks: Relation Between Network Morphology and Blood Supply
Torres Rojas, Aimee M.; Meza Romero, Alejandro; Pagonabarraga, Ignacio; Travasso, Rui D. M.; Corvera Poiré, Eugenia
2015-01-01
We relate vascular network structure to hemodynamics after vessel obstructions. We consider tree-like networks with a viscoelastic fluid with the rheological characteristics of blood. We analyze the network hemodynamic response, which is a function of the frequencies involved in the driving, and a measurement of the resistance to flow. This response function allows the study of the hemodynamics of the system, without the knowledge of a particular pressure gradient. We find analytical expressions for the network response, which explicitly show the roles played by the network structure, the degree of obstruction, and the geometrical place in which obstructions occur. Notably, we find that the sequence of resistances of the network without occlusions strongly determines the tendencies that the response function has with the anatomical place where obstructions are located. We identify anatomical sites in a network that are critical for its overall capacity to supply blood to a tissue after obstructions. We demonstrate that relatively small obstructions in such critical sites are able to cause a much larger decrease on flow than larger obstructions placed in non-critical sites. Our results indicate that, to a large extent, the response of the network is determined locally. That is, it depends on the structure that the vasculature has around the place where occlusions are found. This result is manifest in a network that follows Murray’s law, which is in reasonable agreement with several mammalian vasculatures. For this one, occlusions in early generation vessels have a radically different effect than occlusions in late generation vessels occluding the same percentage of area available to flow. This locality implies that whenever there is a tissue irrigated by a tree-like in vivo vasculature, our model is able to interpret how important obstructions are for the irrigation of such tissue. PMID:26086774
Multi-disciplinary optimization of aeroservoelastic systems
NASA Technical Reports Server (NTRS)
Karpel, Mardechay
1992-01-01
The purpose of the research project was to continue the development of new methods for efficient aeroservoelastic analysis and optimization. The main targets were as follows: to complete the development of analytical tools for the investigation of flutter with large stiffness changes; to continue the work on efficient continuous gust response and sensitivity derivatives; and to advance the techniques of calculating dynamic loads with control and unsteady aerodynamic effects. An efficient and highly accurate mathematical model for time-domain analysis of flutter during which large structural changes occur was developed in cooperation with Carol D. Wieseman of NASA LaRC. The model was based on the second-year work 'Modal Coordinates for Aeroelastic Analysis with Large Local Structural Variations'. The work on continuous gust response was completed. An abstract of the paper 'Continuous Gust Response and Sensitivity Derivatives Using State-Space Models' was submitted for presentation in the 33rd Israel Annual Conference on Aviation and Astronautics, Feb. 1993. The abstract is given in Appendix A. The work extends the optimization model to deal with continuous gust objectives in a way that facilitates their inclusion in the efficient multi-disciplinary optimization scheme. Currently under development is a work designed to extend the analysis and optimization capabilities to loads and stress considerations. The work is on aircraft dynamic loads in response to impulsive and non-impulsive excitation. The work extends the formulations of the mode-displacement and summation-of-forces methods to include modes with significant local distortions, and load modes. An abstract of the paper,'Structural Dynamic Loads in Response to Impulsive Excitation' is given in appendix B. Another work performed this year under the Grant was 'Size-Reduction Techniques for the Determination of Efficient Aeroservoelastic Models' given in Appendix C.
Jenison, Rick L.; Reale, Richard A.; Armstrong, Amanda L.; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A.
2015-01-01
Spectro-Temporal Receptive Fields (STRFs) were estimated from both multi-unit sorted clusters and high-gamma power responses in human auditory cortex. Intracranial electrophysiological recordings were used to measure responses to a random chord sequence of Gammatone stimuli. Traditional methods for estimating STRFs from single-unit recordings, such as spike-triggered-averages, tend to be noisy and are less robust to other response signals such as local field potentials. We present an extension to recently advanced methods for estimating STRFs from generalized linear models (GLM). A new variant of regression using regularization that penalizes non-zero coefficients is described, which results in a sparse solution. The frequency-time structure of the STRF tends toward grouping in different areas of frequency-time and we demonstrate that group sparsity-inducing penalties applied to GLM estimates of STRFs reduces the background noise while preserving the complex internal structure. The contribution of local spiking activity to the high-gamma power signal was factored out of the STRF using the GLM method, and this contribution was significant in 85 percent of the cases. Although the GLM methods have been used to estimate STRFs in animals, this study examines the detailed structure directly from auditory cortex in the awake human brain. We used this approach to identify an abrupt change in the best frequency of estimated STRFs along posteromedial-to-anterolateral recording locations along the long axis of Heschl’s gyrus. This change correlates well with a proposed transition from core to non-core auditory fields previously identified using the temporal response properties of Heschl’s gyrus recordings elicited by click-train stimuli. PMID:26367010
NASA Astrophysics Data System (ADS)
Mozumder, Chandan K.
The objective in crashworthiness design is to generate plastically deformable energy absorbing structures which can satisfy the prescribed force-displacement (FD) response. The FD behavior determines the reaction force, displacement and the internal energy that the structure should withstand. However, attempts to include this requirement in structural optimization problems remain scarce. The existing commercial optimization tools utilize models under static loading conditions because of the complexities associated with dynamic/impact loading. Due to the complexity of a crash event and the consequent time required to numerically analyze the dynamic response of the structure, classical methods (i.e., gradient-based and direct) are not well developed to solve this undertaking. This work presents an approach under the framework of the hybrid cellular automaton (HCA) method to solve the above challenge. The HCA method has been successfully applied to nonlinear transient topology optimization for crashworthiness design. In this work, the HCA algorithm has been utilized to develop an efficient methodology for synthesizing shell-based sheet metal structures with optimal material thickness distribution under a dynamic loading event using topometry optimization. This method utilizes the cellular automata (CA) computing paradigm and nonlinear transient finite element analysis (FEA) via ls-dyna. In this method, a set field variables is driven to their target states by changing a convenient set of design variables (e.g., thickness). These rules operate locally in cells within a lattice that only know local conditions. The field variables associated with the cells are driven to a setpoint to obtain the desired structure. This methodology is used to design for structures with controlled energy absorption with specified buckling zones. The peak reaction force and the maximum displacement are also constrained to meet the desired safety level according to passenger safety regulations. Design for prescribed FD response by minimizing the error between the actual response and desired FD curve is implemented. With the use of HCA rules, manufacturability constraints (e.g., rolling) and structures which can be manufactured by special techniques, such as, tailor-welded blanks (TWB), have also been implemented. This methodology is applied to shock-absorbing structural components for passengers in a crashing vehicle. These results are compared to previous designs showing the benefits of the method introduced in this work.
Micromechanics and Piezo Enhancements of HyperSizer
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Bednarcyk, Brett A.; Yarrington, Phillip; Collier, Craig S.
2006-01-01
The commercial HyperSizer aerospace-composite-material-structure-sizing software has been enhanced by incorporating capabilities for representing coupled thermal, piezoelectric, and piezomagnetic effects on the levels of plies, laminates, and stiffened panels. This enhancement is based on a formulation similar to that of the pre-existing HyperSizer capability for representing thermal effects. As a result of this enhancement, the electric and/or magnetic response of a material or structure to a mechanical or thermal load, or its mechanical response to an applied electric or magnetic field can be predicted. In another major enhancement, a capability for representing micromechanical effects has been added by establishment of a linkage between HyperSizer and Glenn Research Center s Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) computer program, which was described in several prior NASA Tech Briefs articles. The linkage enables Hyper- Sizer to localize to the fiber and matrix level rather than only to the ply level, making it possible to predict local failures and to predict properties of plies from those of the component fiber and matrix materials. Advanced graphical user interfaces and database structures have been developed to support the new HyperSizer micromechanics capabilities.
Multi-scale finite element modeling of strain localization in geomaterials with strong discontinuity
NASA Astrophysics Data System (ADS)
Lai, Timothy Yu
2002-01-01
Geomaterials such as soils and rocks undergo strain localization during various loading conditions. Strain localization manifests itself in the form of a shear band, a narrow zone of intense straining. It is now generally recognized that these localized deformations lead to an accelerated softening response and influence the response of structures at or near failure. In order to accurately predict the behavior of geotechnical structures, the effects of strain localization must be included in any model developed. In this thesis, a multi-scale Finite Element (FE) model has been developed that captures the macro- and micro-field deformation patterns present during strain localization. The FE model uses a strong discontinuity approach where a jump in the displacement field is assumed. The onset of strain localization is detected using bifurcation theory that checks when the governing equations lose ellipticity. Two types of bifurcation, continuous and discontinuous are considered. Precise conditions for plane strain loading conditions are reported for each type of bifurcation. Post-localization behavior is governed by the traction relations on the band. Different plasticity models such as Mohr-Coulomb, Drucker-Prager and a Modified Mohr-Coulomb yield were implemented together with cohesion softening and cutoff for the post-localization behavior. The FE model is implemented into a FORTRAN code SPIN2D-LOC using enhanced constant strain triangular (CST) elements. The model is formulated using standard Galerkin finite element method, applicable to problems under undrained conditions and small deformation theory. A band-tracing algorithm is implemented to track the propagation of the shear band. To validate the model, several simulations are performed from simple compression test of soft rock to simulation of a full-scale geosynthetic reinforced soil wall model undergoing strain localization. Results from both standard and enhanced FE method are included for comparison. The resulting load-displacement curves show that the model can represent the softening behavior of geomaterials once strain localization is detected. The orientation of the shear band is found to depend on both the friction and dilation angle of the geomaterial. For most practical problems, slight mesh dependency can be expected but is associated with the standard FE interpolation rather than the strong discontinuity enhancements.
Hydrogel Actuation by Electric Field Driven Effects
NASA Astrophysics Data System (ADS)
Morales, Daniel Humphrey
Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of the applied electric field. We extend the use of ionoprinting to develop multi-responsive bilayer gel systems capable of more complex shape transformation. The localized crosslinked regions determine the bending axis as the gel responds to the external environment. The bending can be tuned to reverse direction isothermally by changing the solvent quality or by changing the temperature at a fixed concentration. The multi-responsive behavior is caused by the volume transitions of a non-ionic, thermos-sensitive hydrogel coupled with a superabsorbent ionic hydrogel. Lastly, electric field driven microparticle assembly, using dielectrophoretic (DEP) forces, organized colloidal microparticles within a hydrogel matrix. The use of DEP forces enables rapid, efficient and precise control over the colloidal distribution. The resulting supracolloidal endoskeleton structures impart directional bending as the hydrogel shrinks. We compare the ordered particles structures to random particle distributions in affecting the hydrogel sheet bending response. This study demonstrates a universal technique for imparting directional properties in hydrogels towards new generations of hybrid soft materials.
ERIC Educational Resources Information Center
Karlsson, Mikael R.; Erlandson, Peter
2018-01-01
This is part of a larger ethnographical study concerning how school development in a local educational context sets cultural and social life in motion. The main data "in this article" consists of semi-structural interviews with teachers (facilitators) who have the responsibility of carrying out a project about formative assessment in…
Jump, Alistair S; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco
2017-09-01
Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales. © 2017 John Wiley & Sons Ltd.
Jump, Alistair S.; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D.; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco
2017-01-01
Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales.
Flow-Mediated Endothelial Mechanotransduction
Davies, Peter F.
2011-01-01
Mechanical forces associated with blood flow play important roles in the acute control of vascular tone, the regulation of arterial structure and remodeling, and the localization of atherosclerotic lesions. Major regulation of the blood vessel responses occurs by the action of hemodynamic shear stresses on the endothelium. The transmission of hemodynamic forces throughout the endothelium and the mechanotransduction mechanisms that lead to biophysical, biochemical, and gene regulatory responses of endothelial cells to hemodynamic shear stresses are reviewed. PMID:7624393
NASA Astrophysics Data System (ADS)
Zhou, Cong; Chase, J. Geoffrey; Rodgers, Geoffrey W.; Xu, Chao
2017-02-01
The model-free hysteresis loop analysis (HLA) method for structural health monitoring (SHM) has significant advantages over the traditional model-based SHM methods that require a suitable baseline model to represent the actual system response. This paper provides a unique validation against both an experimental reinforced concrete (RC) building and a calibrated numerical model to delineate the capability of the model-free HLA method and the adaptive least mean squares (LMS) model-based method in detecting, localizing and quantifying damage that may not be visible, observable in overall structural response. Results clearly show the model-free HLA method is capable of adapting to changes in how structures transfer load or demand across structural elements over time and multiple events of different size. However, the adaptive LMS model-based method presented an image of greater spread of lesser damage over time and story when the baseline model is not well defined. Finally, the two algorithms are tested over a simpler hysteretic behaviour typical steel structure to quantify the impact of model mismatch between the baseline model used for identification and the actual response. The overall results highlight the need for model-based methods to have an appropriate model that can capture the observed response, in order to yield accurate results, even in small events where the structure remains linear.
Direct Recordings of Pitch Responses from Human Auditory Cortex
Griffiths, Timothy D.; Kumar, Sukhbinder; Sedley, William; Nourski, Kirill V.; Kawasaki, Hiroto; Oya, Hiroyuki; Patterson, Roy D.; Brugge, John F.; Howard, Matthew A.
2010-01-01
Summary Pitch is a fundamental percept with a complex relationship to the associated sound structure [1]. Pitch perception requires brain representation of both the structure of the stimulus and the pitch that is perceived. We describe direct recordings of local field potentials from human auditory cortex made while subjects perceived the transition between noise and a noise with a regular repetitive structure in the time domain at the millisecond level called regular-interval noise (RIN) [2]. RIN is perceived to have a pitch when the rate is above the lower limit of pitch [3], at approximately 30 Hz. Sustained time-locked responses are observed to be related to the temporal regularity of the stimulus, commonly emphasized as a relevant stimulus feature in models of pitch perception (e.g., [1]). Sustained oscillatory responses are also demonstrated in the high gamma range (80–120 Hz). The regularity responses occur irrespective of whether the response is associated with pitch perception. In contrast, the oscillatory responses only occur for pitch. Both responses occur in primary auditory cortex and adjacent nonprimary areas. The research suggests that two types of pitch-related activity occur in humans in early auditory cortex: time-locked neural correlates of stimulus regularity and an oscillatory response related to the pitch percept. PMID:20605456
Structural impact response for assessing railway vibration induced on buildings
NASA Astrophysics Data System (ADS)
Kouroussis, Georges; Mouzakis, Harris P.; Vogiatzis, Konstantinos E.
2018-03-01
Over the syears, the rapid growth in railway infrastructure has led to numerous environmental challenges. One such significant issue, particularly in urban areas, is ground-borne vibration. A common source of ground-borne vibration is caused by local defects (e.g. rail joints, switches, turnouts, etc.) that generate large amplitude excitations at isolated locations. Modelling these excitation sources is particularly challenging and requires the use of complex and extensive computational efforts. For some situations, the use of experiments and measured data offers a rapid way to estimate the effect of such defects and to evaluate the railway vibration levels using a scoping approach. In this paper, the problem of railway-induced ground vibrations is presented along with experimental studies to assess the ground vibration and ground borne noise levels, with a particular focus on the structural response of sensitive buildings. The behaviour of particular building foundations is evaluated through experimental data collected in Brussels Region, by presenting the expected frequency responses for various types of buildings, taking into account both the soil-structure interaction and the tramway track response. A second study is dedicated to the Athens metro, where transmissibility functions are used to analyse the effect of various Athenian building face to metro network trough comprehensive measurement campaigns. This allows the verification of appropriate vibration mitigation measures. These benchmark applications based on experimental results have been proved to be efficient to treat a complex problem encountered in practice in urban areas, where the urban rail network interacts with important local defects and where the rise of railway ground vibration problems has clearly been identified.
Cross-Linking Molecules Modify Composite Actin Networks Independently
NASA Astrophysics Data System (ADS)
Schmoller, K. M.; Lieleg, O.; Bausch, A. R.
2008-09-01
While cells make use of many actin binding proteins (ABPs) simultaneously to tailor the mechanical properties of the cytoskeleton, the detailed interplay of different ABPs is not understood. By a combination of macrorheological measurements and confocal microscopy, we show that the ABPs fascin and filamin modify the structural and viscoelastic properties of composite in vitro actin networks independently. The outnumbering ABP dictates the local network structure and therefore also dominates the macromechanical network response.
Awad, Lara; Fady, Bruno; Khater, Carla; Roig, Anne; Cheddadi, Rachid
2014-01-01
The threatened conifer Abies cilicica currently persists in Lebanon in geographically isolated forest patches. The impact of demographic and evolutionary processes on population genetic diversity and structure were assessed using 10 nuclear microsatellite loci. All remnant 15 local populations revealed a low genetic variation but a high recent effective population size. FST-based measures of population genetic differentiation revealed a low spatial genetic structure, but Bayesian analysis of population structure identified a significant Northeast-Southwest population structure. Populations showed significant but weak isolation-by-distance, indicating non-equilibrium conditions between dispersal and genetic drift. Bayesian assignment tests detected an asymmetric Northeast-Southwest migration involving some long-distance dispersal events. We suggest that the persistence and Northeast-Southwest geographic structure of Abies cilicica in Lebanon is the result of at least two demographic processes during its recent evolutionary history: (1) recent migration to currently marginal populations and (2) local persistence through altitudinal shifts along a mountainous topography. These results might help us better understand the mechanisms involved in the species response to expected climate change. PMID:24587219
Spatial Control of Functional Response in 4D-Printed Active Metallic Structures
Ma, Ji; Franco, Brian; Tapia, Gustavo; Karayagiz, Kubra; Johnson, Luke; Liu, Jun; Arroyave, Raymundo; Karaman, Ibrahim; Elwany, Alaa
2017-01-01
We demonstrate a method to achieve local control of 3-dimensional thermal history in a metallic alloy, which resulted in designed spatial variations in its functional response. A nickel-titanium shape memory alloy part was created with multiple shape-recovery stages activated at different temperatures using the selective laser melting technique. The multi-stage transformation originates from differences in thermal history, and thus the precipitate structure, at various locations created from controlled variations in the hatch distance within the same part. This is a first example of precision location-dependent control of thermal history in alloys beyond the surface, and utilizes additive manufacturing techniques as a tool to create materials with novel functional response that is difficult to achieve through conventional methods. PMID:28429796
In situ damage detection in frame structures through coupled response measurements
NASA Astrophysics Data System (ADS)
Liu, D.; Gurgenci, H.; Veidt, M.
2004-05-01
Due to the existence of global modes and local modes of the neighbouring members, damage detection on a structure is more challenging than damage on isolated beams. Detection of an artificial circumferential crack on a joint in a frame-like welded structure is studied in this paper using coupled response measurements. Similarity to real engineering structures is maintained in the fabrication of the test frame. Both the chords and the branch members have hollow sections and the branch members have smaller sizes. The crack is created by a hacksaw on a joint where a branch meets the chord. The methodology is first demonstrated on a single hollow section beam. The test results are then presented for the damaged and undamaged frame. The existence of the damage is clearly observable from the experimental results. It is suggested that this approach offers the potential to detect damage in welded structures such as cranes, mining equipment, steel-frame bridges, naval and offshore structures.
Universal properties from a local geometric structure of a Killing horizon
NASA Astrophysics Data System (ADS)
Koga, Jun-ichirou
2007-06-01
We consider universal properties that arise from a local geometric structure of a Killing horizon, and analyse whether such universal properties give rise to degeneracy of classical configurations. We first introduce a non-perturbative definition of such a local geometric structure, which we call an asymptotic Killing horizon. It is then shown that infinitely many asymptotic Killing horizons reside on a common null hypersurface, once there exists one asymptotic Killing horizon, which is thus considered as degeneracy. In order to see how this degeneracy is physically meaningful, we analyse also the acceleration of the orbits of the vector that generates an asymptotic Killing horizon. It is shown that there exists the diff(S1) or diff(R1) sub-algebra on an asymptotic Killing horizon universally, which is picked out naturally, based on the behaviour of the acceleration. We argue that the discrepancy between string theory and the Euclidean approach in the entropy of an extreme black hole may be resolved, if the microscopic states responsible for black hole thermodynamics are connected with asymptotic Killing horizons.
Structure and Liquid Fragility in Sodium Carbonate.
Wilson, Mark; Ribeiro, Mauro C C; Wilding, Martin C; Benmore, Chris; Weber, J K R; Alderman, Oliver; Tamalonis, Anthony; Parise, J B
2018-02-01
The relationship between local structure and dynamics is explored for molten sodium carbonate. A flexible fluctuating-charge model, which allows for changes in the shape and charge distribution of the carbonate molecular anion, is developed. The system shows the evolution of highly temperature-dependent complex low-dimensional structures which control the dynamics (and hence the liquid fragility). By varying the molecular anion charge distribution, the key interactions responsible for the formation of these structures can be identified and rationalized. An increase in the mean charge separation within the carbonate ions increases the connectivity of the emerging structures and leads to an increase in the system fragility.
Brown, David Richard; Hernández, Agueda; Saint-Jean, Gilbert; Evans, Siân; Tafari, Ida; Brewster, Luther G.; Celestin, Michel J.; Gómez-Estefan, Carlos; Regalado, Fernando; Akal, Siri; Nierenberg, Barry; Kauschinger, Elaine D.; Schwartz, Robert; Page, J. Bryan
2008-01-01
Healthy People 2010 made it a priority to eliminate health disparities. We used a rapid assessment response and evaluation (RARE) to launch a program of participatory action research focused on health disparities in an urban, disadvantaged Black community serviced by a major south Florida health center. We formed partnerships with community members, identified local health disparities, and guided interventions targeting health disparities. We describe the RARE structure used to triangulate data sources and guide intervention plans as well as findings and conclusions drawn from scientific literature and epidemiological, historic, planning, clinical, and ethnographic data. Disenfranchisement and socioeconomic deprivation emerged as the principal determinants of local health disparities and the most appropriate targets for intervention. PMID:18048802
Tamura, Koichi; Hayashi, Shigehiko
2015-07-14
Molecular functions of proteins are often fulfilled by global conformational changes that couple with local events such as the binding of ligand molecules. High molecular complexity of proteins has, however, been an obstacle to obtain an atomistic view of the global conformational transitions, imposing a limitation on the mechanistic understanding of the functional processes. In this study, we developed a new method of molecular dynamics (MD) simulation called the linear response path following (LRPF) to simulate a protein's global conformational changes upon ligand binding. The method introduces a biasing force based on a linear response theory, which determines a local reaction coordinate in the configuration space that represents linear coupling between local events of ligand binding and global conformational changes and thus provides one with fully atomistic models undergoing large conformational changes without knowledge of a target structure. The overall transition process involving nonlinear conformational changes is simulated through iterative cycles consisting of a biased MD simulation with an updated linear response force and a following unbiased MD simulation for relaxation. We applied the method to the simulation of global conformational changes of the yeast calmodulin N-terminal domain and successfully searched out the end conformation. The atomistically detailed trajectories revealed a sequence of molecular events that properly lead to the global conformational changes and identified key steps of local-global coupling that induce the conformational transitions. The LRPF method provides one with a powerful means to model conformational changes of proteins such as motors and transporters where local-global coupling plays a pivotal role in their functional processes.
Reynolds number influence on the formation of vortical structures on a pitching flat plate.
Widmann, Alexander; Tropea, Cameron
2017-02-06
The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex-wall interaction.
Reynolds number influence on the formation of vortical structures on a pitching flat plate
Tropea, Cameron
2017-01-01
The impact of chord-based Reynolds number on the formation of leading-edge vortices (LEVs) on unsteady pitching flat plates is investigated. The influence of secondary flow structures on the shear layer feeding the LEV and the subsequent topological change at the leading edge as the result of viscous processes are demonstrated. Time-resolved velocity fields are measured using particle image velocimetry simultaneously in two fields of view to correlate local and global flow phenomena in order to identify unsteady boundary-layer separation and the subsequent flow structures. Finally, the Reynolds number is identified as a parameter that is responsible for the transition in mechanisms leading to LEV detachment from an aerofoil, as it determines the viscous response of the boundary layer in the vortex–wall interaction. PMID:28163871
Lifland, Aaron W.; Jung, Jeenah; Alonas, Eric; Zurla, Chiara; Crowe, James E.
2012-01-01
Currently, the spatial distribution of human respiratory syncytial virus (hRSV) proteins and RNAs in infected cells is still under investigation, with many unanswered questions regarding the interaction of virus-induced structures and the innate immune system. Very few studies of hRSV have used subcellular imaging as a means to explore the changes in localization of retinoic-acid-inducible gene-I (RIG-I)-like receptors or the mitochondrial antiviral signaling (MAVS) protein, in response to the infection and formation of viral structures. In this investigation, we found that both RIG-I and melanoma differentiation-associated gene 5 (MDA5) colocalized with viral genomic RNA and the nucleoprotein (N) as early as 6 h postinfection (hpi). By 12 hpi, MDA5 and MAVS were observed within large viral inclusion bodies (IB). We used a proximity ligation assay (PLA) and determined that the N protein was in close proximity to MDA5 and MAVS in IBs throughout the course of the infection. Similar results were found with the transient coexpression of N and the phosphoprotein (P). Additionally, we demonstrated that the localization of MDA5 and MAVS in IBs inhibited the expression of interferon β mRNA 27-fold following Newcastle disease virus infection. From these data, we concluded that the N likely interacts with MDA5, is in close proximity to MAVS, and localizes these molecules within IBs in order to attenuate the interferon response. To our knowledge, this is the first report of a specific function for hRSV IBs and of the hRSV N protein as a modulator of the innate immune response. PMID:22623778
Lifland, Aaron W; Jung, Jeenah; Alonas, Eric; Zurla, Chiara; Crowe, James E; Santangelo, Philip J
2012-08-01
Currently, the spatial distribution of human respiratory syncytial virus (hRSV) proteins and RNAs in infected cells is still under investigation, with many unanswered questions regarding the interaction of virus-induced structures and the innate immune system. Very few studies of hRSV have used subcellular imaging as a means to explore the changes in localization of retinoic-acid-inducible gene-I (RIG-I)-like receptors or the mitochondrial antiviral signaling (MAVS) protein, in response to the infection and formation of viral structures. In this investigation, we found that both RIG-I and melanoma differentiation-associated gene 5 (MDA5) colocalized with viral genomic RNA and the nucleoprotein (N) as early as 6 h postinfection (hpi). By 12 hpi, MDA5 and MAVS were observed within large viral inclusion bodies (IB). We used a proximity ligation assay (PLA) and determined that the N protein was in close proximity to MDA5 and MAVS in IBs throughout the course of the infection. Similar results were found with the transient coexpression of N and the phosphoprotein (P). Additionally, we demonstrated that the localization of MDA5 and MAVS in IBs inhibited the expression of interferon β mRNA 27-fold following Newcastle disease virus infection. From these data, we concluded that the N likely interacts with MDA5, is in close proximity to MAVS, and localizes these molecules within IBs in order to attenuate the interferon response. To our knowledge, this is the first report of a specific function for hRSV IBs and of the hRSV N protein as a modulator of the innate immune response.
Takada, Saeko; Collins, Eric R; Kurahashi, Kayo
2015-05-15
DNA damage responses, including mitotic centrosome inactivation, cell-cycle delay in mitosis, and nuclear dropping from embryo cortex, maintain genome integrity in syncytial Drosophila embryos. A conserved signaling kinase, Chk2, known as Mnk/Loki, is essential for the responses. Here we demonstrate that functional EGFP-Mnk expressed from a transgene localizes to the nucleus, centrosomes, interkinetochore/centromere region, midbody, and pseudocleavage furrows without DNA damage and in addition forms numerous foci/aggregates on mitotic chromosomes upon DNA damage. We expressed EGFP-tagged Mnk deletion or point mutation variants and investigated domain functions of Mnk in vivo. A triple mutation in the phosphopeptide-binding site of the forkhead-associated (FHA) domain disrupted normal Mnk localization except to the nucleus. The mutation also disrupted Mnk foci formation on chromosomes upon DNA damage. FHA mutations and deletion of the SQ/TQ-cluster domain (SCD) abolished Mnk transphosphorylations and autophosphorylations, indicative of kinase activation after DNA damage. A potent NLS was found at the C-terminus, which is required for normal Mnk function. We propose that the FHA domain in Mnk plays essential dual functions in mediating embryonic DNA damage responses by means of its phosphopeptide-binding ability: activating Mnk in the nucleus upon DNA damage and recruiting Mnk to multiple subcellular structures independently of DNA damage. © 2015 Takada et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
A partial solution: a local mental health authority for the UK.
Hadley, Trevor R.; Goldman, Howard H.
1998-07-01
BACKGROUND: the structural problems of the mental health system in the UK have been analyzed by a number of authors over the past several years as the "reforms" of the health and social service systems have continued (Kavanagh and Knapp, 1995; Mechanic, 1995). In a recent article, Hadley and Goldman (1995) suggest that one possible solution to some of these issues may be the creation of a local mental health authority. Such an authority would consolidate the funding, authority and responsibility in a single entity. We believe this model, which is typical of many local public mental health systems in the US, is at least part of the solution to the current problem of financial and service fragmentation of the current system in the UK. The numerous "reforms" of the health and social service systems (which include the Community Care Act, the development of the Internal Market, GP fundholding and the purchaser-provider split) were not designed for the care of the mentally ill (Han, 1996). These policy changes in the design of health and social services have created a complicated and difficult context in which services must be delivered. Too many agencies play a significant role in the delivery and management of mental health services. Health authorities, social service agencies and GP fundholders are direct and indirect funders of the system while community care trusts, social service agencies and GPs are service providers (Hadley, 1996a). RESULTS AND A PROPOSAL: We believe that the development of local mental health authorities may be part of the solution to the structural and economic problems of the current system in the UK. It is not the answer to limited resources or limited skills, but can create a new structure, which will permit and encourage the cooperation and innovation that is now possible only with unusual effort. Local mental health authorities have a number of crucial characteristics, but, most importantly, they refocus the system on the provision of care to the seriously mentally ill. This is the expressed priority of government, advocates and providers, alike.These new entities could be created at either the purchaser or provider level or, as exists in a number of jurisdictions in the US, at both levels, where a single purchaser may be responsible for multiple consolidated providers. This combination is now the emerging model for innovative services in the US. In the UK, the development of a local mental health authority at the purchaser and/or provider level might be relatively simple. Although the creation of a statutory authority would require primary legislation and is therefore probably not a short-term solution, there appears to be a variety of administrative options that would have the same effect. IMPLICATIONS FOR HEALTH POLICY FORMULATION: The creation of a local mental health authority may be a necessary first step towards the development of a coordinated and comprehensive system of care. It seems likely that there is currently more "political" support for the development of a purchaser model but the development of a sophisticated purchsaer is also likely to take considerable time and effort. Although all the structural and policy problems of the mental health system in the UK will not all be solved by local mental health authorities, they may be beneficial if responsibility for mental illness care is to be centralized and fragmentation is to be reduced. Without making structural changes, the best efforts by clinicians, policymakers and managers are most likely to be in vain. Without a clear point of ultimate purchasing and service responsibility, the fragmentation and inefficiency of the current system will remain (Hadley et al., 1996).
Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements
NASA Astrophysics Data System (ADS)
Song, Y.; Hartwigsen, C. J.; McFarland, D. M.; Vakakis, A. F.; Bergman, L. A.
2004-05-01
Mechanical joints often affect structural response, causing localized non-linear stiffness and damping changes. As many structures are assemblies, incorporating the effects of joints is necessary to produce predictive finite element models. In this paper, we present an adjusted Iwan beam element (AIBE) for dynamic response analysis of beam structures containing joints. The adjusted Iwan model consists of a combination of springs and frictional sliders that exhibits non-linear behavior due to the stick-slip characteristic of the latter. The beam element developed is two-dimensional and consists of two adjusted Iwan models and maintains the usual complement of degrees of freedom: transverse displacement and rotation at each of the two nodes. The resulting element includes six parameters, which must be determined. To circumvent the difficulty arising from the non-linear nature of the inverse problem, a multi-layer feed-forward neural network (MLFF) is employed to extract joint parameters from measured structural acceleration responses. A parameter identification procedure is implemented on a beam structure with a bolted joint. In this procedure, acceleration responses at one location on the beam structure due to one known impulsive forcing function are simulated for sets of combinations of varying joint parameters. A MLFF is developed and trained using the patterns of envelope data corresponding to these acceleration histories. The joint parameters are identified through the trained MLFF applied to the measured acceleration response. Then, using the identified joint parameters, acceleration responses of the jointed beam due to a different impulsive forcing function are predicted. The validity of the identified joint parameters is assessed by comparing simulated acceleration responses with experimental measurements. The capability of the AIBE to capture the effects of bolted joints on the dynamic responses of beam structures, and the efficacy of the MLFF parameter identification procedure, are demonstrated.
Tel2 mediates activation and localization of ATM/Tel1 kinase to a double-strand break.
Anderson, Carol M; Korkin, Dmitry; Smith, Dana L; Makovets, Svetlana; Seidel, Jeffrey J; Sali, Andrej; Blackburn, Elizabeth H
2008-04-01
The kinases ATM and ATR (Tel1 and Mec1 in the yeast Saccharomyces cerevisiae) control the response to DNA damage. We report that S. cerevisiae Tel2 acts at an early step of the TEL1/ATM pathway of DNA damage signaling. We show that Tel1 and Tel2 interact, and that even when Tel1 protein levels are high, this interaction is specifically required for Tel1 localization to a DNA break and its activation of downstream targets. Computational analysis revealed structural homology between Tel2 and Ddc2 (ATRIP in vertebrates), a partner of Mec1, suggesting a common structural principle used by partners of phoshoinositide 3-kinase-like kinases.
