NASA Astrophysics Data System (ADS)
Das, I.; Bell, R. E.; Creyts, T. T.; Wolovick, M.
2013-12-01
Large deformed ice structures have been imaged at the base of northern Greenland ice sheet by IceBridge airborne radar. Numerous deformed structures lie along the base of both Petermann Glacier and Northeast Ice stream catchments covering 10-13% of the catchment area. These structures may be combinations of basal freeze-on and folded ice that overturns and inverts stratigraphy. In the interior, where the ice velocity is low, the radar imaged height of the deformed structures are frequently a significant fraction of the ice thickness. They are related to basal freeze on and stick-slip at the base of the ice sheet and may be triggered by subglacial water, sediments or local geological conditions. The larger ones (at times up to 700 m thick and 140 km long) perturb the ice stratigraphy and create prominent undulations on the ice surface and modify the local surface mass balance. Here, we investigate the relationship between the deformed structures and surface processes using shallow and deep ice radar stratigraphy. The surface undulations caused by the deformed structures modulate the pattern of local surface snow accumulation. Using normalized differences of several near-surface stratigraphic layers, we have calculated the accumulation anomaly over these deformed structures. The accumulation anomalies can be as high as 20% of the local surface accumulation over some of the larger surface depressions caused by these deformed structures. We observe distinct differences in the phases of the near-surface internal layers on the Petermann and Northeast catchments. These differences indicate that the deformed bodies over Petermann are controlled by conditions at the bed different from the Northeast Ice stream. The distinctly different near-surface stratigraphy over the deformed structures in the Petermann and Northeast catchments have opened up a number of questions including their formation and how they influence the ice dynamics, ice stratigraphy and surface mass balance. In this study we will model the different physical conditions at the bed and ice rheology from their distinct signatures in the near-surface strata. The results will identify the distinct mechanisms that form these bodies and their control over the surface morphology and snow accumulation.
Polychromatic microdiffraction characterization of defect gradients in severely deformed materials.
Barabash, Rozaliya I; Ice, Gene E; Liu, Wenjun; Barabash, Oleg M
2009-01-01
This paper analyzes local lattice rotations introduced in severely deformed polycrystalline titanium by friction stir welding. Nondestructive three-dimensional (3D) spatially resolved polychromatic X-ray microdiffraction, is used to resolve the local crystal structure of the restructured surface from neighboring local structures in the sample material. The measurements reveal strong gradients of strain and geometrically necessary dislocations near the surface and illustrate the potential of polychromatic microdiffraction for the study of deformation in complex materials systems.
NASA Astrophysics Data System (ADS)
Sato, Hiroshi P.; Une, Hiroshi
2016-03-01
Previous studies reported that the 2015 Gorkha earthquake (Mw 7.8), which occurred in Nepal, triggered landslides in mountainous areas. In Kathmandu, earthquake-induced land subsidence was identified by interpreting local phase changes in interferograms produced from Advanced Land Observing Satellite-2/Phased Array type L-band Synthetic Aperture Radar-2 data. However, the associated ground deformation was not discussed in detail. We studied line-of-sight (LoS) changes from InSAR images in the SE area of Tribhuvan International Airport, Kathmandu. To obtain the change in LoS caused only by local, short-wavelength surface deformation, we subtracted the change in LoS attributed to coseismic deformation from the original change in LoS. The resulting change in LoS showed that the river terrace was driven to the bottom of the river valley. We also studied the changes in LoS in both ascending and descending InSAR images of the area along the Bishnumati River and performed 2.5D analysis. Removing the effect of coseismic deformation revealed east-west and up-down components of local surface deformation, indicating that the river terrace deformed eastward and subsided on the western riverbank of the river. On the east riverbank, the river terrace deformed westward and subsided. However, in the southern part of the river basin, the river terrace deformed westward and was uplifted. The deformation data and field survey results indicate that local surface deformation in these two areas was not caused by land subsidence but by a landslide (specifically, lateral spread).
NASA Astrophysics Data System (ADS)
Zinke, Robert; Hollingsworth, James; Dolan, James F.
2014-12-01
Comparison of 398 fault offsets measured by visual analysis of WorldView high-resolution satellite imagery with deformation maps produced by COSI-Corr subpixel image correlation of Landsat-8 and SPOT5 imagery reveals significant complexity and distributed deformation along the 2013 Mw 7.7 Balochistan, Pakistan earthquake. Average slip along the main trace of the fault was 4.2 m, with local maximum offsets up to 11.4 m. Comparison of slip measured from offset geomorphic features, which record localized slip along the main strand of the fault, to the total displacement across the entire width of the surface deformation zone from COSI-Corr reveals ˜45% off-fault deformation. While previous studies have shown that the structural maturity of the fault exerts a primary control on the total percentage of off-fault surface deformation, large along-strike variations in the percentage of strain localization observed in the 2013 rupture imply the influence of important secondary controls. One such possible secondary control is the type of near-surface material through which the rupture propagated. We therefore compared the percentage off-fault deformation to the type of material (bedrock, old alluvium, and young alluvium) at the surface and the distance of the fault to the nearest bedrock outcrop (a proxy for sediment thickness along this hybrid strike slip/reverse slip fault). We find significantly more off-fault deformation in younger and/or thicker sediments. Accounting for and predicting such off-fault deformation patterns has important implications for the interpretation of geologic slip rates, especially for their use in probabilistic seismic hazard assessments, the behavior of near-surface materials during coseismic deformation, and the future development of microzonation protocols for the built environment.
Slip as the basic mechanism for formation of deformation relief structural elements
NASA Astrophysics Data System (ADS)
Lychagin, D. V.; Alfyorova, E. A.
2017-07-01
The experimental results of investigation of the nickel single crystal surface morphology after compression deformation are presented. The quasi-periodic character of the deformation profile, common for shear deformation of different types of relief structural elements, is found. It is demonstrated that the morphological manifestation of these structural elements is determined by local shear systems along octahedral planes. The regularities of the deformation structure in these regions defining the material extrusion and intrusion regions and the specific features of disorientation accumulation are established. If reorientation of local regions takes part in the relief element formation, along with octahedral slip, much stronger growth of the surface area is observed. The possibility of application of two-dimensional and three-dimensional surface roughness parameters for description of deformation relief is considered.
Crustal deformation along the San Andreas, California
NASA Technical Reports Server (NTRS)
Li, Victor C.
1992-01-01
The goal is to achieve a better understanding of the regional and local deformation and crustal straining processes in western North America, particularly the effects of the San Andreas and nearby faults on the spatial and temporal crustal deformation behavior. Construction of theoretical models based on the mechanics of coupled elastic plate, viscoelastic foundation and large scale crack mechanics provide a rational basis for the interpretation of seismic and aseismic anomalies and expedite efforts in forecasting the stability of plate boundary deformation. Special focus is placed on the three dimensional time dependent surface deformation due to localized slippage in a elastic layer coupled to a visco-elastic substrate. The numerical analysis is based on a 3-D boundary element technique. Extension to visco-elastic coupling demands the derivation of 3-D time dependent Green's function. This method was applied to analyze the viscoelastic surface displacements due to a dislocated embedded patch. Surface uplift as a function of time and position are obtained. Comparisons between surface uplift for long and short dislocated patches are made.
NASA Technical Reports Server (NTRS)
Banerdt, W. B.; McGill, G. E.; Zuber, M. T.
1996-01-01
Tectonic deformation in the plains of Venus is pervasive, with virtually every area of the planet showing evidence for faulting or fracturing. This deformation can be classified into three general categories, defined by the intensity and areal extent of the surface deformation: distributed deformation, concentrated deformation, and local fracture patterns.
NASA Astrophysics Data System (ADS)
Lee, Min Jin; Hong, Helen; Shim, Kyu Won; Kim, Yong Oock
2017-03-01
This paper proposes morphological descriptors representing the degree of skull deformity for craniosynostosis in head CT images and a hierarchical classifier model distinguishing among normal and different types of craniosynostosis. First, to compare deformity surface model with mean normal surface model, mean normal surface models are generated for each age range and the mean normal surface model is deformed to the deformity surface model via multi-level threestage registration. Second, four shape features including local distance and area ratio indices are extracted in each five cranial bone. Finally, hierarchical SVM classifier is proposed to distinguish between the normal and deformity. As a result, the proposed method showed improved classification results compared to traditional cranial index. Our method can be used for the early diagnosis, surgical planning and postsurgical assessment of craniosynostosis as well as quantitative analysis of skull deformity.
Deciphering the shape and deformation of secondary structures through local conformation analysis
2011-01-01
Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons. PMID:21284872
Deciphering the shape and deformation of secondary structures through local conformation analysis.
Baussand, Julie; Camproux, Anne-Claude
2011-02-01
Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.
Plate Like Convection with Viscous Strain Weakening and Corresponding Surface Deformation Pattern
NASA Astrophysics Data System (ADS)
Fuchs, L.; Becker, T. W.
2017-12-01
How plate tectonic surface motions are generated by mantle convection on Earth and possibly other terrestrial type planets has recently become more readily accessible with fully dynamic convection computations. However, it remains debated how plate-like the behavior in such models truly is, and in particular how the well plate boundary dynamics are captured in models which typically exclude the effects of deformation history and memory. Here, we analyze some of the effects of viscous strain weakening on plate behavior and the interactions between interior convection dynamics and surface deformation patterns. We use the finite element code CitcomCU to model convection in a 3D Cartesian model setup. The models are internally heated, with an Arrhenius-type temperature dependent viscosity including plastic yielding and viscous strain weakening (VSW) and healing (VSWH). VSW can mimic first order features of more complex damage mechanisms such as grain-size dependent rheology. Besides plate diagnostic parameters (Plateness, Mobility, and Toroidal: Poloidal ratio) to analyze the tectonic behavior our models, we also explore how "plate boundaries" link to convective patterns. In a first model series, we analyze general surface deformation patterns without VSW. In the early stages, deformation patterns are clearly co-located with up- and downwelling limbs of convection. Along downwellings strain-rates are high and localized, whereas upwellings tend to lead to broad zones of high deformation. At a more advanced stage, however, the plates' interior is highly deformed due to continuous strain accumulation and resurfaced inherited strain. Including only VSW leads to more localized deformation along downwellings. However, at a more advanced stage plate-like convection fails due an overall weakening of the material. This is prevented including strain healing. Deformation pattern at the surface more closely coincide with the internal convection patterns. The average surface deformation is reduced significantly and mainly governed by the location of the up- and downwellings. VSWH thereby affects plate dynamics due to two main properties: the intensity of weakening with increasing strain and the strain healing rate. As both increase, mobility increases as well and strain becomes more localized at the downwellings.