High Density or Urban Sprawl: What Works Best in Biology?
Oreopoulos, John; Gray-Owen, Scott D; Yip, Christopher M
2017-02-28
With new approaches in imaging-from new tools or reagents to processing algorithms-come unique opportunities and challenges to our understanding of biological processes, structures, and dynamics. Although innovations in super-resolution imaging are affording novel perspectives into how molecules structurally associate and localize in response to, or in order to initiate, specific signaling events in the cell, questions arise as to how to interpret these observations in the context of biological function. Just as each neighborhood in a city has its own unique vibe, culture, and indeed density, recent work has shown that membrane receptor behavior and action is governed by their localization and association state. There is tremendous potential in developing strategies for tracking how the populations of these molecular neighborhoods change dynamically.
Dynamic X-ray diffraction imaging of the ferroelectric response in bismuth ferrite
Laanait, Nouamane; Saenrang, Wittawat; Zhou, Hua; ...
2017-03-21
In this study, X-ray diffraction imaging is rapidly emerging as a powerful technique by which one can capture the local structure of crystalline materials at the nano- and meso-scale. Here, we present investigations of the dynamic structure of epitaxial monodomain BiFeO 3 thin-films using a novel full-field Bragg diffraction imaging modality. By taking advantage of the depth penetration of hard X-rays and their exquisite sensitivity to the atomic structure, we imaged in situ and in operando, the electric field-driven structural responses of buried BiFeO 3 epitaxial thin-films in micro-capacitor devices, with sub-100 nm lateral resolution. These imaging investigations were carriedmore » out at acquisition frame rates that reached up to 20 Hz and data transfer rates of 40 MB/s, while accessing diffraction contrast that is sensitive to the entire three-dimensional unit cell configuration. We mined these large datasets for material responses by employing matrix decomposition techniques, such as independent component analysis. We found that this statistical approach allows the extraction of the salient physical properties of the ferroelectric response of the material, such as coercive fields and transient spatiotemporal modulations in their piezoelectric response, and also facilitates their decoupling from extrinsic sources that are instrument specific.« less
Anthony, Christy; Thomas, Tito Joe; Berg, Bridget M; Burke, Rita V; Upperman, Jeffrey S
2017-01-01
Recent incidents have demonstrated that the US health system is unprepared for infectious pandemics resulting in a pediatric surge. Development of efficient plans and a structured and coordinated regional response to pediatric pandemic surge remains an opportunity. To address this gap, we conducted a literature review to assess current efforts, propose a response plan structure, and recommend policy actions. A literature review, utilizing MEDLINE and PubMed, through March 2017 identified articles regarding infectious disease pandemics affecting the US pediatric population. After review of current literature, a proposed response plan structure for a pediatric pandemic surge was designed. Inclusion and exclusion criteria reduced an initial screening of 1,787 articles to 162 articles. Articles ranged in their discussion of pediatric pandemic surge. Review of the articles led to the proposal of organizing the results according to 4 S's; (1) Structure, (2) Staff, (3) Stuff (Resources), and (4) Space. The review has supported the concern that the US health system is unprepared for a pediatric surge induced by infectious disease pandemics. Common themes suggest that response plans should reflect the 4Ss and national guidelines must be translated into regional response systems that account for local nuances.
Enhancing response coordination through the assessment of response network structural dynamics
Jalili, Mahdi; Choi, Soo-Mi
2018-01-01
Preparing for intensifying threats of emergencies in unexpected, dangerous, and serious natural or man-made events, and consequent management of the situation, is highly demanding in terms of coordinating the personnel and resources to support human lives and the environment. This necessitates prompt action to manage the uncertainties and risks imposed by such extreme events, which requires collaborative operation among different stakeholders (i.e., the personnel from both the state and local communities). This research aims to find a way to enhance the coordination of multi-organizational response operations. To do so, this manuscript investigates the role of participants in the formed coordination response network and also the emergence and temporal dynamics of the network. By analyzing an inter-personal response coordination operation to an extreme bushfire event, the networks’ and participants’ structural change is evaluated during the evolution of the operation network over four time durations. The results reveal that the coordination response network becomes more decentralized over time due to the high volume of communication required to exchange information. New emerging communication structures often do not fit the developed plans, which stress the need for coordination by feedback in addition to by plan. In addition, we find that the participant’s brokering role in the response operation network identifies a formal and informal coordination role. This is useful for comparison of network structures to examine whether what really happens during response operations complies with the initial policy. PMID:29447192
Enhancing response coordination through the assessment of response network structural dynamics.
Abbasi, Alireza; Sadeghi-Niaraki, Abolghasem; Jalili, Mahdi; Choi, Soo-Mi
2018-01-01
Preparing for intensifying threats of emergencies in unexpected, dangerous, and serious natural or man-made events, and consequent management of the situation, is highly demanding in terms of coordinating the personnel and resources to support human lives and the environment. This necessitates prompt action to manage the uncertainties and risks imposed by such extreme events, which requires collaborative operation among different stakeholders (i.e., the personnel from both the state and local communities). This research aims to find a way to enhance the coordination of multi-organizational response operations. To do so, this manuscript investigates the role of participants in the formed coordination response network and also the emergence and temporal dynamics of the network. By analyzing an inter-personal response coordination operation to an extreme bushfire event, the networks' and participants' structural change is evaluated during the evolution of the operation network over four time durations. The results reveal that the coordination response network becomes more decentralized over time due to the high volume of communication required to exchange information. New emerging communication structures often do not fit the developed plans, which stress the need for coordination by feedback in addition to by plan. In addition, we find that the participant's brokering role in the response operation network identifies a formal and informal coordination role. This is useful for comparison of network structures to examine whether what really happens during response operations complies with the initial policy.
Geological Investigation and analysis in response to Earthquake Induced Landslide in West Sumatra
NASA Astrophysics Data System (ADS)
Karnawati, D.; Wilopo, W.; Salahudin, S.; Sudarno, I.; Burton, P.
2009-12-01
Substantial socio-economical loss occurred in response to the September 30. 2009 West Sumatra Earthquake with magnitude of 7.6. Damage of houses and engineered structures mostly occurred at the low land of alluvium sediments due to the ground amplification, whilst at the high land of mountain slopes several villages were buried by massive debris of rocks and soils. It was recorded that 1115 people died due to this disasters. Series of geological investigation was carried out by Geological Engineering Department of Gadjah Mada University, with the purpose to support the rehabilitation program. Based on this preliminary investigation it was identified that most of the house and engineered structural damages at the alluvial deposits mainly due to by the poor quality of such houses and engineered structures, which poorly resist the ground amplification, instead of due to the control of geological conditions. On the other hand, the existence and distribution of structural geology (faults and joints) at the mountaineous regions are significant in controlling the distribution of landslides, with the types of rock falls, debris flows and debris falls. Despite the landslide susceptibility mapping conducted by Geological Survey of Indonesia, more detailed investigation is required to be carried out in the region surrounding Maninjau Lake, in order to provide safer places for village relocation. Accordingly Gadjah Mada University in collaboration with the local university (Andalas University) as well as with the local Government of Agam Regency and the Geological Survey of Indonesia, serve the mission for conducting rather more detailed geological and landslide investigation. It is also crucial that the investigation (survey and mapping) on the social perception and expectation of local people living in this landslide susceptible area should also be carried out, to support the mitigation effort of any future potential earthquake induced landslides.
Developing a scale to measure "attachment to the local community" in late middle aged individuals.
Sakai, Taichi; Omori, Junko; Takahashi, Kazuko; Mitsumori, Yasuko; Kobayashi, Maasa; Ono, Wakanako; Miyazaki, Toshie; Anzai, Hitomi; Saito, Mika
2016-01-01
Objectives This study was conducted to develop a scale for measuring "attachment to the local community" for its use in health services. The scale is also intended to nurture new social relationships in late middle-aged individuals.Methods Thirty items were initially planned to be included in the scale to measure "attachment to the local community", according to a previous study that identified the concept. The study subjects were late middle-aged residents of City B in Prefecture A, located in Tokyo suburbs. From the basic resident register data, 1,000 individuals (local residents in the 50-69 year age group) were selected by a multi-stage random sampling technique, on the basis of their residential area, age, and sex (while maintaining the male to female ratio). An unsigned self-administered questionnaire was distributed to the subjects, and the responses were collected by postal mail. The collected data was analyzed using psychometric study of scale.Results Valid responses were obtained from 583 subjects, and the response rate was 58.3%. In an item analysis, none of the items were rejected. In a subsequent factor analysis, 7 items were eliminated. These items included 2 items with a factor loading of <0.40, 3 items loading on multiple factors and showing a factor loading of ≥0.40, and 2 items with a low factor correlation (0.04-0.16). These items included factors that related to only these 2 items. Consequently, 23 items in the following 4-factor structure were selected as the scale items: "Source of vitality to live life," "Intention to cherish ties with people," "Place where one can be oneself," and "Pride of being a resident." Cronbach's coefficient α for the entire scale of "attachment to the local community" was 0.95, demonstrating internal consistency. We then examined the correlation with an existing scale to measure social support; the results revealed a statistically significant correlation and confirmed criterion-related validity (P<0.001). In addition, the fit indices in a covariance structure analysis showed adequate values.Conclusions The developed scale was considered reliable and appropriate for measuring "attachment to the local community."
Ostrowski, Anja; Nordmeyer, Daniel; Boreham, Alexander; Holzhausen, Cornelia; Mundhenk, Lars; Graf, Christina; Meinke, Martina C; Vogt, Annika; Hadam, Sabrina; Lademann, Jürgen; Rühl, Eckart; Alexiev, Ulrike
2015-01-01
Summary The increasing interest and recent developments in nanotechnology pose previously unparalleled challenges in understanding the effects of nanoparticles on living tissues. Despite significant progress in in vitro cell and tissue culture technologies, observations on particle distribution and tissue responses in whole organisms are still indispensable. In addition to a thorough understanding of complex tissue responses which is the domain of expert pathologists, the localization of particles at their sites of interaction with living structures is essential to complete the picture. In this review we will describe and compare different imaging techniques for localizing inorganic as well as organic nanoparticles in tissues, cells and subcellular compartments. The visualization techniques include well-established methods, such as standard light, fluorescence, transmission electron and scanning electron microscopy as well as more recent developments, such as light and electron microscopic autoradiography, fluorescence lifetime imaging, spectral imaging and linear unmixing, superresolution structured illumination, Raman microspectroscopy and X-ray microscopy. Importantly, all methodologies described allow for the simultaneous visualization of nanoparticles and evaluation of cell and tissue changes that are of prime interest for toxicopathologic studies. However, the different approaches vary in terms of applicability for specific particles, sensitivity, optical resolution, technical requirements and thus availability, and effects of labeling on particle properties. Specific bottle necks of each technology are discussed in detail. Interpretation of particle localization data from any of these techniques should therefore respect their specific merits and limitations as no single approach combines all desired properties. PMID:25671170
Electronic structure of metals and semiconductors: bulk, surface, and interface properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louie, S.G.S.
1976-09-01
A theoretical study of the electronic structure of various metals and semiconductors is presented with the emphasis on understanding the properties of these materials when they are subjected to extreme conditions and in various different configurations. Among the bulk systems studied, the properties of cesium under high pressure are discussed in terms of the electronic structure calculated at various cell volumes using the pseudopotential method. Local fields or umklapp processes in semiconductors are studied within the random phase approximation (RPA). Specifically the dielectric response matrix epsilon/sub GG'/ (q = 0,omega) is evaluated numerically to determine the effects of local-field correctionsmore » in the optical spectrum of Si. Also, some comments on the excitonic mechanism of superconductivity are presented and the role of local fields is discussed. The pseudo-potential method is next extended to calculate the electronic structure of a transition metal Nb. The calculation is performed self-consistently with the use of a non-local ionic potential determined from atomic spectra. Finally the theory of the superconducting transition temperature T/sub c/ is discussed in the strong-coupling formulation of the BCS theory. The Eliashberg equations in the Matsubara representation are solved analytically and a general T/sub c/ equation is obtained. A new method is developed using pseudopotentials in a self-consistent manner to describe non-periodic systems. The method is applicable to localized configurations such as molecules, surfaces, impurities, vacancies, finite chains of atoms, adsorbates, and solid interfaces. Specific applications to surfaces, metal-semiconductor interfaces and vacancies are presented.« less
Dodson, M; Echols, H; Wickner, S; Alfano, C; Mensa-Wilmot, K; Gomes, B; LeBowitz, J; Roberts, J D; McMacken, R
1986-01-01
The O protein of bacteriophage lambda localizes the initiation of DNA replication to a unique site on the lambda genome, ori lambda. By means of electron microscopy, we infer that the binding of O to ori lambda initiates a series of protein addition and transfer reactions that culminate in localized unwinding of the origin DNA, generating a prepriming structure for the initiation of DNA replication. We can define three stages of this prepriming reaction, the first two of which we have characterized previously. First, dimeric O protein binds to multiple DNA binding sites and self-associates to form a nucleoprotein structure, the O-some. Second, lambda P and host DnaB proteins interact with the O-some to generate a larger complex that includes additional DNA from an A + T-rich region adjacent to the O binding sites. Third, the addition of the DnaJ, DnaK, and Ssb proteins and ATP results in an origin-specific unwinding reaction, probably catalyzed by the helicase activity of DnaB. The unwinding reaction is unidirectional, proceeding "rightward" from the origin. The minimal DNA sequence competent for unwinding consists of two O binding sites and the adjacent A + T-rich region to the right of the binding sites. We conclude that the lambda O protein localizes and initiates a six-protein sequential reaction responsible for but preceding the precise initiation of DNA replication. Specialized nucleoprotein structures similar to the O-some may be a general feature of DNA transactions requiring extraordinary precision in localization and control. Images PMID:3020552
NASA Technical Reports Server (NTRS)
Podboy, Gary; Wernet, Mark; Clem, Michelle; Fagan, Amy
2013-01-01
Phased array noise source localization have been compared with 2 types of flow field data (BOS and PIV). The data show that: 1) the higher frequency noise in a BBSN hump is generated further downstream than the lower frequency noise. This is due to a) the shock spacing decreasing and b) the turbulent structure size increasing with distance downstream. 2) BBSN can be created by very weak shocks. 3) BBSN is not created by the strong shocks just downstream of the nozzle because the turbulent structures have not grown large enough to match the shock spacing. 4) The point in the flow where the shock spacing equals the average size of the turbulent structures is a hot spot for shock noise. 5) Some of the shocks responsible for producing the first hump also produce the second hump.
Structural damage to periodontal tissues at varying rate of anesthetic injection.
Sarapultseva, Maria; Sarapultsev, Alexey; Medvedeva, Svetlana; Danilova, Irina
2018-04-01
Incorrect administration of an anesthetic during local anesthesia is one of the most important causes of pain symptoms in patients scheduled for dental procedures. The current study assessed the severity of damage to periodontal tissue following different rates of anesthetic administration. The research was conducted on 50 outbred male rats with a body mass of 180-240 g. The anesthetic used was 1% articaine. The results showed that administration of the anesthetic at a rapid pace caused structural damage to the periodontal tissue. Further, signs of impaired microcirculation were noted at all rates of administration. Biochemical studies demonstrated changes in the level of glucose and enzymes with the rapid introduction of the anesthetic, indicating severe systemic stress response of the body. Injection of local anesthetic at any rate of introduction induces vascular congestion in the microcirculatory bloodstream and exudative reactions. Rapid introduction of an anesthetic causes progression of structural changes in the gingival tissue.
Modulatory compartments in cortex and local regulation of cholinergic tone.
Coppola, Jennifer J; Ward, Nicholas J; Jadi, Monika P; Disney, Anita A
2016-09-01
Neuromodulatory signaling is generally considered broad in its impact across cortex. However, variations in the characteristics of cortical circuits may introduce regionally-specific responses to diffuse modulatory signals. Features such as patterns of axonal innervation, tissue tortuosity and molecular diffusion, effectiveness of degradation pathways, subcellular receptor localization, and patterns of receptor expression can lead to local modification of modulatory inputs. We propose that modulatory compartments exist in cortex and can be defined by variation in structural features of local circuits. Further, we argue that these compartments are responsible for local regulation of neuromodulatory tone. For the cholinergic system, these modulatory compartments are regions of cortical tissue within which signaling conditions for acetylcholine are relatively uniform, but between which signaling can vary profoundly. In the visual system, evidence for the existence of compartments indicates that cholinergic modulation likely differs across the visual pathway. We argue that the existence of these compartments calls for thinking about cholinergic modulation in terms of finer-grained control of local cortical circuits than is implied by the traditional view of this system as a diffuse modulator. Further, an understanding of modulatory compartments provides an opportunity to better understand and perhaps correct signal modifications that lead to pathological states. Copyright © 2016 Elsevier Ltd. All rights reserved.
The maize pathogenesis-related PRms protein localizes to plasmodesmata in maize radicles.
Murillo, I; Cavallarin, L; San Segundo, B
1997-01-01
Pathogenesis-related (PR) proteins are plant proteins induced in response to infection by pathogens. In this study, an antibody raised against the maize PRms protein was used to localize the protein in fungal-infected maize radicles. The PRms protein was found to be localized at the contact areas between parenchyma cells of the differentiating protoxylem elements. By using immunoelectron microscopy, we found that these immunoreactive regions correspond to plasmodesmal regions. This was also true for the parenchyma cells filling the central pith of the vascular cylinder, although PRms mRNA accumulation was not detected in these cells. These findings suggest that for one cell type, the parenchyma cells of the central pith, the protein is imported rather than synthesized. The localization of the PRms protein indicates the possible existence of mechanisms for sorting of plant proteins to plasmodesmata and suggests that this protein may have a specialized function in the plant defense response. These findings are discussed with respect to the structure and function of plasmodesmata in cell-to-cell communication processes in higher plants. PMID:9061947
Propulsive performance of pitching foils with variable chordwise flexibility
NASA Astrophysics Data System (ADS)
Zeyghami, Samane; Moored, Keith; Lehigh University Team
2017-11-01
Many swimming and flying animals propel themselves efficiently through water by oscillating flexible fins. These fins are not homogeneously flexible, but instead their flexural stiffness varies along their chord and span. Here we seek to evaluate the effect stiffness profile on the propulsive performance of pitching foils. Stiffness profile characterizes the variation in the local fin stiffness along the chord. To this aim, we developed a low order model of a functionally-graded material where the chordwise flexibility is modeled by two torsional springs along the chordline and the stiffness and location of the springs can be varied arbitrarily. The torsional spring structural model is then strongly coupled to a boundary element fluid model to simulate the fluid-structure interactions. Keeping the leading edge kinematics unchanged, we alter the stiffness profile of the foil and allow it to swim freely in response to the resulting hydrodynamic forces. We then detail the dependency of the hydrodynamic performance and the wake structure to the variations in the local structural properties of the foil.
NASA Technical Reports Server (NTRS)
Lei, Shaw-Min; Yao, Kung
1990-01-01
A class of infinite impulse response (IIR) digital filters with a systolizable structure is proposed and its synthesis is investigated. The systolizable structure consists of pipelineable regular modules with local connections and is suitable for VLSI implementation. It is capable of achieving high performance as well as high throughput. This class of filter structure provides certain degrees of freedom that can be used to obtain some desirable properties for the filter. Techniques of evaluating the internal signal powers and the output roundoff noise of the proposed filter structure are developed. Based upon these techniques, a well-scaled IIR digital filter with minimum output roundoff noise is designed using a local optimization approach. The internal signals of all the modes of this filter are scaled to unity in the l2-norm sense. Compared to the Rao-Kailath (1984) orthogonal digital filter and the Gray-Markel (1973) normalized-lattice digital filter, this filter has better scaling properties and lower output roundoff noise.
Local motion adaptation enhances the representation of spatial structure at EMD arrays
Lindemann, Jens P.; Egelhaaf, Martin
2017-01-01
Neuronal representation and extraction of spatial information are essential for behavioral control. For flying insects, a plausible way to gain spatial information is to exploit distance-dependent optic flow that is generated during translational self-motion. Optic flow is computed by arrays of local motion detectors retinotopically arranged in the second neuropile layer of the insect visual system. These motion detectors have adaptive response characteristics, i.e. their responses to motion with a constant or only slowly changing velocity decrease, while their sensitivity to rapid velocity changes is maintained or even increases. We analyzed by a modeling approach how motion adaptation affects signal representation at the output of arrays of motion detectors during simulated flight in artificial and natural 3D environments. We focused on translational flight, because spatial information is only contained in the optic flow induced by translational locomotion. Indeed, flies, bees and other insects segregate their flight into relatively long intersaccadic translational flight sections interspersed with brief and rapid saccadic turns, presumably to maximize periods of translation (80% of the flight). With a novel adaptive model of the insect visual motion pathway we could show that the motion detector responses to background structures of cluttered environments are largely attenuated as a consequence of motion adaptation, while responses to foreground objects stay constant or even increase. This conclusion even holds under the dynamic flight conditions of insects. PMID:29281631
NASA Astrophysics Data System (ADS)
Gurmessa, Bekele; Fitzpatrick, Robert; Valdivia, Jonathon; Anderson, Rae M. R.
Actin, the most abundant protein in eukaryotic cells, is a semi-flexible biopolymer in the cytoskeleton that plays a crucial structural and mechanical role in cell stability, motion and replication, as well as muscle contraction. Most of these mechanically driven structural changes in cells stem from the complex viscoelastic nature of entangled actin networks and the presence of a myriad of proteins that cross-link actin filaments. Despite their importance, the mechanical response of actin networks is not yet well understood, particularly at the molecular level. Here, we use optical trapping - coupled with fluorescence microscopy - to characterize the microscale stress response and induced filament deformations in entangled and cross-linked actin networks subject to localized mechanical perturbations. In particular, we actively drive a microsphere 10 microns through an entangled or cross- linked actin network at a constant speed and measure the resistive force that the deformed actin filaments exert on the bead during and following strain. We simultaneously visualize and track individual sparsely-labeled actin filaments to directly link force response to molecular deformations, and map the propagation of the initially localized perturbation field throughout the rest of the network (~100 um). By varying the concentration of actin and cross-linkers we directly determine the role of crosslinking and entanglements on the length and time scales of stress propagation, molecular deformation and relaxation mechanisms in actin networks.
Global versus local mechanisms of temperature sensing in ion channels.
Arrigoni, Cristina; Minor, Daniel L
2018-05-01
Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.
NASA Astrophysics Data System (ADS)
Pishtshev, A.; Rubin, P.
2018-04-01
By means of periodic density functional theory (DFT) electronic structure calculations, we investigate iron-site doping effects in a structural model of bulk FeAs2. Simulations performed within the projector augmented-wave method-Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional scheme reveal that the impacts of the two stoichiometric substitutions Fe → Mg and Fe → Ni are radically different with respect to the structural and electronic behavior of the dopants. In particular, unlike the Ni dopant, the Mg dopant incorporated in FeAs2 occupies a noncentral equilibrium position characterized by an off-center displacement from the reference higher-symmetry position. Analysis of the respective electron and vibrational factors allows us to explain this result in terms of the local pseudo Jahn-Teller effect (pJTE). On the basis of DFT calculations, we deduce which electron orbitals and lattice vibrational modes are appropriate for promoting the local instability at the origin of the pJTE. Quantitative evaluations of the pJTE parameters performed within the polyatomic formalism of an effective tight-binding model show that it is just the enhanced vibronic interaction in the Mg-[FeAs6] cluster that is responsible for the local lattice symmetry breaking.
Thermo-plasmonics: playing with temperature at the nanoscale (Conference Presentation)
NASA Astrophysics Data System (ADS)
Alabastri, Alessandro; Malerba, Mario; Calandrini, Eugenio; Toma, Andrea; Proietti Zaccaria, Remo
2017-02-01
The electro-magnetic field generated within and around dissipative nano-structures upon light radiation is intimately associated to the formation of localized heat sources. In turn, this phenomenon determines localized temperature variations, effect which can be exploited for applications such as photocatalysis [1], nanochemistry [2] or sensor devices [3]. Here we show how the geometrical characteristics of plasmonic nano-structures can indeed be used to modulate the temperature response. The idea is that when metallic structures interact with an electromagnetic field they heat up due to Joule effect. The corresponding temperature variation modifies the optical response of the structure [4,5] and thus its heating process. The key finding is that, depending on the structures geometry, absorption efficiency can either increase or decrease with temperature. Since absorption relates to the thermal energy dissipation and thus to temperature increase, the mechanism leads to positive or negative loops. Consequently, not only an error would be made by neglecting the role of temperature, but it would be not even possible to know, a priori, if the error is towards higher or lower absorption values. Our model can be utilized to study opto-thermal phenomena when high temperature or high intensity sources are employed. [1] M. Honda et al., Appl. Phys. Lett. 104, 061108 (2014) [2] G. Baffou et al., Chem. Soc. Rev. 43, 3898 (2014) [3] S. Ozdemir et al., J. Lightwave Tech. 21, 805 (2003) [4] A. Alabastri et al., ACS Photonics 2, 115 (2015) [5] A. Alabastri et al., Materials 6, 4879 (2013)
Local Polar Fluctuations in Lead Halide Perovskite Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.
2017-03-01
Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) leadhalide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-tohead Cs motion coupledmore » to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.« less
NASA Astrophysics Data System (ADS)
McCleery, W. Tyler; Mohd-Radzman, Nadiatul A.; Grieneisen, Veronica A.
Cells within tissues can be regarded as autonomous entities that respond to their local environment and signaling from neighbors. Cell coordination is particularly important in plants, where root architecture must strategically invest resources for growth to optimize nutrient acquisition. Thus, root cells are constantly adapting to environmental cues and neighbor communication in a non-linear manner. To explain such plasticity, we view the root as a swarm of coupled multi-cellular structures, ''metamers'', rather than as a continuum of identical cells. These metamers are individually programmed to achieve a local objective - developing a lateral root primordia, which aids in local foraging of nutrients. Collectively, such individual attempts may be halted, structuring root architecture as an emergent behavior. Each metamer's decision to branch is coordinated locally and globally through hormone signaling, including processes of controlled diffusion, active polar transport, and dynamic feedback. We present a physical model of the signaling mechanism that coordinates branching decisions in response to the environment. This work was funded by the European Commission 7th Framework Program, Project No. 601062, SWARM-ORGAN.
NASA Astrophysics Data System (ADS)
Lu, M. F.; Zhou, C. P.; Li, Q. Q.; Zhang, C. L.; Shi, H. F.
2018-01-01
In order to improve the photocatalytic activity under visible-light irradiation, we adopted first principle calculations based on density functional theory (DFT) to calculate the electronic structures of B site transition metal element doped InNbO4. The results indicated that the complete hybridization of Nb 4d states and some Ti 3d states contributed to the new conduction band of Ti doped InNbO4, barely changing the position of band edge. For Cr doping, some localized Cr 3d states were introduced into the band gap. Nonetheless, the potential of localized levels was too positive to cause visible-light reaction. When it came to Cu doping, the band gap was almost same with that of InNbO4 as well as some localized Cu 3d states appeared above the top of VB. The introduction of localized energy levels benefited electrons to migrate from valence band (VB) to conduction band (CB) by absorbing lower energy photons, realizing visible-light response.
Structural, mechanical and optical studies on ultrafast laser inscribed chalcogenide glass waveguide
NASA Astrophysics Data System (ADS)
Ayiriveetil, Arunbabu; Varma, G. Sreevidya; Chaturvedi, Abhishek; Sabapathy, Tamilarasan; Ramamurty, Upadrasta; Asokan, Sundarrajan
2017-04-01
Multi-scan waveguides have been inscribed in GeS2 glass sample with different pulse energies and translation speeds. Mechanical and structural changes on GeS2 binary glass in response to irradiation to 1047 nm femto-second laser pulses have been investigated. The optical characterization of these waveguides has been done at 1550 nm of laser wavelength and the material response to laser exposure is characterized by both nanoindentation studies and micro-Raman spectroscopy. Nanoindentation investigations show a decrease in hardness (H) and elastic modulus (E) upon laser irradiation. The change in E and H are found to be varying with the translational speed, pulse energy and hence the net-fluence at the sample. These changes are correlated with variations in the Raman response of photo-exposed glass which is interpreted in terms of structural modifications made by the laser inscriptions to the glassy network. The mechanical behavior and local structural changes on waveguide writing is found to be dependent on net-fluence and it is correlated with the preparation conditions like melt temperature and cooling rate.
NASA Astrophysics Data System (ADS)
Jones, A. P.
2012-04-01
Context. The compositional properties of hydrogenated amorphous carbons are known to evolve in response to the local conditions. Aims: We present a model for low-temperature, amorphous hydrocarbon solids, based on the microphysical properties of random and defected networks of carbon and hydrogen atoms, that can be used to study and predict the evolution of their properties in the interstellar medium. Methods: We adopt an adaptable and prescriptive approach to model these materials, which is based on a random covalent network (RCN) model, extended here to a full compositional derivation (the eRCN model), and a defective graphite (DG) model for the hydrogen poorer materials where the eRCN model is no longer valid. Results: We provide simple expressions that enable the determination of the structural, infrared and spectral properties of amorphous hydrocarbon grains as a function of the hydrogen atomic fraction, XH. Structural annealing, resulting from hydrogen atom loss, results in a transition from H-rich, aliphatic-rich to H-poor, aromatic-rich materials. Conclusions: The model predicts changes in the optical properties of hydrogenated amorphous carbon dust in response to the likely UV photon-driven and/or thermal annealing processes resulting, principally, from the radiation field in the environment. We show how this dust component will evolve, compositionally and structurally in the interstellar medium in response to the local conditions. Appendices A and B are available in electronic form at http://www.aanda.org
Development of the cloud sharing system for residential earthquake responses using smartphones
NASA Astrophysics Data System (ADS)
Shohei, N.; Fujiwara, H.; Azuma, H.; Hao, K. X.
2015-12-01
Earthquake responses at residential depends on its building structure, site amplification, epicenter distance, and etc. Until recently, it was impossible to obtain the individual residential response by conventional seismometer in terms of costs. However, current technology makes it possible with the Micro Electro Mechanical Systems (MEMS) sensors inside mobile terminals like smartphones. We developed the cloud sharing system for residential earthquake response in local community utilizing mobile terminals, such as an iPhone, iPad, iPod touch as a collaboration between NIED and Hakusan Corp. The triggered earthquake acceleration waveforms are recorded at sampling frequencies of 100Hz and stored on their memories once an threshold value was exceeded or ordered information received from the Earthquake Early Warning system. The recorded data is automatically transmitted and archived on the cloud server once the wireless communication is available. Users can easily get the uploaded data by use of a web browser through Internet. The cloud sharing system is designed for residential and only shared in local community internal. Residents can freely add sensors and register information about installation points in each region. And if an earthquake occurs, they can easily view the local distribution of seismic intensities and even analyze waves.To verify this cloud-based seismic wave sharing system, we have performed on site experiments under the cooperation of several local communities, The system and experimental results will be introduced and demonstrated in the presentation.
Nonlinear Response and Residual Strength of Damaged Stiffened Shells Subjected to Combined Loads
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Britt, Vicki O.; Rose, Cheryl A.; Rankin, Charles C.
1996-01-01
The results of an analytical study of the nonlinear response of stiffened fuselage shells with long cracks are presented. The shells are modeled with a hierarchical modeling strategy and analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Fuselage skins, frames stringers and failsafe straps are included in the models. Results are presented for various combinations of internal pressure and mechanical bending, vertical shear and torsion loads, and the effects of crack orientation and location on the shell response are described. These results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell, and the stress-intensity factors associated with a crack that are used to predict residual strength. The effects of representative combined loading conditions on the stress-intensity factors associated with a crack are presented. The effects of varying structural parameters on the stress-intensity factors associated with a crack, and on self-similar and non-self-similar crack-growth are also presented.
Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA
Oberstrass, Florian C.; Fernandes, Louis E.; Bryant, Zev
2012-01-01
B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context. PMID:22474350
NASA Astrophysics Data System (ADS)
Panopoulou, A.; Fransen, S.; Gomez Molinero, V.; Kostopoulos, V.
2012-07-01
The objective of this work is to develop a new structural health monitoring system for composite aerospace structures based on dynamic response strain measurements and experimental modal analysis techniques. Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of vibration testing. The hypothesis of all vibration tests was that actual damage in composites reduces their stiffness and produces the same result as mass increase produces. Thus, damage was simulated by slightly varying locally the mass of the structure at different zones. Experimental modal analysis based on the strain responses was conducted and the extracted strain mode shapes were the input for the damage detection expert system. A feed-forward back propagation neural network was the core of the damage detection system. The features-input to the neural network consisted of the strain mode shapes, extracted from the experimental modal analysis. Dedicated training and validation activities were carried out based on the experimental results. The system showed high reliability, confirmed by the ability of the neural network to recognize the size and the position of damage on the structure. The experiments were performed on a real structure i.e. a lightweight antenna sub- reflector, manufactured and tested at EADS CASA ESPACIO. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on the structure with optimum topology. Numerical simulation of both structures was used as a support tool at all the steps of the work. Potential applications for the proposed system are during ground qualification extensive tests of space structures and during the mission as modal analysis tool on board, being able via the FBG responses to identify a potential failure.