Local deformation for soft tissue simulation
Omar, Nadzeri; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2016-01-01
ABSTRACT This paper presents a new methodology to localize the deformation range to improve the computational efficiency for soft tissue simulation. This methodology identifies the local deformation range from the stress distribution in soft tissues due to an external force. A stress estimation method is used based on elastic theory to estimate the stress in soft tissues according to a depth from the contact surface. The proposed methodology can be used with both mass-spring and finite element modeling approaches for soft tissue deformation. Experimental results show that the proposed methodology can improve the computational efficiency while maintaining the modeling realism. PMID:27286482
Tensile fracture of coarse-Grained cast austenitic manganese steels
NASA Astrophysics Data System (ADS)
Rittel, D.; Roman, I.
1988-09-01
Tensile fracture of coarse-grained (0.25 to 1 mm) cast austenitic manganese (Hadfield) steels has been investigated. Numerous surface discontinuities nucleate in coarse slip bands, on the heavily deformed surface of tensile specimens. These discontinuities do not propagate radially and final fracture results from central specimen cracking at higher strains. On the microscopic scale, bulk voids nucleate during the entire plastic deformation and they do not coalesce by shear localization (e.g., void-sheet) mechanism. Close voids coalesce by internal necking, whereas distant voids are bridged by means of small voids which nucleate at later stages of the plastic deformation. The high toughness of Hadfield steels is due to their high strain-hardening capacity which stabilizes the plastic deformation, and avoids shear localization and loss of load-bearing capacity. The observed dependence of measured mechanical properties on the specimen’s geometry results from the development of a surface layer which charac-terizes the deformation of this coarse-grained material.
Field-scale and wellbore modeling of compaction-induced casing failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilbert, L.B. Jr.; Gwinn, R.L.; Moroney, T.A.
1999-06-01
Presented in this paper are the results and verification of field- and wellbore-scale large deformation, elasto-plastic, geomechanical finite element models of reservoir compaction and associated casing damage. The models were developed as part of a multidisciplinary team project to reduce the number of costly well failures in the diatomite reservoir of the South Belridge Field near Bakersfield, California. Reservoir compaction of high porosity diatomite rock induces localized shearing deformations on horizontal weak-rock layers and geologic unconformities. The localized shearing deformations result in casing damage or failure. Two-dimensional, field-scale finite element models were used to develop relationships between field operations, surfacemore » subsidence, and shear-induced casing damage. Pore pressures were computed for eighteen years of simulated production and water injection, using a three-dimensional reservoir simulator. The pore pressures were input to the two-dimensional geomechanical field-scale model. Frictional contact surfaces were used to model localized shear deformations. To capture the complex casing-cement-rock interaction that governs casing damage and failure, three-dimensional models of a wellbore were constructed, including a frictional sliding surface to model localized shear deformation. Calculations were compared to field data for verification of the models.« less
Koshiyama, Kenichiro; Nishimoto, Keisuke; Ii, Satoshi; Sera, Toshihiro; Wada, Shigeo
2018-01-20
The pulmonary acinus is a dead-end microstructure that consists of ducts and alveoli. High-resolution micro-CT imaging has recently provided detailed anatomical information of a complete in vivo acinus, but relating its mechanical response with its detailed acinar structure remains challenging. This study aimed to investigate the mechanical response of acinar tissue in a whole acinus for static inflation using computational approaches. We performed finite element analysis of a whole acinus for static inflation. The acinar structure model was generated based on micro-CT images of an intact acinus. A continuum mechanics model of the lung parenchyma was used for acinar tissue material model, and surface tension effects were explicitly included. An anisotropic mechanical field analysis based on a stretch tensor was combined with a curvature-based local structure analysis. The airspace of the acinus exhibited nonspherical deformation as a result of the anisotropic deformation of acinar tissue. A strain hotspot occurred at the ridge-shaped region caused by a rod-like deformation of acinar tissue on the ridge. The local structure becomes bowl-shaped for inflation and, without surface tension effects, the surface of the bowl-shaped region primarily experiences isotropic deformation. Surface tension effects suppressed the increase in airspace volume and inner surface area, while facilitating anisotropic deformation on the alveolar surface. In the lungs, the heterogeneous acinar structure and surface tension induce anisotropic deformation at the acinar and alveolar scales. Further research is needed on structural variation of acini, inter-acini connectivity, or dynamic behavior to understand multiscale lung mechanics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mechanisms by Which Humidity Alters Ductility
1982-06-01
Example Results and Discussion.,........,,,,,,,, .... 10 2.2 Effects of Ambient Water Vapor and Internal Hydrogen op Surface Microplasticity and Crack...Localized Microplastic Deformation of the Surface of Al 2219-T851,,. ,.. ... ,,. ... ,,* ,, .. ..... .. .... 55 4.2 Effects of Ambient Humidity and Internal...Hydrogen on Surface Local Microplastic Behavior ..... 00. ,00..... ..06...... 56 4.3 Relationship of Localized Plasticity to Crack Initiation and
NASA Astrophysics Data System (ADS)
Yang, X. B.; Han, X. X.; Zhou, T. B.; Liu, E. L.
2017-04-01
Through the comparative analysis of the results of the triaxial compression experiments of sandstone and the numerical simulation results of particle flow code PFC2D under the same conditions, the typical simulation curve and the corresponding simulation process were selected to analyze the evolution characteristics of the surface deformation field, the evolution characteristics of the velocity field and displacement field of the deformation localization bands of sandstone under triaxial compression. Research results show that the changes of the velocities and displacements of deformation localization bands corresponds to the change of stress during compression; In the same deformation localization band, the dislocation velocities are always in the same direction, but in the direction vertical to the localization band, the localization band sometimes squeezes and sometimes stretches; At different positions of the same deformation localization band, the dislocation velocities and extrusion velocities are both different at the same time; In the post-peak stage of loading, along the same deformation localization band, the dislocation displacements close to both loaded ends are generally greater than the ones near to the middle position of the specimen, the stretching displacements close to both loaded ends are generally smaller than the ones near to the middle position of the specimen.
Deformation localization forming and destruction over a decompression zone.
NASA Astrophysics Data System (ADS)
Turuntaev, Sergey; Kondratyev, Viktor
2017-04-01
Development of a hydrocarbon field is accompanied by deformation processes in the surrounding rocks. In particular, a subsidence of oil strata cap above a decompression zone near producing wells causes changes in the stress-strain state of the upper rocks. It was shown previously, that the stress spatial changes form a kind of arch structures. The shear displacements along the arch surfaces can occur, and these displacements can cause a collapse of casing or even man-made earthquakes. We present here the results of laboratory simulation of such a phenomenon. A laboratory setup was made in the form of narrow box 30x30x5 cm3 in size with a hole (0.6 cm in diameter) in its bottom. As a model of porous strata, a foam-rubber layer of 4.0 -10.5cm in thick was used, which was saturated with water. The foam was sealed to the bottom of the box; the upper part of the box was filled by the dry sand. The sand was separated from the foam by thin polyethylene film to prevent the sand wetting. For visualization the sand deformations, the front wall of the box was made transparent and the sand was marked by horizontal strips of the colored sand. In the experiments, the water was pumped out the foam layer through the bottom hole. After pumping-out 50 ml of the water, the localization of sand deformations above the sink hole became noticeable; after pumping-out 100 ml of the water, the localized deformation forms an arch. At the same time, there was no displacement on the upper surface of the sand. To amplify the localization effect, the foam was additionally squeezed locally. In this case, three surfaces of the localized deformation appeared in the sand. The vertical displacements decreased essentially with height, but they reached the upper layers of the sand. An influence of vibration on arches forming was investigated. Several types of vibrators were used, they were placed inside the sand or on the front side of the box. Resulting accelerations were measured by the accelerometers placed into the sand. It was found, that if the amplitudes of the accelerations are equal or greater than 0.37g, the localized deformation did not appear near the vibrator location, but arose at some distance from it. If the vibration amplitudes exceed the threshold value 0.39g everywhere in the sand, the deformation localization did not occur. When the vibrator is displaced from the center of the model, the localization vanished near its position.
Seasonal Surface Loading Helps Constrain Short-Term Viscosity of the Asthenosphere
NASA Astrophysics Data System (ADS)
Clarke, Peter J.
2018-03-01
Earth materials may display a range of rheological behaviors at different depths and over different timescales. The situation is particularly complex for postseismic relaxation in the uppermost mantle and lower crust, where it can be difficult to distinguish widespread viscous behavior from earthquake afterslip or localized deformation in shear zones over timescales of weeks to decades. By analyzing geodetic observations of seasonal surface mass loads and Earth's surface deformation in response, Chanard et al. (2018, https://doi.org/10.1002/2017GL076451) have established a globally averaged lower bound of 5 × 1017 Pa s for the transient viscosity of a Burgers-rheology asthenosphere. This implies that lower viscosities inferred by some studies of postseismic relaxation must result from local departures from this global value, or be an artifact of additional afterslip or shear zone deformation.
NASA Astrophysics Data System (ADS)
Murasawa, Go; Yeduru, Srinivasa R.; Kohl, Manfred
2016-12-01
This study investigated macroscopic inhomogeneous deformation occurring in single-crystal Ni-Mn-Ga foils under uniaxial tensile loading. Two types of single-crystal Ni-Mn-Ga foil samples were examined as-received and after thermo-mechanical training. Local strain and the strain field were measured under tensile loading using laser speckle and digital image correlation. The as-received sample showed a strongly inhomogeneous strain field with intermittence under progressive deformation, but the trained sample result showed strain field homogeneity throughout the specimen surface. The as-received sample is a mainly polycrystalline-like state composed of the domain structure. The sample contains many domain boundaries and large domain structures in the body. Its structure would cause large local strain band nucleation with intermittence. However, the trained one is an ideal single-crystalline state with a transformation preferential orientation of variants after almost all domain boundary and large domain structures vanish during thermo-mechanical training. As a result, macroscopic homogeneous deformation occurs on the trained sample surface during deformation.