2013-01-01
External challenges to health systems, such as those caused by global economic, social and environmental changes, have received little attention in recent debates on health systems’ performance in low-and middle-income countries (LMICs). One such challenge in coming years will be increasing prices for petroleum-based products as production from conventional petroleum reserves peaks and demand steadily increases in rapidly-growing LMICs. Health systems are significant consumers of fossil fuels in the form of petroleum-based medical supplies; transportation of goods, personnel and patients; and fuel for lighting, heating, cooling and medical equipment. Long-term increases in petroleum prices in the global market will have potentially devastating effects on health sectors in LMICs who already struggle to deliver services to remote parts of their catchment areas. We propose the concept of “localization,” originating in the environmental sustainability literature, as one element of response to these challenges. Localization assigns people at the local level a greater role in the production of goods and services, thereby decreasing reliance on fossil fuels and other external inputs. Effective localization will require changes to governance structures within the health sector in LMICs, empowering local communities to participate in their own health in ways that have remained elusive since this goal was first put forth in the Alma-Ata Declaration on Primary Health Care in 1978. Experiences with decentralization policies in the decades following Alma-Ata offer lessons on defining roles and responsibilities, building capacity at the local level, and designing appropriate policies to target inequities, all of which can guide health systems to adapt to a changing environmental and energy landscape. PMID:24199690
NASA Astrophysics Data System (ADS)
Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.
2014-02-01
Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.
Reflexive aerostructures: increased vehicle survivability
NASA Astrophysics Data System (ADS)
Margraf, Thomas W.; Hemmelgarn, Christopher D.; Barnell, Thomas J.; Franklin, Mark A.
2007-04-01
Aerospace systems stand to benefit significantly from the advancement of reflexive aerostructure technologies for increased vehicle survivability. Cornerstone Research Group Inc. (CRG) is developing lightweight, healable composite systems for use as primary load-bearing aircraft components. The reflexive system is comprised of piezoelectric structural health monitoring systems, localized thermal activation systems, and lightweight, healable composite structures. The reflexive system is designed to mimic the involuntary human response to damage. Upon impact, the structural health monitoring system will identify the location and magnitude of the damage, sending a signal to a discrete thermal activation control system to resistively heat the shape memory polymer (SMP) matrix composite above activation temperature, resulting in localized shape recovery and healing of the damaged areas. CRG has demonstrated SMP composites that can recover 90 percent of flexural yield stress and modulus after postfailure healing. During the development, CRG has overcome issues of discrete activation, structural health monitoring integration, and healable resin systems. This paper will address the challenges associated with development of a reflexive aerostructure, including integration of structural health monitoring, discrete healing, and healable shape memory resin systems.
Li, Jinghao; Hunt, John F; Gong, Shaoqin; Cai, Zhiyong
2017-01-01
This paper presents experimental results of both quasi-static compression and low-velocity impact behavior for tri-axial bio-composite structural panels using a spherical load head. Panels were made having different core and face configurations. The results showed that panels made having either carbon fiber fabric composite faces or a foam-filled core had significantly improved impact and compressive performance over panels without either. Different localized impact responses were observed based on the location of the compression or impact relative to the tri-axial structural core; the core with a smaller structural element had better impact performance. Furthermore, during the early contact phase for both quasi-static compression and low-velocity impact tests, the panels with the same configuration had similar load-displacement responses. The experimental results show basic compression data could be used for the future design and optimization of tri-axial bio-composite structural panels for potential impact applications. PMID:28772542
Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure
NASA Astrophysics Data System (ADS)
Leone, Frank A., Jr.
A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core. Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed. The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures. Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications to the definitions of the local FE model boundary conditions is proposed and developed to address several issues related to the scalability of progressive damage modeling concepts, especially in regards to full-scale fuselage structures. Notable improvements were observed in the ability of the FE models to predict the strength of damaged composite fuselage structures. Excellent agreement has been established between the FE model predictions and the experimental results recorded by DIC, AE, FR, and visual observations.
Tjerbo, Trond
2009-11-20
The Norwegian hospital reform of 2002 was an attempt to make restructuring of hospitals easier by removing politicians from the decision-making processes. To facilitate changes seen as necessary but politically difficult, the central state took over ownership of the hospitals and stripped the county politicians of what had been their main responsibility for decades. This meant that decisions regarding hospital structure and organization were now being taken by professional administrators and not by politically elected representatives. The question raised here is whether this has had any effect on the speed of restructuring of the hospital sector. The empirical part is a case study of the restructuring process in Innlandet Hospital Trust (IHT), which was one of the largest enterprise established after the hospital reform and where the vision for restructuring was clearly set. Different sources of qualitative data are used in the analysis. These include interviews with key actors, observational data and document studies. The analysis demonstrates how the new professional leaders at first acted in accordance with the intentions of the hospital reform, but soon chose to avoid the more ambitious plans for restructuring the hospital structure and in fact reintroduced local politics into the decision-making process. The analysis further illustrates how local networks and engagement of political representatives from all levels of government complicated the decision-making process surrounding local structural reforms. Local political representatives teamed up with other actors and created powerful networks. At the same time, national politicians had incentives to involve themselves in the processes as supporters of the status quo. Because of the incentives that faced political actors and the controversial nature of major hospital reforms, the removal of local politicians and the centralization of ownership did not necessarily facilitate reforms in the hospital structure. Keeping politics at an arm's length may simply be unrealistic and further complicate the politics of local hospital reforms.
2009-01-01
Background The Norwegian hospital reform of 2002 was an attempt to make restructuring of hospitals easier by removing politicians from the decision-making processes. To facilitate changes seen as necessary but politically difficult, the central state took over ownership of the hospitals and stripped the county politicians of what had been their main responsibility for decades. This meant that decisions regarding hospital structure and organization were now being taken by professional administrators and not by politically elected representatives. The question raised here is whether this has had any effect on the speed of restructuring of the hospital sector. Method The empirical part is a case study of the restructuring process in Innlandet Hospital Trust (IHT), which was one of the largest enterprise established after the hospital reform and where the vision for restructuring was clearly set. Different sources of qualitative data are used in the analysis. These include interviews with key actors, observational data and document studies. Results The analysis demonstrates how the new professional leaders at first acted in accordance with the intentions of the hospital reform, but soon chose to avoid the more ambitious plans for restructuring the hospital structure and in fact reintroduced local politics into the decision-making process. The analysis further illustrates how local networks and engagement of political representatives from all levels of government complicated the decision-making process surrounding local structural reforms. Local political representatives teamed up with other actors and created powerful networks. At the same time, national politicians had incentives to involve themselves in the processes as supporters of the status quo. Conclusion Because of the incentives that faced political actors and the controversial nature of major hospital reforms, the removal of local politicians and the centralization of ownership did not necessarily facilitate reforms in the hospital structure. Keeping politics at an arm's length may simply be unrealistic and further complicate the politics of local hospital reforms. PMID:19930553
2012-12-01
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction ...defensively, out of a sense of threat and because of a belief that they had no alternative but to fight to the death to protect their communities in...Iraq “to marry senior al-Qaeda fighters to local brides. The aim was to sow deep roots in a community . But in Iraqi tribal structure, ‘marrying women
Near-Edge X-ray Absorption Fine Structure within Multilevel Coupled Cluster Theory.
Myhre, Rolf H; Coriani, Sonia; Koch, Henrik
2016-06-14
Core excited states are challenging to calculate, mainly because they are embedded in a manifold of high-energy valence-excited states. However, their locality makes their determination ideal for local correlation methods. In this paper, we demonstrate the performance of multilevel coupled cluster theory in computing core spectra both within the core-valence separated and the asymmetric Lanczos implementations of coupled cluster linear response theory. We also propose a visualization tool to analyze the excitations using the difference between the ground-state and excited-state electron densities.
Recovering a Probabilistic Knowledge Structure by Constraining Its Parameter Space
ERIC Educational Resources Information Center
Stefanutti, Luca; Robusto, Egidio
2009-01-01
In the Basic Local Independence Model (BLIM) of Doignon and Falmagne ("Knowledge Spaces," Springer, Berlin, 1999), the probabilistic relationship between the latent knowledge states and the observable response patterns is established by the introduction of a pair of parameters for each of the problems: a lucky guess probability and a careless…
Home Start Evaluation Study. Interim Case Studies IIa.
ERIC Educational Resources Information Center
Fein, Robert
This formative evaluation study of Home Start uses a case study approach. A brief case study focuses on the administrative structure and staff resources and responsibilities of National Home Start. Also included are reports on seven local programs developed after two field visits had been made to each program. In the first visit, objectives chosen…
Before Five: Early Childhood Care and Education in New Zealand.
ERIC Educational Resources Information Center
New Zealand Dept. of Education, Wellington.
This publication outlines the Government of New Zealand's new plans and policies for the administration of early childhood care and education. Specific features are discussed in detail in sections concerning: (1) early childhood care and education at the local level, specifically management structures and responsibilities, the use of Crown land,…
Essential Leadership: School Boards in New York State. A Position Paper.
ERIC Educational Resources Information Center
New York State School Boards Association, Albany.
For effective schools, leadership is vital. As the structure of American education evolved, a model of how a local school board should function emerged. The model is briefly summarized and research on educational leadership, challenges of school board service in New York State, and responsibilities of school boards are discussed. Key leadership…
Lay, Chee Leng; Koh, Charlynn Sher Lin; Wang, Jing; Lee, Yih Hong; Jiang, Ruibin; Yang, Yijie; Yang, Zhe; Phang, In Yee; Ling, Xing Yi
2018-01-03
The application of aluminum (Al)-based nanostructures for visible-range plasmonics, especially for surface-enhanced Raman scattering (SERS), currently suffers from inconsistent local electromagnetic field distributions and/or inhomogeneous distribution of probe molecules. Herein, we lithographically fabricate structurally uniform Al nanostructures which enable homogeneous adsorption of various probe molecules. Individual Al nanostructures exhibit strong local electromagnetic field enhancements, in turn leading to intense SERS activity. The average SERS enhancement factor (EF) for individual nanostructures exceeds 10 4 for non-resonant probe molecules in the visible spectrum. These Al nanostructures also retain more than 70% of their original SERS intensities after one-month storage, displaying superb stability under ambient conditions. We further achieve tunable polarization-dependent SERS responses using anisotropic Al nanostructures, facilitating the design of sophisticated SERS-based security labels. Our micron-sized security label comprises two-tier security features, including a machine-readable hybrid quick-response (QR) code overlaid with a set of ciphertexts. Our work demonstrates the versatility of Al-based structures in low-cost modern chemical nano-analytics and forgery protection.
Contrast Invariant Interest Point Detection by Zero-Norm LoG Filter.
Zhenwei Miao; Xudong Jiang; Kim-Hui Yap
2016-01-01
The Laplacian of Gaussian (LoG) filter is widely used in interest point detection. However, low-contrast image structures, though stable and significant, are often submerged by the high-contrast ones in the response image of the LoG filter, and hence are difficult to be detected. To solve this problem, we derive a generalized LoG filter, and propose a zero-norm LoG filter. The response of the zero-norm LoG filter is proportional to the weighted number of bright/dark pixels in a local region, which makes this filter be invariant to the image contrast. Based on the zero-norm LoG filter, we develop an interest point detector to extract local structures from images. Compared with the contrast dependent detectors, such as the popular scale invariant feature transform detector, the proposed detector is robust to illumination changes and abrupt variations of images. Experiments on benchmark databases demonstrate the superior performance of the proposed zero-norm LoG detector in terms of the repeatability and matching score of the detected points as well as the image recognition rate under different conditions.
Turunen, Jarno; Louhi, Pauliina; Mykrä, Heikki; Aroviita, Jukka; Putkonen, Emmi; Huusko, Ari; Muotka, Timo
2018-06-06
The effects of anthropogenic stressors on community structure and ecosystem functioning can be strongly influenced by local habitat structure and dispersal from source communities. Catchment land uses increase the input of fine sediments into stream channels, clogging the interstitial spaces of benthic habitats. Aquatic macrophytes enhance habitat heterogeneity and mediate important ecosystem functions, being thus a key component of habitat structure in many streams. Therefore, the recovery of macrophytes following in-stream habitat modification may be prerequisite for successful stream restoration. Restoration success is also affected by dispersal of organisms from the source community, with potentially strongest responses in relatively isolated headwater sites that receive limited amount of dispersing individuals. We used a factorial design in a set of stream mesocosms to study the independent and combined effects of an anthropogenic stressor (sand sedimentation), local habitat (macrophytes, i.e. moss transplants) and enhanced dispersal (two levels: high vs. low) on organic matter retention, algal accrual rate, leaf decomposition and macroinvertebrate community structure. Overall, all responses were simple additive effects with no interactions between treatments. Sand reduced algal accumulation, total invertebrate density and density of a few individual taxa. Mosses reduced algal accrual rate and algae-grazing invertebrates, but enhanced organic matter retention and detritus- and filter-feeders. Mosses also reduced macroinvertebrate diversity by increasing the dominance by a few taxa. Mosses also reduced leaf-mass loss, possibly because the organic matter retained by mosses provided an additional food source for leaf-shredding invertebrates and thus reduced shredder aggregation into leaf packs. The effect of mosses on macroinvertebrate communities and ecosystem functioning was distinct irrespective of the level of dispersal, suggesting strong environmental control of community structure. The strong environmental control of macroinvertebrate community composition even under enhanced dispersal suggests that re-establishing key habitat features, such as natural stream vegetation, could aid ecosystem recovery in boreal streams. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi
2013-12-18
This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk® Simulation Moldflow® Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS® via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predictedmore » stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.« less
Tertiary lymphoid structures in cancer and beyond.
Dieu-Nosjean, Marie-Caroline; Goc, Jérémy; Giraldo, Nicolas A; Sautès-Fridman, Catherine; Fridman, Wolf Herman
2014-11-01
Tertiary lymphoid structures (TLS) are ectopic lymphoid formations found in inflamed, infected, or tumoral tissues. They exhibit all the characteristics of structures in the lymph nodes (LN) associated with the generation of an adaptive immune response, including a T cell zone with mature dendritic cells (DC), a germinal center with follicular dendritic cells (FDC) and proliferating B cells, and high endothelial venules (HEV). In this review, we discuss evidence for the roles of TLS in chronic infection, autoimmunity, and cancer, and address the question of whether TLS present beneficial or deleterious effects in these contexts. We examine the relationship between TLS in tumors and patient prognosis, and discuss the potential role of TLS in building and/or maintaining local immune responses and how this understanding may guide therapeutic interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Debenham, Natalie; King, Rosalind C.; Holford, Simon P.
2018-07-01
Despite the ubiquity of normal faults that have undergone compressional inversion, documentation of the structural history of natural fractures around these structures is limited. In this paper, we investigate the geometries and relative chronologies of natural fractures adjacent to a reverse-reactivated normal fault, the Castle Cove Fault in the Otway Basin, southeast Australia. Local variations in strain resulted in greater deformation within the fault damage zone closer to the fault. Structural mapping within the damage zone reveals a complex tectonic history recording both regional and local perturbations in stress and a total of 11 fracture sets were identified, with three sets geometrically related to the Castle Cove Fault. The remaining fracture sets formed in response to local stresses at Castle Cove. Rifting in the late Cretaceous resulted in normal movement of the Castle Cove Fault and associated rollover folding, and the formation of the largest fracture set. Reverse-reactivation of the fault and associated anticlinal folding occurred during late Miocene to Pliocene compression. Rollover folding may have provided structural traps if seals were not breached by fractures, however anticlinal folding likely post-dated the main episodes of hydrocarbon generation and migration in the region. This study highlights the need to conduct careful reconstruction of the structural histories of fault zones that experienced complex reactivation histories when attempting to define off-fault fluid flow properties.
Evans, Catrin; Lambert, Helen
2008-01-01
This paper uses ethnographic data from a sex workers' HIV project in India to consider the appropriateness of individual, social/group and structural theories of health behaviour when applied to HIV-prevention initiatives. Existing theories are critiqued for their modernist representation of behaviour as determined by individual rational decision-making processes or by external structural forces, with inadequate recognition being given to the roles that human agency, subjective meaning and local context play in everyday actions. Analysis of sex workers' accounts of their sexual practices suggests that existing theories of health behaviour can only partially account for sexual behaviour change retrospectively and that they have limited predictive value with respect to the outcomes of individual sexual encounters. Our data show that these outcomes were, in fact, highly context dependent, while possibilities for action were ultimately strongly constrained by structural forces. Findings suggest that interventions need to adopt an integrated, structurally-oriented approach for promoting safer sexual practices in sex work settings. Recognising that no one model of health behaviour is likely to be adequate in explaining or predicting behaviour change encourages responsiveness to local people's agency, recognises the different (health- and non-health-related) registers of risk with which people operate and encourages flexibility according to local contingencies and contexts.
Causal Loop Analysis of coastal geomorphological systems
NASA Astrophysics Data System (ADS)
Payo, Andres; Hall, Jim W.; French, Jon; Sutherland, James; van Maanen, Barend; Nicholls, Robert J.; Reeve, Dominic E.
2016-03-01
As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a model, the modeller can readily assess if critical feedback loops are included.
Picardi, Susanne; Cartellieri, Sibylle; Groves, Danja; Hahnenkamp, Klaus; Hahnenekamp, Klaus; Gerner, Peter; Durieux, Marcel E; Stevens, Markus F; Lirk, Philipp; Hollmann, Markus W
2013-01-01
Local anesthetics (LAs) are widely known for inhibition of voltage-gated sodium channels underlying their antiarrhythmic and antinociceptive effects. However, LAs have significant immunomodulatory properties and were shown to affect human neutrophil functions independent of sodium-channel blockade. Previous studies suggest a highly selective interaction between LAs and the α-subunit of G protein-coupled receptors of the Gq/G11 family as underlying mechanism. Providing a detailed structure function analysis, this study aimed to determine the active parts within the LA molecule responsible for the effects on human neutrophil priming. Human neutrophils were incubated with structurally different LAs for 60 minutes, followed by priming and activation using either platelet-activating factor or lysophosphatidic acid and N-formyl-methionyl-L-leucyl-L-phenylalanine. Superoxide anion generation was determined, using the cytochrome c reduction assay. Differences in priming inhibition of human neutrophils between LAs were smaller than expected, although significant. Ester-linked LAs blocked priming responses more effectively than did amide LAs. Furthermore, the inhibitory potency of LAs on priming decreased with an increase of their respective octanol-buffer coefficient, and inhibition did not correlate with sodium-channel-blocking potency. Charge was not crucially required for priming inhibition, yet it played a role in effect size. Local anesthetics significantly attenuated Gαq-protein-mediated neutrophil priming. The most potent inhibition was achieved by ester compounds, inversely correlated with their octanol-buffer coefficient, and enhanced by permanent charges within the LA molecule. No correlation to their potency of blocking sodium channels was found.
Will HEE and LETBs deliver the 'right nurse'?
While, Alison
2012-03-01
The restructuring of the NHS in England will see the loss of strategic health authorities, with their workforce education remit being transferred to a completely new structure comprising Health Education England (HEE) and Local Education and Training Boards (LETBs). HEE will provide national oversight of strategic workforce planning and allocate the education and training budget, and will also be responsible for national schemes like junior doctor training. The LETBs will be populated by representatives of health-care providers and professionals, and will be the interface with HEE. They will be charged with ensuring high-quality outcomes from educational investment and meeting the needs of health-care delivery, patients and the public. The universities, colleges, employers and other local education providers will remain responsible for educating the health-care workforce.
Optimal sensor placement for time-domain identification using a wavelet-based genetic algorithm
NASA Astrophysics Data System (ADS)
Mahdavi, Seyed Hossein; Razak, Hashim Abdul
2016-06-01
This paper presents a wavelet-based genetic algorithm strategy for optimal sensor placement (OSP) effective for time-domain structural identification. Initially, the GA-based fitness evaluation is significantly improved by using adaptive wavelet functions. Later, a multi-species decimal GA coding system is modified to be suitable for an efficient search around the local optima. In this regard, a local operation of mutation is introduced in addition with regeneration and reintroduction operators. It is concluded that different characteristics of applied force influence the features of structural responses, and therefore the accuracy of time-domain structural identification is directly affected. Thus, the reliable OSP strategy prior to the time-domain identification will be achieved by those methods dealing with minimizing the distance of simulated responses for the entire system and condensed system considering the force effects. The numerical and experimental verification on the effectiveness of the proposed strategy demonstrates the considerably high computational performance of the proposed OSP strategy, in terms of computational cost and the accuracy of identification. It is deduced that the robustness of the proposed OSP algorithm lies in the precise and fast fitness evaluation at larger sampling rates which result in the optimum evaluation of the GA-based exploration and exploitation phases towards the global optimum solution.
NASA Astrophysics Data System (ADS)
Coridan, Robert H.; Schmidt, Nathan W.; Lai, Ghee Hwee; Abbamonte, Peter; Wong, Gerard C. L.
2012-03-01
Nanoconfined water and surface-structured water impacts a broad range of fields. For water confined between hydrophilic surfaces, measurements and simulations have shown conflicting results ranging from “liquidlike” to “solidlike” behavior, from bulklike water viscosity to viscosity orders of magnitude higher. Here, we investigate how a homogeneous fluid behaves under nanoconfinement using its bulk response function: The Green's function of water extracted from a library of S(q,ω) inelastic x-ray scattering data is used to make femtosecond movies of nanoconfined water. Between two confining surfaces, the structure undergoes drastic changes as a function of surface separation. For surface separations of ≈9 Å, although the surface-associated hydration layers are highly deformed, they are separated by a layer of bulklike water. For separations of ≈6 Å, the two surface-associated hydration layers are forced to reconstruct into a single layer that modulates between localized “frozen’ and delocalized “melted” structures due to interference of density fields. These results potentially reconcile recent conflicting experiments. Importantly, we find a different delocalized wetting regime for nanoconfined water between surfaces with high spatial frequency charge densities, where water is organized into delocalized hydration layers instead of localized hydration shells, and are strongly resistant to `freezing' down to molecular distances (<6 Å).
Units of analysis and kinetic structure of behavioral repertoires
Thompson, Travis; Lubinski, David
1986-01-01
It is suggested that molar streams of behavior are constructed of various arrangements of three elementary constituents (elicited, evoked, and emitted response classes). An eight-cell taxonomy is elaborated as a framework for analyzing and synthesizing complex behavioral repertoires based on these functional units. It is proposed that the local force binding functional units into a smoothly articulated kinetic sequence arises from temporally arranged relative response probability relationships. Behavioral integration is thought to reflect the joint influence of the organism's hierarchy of relative response probabilities, fluctuating biological states, and the arrangement of environmental and behavioral events in time. PMID:16812461
Timpka, Toomas; Eriksson, Henrik; Strömgren, Magnus; Eriksson, Olle; Ekberg, Joakim; Grimvall, Anders; Nyce, James; Gursky, Elin; Holm, Einar
2010-01-01
The global spread of a novel A (H1N1) influenza virus in 2009 has highlighted the possibility of a devastating pandemic similar to the ‘Spanish flu’ of 1917–1918. Responding to such pandemics requires careful planning for the early phases where there is no availability of pandemic vaccine. We set out to compute a Neighborhood Influenza Susceptibility Index (NISI) describing the vulnerability of local communities of different geo-socio-physical structure to a pandemic influenza outbreak. We used a spatially explicit geo-physical model of Linköping municipality (pop. 136,240) in Sweden, and employed an ontology-modeling tool to define simulation models and transmission settings. We found considerable differences in NISI between neighborhoods corresponding to primary care areas with regard to early progress of the outbreak, as well as in terms of the total accumulated share of infected residents counted after the outbreak. The NISI can be used in local preparations of physical response measures during pandemics. PMID:21347087
Bird-community responses to habitat creation in a long-term, large-scale natural experiment.
Whytock, Robin C; Fuentes-Montemayor, Elisa; Watts, Kevin; Barbosa De Andrade, Patanjaly; Whytock, Rory T; French, Paul; Macgregor, Nicholas A; Park, Kirsty J
2018-04-01
Ecosystem function and resilience are compromised when habitats become fragmented due to land-use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape-scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post-agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10-160 years with ≥80% canopy cover and in landscapes with 0-17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local- and landscape-scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Zhang, Xuebing; Liu, Ning; Xi, Jiaxin; Zhang, Yunqi; Zhang, Wenchun; Yang, Peipei
2017-08-01
How to analyze the nonstationary response signals and obtain vibration characters is extremely important in the vibration-based structural diagnosis methods. In this work, we introduce a more reasonable time-frequency decomposition method termed local mean decomposition (LMD) to instead the widely-used empirical mode decomposition (EMD). By employing the LMD method, one can derive a group of component signals, each of which is more stationary, and then analyze the vibration state and make the assessment of structural damage of a construction or building. We illustrated the effectiveness of LMD by a synthetic data and an experimental data recorded in a simply-supported reinforced concrete beam. Then based on the decomposition results, an elementary method of damage diagnosis was proposed.
Birnbaum, Marvin L; Daily, Elaine K; O'Rourke, Ann P; Loretti, Alessandro
2015-10-01
A Conceptual Framework upon which the study of disasters can be organized is essential for understanding the epidemiology of disasters, as well as the interventions/responses undertaken. Application of the structure provided by the Conceptual Framework should facilitate the development of the science of Disaster Health. This Framework is based on deconstructions of the commonly used Disaster Management Cycle. The Conceptual Framework incorporates the steps that occur as a hazard progresses to a disaster. It describes an event that results from the changes in the release of energy from a hazard that may cause Structural Damages that in turn, may result in Functional Damages (decreases in levels of function) that produce needs (goods and services required). These needs can be met by the goods and services that are available during normal, day-to-day operations of the community, or the resources that are contained within the community's Response Capacity (ie, an Emergency), or by goods and services provided from outside of the affected area (outside response capacities). Whenever the Local Response Capacity is unable to meet the needs, and the Response Capacities from areas outside of the affected community are required, a disaster occurs. All responses, whether in the Relief or Recovery phases of a disaster, are interventions that use the goods, services, and resources contained in the Response Capacity (local or outside). Responses may be directed at preventing/mitigating further deterioration in levels of functions (damage control, deaths, injuries, diseases, morbidity, and secondary events) in the affected population and filling the gaps in available services created by Structural Damages (compromise in available goods, services, and/or resources; ie, Relief Responses), or may be directed toward returning the affected community and its components to the pre-event functional state (ie, Recovery Responses). Hazard Mitigation includes interventions designed to decrease the likelihood that a hazard will cause an event, and should an event occur, that the amount of energy released will be reduced. Capacity Building consists of all interventions undertaken before an event occurs in order to increase the resilience of the community to an event related to a hazard that exists in an area-at-risk. Resilience is the combination of the Absorbing, Buffering, and Response Capacities of a community-at-risk, and is enhanced through Capacity-Building efforts. A disaster constitutes a failure of resilience.
Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Rose, Cheryl A.
1999-01-01
The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.
Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Rose, Cheryl A.
1998-01-01
The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.
Design of Composite Structures for Reliability and Damage Tolerance
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
1999-01-01
A summary of research conducted during the first year is presented. The research objectives were sought by conducting two tasks: (1) investigation of probabilistic design techniques for reliability-based design of composite sandwich panels, and (2) examination of strain energy density failure criterion in conjunction with response surface methodology for global-local design of damage tolerant helicopter fuselage structures. This report primarily discusses the efforts surrounding the first task and provides a discussion of some preliminary work involving the second task.
Functional stability of cerebral circulatory system
NASA Technical Reports Server (NTRS)
Moskalenko, Y. Y.
1980-01-01
The functional stability of the cerebral circulation system seems to be based on the active mechanisms and on those stemming from specific of the biophysical structure of the system under study. This latter parameter has some relevant criteria for its quantitative estimation. The data obtained suggest that the essential part of the mechanism for active responses of cerebral vessels which maintains the functional stability of this portion of the vascular system, consists of a neurogenic component involving central nervous structures localized, for instance, in the medulla oblongata.
NASA Technical Reports Server (NTRS)
Jones, R.; Molent, L.; Paul, J.; Saunders, T.; Chiu, W. K.
1994-01-01
This paper presents an overview of the structural aspects of the design and development of a local reinforcement designed to lower the stresses in a region of the F-111C wing fitting which is prone to cracking. The stress analysis, with particular emphasis on the use of a unified constitutive model for the cyclic inelastic response of the structure, representative specimen testing, thermal analysis and full scale static testing of this design are summarized.
Optical Tamm states in one-dimensional magnetophotonic structures.
Goto, T; Dorofeenko, A V; Merzlikin, A M; Baryshev, A V; Vinogradov, A P; Inoue, M; Lisyansky, A A; Granovsky, A B
2008-09-12
We demonstrate the existence of a spectrally narrow localized surface state, the so-called optical Tamm state, at the interface between one-dimensional magnetophotonic and nonmagnetic photonic crystals. The state is spectrally located inside the photonic band gaps of each of the photonic crystals comprising this magnetophotonic structure. This state is associated with a sharp transmission peak through the sample and is responsible for the substantial enhancement of the Faraday rotation for the corresponding wavelength. The experimental results are in excellent agreement with the theoretical predictions.
Guo, Kang-kang; Tang, Qing-hai; Zhang, Yan-ming; Kang, Kai; He, Lei
2011-05-18
The membrane topology and molecular mechanisms for endoplasmic reticulum (ER) localization of classical swine fever virus (CSFV) non-structural 2 (NS2) protien is unclear. We attempted to elucidate the subcellular localization, and the molecular mechanisms responsible for the localization of this protein in our study. The NS2 gene was amplified by reverse transcription polymerase chain reaction, with the transmembrane region and hydrophilicity of the NS2 protein was predicted by bioinformatics analysis. Twelve cDNAs of the NS2 gene were amplified by the PCR deletion method and cloned into a eukaryotic expression vector, which was transfected into a swine umbilical vein endothelial cell line (SUVEC). Subcellular localization of the NS2 protein was characterized by confocal microscopy, and western blots were carried out to analyze protein expression. Our results showed that the -NH2 terminal of the CSFV NS2 protein was highly hydrophobic and the protein localized in the ER. At least four transmembrane regions and two internal signal peptide sequences (amino acids103-138 and 220-262) were identified and thought to be critical for its trans-localization to the ER. This is the first study to identify the internal signal peptide sequences of the CSFV NS2 protein and its subcellular localization, providing the foundation for further exploration of this protein's function of this protein and its role in CSFV pathogenesis.
Estrada, Nicolas; Lizcano, Arcesio; Taboada, Alfredo
2010-07-01
This is the first of two papers investigating the mechanical response of cemented granular materials by means of contact dynamics simulations. In this paper, a two-dimensional polydisperse sample with high-void ratio is constructed and then sheared in a simple shear numerical device at different confinement levels. We study the macroscopic response of the material in terms of mean and deviatoric stresses and strains. We show that the introduction of a local force scale, i.e., the tensile strength of the cemented bonds, causes the material to behave in a rigid-plastic fashion, so that a yield surface can be easily determined. This yield surface has a concave-down shape in the mean:deviatoric stress plane and it approaches a straight line, i.e., a Coulomb strength envelope, in the limit of a very dense granular material. Beyond yielding, the cemented structure gradually degrades until the material eventually behaves as a cohesionless granular material. Strain localization is also investigated, showing that the strains concentrate in a shear band whose thickness increases with the confining stress. The void ratio inside the shear band at the steady state is shown to be a material property that depends only on contact parameters.
Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods
NASA Astrophysics Data System (ADS)
Cubuk, E. D.; Schoenholz, S. S.; Rieser, J. M.; Malone, B. D.; Rottler, J.; Durian, D. J.; Kaxiras, E.; Liu, A. J.
2015-03-01
We use machine-learning methods on local structure to identify flow defects—or particles susceptible to rearrangement—in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a Lennard-Jones glass in both two and three dimensions above and below its glass transition temperature. We also identify characteristics of flow defects that differentiate them from the rest of the sample. Our results show it is possible to discern subtle structural features responsible for heterogeneous dynamics observed across a broad range of disordered materials.
Stafford, K J; Mellor, D J; Todd, S E; Bruce, R A; Ward, R N
2002-08-01
The cortisol response of calves to different methods of castration (ring, band, surgical, clamp) with or without local anaesthetic, or local anaesthetic plus a non-steroidal anti-inflammatory drug were recorded. All methods of castration caused a significant cortisol response and by inference pain and distress. Band castration caused a greater cortisol response than ring castration but the responses were eliminated by local anaesthetic. The cortisol response to surgical castration, by traction on the spermatic cords or by cutting across them with an emasculator, was not diminished by local anaesthetic but when ketoprofen was given with local anaesthetic the cortisol response was eliminated. Local anaesthetic did reduce the behavioural response to cutting the scrotum and handling the testes. Clamp castration caused the smallest cortisol response which was reduced or eliminated by local anaesthetic or local anesthetic plus ketoprofen respectively, but this method of castration was not always successful.
Casas-Güell, Edgar; Cebrian, Emma; Garrabou, Joaquim; Ledoux, Jean-Baptiste; Linares, Cristina; Teixidó, Núria
2016-01-01
Data on species diversity and structure in coralligenous outcrops dominated by Corallium rubrum are lacking. A hierarchical sampling including 3 localities and 9 sites covering more than 400 km of rocky coasts in NW Mediterranean, was designed to characterize the spatial variability of structure, composition and diversity of perennial species inhabiting coralligenous outcrops. We estimated species/taxa composition and abundance. Eight morpho-functional groups were defined according to their life span and growth to characterize the structural complexity of the outcrops. The species composition and structural complexity differed consistently across all spatial scales considered. The lowest and the highest variability were found among localities (separated by >200 km) and within sites (separated by 1–5 km), respectively supporting differences in diversity indices. The morpho-functional groups displayed a consistent spatial arrangement in terms of the number, size and shape of patches across study sites. These results contribute to filling the gap on the understanding of assemblage composition and structure and to build baselines to assess the response of this of this highly threatened habitat to anthropogenic disturbances. PMID:27857209
Weaving networks of responsibility: community work in development programs in rural Malawi.
Rosenthal, Anat
2012-01-01
The need to cope with the impact of the AIDS epidemic on communities in Africa has resulted in the emergence of numerous community health and development programs. Initiated by governments, international nongovernmental organizations (NGOs), and local organizations, such programs target local communities with the goal of building care and support mechanisms in the local level. Based on ethnographic field research in rural Malawi, and drawing from the cross-disciplinary debate on development work, the article explores the work of an NGO offering health and care programs to orphans and vulnerable children. Through analyzing the organization's scope of work, the article demonstrates how the NGO acts to structure local social networks as instruments of care and offers a new reading of the role of NGOs in which the limitations of development work and the work of NGOs are understood within their local context and not only in the context of broad cultural critique.
Local polar fluctuations in lead halide perovskite crystals
Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; ...
2017-03-28
Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH 3NH 3PbBr 3) and all-inorganic (CsPbBr 3) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. Furthermore, MD simulations indicatemore » that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr 3.« less
NASA Astrophysics Data System (ADS)
Farnan, I.; Trachenko, K.
2003-04-01
29Si nuclear magnetic resonance (NMR) is a one of the most useful probes of the local structure of silicates. One of the results of recent studies of naturally radiation damaged zircons is that there is an evolution of the local structure in both crystalline and amorphous fractions of partially metamict zircon as a function of accumulated α-dose. We have examined the evolution of this local structure within the framework of several models of damage accumulation. The total number of displaced atoms produced per α-decay as function of accumulated dose, as measured by NMR, is not consistent with the idea of multiple overlap events being responsible for the evolution of the total damaged fraction. However, increased connectivity in the damaged region as the number of α-events increases is correlated to the degree of cascade overlap. The results of large scale atomistic (MD) simulations of heavy nuclei recoils at realistic energies (70keV) are consistent with the NMR quantification and also with TEM estimates of the diameters of damaged regions. The local heterogeneity (density and bonding) in the damaged area in the simulations is consistent with the existence of connected silicate tetrahedra. Detailed experiments on the annealing of damaged zircons at 500 and 600^oC have been performed. These show that a significant energetic barrier to the recrystallisation exists at these temperatures once a small fraction of damaged material has been recrystallised. This correlates well with the degree of cascade overlap. Indicating that the more connected SiO_4 tetrahedra present this barrier. A sample with very little cascade overlap can be annealed to ˜97% crystallinity at these temperatures.
Phase space interrogation of the empirical response modes for seismically excited structures
NASA Astrophysics Data System (ADS)
Paul, Bibhas; George, Riya C.; Mishra, Sudib K.
2017-07-01
Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.
Structural health monitoring in composite materials using frequency response methods
NASA Astrophysics Data System (ADS)
Kessler, Seth S.; Spearing, S. Mark; Atalla, Mauro J.; Cesnik, Carlos E. S.; Soutis, Constantinos
2001-08-01
Cost effective and reliable damage detection is critical for the utilization of composite materials in structural applications. Non-destructive evaluation techniques (e.g. ultrasound, radiography, infra-red imaging) are available for use during standard repair and maintenance cycles, however by comparison to the techniques used for metals these are relatively expensive and time consuming. This paper presents part of an experimental and analytical survey of candidate methods for the detection of damage in composite materials. The experimental results are presented for the application of modal analysis techniques applied to rectangular laminated graphite/epoxy specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Changes in natural frequencies and modes were then found using a scanning laser vibrometer, and 2-D finite element models were created for comparison with the experimental results. The models accurately predicted the response of the specimems at low frequencies, but the local excitation and coalescence of higher frequency modes make mode-dependent damage detection difficult and most likely impractical for structural applications. The frequency response method was found to be reliable for detecting even small amounts of damage in a simple composite structure, however the potentially important information about damage type, size, location and orientation were lost using this method since several combinations of these variables can yield identical response signatures.
Macro- to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Smith, Lachlan J; Mauck, Robert L; Elliott, Dawn M
2013-08-06
Mechanical deformation applied at the joint or tissue level is transmitted through the macroscale extracellular matrix to the microscale local matrix, where it is transduced to cells within these tissues and modulates tissue growth, maintenance, and repair. The objective of this study was to investigate how applied tissue strain is transferred through the local matrix to the cell and nucleus in meniscus, tendon, and the annulus fibrosus, as well as in stem cell-seeded scaffolds engineered to reproduce the organized microstructure of these native tissues. To carry out this study, we developed a custom confocal microscope-mounted tensile testing device and simultaneously monitored strain across multiple length scales. Results showed that mean strain was heterogeneous and significantly attenuated, but coordinated, at the local matrix level in native tissues (35-70% strain attenuation). Conversely, freshly seeded scaffolds exhibited very direct and uniform strain transfer from the tissue to the local matrix level (15-25% strain attenuation). In addition, strain transfer from local matrix to cells and nuclei was dependent on fiber orientation and tissue type. Histological analysis suggested that different domains exist within these fibrous tissues, with most of the tissue being fibrous, characterized by an aligned collagen structure and elongated cells, and other regions being proteoglycan (PG)-rich, characterized by a dense accumulation of PGs and rounder cells. In meniscus, the observed heterogeneity in strain transfer correlated strongly with cellular morphology, where rounder cells located in PG-rich microdomains were shielded from deformation, while elongated cells in fibrous microdomains deformed readily. Collectively, these findings suggest that different tissues utilize distinct strain-attenuating mechanisms according to their unique structure and cellular phenotype, and these differences likely alter the local biologic response of such tissues and constructs in response to mechanical perturbation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Health plan competition in local markets.
Grossman, J M
2000-04-01
To examine the structure of local health insurance markets and the strategies health plans were using to respond to competitive pressures in local markets in 1996/1997. Community Tracking Study site visits conducted between May 1996 and April 1997 in 12 U.S. markets selected to be nationally representative. In each site, 36 to 60 interviews on local health system change were conducted with healthcare industry informants representing health plans, providers, and purchasers. Relevant data for this article were abstracted from standardized protocols administered to multiple respondents in each site. Although the competitive threat from national plans was pervasive, local plans in most sites continued to retain strong, often dominant, positions in historically concentrated markets. In all sites, in response to purchaser pressures for stable premiums and provider choice, and the threat of entry and to plans were using three strategies to increase market share and market power: (1) consolidation/geographic expansion, (2) price competition, and (3) product line/segment diversification that focused on broad networks and open-access products. In most markets, in response to the demand for provider choice, the trend was away from ownership and exclusive arrangements with providers. Although local plans were moving to become full-service regional players, there was uncertainty about the abilities of all plans to sustain growth strategies at the expense of margins and organizational stability, and to effectively manage care with broad networks.
NASA Langley developments in response calculations needed for failure and life prediction
NASA Technical Reports Server (NTRS)
Housner, Jerrold M.
1993-01-01
NASA Langley developments in response calculations needed for failure and life predictions are discussed. Topics covered include: structural failure analysis in concurrent engineering; accuracy of independent regional modeling demonstrated on classical example; functional interface method accurately joins incompatible finite element models; interface method for insertion of local detail modeling extended to curve pressurized fuselage window panel; interface concept for joining structural regions; motivation for coupled 2D-3D analysis; compression panel with discontinuous stiffener coupled 2D-3D model and axial surface strains at the middle of the hat stiffener; use of adaptive refinement with multiple methods; adaptive mesh refinement; and studies on quantity effect of bow-type initial imperfections on reliability of stiffened panels.
The Essentials of Local Autonomy: A Contemporary Focus on Control and Responsibility.
ERIC Educational Resources Information Center
Clark, George W.
Legislative and political issues are examined in this study of the forces governing the structure of control shared by the individual institutions of the California community college system (CCC) and various state agencies. The report first summarizes and compares the findings of three earlier studies of the college-state relationship: (1) William…
Tech Prep Implementation in the United States: The Once and Future Role of Community Colleges.
ERIC Educational Resources Information Center
Bragg, Debra D.; Layton, James D.
1995-01-01
Describes a study examining the impact of the Tech Prep Education Act on the initial implementation of federally supported Tech Prep Initiatives. Based on telephone survey responses from all 50 state Tech Prep leaders, reviews findings concerning the funding of Tech Prep consortia, state and local administrative structures, policies and goals, and…
USDA-ARS?s Scientific Manuscript database
Plant disease resistance is often mediated by nucleotide binding-leucine rich repeat (NB-LRR or NLR) proteins, which trigger a hypersensitive response (HR), a rapid, localized cell death upon recognition of specific pathogens. The maize NLR-encoding Rp1-D21 gene is the result of an intergenic recomb...
The Renewed Primary School in Belgium: Analysis of the Local Innovation Policy.
ERIC Educational Resources Information Center
Vandenberghe, Roland
The Renewed Primary School project in Belgium is analyzed in this paper in terms of organizational response to a large-scale innovation, which is characterized by its multidimensionality, by the large number of participating schools, and by a complex support structure. Section 2 of the report presents an elaborated description of these…
ERIC Educational Resources Information Center
Allen, John C.; Filkins, Rebecca; Cordes, Sam; Jarecki, Eric J.
This report details results of the 1998 Nebraska Rural Poll, which asked rural Nebraskans their opinions on taxes, school finance, and school consolidation. Survey responses were received from 4,196 residents of Nebraska's 87 non-metropolitan counties. When asked about the tax structure, most respondents favored changing the current distribution…
NASA Astrophysics Data System (ADS)
Voorhoeve, Robbert; van der Maas, Annemiek; Oomen, Tom
2018-05-01
Frequency response function (FRF) identification is often used as a basis for control systems design and as a starting point for subsequent parametric system identification. The aim of this paper is to develop a multiple-input multiple-output (MIMO) local parametric modeling approach for FRF identification of lightly damped mechanical systems with improved speed and accuracy. The proposed method is based on local rational models, which can efficiently handle the lightly-damped resonant dynamics. A key aspect herein is the freedom in the multivariable rational model parametrizations. Several choices for such multivariable rational model parametrizations are proposed and investigated. For systems with many inputs and outputs the required number of model parameters can rapidly increase, adversely affecting the performance of the local modeling approach. Therefore, low-order model structures are investigated. The structure of these low-order parametrizations leads to an undesired directionality in the identification problem. To address this, an iterative local rational modeling algorithm is proposed. As a special case recently developed SISO algorithms are recovered. The proposed approach is successfully demonstrated on simulations and on an active vibration isolation system benchmark, confirming good performance of the method using significantly less parameters compared with alternative approaches.
Fly-ear inspired acoustic sensors for gunshot localization
NASA Astrophysics Data System (ADS)
Liu, Haijun; Currano, Luke; Gee, Danny; Yang, Benjamin; Yu, Miao
2009-05-01
The supersensitive ears of the parasitoid fly Ormia ochracea have inspired researchers to develop bio-inspired directional microphone for sound localization. Although the fly ear is optimized for localizing the narrow-band calling song of crickets at 5 kHz, experiments and simulation have shown that it can amplify directional cues for a wide frequency range. In this article, a theoretical investigation is presented to study the use of fly-ear inspired directional microphones for gunshot localization. Using an equivalent 2-DOF model of the fly ear, the time responses of the fly ear structure to a typical shock wave are obtained and the associated time delay is estimated by using cross-correlation. Both near-field and far-field scenarios are considered. The simulation shows that the fly ear can greatly amplify the time delay by ~20 times, which indicates that with an interaural distance of only 1.2 mm the fly ear is able to generate a time delay comparable to that obtained by a conventional microphone pair with a separation as large as 24 mm. Since the parameters of the fly ear structure can also be tuned for muzzle blast and other impulse stimulus, fly-ear inspired acoustic sensors offers great potential for developing portable gunshot localization systems.
Receptive Field Inference with Localized Priors
Park, Mijung; Pillow, Jonathan W.
2011-01-01
The linear receptive field describes a mapping from sensory stimuli to a one-dimensional variable governing a neuron's spike response. However, traditional receptive field estimators such as the spike-triggered average converge slowly and often require large amounts of data. Bayesian methods seek to overcome this problem by biasing estimates towards solutions that are more likely a priori, typically those with small, smooth, or sparse coefficients. Here we introduce a novel Bayesian receptive field estimator designed to incorporate locality, a powerful form of prior information about receptive field structure. The key to our approach is a hierarchical receptive field model that flexibly adapts to localized structure in both spacetime and spatiotemporal frequency, using an inference method known as empirical Bayes. We refer to our method as automatic locality determination (ALD), and show that it can accurately recover various types of smooth, sparse, and localized receptive fields. We apply ALD to neural data from retinal ganglion cells and V1 simple cells, and find it achieves error rates several times lower than standard estimators. Thus, estimates of comparable accuracy can be achieved with substantially less data. Finally, we introduce a computationally efficient Markov Chain Monte Carlo (MCMC) algorithm for fully Bayesian inference under the ALD prior, yielding accurate Bayesian confidence intervals for small or noisy datasets. PMID:22046110
Material instabilities and their role for the initiation of boudinage and folding structures
NASA Astrophysics Data System (ADS)
Veveakis, Manolis; Peters, Max; Poulet, Thomas; Karrech, Ali; Herwegh, Marco; Regenauer-Lieb, Klaus
2015-04-01
Localized phenomena, such as pinch-and-swell boudinage or localized folds, are usually interpreted to arise from viscosity contrasts. These are caused by structural heterogeneities, such as geometric or material imperfections. An alternative possibility for strain localization exists in material science, where dynamic localization emerges out of a steady state for a given critical set of material parameters and loading rates (Montési and Zuber, 2002). In our contribution, we will investigate the conditions under which this type of instabilities triggers localized deformation. Moreover, we discuss whether geological materials necessarily require structural heterogeneities, such as weak seeds, in order to generate aforementioned localized structures. We set up a random distribution of grain sizes in a layer embedded in a matrix with a diffusion creep rheology. Deformation within the layer is accommodated by dislocation and diffusion creep as end member deformation mechanism. The grain size evolution follows the paleowattmeter scaling relationship for calcite creep (Austin and Evans, 2007), which is controlled by thermo-mechanical feedbacks (Herwegh et al., 2014). During the first strain increments in the numerical simulation, the layer establishes a viscous steady state, which is the systems' response to optimize energy following the paleowattmeter (Herwegh et al., 2014). With further loading, localization interestingly arises out of a homogeneous state. We will demonstrate the robustness of this numerical solution by identifying the natural mode shapes and frequencies of the simulated structure and material parameters, including geometric imperfections (Rudnicki and Rice, 1975). This technique aims at the determination of the spatial manifestation of the instability pattern (Peters et al., in review). The eigenvalues are thought to represent the nodal points, where the onset of (visco)-elasto-plastic localization can initiate in the structure (Rudnicki and Rice, 1975). The eigenmodes appear as sinusoidal vibrations with geometry- and material parameter-specific natural modal frequencies and shapes. In a next step, the eigenmodes are perturbed and superposed to the initial conditions. We observe that this pattern of perturbations guides the ultimate material bifurcation. Boudinage and folding can therefore be seen as either a pure geometric problem or a fundamental material bifurcation, which evolves out of homogeneous state. The latter class offers the great possibility to extract fundamental material parameters out of localized structures directly from field observations. REFERENCES Herwegh, M., Poulet, T., Karrech, A. and Regenauer-Lieb, K. (2014). From transient to steady state deformation and grain size: A thermodynamic approach using elasto-visco-plastic numerical modeling. Journal of Geophysical Research, 119. Montési, L.G.J. and Zuber, M.T. (2002). A unified description of localization for application to large-scale tectonics. Journal of Geophysical Research, 107. Peters, M., Veveakis, M., Poulet, T., Karrech, A., Herwegh, M. and Regenauer-Lieb Klaus (in review). Boudinage as a material instability of elasto-visco-plastic rocks. Submitted to Journal of Structural Geology. Rudnicki, J. W., Rice, J. R. (1975). Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of Mechanics and Physics of Solids, 23.
Evaluation of piezoceramic actuators for control of aircraft interior noise
NASA Technical Reports Server (NTRS)
Silcox, Richard J.; Lefebvre, Sylvie; Metcalf, Vern L.; Beyer, Todd B.; Fuller, Chris R.
1992-01-01
Results of an experiment to evaluate piezoceramic actuators as the control actuator for active control of interior noise in a large-scale fuselage model are presented. Control was demonstrated for tonal excitation using a time domain least mean squares algorithm. A maximum of four actuator channels and six error signals were used. The actuators were employed for control of noise at frequencies where interior cavity modes were the dominant response and for driven acoustic responses where a structure resonance was dominant. Global reductions of 9 to 12 dB were obtained for the cases examined. The most effective configuration of skin-mounted actuators was found to be a pure in-plane forcing function as opposed to a bending excitation. The frame-mounted actuators were found to be equally effective as the skin-mounted actuators. However, both configurations resulted in local regions of unacceptably high vibration response in the structure.
Han, S; Humphreys, G W; Chen, L
1999-10-01
The role of perceptual grouping and the encoding of closure of local elements in the processing of hierarchical patterns was studied. Experiments 1 and 2 showed a global advantage over the local level for 2 tasks involving the discrimination of orientation and closure, but there was a local advantage for the closure discrimination task relative to the orientation discrimination task. Experiment 3 showed a local precedence effect for the closure discrimination task when local element grouping was weakened by embedding the stimuli from Experiment 1 in a background made up of cross patterns. Experiments 4A and 4B found that dissimilarity of closure between the local elements of hierarchical stimuli and the background figures could facilitate the grouping of closed local elements and enhanced the perception of global structure. Experiment 5 showed that the advantage for detecting the closure of local elements in hierarchical analysis also held under divided- and selective-attention conditions. Results are consistent with the idea that grouping between local elements takes place in parallel and competes with the computation of closure of local elements in determining the selection between global and local levels of hierarchical patterns for response.
NASA Astrophysics Data System (ADS)
Mairota, Paola; Cafarelli, Barbara; Labadessa, Rocco; Lovergine, Francesco P.; Tarantino, Cristina; Nagendra, Harini; Didham, Raphael K.
2015-02-01
Modelling the empirical relationships between habitat quality and species distribution patterns is the first step to understanding human impacts on biodiversity. It is important to build on this understanding to develop a broader conceptual appreciation of the influence of surrounding landscape structure on local habitat quality, across multiple spatial scales. Traditional models which report that 'habitat amount' in the landscape is sufficient to explain patterns of biodiversity, irrespective of habitat configuration or spatial variation in habitat quality at edges, implicitly treat each unit of habitat as interchangeable and ignore the high degree of interdependence between spatial components of land-use change. Here, we test the contrasting hypothesis, that local habitat units are not interchangeable in their habitat attributes, but are instead dependent on variation in surrounding habitat structure at both patch- and landscape levels. As the statistical approaches needed to implement such hierarchical causal models are observation-intensive, we utilise very high resolution (VHR) Earth Observation (EO) images to rapidly generate fine-grained measures of habitat patch internal heterogeneities over large spatial extents. We use linear mixed-effects models to test whether these remotely-sensed proxies for habitat quality were influenced by surrounding patch or landscape structure. The results demonstrate the significant influence of surrounding patch and landscape context on local habitat quality. They further indicate that such an influence can be direct, when a landscape variable alone influences the habitat structure variable, and/or indirect when the landscape and patch attributes have a conjoined effect on the response variable. We conclude that a substantial degree of interaction among spatial configuration effects is likely to be the norm in determining the ecological consequences of habitat fragmentation, thus corroborating the notion of the spatial context dependence of habitat quality.
Tensegrity and mechanoregulation: from skeleton to cytoskeleton
NASA Technical Reports Server (NTRS)
Chen, C. S.; Ingber, D. E.
1999-01-01
OBJECTIVE: To elucidate how mechanical stresses that are applied to the whole organism are transmitted to individual cells and transduced into a biochemical response. DESIGN: In this article, we describe fundamental design principles that are used to stabilize the musculoskeletal system at many different size scales and show that these design features are embodied in one particular form of architecture that is known as tensegrity. RESULTS: Tensegrity structures are characterized by use of continuous tension and local compression; architecture, prestress (internal stress prior to application of external force), and triangulation play the most critical roles in terms of determining their mechanical stability. In living organisms, use of a hierarchy of tensegrity networks both optimizes structural efficiency and provides a mechanism to mechanically couple the parts with the whole: mechanical stresses applied at the macroscale result in structural rearrangements at the cell and molecular level. CONCLUSION: Due to use of tensegrity architecture, mechanical stress is concentrated and focused on signal transducing molecules that physically associate with cell surface molecules that anchor cells to extracellular matrix, such as integrins, and with load-bearing elements within the internal cytoskeleton and nucleus. Mechanochemical transduction may then proceed through local stress-dependent changes in molecular mechanics, thermodynamics, and kinetics within the cell. In this manner, the entire cellular response to stress may be orchestrated and tuned by altering the prestress in the cell, just as changing muscular tone can alter mechanical stability and structural coordination throughout the whole musculoskeletal system.
NASA Astrophysics Data System (ADS)
Robbins, Brian; Field, Rich; Grigoriu, Mircea; Jamison, Ryan; Mesh, Mikhail; Casper, Katya; Dechant, Lawrence
2016-11-01
During reentry, a hypersonic vehicle undergoes a period in which the flow about the vehicle transitions from laminar to turbulent flow. During this transitional phase, the flow is characterized by intermittent formations of localized turbulent behavior. These localized regions of turbulence are born at the onset of transition and grow as they move to the aft end of the flight vehicle. Throughout laminar-turbulent transition, the moving turbulent spots cause pressure fluctuations on the outer surface of the vehicle, which leads to the random vibration of the structure and its internal components. In light of this, it is of great interest to study the dynamical response of a flight vehicle undergoing transitional flow so that aircraft can be better designed to prevent structural failure. In this talk, we present a statistical model that calculates the birth, evolution, and pressure field of turbulent spots over a generic slender cone structure. We then illustrate that the model appropriately quantifies intermittency behavior and pressure loading by comparing the intermittency and root-mean-square pressure fluctuations produced by the model with theory and experiment. Finally, we present results pertaining to the structural response of a housing panel on the slender cone. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Simplified Models for the Study of Postbuckled Hat-Stiffened Composite Panels
NASA Technical Reports Server (NTRS)
Vescovini, Riccardo; Davila, Carlos G.; Bisagni, Chiara
2012-01-01
The postbuckling response and failure of multistringer stiffened panels is analyzed using models with three levels of approximation. The first model uses a relatively coarse mesh to capture the global postbuckling response of a five-stringer panel. The second model can predict the nonlinear response as well as the debonding and crippling failure mechanisms in a single stringer compression specimen (SSCS). The third model consists of a simplified version of the SSCS that is designed to minimize the computational effort. The simplified model is well-suited to perform sensitivity analyses for studying the phenomena that lead to structural collapse. In particular, the simplified model is used to obtain a deeper understanding of the role played by geometric and material modeling parameters such as mesh size, inter-laminar strength, fracture toughness, and fracture mode mixity. Finally, a global/local damage analysis method is proposed in which a detailed local model is used to scan the global model to identify the locations that are most critical for damage tolerance.
A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models.
Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S; Wu, Xiaowei; Müller, Rolf
2018-01-01
Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design.
A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models
Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S.; Wu, Xiaowei; Müller, Rolf
2017-01-01
Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design. PMID:29749977
Turner, Amy C; Kraev, Igor; Stewart, Michael G; Stramek, Agata; Overton, Paul G; Dommett, Eleanor J
2018-06-04
Heightened distractibility is a core symptom of Attention Deficit Hyperactivity Disorder (ADHD). Effective treatment is normally with chronic orally administered psychostimulants including amphetamine. Treatment prevents worsening of symptoms but the site of therapeutic processes, and their nature, is unknown. Mounting evidence suggests that the superior colliculus (SC) is a key substrate in distractibility and a therapeutic target, so we assessed whether therapeutically-relevant changes are induced in this structure by chronic oral amphetamine. We hypothesized that amphetamine would alter visual responses and morphological measures. Six-week old healthy male rats were treated with oral amphetamine (2, 5 or 10 mg/kg) or a vehicle for one month after which local field potential and multiunit recordings were made from the superficial layers of the SC in response to whole-field light flashes in withdrawal. Rapid Golgi staining was also used to assess dendritic spines, and synaptophysin staining was used to assess synaptic integrity. Chronic amphetamine increased local field potential responses at higher doses, and increased synaptophysin expression, suggesting enhanced visual input involving presynaptic remodelling. No comparable increases in multiunit activity were found suggesting amphetamine suppresses collicular output activity, counterbalancing the increased input. We also report, for the first time, five different dendritic spine types in the superficial layers and show these to be unaffected by amphetamine, indicating that suppression does not involve gross postsynaptic structural alterations. In conclusion, we suggest that amphetamine produces changes at the collicular level that potentially stabilise the structure and may prevent the worsening of symptoms in disorders like ADHD. Copyright © 2018. Published by Elsevier Ltd.
Influence of Thunderstorms on the Structure of the Ionosphere using Composite Analysis
NASA Astrophysics Data System (ADS)
Nava, O.; Sutherland, E.
2017-12-01
It is well known in the amateur (ham) radio community that thunderstorms have a significant influence on local and long-distance high-frequency (HF) communications. This study aims to characterize the structure of the ionosphere in response to strong convective activity and cloud electrification. Superposed Epoch Analysis is applied to surface weather observations and ionosonde data at Eglin Air Force Base, Florida from August 2014 to July 2017. Preliminary results indicate that thunderstorms significantly modify the structure of the ionosphere, generating statistically different measurements of several key parameters (e.g., foEs, hmF2, ITEC) compared to clear-sky observations. Seasonal and diurnal influences between the thunderstorm and clear sky cases are also explored. Accurate characterization of the ionosphere in response to thunderstorms has important implications for the effective use of HF communications in civilian and military operations, to include emergency services, aviation, amateur radio, and over-the-horizon radar.
Liu, Jing; Hosseinpour, Pegah M.; Luo, Si; ...
2014-11-19
To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO₂ nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O₂ (oxidizing), Ar (inert), and H₂ (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO₂ nanotube samplesmore » partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (~5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO₂ nanotubes regardless of their length. The annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H₂-annealed nanotubes than with the Ar- and O₂-annealed nanotube samples. This enhanced photocatalytic response of the H₂-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti 3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure, crystal structure, and the local chemical environment on the photocatalytic activity and may be employed for tailoring the materials' properties for photocatalysis and other energy-related applications.« less
Regional-scale drivers of marine nematode distribution in Southern Ocean continental shelf sediments
NASA Astrophysics Data System (ADS)
Hauquier, Freija; Verleyen, Elie; Tytgat, Bjorn; Vanreusel, Ann
2018-07-01
Many marine meiofauna taxa seem to possess cosmopolitan species distributions, despite their endobenthic lifestyle and restricted long-distance dispersal capacities. In light of this paradox we used a metacommunity framework to study spatial turnover in free-living nematode distribution and assess the importance of local environmental conditions in explaining differences between communities in surface and subsurface sediments of the Southern Ocean continental shelf. We analysed nematode community structure in two sediment layers (0-3 cm and 3-5 cm) of locations maximum 2400 km apart. We first focused on a subset of locations to evaluate whether the genus level is sufficiently taxonomically fine-grained to study large-scale patterns in nematode community structure. We subsequently used redundancy and variation partitioning analyses to quantify the unique and combined effects of local environmental conditions and spatial descriptors on genus-level community composition. Macroecological patterns in community structure were highly congruent at the genus and species level. Nematode community composition was highly divergent between both depth strata, likely as a result of local abiotic conditions. Variation in community structure between the different regions largely stemmed from turnover (i.e. genus/species replacement) rather than nestedness (i.e. genus/species loss). The level of turnover among communities increased with geographic distance and was more pronounced in subsurface layers compared to surface sediments. Variation partitioning analysis revealed that both environmental and spatial predictors significantly explained variation in community structure. Moreover, the shared fraction of both sets of variables was high, which suggested a substantial amount of spatially structured environmental variation. Additionally, the effect of space independent of environment was much higher than the effect of environment independent of space, which shows the importance of including spatial descriptors in meiofauna and nematode community ecology. Large-scale assessment of free-living nematode diversity and abundance in the Southern Ocean shelf zone revealed strong horizontal and vertical spatial structuring in response to local environmental conditions, in combination with (most likely) dispersal limitation.
Test Cases for Modeling and Validation of Structures with Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Reaves, Mercedes C.; Horta, Lucas G.
2001-01-01
A set of benchmark test articles were developed to validate techniques for modeling structures containing piezoelectric actuators using commercially available finite element analysis packages. The paper presents the development, modeling, and testing of two structures: an aluminum plate with surface mounted patch actuators and a composite box beam with surface mounted actuators. Three approaches for modeling structures containing piezoelectric actuators using the commercially available packages: MSC/NASTRAN and ANSYS are presented. The approaches, applications, and limitations are discussed. Data for both test articles are compared in terms of frequency response functions from deflection and strain data to input voltage to the actuator. Frequency response function results using the three different analysis approaches provided comparable test/analysis results. It is shown that global versus local behavior of the analytical model and test article must be considered when comparing different approaches. Also, improper bonding of actuators greatly reduces the electrical to mechanical effectiveness of the actuators producing anti-resonance errors.
NASA Astrophysics Data System (ADS)
Stronge, W. J.
2004-03-01
Impact mechanics is concerned with the reaction forces that develop during a collision and the dynamic response of structures to these reaction forces. The subject has a wide range of engineering applications, from designing sports equipment to improving the crashworthiness of automobiles. This book develops several different methodologies for analysing collisions between structures. These range from rigid body theory for structures that are stiff and compact, to vibration and wave analyses for flexible structures. The emphasis is on low-speed impact where damage is local to the small region of contact between the colliding bodies. The analytical methods presented give results that are more robust or less sensitive to initial conditions than have been achieved hitherto. As a text, Impact Mechanics builds upon foundation courses in dynamics and strength of materials. It includes numerous industrially relevant examples and end-of-chapter homework problems drawn from industry and sports. Practising engineers will also find the methods presented in this book useful in calculating the response of a mechanical system to impact.
Non-Uniform Thickness Electroactive Device
NASA Technical Reports Server (NTRS)
Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor)
2006-01-01
An electroactive device comprises at least two layers of material, wherein at least one layer is an electroactive material and wherein at least one layer is of non-uniform thickness. The device can be produced in various sizes, ranging from large structural actuators to microscale or nanoscale devices. The applied voltage to the device in combination with the non-uniform thickness of at least one of the layers (electroactive and/or non-electroactive) controls the contour of the actuated device. The effective electric field is a mathematical function of the local layer thickness. Therefore, the local strain and the local bending/ torsion curvature are also a mathematical function of the local thickness. Hence the thinnest portion of the actuator offers the largest bending and/or torsion response. Tailoring of the layer thicknesses can enable complex motions to be achieved.
Structural modal parameter identification using local mean decomposition
NASA Astrophysics Data System (ADS)
Keyhani, Ali; Mohammadi, Saeed
2018-02-01
Modal parameter identification is the first step in structural health monitoring of existing structures. Already, many powerful methods have been proposed for this concept and each method has some benefits and shortcomings. In this study, a new method based on local mean decomposition is proposed for modal identification of civil structures from free or ambient vibration measurements. The ability of the proposed method was investigated using some numerical studies and the results compared with those obtained from the Hilbert-Huang transform (HHT). As a major advantage, the proposed method can extract natural frequencies and damping ratios of all active modes from only one measurement. The accuracy of the identified modes depends on their participation in the measured responses. Nevertheless, the identified natural frequencies have reasonable accuracy in both cases of free and ambient vibration measurements, even in the presence of noise. The instantaneous phase angle and the natural logarithm of instantaneous amplitude curves obtained from the proposed method have more linearity rather than those from the HHT algorithm. Also, the end effect is more restricted for the proposed method.
NASA Astrophysics Data System (ADS)
Haugstad, A.; Battisti, D. S.; Armour, K.
2016-12-01
Earth's climate sensitivity depends critically on the strength of radiative feedbacks linking surface warming to changes in top-of-atmosphere (TOA) radiation. Many studies use a simplistic idea of radiative feedbacks, either by treating them as global mean quantities, or by assuming they can be defined uniquely by geographic location and thus that TOA radiative response depends only on local surface warming. For example, a uniform increase in sea-surface temperature has been widely used as a surrogate for global warming (e.g., Cess et al 1990 and the CMIP 'aqua4k' simulations), with the assumption that this produces the same radiative feedbacks as those arising from a doubling of carbon dioxide - even though the spatial patterns of warming differ. However, evidence suggests that these assumptions are not valid, and local feedbacks may be integrally dependent on the structure of warming or type of climate forcing applied (Rose et al 2014). This study thus investigates the following questions: to what extent do local feedbacks depend on the structure and type of forcing applied? And, to what extent do they depend on the pattern of surface temperature change induced by that forcing? Using an idealized framework of an aquaplanet atmosphere-only model, we show that radiative feedbacks are indeed dependent on the large scale structure of warming and type of forcing applied. For example, the climate responds very differently to two forcings of equal global magnitude but applied in different global regions; the pattern of local feedbacks arising from uniform warming are not the same as that arising from polar amplified warming; and the same local feedbacks can be induced by distinct forcing patterns, provided that they produce the same pattern of surface temperature change. These findings suggest that the so-called `efficacies' of climate forcings can be understood simply in terms of how local feedbacks depend on the temperature patterns they induce.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2012-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2011-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
Bioinspired Programmable Polymer Gel Controlled by Swellable Guest Medium.