NASA Astrophysics Data System (ADS)
Bercovici, David; Ricard, Yanick
2003-03-01
The two-phase theory for compaction and damage proposed by Bercovici et al. (2001a, J. Geophys. Res.,106, 8887-8906) employs a nonequilibrium relation between interfacial surface energy, pressure and viscous deformation, thereby providing a model for damage (void generation and microcracking) and a continuum description of weakening, failure and shear localization. Here we examine further variations of the model which consider (1) how interfacial surface energy, when averaged over the mixture, appears to be partitioned between phases; (2) how variability in deformational-work partitioning greatly facilitates localization; and (3) how damage and localization are manifested in heat output and bulk energy exchange. Microphysical considerations of molecular bonding and activation energy suggest that the apparent partitioning of surface energy between phases goes as the viscosity of the phases. When such partitioning is used in the two-phase theory, it captures the melt-compaction theory of McKenzie (1984, J. Petrol.,25, 713-765) exactly, as well as the void-damage theory proposed in a companion paper (Ricard & Bercovici, submitted). Calculations of 1-D shear localization with this variation of the theory still show at least three possible regimes of damage and localization: at low stress is weak localization with diffuse slowly evolving shear bands; at higher stress strong localization with narrow rapidly growing bands exists; and at yet higher shear stress it is possible for the system to undergo broadly distributed damage and no localization. However, the intensity of localization is strongly controlled by the variability of the deformational-work partitioning with dilation rate, represented by the parameter γ. For γ>> 1, extreme localization is allowed, with sharp profiles in porosity (weak zones), nearly discontinuous separation velocities and effectively singular dilation rates. Finally, the bulk heat output is examined for the 1-D system to discern how much deformational work is effectively stored as surface energy. In the high-stress, distributed-damage cases, heat output is reduced as more interfacial surface energy is created. Yet, in either the weak or strong localizing cases, the system always releases surface energy, regardless of the presence of damage or not, and thus slightly more heat is in fact released than energy is input through external work. Moreover, increased levels of damage (represented by the maximum work-partitioning f*) make the localizing system release surface energy faster as damage enhances phase separation and focusing of the porosity field, thus yielding more rapid loss of net interfacial surface area. However, when cases with different levels of damage are compared at similar stages of development (say, the peak porosity of the localization) it is apparent that increased damage causes smaller relative heat release and retards loss of net interfacial surface energy. The energetics and energy partitioning of this damage and shear-localization model are applied to estimating the energy costs of forming plate boundaries and generating plates from mantle convection.
NASA Astrophysics Data System (ADS)
Gussev, M. N.; Field, K. G.; Busby, J. T.
2014-03-01
Surface relief due to localized deformation in a 4.4-dpa neutron-irradiated AISI 304 stainless steel was investigated using scanning electron microscopy coupled with electron backscattering diffraction and scanning transmission electron microscopy. It was found a body-centered-cubic (BCC) phase (deformation-induced martensite) had formed at the surface of the deformed specimen along the steps generated from dislocation channels. Martensitic hill-like formations with widths of ˜1 μm and depths of several microns were observed at channels with heights greater than ˜150 nm above the original surface. Martensite at dislocation channels was observed in grains along the [0 0 1]-[1 1 1] orientation but not in those along the [1 0 1] orientation.
NASA Astrophysics Data System (ADS)
Kobayashi, Tomokazu
2018-05-01
Although it is difficult to monitor the spatial extent and temporal evolution of local and small-magnitude ground inflation, this information is vital to assess the potential for phreatic eruption. Herein, we demonstrate the detection of locally distributed ground deformation preceding the enhancement of geothermal activity in the Midagahara volcano, Japan, through the application of single-look-based interferometric synthetic aperture radar analysis. In the Jigoku-dani geothermal area, the ground deformation proceeded at a low speed of 4 cm/year at most with a spatial extent of 500 m in the east-west direction and 250 m in the north-south direction. The deformation can be recognized to progress from 2007, at the latest, to 2010, after which the geothermal activity increased, with the collapse of sulfur towers and the appearance of active fumaroles and boiling water on the ground surface. The most deformed area corresponds to the geothermal area with the highest activity observed on the ground surface. Assuming a sill opening model, the deformation source is estimated to be located at a depth of 50 m from the surface with a speed of 7 cm/year at most, which is consistent with the depth of the highly conductive medium inferred from magnetotelluric analyses. This may suggest that volcanic fluid and/or heat was injected into the fluid-rich medium from depth and caused the ground inflation. Our results demonstrate that high-spatial-resolution deformation data can be an effective tool to monitor subsurface pressure conditions with pinpoint spatial accuracy during the build-up to phreatic eruptions.
NASA Astrophysics Data System (ADS)
Vintzentz, S. V.; Sandomirsky, V. B.
1992-09-01
An extension of the photothermal surface deformation (PTSD) method to study the macroscopic kinetics of the first-order phase transition (PTr) is given. The movement of the phase interface (PI) over a surface with a PTr locally induced in the subsurface volume by a focused laser pulse is investigated for the first time using radial measurements of the PTSD kinetics. For the known metal-to-semiconductor PTr in VO 2 (a good model system) a procedure is suggested for measuring the maximum size rsm of the "hot" (metal) phase on the surface (a parameter most difficult to determine) as well as for estimating the velocity of the PI movement over the surface, vs, and in the bulk, vb. Besides, it is shown that the PTSD method may be used to determine the "local" threshold energy E0 needed for the laser-induced PTr and the "local" latent heat L of the PTr. This demonstrates the feasibility of scanning surface E0- and L-microscopy.
Capturing strain localization behind a geosynthetic-reinforced soil wall
NASA Astrophysics Data System (ADS)
Lai, Timothy Y.; Borja, Ronaldo I.; Duvernay, Blaise G.; Meehan, Richard L.
2003-04-01
This paper presents the results of finite element (FE) analyses of shear strain localization that occurred in cohesionless soils supported by a geosynthetic-reinforced retaining wall. The innovative aspects of the analyses include capturing of the localized deformation and the accompanying collapse mechanism using a recently developed embedded strong discontinuity model. The case study analysed, reported in previous publications, consists of a 3.5-m tall, full-scale reinforced wall model deforming in plane strain and loaded by surcharge at the surface to failure. Results of the analysis suggest strain localization developing from the toe of the wall and propagating upward to the ground surface, forming a curved failure surface. This is in agreement with a well-documented failure mechanism experienced by the physical wall model showing internal failure surfaces developing behind the wall as a result of the surface loading. Important features of the analyses include mesh sensitivity studies and a comparison of the localization properties predicted by different pre-localization constitutive models, including a family of three-invariant elastoplastic constitutive models appropriate for frictional/dilatant materials. Results of the analysis demonstrate the potential of the enhanced FE method for capturing a collapse mechanism characterized by the presence of a failure, or slip, surface through earthen materials.
NASA Astrophysics Data System (ADS)
Sato, H. P.
2017-12-01
Maoxien area in Sichuan Province, China has many landslide. For example, landslide (rock avalanche) occurred on the slope in Xinmocun Village in Maoxeien on 24 June 2017. I produced and interpreetd InSAR image using ALOS/PALSAR data observed on 19 Jul 2007-3 Sep 2007 and on 27 Jan 2011-14 Mar 2011, and ALOS-2/PALSAR-2 data observed on 26 Jul 2015-13 Dec 2015 and on 13 Dec 2015-11 Dec 2016. These images give good coherence and it was easy to identify local landslide surface deformation. As a result, e.g., two slopes were estimated to have local landslide surface deformation; one is at 103.936587 deg E and 32.04462 deg N, another is at 103.674754 deg E and 31.852838 N. However, the slope in Xinmocun Village was not identified as landslide precursory deformation. In the poster I will present more InSAR image observed after 11 Dec 2016 and discuss the possibility of local landslide surface deformaton using InSAR image. ALOS/PALSAR and ALOS-2/PALSAR-2 data were provided by JAXA through Landslide Working Group in JAXA and through Special Research 2015-B-02 of Earthquake Research Institute/Tokyo University. This study was supported by KAKENHI (17H02973).
NASA Astrophysics Data System (ADS)
Matysiak, Agnes K.; Trepmann, Claudia A.
2015-12-01
Mylonitic peridotites from the Finero complex are investigated to detect characteristic olivine microfabrics that can resolve separate deformation cycles at different metamorphic conditions. The heterogeneous olivine microstructures are characterized by deformed porphyroclasts surrounded by varying amounts of recrystallized grains. A well-developed but only locally preserved foam structure is present in recrystallized grain aggregates. This indicates an early stage of dynamic recrystallization and subsequent recovery and recrystallization at quasi-static stress conditions, where the strain energy was reduced such that a reduction in surface energy controlled grain boundary migration. Ultramylonites record a renewed stage of localized deformation and recrystallization by a second generation of recrystallized grains that do not show a foam structure. This second generation of recrystallized grains as well as sutured grain and kink band boundaries of porphyroclasts indicate that these microstructures developed during a stage of localized deformation after development of the foam structure. The heterogeneity of the microfabrics is interpreted to represent several (at least two) cycles of localized deformation separated by a marked hiatus with quasi-static recrystallization and recovery and eventually grain growth. The second deformation cycle did not only result in reactivation of preexisting shear zones but instead also locally affected the host rock that was not deformed in the first stage. Such stress cycles can result from sudden increases in differential stress imposed by seismic events, i.e., high stress-loading rates, during exhumation of the Finero complex.
NASA Astrophysics Data System (ADS)
Kelson, K. I.; Kirkendall, W. G.