Deng, Heng; Dong, Yuan; Su, Jheng-Wun; Zhang, Cheng; Xie, Yunchao; Zhang, Chi; Maschmann, Matthew R; Lin, Yuyi; Lin, Jian
2017-09-13
Responsive materials with functions of forming three-dimensional (3D) origami and/or kirigami structures have a broad range of applications in bioelectronics, metamaterials, microrobotics, and microelectromechanical (MEMS) systems. To realize such functions, building blocks of actuating components usually possess localized inhomogeneity so that they respond differently to external stimuli. Previous fabrication strategies lie in localizing nonswellable or less-swellable guest components in their swellable host polymers to reduce swelling ability. Herein, inspired by ice plant seed capsules, we report an opposite strategy of implanting swellable guest medium inside nonswellable host polymers to locally enhance the swelling inhomogeneity. Specifically, we adopted a skinning effect induced surface polymerization combined with direct laser writing to control gradient of swellable cyclopentanone (CP) in both vertical and lateral directions of the nonswellable SU-8. For the first time, the laser direct writing was used as a novel strategy for patterning programmable polymer gel films. Upon stimulation of organic solvents, the dual-gradient gel films designed by origami or kirigami principles exhibit reversible 3D shape transformation. Molecular dynamics (MD) simulation illustrates that CP greatly enhances diffusion rates of stimulus solvent molecules in the SU-8 matrix, which offers the driving force for the programmable response. Furthermore, this bioinspired strategy offers unique capabilities in fabricating responsive devices such as a soft gripper and a locomotive robot, paving new routes to many other responsive polymers.
Wang, Chao-Wen; Cheng, Yun-Hsin; Irokawa, Hayato; Hwang, Gi-Wook; Naganuma, Akira; Kuge, Shusuke
2016-01-01
Chronic infection with the hepatitis C virus frequently induces steatosis, which is a significant risk factor for liver pathogenesis. Steatosis is characterized by the accumulation of lipid droplets in hepatocytes. The structural protein core of the virus induces lipid droplet formation and localizes on the surface of the lipid droplets. However, the precise molecular mechanisms for the core-induced formation of lipid droplets remain elusive. Recently, we showed that the expression of the core protein in yeast as a model system could induce lipid droplet formation. In this study, we probed the cellular factors responsible for the formation of core-induced lipid-droplets in yeast cells. We demonstrated that one of the enzymes responsible for triglyceride synthesis, a phospholipid:diacylglycerol acyltransferase (Lro1), is required for the core-induced lipid droplet formation. While core proteins inhibit Lro1 degradation and alter Lro1 localization, the characteristic localization of Lro1 adjacent to the lipid droplets appeared to be responsible for the core-induced lipid droplet formation. RNA virus genomes have evolved using high mutation rates to maintain their ability to replicate. Our observations suggest a functional relationship between the core protein with hepatocytes and yeast cells. The possible interactions between core proteins and the endoplasmic reticulum membrane affect the mobilization of specific proteins. PMID:27459103
Dong, Xiaoyu; Li, Bin; He, Fengzhi; Gu, Yuan; Sun, Meiqin; Zhang, Haomiao; Tan, Lu; Xiao, Wen; Liu, Shuoran; Cai, Qinghua
2016-04-19
Stream metacommunities are structured by a combination of local (environmental filtering) and regional (dispersal) processes. The unique characters of high mountain streams could potentially determine metacommunity structuring, which is currently poorly understood. Aiming at understanding how these characters influenced metacommunity structuring, we explored the relative importance of local environmental conditions and various dispersal processes, including through geographical (overland), topographical (across mountain barriers) and network (along flow direction) pathways in shaping benthic diatom communities. From a trait perspective, diatoms were categorized into high-profile, low-profile and motile guild to examine the roles of functional traits. Our results indicated that both environmental filtering and dispersal processes influenced metacommunity structuring, with dispersal contributing more than environmental processes. Among the three pathways, stream corridors were primary pathway. Deconstructive analysis suggested different responses to environmental and spatial factors for each of three ecological guilds. However, regardless of traits, dispersal among streams was limited by mountain barriers, while dispersal along stream was promoted by rushing flow in high mountain stream. Our results highlighted that directional processes had prevailing effects on metacommunity structuring in high mountain streams. Flow directionality, mountain barriers and ecological guilds contributed to a better understanding of the roles that mountains played in structuring metacommunity.
Oganov, V S; Skripnikova, I A; Novikov, V E; Bakulin, A V; Kabitskaia, O E; Murashko, L M
2011-01-01
Analysis of the results of long-term investigations of bones in cosmonauts flown on the orbital station MIR and International space station (n = 80) was performed. Theoretically predicted (evolutionary predefined) change in mass of different skeleton bones was found to correlate (r = 0.904) with position relatively the Earth's gravity vector. Vector dependence of bone loss ensues from local specificity of expression of bone metabolism genes which reflects mechanic prehistory of skeleton structures in the evolution of Homo erectus. Genetic polymorphism is accountable for high individual variability of bone loss attested by the dependence of bone loss rate on polymorphism of certain bone metabolism markers. Parameters of one and the other orbital vehicle did not modulate individual-specific stability of the bone loss ratio in different segments of the skeleton. This fact is considered as a phenotype fingerprint of local metabolism in the form of a locus-unique spatial structure of distribution of noncollagenous proteins responsible for position regulation of endosteal metabolism. Drug treatment of osteoporosis (n = 107) evidences that recovery rate depends on bone location; the most likely reason is different effectiveness of local osteotrophic intervention into areas of bustling resorption.
NASA Astrophysics Data System (ADS)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. The proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.
NASA Technical Reports Server (NTRS)
Starnes, James H.; Rose, Cheryl A.
1998-01-01
The results of an analytical study of the nonlinear response of a thin unstiffened aluminum cylindrical shell with a longitudinal crack are presented. The shell is analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for internal pressure, axial compression, and combined internal pressure and axial compression loads. The effects of varying crack length on the nonlinear response of the shell subjected to internal pressure are described. The effects of varying crack length on the prebuckling, buckling and postbuckling responses of the shell subjected to axial compression, and subjected to combined internal pressure and axial compression are also described. The results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell. The results also indicate that crack growth instabilities and shell buckling instabilities can both affect the response of the shell as the crack length is increased.
Wilson, Wouter; Isaksson, Hanna; Jurvelin, Jukka S.; Herzog, Walter; Korhonen, Rami K.
2013-01-01
The function of articular cartilage depends on its structure and composition, sensitively impaired in disease (e.g. osteoarthritis, OA). Responses of chondrocytes to tissue loading are modulated by the structure. Altered cell responses as an effect of OA may regulate cartilage mechanotransduction and cell biosynthesis. To be able to evaluate cell responses and factors affecting the onset and progression of OA, local tissue and cell stresses and strains in cartilage need to be characterized. This is extremely challenging with the presently available experimental techniques and therefore computational modeling is required. Modern models of articular cartilage are inhomogeneous and anisotropic, and they include many aspects of the real tissue structure and composition. In this paper, we provide an overview of the computational applications that have been developed for modeling the mechanics of articular cartilage at the tissue and cellular level. We concentrate on the use of fibril-reinforced models of cartilage. Furthermore, we introduce practical considerations for modeling applications, including also experimental tests that can be combined with the modeling approach. At the end, we discuss the prospects for patient-specific models when aiming to use finite element modeling analysis and evaluation of articular cartilage function, cellular responses, failure points, OA progression, and rehabilitation. PMID:23653665
Critical Velocity for Shear Localization in A Mature Mylonitic Rock Analogue
NASA Astrophysics Data System (ADS)
Takahashi, M.; van den Ende, M.; Niemeijer, A. R.; Spiers, C. J.
2016-12-01
Highly localized slip zones, seen within ductile shear zones developed in nature, such as pseudotachylite bands occurring within mylonites, are widely recognized as evidence for earthquake nucleation and/or propagation within and overprinting the ductile regime. To understand brittle/frictional localization processes in ductile shear zones and to connect these to earthquake nucleation and propagation processes, we performed large velocity step-change tests on a brine-saturated, 80:20 (wt. %) halite and muscovite gouge mixture, after forming a mature mylonitic structure through pressure solution creep at low-velocity. The sharp increase in sliding strength that occurs in response to an instantaneous upward velocity-step (direct effect) is an important parameter in determining the potential for and nature of seismic rupture nucleation. We obtained reproducible results regarding low velocity mechanical behavior compared with previous work of Niemeijer and Spiers, [2006], but also obtained new insights into the effects of sudden increases in slip velocity on localization and strength evolution, at velocities above a specific critical velocity Vc ( 20 μm/sec). We found that once a ductile, mylonitic structure has developed in a shear zone, subsequent cataclastic deformation at high velocity (> Vc) is consistently localized in a narrow zone characterized by fine grains of halite aligned in arrays between foliated muscovite Due to this intense localization, structures presumably developed under low velocity conditions were still preserved in large parts of the gouge body. This switch to localized deformation is controlled by the imposed velocity, and becomes most apparent at velocities over Vc. In addition, the direct effect a decreases rapidly when the velocity exceeds Vc. This implies that slip can localize and accelerate towards seismic velocities more or less instantly once Vc is exceeded. Obtaining a measure for Vc in natural faults is therefore of key importance for understanding earthquake nucleation and propagation.
NASA Astrophysics Data System (ADS)
Giordano, V. M.; Ruta, B.
2016-01-01
Understanding and controlling physical aging, that is, the spontaneous temporal evolution of out-of-equilibrium systems, represents one of the greatest tasks in material science. Recent studies have revealed the existence of a complex atomic motion in metallic glasses, with different aging regimes in contrast with the typical continuous aging observed in macroscopic quantities. By combining dynamical and structural synchrotron techniques, here for the first time we directly connect previously identified microscopic structural mechanisms with the peculiar atomic motion, providing a broader unique view of their complexity. We show that the atomic scale is dominated by the interplay between two processes: rearrangements releasing residual stresses related to a cascade mechanism of relaxation, and medium range ordering processes, which do not affect the local density, likely due to localized relaxations of liquid-like regions. As temperature increases, a surprising additional secondary relaxation process sets in, together with a faster medium range ordering, likely precursors of crystallization.
The Portland Basin: A (big) river runs through it
Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.
2009-01-01
Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.
Modeling the Inhomogeneous Response of Steady and Transient Flows of Entangled Micellar Solutions
NASA Astrophysics Data System (ADS)
McKinley, Gareth
2008-03-01
Surfactant molecules can self-assemble in solution into long flexible structures known as wormlike micelles. These structures entangle, forming a viscoelastic network similar to those in entangled polymer melts and solutions. However, in contrast to `inert' polymeric networks, wormlike micelles continuously break and reform leading to an additional relaxation mechanism and the name `living polymers'. Observations in both classes of entangled fluids have shown that steady and transient shearing flows of these solutions exhibit spatial inhomogeneities such as `shear-bands' at sufficiently large applied strains. In the present work, we investigate the dynamical response of a class of two-species elastic network models which can capture, in a self-consistent manner, the creation and destruction of elastically-active network segments, as well as diffusive coupling between the microstructural conformations and the local state of stress in regions with large spatial gradients of local deformation. These models incorporate a discrete version of the micellar breakage and reforming dynamics originally proposed by Cates and capture, at least qualitatively, non-affine tube deformation and chain disentanglement. The `flow curves' of stress and apparent shear rate resulting from an assumption of homogeneous deformation is non-monotonic and linear stability analysis shows that the region of non-monotonic response is unstable. Calculation of the full inhomogeneous flow field results in localized shear bands that grow linearly in extent across the gap as the apparent shear rate increases. Time-dependent calculations in step strain, large amplitude oscillatory shear (LAOS) and in start up of steady shear flow show that the velocity profile in the gap and the total stress measured at the bounding surfaces are coupled and evolve in a complex non-monotonic manner as the shear bands develop and propagate.
Wireless vibration monitoring for damage detection of highway bridges
NASA Astrophysics Data System (ADS)
Whelan, Matthew J.; Gangone, Michael V.; Janoyan, Kerop D.; Jha, Ratneshwar
2008-03-01
The development of low-cost wireless sensor networks has resulted in resurgence in the development of ambient vibration monitoring methods to assess the in-service condition of highway bridges. However, a reliable approach towards assessing the health of an in-service bridge and identifying and localizing damage without a priori knowledge of the vibration response history has yet to be formulated. A two-part study is in progress to evaluate and develop existing and proposed damage detection schemes. The first phase utilizes a laboratory bridge model to investigate the vibration response characteristics induced through introduction of changes to structural members, connections, and support conditions. A second phase of the study will validate the damage detection methods developed from the laboratory testing with progressive damage testing of an in-service highway bridge scheduled for replacement. The laboratory bridge features a four meter span, one meter wide, steel frame with a steel and cement board deck composed of sheet layers to regulate mass loading and simulate deck wear. Bolted connections and elastomeric bearings provide a means for prescribing variable local stiffness and damping effects to the laboratory model. A wireless sensor network consisting of fifty-six accelerometers accommodated by twenty-eight local nodes facilitates simultaneous, real-time and high-rate acquisition of the vibrations throughout the bridge structure. Measurement redundancy is provided by an array of wired linear displacement sensors as well as a scanning laser vibrometer. This paper presents the laboratory model and damage scenarios, a brief description of the developed wireless sensor network platform, an overview of available test and measurement instrumentation within the laboratory, and baseline measurements of dynamic response of the laboratory bridge model.
Accountability in the UK Healthcare System: An Overview
Peckham, Stephen
2014-01-01
Recent changes in the English National Health Service (NHS) have introduced new complexities into the accountability arrangements for healthcare services. This commentary describes how the new organizational structures have challenged the traditional centralized accountability structures by creating a more dispersed system of governance for local health-care commissioners. It sets the context of discussions about accountability in the UK NHS and then describes the key changes in England following the implementation of the NHS reforms in April 2013. The commentary concludes that while there is increased complexity of accountability within a more decentralized and fragmented healthcare system, the government's goal of achieving increased local autonomy and greater control by general practitioners (GPs) will probably not be realized. In particular, the system will continue to have strongly centralized aspects, with increased regulation and central political responsibility. PMID:25305399
Stand structure and dynamics of sand pine differ between the Florida panhandle and peninsula
Drewa, P.B.; Platt, W.J.; Kwit, C.; Doyle, T.W.
2008-01-01
Size and age structures of stand populations of numerous tree species exhibit uneven or reverse J-distributions that can persist after non-catastrophic disturbance, especially windstorms. Among disjunct populations of conspecific trees, alternative distributions are also possible and may be attributed to more localized variation in disturbance. Regional differences in structure and demography among disjunct populations of sand pine (Pinus clausa (Chapm. ex Engelm.) Vasey ex Sarg.) in the Florida panhandle and peninsula may result from variation in hurricane regimes associated with each of these populations. We measured size, age, and growth rates of trees from panhandle and peninsula populations and then compiled size and age class distributions. We also characterized hurricanes in both regions over the past century. Size and age structures of panhandle populations were unevenly distributed and exhibited continuous recruitment; peninsula populations were evenly sized and aged and exhibited only periodic recruitment. Since hurricane regimes were similar between regions, historical fire regimes may have been responsible for regional differences in structure of sand pine populations. We hypothesize that fires were locally nonexistent in coastal panhandle populations, while periodic high intensity fires occurred in peninsula populations over the past century. Such differences in local fire regimes could have resulted in the absence of hurricane effects in the peninsula. Increased intensity of hurricanes in the panhandle and current fire suppression patterns in the peninsula may shift characteristics of sand pine stands in both regions. ?? 2007 Springer Science+Business Media B.V.
Long range dynamic effects of point-mutations trap a response regulator in an active conformation
Bobay, Benjamin G.; Thompson, Richele J.; Hoch, James A.; Cavanagh, John
2010-01-01
When a point-mutation in a protein elicits a functional change, it is most common to assign this change to local structural perturbations. Here we show that point-mutations, distant from an essential highly dynamic kinase recognition loop in the response regulator Spo0F, lock this loop in an active conformation. This ‘conformational trapping’ results in functionally hyperactive Spo0F. Consequently, point-mutations are seen to affect functionally critical motions both close to and far from the mutational site. PMID:20828564
NASA Astrophysics Data System (ADS)
Tracy, Cameron L.; Shamblin, Jacob; Park, Sulgiye; Zhang, Fuxiang; Trautmann, Christina; Lang, Maik; Ewing, Rodney C.
2016-08-01
A2S n2O7 (A =Nd ,Sm,Gd,Er,Yb,and Y) materials with the pyrochlore structure were irradiated with 2.2 GeV Au ions to systematically investigate disordering of this system in response to dense electronic excitation. Structural modifications were characterized, over multiple length scales, by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. Transformations to amorphous and disordered phases were observed, with disordering dominating the structural response of materials with small A -site cation ionic radii. Both the disordered and amorphous phases were found to possess weberite-type local ordering, differing only in that the disordered phase exhibits a long-range, modulated arrangement of weberite-type structural units into an average defect-fluorite structure, while the amorphous phase remains fully aperiodic. Comparison with the behavior of titanate and zirconate pyrochlores showed minimal influence of the high covalency of the Sn-O bond on this phase behavior. An analytical model of damage accumulation was developed to account for simultaneous amorphization and recrystallization of the disordered phase during irradiation.
Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress.
Shiraishi, Kosuke; Hioki, Takahiro; Habata, Akari; Yurimoto, Hiroya; Sakai, Yasuyoshi
2018-01-09
The yeast high-osmolarity glycerol (HOG) pathway plays a central role in stress responses. It is activated by various stresses, including hyperosmotic stress, oxidative stress, high-temperature stress and exposure to arsenite. Hog1, the crucial MAP kinase of the pathway, localizes to the nucleus in response to high osmotic concentrations, i.e. high osmolarity; but, otherwise, little is known about its intracellular dynamics and regulation. By using the methylotrophic yeast Candida boidinii , we found that CbHog1-Venus formed intracellular dot structures after high-temperature stress in a reversible manner. Microscopic observation revealed that CbHog1-mCherry colocalized with CbPab1-Venus, a marker protein of stress granules. Hog1 homologs in Pichia pastoris and Schizosaccharomyces pombe also exhibited similar dot formation under high-temperature stress, whereas Saccharomyces cerevisiae Hog1 (ScHog1)-GFP did not. Analysis of CbHog1-Venus in C. boidinii revealed that a β-sheet structure in the N-terminal region was necessary and sufficient for its localization to stress granules. Physiological studies revealed that sequestration of activated Hog1 proteins in stress granules was responsible for downregulation of Hog1 activity under high-temperature stress.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.
Lattice instability and elastic response of metastable Mo1-xSix thin films
NASA Astrophysics Data System (ADS)
Fillon, A.; Jaouen, C.; Michel, A.; Abadias, G.; Tromas, C.; Belliard, L.; Perrin, B.; Djemia, Ph.
2013-11-01
We present a detailed experimental study on Mo1-xSix thin films, an archetypal alloy system combining metallic and semiconductor materials. The correlations between structure and elastic response are comprehensively investigated. We focus on assessing trends for understanding the evolution of elastic properties upon Si alloying in relation to the structural state (crystalline vs amorphous), bonding character (metallic vs covalent), and local atomic environment. By combining picosecond ultrasonics and Brillouin light scattering techniques, a complete set of effective elastic constants and mechanical moduli (B, G, E) is provided in the whole compositional range, covering bcc solid solutions (x < 0.20) and the amorphous phase (0.20 < x < 1.0). A softening of the shear and Young moduli and a concomitant decrease of the Debye temperature is revealed for crystalline alloys, with a significant drop being observed at x ˜ 0.2 corresponding to the limit of crystal lattice stability. Amorphous alloys exhibit a more complex elastic response, related to variations in coordination number, atomic volume, and bonding state, depending on Si content. Finally, distinct evolutions of the G/B ratio as a function of Cauchy pressure are reported for crystalline and amorphous alloys, enabling us to identify signatures of ductility vs brittleness in the features of the local atomic environment. This work paves the way to design materials with improved mechanical properties by appropriate chemical substitution or impurity incorporation during thin-film growth.
Evaluation of wind/tornado-generated missile impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, M.K.; Walls, J.C.
1993-09-01
Simplified empirical formulae and some tabular data for the design/evaluation of structure barriers to resist wind/tornado generated missiles impact are presented in this paper. The scope is limited to the missiles defined by UCRL-15910 which are to be considered for moderate and high hazard facilities only. The method presented herein are limited to consideration of local effects on the barrier, i.e., the barrier must be capable of stopping the missile, and the barrier must no cause the generation of secondary missiles due to scabbing. Overall structural response to missile impact and structural effects derived from wind pressure are not addressedmore » in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neitzel, D.A.; McKenzie, D.H.
To minimize adverse impact on aquatic ecosystems resulting from the operation of water intake structures, design engineers must have relevant information on the behavior, physiology and ecology of local fish and shellfish. Identification of stimulus/response relationships and the environmental factors that influence them is the first step in incorporating biological information in the design, location or modification of water intake structures. A procedure is presented in this document for providing biological input to engineers who are designing, locating or modifying a water intake structure. The authors discuss sources of stimuli at water intakes, historical approaches in assessing potential/actual impact andmore » review biological information needed for intake design.« less
From the 2008 to the 2014 Crisis: Response of the Labor Market of Russia's Largest Cities
ERIC Educational Resources Information Center
Khmeleva, Galina A.; Bulavko, Olga A.
2016-01-01
The model of shift share analysis was improved to show that the foundation of economy's transition to industrially innovational type of development is created at the local level in case of developing countries. Analysis of structural shifts in 28 large cities in 2008-2014 showed that the perspective of industrially innovational development is yet…
ERIC Educational Resources Information Center
McIntyre, Joanna; Knight, Rupert
2016-01-01
Schools and the families they serve are sometimes perceived as deficient and in need of fixing. One response has been the implementation of evidence-based family intervention programmes, which may be highly regulated and prescriptive as a condition of their (often philanthropic) funding. This article seeks to explore and bring to the foreground…
Local representation of the electronic dielectric response function
Lu, Deyu; Ge, Xiaochuan
2015-12-11
We present a local representation of the electronic dielectric response function, based on a spatial partition of the dielectric response into contributions from each occupied Wannier orbital using a generalized density functional perturbation theory. This procedure is fully ab initio, and therefore allows us to rigorously define local metrics, such as “bond polarizability,” on Wannier centers. We show that the locality of the bare response function is determined by the locality of three quantities: Wannier functions of the occupied manifold, the density matrix, and the Hamiltonian matrix. Furthermore, in systems with a gap, the bare dielectric response is exponentially localized,more » which supports the physical picture of the dielectric response function as a collection of interacting local responses that can be captured by a tight-binding model.« less
Perspective: Echoes in 2D-Raman-THz spectroscopy.
Hamm, Peter; Shalit, Andrey
2017-04-07
Recently, various spectroscopic techniques have been developed, which can measure the 2D response of the inter-molecular degrees of freedom of liquids in the THz regime. By employing hybrid Raman-THz pulse sequences, the inherent experimental problems of 2D-Raman spectroscopy are circumvented completely, culminating in the recent measurement of the 2D-Raman-THz responses of water and aqueous salt solutions. This review article focuses on the possibility to observe echoes in such experiments, which would directly reveal the inhomogeneity of the typically extremely blurred THz bands of liquids, and hence the heterogeneity of local structures that are transiently formed, in particular, in a hydrogen-bonding liquid such as water. The generation mechanisms of echoes in 2D-Raman-THz spectroscopy are explained, which differ from those in "conventional" 2D-IR spectroscopy in a subtle but important manner. Subsequently, the circumstances are discussed, under which echoes are expected, revealing a physical picture of the information content of an echo. That is, the echo decay reflects the lifetime of local structures in the liquid on a length scale that equals the delocalization length of the intermolecular modes. Finally, recent experimental results are reviewed from an echo perspective.
Sensitivity Analysis of the Static Aeroelastic Response of a Wing
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.
1993-01-01
A technique to obtain the sensitivity of the static aeroelastic response of a three dimensional wing model is designed and implemented. The formulation is quite general and accepts any aerodynamic and structural analysis capability. A program to combine the discipline level, or local, sensitivities into global sensitivity derivatives is developed. A variety of representations of the wing pressure field are developed and tested to determine the most accurate and efficient scheme for representing the field outside of the aerodynamic code. Chebyshev polynomials are used to globally fit the pressure field. This approach had some difficulties in representing local variations in the field, so a variety of local interpolation polynomial pressure representations are also implemented. These panel based representations use a constant pressure value, a bilinearly interpolated value. or a biquadraticallv interpolated value. The interpolation polynomial approaches do an excellent job of reducing the numerical problems of the global approach for comparable computational effort. Regardless of the pressure representation used. sensitivity and response results with excellent accuracy have been produced for large integrated quantities such as wing tip deflection and trim angle of attack. The sensitivities of such things as individual generalized displacements have been found with fair accuracy. In general, accuracy is found to be proportional to the relative size of the derivatives to the quantity itself.
[Waste water management in a health area: environmental hygiene in primary care].
García Cuadrado, J; Contessotto Spadetto, C; Pereñiguez Barranco, J E; Fuster Quiñonero, D; Paricio Núñez, P
1992-01-01
Within the scope of the programmes to be developed by the primary health care parties, we consider it interesting to investigate the sewage management in our health area because of its impact on the population health and welfare and the main socioeconomic local activities: agriculture and tourism. We carry out an epidemiological descriptive study: we review the most important structural and functional characteristics of the sewage depuration and collection in the municipality of S. Javier (Murcia). The evaluation of the collected data made it obvious that deficiencies exist in the collection system as well as in the sewage processing; both deficiencies were shown in some places of the locality and in particular periods of the year, with a consequent risk of environmental contamination and enteric diseases transmission among population and summer holidaymakers. A positive corrective action on the installations by the organisms responsible for the local sanitation as a response to these conclusions, which we informed due time, constitutes a good stimulant to go on investigating this question of such a great sanitary and general interest, which is almost unknown in medical literature.
Global hybrids from the semiclassical atom theory satisfying the local density linear response.
Fabiano, Eduardo; Constantin, Lucian A; Cortona, Pietro; Della Sala, Fabio
2015-01-13
We propose global hybrid approximations of the exchange-correlation (XC) energy functional which reproduce well the modified fourth-order gradient expansion of the exchange energy in the semiclassical limit of many-electron neutral atoms and recover the full local density approximation (LDA) linear response. These XC functionals represent the hybrid versions of the APBE functional [Phys. Rev. Lett. 2011, 106, 186406] yet employing an additional correlation functional which uses the localization concept of the correlation energy density to improve the compatibility with the Hartree-Fock exchange as well as the coupling-constant-resolved XC potential energy. Broad energetic and structural testing, including thermochemistry and geometry, transition metal complexes, noncovalent interactions, gold clusters and small gold-molecule interfaces, as well as an analysis of the hybrid parameters, show that our construction is quite robust. In particular, our testing shows that the resulting hybrid, including 20% of Hartree-Fock exchange and named hAPBE, performs remarkably well for a broad palette of systems and properties, being generally better than popular hybrids (PBE0 and B3LYP). Semiempirical dispersion corrections are also provided.
Effect of electron-vibration interactions on the thermoelectric efficiency of molecular junctions.
Hsu, Bailey C; Chiang, Chi-Wei; Chen, Yu-Chang
2012-07-11
From first-principles approaches, we investigate the thermoelectric efficiency of a molecular junction where a benzene molecule is connected directly to the platinum electrodes. We calculate the thermoelectric figure of merit ZT in the presence of electron-vibration interactions with and without local heating under two scenarios: linear response and finite bias regimes. In the linear response regime, ZT saturates around the electrode temperature T(e) = 25 K in the elastic case, while in the inelastic case we observe a non-saturated and a much larger ZT beyond T(e) = 25 K attributed to the tail of the Fermi-Dirac distribution. In the finite bias regime, the inelastic effects reveal the signatures of the molecular vibrations in the low-temperature regime. The normal modes exhibiting structures in the inelastic profile are characterized by large components of atomic vibrations along the current density direction on top of each individual atom. In all cases, the inclusion of local heating leads to a higher wire temperature T(w) and thus magnifies further the influence of the electron-vibration interactions due to the increased number of local phonons.
Hydrodynamic and Sediment Responses of Open Channels to Exposed Pipe Encasements
Mao, J. Q.; Zhang, H. Q.; Dai, H. C.; Yuan, B. H.; Hu, T. F.
2015-01-01
The effects of exposed pipe encasements on the local variation of hydrodynamic and sediment conditions in a river channel are examined. Laboratory experiments are performed to assess the response of water level, flow regime and bed deformation to several representative types of concrete encasements. The experimental conditions considered are: three types of exposed pipe encasements exposed on the bed, including trapezoidal shape, circular-arc shape and polygonal shape, and three sets of discharges, including annual discharge, once-in-3-year flood, and once-in-50-year flood. Our experiments show that: (1) the amount of backwater definitely depends on the encasement geometric shape and the background discharge; (2) smaller discharges generally tend to induce local scour of river bed downstream of the encasement, and the order of sensitivity of bed deformation to the encasement geometric shape is trapezoidal > circular-arc > polygonal; (3) comparatively speaking, the polygonal encasement may be considered as a suitable protective structure for pipelines across alluvial rivers, with relatively modest effects on the local hydrodynamic conditions and bed stabilization. PMID:26588840
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Gorder, Robert A., E-mail: rav@knights.ucf.edu
2014-11-15
In R. A. Van Gorder, “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014) I discussed properties of generalized vortex filaments exhibiting purely rotational motion under the low-temperature Svistunov model of the local induction approximation. Such solutions are stationary in terms of translational motion. In the Comment [N. Hietala, “Comment on ‘General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation’ [Phys. Fluids 26, 065105 (2014)],” Phys. Fluids 26, 119101 (2014)], the author criticizes my paper for not including translational motion (although it wasmore » clearly stated that the filament motion was assumed rotational). As it turns out, if one is interested in studying the geometric structure of solutions (which was the point of my paper), one obtains the needed qualitative results on the structure of such solutions by studying the purely rotational case. Nevertheless, in this Response I shall discuss the vortex filaments that have both rotational and translational motions. I then briefly discuss why one might want to study such generalized rotating filament solutions, in contrast to simple the standard helical or planar examples (which are really special cases). I also discuss how one can study the time evolution of filaments which exhibit more complicated dynamics than pure translation and rotation. Doing this, one can study non-stationary solutions which initially appear purely rotational and gradually display other dynamics as the filaments evolve.« less
NASA Astrophysics Data System (ADS)
Elbanna, A. E.
2015-12-01
The brittle portion of the crust contains structural features such as faults, jogs, joints, bends and cataclastic zones that span a wide range of length scales. These features may have a profound effect on earthquake nucleation, propagation and arrest. Incorporating these existing features in modeling and the ability to spontaneously generate new one in response to earthquake loading is crucial for predicting seismicity patterns, distribution of aftershocks and nucleation sites, earthquakes arrest mechanisms, and topological changes in the seismogenic zone structure. Here, we report on our efforts in modeling two important mechanisms contributing to the evolution of fault zone topology: (1) Grain comminution at the submeter scale, and (2) Secondary faulting/plasticity at the scale of few to hundreds of meters. We use the finite element software Abaqus to model the dynamic rupture. The constitutive response of the fault zone is modeled using the Shear Transformation Zone theory, a non-equilibrium statistical thermodynamic framework for modeling plastic deformation and localization in amorphous materials such as fault gouge. The gouge layer is modeled as 2D plane strain region with a finite thickness and heterogeenous distribution of porosity. By coupling the amorphous gouge with the surrounding elastic bulk, the model introduces a set of novel features that go beyond the state of the art. These include: (1) self-consistent rate dependent plasticity with a physically-motivated set of internal variables, (2) non-locality that alleviates mesh dependence of shear band formation, (3) spontaneous evolution of fault roughness and its strike which affects ground motion generation and the local stress fields, and (4) spontaneous evolution of grain size and fault zone fabric.
NASA Astrophysics Data System (ADS)
Menge, B. A.; Gouhier, T.; Chan, F.; Hacker, S.; Menge, D.; Nielsen, K. J.
2016-02-01
Ecology focuses increasingly on the issue of matching spatial and temporal scales responsible for ecosystem pattern and dynamics. Benthic coastal communities traditionally were studied at local scales using mostly short-term research, while environmental (oceanographic, climatic) drivers were investigated at large scales (e.g., regional to oceanic, mostly offshore) using combined snapshot and monitoring (time series) research. The comparative-experimental approach combines local-scale studies at multiple sites spanning large-scale environmental gradients in combination with monitoring of inner shelf oceanographic conditions including upwelling/downwelling wind forcing and their consequences (e.g., temperature), and inputs of subsidies (larvae, phytoplankton, detritus). Temporal scale varies depending on the questions, but can extend from years to decades. We discuss two examples of rocky intertidal ecosystem dynamics, one at a regional scale (California Current System, CCS) and one at an interhemispheric scale. In the upwelling-dominated CCS, 52% and 32% of the variance in local community structure (functional group abundances at 13 sites across 725 km) was explained by external factors (ecological subsidies, oceanographic conditions, geographic location), and species interactions, respectively. The interhemispheric study tested the intermittent upwelling hypothesis (IUH), which predicts that key ecological processes will vary unimodally along a persistent downwelling to persistent upwelling gradient. Using 14-22 sites, unimodal relationships between ecological subsidies (phytoplankton, prey recruitment), prey responses (barnacle colonization, mussel growth) and species interactions (competition rate, predation rate and effect) and the Bakun upwelling index calculated at each site accounted for 50% of the variance. Hence, external factors can account for about half of locally-expressed community structure and dynamics.
The modal surface interpolation method for damage localization
NASA Astrophysics Data System (ADS)
Pina Limongelli, Maria
2017-05-01
The Interpolation Method (IM) has been previously proposed and successfully applied for damage localization in plate like structures. The method is based on the detection of localized reductions of smoothness in the Operational Deformed Shapes (ODSs) of the structure. The IM can be applied to any type of structure provided the ODSs are estimated accurately in the original and in the damaged configurations. If the latter circumstance fails to occur, for example when the structure is subjected to an unknown input(s) or if the structural responses are strongly corrupted by noise, both false and missing alarms occur when the IM is applied to localize a concentrated damage. In order to overcome these drawbacks a modification of the method is herein investigated. An ODS is the deformed shape of a structure subjected to a harmonic excitation: at resonances the ODS are dominated by the relevant mode shapes. The effect of noise at resonance is usually lower with respect to other frequency values hence the relevant ODS are estimated with higher reliability. Several methods have been proposed to reliably estimate modal shapes in case of unknown input. These two circumstances can be exploited to improve the reliability of the IM. In order to reduce or eliminate the drawbacks related to the estimation of the ODSs in case of noisy signals, in this paper is investigated a modified version of the method based on a damage feature calculated considering the interpolation error relevant only to the modal shapes and not to all the operational shapes in the significant frequency range. Herein will be reported the comparison between the results of the IM in its actual version (with the interpolation error calculated summing up the contributions of all the operational shapes) and in the new proposed version (with the estimation of the interpolation error limited to the modal shapes).
Linear ideal MHD predictions for n = 2 non-axisymmetric magnetic perturbations on DIII-D
Haskey, Shaun R.; Lanctot, Matthew J.; Liu, Y. Q.; ...
2014-02-05
Here, an extensive examination of the plasma response to dominantly n = 2 non-axisymmetric magnetic perturbations (MPs) on the DIII-D tokamak shows the potential to control 3D field interactions by varying the poloidal spectrum of the radial magnetic field. The plasma response is calculated as a function of the applied magnetic field structure and plasma parameters, using the linear magnetohydrodynamic code MARS-F. The ideal, single fluid plasma response is decomposed into two main components: a local pitch-resonant response occurring at rational magnetic flux surfaces, and a global kink response. The efficiency with which the field couples to the total plasmamore » response is determined by the safety factor and the structure of the applied field. In many cases, control of the applied field has a more significant effect than control of plasma parameters, which is of particular interest since it can be modified at will throughout a shot to achieve a desired effect. The presence of toroidal harmonics, other than the dominant n = 2 component, is examined revealing a significant n = 4 component in the perturbations applied by the DIII-D MP coils; however, modeling shows the plasma responses to n = 4 perturbations are substantially smaller than the dominant n = 2 responses in most situations.« less
A transfer matrix approach to vibration localization in mistuned blade assemblies
NASA Technical Reports Server (NTRS)
Ottarson, Gisli; Pierre, Chritophe
1993-01-01
A study of mode localization in mistuned bladed disks is performed using transfer matrices. The transfer matrix approach yields the free response of a general, mono-coupled, perfectly cyclic assembly in closed form. A mistuned structure is represented by random transfer matrices, and the expansion of these matrices in terms of the small mistuning parameter leads to the definition of a measure of sensitivity to mistuning. An approximation of the localization factor, the spatially averaged rate of exponential attenuation per blade-disk sector, is obtained through perturbation techniques in the limits of high and low sensitivity. The methodology is applied to a common model of a bladed disk and the results verified by Monte Carlo simulations. The easily calculated sensitivity measure may prove to be a valuable design tool due to its system-independent quantification of mistuning effects such as mode localization.
Role of local assembly in the hierarchical crystallization of associating colloidal hard hemispheres
NASA Astrophysics Data System (ADS)
Lei, Qun-li; Hadinoto, Kunn; Ni, Ran
2017-10-01
Hierarchical self-assembly consisting of local associations of simple building blocks for the formation of complex structures widely exists in nature, while the essential role of local assembly remains unknown. In this work, by using computer simulations, we study a simple model system consisting of associating colloidal hemispheres crystallizing into face-centered-cubic crystals comprised of spherical dimers of hemispheres, focusing on the effect of dimer formation on the hierarchical crystallization. We found that besides assisting the crystal nucleation because of increasing the symmetry of building blocks, the association between hemispheres can also induce both reentrant melting and reentrant crystallization depending on the range of interaction. Especially when the interaction is highly sticky, we observe a novel reentrant crystallization of identical crystals, which melt only in a certain temperature range. This offers another axis in fabricating responsive crystalline materials by tuning the fluctuation of local association.
Health plan competition in local markets.
Grossman, J M
2000-01-01
OBJECTIVE: To examine the structure of local health insurance markets and the strategies health plans were using to respond to competitive pressures in local markets in 1996/1997. DATA SOURCES/STUDY SETTING: Community Tracking Study site visits conducted between May 1996 and April 1997 in 12 U.S. markets selected to be nationally representative. STUDY DESIGN: In each site, 36 to 60 interviews on local health system change were conducted with healthcare industry informants representing health plans, providers, and purchasers. DATA COLLECTION/EXTRACTION METHOD: Relevant data for this article were abstracted from standardized protocols administered to multiple respondents in each site. PRINCIPAL FINDINGS: Although the competitive threat from national plans was pervasive, local plans in most sites continued to retain strong, often dominant, positions in historically concentrated markets. In all sites, in response to purchaser pressures for stable premiums and provider choice, and the threat of entry and to plans were using three strategies to increase market share and market power: (1) consolidation/geographic expansion, (2) price competition, and (3) product line/segment diversification that focused on broad networks and open-access products. In most markets, in response to the demand for provider choice, the trend was away from ownership and exclusive arrangements with providers. CONCLUSIONS: Although local plans were moving to become full-service regional players, there was uncertainty about the abilities of all plans to sustain growth strategies at the expense of margins and organizational stability, and to effectively manage care with broad networks. PMID:10778822
Damage of composite structures: Detection technique, dynamic response and residual strength
NASA Astrophysics Data System (ADS)
Lestari, Wahyu
2001-10-01
Reliable and accurate health monitoring techniques can prevent catastrophic failures of structures. Conventional damage detection methods are based on visual or localized experimental methods and very often require prior information concerning the vicinity of the damage or defect. The structure must also be readily accessible for inspections. The techniques are also labor intensive. In comparison to these methods, health-monitoring techniques that are based on the structural dynamic response offers unique information on failure of structures. However, systematic relations between the experimental data and the defect are not available and frequently, the number of vibration modes needed for an accurate identification of defects is much higher than the number of modes that can be readily identified in the experiment. These motivated us to develop an experimental data based detection method with systematic relationships between the experimentally identified information and the analytical or mathematical model representing the defective structures. The developed technique use changes in vibrational curvature modes and natural frequencies. To avoid misinterpretation of the identified information, we also need to understand the effects of defects on the structural dynamic response prior to developing health-monitoring techniques. In this thesis work we focus on two type of defects in composite structures, namely delamination and edge notch like defect. Effects of nonlinearity due to the presence of defect and due to the axial stretching are studied for beams with delamination. Once defects are detected in a structure, next concern is determining the effects of the defects on the strength of the structure and its residual stiffness under dynamic loading. In this thesis, energy release rate due to dynamic loading in a delaminated structure is studied, which will be a foundation toward determining the residual strength of the structure.
NASA Astrophysics Data System (ADS)
Hwang, Geelsu; Liu, Yuan; Kim, Dongyeop; Sun, Victor; Aviles-Reyes, Alejandro; Kajfasz, Jessica K.; Lemos, Jose A.; Koo, Hyun
2016-09-01
Biofilms are comprised of bacterial-clusters (microcolonies) enmeshed in an extracellular matrix. Streptococcus mutans can produce exopolysaccharides (EPS)-matrix and assemble microcolonies with acidic microenvironments that can cause tooth-decay despite the surrounding neutral-pH found in oral cavity. How the matrix influences the pH and bacterial activity locally remains unclear. Here, we simultaneously analyzed in situ pH and gene expression within intact biofilms and measured the impact of damage to the surrounding EPS-matrix. The spatiotemporal changes of these properties were characterized at a single-microcolony level following incubation in neutral-pH buffer. The middle and bottom-regions as well as inner-section within the microcolony 3D structure were resistant to neutralization (vs. upper and peripheral-region), forming an acidic core. Concomitantly, we used a green fluorescent protein (GFP) reporter to monitor expression of the pH-responsive atpB (PatpB::gfp) by S. mutans within microcolonies. The atpB expression was induced in the acidic core, but sharply decreased at peripheral/upper microcolony regions, congruent with local pH microenvironment. Enzymatic digestion of the surrounding matrix resulted in nearly complete neutralization of microcolony interior and down-regulation of atpB. Altogether, our data reveal that biofilm matrix facilitates formation of an acidic core within microcolonies which in turn activates S. mutans acid-stress response, mediating both the local environment and bacterial activity in situ.
Molecular simulation investigation of the nanorheology of an entangled polymer melt
NASA Astrophysics Data System (ADS)
Karim, Mir; Khare, Rajesh; Indei, Tsutomu; Schieber, Jay
2014-03-01
Knowledge of the ``local rheology'' is important for viscoelastic systems that contain significant structural and dynamic heterogeneities, such as cellular and extra-cellular crowded environments. For homogeneous viscoelastic media, a study of probe particle motion provides information on the microstructural evolution of the medium in response to the probe particle motion. Over the last two decades, probe particle rheology has emerged as a leading experimental technique for capturing local rheology of complex fluids. In recent work [M. Karim, S. C. Kohale, T. Indei, J. D. Schieber, and R. Khare, Phys. Rev. E
Voluntary Vaccination through Self-organizing Behaviors on Locally-mixed Social Networks.
Shi, Benyun; Qiu, Hongjun; Niu, Wenfang; Ren, Yizhi; Ding, Hong; Chen, Dan
2017-06-01
Voluntary vaccination reflects how individuals weigh the risk of infection and the cost of vaccination against the spread of vaccine-preventable diseases, such as smallpox and measles. In a homogeneously mixing population, the infection risk of an individual depends largely on the proportion of vaccinated individuals due to the effects of herd immunity. While in a structured population, the infection risk can also be affected by the structure of individuals' social network. In this paper, we focus on studying individuals' self-organizing behaviors under the circumstance of voluntary vaccination in different types of social networks. Specifically, we assume that each individual together with his/her neighbors forms a local well-mixed environment, where individuals meet equally often as long as they have a common neighbor. We carry out simulations on four types of locally-mixed social networks to investigate the network effects on voluntary vaccination. Furthermore, we also evaluate individuals' vaccinating decisions through interacting with their "neighbors of neighbors". The results and findings of this paper provide a new perspective for vaccination policy-making by taking into consideration human responses in complex social networks.
Molecular dynamics simulation of shock induced ejection on fused silica surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Rui; Xiang, Meizhen; Jiang, Shengli
2014-05-21
Shock response and surface ejection behaviors of fused silica are studied by using non-equilibrium molecular dynamics combining with the Tersoff potential. First, bulk structure and Hugoniot curves of fused silica are calculated and compared with experimental results. Then, the dynamical process of surface ejection behavior is simulated under different loading velocities ranging from 3.5 to 5.0 km∕s, corresponding to shock wave velocities from 7.1 to 8.8 km∕s. The local atomistic shear strain parameter is used to describe the local plastic deformation under conditions of shock compression or releasing. Our result shows that the shear strain is localized in the bottom area ofmore » groove under the shock compression. Surface ejection is observed when the loading velocity exceeds 4.0 km∕s. Meanwhile, the temperature of the micro-jet is ∼5574.7 K, which is close to experiment measurement. Several kinds of structural defects including non-bridging oxygen are found in the bulk area of the sample after ejection.« less
The local structure and ferromagnetism in Fe-implanted SrTiO3 single crystals
NASA Astrophysics Data System (ADS)
Lobacheva, O.; Chavarha, M.; Yiu, Y. M.; Sham, T. K.; Goncharova, L. V.
2014-07-01
We report a connection between the local structure of low-level Fe impurities and vacancies as the cause of ferromagnetic behavior observed in strontium titanate single crystals (STO), which were implanted with Fe and Si ions at different doses then annealed in oxygen. The effects of Fe doping and post-implantation annealing of STO were studied by X-ray Absorption Near Edge Structure (XANES) spectroscopy and Superconducting Quantum Interference Device magnetometry. XANES spectra for Fe and Ti K- and L-edge reveal the changes in the local environment of Fe and Ti following the implantation and annealing steps. The annealing in oxygen atmosphere partially healed implantation damages and changed the oxidation state of the implanted iron from metallic Fe0 to Fe2+/Fe3+ oxide. The STO single crystals were weak ferromagnets prior to implantation. The maximum saturation moment was obtained after our highest implantation dose of 2 × 1016 Fe atom/cm2, which could be correlated with the metallic Fe0 phases in addition to the presence of O/Ti vacancies. After recrystallization annealing, the ferromagnetic response disappears. Iron oxide phases with Fe2+ and Fe3+ corresponding to this regime were identified and confirmed by calculations using Real Space Multiple Scattering program (FEFF9).
Alikin, Denis; Turygin, Anton; Kholkin, Andrei; Shur, Vladimir
2017-01-01
Recent advances in the development of novel methods for the local characterization of ferroelectric domains open up new opportunities not only to image, but also to control and to create desired domain configurations (domain engineering). The morphotropic and polymorphic phase boundaries that are frequently used to increase the electromechanical and dielectric performance of ferroelectric ceramics have a tremendous effect on the domain structure, which can serve as a signature of complex polarization states and link local and macroscopic piezoelectric and dielectric responses. This is especially important for the study of lead-free ferroelectric ceramics, which is currently replacing traditional lead-containing materials, and great efforts are devoted to increasing their performance to match that of lead zirconate titanate (PZT). In this work, we provide a short overview of the recent progress in the imaging of domain structure in two major families of ceramic lead-free systems based on BiFeO3 (BFO) and (Ka0.5Na0.5)NbO3 (KNN). This can be used as a guideline for the understanding of domain processes in lead-free piezoelectric ceramics and provide further insight into the mechanisms of structure–property relationship in these technologically important material families. PMID:28772408
Stephens, Tim; De Silva, A Pubudu; Beane, Abi; Welch, John; Sigera, Chathurani; De Alwis, Sunil; Athapattu, Priyantha; Dharmagunawardene, Dilantha; Peiris, Lalitha; Siriwardana, Somalatha; Abeynayaka, Ashoka; Jayasinghe, Kosala Saroj Amarasena; Mahipala, Palitha G; Dondorp, Arjen; Haniffa, Rashan
2017-04-01
To deliver and evaluate a short critical care nurse training course whilst simultaneously building local training capacity. A multi-modal short course for critical care nursing skills was delivered in seven training blocks, from 06/2013-11/2014. Each training block included a Train the Trainer programme. The project was evaluated using Kirkpatrick's Hierarchy of Learning. There was a graded hand over of responsibility for course delivery from overseas to local faculty between 2013 and 2014. Sri Lanka. Participant learning assessed through pre/post course Multi-Choice Questionnaires. A total of 584 nurses and 29 faculty were trained. Participant feedback was consistently positive and each course demonstrated a significant increase (p≤0.0001) in MCQ scores. There was no significant difference MCQ scores (p=0.186) between overseas faculty led and local faculty led courses. In a relatively short period, training with good educational outcomes was delivered to nearly 25% of the critical care nursing population in Sri Lanka whilst simultaneously building a local faculty of trainers. Through use of a structured Train the Trainer programme, course outcomes were maintained following the handover of training responsibility to Sri Lankan faculty. The focus on local capacity building increases the possibility of long term course sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.
2017-09-01
A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.
Wunderlich, Adam; Abbey, Craig K
2013-11-01
Studies of lesion detectability are often carried out to evaluate medical imaging technology. For such studies, several approaches have been proposed to measure observer performance, such as the receiver operating characteristic (ROC), the localization ROC (LROC), the free-response ROC (FROC), the alternative free-response ROC (AFROC), and the exponentially transformed FROC (EFROC) paradigms. Therefore, an experimenter seeking to carry out such a study is confronted with an array of choices. Traditionally, arguments for different approaches have been made on the basis of practical considerations (statistical power, etc.) or the gross level of analysis (case-level or lesion-level). This article contends that a careful consideration of utility should form the rationale for matching the assessment paradigm to the clinical task of interest. In utility theory, task performance is commonly evaluated with total expected utility, which integrates the various event utilities against the probability of each event. To formalize the relationship between expected utility and the summary curve associated with each assessment paradigm, the concept of a "natural" utility structure is proposed. A natural utility structure is defined for a summary curve when the variables associated with the summary curve axes are sufficient for computing total expected utility, assuming that the disease prevalence is known. Natural utility structures for ROC, LROC, FROC, AFROC, and EFROC curves are introduced, clarifying how the utilities of correct and incorrect decisions are aggregated by summary curves. Further, conditions are given under which general utility structures for localization-based methodologies reduce to case-based assessment. Overall, the findings reveal how summary curves correspond to natural utility structures of diagnostic tasks, suggesting utility as a motivating principle for choosing an assessment paradigm.
Encoding of a spectrally-complex communication sound in the bullfrog's auditory nerve.
Schwartz, J J; Simmons, A M
1990-02-01
1. A population study of eighth nerve responses in the bullfrog, Rana catesbeiana, was undertaken to analyze how the eighth nerve codes the complex spectral and temporal structure of the species-specific advertisement call over a biologically-realistic range of intensities. Synthetic advertisement calls were generated by Fourier synthesis and presented to individual eighth nerve fibers of anesthetized bullfrogs. Fiber responses were analyzed by calculating rate responses based on post-stimulus-time (PST) histograms and temporal responses based on Fourier transforms of period histograms. 2. At stimulus intensities of 70 and 80 dB SPL, normalized rate responses provide a fairly good representation of the complex spectral structure of the stimulus, particularly in the low- and mid-frequency range. At higher intensities, rate responses saturate, and very little of the spectral structure of the complex stimulus can be seen in the profile of rate responses of the population. 3. Both AP and BP fibers phase-lock strongly to the fundamental (100 Hz) of the complex stimulus. These effects are relatively resistant to changes in stimulus intensity. Only a small number of fibers synchronize to the low-frequency spectral energy in the stimulus. The underlying spectral complexity of the stimulus is not accurately reflected in the timing of fiber firing, presumably because firing is 'captured' by the fundamental frequency. 4. Plots of average localized synchronized rate (ALSR), which combine both spectral and temporal information, show a similar, low-pass shape at all stimulus intensities. ALSR plots do not generally provide an accurate representation of the structure of the advertisement call. 5. The data suggest that anuran peripheral auditory fibers may be particularly sensitive to the amplitude envelope of sounds.
Processing of hierarchical syntactic structure in music.
Koelsch, Stefan; Rohrmeier, Martin; Torrecuso, Renzo; Jentschke, Sebastian
2013-09-17
Hierarchical structure with nested nonlocal dependencies is a key feature of human language and can be identified theoretically in most pieces of tonal music. However, previous studies have argued against the perception of such structures in music. Here, we show processing of nonlocal dependencies in music. We presented chorales by J. S. Bach and modified versions in which the hierarchical structure was rendered irregular whereas the local structure was kept intact. Brain electric responses differed between regular and irregular hierarchical structures, in both musicians and nonmusicians. This finding indicates that, when listening to music, humans apply cognitive processes that are capable of dealing with long-distance dependencies resulting from hierarchically organized syntactic structures. Our results reveal that a brain mechanism fundamental for syntactic processing is engaged during the perception of music, indicating that processing of hierarchical structure with nested nonlocal dependencies is not just a key component of human language, but a multidomain capacity of human cognition.
Snyder, Jamie C; Brumfield, Susan K; Peng, Nan; She, Qunxin; Young, Mark J
2011-07-01
Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures.
Matsuya, Iwao; Katamura, Ryuta; Sato, Maya; Iba, Miroku; Kondo, Hideaki; Kanekawa, Kiyoshi; Takahashi, Motoichi; Hatada, Tomohiko; Nitta, Yoshihiro; Tanii, Takashi; Shoji, Shuichi; Nishitani, Akira; Ohdomari, Iwao
2010-01-01
We propose a novel sensor system for monitoring the structural health of a building. The system optically measures the relative-story displacement during earthquakes for detecting any deformations of building elements. The sensor unit is composed of three position sensitive detectors (PSDs) and lenses capable of measuring the relative-story displacement precisely, even if the PSD unit was inclined in response to the seismic vibration. For verification, laboratory tests were carried out using an Xθ-stage and a shaking table. The static experiment verified that the sensor could measure the local inclination angle as well as the lateral displacement. The dynamic experiment revealed that the accuracy of the sensor was 150 μm in the relative-displacement measurement and 100 μrad in the inclination angle measurement. These results indicate that the proposed sensor system has sufficient accuracy for the measurement of relative-story displacement in response to the seismic vibration.
Diagnosis of middle atmosphere chemistry-dynamics interactions
NASA Astrophysics Data System (ADS)
Zhu, X.; Swartz, W. H.; Garcia, R. R.; Chartier, A.; Yee, J. H.; Yue, J.
2017-12-01
We apply the recently developed middle atmosphere climate feedback-response analysis method (MCFRAM) to diagnosing the temperature variations associated with chemistry-dynamics interactions in the middle atmosphere. By using output fields from the Whole Atmosphere Community Climate Model (WACCM) coupled with the measurements, we identify and isolate the distinctive characteristics of different components in the observed temperature variations. Both the temperature trends associated with the anthropogenic forcing and temperature changes associated with natural and internal feedback processes are quantified based on MCFRAM defined partial temperature changes corresponding to localized radiative heating, non-localized chemical heating, eddy transport, and transport by the mean meridional circulation of energy and chemical species. In addition, the temperature responses to variations of CO2, O3, and solar flux have distinctly different spatial structures that can be systematically categorized by the eigenmodes of the generalized damping matrix derived from MCFRAM.
Ghedini, Giulia; Russell, Bayden D; Connell, Sean D
2015-02-01
Disturbance often results in small changes in community structure, but the probability of transitioning to contrasting states increases when multiple disturbances combine. Nevertheless, we have limited insights into the mechanisms that stabilise communities, particularly how perturbations can be absorbed without restructuring (i.e. resistance). Here, we expand the concept of compensatory dynamics to include countervailing mechanisms that absorb disturbances through trophic interactions. By definition, 'compensation' occurs if a specific disturbance stimulates a proportional countervailing response that eliminates its otherwise unchecked effect. We show that the compounding effects of disturbances from local to global scales (i.e. local canopy-loss, eutrophication, ocean acidification) increasingly promote the expansion of weedy species, but that this response is countered by a proportional increase in grazing. Finally, we explore the relatively unrecognised role of compensatory effects, which are likely to maintain the resistance of communities to disturbance more deeply than current thinking allows. © 2015 John Wiley & Sons Ltd/CNRS.
Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change
Penaluna, Brooke E.; Dunham, Jason B.; Railsback, Steve F.; Arismendi, Ivan; Johnson, Sherri L.; Bilby, Robert E.; Safeeq, Mohammad; Skaugset, Arne E.
2015-01-01
Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007–2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change. PMID:26295478
Local variability mediates vulnerability of trout populations to land use and climate change
Penaluna, Brooke E.; Dunham, Jason B.; Railsback, Steve F.; Arismendi, Ivan; Johnson, Sherri L.; Bilby, Robert E; Safeeq, Mohammad; Skaugset, Arne E.
2015-01-01
Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007–2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.
Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change.
Penaluna, Brooke E; Dunham, Jason B; Railsback, Steve F; Arismendi, Ivan; Johnson, Sherri L; Bilby, Robert E; Safeeq, Mohammad; Skaugset, Arne E
2015-01-01
Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007-2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.
Scaling of heat transfer augmentation due to mechanical distortions in hypervelocity boundary layers
NASA Astrophysics Data System (ADS)
Flaherty, W.; Austin, J. M.
2013-10-01
We examine the response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature. Surface heat transfer and visual boundary layer thickness data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. This scaling may be explained by the application of Lees similarity. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortices to an adverse pressure gradient is investigated. Surface streak evolution is visualized over the different surface geometries using fast response pressure sensitive paint. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures.
Thermally-induced softening of PNIPAm-based nanopillar arrays.
Sanz, Belén; von Bilderling, Catalina; Tuninetti, Jimena S; Pietrasanta, Lía; Mijangos, Carmen; Longo, Gabriel S; Azzaroni, Omar; Giussi, Juan M
2017-03-29
The surface properties of soft nanostructured hydrogels are crucial in the design of responsive materials that can be used as platforms to create adaptive devices. The lower critical solution temperature (LCST) of thermo-responsive hydrogels such as poly(N-isopropylacrylamide) (PNIPAm) can be modified by introducing a hydrophilic monomer to create a wide range of thermo-responsive micro-/nano-structures in a large temperature range. Using surface initiation atom-transfer radical polymerization in synthesized anodized aluminum oxide templates, we designed, fabricated, and characterized thermo-responsive nanopillars based on PNIPAm hydrogels with tunable mechanical properties by incorporating acrylamide monomers (AAm). In addition to their LCST, the incorporation of a hydrophilic entity in the nanopillars based on PNIPAm has abruptly changed the topological and mechanical properties of our system. To gain an insight into the mechanical properties of the nanostructure, its hydrophilic/hydrophobic behavior and topological characteristics, atomic force microscopy, molecular dynamics simulations and water contact angle studies were combined. When changing the nanopillar composition, a significant and opposite variation was observed in their mechanical properties. As temperature increased above the LCST, the stiffness of PNIPAm nanopillars, as expected, did so too, in contrast to the stiffness of PNIPAm-AAm nanopillars that decreased significantly. The molecular dynamics simulations proposed a local molecular rearrangement in our nanosystems at the LCST. The local aggregation of NIPAm segments near the center of the nanopillars displaced the hydrophilic AAm units towards the surface of the structure leading to contact with the aqueous environment. This behavior was confirmed via contact angle measurements below and above the LCST.
Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng
2017-01-01
A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model. PMID:28753912
Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng
2017-07-19
A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model.
NASA Astrophysics Data System (ADS)
Bawole, Justice Nyigmah
2013-08-01
This article investigates the involvement of local stakeholders in the environmental impact assessment (EIA) processes of Ghana's first off-shore oil fields (the Jubilee fields). Adopting key informants interviews and documentary reviews, the article argues that the public hearings and the other stakeholder engagement processes were cosmetic and rhetoric with the view to meeting legal requirements rather than a purposeful interest in eliciting inputs from local stakeholders. It further argues that the operators appear to lack the social legitimacy and social license that will make them acceptable in the project communities. A rigorous community engagement along with a commitment to actively involving local stakeholders in the corporate social responsibility (CSR) programmes of the partners may enhance the image of the partners and improve their social legitimacy. Local government agencies should be capacitated to actively engage project organisers; and government must mitigate the impact of the oil projects through well-structured social support programmes.
Bawole, Justice Nyigmah
2013-08-01
This article investigates the involvement of local stakeholders in the environmental impact assessment (EIA) processes of Ghana's first off-shore oil fields (the Jubilee fields). Adopting key informants interviews and documentary reviews, the article argues that the public hearings and the other stakeholder engagement processes were cosmetic and rhetoric with the view to meeting legal requirements rather than a purposeful interest in eliciting inputs from local stakeholders. It further argues that the operators appear to lack the social legitimacy and social license that will make them acceptable in the project communities. A rigorous community engagement along with a commitment to actively involving local stakeholders in the corporate social responsibility (CSR) programmes of the partners may enhance the image of the partners and improve their social legitimacy. Local government agencies should be capacitated to actively engage project organisers; and government must mitigate the impact of the oil projects through well-structured social support programmes.
Reproductive tourism and the quest for global gender justice.
Donchin, Anne
2010-09-01
Reproductive tourism is a manifestation of a larger, more inclusive trend toward globalization of capitalist cultural and material economies. This paper discusses the development of cross-border assisted reproduction within the globalized economy, transnational and local structural processes that influence the trade, social relations intersecting it, and implications for the healthcare systems affected. I focus on prevailing gender structures embedded in the cross-border trade and their intersection with other social and economic structures that reflect and impact globalization. I apply a social connection model of responsibility for unjust outcomes and consider strategies to counter structural injustices embedded in this industry. The concluding section discusses policy reforms and proposals for collaborative action to preclude further injustices and extend full human rights to all.
The Material Point Method and Simulation of Wave Propagation in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Bardenhagen, S. G.; Greening, D. R.; Roessig, K. M.
2004-07-01
The mechanical response of polycrystalline materials, particularly under shock loading, is of significant interest in a variety of munitions and industrial applications. Homogeneous continuum models have been developed to describe material response, including Equation of State, strength, and reactive burn models. These models provide good estimates of bulk material response. However, there is little connection to underlying physics and, consequently, they cannot be applied far from their calibrated regime with confidence. Both explosives and metals have important structure at the (energetic or single crystal) grain scale. The anisotropic properties of the individual grains and the presence of interfaces result in the localization of energy during deformation. In explosives energy localization can lead to initiation under weak shock loading, and in metals to material ejecta under strong shock loading. To develop accurate, quantitative and predictive models it is imperative to develop a sound physical understanding of the grain-scale material response. Numerical simulations are performed to gain insight into grain-scale material response. The Generalized Interpolation Material Point Method family of numerical algorithms, selected for their robust treatment of large deformation problems and convenient framework for implementing material interface models, are reviewed. A three-dimensional simulation of wave propagation through a granular material indicates the scale and complexity of a representative grain-scale computation. Verification and validation calculations on model bimaterial systems indicate the minimum numerical algorithm complexity required for accurate simulation of wave propagation across material interfaces and demonstrate the importance of interfacial decohesion. Preliminary results are presented which predict energy localization at the grain boundary in a metallic bicrystal.
Understanding the challenges of service change – learning from acute pain services in the UK
Powell, AE; Davies, HTO; Bannister, J; Macrae, WA
2009-01-01
Summary Objectives To explore organizational difficulties faced when implementing national policy recommendations in local contexts. Design Qualitative case study involving semi-structured interviews with health professionals and managers working in and around acute pain services. Setting Three UK acute hospital organizations. Main outcome measures Identification of the content, context and process factors impacting on the implementation of the national policy recommendations on acute pain services; insights into and deeper understanding of the generic obstacles to change facing service improvements. Results The process of implementing policy recommendations and improving services in each of the three organizations was undermined by multiple factors relating to: doubts and disagreements about the nature of the change; challenging local organizational contexts; and the beliefs, attitudes and responses of health professionals and managers. The impact of these factors was compounded by the interaction between them. Conclusions Local implementation of national policies aimed at service improvement can be undermined by multiple interacting factors. Particularly important are the pre-existing local organizational contexts and histories, and the deeply-ingrained attitudes, beliefs and assumptions of diverse staff groups. Without close attention to all of these underlying issues and how they interact in individual organizations against the background of local and national contexts, more resources or further structural change are unlikely to deliver the intended improvements in patient care. PMID:19208870
Durocher, Evelyne; Chung, Ryoa; Rochon, Christiane; Henrys, Jean-Hugues; Olivier, Catherine; Hunt, Matthew
2017-09-01
Situations of disaster that prompt international humanitarian responses are rife with ethical tensions. The 2010 Haiti earthquake caused great destruction and prompted a massive humanitarian response. The widespread needs experienced by the population and the scale of the response inevitably rendered priority-setting difficult, and gave rise to ethical challenges. This paper presents four ethical questions identified in the analysis of a study on vulnerability and equity in the humanitarian response to the 2010 Haiti earthquake. Using interpretive description methodology, the interdisciplinary research team analysed 24 semi-structured in-depth interviews conducted with expatriate and Haitian health workers and decision-makers involved in the response. Ethical questions identified through the analysis were: (1) How should limited resources be allocated in situations of widespread vulnerability and elevated needs? (2) At what point does it become ethically problematic to expend (considerable) resources to sustain expatriate disaster responders? (3) How ought rapid and reactive interventions be balanced with more deliberated and coordinated approaches? (4) What trade-offs are justified when interventions to address acute needs could contribute to long-term vulnerabilities? The questions arise in light of an immense gap between available resources and widespread and elevated needs. This gap is likely unavoidable in large-scale crises and may be a source of ethical distress for both local and international responders. The analysis of ethical questions associated with crisis response can advance discussions about how relief efforts can best be designed and implemented to minimise ethical distress and improve assistance to local populations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Lin, L; Ding, W X; Brower, D L
2014-11-01
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L., E-mail: lianglin@ucla.edu; Ding, W. X.; Brower, D. L.