2014-12-01
Recent suggestions that the 1811-1812 earthquakes in the New Madrid Seismic Zone (NMSZ) ranged from M6.8-7.0 versus M8.0 have implications for seismic hazard estimation in the central US. We more accurately identify the location of the NW-striking, NE-facing Kentucky Bend scarp along the northern Reelfoot fault, which is spatially associated with the Lake County uplift, contemporary seismicity, and changes in the Mississippi River from the February 1812 earthquake. We use 1m-resolution LiDAR hillshades and slope surfaces, aerial photography, soil surveys, and field geomorphic mapping to estimate the location, pattern, and amount of late Holocene coseismic surface deformation. We define eight late Holocene to historic fluvial deposits, and delineate younger alluvia that are progressively inset into older deposits on the upthrown, western side of the fault. Some younger, clayey deposits indicate past ponding against the scarp, perhaps following surface deformational events. The Reelfoot fault is represented by sinuous breaks-in-slope cutting across these fluvial deposits, locally coinciding with shallow faults identified via seismic reflection data (Woolery et al., 1999). The deformation pattern is consistent with NE-directed reverse faulting along single or multiple SW-dipping fault planes, and the complex pattern of fluvial deposition appears partially controlled by intermittent uplift. Six localities contain scarps across correlative deposits and allow evaluation of cumulative surface deformation from LiDAR-derived topographic profiles. Displacements range from 3.4±0.2 m, to 2.2±0.2 m, 1.4±0.3 m, and 0.6±0.1 m across four progressively younger surfaces. The spatial distribution of the profiles argues against the differences being a result of along-strike uplift variability. We attribute the lesser displacements of progressively younger deposits to recurrent surface deformation, but do not yet interpret these initial data with respect to possible earthquake magnitudes. Additional efforts hopefully will address shallow subsurface evidence of single- or multiple-deformational events at selected localities.
Deformation analysis of boron/aluminum specimens by moire interferometry
NASA Technical Reports Server (NTRS)
Post, Daniel; Guo, Yifan; Czarnek, Robert
1989-01-01
Whole-field surface deformations were measured for two slotted tension specimens from multiply laminates, one with 0 deg fiber orientation in the surface ply and the other with 45 deg orientation. Macromechanical and micromechanical details were revealed using high-sensitivity moire interferometry. Although global deformations of all plies were essentially equal, numerous random or anomalous features were observed. Local deformations of adjacent 0 deg and 45 deg plies were very different, both near the slot and remote from it, requiring large interlaminar shear strains for continuity. Shear strains were concentrated in the aluminum matrix. For 45 deg plies, a major portion of the deformation was by shear; large plastic slip of matrix occurred at random locations in 45 deg plies, wherein groups of fibers slipped relative to other groups. Shear strains in the interior, between adjacent fibers, were larger than the measured surface strains.
The hazard map of ML6.6 0206 Meinong earthquake near Guanmiao and its Neotectonic implication
NASA Astrophysics Data System (ADS)
Chung, L. H.; Shyu, J. B. H.; Huang, M. H.; Yang, K. M.; Le Beon, M.; Lee, Y. H.; Chuang, R.; Yi, D.
2016-12-01
The serious damage was occurred in SW Taiwan by ML 6.6 0206 Meinong earthquake. Based on InSAR result, 10 cm oval-raised surface deformation is 15 km away from its epicenter, and two obviously N-S trend sharp phase change nearby Guanmiao area. Our field investigation shows bulling damage and surface fracture are high related with the two sharp phase change. Here, we perform the detailed shallow underground geometry by using reflection seismic data, geologic data, and field hazard investigation. This N-S trend surface deformation may be induced by local shallow folding, while the huge uplift west of Guanmiao may be related with pure shear deformation of thick clayey Gutingkeng (GTK) Formation. Our results imply that not only a moderate lower crustal earthquake can trigger active structure at shallower depth, but also those minor shallow active structures are occurred serious damage and surface deformation.
The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bochkareva, Anna, E-mail: avb@ispms.tsc.ru; Lunev, Aleksey, E-mail: agl@ispms.tsc.ru; National Research Tomsk Polytechnic University, Tomsk, 634050
2015-10-27
The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation. It is found that the mechanical properties and localized plastic deformation parameters of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy; however, the plastic flow behavior of material remains virtually unaffected. Using scanning electron and atomic force microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined formore » the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Using digital speckle image technique, the local strain patterns were being registered for the original alloy D1 and the counterpart subjected to electrolytic hydrogenation for 100 h.« less
NASA Astrophysics Data System (ADS)
Xuan, Yue
Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of silicone rubber and porcine pericardial tissue and results were analyzed using the same method. Conclusions. The transparent indenter testing system can effectively reduce the material properties measurement error by directly measuring the contact radii. The contact shape can provide valuable information for the anisotropic property of the material. Local surface deformation including contact surface, inner layer and vertical plane can be accurately tracked and mapped to study the strain distribution. The potential usage of the transparent indenter measurement system to investigate biological and biomaterials was verified. The experimental data including the real-time contact area combined with the finite element simulation would be powerful tool to study mechanical properties of soft materials and their relation to microstructure, which has potential in pathologies study such as tissue repair and surgery plan. Key words: transparent indenter, large deformation, soft material, anisotropic.
Cash, David M; Sinha, Tuhin K; Chapman, William C; Terawaki, Hiromi; Dawant, Benoit M; Galloway, Robert L; Miga, Michael I
2003-07-01
As image guided surgical procedures become increasingly diverse, there will be more scenarios where point-based fiducials cannot be accurately localized for registration and rigid body assumptions no longer hold. As a result, procedures will rely more frequently on anatomical surfaces for the basis of image alignment and will require intraoperative geometric data to measure and compensate for tissue deformation in the organ. In this paper we outline methods for which a laser range scanner may be used to accomplish these tasks intraoperatively. A laser range scanner based on the optical principle of triangulation acquires a dense set of three-dimensional point data in a very rapid, noncontact fashion. Phantom studies were performed to test the ability to link range scan data with traditional modes of image-guided surgery data through localization, registration, and tracking in physical space. The experiments demonstrate that the scanner is capable of localizing point-based fiducials to within 0.2 mm and capable of achieving point and surface based registrations with target registration error of less than 2.0 mm. Tracking points in physical space with the range scanning system yields an error of 1.4 +/- 0.8 mm. Surface deformation studies were performed with the range scanner in order to determine if this device was capable of acquiring enough information for compensation algorithms. In the surface deformation studies, the range scanner was able to detect changes in surface shape due to deformation comparable to those detected by tomographic image studies. Use of the range scanner has been approved for clinical trials, and an initial intraoperative range scan experiment is presented. In all of these studies, the primary source of error in range scan data is deterministically related to the position and orientation of the surface within the scanner's field of view. However, this systematic error can be corrected, allowing the range scanner to provide a rapid, robust method of acquiring anatomical surfaces intraoperatively.
NASA Astrophysics Data System (ADS)
Wertgeim, Igor I.
2018-02-01
We investigate stationary and non-stationary solutions of nonlinear equations of the long-wave approximation for the Marangoni convection caused by a localized source of heat or a surface active impurity (surfactant) in a thin horizontal layer of a viscous incompressible fluid with a free surface. The distribution of heat or concentration flux is determined by the uniform vertical gradient of temperature or impurity concentration, distorted by the imposition of a slightly inhomogeneous heating or of surfactant, localized in the horizontal plane. The lower boundary of the layer is considered thermally insulated or impermeable, whereas the upper boundary is free and deformable. The equations obtained in the long-wave approximation are formulated in terms of the amplitudes of the temperature distribution or impurity concentration, deformation of the surface, and vorticity. For a simplification of the problem, a sequence of nonlinear equations is obtained, which in the simplest form leads to a nonlinear Schrödinger equation with a localized potential. The basic state of the system, its dependence on the parameters and stability are investigated. For stationary solutions localized in the region of the surface tension inhomogeneity, domains of parameters corresponding to different spatial patterns are delineated.
Importance of tread inertia and damping on the tyre/road contact stiffness
NASA Astrophysics Data System (ADS)
Winroth, J.; Andersson, P. B. U.; Kropp, W.
2014-10-01
Predicting tyre/road interaction processes like roughness excitation, stick-slip, stick-snap, wear and traction requires detailed information about the road surface, the tyre dynamics and the local deformation of the tread at the interface. Aspects of inertia and damping when the tread is locally deformed are often neglected in many existing tyre/road interaction models. The objective of this paper is to study how the dynamic features of the tread affect contact forces and contact stiffness during local deformation. This is done by simulating the detailed contact between an elastic layer and a rough road surface using a previously developed numerical time domain contact model. Road roughness on length scales smaller than the discretisation scale is included by the addition of nonlinear contact springs between each pair of contact elements. The dynamic case, with an elastic layer impulse response extending in time, is compared with the case where the corresponding quasi-static response is used. Results highlight the difficulty of estimating a constant contact stiffness as it increases during the indentation process between the elastic layer and the rough road surface. The stiffness-indentation relation additionally depends on how rapidly the contact develops; a faster process gives a stiffer contact. Material properties like loss factor and density also alter the contact development. This work implies that dynamic properties of the local tread deformation may be of importance when simulating contact details during normal tyre/road interaction conditions. There are however indications that the significant effect of damping could approximately be included as an increased stiffness in a quasi-static tread model.
The effects of non-Newtonian viscosity on the deformation of red blood cells in a shear flow
NASA Astrophysics Data System (ADS)
Sesay, Juldeh
2005-11-01
The analyses of the effects of non-Newtonian viscosity on the membrane of red blood cells (RBCs) suspended in a shear flow are presented. The specific objective is to investigate the mechanical deformation on the surfaces of an ellipsoidal particle model. The hydrodynamic stresses and other forces on the surface of the particle are used to determine the cell deformation. We extended previous works, which were based on the Newtonian fluid models, to the non-Newtonian case, and focus on imposed shear rate values between 1 and 100 per second. Two viscosity models are investigated, which respectively correspond to a normal person and a patient with cerebrovascular accident (CVA). The results are compared with those obtained assuming a Newtonian model. We observed that the orientation of the cell influences the deformation and the imposed shear rate drives the local shear rate distribution along the particle surface. The integral particle deformation for the non-Newtonian models in the given shear rate regime is higher than that for the Newtonian reference model. Finally, the deformation of the cell surface decreases as the dissipation ratio increases.