2014-11-15
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particlemore » transport flux and its spatial distribution are resolved.« less
NASA Astrophysics Data System (ADS)
Smith, T. M.; Esser, B. D.; Good, B.; Hooshmand, M. S.; Viswanathan, G. B.; Rae, C. M. F.; Ghazisaeidi, M.; McComb, D. W.; Mills, M. J.
2018-06-01
In this study, local chemical and structural changes along superlattice intrinsic stacking faults combine to represent an atomic-scale phase transformation. In order to elicit stacking fault shear, creep tests of two different single crystal Ni-based superalloys, ME501 and CMSX-4, were performed near 750 °C using stresses of 552 and 750 MPa, respectively. Through high-resolution scanning transmission electron microscopy (STEM) and state-of-the-art energy dispersive X-ray spectroscopy, ordered compositional changes were measured along SISFs in both alloys. For both instances, the elemental segregation and local crystal structure present along the SISFs are consistent with a nanoscale γ' to D019 phase transformation. Other notable observations are prominent γ-rich Cottrell atmospheres and new evidence of more complex reordering processes responsible for the formation of these faults. These findings are further supported using density functional theory calculations and high-angle annular dark-field (HAADF)-STEM image simulations.
Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure
NASA Technical Reports Server (NTRS)
Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.
2013-01-01
One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.
Learning from eponyms: George F. Odland and Odland bodies
Joshi, Rajiv
2014-01-01
Odland bodies (lamellar) bodies are small sub-cellular structures of size 200-300 nm that are present in the upper spinous and granular cell layers of the epidermis. These act as processing and repository areas for lipids that contribute to the epidermal permeability barrier. They also contain proteases, cathepsin D, kallikrein and other proteins including corneo-desmosins. Recent information also credits them with a role in the local innate immune response as they contain beta 2 defensins, which are anti-microbial peptides with potent activity against Gram-negative bacteria and candida. Odland bodies are important for maintaining homeostasis of the epidermis and are involved in epidermal permeability barrier function, desquamation of keratinocytes, formation of the cornified envelope and in local anti-microbial immunity. This article reviews the structure and functions of these bodies with a brief biography of George F. Odland who first described these bodies in 1960 and whose name is eponymically associated with them. PMID:25165659
Connect to protect and the creation of AIDS-competent communities.
Reed, Sarah J; Miller, Robin Lin
2013-06-01
The development of community capacity is integral to reducing the burden of HIV in high-risk populations (Kippax, 2012). This study examines how coalitions addressing structural level determinants of HIV among youth are generating community capacity and creating AIDS-competent communities. AIDS-competent communities are defined as communities that can facilitate sexual behavior change, reduce HIV/AIDS–related stigma, support people living with HIV/AIDS, and cooperate in HIV–related prevention practices. This study shows how the coalitions are fostering the resources indicative of AIDS-competent communities: knowledge and skills, enhanced dialogue among relevant sectors of the community, local ownership of a problem, confidence in local strengths, solidarity or bonding social capital, and bridging partnerships. These data show that the coalitions catalyzed several outcomes aside from the completion of their structural changes. Coalition members are developing the skills, resources, and relationships that can ostensibly build a heightened community response to HIV prevention.
CONNECT TO PROTECT® AND THE CREATION OF AIDS-COMPETENT COMMUNITIES
Reed, Sarah J.; Miller, Robin Lin
2013-01-01
The development of community capacity is integral to reducing the burden of HIV in high-risk populations (Kippax, 2012). This study examines how coalitions addressing structural level determinants of HIV among youth are generating community capacity and creating AIDS-competent communities. AIDS-competent communities are defined as communities that can facilitate sexual behavior change, reduce HIV/AIDS–related stigma, support people living with HIV/AIDS, and cooperate in HIV–related prevention practices. This study shows how the coalitions are fostering the resources indicative of AIDS-competent communities: knowledge and skills, enhanced dialogue among relevant sectors of the community, local ownership of a problem, confidence in local strengths, solidarity or bonding social capital, and bridging partnerships. These data show that the coalitions catalyzed several outcomes aside from the completion of their structural changes. Coalition members are developing the skills, resources, and relationships that can ostensibly build a heightened community response to HIV prevention. PMID:23762979
Structural analysis of a Petri net model of oxidative stress in atherosclerosis.
Kozak, Adam; Formanowicz, Dorota; Formanowicz, Piotr
2018-06-01
Atherosclerosis is a complex process of gathering sub-endothelial plaques decreasing lumen of the blood vessels. This disorder affects people of all ages, but its progression is asymptomatic for many years. It is regulated by many typical and atypical factors including the immune system response, a chronic kidney disease, a diet rich in lipids, a local inflammatory process and a local oxidative stress that is here one of the key factors. In this study, a Petri net model of atherosclerosis regulation is presented. This model includes also some information about stoichiometric relationships between its components and covers all mentioned factors. For the model, a structural analysis based on invariants was made and biological conclusions are presented. Since the model contains inhibitor arcs, a heuristic method for analysis of such cases is presented. This method can be used to extend the concept of feasible t -invariants.
Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2008-01-01
A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells and the built-up composite structure global fracture are enhanced when internal pressure is combined with shear loads.
The role of clinical toxicologists and poison control centers in public health.
Sutter, Mark E; Bronstein, Alvin C; Heard, Stuart E; Barthold, Claudia L; Lando, James; Lewis, Lauren S; Schier, Joshua G
2010-06-01
Poison control centers and clinical toxicologists serve many roles within public health; however, the degree to which these entities collaborate is unknown. The objective of this survey was to identify successful collaborations of public health agencies with clinical toxicologists and poison control centers. Four areas including outbreak identification, syndromic surveillance, terrorism preparedness, and daily public health responsibilities amenable to poison control center resources were assessed. An online survey was sent to the directors of poison control centers, state epidemiologists, and the most senior public health official in each state and selected major metropolitan areas. This survey focused on three areas: service, structure within the local or state public health system, and remuneration. Questions regarding remuneration and poison control center location within the public health structure were asked to assess if these were critical factors of successful collaborations. Senior state and local public health officials were excluded because of a low response rate. The survey was completed in October 2007. A total of 111 respondents, 61 poison control centers and 50 state epidemiologists, were eligible for the survey. Sixty-nine (62%) of the 111 respondents, completed and returned the survey. Thirty-three (54%) of the 61 poison control centers responded, and 36 of the 50 state epidemiologists (72%) responded. The most frequent collaborations were terrorism preparedness and epidemic illness reporting. Additional collaborations also exist. Important collaborations exist outside of remuneration or poison control centers being a formal part of the public health structure. Poison control centers have expanded their efforts to include outbreak identification, syndromic surveillance, terrorism preparedness, and daily public health responsibilities amenable to poison control center resources. Collaboration in these areas and others should be expanded. Published by Elsevier Inc.
Oxygen depletion speeds and simplifies diffusion in HeLa cells.
Edwald, Elin; Stone, Matthew B; Gray, Erin M; Wu, Jing; Veatch, Sarah L
2014-10-21
Many cell types undergo a hypoxic response in the presence of low oxygen, which can lead to transcriptional, metabolic, and structural changes within the cell. Many biophysical studies to probe the localization and dynamics of single fluorescently labeled molecules in live cells either require or benefit from low-oxygen conditions. In this study, we examine how low-oxygen conditions alter the mobility of a series of plasma membrane proteins with a range of anchoring motifs in HeLa cells at 37°C. Under high-oxygen conditions, diffusion of all proteins is heterogeneous and confined. When oxygen is reduced with an enzymatic oxygen-scavenging system for ≥ 15 min, diffusion rates increase by > 2-fold, motion becomes unconfined on the timescales and distance scales investigated, and distributions of diffusion coefficients are remarkably consistent with those expected from Brownian motion. More subtle changes in protein mobility are observed in several other laboratory cell lines examined under both high- and low-oxygen conditions. Morphological changes and actin remodeling are observed in HeLa cells placed in a low-oxygen environment for 30 min, but changes are less apparent in the other cell types investigated. This suggests that changes in actin structure are responsible for increased diffusion in hypoxic HeLa cells, although superresolution localization measurements in chemically fixed cells indicate that membrane proteins do not colocalize with F-actin under either experimental condition. These studies emphasize the importance of controls in single-molecule imaging measurements, and indicate that acute response to low oxygen in HeLa cells leads to dramatic changes in plasma membrane structure. It is possible that these changes are either a cause or consequence of phenotypic changes in solid tumor cells associated with increased drug resistance and malignancy.
Borisov, Andrei B; Sutter, Sarah B; Kontrogianni-Konstantopoulos, Aikaterini; Bloch, Robert J; Westfall, Margaret V; Russell, Mark W
2006-03-01
Obscurin is a recently identified giant multidomain muscle protein (approximately 800 kDa) whose structural and regulatory functions remain to be defined. The goal of this study was to examine the effect of obscurin gene silencing induced by RNA interference on the dynamics of myofibrillogenesis and hypertrophic response to phenylephrine in cultured rat cardiomyocytes. We found that that the adenoviral transfection of short interfering RNA (siRNA) constructs targeting the first coding exon of obscurin sequence resulted in progressive depletion of cellular obscurin. Confocal microscopy demonstrated that downregulation of obscurin expression led to the impaired assembly of new myofibrillar clusters and considerable aberrations of the normal structure of the contractile apparatus. While the establishment of the initial periodic pattern of alpha-actinin localization remained mainly unaffected in siRNA-transfected cells, obscurin depletion did cause the defective lateral alignment of myofibrillar bundles, leading to their abnormal bifurcation, dispersal and multiple branching. Bending of immature myofibrils, apparently associated with the loss of their rigidity, a modified titin pattern, the absence of well-formed A-bands in newly formed contractile structures as documented by a diffuse localization of sarcomeric myosin labeling, and an occasional irregular periodicity of sarcomere spacing were typical of obscurin siRNA-treated cells. These results suggest that obscurin is indispensable for spatial positioning of contractile proteins and for the structural integration and stabilization of myofibrils, especially at the stage of myosin filament incorporation and A-band assembly. This demonstrates a vital role for obscurin in myofibrillogenesis and hypertrophic growth.
Bond-Lamberty, Ben; Bolton, Harvey; Fansler, Sarah; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeffrey; Bailey, Vanessa
2016-01-01
The effects of climate change on soil organic matter-its structure, microbial community, carbon storage, and respiration response-remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and longer-term soil microbial dynamics may be significantly different under changing climate.
Vacuolar processing enzyme in plant programmed cell death
Hatsugai, Noriyuki; Yamada, Kenji; Goto-Yamada, Shino; Hara-Nishimura, Ikuko
2015-01-01
Vacuolar processing enzyme (VPE) is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an ortholog of animal asparaginyl endopeptidase (AEP/VPE/legumain). VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD) pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1. PMID:25914711
NASA Astrophysics Data System (ADS)
Tian, Shu; Zhang, Ye; Yan, Yimin; Su, Nan; Zhang, Junping
2016-09-01
Latent low-rank representation (LatLRR) has been attached considerable attention in the field of remote sensing image segmentation, due to its effectiveness in exploring the multiple subspace structures of data. However, the increasingly heterogeneous texture information in the high spatial resolution remote sensing images, leads to more severe interference of pixels in local neighborhood, and the LatLRR fails to capture the local complex structure information. Therefore, we present a local sparse structure constrainted latent low-rank representation (LSSLatLRR) segmentation method, which explicitly imposes the local sparse structure constraint on LatLRR to capture the intrinsic local structure in manifold structure feature subspaces. The whole segmentation framework can be viewed as two stages in cascade. In the first stage, we use the local histogram transform to extract the texture local histogram features (LHOG) at each pixel, which can efficiently capture the complex and micro-texture pattern. In the second stage, a local sparse structure (LSS) formulation is established on LHOG, which aims to preserve the local intrinsic structure and enhance the relationship between pixels having similar local characteristics. Meanwhile, by integrating the LSS and the LatLRR, we can efficiently capture the local sparse and low-rank structure in the mixture of feature subspace, and we adopt the subspace segmentation method to improve the segmentation accuracy. Experimental results on the remote sensing images with different spatial resolution show that, compared with three state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.
On the modal characteristics of damaging structures subjected to earthquakes
NASA Astrophysics Data System (ADS)
Carlo Ponzo, Felice; Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Mossucca, Antonello; Nigro, Antonella; Nigro, Domenico
2015-04-01
Structural Health Monitoring, especially for structures located in seismic prone areas, has assumed a meaning of great importance in last years, for the possibility to make a more objective and more rapid estimation of the damage occurred on buildings after a seismic event. In the last years many researchers are working to set-up new methodologies for Non-destructive Damage Evaluation based on the variation of the dynamic behaviour of structures under seismic loads. The NDE methods for damage detection and evaluation can be classified into four levels, according to the specific criteria provided by the Rytter. Each level of identification is correlated with specific information related to monitored structure. In fact, by increasing the level it is possible to obtain more information about the state of the health of the structures, to know if damage occurred on the structures, to quantify and localize the damage and to evaluate its impact on the monitored structure. Several authors discussed on the possibility to use the mode shape curvature to localize damage on structural elements, for example, by applying the curvature-based method to frequency response function instead of mode shape, and demonstrated the potential of this approach by considering real data. Damage detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature. In earthquake engineering field, the recourse to experimental research is necessary to understand the mechanical behaviour of the various structural and non-structural components. In this paper a new methodology to detect and localize a possible damage occurred on a framed structure after an earthquake is presented and discussed. The main outcomes retrieved from many numerical non linear dynamic models of reinforced concrete framed structures characterized by 3, 5 and 8 floors with different geometric configurations and designed for gravity loads only are here presented. In addition, the main results of experimental shaking table tests carried out on a steel framed model are also showed to confirm the effectiveness of the proposed procedure. Acknowledgements This study was partially funded by the Italian Civil Protection Department within the project DPC-RELUIS 2014 - RS4 ''Seismic observatory of structures and health monitoring''.
Rubble masonry response under cyclic actions: The experience of L’Aquila city (Italy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonti, Roberta, E-mail: roberta.fonti@tum.de; Barthel, Rainer, E-mail: r.barthel@lrz.tu-muenchen.de; Formisano, Antonio, E-mail: antoform@unina.it
2015-12-31
Several methods of analysis are available in engineering practice to study old masonry constructions. Two commonly used approaches in the field of seismic engineering are global and local analyses. Despite several years of research in this field, the various methodologies suffer from a lack of comprehensive experimental validation. This is mainly due to the difficulty in simulating the many different kinds of masonry and, accordingly, the non-linear response under horizontal actions. This issue can be addressed by examining the local response of isolated panels under monotonic and/or alternate actions. Different testing methodologies are commonly used to identify the local responsemore » of old masonry. These range from simplified pull-out tests to sophisticated in-plane monotonic tests. However, there is a lack of both knowledge and critical comparison between experimental validations and numerical simulations. This is mainly due to the difficulties in implementing irregular settings within both simplified and advanced numerical analyses. Similarly, the simulation of degradation effects within laboratory tests is difficult with respect to old masonry in-situ boundary conditions. Numerical models, particularly on rubble masonry, are commonly simplified. They are mainly based on a kinematic chain of rigid blocks able to perform different “modes of damage” of structures subjected to horizontal actions. This paper presents an innovative methodology for testing; its aim is to identify a simplified model for out-of-plane response of rubbleworks with respect to the experimental evidence. The case study of L’Aquila district is discussed.« less
NASA Astrophysics Data System (ADS)
Inatsu, Masaru; Mukougawa, Hitoshi; Xie, Shang-Ping
2003-10-01
Midwinter storm track response to zonal variations in midlatitude sea surface temperatures (SSTs) has been investigated using an atmospheric general circulation model under aquaplanet and perpetual-January conditions. Zonal wavenumber-1 SST variations with a meridionally confined structure are placed at various latitudes. Having these SST variations centered at 30°N leads to a zonally localized storm track, while the storm track becomes nearly zonally uniform when the same SST forcing is moved farther north at 40° and 50°N. Large (small) baroclinic energy conversion north of the warm (cold) SST anomaly near the axis of the storm track (near 40°N) is responsible for the large (small) storm growth. The equatorward transfer of eddy kinetic energy by the ageostrophic motion and the mechanical damping are important to diminish the storm track activity in the zonal direction.Significant stationary eddies form in the upper troposphere, with a ridge (trough) northeast of the warm (cold) SST anomaly at 30°N. Heat and vorticity budget analyses indicate that zonally localized condensational heating in the storm track is the major cause for these stationary eddies, which in turn exert a positive feedback to maintain the localized storm track by strengthening the vertical shear near the surface. These results indicate an active role of synoptic eddies in inducing deep, tropospheric-scale response to midlatitude SST variations. Finally, the application of the model results to the real atmosphere is discussed.
The multi-faceted role of allergen exposure to the local airway mucosa.
Golebski, K; Röschmann, K I L; Toppila-Salmi, S; Hammad, H; Lambrecht, B N; Renkonen, R; Fokkens, W J; van Drunen, C M
2013-02-01
Airway epithelial cells are the first to encounter aeroallergens and therefore have recently become an interesting target of many studies investigating their involvement in the modulation of allergic inflammatory responses. Disruption of a passive structural barrier composed of epithelial cells by intrinsic proteolytic activity of allergens may facilitate allergen penetration into local tissues and additionally affect chronic and ongoing inflammatory processes in respiratory tissues. Furthermore, the ability of rhinoviruses to disrupt and interfere with epithelial tight junctions may alter the barrier integrity and enable a passive passage of inhaled allergens through the airway epithelium. On the other hand, epithelial cells are no longer considered to act only as a physical barrier toward inhaled allergens, but also to actively contribute to airway inflammation by detecting and responding to environmental factors. Epithelial cells can produce mediators, which may affect the recruitment and activation of more specialized immune cells to the local tissue and also create a microenvironment in which these activated immune cells may function and propagate the inflammatory processes. This review presents the dual role of epithelium acting as a passive and active barrier when encountering an inhaled allergen and how this double role contributes to the start of local immune responses. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Carreras-Sureda, Amado; Pihán, Philippe; Hetz, Claudio
2017-01-01
Endoplasmic reticulum (ER) to mitochondria communication has emerged in recent years as a signaling hub regulating cellular physiology with a relevant contribution to diseases including cancer and neurodegeneration. This functional integration is exerted through discrete interorganelle structures known as mitochondria-associated membranes (MAMs). At these domains, ER/mitochondria physically associate to dynamically adjust metabolic demands and the response to stress stimuli. Here, we provide a focused overview of how the ER shapes the function of the mitochondria, giving a special emphasis to the significance of local signaling of the unfolded protein response at MAMs. The implications to cell fate control and the progression of cancer are also discussed.
ERIC Educational Resources Information Center
Abbott, Ian; Middlewood, David; Robinson, Susan
2014-01-01
This paper draws on data collected from a series of semi-structured interviews with head teachers and other stakeholders on the impact and effectiveness of the introduction of a Primary School Improvement Group (PSIG) by the Local Authority (LA). The PSIG was introduced as a response to concerns expressed by the Department of Education about the…
Weak interactions in Graphane/BN systems under static electric fields—A periodic ab-initio study.
Steinkasserer, Lukas Eugen Marsoner; Gaston, Nicola; Paulus, Beate
2015-04-21
Ab-initio calculations via periodic Hartree-Fock (HF) and local second-order Møller-Plesset perturbation theory (LMP2) are used to investigate the adsorption properties of combined Graphane/boron nitride systems and their response to static electric fields. It is shown how the latter can be used to alter both structural as well as electronic properties of these systems.
NASA Astrophysics Data System (ADS)
Durgaprasad, P.; Hemalatha, J.
2018-04-01
Poly(vinylidene fluoride) (PVDF) fiber mat was synthesized by using electrospinning technique by using DMF/Acetone as mixed solvent. Structural and functional group studies were studied by using X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy respectively. The morphology of the fiber mat was investigated by using scanning electron microscopy (SEM) which revealed the formation of uniform fibers with an average diameter of 500nm. The local ferroelectric, piezo electric properties and also the domain switching of the fiber mats were investigated by Dynamic Contact Electrostatic Force Microscopy (DC-EFM) studies. The peizoelectric/ferroelectric response was recorded and analyzed.
The impact of vaccine failure rate on epidemic dynamics in responsive networks.
Liang, Yu-Hao; Juang, Jonq
2015-04-01
An SIS model based on the microscopic Markov-chain approximation is considered in this paper. It is assumed that the individual vaccination behavior depends on the contact awareness, local and global information of an epidemic. To better simulate the real situation, the vaccine failure rate is also taken into consideration. Our main conclusions are given in the following. First, we show that if the vaccine failure rate α is zero, then the epidemic eventually dies out regardless of what the network structure is or how large the effective spreading rate and the immunization response rates of an epidemic are. Second, we show that for any positive α, there exists a positive epidemic threshold depending on an adjusted network structure, which is only determined by the structure of the original network, the positive vaccine failure rate and the immunization response rate for contact awareness. Moreover, the epidemic threshold increases with respect to the strength of the immunization response rate for contact awareness. Finally, if the vaccine failure rate and the immunization response rate for contact awareness are positive, then there exists a critical vaccine failure rate αc > 0 so that the disease free equilibrium (DFE) is stable (resp., unstable) if α < αc (resp., α > αc). Numerical simulations to see the effectiveness of our theoretical results are also provided.
Computing the Partition Function for Kinetically Trapped RNA Secondary Structures
Lorenz, William A.; Clote, Peter
2011-01-01
An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in time and space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server and source code available at http://bioinformatics.bc.edu/clotelab/RNAlocopt/. PMID:21297972
Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning
2017-07-01
Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.
Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning
2017-01-01
Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. Three dimensional-Magnetic Twisting Cytometry (3D-MTC) is a technique for applying local mechanical stresses on living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real time acquisition of a living cell’s mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC – microscopy platform takes around 20 days to construct and the experimental procedures require ~4 days when carried out by a life sciences graduate student. PMID:28686583
Ruscheinsky, Monika; De la Motte, Carol; Mahendroo, Mala
2008-01-01
The uterine cervix undergoes changes during pregnancy and labor that transform it from a closed, rigid, collagen dense structure to one that is distensible, has a disorganized collagen matrix, and dilates sufficiently to allow birth. To protect the reproductive tract from exposure to the external environment, the cervix must be rapidly altered to a closed, undistensible structure after birth. Preparturition remodeling is characterized by increased synthesis of hyaluronan, decreased expression of collagen assembly genes and increased distribution of inflammatory cells into the cervical matrix. Postpartum remodeling is characterized by decreased hyaluronan (HA) content, increased expression of genes involved in assembly of mature collagen and inflammation. The focus of this study is to advance our understanding of functions HA plays in this dynamic process through characterization of HA size, structure and binding proteins in the mouse cervix. Changes in size and structure of HA before and after birth were observed as well as cell specific expression of HA binding proteins. CD44 expression is localized to the pericellular matrix surrounding the basal epithelia and on immune cells while inter α trypsin inhibitor (IαI) and versican are localized to the stromal matrix. Co-localization of HA and IαI is most pronounced after birth. Upregulation of the versican degrading protease, ADAMTS1 occurs in the cervix prior to birth. These studies suggest that HA has multiple, cell specific functions in the cervix that may include modulation of tissue structure and integrity, epithelial cell migration and differentiation, and inflammatory responses. PMID:18353623
NASA Astrophysics Data System (ADS)
Lin, Changhong; Peng, Miao; Tan, Handong; Xu, Zhiqin; Li, Zhong-Hai; Kong, Wenxin; Tong, Tuo; Wang, Mao; Zeng, Weihua
2017-07-01
The eastern terminations of the Himalayan orogeny, named Namche Barwa, are considered a vital natural laboratory in the Tibetan plateau for geodynamics due to its distinctive geological and geomorphological characteristics. Magnetotelluric (MT) data measured at 83 sites around the Namche Barwa are imaged by three-dimensional (3-D) inversion to better reveal the crustal structure of the eastern Himalaya. The results show a complex and heterogeneous electrical structure beneath the Namche Barwa. The electrical conductors distributed in the middle and lower crust around the Namche Barwa provide additional evidence for the "crustal flow" model if they are considered as some parts of the flow in a relatively large-scale region. The near-surface resistivity model beneath the inner part of Namche Barwa conforms with the locations of hot spring and fluid inclusions, the brittle-ductile transition, and the 300°C-400°C isotherm from previous hydrothermal studies. Relatively resistive upper crust (>800 Ωm) is underlain by a more conductive middle to lower crust (<80 Ωm). The electrical characteristics of the thermal structure at shallow depth indicate an accumulation of hydrous melting, a localized conductive steep dipping zone for decompression melting consistent with the "tectonic aneurysm" model for explaining the exhumation mechanism of metamorphic rocks at Namche Barwa. The results also imply that both surface processes and local tectonic responses play a vital role in the evolution of Namche Barwa. An alternative hypothesis that the primary sustained heat source accounts for the local thermal-rheological structure beneath Namche Barwa is also discussed.
NASA Astrophysics Data System (ADS)
Hoell, Simon; Omenzetter, Piotr
2016-04-01
Fueled by increasing demand for carbon neutral energy, erections of ever larger wind turbines (WTs), with WT blades (WTBs) with higher flexibilities and lower buckling capacities lead to increasing operation and maintenance costs. This can be counteracted with efficient structural health monitoring (SHM), which allows scheduling maintenance actions according to the structural state and preventing dramatic failures. The present study proposes a novel multi-step approach for vibration-based structural damage localization and severity estimation for application in operating WTs. First, partial autocorrelation coefficients (PACCs) are estimated from vibrational responses. Second, principal component analysis is applied to PACCs from the healthy structure in order to calculate scores. Then, the scores are ranked with respect to their ability to differentiate different damage scenarios. This ranking information is used for constructing hierarchical adaptive neuro-fuzzy inference systems (HANFISs), where cross-validation is used to identify optimal numbers of hierarchy levels. Different HANFISs are created for the purposes of structural damage localization and severity estimation. For demonstrating the applicability of the approach, experimental data are superimposed with signals from numerical simulations to account for characteristics of operational noise. For the physical experiments, a small scale WTB is excited with a domestic fan and damage scenarios are introduced non-destructively by attaching small masses. Numerical simulations are also performed for a representative fully functional small WT operating in turbulent wind. The obtained results are promising for future applications of vibration-based SHM to facilitate improved safety and reliability of WTs at lower costs.
Automated real-time structure health monitoring via signature pattern recognition
NASA Astrophysics Data System (ADS)
Sun, Fanping P.; Chaudhry, Zaffir A.; Rogers, Craig A.; Majmundar, M.; Liang, Chen
1995-05-01
Described in this paper are the details of an automated real-time structure health monitoring system. The system is based on structural signature pattern recognition. It uses an array of piezoceramic patches bonded to the structure as integrated sensor-actuators, an electric impedance analyzer for structural frequency response function acquisition and a PC for control and graphic display. An assembled 3-bay truss structure is employed as a test bed. Two issues, the localization of sensing area and the sensor temperature drift, which are critical for the success of this technique are addressed and a novel approach of providing temperature compensation using probability correlation function is presented. Due to the negligible weight and size of the solid-state sensor array and its ability to sense incipient-type damage, the system can eventually be implemented on many types of structures such as aircraft, spacecraft, large-span dome roof and steel bridges requiring multilocation and real-time health monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.
The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO 2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr -1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and longer-term soil microbial dynamics may be significantly different under changing climate.« less
Finding the Genomic Basis of Local Adaptation: Pitfalls, Practical Solutions, and Future Directions.
Hoban, Sean; Kelley, Joanna L; Lotterhos, Katie E; Antolin, Michael F; Bradburd, Gideon; Lowry, David B; Poss, Mary L; Reed, Laura K; Storfer, Andrew; Whitlock, Michael C
2016-10-01
Uncovering the genetic and evolutionary basis of local adaptation is a major focus of evolutionary biology. The recent development of cost-effective methods for obtaining high-quality genome-scale data makes it possible to identify some of the loci responsible for adaptive differences among populations. Two basic approaches for identifying putatively locally adaptive loci have been developed and are broadly used: one that identifies loci with unusually high genetic differentiation among populations (differentiation outlier methods) and one that searches for correlations between local population allele frequencies and local environments (genetic-environment association methods). Here, we review the promises and challenges of these genome scan methods, including correcting for the confounding influence of a species' demographic history, biases caused by missing aspects of the genome, matching scales of environmental data with population structure, and other statistical considerations. In each case, we make suggestions for best practices for maximizing the accuracy and efficiency of genome scans to detect the underlying genetic basis of local adaptation. With attention to their current limitations, genome scan methods can be an important tool in finding the genetic basis of adaptive evolutionary change.
Klotzbücher, Sascha; Lässig, Peter; Jiangmei, Qin; Weigelin-Schwiedrzik, Susanne
2011-01-01
In 2002, the Chinese leadership announced a change in national welfare policy: Voluntary medical schemes at county level, called the “New Rural Co-operative Medical System” should cover all counties by 2010. This article addresses the main characteristics of this system, analyses the introduction of local schemes based on our own field studies in one Kazak county of the Xinjiang Uyghur Autonomous Region since 2006, and argues that the fast progressing of the local scheme and the flexibility shown by local administrators in considering structural and procedural adjustments are not the result of central directives but of local initiatives. Recentralization from the township governments to functional departments in the provincial and the central state administration is only one aspect of current rural governance. Complementary forms of locally embedded responsiveness to the needs of health care recipients are crucial in restructuring the administration and discharge of health care. These new modes of governance are different from the hierarchical control and institutionalized representation of interests of the local population. PMID:22058584
NASA Astrophysics Data System (ADS)
Zharov, Vladimir P.; Galitovsky, Valentin; Chowdhury, Parimal; Chambers, Timothy
2004-07-01
This short review presents findings from a recent evaluation of the diagnostic capabilities of a new experimental design of the advanced photothermal (PT) imaging system; specifically, its performance in studying the impact of nicotine, a combination of antitumor drugs, and radiation on the absorbing structures of various cells. We used this imaging system to test our hypothesis that low doses of chemicals or drugs lead to changes in cell metabolism, that these changes are accompanied by the shrinking of cellular absorbing zones (e.g. organelles), and that these reactions cause increased local absorption. Conversely, high (toxic) doses may lead to swelling of organelles or release of chromophores into the intracellular space, causing decreased local absorption. In this study, we compared PT images and PT responses of the pancreatic exocrine tumor cell line AR42J resulting from exposure to various concentrations of nicotine versus those of control cells. We found that responses were almost proportional to the drug concentration in concentrations ranging from 1 nM-100 μM, reached saturation at a maximum of approximately 100 μM-1 mM, and then fell rapidly at concentrations ranging from 1-50 mM. We also examined the influence of antitumor drugs (vinblastine and paclitaxel) on KB3 carcinoma cells, with drug concentrations ranging from 10-10 nM to 10 nM. In this instance, exposure initially led to slight cell activation, which was then followed by decreased cellular PT response. Drug administration led to corresponding changes in the amplitude and spatial intracellular localization of PT responses, including bubble formation, as an indicator of local absorption level. Additionally, it was shown that, depending on cell type, x-ray radiation may produce effects similar to those resulting from exposure to drugs. Independent verification with a combined PT-fluorescence assay and conventional staining kits (trypan blue, Annexin V-propidium iodide [PI]) revealed that this new PT assay has the potential to detect different stages of environmental impact, including changes in cell metabolism and apoptotic- and toxic-related phenomena, at a concentration threshold sensitivity at least three orders of magnitude better than existing assays. This assay may also help optimize combined cancer therapies.
Localized damage caused by topographic amplification during the 2010 M7.0 Haiti earthquake
Hough, S.E.; Altidor, J.R.; Anglade, D.; Given, D.; Janvier, M.G.; Maharrey, J.Z.; Meremonte, M.; Mildor, B.S.-L.; Prepetit, C.; Yong, A.
2010-01-01
Local geological conditions, including both near-surface sedimentary layers and topographic features, are known to significantly influence ground motions caused by earthquakes. Microzonation maps use local geological conditions to characterize seismic hazard, but commonly incorporate the effect of only sedimentary layers. Microzonation does not take into account local topography, because significant topographic amplification is assumed to be rare. Here we show that, although the extent of structural damage in the 2010 Haiti earthquake was primarily due to poor construction, topographic amplification contributed significantly to damage in the district of Petionville, south of central Port-au-Prince. A large number of substantial, relatively well-built structures situated along a foothill ridge in this district sustained serious damage or collapse. Using recordings of aftershocks, we calculate the ground motion response at two seismic stations along the topographic ridge and at two stations in the adjacent valley. Ground motions on the ridge are amplified relative to both sites in the valley and a hard-rock reference site, and thus cannot be explained by sediment-induced amplification. Instead, the amplitude and predominant frequencies of ground motion indicate the amplification of seismic waves by a narrow, steep ridge. We suggest that microzonation maps can potentially be significantly improved by incorporation of topographic effects. ?? 2010 Macmillan Publishers Limited. All rights reserved.
Simple shearing flow of dry soap foams with tetrahedrally close-packed structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinelt, Douglas A.; Kraynik, Andrew M.
2000-05-01
The microrheology of dry soap foams subjected to quasistatic, simple shearing flow is analyzed. Two different monodisperse foams with tetrahedrally close-packed (TCP) structure are examined: Weaire-Phelan (A15) and Friauf-Laves (C15). The elastic-plastic response is evaluated by using the Surface Evolver to calculate foam structures that minimize total surface area at each value of strain. The foam geometry and macroscopic stress are piecewise continuous functions of strain. The stress scales as T/V{sup 1/3}, where T is surface tension and V is cell volume. Each discontinuity corresponds to large changes in foam geometry and topology that restore equilibrium to unstable configurations thatmore » violate Plateau's laws. The instabilities occur when the length of an edge on a polyhedral foam cell vanishes. The length can tend to zero smoothly or abruptly with strain. The abrupt case occurs when a small increase in strain changes the energy profile in the neighborhood of a foam structure from a local minimum to a saddle point, which can lead to symmetry-breaking bifurcations. In general, the new structure associated with each stable solution branch results from an avalanche of local topology changes called T1 transitions. Each T1 cascade produces different cell neighbors, reduces surface energy, and provides an irreversible, film-level mechanism for plastic yield behavior. Stress-strain curves and average stresses are evaluated by examining foam orientations that admit strain-periodic behavior. For some orientations, the deformation cycle includes Kelvin cells instead of the original TCP structure; but the foam does not remain perfectly ordered. Bifurcations during subsequent T1 cascades lead to disorder and can even cause strain localization. (c) 2000 Society of Rheology.« less
Characterizing structural transitions using localized free energy landscape analysis.
Banavali, Nilesh K; Mackerell, Alexander D
2009-01-01
Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes. Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined) base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom. The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins.
Local structural mechanism for frozen-in dynamics in metallic glasses
NASA Astrophysics Data System (ADS)
Liu, X. J.; Wang, S. D.; Wang, H.; Wu, Y.; Liu, C. T.; Li, M.; Lu, Z. P.
2018-04-01
The nature of the glass transition is a fundamental and long-standing intriguing issue in the condensed-matter physics and materials science community. In particular, the structural response by which a liquid is arrested dynamically to form a glass or amorphous solid upon approaching its freezing temperature [the glass transition temperature (Tg)] remains unclear. Various structural scenarios in terms of the percolation theory have been proposed recently to understand such a phenomenon; however, there is still no consensus on what the general percolation entity is and how the entity responds to the sudden slowdown dynamics during the glass transition. In this paper, we demonstrate that one-dimensional local linear ordering (LLO) is a universal structural motif associated with the glass transition for various metallic glasses. The quantitative evolution of LLO with temperature indicates that a percolating LLO network forms to serve as the backbone of the rigid glass solid when the temperature approaches the freezing point, resulting in the frozen-in dynamics accompanying the glass transition. The percolation transition occurs by pinning different LLO networks together, which only needs the introduction of a small number of "joint" atoms between them, and therefore the energy expenditure is very low.
Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid
NASA Astrophysics Data System (ADS)
Puosi, F.; Jakse, N.; Pasturel, A.
2018-04-01
As it approaches the glass transition, particle motion in liquids becomes highly heterogeneous and regions with virtually no mobility coexist with liquid-like domains. This complex dynamic is believed to be responsible for different phenomena including non-exponential relaxation and the breakdown of the Stokes-Einstein relation. Understanding the relationships between dynamical heterogeneities and local structure in metallic liquids and glasses is a major scientific challenge. Here we use classical molecular dynamics simulations to study the atomic dynamics and microscopic structure of Cu50Zr50 alloy in the supercooling regime. Dynamical heterogeneities are identified via an isoconfigurational analysis. We demonstrate the transition from isolated to clustering low mobility with decreasing temperature. These slow clusters, whose sizes grow upon cooling, are also associated with concentration fluctuations, characterized by a Zr-enriched phase, with a composition CuZr2 . In addition, a structural analysis of slow clusters based on Voronoi tessellation evidences an increase with respect of the bulk system of the fraction of Cu atoms having a local icosahedral order. These results are in agreement with the consolidated scenario of the relevant role played by icosahedral order in the dynamic slowing-down in supercooled metal alloys.
Analysis of frequency shifting in seismic signals using Gabor-Wigner transform
NASA Astrophysics Data System (ADS)
Kumar, Roshan; Sumathi, P.; Kumar, Ashok
2015-12-01
A hybrid time-frequency method known as Gabor-Wigner transform (GWT) is introduced in this paper for examining the time-frequency patterns of earthquake damaged buildings. GWT is developed by combining the Gabor transform (GT) and Wigner-Ville distribution (WVD). GT and WVD have been used separately on synthetic and recorded earthquake data to identify frequency shifting due to earthquake damages, but GT is prone to windowing effect and WVD involves ambiguity function. Hence to obtain better clarity and to remove the cross terms (frequency interference), GT and WVD are judiciously combined and the resultant GWT used to identify frequency shifting. Synthetic seismic response of an instrumented building and real-time earthquake data recorded on the building were investigated using GWT. It is found that GWT offers good accuracy for even slow variations in frequency, good time-frequency resolution, and localized response. Presented results confirm the efficacy of GWT when compared with GT and WVD used separately. Simulation results were quantified by the Renyi entropy measures and GWT shown to be an adequate technique in identifying localized response for structural damage detection.
Full Wave Parallel Code for Modeling RF Fields in Hot Plasmas
NASA Astrophysics Data System (ADS)
Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo
2015-11-01
FAR-TECH, Inc. is developing a suite of full wave RF codes in hot plasmas. It is based on a formulation in configuration space with grid adaptation capability. The conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating the linearized Vlasov equation along unperturbed test particle orbits. For Tokamak applications a 2-D version of the code is being developed. Progress of this work will be reported. This suite of codes has the following advantages over existing spectral codes: 1) It utilizes the localized nature of plasma dielectric response to the RF field and calculates this response numerically without approximations. 2) It uses an adaptive grid to better resolve resonances in plasma and antenna structures. 3) It uses an efficient sparse matrix solver to solve the formulated linear equations. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel is calculated. Work is supported by the U.S. DOE SBIR program.
The multi-modal responses of a physical head model subjected to various blast exposure conditions
NASA Astrophysics Data System (ADS)
Ouellet, S.; Philippens, M.
2018-01-01
The local and global biomechanical response of the body to a blast wave is the first step of a sequence that leads to the development of stresses and strains which can exceed the tolerance of brain tissue. These stresses and strains may then lead to neuro-physical changes in the brain and contribute to initiate a cascade of events leading to injury. The specific biomechanical pathways by which the blast energy is transmitted through the head structure are, however, not clearly understood. Multiple transmission mechanisms have been proposed to explain the generation of brain stresses following the impingement of a blast wave on the head. With the use of a physical head model, the work presented here aims at demonstrating that the proposed transmission mechanisms are not mutually exclusive. They are part of a continuum of head responses where, depending on the exposure conditions, a given mechanism may or may not dominate. This article presents the joint analysis of previous blast test results generated with the brain injury protection evaluation device (BIPED) headform under four significantly different exposure conditions. The focus of the analysis is to demonstrate how the nature of the recorded response is highly dependent on the exposure characteristics and consequently, on the method used to reproduce blast exposure in a laboratory environment. The timing and magnitude of the variations in intra-cranial pressures (ICP) were analysed relative to the external pressure field in order to better understand the wave dynamics occurring within the brain structure of the headform. ICP waveforms were also analysed in terms of their energy spectral density to better identify the energy partitioning between the different modes of response. It is shown that the BIPED response is multi-modal and that the energy partitioning between its different modes of response is greatly influenced by exposure characteristics such as external peak overpressure, impulse, blast wave structure, and direction of propagation. Convincing evidence of stresses generated from local skull deformation is presented along with evidence of stress transmission through relative brain-to-skull motion. These findings suggest that research aimed at defining exposure thresholds should not focus on a single stress transmission mechanism or use experimental designs unrepresentative of realistic blast loading conditions that may favour a given mechanism over another.
NASA Astrophysics Data System (ADS)
Apostol, Bogdan Felix; Florin Balan, Stefan; Ionescu, Constantin
2017-12-01
The effects of the earthquakes on buildings and the concept of seismic base isolation are investigated by using the model of the vibrating bar embedded at one end. The normal modes and the eigenfrequencies of the bar are highlighted and the amplification of the response due to the excitation of the normal modes (eigenmodes) is computed. The effect is much enhanced at resonance, for oscillating shocks which contain eigenfrequencies of the bar. Also, the response of two linearly joined bars with one end embedded is calculated. It is shown that for very different elastic properties the eigenfrequencies are due mainly to the “softer” bar. The effect of the base isolation in seismic structural engineering is assessed by formulating the model of coupled harmonic oscillators, as a simplified model for the structure building-foundation viewed as two coupled vibrating bars. The coupling decreases the lower eigenfrequencies of the structure and increases the higher ones. Similar amplification factors are derived for coupled oscillators at resonance with an oscillating shock.
A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure
2013-01-01
A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields. PMID:24093494
Optimum design of structures subject to general periodic loads
NASA Technical Reports Server (NTRS)
Reiss, Robert; Qian, B.
1989-01-01
A simplified version of Icerman's problem regarding the design of structures subject to a single harmonic load is discussed. The nature of the restrictive conditions that must be placed on the design space in order to ensure an analytic optimum are discussed in detail. Icerman's problem is then extended to include multiple forcing functions with different driving frequencies. And the conditions that now must be placed upon the design space to ensure an analytic optimum are again discussed. An important finding is that all solutions to the optimality condition (analytic stationary design) are local optima, but the global optimum may well be non-analytic. The more general problem of distributing the fixed mass of a linear elastic structure subject to general periodic loads in order to minimize some measure of the steady state deflection is also considered. This response is explicitly expressed in terms of Green's functional and the abstract operators defining the structure. The optimality criterion is derived by differentiating the response with respect to the design parameters. The theory is applicable to finite element as well as distributed parameter models.
A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.
Sun, Xiaoxia; Uyama, Hiroshi
2013-10-04
A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.
Rodriguez, Brian D.
2017-03-31
This report summarizes the results of three-dimensional (3-D) resistivity inversion simulations that were performed to account for local 3-D distortion of the electric field in the presence of 3-D regional structure, without any a priori information on the actual 3-D distribution of the known subsurface geology. The methodology used a 3-D geologic model to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was assumed to represent observed magnetotelluric data and was subsequently used as input into a 3-D resistivity inverse model that used an iterative 3-D algorithm to estimate 3-D distortions without any a priori geologic information. A publicly available inversion code, WSINV3DMT, was used for all of the simulated inversions, initially using the default parameters, and subsequently using adjusted inversion parameters. A semiautomatic approach of accounting for the static shift using various selections of the highest frequencies and initial models was also tested. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated. The inversion approach that produced the lowest misfit to the various local 3-D distortions was an inversion that employed an initial model volume resistivity that was nearest to the maximum resistivities in the near-surface layer.
One new kind of phytohormonal signaling integrator: Up-and-coming GASA family genes.
Zhang, Shengchun; Wang, Xiaojing
2017-02-01
GASA proteins are characterized by an N-terminal signal peptide and a C-terminal conserved GASA domain with 12 invariant cysteine residues. Despite being widely distributed among plant species, their functions are not completely elucidated and little is known about their mechanism of action. This review focuses on the current knowledge about the molecular structure, protein subcellular localization and phytohormones responses of this up-and-coming family of peptides. Furthermore, we discussed the roles of GASA proteins in plant growth and development, plant responses to biotic or abiotic stresses and their participation in phytohormonal signaling integration.
Learning quadratic receptive fields from neural responses to natural stimuli.
Rajan, Kanaka; Marre, Olivier; Tkačik, Gašper
2013-07-01
Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron is sensitive to the local covariance structure of the signal preceding the spike. To infer this quadratic dependence in the presence of arbitrary (e.g., naturalistic) stimulus distribution, we review several inference methods, focusing in particular on two information theory-based approaches (maximization of stimulus energy and of noise entropy) and two likelihood-based approaches (Bayesian spike-triggered covariance and extensions of generalized linear models). We analyze the formal relationship between the likelihood-based and information-based approaches to demonstrate how they lead to consistent inference. We demonstrate the practical feasibility of these procedures by using model neurons responding to a flickering variance stimulus.
Rapid innovation diffusion in social networks.
Kreindler, Gabriel E; Young, H Peyton
2014-07-22
Social and technological innovations often spread through social networks as people respond to what their neighbors are doing. Previous research has identified specific network structures, such as local clustering, that promote rapid diffusion. Here we derive bounds that are independent of network structure and size, such that diffusion is fast whenever the payoff gain from the innovation is sufficiently high and the agents' responses are sufficiently noisy. We also provide a simple method for computing an upper bound on the expected time it takes for the innovation to become established in any finite network. For example, if agents choose log-linear responses to what their neighbors are doing, it takes on average less than 80 revision periods for the innovation to diffuse widely in any network, provided that the error rate is at least 5% and the payoff gain (relative to the status quo) is at least 150%. Qualitatively similar results hold for other smoothed best-response functions and populations that experience heterogeneous payoff shocks.
Amorphous to amorphous transition in particle rafts
NASA Astrophysics Data System (ADS)
Varshney, Atul; Sane, A.; Ghosh, Shankar; Bhattacharya, S.
2012-09-01
Space-filling assemblies of athermal hydrophobic particles floating at an air-water interface, called particle rafts, are shown to undergo an unusual phase transition between two amorphous states, i.e., a low density “less-rigid” state and a high density “more-rigid” state, as a function of particulate number density (Φ). The former is shown to be a capillary bridged solid and the latter is shown to be a frictionally coupled one. Simultaneous studies involving direct imaging as well as measuring its mechanical response to longitudinal and shear stresses show that the transition is marked by a subtle structural anomaly and a weakening of the shear response. The structural anomaly is identified from the variation of the mean coordination number, mean area of the Voronoi cells, and spatial profile of the displacement field with Φ. The weakened shear response is related to local plastic instabilities caused by the depinning of the contact line of the underlying fluid on the rough surfaces of the particles.
Rapid innovation diffusion in social networks
Kreindler, Gabriel E.; Young, H. Peyton
2014-01-01
Social and technological innovations often spread through social networks as people respond to what their neighbors are doing. Previous research has identified specific network structures, such as local clustering, that promote rapid diffusion. Here we derive bounds that are independent of network structure and size, such that diffusion is fast whenever the payoff gain from the innovation is sufficiently high and the agents’ responses are sufficiently noisy. We also provide a simple method for computing an upper bound on the expected time it takes for the innovation to become established in any finite network. For example, if agents choose log-linear responses to what their neighbors are doing, it takes on average less than 80 revision periods for the innovation to diffuse widely in any network, provided that the error rate is at least 5% and the payoff gain (relative to the status quo) is at least 150%. Qualitatively similar results hold for other smoothed best-response functions and populations that experience heterogeneous payoff shocks. PMID:25024191
Hills, Ronald D.; Kathuria, Sagar V.; Wallace, Louise A.; Day, Iain J.; Brooks, Charles L.; Matthews, C. Robert
2010-01-01
The thermodynamic hypothesis of Anfinsen postulates that structures and stabilities of globular proteins are determined by their amino acid sequences. Chain topology, however, is known to influence the folding reaction, in that motifs with a preponderance of local interactions typically fold more rapidly than those with a larger fraction of non-local interactions. Together, the topology and sequence can modulate the energy landscape and influence the rate at which the protein folds to the native conformation. To explore the relationship of sequence and topology in the folding of βα–repeat proteins, which are dominated by local interactions, a combined experimental and simulation analysis was performed on two members of the flavodoxin-like, α/β/α sandwich fold. Spo0F and the N-terminal receiver domain of NtrC (NT-NtrC) have similar topologies but low sequence identity, enabling a test of the effects of sequence on folding. Experimental results demonstrated that both response-regulator proteins fold via parallel channels through highly structured sub-millisecond intermediates before accessing their cis prolyl peptide bond-containing native conformations. Global analysis of the experimental results preferentially places these intermediates off the productive folding pathway. Sequence-sensitive Gō-model simulations conclude that frustration in the folding in Spo0F, corresponding to the appearance of the off-pathway intermediate, reflects competition for intra-subdomain van der Waals contacts between its N- and C-terminal subdomains. The extent of transient, premature structure appears to correlate with the number of isoleucine, leucine and valine (ILV) side-chains that form a large sequence-local cluster involving the central β-sheet and helices α2, α3 and α4. The failure to detect the off-pathway species in the simulations of NT-NtrC may reflect the reduced number of ILV side-chains in its corresponding hydrophobic cluster. The location of the hydrophobic clusters in the structure may also be related to the differing functional properties of these response regulators. Comparison with the results of previous experimental and simulation analyses on the homologous CheY argues that prematurely-folded unproductive intermediates are a common property of the βα-repeat motif. PMID:20226790
Smart Actuators and Adhesives for Reconfigurable Matter.
Ko, Hyunhyub; Javey, Ali
2017-04-18
Biological systems found in nature provide excellent stimuli-responsive functions. The camouflage adaptation of cephalopods (octopus, cuttlefish), rapid stiffness change of sea cucumbers, opening of pine cones in response to humidity, and rapid closure of Venus flytraps upon insect touch are some examples of nature's smart systems. Although current technologies are still premature to mimic these sophisticated structures and functions in smart biological systems, recent work on stimuli-responsive programmable matter has shown great progress. Stimuli-responsive materials based on hydrogels, responsive nanocomposites, hybrid structures, shape memory polymers, and liquid crystal elastomers have demonstrated excellent responsivities to various stimuli such as temperature, light, pH, and electric field. However, the technologies in these stimuli-responsive materials are still not sophisticated enough to demonstrate the ultimate attributes of an ideal programmable matter: fast and reversible reconfiguration of programmable matter into complex and robust shapes. Recently, reconfigurable (or programmable) matter that reversibly changes its structure/shape or physical/chemical properties in response to external stimuli has attracted great interest for applications in sensors, actuators, robotics, and smart systems. In particular, key attributes of programmable matter including fast and reversible reconfiguration into complex and robust 2D and 3D shapes have been demonstrated by various approaches. In this Account, we review focused areas of smart materials with special emphasis on the material and device structure designs to enhance the response time, reversibility, multistimuli responsiveness, and smart adhesion for efficient shape transformation and functional actuations. First, the capability of fast reconfiguration of 2D and 3D structures in a reversible way is a critical requirement for programmable matter. For the fast and reversible reconfiguration, various approaches based on enhanced solvent diffusion rate through the porous or structured hydrogel materials, electrostatic repulsion between cofacial electrolyte nanosheets, and photothermal actuation are discussed. Second, the ability to reconfigure programmable matters into a variety of complex structures is beneficial for the use of reconfigurable matter in diverse applications. For the reconfiguration of planar 2D structures into complex 3D structures, asymmetric and multidirectional stress should be applied. In this regard, local hinges with stimuli-responsive stiffness, multilayer laminations with different responsiveness in individual layers, and origami and kirigami assembly approaches are reviewed. Third, multistimuli responsiveness will be required for the efficient reconfiguration of complex programmable matter in response to user-defined stimulus under different chemical and physical environments. In addition, with multistimuli responsiveness, the reconfigured shape can be temporarily affixed by one signal and disassembled by another signal at a user-defined location and time. Photoactuation depending on the chirality of carbon nanotubes and composite gels with different responsiveness will be discussed. Finally, the development of smart adhesives with on-demand adhesion strength is critically required to maintain the robust reconfigurable shapes and for the switching on/off of the binding between components or with target objects. Among various connectors and adhesives, thermoresponsive nanowire connectors, octopus-inspired smart adhesives, and elastomeric tiles with soft joints are described due to their potential applications in joints of deformable 3D structures and smart gripping systems.
Structural Determinants of Oligomerization of the Aquaporin-4 Channel.
Kitchen, Philip; Conner, Matthew T; Bill, Roslyn M; Conner, Alex C
2016-03-25
The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Geirhos, K.; Lunkenheimer, P.; Loidl, A.
2018-02-01
Experimental evidence for the Gardner transition, theoretically predicted to arise deep in the glassy state of matter, is scarce. At this transition, the energy landscape sensed by the particles forming the glass is expected to become more complex. In the present Letter, we report the dielectric response of two typical glass formers with well-pronounced Johari-Goldstein β relaxation, following this response down to unprecedented low temperatures, far below the glass transition. As the Johari-Goldstein process is believed to arise from the local structure of the energy landscape, its investigation seems an ideal tool to seek evidence for the Gardner transition. Indeed, we find an unusual broadening of the β relaxation below about 110 K for sorbitol and 100 K for xylitol, in excess of the expected broadening arising from a distribution of energy barriers. These results are well consistent with the presence of the Gardner transition in canonical structural glass formers.
Chiappori, Federica; Merelli, Ivan; Milanesi, Luciano; Colombo, Giorgio; Morra, Giulia
2016-01-01
The Hsp70 is an allosterically regulated family of molecular chaperones. They consist of two structural domains, NBD and SBD, connected by a flexible linker. ATP hydrolysis at the NBD modulates substrate recognition at the SBD, while peptide binding at the SBD enhances ATP hydrolysis. In this study we apply Molecular Dynamics (MD) to elucidate the molecular determinants underlying the allosteric communication from the NBD to the SBD and back. We observe that local structural and dynamical modulation can be coupled to large-scale rearrangements, and that different combinations of ligands at NBD and SBD differently affect the SBD domain mobility. Substituting ADP with ATP in the NBD induces specific structural changes involving the linker and the two NBD lobes. Also, a SBD-bound peptide drives the linker docking by increasing the local dynamical coordination of its C-terminal end: a partially docked DnaK structure is achieved by combining ATP in the NBD and peptide in the SBD. We propose that the MD-based analysis of the inter domain dynamics and structure modulation could be used as a tool to computationally predict the allosteric behaviour and functional response of Hsp70 upon introducing mutations or binding small molecules, with potential applications for drug discovery. PMID:27025773
Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santavicca, Dom; Lieuwen, Tim
Actual gas turbine combustors for power generation applications employ multi-nozzle combustor configurations. Researchers at Penn State and Georgia Tech have extended previous work on the flame response in single-nozzle combustors to the more realistic case of multi-nozzle combustors. Research at Georgia Tech has shown that asymmetry of both the flow field and the acoustic forcing can have a significant effect on flame response and that such behavior is important in multi-flame configurations. As a result, the structure of the flame and its response to forcing is three-dimensional. Research at Penn State has led to the development of a three-dimensional chemiluminescencemore » flame imaging technique that can be used to characterize the unforced (steady) and forced (unsteady) flame structure of multi-nozzle combustors. Important aspects of the flame response in multi-nozzle combustors which are being studied include flame-flame and flame-wall interactions. Research at Penn State using the recently developed three-dimensional flame imaging technique has shown that spatial variations in local flame confinement must be accounted for to accurately predict global flame response in a multi-nozzle can combustor.« less
NASA Astrophysics Data System (ADS)
García-Aldea, David; Alvarellos, J. E.
2009-03-01
We present several nonlocal exchange energy density functionals that reproduce the linear response function of the free electron gas. These nonlocal functionals are constructed following a similar procedure used previously for nonlocal kinetic energy density functionals by Chac'on-Alvarellos-Tarazona, Garc'ia-Gonz'alez et al., Wang-Govind-Carter and Garc'ia-Aldea-Alvarellos. The exchange response function is not known but we have used the approximate response function developed by Utsumi and Ichimaru, even we must remark that the same ansatz can be used to reproduce any other response function with the same scaling properties. We have developed two families of new nonlocal functionals: one is constructed with a mathematical structure based on the LDA approximation -- the Dirac functional for the exchange - and for the second one the structure of the second order gradient expansion approximation is took as a model. The functionals are constructed is such a way that they can be used in localized systems (using real space calculations) and in extended systems (using the momentum space, and achieving a quasilinear scaling with the system size if a constant reference electron density is defined).
The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.
Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R
2016-03-01
Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.
The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex
Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.
2016-01-01
Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons’ receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex. PMID:27015604
Structure and physics of solar faculae
NASA Astrophysics Data System (ADS)
Pecker, J.-C.; Dumont, S.; Mouradian, Z.
1992-04-01
The optical depths of layers in the chromosphere-corona transition (CCT) zone, which is responsible for resolved structures in CII, CIII, OIV, and OVI lines, were determined using a new method that takes into account the effect of roughness (or local departures from sphericity) of the emitting layers in the CCT zone. The method allows determination of the angle alpha typical of the roughness (in case of availability of resolved data) and the two optical depths tau-1 and tau-2. It is shown that, even in unresolved cases, the new method gives a more realistic determination of the optical depths than previously determined.
Amorphous photonic crystals with only short-range order.
Shi, Lei; Zhang, Yafeng; Dong, Biqin; Zhan, Tianrong; Liu, Xiaohan; Zi, Jian
2013-10-04
Distinct from conventional photonic crystals with both short- and long-range order, amorphous photonic crystals that possess only short-range order show interesting optical responses owing to their unique structural features. Amorphous photonic crystals exhibit unique light scattering and transport, which lead to a variety of interesting phenomena such as isotropic photonic bandgaps or pseudogaps, noniridescent structural colors, and light localization. Recent experimental and theoretical advances in the study of amorphous photonic crystals are summarized, focusing on their unique optical properties, artificial fabrication, bionspiration, and potential applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A saponin-detoxifying enzyme mediates suppression of plant defences
NASA Astrophysics Data System (ADS)
Bouarab, K.; Melton, R.; Peart, J.; Baulcombe, D.; Osbourn, A.
2002-08-01
Plant disease resistance can be conferred by constitutive features such as structural barriers or preformed antimicrobial secondary metabolites. Additional defence mechanisms are activated in response to pathogen attack and include localized cell death (the hypersensitive response). Pathogens use different strategies to counter constitutive and induced plant defences, including degradation of preformed antimicrobial compounds and the production of molecules that suppress induced plant defences. Here we present evidence for a two-component process in which a fungal pathogen subverts the preformed antimicrobial compounds of its host and uses them to interfere with induced defence responses. Antimicrobial saponins are first hydrolysed by a fungal saponin-detoxifying enzyme. The degradation product of this hydrolysis then suppresses induced defence responses by interfering with fundamental signal transduction processes leading to disease resistance.
Theoretical Limitations on Functional Imaging Resolution in Auditory Cortex
Chen, Thomas L.; Watkins, Paul V.; Barbour, Dennis L.
2010-01-01
Functional imaging can reveal detailed organizational structure in cerebral cortical areas, but neuronal response features and local neural interconnectivity can influence the resulting images, possibly limiting the inferences that can be drawn about neural function. Discerning the fundamental principles of organizational structure in the auditory cortex of multiple species has been somewhat challenging historically both with functional imaging and with electrophysiology. A possible limitation affecting any methodology using pooled neuronal measures may be the relative distribution of response selectivity throughout the population of auditory cortex neurons. One neuronal response type inherited from the cochlea, for example, exhibits a receptive field that increases in size (i.e., decreases in selectivity) at higher stimulus intensities. Even though these neurons appear to represent a minority of auditory cortex neurons, they are likely to contribute disproportionately to the activity detected in functional images, especially if intense sounds are used for stimulation. To evaluate the potential influence of neuronal subpopulations upon functional images of primary auditory cortex, a model array representing cortical neurons was probed with virtual imaging experiments under various assumptions about the local circuit organization. As expected, different neuronal subpopulations were activated preferentially under different stimulus conditions. In fact, stimulus protocols that can preferentially excite selective neurons, resulting in a relatively sparse activation map, have the potential to improve the effective resolution of functional auditory cortical images. These experimental results also make predictions about auditory cortex organization that can be tested with refined functional imaging experiments. PMID:20079343
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongchao; Dorn, Charles; Mancini, Tyler
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; ...
2016-12-05
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers havemore » high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30–60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than what is required by the Shannon-Nyquist sampling theorem for output-only modal analysis. In particular, the spatio-temporal uncoupling property of the modal expansion of structural vibration responses enables a direct modal decoupling of the temporally-aliased vibration measurements by existing output-only modal analysis methods, yielding (full-field) mode shapes estimation directly. Then the signal aliasing properties in modal analysis is exploited to estimate the modal frequencies and damping ratios. Furthermore, the proposed method is validated by laboratory experiments where output-only modal identification is conducted on temporally-aliased acceleration responses and particularly the temporally-aliased video measurements of bench-scale structures, including a three-story building structure and a cantilever beam.« less
Ding, Xi-Qin; Thapa, Arjun; Ma, Hongwei; Xu, Jianhua; Elliott, Michael H.; Rodgers, Karla K.; Smith, Marci L.; Wang, Jin-Shan; Pittler, Steven J.; Kefalov, Vladimir J.
2016-01-01
Cone photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in cone phototransduction, which is a process essential for daylight vision, color vision, and visual acuity. Mutations in the cone channel subunits CNGA3 and CNGB3 are associated with human cone diseases, including achromatopsia, cone dystrophies, and early onset macular degeneration. Mutations in CNGB3 alone account for 50% of reported cases of achromatopsia. This work investigated the role of CNGB3 in cone light response and cone channel structural stability. As cones comprise only 2–3% of the total photoreceptor population in the wild-type mouse retina, we used Cngb3−/−/Nrl−/− mice with CNGB3 deficiency on a cone-dominant background in our study. We found that, in the absence of CNGB3, CNGA3 was able to travel to the outer segments, co-localize with cone opsin, and form tetrameric complexes. Electroretinogram analyses revealed reduced cone light response amplitude/sensitivity and slower response recovery in Cngb3−/−/Nrl−/− mice compared with Nrl−/− mice. Absence of CNGB3 expression altered the adaptation capacity of cones and severely compromised function in bright light. Biochemical analysis demonstrated that CNGA3 channels lacking CNGB3 were more resilient to proteolysis than CNGA3/CNGB3 channels, suggesting a hindered structural flexibility. Thus, CNGB3 regulates cone light response kinetics and the channel structural flexibility. This work advances our understanding of the biochemical and functional role of CNGB3 in cone photoreceptors. PMID:26893377
Mafuta, Eric M; Dieleman, Marjolein A; Hogema, Lisanne M; Khomba, Paul N; Zioko, François M; Kayembe, Patrick K; de Cock Buning, Tjard; Mambu, Thérèse N M
2015-11-23
The Democratic Republic of the Congo is one of the countries in Sub-Saharan Africa with the highest maternal mortality ratio estimated at 846 deaths per 100,000 live births. Innovative strategies such as social accountability are needed to improve both health service delivery and utilization. Indeed, social accountability is a form of citizen engagement defined as the 'extent and capability of citizens to hold politicians, policy makers and providers accountable and make them responsive to their needs.' This study explores existing social accountability mechanisms through which women's concerns are expressed and responded to by health providers in local settings. An exploratory study was conducted in two health zones with purposively sampled respondents including twenty-five women, five men, five health providers, two health zone officers and eleven community stakeholders. Data on women's voice and oversight and health providers' responsiveness were collected using semi-structured interviews and analysed using thematic analysis. In the two health zones, women rarely voiced their concerns and expectations about health services. This reluctance was due to: the absence of procedures to express them, to the lack of knowledge thereof, fear of reprisals, of being misunderstood as well as factors such as age-related power, ethnicity backgrounds, and women's status. The means most often mentioned by women for expressing their concerns were as individuals rather than as a collective. They did not use them instead; instead they looked to intermediaries, mostly, trusted health providers, community health workers and local leaders. Their perceptions of health providers' responsiveness varied. For women, there were no mechanisms for oversight in place. Individual discontent with malpractice was not shown to health providers. In contrast, health providers mentioned community health workers, health committee, and community based organizations as formal oversight mechanisms. All respondents recognized the lack of coalition around maternal health despite the many local associations and groups. Social accountability is relatively inexistent in the maternal health services in the two health zones. For social accountability to be promoted, efforts need to be made to create its mechanisms and to open the local context settings to dialogue, which appears structurally absent.
On the generation of double layers from ion- and electron-acoustic instabilities
NASA Astrophysics Data System (ADS)
Fu, Xiangrong; Cowee, Misa M.; Gary, S. Peter; Winske, Dan
2016-03-01
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.
Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3
NASA Astrophysics Data System (ADS)
Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.
2016-02-01
Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.
Selective buckling via states of self-stress in topological metamaterials
Paulose, Jayson; Meeussen, Anne S.; Vitelli, Vincenzo
2015-01-01
States of self-stress—tensions and compressions of structural elements that result in zero net forces—play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices. PMID:26056303
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; Angermann, Lisa; Allroggen, Niklas; Sprenger, Matthias; Blume, Theresa; Tronicke, Jens; Zehe, Erwin
2017-07-01
The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches
. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).
Biology of bone and how it orchestrates the form and function of the skeleton
NASA Technical Reports Server (NTRS)
Sommerfeldt, D. W.; Rubin, C. T.
2001-01-01
The principal role of the skeleton is to provide structural support for the body. While the skeleton also serves as the body's mineral reservoir, the mineralized structure is the very basis of posture, opposes muscular contraction resulting in motion, withstands functional load bearing, and protects internal organs. Although the mass and morphology of the skeleton is defined, to some extent, by genetic determinants, it is the tissue's ability to remodel--the local resorption and formation of bone--which is responsible for achieving this intricate balance between competing responsibilities. The aim of this review is to address bone's form-function relationship, beginning with extensive research in the musculoskeletal disciplines, and focusing on several recent cellular and molecular discoveries which help understand the complex interdependence of bone cells, growth factors, physical stimuli, metabolic demands, and structural responsibilities. With a clinical and spine-oriented audience in mind, the principles of bone cell and molecular biology and physiology are presented, and an attempt has been made to incorporate epidemiologic data and therapeutic implications. Bone research remains interdisciplinary by nature, and a deeper understanding of bone biology will ultimately lead to advances in the treatment of diseases and injuries to bone itself.