Viscous Fingering in Deformable Systems
NASA Astrophysics Data System (ADS)
Guan, Jian Hui; MacMinn, Chris
2017-11-01
Viscous fingering is a classical hydrodynamic instability that occurs when an invading fluid is injected into a porous medium or a Hele-Shaw cell that contains a more viscous defending fluid. Recent work has shown that viscous fingering in a Hele-Shaw cell is supressed when the flow cell is deformable. However, the mechanism of suppression relies on a net volumetric expansion of the flow area. Here, we study flow in a novel Hele-Shaw cell consisting of a rigid bottom plate and a flexible top plate that deforms in a way that is volume-conserving. In other words, fluid injection into the flow cell leads to a local expansion of the flow area (outward displacement of the flexible surface) that must be coupled to non-local contraction (inward displacement of the flexible surface). We explore the impact of this volumetric confinement on steady viscous flow and on viscous fingering. We would like to thank EPSRC for the funding for this work.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1981-01-01
Sliding friction experiments were performed in vacuum at room temperature on a plane-type SiC surface in contact with iron-based binary alloys. Multiangular and spherical wear particles were found to form as a result of multipass sliding. The multiangular particles were produced by primary and secondary cracking of the 0001, 10(-)10, and 11(-)20 plane-type cleavage planes under the Hertzian stress field or local inelastic deformation zone. When alloy surfaces are in contact with silicon carbide under a load of 0.2 N, the alloy around the contact area is subjected to stresses that are close to the elastic limit in the elastic deformation region and/or exceed it. It was also found that spherical wear particles may be produced by two mechanisms: a penny-shaped fracture along the circular stress trajectories under the local inelastic deformation zone, and the attrition and fatigue of wear particles.
NASA Astrophysics Data System (ADS)
Dansereau, V.; Got, J. L.
2017-12-01
Before a volcanic eruption, the pressurization of the volcanic edifice by a magma reservoir induces earthquakes and damage in the edifice; damage lowers the strength of the edifice and decreases its elastic properties. Anelastic deformations cumulate and lead to rupture and eruption. These deformations translate into surface displacements, measurable via GPS or InSAR (e.g., Kilauea, southern flank, or Piton de la Fournaise, eastern flank).Attempts to represent these processes are usually based on a linear-elastic rheology. More recently, linear elastic-perfectly plastic or elastic-brittle damage approaches were used to explain the time evolution of the surface displacements in basaltic volcanoes before an eruption. However these models are non-linear elastic, and can not account for the anelastic deformation that occurs during the pre-eruptive process. Therefore, they can not be used to represent the complete eruptive cycle, comprising loading and unloading phases. Here we present a new rheological approach for modelling the eruptive cycle called Maxwell-Elasto-Brittle, which incorporates a viscous-like relaxation of the stresses in an elastic-brittle damage framework. This mechanism allows accounting for the anelastic deformations that cumulate and lead to rupture and eruption. The inclusion of healing processes in this model is another step towards a complete spatio-temporal representation of the eruptive cycle. Plane-strain Maxwell-EB modelling of the deformation of a magma reservoir and volcanic edifice will be presented. The model represents the propagation of damage towards the surface and the progressive localization of the deformation along faults under the pressurization of the magma reservoir. This model allows a complete spatio-temporal representation of the rupture process. We will also discuss how available seismicity records and time series of surface displacements could be used jointly to constrain the model.
NASA Astrophysics Data System (ADS)
Mémin, Anthony; Viswanathan, Vishnu; Fienga, Agnes; Santamarìa-Gómez, Alvaro; Boy, Jean-Paul; Cavalié, Olivier; Deleflie, Florent; Exertier, Pierre; Bernard, Jean-Daniel; Hinderer, Jacques
2017-04-01
Crustal deformations due to surface-mass loading account for a significant part of the variability in geodetic time series. A perfect understanding of the loading signal observed by geodetic techniques should help in improving terrestrial reference frame (TRF) realizations. Yet, discrepancies between crustal motion estimates from models of surface-mass loading and observations are still too large so that no model is currently recommended by the IERS for reducing the observations. We investigate the discrepancy observed in the seasonal variations of the position at the CERGA station, South of France. We characterize the seasonal motions of the reference geodetic station CERGA from GNSS, SLR, LLR and InSAR. We investigate the consistency between the station motions deduced from these geodetic techniques and compare the observed station motion with that estimated using models of surface-mass change. In that regard, we compute atmospheric loading effects using surface pressure fields from ECMWF, assuming an ocean response according to the classical inverted barometer (IB) assumption, considered to be valid for periods typically exceeding a week. We also used general circulation ocean models (ECCO and GLORYS) forced by wind, heat and fresh water fluxes. The continental water storage is described using GLDAS/Noah and MERRA-land models. Using the surface-mass models, we estimate that the seasonal signal due to loading deformation at the CERGA station is about 8-9, 1-2 and 1-2 mm peak-to-peak in Up, North and East component, respectively. There is a very good correlation between GPS observations and non-tidal loading predicted deformation due to atmosphere, ocean and hydrology which is the main driver of seasonal signal at CERGA. Despite large error bars, LLR observations agree reasonably well with GPS and non-tidal loading predictions in Up component. Local deformation as observed by InSAR is very well correlated with GPS observations corrected for non-tidal loading. Finally, we estimate local mass changes using the absolute gravity measurement campaigns available at the station and the global models of surface-mass change. We compute the induced station motion that we compare with the local deformation observed by InSAR and GPS.
Nogales, Aurora; Del Campo, Adolfo; Ezquerra, Tiberio A; Rodriguez-Hernández, Juan
2017-06-14
An unconventional strategy is proposed that takes advantage of localized high-deformation areas, referred to as folded wrinkles, to produce microstructured elastic surfaces with precisely controlled pattern dimensions and chemical distribution. For that purpose, elastic PDMS substrates were prestretched to a different extent and oxidized in particular areas using a mask. When the stretching was removed, the PDMS substrate exhibited out-of-plane deformations that largely depend on the applied prestretching. Prestretchings below 100% lead to affine deformations in which the treated areas are buckled. On the contrary, prestretchings above ε >100% prior to surface treatment induce the formation of folded wrinkles on those micrometer-size ultraviolet-ozone (UVO) treated areas upon relaxation. As a result, dual periodic wrinkles were formed due to the alternation of highly deformed (folded) and low deformed (buckled) areas. Our strategy is based on the surface treatment at precise positions upon prestretching of the elastic substrate (PDMS). Additionally, this approach can be used to template the formation of wrinkled surfaces by alternating lines of folded wrinkles (valleys) and low-deformed areas (hills). This effect allowed us to precisely tune the shape and distribution of the UVO exposed areas by varying the prestretching direction. Moreover, the wrinkle characteristics, including period and amplitude, exhibit a direct relation to the dimensions of the patterns present in the mask.
Deformations of super Riemann surfaces
NASA Astrophysics Data System (ADS)
Ninnemann, Holger
1992-11-01
Two different approaches to (Kostant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincaré upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function.
Analysis of deformation bands in the Aztec Sandstone, Valley of Fire State Park, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, R.E.
1993-04-01
This research concerns two types of deformation structures, deformation bands and low-angle slip surfaces, that occur in the Aztec Sandstone in the Valley of Fire State Park, Nevada. Deformation bands were analyzed by mapping and describing over 500 of the structures on a bedding surface of about 560 square meters. Deformation bands are narrow zones of reduced porosity which form resistant ribs in the sandstone. Three sets of deformation bands are present at the study site (type 1,2, and 3). Type 1 and 2 bands are interpreted as coeval and form a conjugate set with a dihedral angle of 90more » degrees. These sets are usually composed of multiple bands. A third set is interpreted to be subsidiary to the older set, and intersections angles with the earlier formed sets are approximately 45 degrees. In contrast with the older sets, the third set is nearly always a single band which is sinuous or jagged along its length. All three sets of deformation bands are crosscut and sometimes offset by low-angle slip surfaces. These faults have reverse dip slip displacement and locally have mullions developed. Displacements indicate eastward movement of the hanging wall which is consistent with the inferred movements of major Mesozoic thrust faults in the vicinity. The change of deformation style from deformation bands to low-angle slip surfaces may document a change in the stress regime. Paleostress interpretation of the deformation band geometry indicates the intermediate stress axis is vertical. The low-angle slip surfaces indicate the least compressive stress axis is vertical. This possible change in stress axes may be the result of increasing pore pressure associated with tectonic loading from emplacement of the Muddy Mountain thrust.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, S; Charpentier, P; Sayler, E
2015-06-15
Purpose Isocenter shifts and rotations to correct patient setup errors and organ motion cannot remedy some shape changes of large targets. We are investigating new methods in quantification of target deformation for realtime IGRT of breast and chest wall cancer. Methods Ninety-five patients of breast or chest wall cancer were accrued in an IRB-approved clinical trial of IGRT using 3D surface images acquired at daily setup and beam-on time via an in-room camera. Shifts and rotations relating to the planned reference surface were determined using iterative-closest-point alignment. Local surface displacements and target deformation are measured via a ray-surface intersection andmore » principal component analysis (PCA) of external surface, respectively. Isocenter shift, upper-abdominal displacement, and vectors of the surface projected onto the two principal components, PC1 and PC2, were evaluated for sensitivity and accuracy in detection of target deformation. Setup errors for some deformed targets were estimated by superlatively registering target volume, inner surface, or external surface in weekly CBCT or these outlines on weekly EPI. Results Setup difference according to the inner-surface, external surface, or target volume could be 1.5 cm. Video surface-guided setup agreed with EPI results to within < 0.5 cm while CBCT results were sometimes (∼20%) different from that of EPI (>0.5 cm) due to target deformation for some large breasts and some chest walls undergoing deep-breath-hold irradiation. Square root of PC1 and PC2 is very sensitive to external surface deformation and irregular breathing. Conclusion PCA of external surfaces is quick and simple way to detect target deformation in IGRT of breast and chest wall cancer. Setup corrections based on the target volume, inner surface, and external surface could be significant different. Thus, checking of target shape changes is essential for accurate image-guided patient setup and motion tracking of large deformable targets. NIH grant for the first author as cionsultant and the last author as the PI.« less
Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan
2018-01-01
As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling. PMID:29642379
Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan; He, Weifeng
2018-04-06
As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling.
Ultrasound-induced oscillations of gas bubbles in contact with gelatin gel surfaces
NASA Astrophysics Data System (ADS)
Fukui, Sosuke; Ando, Keita
2017-11-01
Ultrasound-induced dynamics of gas bubbles in the vicinity of deformable boundaries are studied experimentally, as a simplified model of sonoporation in medicine. In our experiment, 28-kHz underwater ultrasound was irradiated to a gas bubble nuclei (of radius from 60 μm to 200 μm) sitting at gel surfaces (of gelatin concentration from 6 wt% to 16 wt%) and the bubble dynamics were recorded by a high-speed camera. The repeated deformation of the gel surface was found to be in phase with volumetric oscillation of the bubble. A liquid jet, which can appear toward the collapse phase in the bubble oscillation in volume, produced localized surface deformation, which is an important observation in the context of sonoporation. We characterize the maximum displacement of the gel surface with varying the bubble nuclei radius (in comparison to the resonant radius fixed approximately at 117 μm). We also examine the phase difference between the ultrasound and the bubble dynamics under the influence of the deformable boundary. The Research Grant of Keio Leading-edge Laboratory of Science & Technology.
Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.
NASA Astrophysics Data System (ADS)
Wang, Jin; Zhang, Cao; Katz, Joseph
2015-11-01
This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.
NASA Astrophysics Data System (ADS)
Gudmundsson, A.
2005-05-01
Surface deformation on stratovolcanoes is the result of local stresses generated by various volcanotectonic processes. These processes include changes in fluid pressure in the associated geothermal fields and magma chambers, regional seismic or tectonic events, fault development, and dike injections. Here the focus is on magma-chamber pressure changes and dike injections. Surface deformation associated with magma-chamber pressure changes is normally referred to as inflation when the pressure increases, and as deflation when the pressure decreases. The processes that lead to inflation are primarily addition of new magma to the chamber and rapid exsolution of gas from the magma in the chamber. The processes that lead to deflation are primarily cooling (and contraction) of magma in the chamber, regional tectonic extension of the crust holding the chamber, and eruption and/or dike injection. Injection of dikes (including inclined sheets) is common in most active stratovolcanoes. However, no dike-fed eruptions can take place unless the local stress field within the volcano is favorable to feeder-dike formation. By contrast, if at any location - in any layer - in the stratovolcano the stress field is unfavorable to dike propagation, the dike becomes arrested and no eruption occurs. Detailed studies of dikes in stratovolcanoes worldwide indicate that most dikes become arrested and never reach the surface. However, arrested dikes may give rise to surface deformation, such as is commonly monitored during volcanic unrest periods. By definition, stratovolcanoes are composed of numerous alternating strata (layers) of pyroclastic material and lava flows. Commonly, these layers have widely different mechanical properties. In particular, some layers such as lava flows and welded pyroclastic flows may be stiff (with a high Young's modulus), whereas other layers, such as non-welded pyroclastic units, may be soft (with a low Young's modulus). Here I present new numerical models on the surface deformation on typical stratovolcanoes. The models show, first, that the surface deformation during magma-chamber inflation and deflation depends much on the chamber geometry, the loading conditions, and the mechanical properties of the rock units that constitute the volcano. Second, the models show that dike-induced stresses and surface deformation depend much on the mechanical properties of the layers between the dike tip and the surface. In particular, the models indicate that soft layers and weak contacts between layers may suppress the dike-induced tensile stresses and the associated surface deformation. Thus, many dikes may become injected and arrested with little or no surface deformation. Generally, the numerical models suggest that standard analytical surface-deformation models such as point sources (nuclei of strain) for magma-chamber pressure changes and dislocations for dikes should be used with great caution. These models normally assume the volcanoes and rift zones to behave as homogeneous, isotropic half spaces or semi-infinite plates. When applied to stratovolcanoes composed of layers of contrasting mechanical properties and, particularly at shallow depths, weak or open contacts, inversions using these analytical models may yield results that, at best, are unreliable.
Static aeroelastic deformation of flexible skin for continuous variable trailing-edge camber wing
NASA Astrophysics Data System (ADS)
Liu, Libo; Yin, Weilong; Dai, Fuhong; Liu, Yanju; Leng, Jinsong
2011-03-01
The method for analyzing the static aeroelastic deformation of flexible skin under the air loads was developed. The effect of static aeroelastic deformation of flexible skin on the aerodynamic characteristics of aerofoil and the design parameters of skin was discussed. Numerical results show that the flexible skin on the upper surface of trailing-edge will bubble under the air loads and the bubble has a powerful effect on the aerodynamic pressure near the surface of local deformation. The static aeroelastic deformation of flexible skin significantly affects the aerodynamic characteristics of aerofoil. At small angle of attack, the drag coefficient increases and the lift coefficient decreases. With the increasing angle of attack, the effect of flexible skin on the aerodynamic characteristics of aerofoil is smaller and smaller. The deformation of flexible skin becomes larger and larger with the free-stream velocity increasing. When the free-stream velocity is greater than a value, both of the deformation of flexible skin and the drag coefficient of aerofoil increase rapidly. The maximum tensile strain of flexible skin is increased with consideration of the static aeroelastic deformation.
Novel fully integrated computer system for custom footwear: from 3D digitization to manufacturing
NASA Astrophysics Data System (ADS)
Houle, Pascal-Simon; Beaulieu, Eric; Liu, Zhaoheng
1998-03-01
This paper presents a recently developed custom footwear system, which integrates 3D digitization technology, range image fusion techniques, a 3D graphical environment for corrective actions, parametric curved surface representation and computer numerical control (CNC) machining. In this system, a support designed with the help of biomechanics experts can stabilize the foot in a correct and neutral position. The foot surface is then captured by a 3D camera using active ranging techniques. A software using a library of documented foot pathologies suggests corrective actions on the orthosis. Three kinds of deformations can be achieved. The first method uses previously scanned pad surfaces by our 3D scanner, which can be easily mapped onto the foot surface to locally modify the surface shape. The second kind of deformation is construction of B-Spline surfaces by manipulating control points and modifying knot vectors in a 3D graphical environment to build desired deformation. The last one is a manual electronic 3D pen, which may be of different shapes and sizes, and has an adjustable 'pressure' information. All applied deformations should respect a G1 surface continuity, which ensure that the surface can accustom a foot. Once the surface modification process is completed, the resulting data is sent to manufacturing software for CNC machining.
NASA Astrophysics Data System (ADS)
Cai, M.; Li, W.; Dickinson, J. T.
2006-11-01
We report simultaneous measurements of strain and photoelectron emission from high purity Al (1350), Al-Mg (5052), Al-Mn (3003), Al-Cu (2024), and Al-Mg-Si (6061) alloys under uniaxial tension due to pulsed excimer laser radiation (248nm). The emission of low-energy photoelectrons is sensitive to deformation-induced changes in surface morphology, including the formation of slip lines and slip bands. Alloy composition and surface treatment significantly influence the photoemission during deformation. Surface oxide enhances the signal-to-noise level during photoemission measurement. In the early stage of deformation (strain ⩽0.04), photoemission intensity increases gradually in a nonlinear fashion. While subsequent photoemission increases almost linearly with strain until failure in samples with thin oxide layer (˜31Å), there are two linear segments of photoemission for the samples with oxide of 45Å. The onset of strain localization corresponds to the intersection point of two linear segments, usually at a strain of 0.08-0.20. A constitutive model incorporating microstructure evolution and work hardening during tensile deformation is proposed to qualitatively interpret the growth of the photoemission as a function of strain. Photoemissions from various alloys are interpreted in the light of surface treatment, work function, composition, and microstructural development during deformation.
Surface Spectroscopic Signatures of Mechanical Deformation in HDPE.
Averett, Shawn C; Stanley, Steven K; Hanson, Joshua J; Smith, Stacey J; Patterson, James E
2018-01-01
High-density polyethylene (HDPE) has been extensively studied, both as a model for semi-crystalline polymers and because of its own industrial utility. During cold drawing, crystalline regions of HDPE are known to break up and align with the direction of tensile load. Structural changes due to deformation should also manifest at the surface of the polymer, but until now, a detailed molecular understanding of how the surface responds to mechanical deformation has been lacking. This work establishes a precedent for using vibrational sum-frequency generation (VSFG) spectroscopy to investigate changes in the molecular-level structure of the surface of HDPE after cold drawing. X-ray diffraction (XRD) was used to confirm that the observed surface behavior corresponds to the expected bulk response. Before tensile loading, the VSFG spectra indicate that there is significant variability in the surface structure and tilt of the methylene groups away from the surface normal. After deformation, the VSFG spectroscopic signatures are notably different. These changes suggest that hydrocarbon chains at the surface of visibly necked HDPE are aligned with the direction of loading, while the associated methylene groups are oriented with the local C 2 v symmetry axis roughly parallel to the surface normal. Small amounts of unaltered material are also found at the surface of necked HDPE, with the relative amount of unaltered material decreasing as the amount of deformation increases. Aspects of the nonresonant SFG response in the transition zone between necked and undeformed polymer provide additional insight into the deformation process and may provide the first indication of mechanical deformation. Nonlinear surface spectroscopy can thus be used as a noninvasive and nondestructive tool to probe the stress history of a HPDE sample in situations where X-ray techniques are not available or not applicable. Vibrational sum-frequency generation thus has great potential as a platform for material state awareness (MSA) and should be considered as part of a broader suite of tools for such applications.
Interfacial diffusion aided deformation during nanoindentation
Samanta, Amit; E., Weinan
2015-07-06
Nanoindentation is commonly used to quantify the mechanical response of material surfaces. Despite its widespread use, a detailed understanding of the deformation mechanisms responsible for plasticity during these experiments has remained elusive. Nanoindentation measurements often show stress values close to a material’s ideal strength which suggests that dislocation nucleation and subsequent dislocation activity dominates the deformation. However, low strain-rate exponents and small activation volumes have also been reported which indicates high temperature sensitivity of the deformation processes. Using an order parameter aided temperature accelerated sampling technique called adiabatic free energy dynamics [J. B. Abrams and M. E. Tuckerman, J. Phys.more » Chem. B, 112, 15742 (2008)], and molecular dynamics we have probed the diffusive mode of deformation during nanoindentation. Localized processes such as surface vacancy and ad-atom pair formation, vacancy diffusion are found to play an important role during indentation. Furthermore, our analysis suggests a change in the dominant deformation mode from dislocation mediated plasticity to diffusional flow at high temperatures, slow indentation rates and small indenter tip radii.« less
InSAR observations of low slip rates on the major faults of western Tibet.
Wright, Tim J; Parsons, Barry; England, Philip C; Fielding, Eric J
2004-07-09
Two contrasting views of the active deformation of Asia dominate the debate about how continents deform: (i) The deformation is primarily localized on major faults separating crustal blocks or (ii) deformation is distributed throughout the continental lithosphere. In the first model, western Tibet is being extruded eastward between the major faults bounding the region. Surface displacement measurements across the western Tibetan plateau using satellite radar interferometry (InSAR) indicate that slip rates on the Karakoram and Altyn Tagh faults are lower than would be expected for the extrusion model and suggest a significant amount of internal deformation in Tibet.
Tapping-mode AFM study of tip-induced polymer deformation under geometrical confinement.
Zhang, Hong; Honda, Yukio; Takeoka, Shinji
2013-02-05
The morphological stability of polymer films is critically important to their application as functional materials. The deformation of polymer surfaces on the nanoscale may be significantly influenced by geometrical confinement. Herein, we constructed a mechanically heterogeneous polymer surface by phase separation in a thin polymer film and investigated the deformation behavior of its nanostructure (∼30 nm thickness and ∼100 nm average diameter) with tapping-mode atomic force microscopy. By changing different scan parameters, we could induce deformation localized to the nanostructure in a controllable manner. A quantity called the deformation index is defined and shown to be correlated to energy dissipation by tip-sample interaction. We clarified that the plastic deformation of a polymer on the nanoscale is energy-dependent and is related to the glass-to-rubber transition. The mobility of polymer chains beneath the tapping tip is enhanced, and in the corresponding region a rubberlike deformation with the lateral motion of the tip is performed. The method we developed can provide insight into the geometrical confinement effects on polymer behavior.
NASA Astrophysics Data System (ADS)
Hearn, E. H.
2013-12-01
Geodetic surface velocity data show that after an energetic but brief phase of postseismic deformation, surface deformation around most major strike-slip faults tends to be localized and stationary, and can be modeled with a buried elastic dislocation creeping at or near the Holocene slip rate. Earthquake-cycle models incorporating an elastic layer over a Maxwell viscoelastic halfspace cannot explain this, even when the earliest postseismic deformation is ignored or modeled (e.g., as frictional afterslip). Models with heterogeneously distributed low-viscosity materials or power-law rheologies perform better, but to explain all phases of earthquake-cycle deformation, Burgers viscoelastic materials with extreme differences between their Maxwell and Kelvin element viscosities seem to be required. I present a suite of earthquake-cycle models to show that postseismic and interseismic deformation may be reconciled for a range of lithosphere architectures and rheologies if finite rupture length is taken into account. These models incorporate high-viscosity lithosphere optionally cut by a viscous shear zone, and a lower-viscosity mantle asthenosphere (all with a range of viscoelastic rheologies and parameters). Characteristic earthquakes with Mw = 7.0 - 7.9 are investigated, with interseismic intervals adjusted to maintain the same slip rate (10, 20 or 40 mm/yr). I find that a high-viscosity lower crust/uppermost mantle (or a high viscosity per unit width viscous shear zone at these depths) is required for localized and stationary interseismic deformation. For Mw = 7.9 characteristic earthquakes, the shear zone viscosity per unit width in the lower crust and uppermost mantle must exceed about 10^16 Pa s /m. For a layered viscoelastic model the lower crust and uppermost mantle effective viscosity must exceed about 10^20 Pa s. The range of admissible shear zone and lower lithosphere rheologies broadens considerably for faults producing more frequent but smaller characteristic earthquakes. Thus, minimum lithosphere or shear zone effective viscosities inferred from interseismic GPS data and infinite-fault earthquake-cycle models may be too high. The finite-fault models show that relaxation of viscoelastic material in the mid crust (most likely along a viscous shear zone) may be consistent with near- to intermediate-field postseismic deformation typical of recent Mw = 7.4 to 7.9 earthquakes. This deformation is compatible with more localized and time-invariant deformation during most of the interseismic interval if (1) shear zone viscosity per unit width increases with depth or (2) the shear zone material has a Burgers viscoelastic rheology.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2012-01-01
New first- and second-order displacement transfer functions have been developed for deformed shape calculations of nonuniform cross-sectional beam structures such as aircraft wings. The displacement transfer functions are expressed explicitly in terms of beam geometrical parameters and surface strains (uniaxial bending strains) obtained at equally spaced strain stations along the surface of the beam structure. By inputting the measured or analytically calculated surface strains into the displacement transfer functions, one could calculate local slopes, deflections, and cross-sectional twist angles of the nonuniform beam structure for mapping the overall structural deformed shapes for visual display. The accuracy of deformed shape calculations by the first- and second-order displacement transfer functions are determined by comparing these values to the analytically predicted values obtained from finite element analyses. This comparison shows that the new displacement transfer functions could quite accurately calculate the deformed shapes of tapered cantilever tubular beams with different tapered angles. The accuracy of the present displacement transfer functions also are compared to those of the previously developed displacement transfer functions.
Geometrical characterization of fluorescently labelled surfaces from noisy 3D microscopy data.
Shelton, Elijah; Serwane, Friedhelm; Campàs, Otger
2018-03-01
Modern fluorescence microscopy enables fast 3D imaging of biological and inert systems alike. In many studies, it is important to detect the surface of objects and quantitatively characterize its local geometry, including its mean curvature. We present a fully automated algorithm to determine the location and curvatures of an object from 3D fluorescence images, such as those obtained using confocal or light-sheet microscopy. The algorithm aims at reconstructing surface labelled objects with spherical topology and mild deformations from the spherical geometry with high accuracy, rather than reconstructing arbitrarily deformed objects with lower fidelity. Using both synthetic data with known geometrical characteristics and experimental data of spherical objects, we characterize the algorithm's accuracy over the range of conditions and parameters typically encountered in 3D fluorescence imaging. We show that the algorithm can detect the location of the surface and obtain a map of local mean curvatures with relative errors typically below 2% and 20%, respectively, even in the presence of substantial levels of noise. Finally, we apply this algorithm to analyse the shape and curvature map of fluorescently labelled oil droplets embedded within multicellular aggregates and deformed by cellular forces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Ductile flow by water-assisted cataclasis
NASA Astrophysics Data System (ADS)
den Brok, Bas
2003-04-01
In the presence of water otherwise brittle materials may deform macroscopically ductile by water-assisted cataclastic creep. This is possible as long as (i) solubility is high enough, so that stress-corrosion can occur, and (ii) local stress is low enough, to that fracturing remains subcritical. Water-assisted cataclastic creep (WACC) may play an important role in the middle and lower continental crust where mineral solubilities are high and stresses low. WACC is a poorly understood deformation process. Experiments were performed on very soluble brittle salts (Na-chlorate; K-alum) to study microstructure development by WACC. The experiments were carried out at room temperature and atmospheric pressure in a small see-through vessel. In this way the cataclastic deformation process could be studied "in-situ" under the microscope. Crystals were loaded in the presence of saturated salt solution. It appeared that originally straight mineral surfaces were instable when kept under stress. Grooves (or channels) slowly developed in the surface by local dissolution. These grooves behave like so-called Grinfeld instabilities. They develop because the energy of a grooved surface under stress is lower than the energy of a straight surface under stress. The grooves may deepen and turn into subcritical cracks when local stress further increases. These cracks propagate slowly. They propagate parallel to sigma1 but also at an angle and even perpendicular to sigma1, often following crystallographically controlled directions. The fractures mostly change direction while propagating, locally making turns of more than 180 degrees. Irregular fracture fragments thus develop. The fractures may migrate sideways (as with grain bounday migration) probably by solution-redeposition driven by differences in stress between both sides of the fracture. Thus the shape of the fragments changes. The size of the fracture fragments seems to be controlled by the distance of the grooves, which decreases with increasing stress.
NASA Astrophysics Data System (ADS)
Languy, Fabian; Vandenrijt, Jean-François; Saint-Georges, Philippe; Georges, Marc P.
2017-06-01
The manufacture of mirrors for space application is expensive and the requirements on the optical performance increase over years. To achieve higher performance, larger mirrors are manufactured but the larger the mirror the higher the sensitivity to temperature variation and therefore the higher the degradation of optical performances. To avoid the use of an expensive thermal regulation, we need to develop tools able to predict how optics behaves with thermal constraints. This paper presents the comparison between experimental surface mirror deformation and theoretical results from a multiphysics model. The local displacements of the mirror surface have been measured with the use of electronic speckle pattern interferometry (ESPI) and the deformation itself has been calculated by subtracting the rigid body motion. After validation of the mechanical model, experimental and numerical wave front errors are compared.
Full-field Deformation Measurement Techniques for a Rotating Composite Shaft
NASA Technical Reports Server (NTRS)
Kohlman, Lee W.; Ruggeri, Charles R.; Martin, Richard E.; Roberts, Gary D.; Handschuh, Robert F.; Roth, Don J.
2012-01-01
Test methods were developed to view global and local deformation in a composite tube during a test in which the tube is rotating at speeds and torques relevant to rotorcraft shafts. Digital image correlation (DIC) was used to provide quantitative displacement measurements during the tests. High speed cameras were used for the DIC measurements in order to capture images at sufficient frame rates and with sufficient resolution while the tube was rotating at speeds up to 5,000 rpm. Surface displacement data was resolved into cylindrical coordinates in order to measure rigid body rotation and global deformation of the tube. Tests were performed on both undamaged and impact damaged tubes in order to evaluate the capability to detect local deformation near an impact damaged site. Measurement of radial displacement clearly indicated a local buckling deformation near the impacted site in both dynamic and static tests. X-ray computed tomography (CT) was used to investigate variations in fiber architecture within the composite tube and to detect impact damage. No growth in the impact damage area was observed by DIC during dynamic testing or by x-ray CT in post test inspection of the composite tube.
NASA Astrophysics Data System (ADS)
Semple, A.; Pritchard, M. E.; Taylor, H.
2014-12-01
The western US and Mexico are deforming at several spatial scales that can be measured by ground and satellite observations like GPS and Interferometric Synthetic Aperture Radar (InSAR). Many GPS stations have been installed throughout this area to monitor ground deformation caused by large scale tectonic processes; however, several studies have noted that the data recorded at a GPS station can be contaminated by local, non-tectonic ground deformation. In this study, we use InSAR to examine deformation from various sources in the western US and Mexico. We chose this method due to the spatially large study area and the availability and temporal coverage of SAR imagery. We use SAR images acquired by the satellites Envisat, ERS-1 and ERS-2 over a time period from 1992-2010 to create several time series. Data from the ALOS satellite between 2006-2011 are also used in some areas. We use these time series analysis along with previously published results to observe and catalogue various sources of surface deformation in the western US and Mexico - from groundwater pumping, geothermal activity, mining, hydrocarbon production, and other sources. We then use these results to identify GPS stations that have potentially been contaminated by non-tectonic deformation signals. We document more than 150 distinct regions of non-tectonic and likely anthropogenic deformation. We have located 82 GPS stations within 20km of the center of at least one of the non-tectonic deformation signals we have identified. It is likely that the data from these 82 GPS stations have been contaminated by local anthropogenic deformation. Some examples of previously unpublished non-tectonic deformation we have seen in this study include but are not limited to, subsidence due to groundwater extraction in Jesus Garcia, Mexico, both uplift and subsidence due to natural gas extraction at Jonah Field in Sublette County, WY, and uplift due to a water recharge project in Tonopah, AZ.
Nondestructive optical testing of the materials surface structure based on liquid crystals
NASA Astrophysics Data System (ADS)
Tomilin, M. G.; Stafeev, S. K.
2011-08-01
Thin layers of nematic liquid crystals (NLCs) may be used as recording media for visualizing structural and microrelief defects, distribution of low power physical fields and modifications of the surface. NLCs are more sensitive in comparison with cholesteric and smectic LCs having super molecular structures. The detecting properties of NLCs are based on local layers deformation, induced by surface fields and observed in polarizing microscope. The structural surface defects or physical field's distribution are dramatically change the distribution of surface tension. Surface defects recording becomes possible if NLC deformed structure is illuminated in transparent or reflective modes and observed in optical polarizing microscope and appearing image is compared with background structure. In this case one observes not the real defect but the local deformation in NLCs. The theory was developed to find out the real size of defects. The resolution of NLC layer is more than 2000 lines/mm. The fields of NLC application are solid crystals symmetry, minerals, metals, semiconductors, polymers and glasses structure inhomogeneities and optical coatings defects detecting. The efficiency of NLC method in biophotonics is illustrated by objective detecting cancer tissues character and visualizing the interaction traces of grippe viruses with antibodies. NLCs may detect solvent components structure in tea, wine and perfume giving unique information of their structure. It presents diagnostic information alternative to dyes and fluorescence methods. For the first time the structures of some juices and beverages are visualized to illustrate the unique possibilities of NLCs.
NASA Astrophysics Data System (ADS)
Gold, Ryan; Reitman, Nadine; Briggs, Richard; Barnhart, William; Hayes, Gavin
2015-04-01
The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the 60° ± 15° northwest-dipping Hoshab fault in southern Pakistan. The earthquake is notable because it produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. Surface displacements and geodetic and teleseismic inversions indicate that peak slip occurred within the upper 0-3 km of the crust. To explore along-strike and fault-perpendicular surface deformation patterns, we remotely mapped the surface trace of the rupture and measured its surface deformation using high-resolution (0.5 m) pre- and post-event satellite imagery. Post-event images were collected 7-114 days following the earthquake, so our analysis captures the sum of both the coseismic and post-seismic (e.g., after slip) deformation. We document peak left-lateral offset of ~15 m using 289 near-field (±10 m from fault) laterally offset piercing points, such as streams, terrace risers, and roads. We characterize off-fault deformation by measuring the medium- (±200 m from fault) and far-field (±10 km from fault) displacement using manual (242 measurements) and automated image cross-correlation methods. Off-fault peak lateral displacement values (medium- and far-field) are ~16 m and commonly exceed the on-fault displacement magnitudes. Our observations suggest that coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, the majority of surface displacement is within 100 m of the primary fault trace and is most localized on sections of the rupture exhibiting narrow (<5 m) zones of observable surface deformation. Furthermore, the near-field displacement measurements account for, on average, only 73% of the total coseismic displacement field and the pattern is highly heterogeneous. This analysis highlights the importance of identifying paleoseismic field study sites (e.g. trenches) that span fault sections with narrow deformation zones in order to capture the full deformation field. Our results imply that hazard analyses based on geologically-determined fault slip rates (e.g., near-field) should consider the significant and heterogeneous mismatch we document between on- and off-fault coseismic deformation.
NASA Astrophysics Data System (ADS)
Deng, Yangfan; Li, Jiangtao; Song, Xiaodong; Zhu, Lupei
2018-05-01
Several geodynamic models have been proposed for the deformation mechanism of Tibetan Plateau (TP), but it remains controversial. Here we applied a method of joint inversion of receiver functions and surface wave dispersions with P wave velocity constraint to a dense linear array in the NE Tibet. The results show that the geological blocks, separated by major faults at the surface, are characterized by distinct features in the crust, the Moho, and the uppermost mantle. The main features include crustal low-velocity zones (LVZs) with variable strengths, anomalous Vp/Vs ratios that are correlated with LVZs, a large Moho jump, and other abrupt changes near major faults, strong mantle lithosphere anomalies, and correlation of crustal and mantle velocities. The results suggest a lithospheric-scale deformation of continuous shortening as well as localized faulting, which is affected by the strength of the lithosphere blocks. The thickened mantle lithosphere can be removed, which facilitates the formation of middle-lower crustal LVZ and flow. However, such flow is likely a consequence of the deformation rather than a driving force for the outward growth of the TP. The proposed model of TP deformation and growth can reconcile the continuous deformation within the blocks and major faults at the surface.
NASA Astrophysics Data System (ADS)
Mikheyev, V. V.; Saveliev, S. V.
2018-01-01
Description of deflected mode for different types of materials under action of external force plays special role for wide variety of applications - from construction mechanics to circuits engineering. This article con-siders the problem of plastic deformation of the layer of elastoviscolastic soil under surface periodic force. The problem was solved with use of the modified lumped parameters approach which takes into account close to real distribution of normal stress in the depth of the layer along with changes in local mechanical properties of the material taking place during plastic deformation. Special numeric algorithm was worked out for computer modeling of the process. As an example of application suggested algorithm was realized for the deformation of the layer of elasoviscoplastic material by the source of external lateral force with the parameters of real technological process of soil compaction.
NASA Astrophysics Data System (ADS)
Klinger, Y.; Vallage, A.; Grandin, R.; Delorme, A.; Rosu, A. M.; Pierro-Deseilligny, M.
2014-12-01
The Mw7.7 2013 Balochistan earthquake ruptured 200 km of the Hoshab fault, the southern end of the Chaman fault. Azimuth of the fault changes by more than 30° along rupture, from a well-oriented strike-slip fault to a more thrust prone direction. We use the MicMac optical image software to correlate pairs of Landsat images taken before and after the earthquake to access to the horizontal displacement field associated with the earthquake. We combine the horizontal displacement with radar image correlation in range and radar interferometry to derive the co-seismic slip on the fault. The combination of these different datasets actually provides the 3D displacement field. We note that although the earthquake was mainly strike-slip all along the rupture length, some vertical motion patches exist, which locations seem to be controlled by kilometric-scale variations of the fault geometry. 5 pairs of SPOT images were also correlated to derive a 2.5m pixel-size horizontal displacement field, providing unique opportunity to look at deformation in the near field and to obtain high-resolution strike-slip and normal slip-distributions. We note a significant difference, especially in the normal component, between the slip localized at depth on the fault plane and the slip localized closer to the surface, with more apparent slip at the surface. A high-resolution map of ground rupture allows us to locate the distribution of the deformation over the whole rupture length. The rupture map also highlights multiple fault geometric complexities where we could quantify details of the slip distribution. At the rupture length-scale, the local azimuth variations between segments have a large impact on the expression of the localized slip at the surface. The combination of those datasets gives an overview of the large distribution of the deformation in the near field, corresponding to the co-seismic damage zone.
Wear particles of single-crystal silicon carbide in vacuum
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Sliding friction experiments, conducted in vacuum with silicon carbide /000/ surface in contact with iron based binary alloys are described. Multiangular and spherical wear particles of silicon carbide are observed as a result of multipass sliding. The multiangular particles are produced by primary and secondary cracking of cleavage planes /000/, /10(-1)0/, and /11(-2)0/ under the Hertzian stress field or local inelastic deformation zone. The spherical particles may be produced by two mechanisms: (1) a penny shaped fracture along the circular stress trajectories under the local inelastic deformation zone, and (2) attrition of wear particles.
Local precision nets for monitoring movements of faults and large engineering structures
NASA Technical Reports Server (NTRS)
Henneberg, H. G.
1978-01-01
Along Bocono Fault were installed local high precision geodetic nets to observe the possible horizontal crustal deformations and movements. In the fault area there are few big structures which are also included in the mentioned investigation. In the near future, measurements shall be extended to other sites of Bocono Fault and also to the El Pilar Fault. In the same way and by similar methods high precision geodetic nets are applied in Venezuela to observe the behavior of big structures, as bridges and large dams and of earth surface deformations due to industrial activities.
NASA Astrophysics Data System (ADS)
Kaftan, V. I.; Melnikov, A. Yu.
2018-01-01
The results of Global Navigational Satellite System (GNSS) observations in the regions of large earthquakes are analyzed. The characteristics of the Earth's surface deformations before, during, and after the earthquakes are considered. The obtained results demonstrate the presence of anomalous deformations close to the epicenters of the events. Statistical estimates of the anomalous strains and their relationship with measurement errors are obtained. Conclusions are drawn about the probable use of local GNSS networks to assess the risk of the occurrence of strong seismic events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradov, A.; Laboratory of Hybrid Nanostructured Materials, NITU MISiS, Moscow 119490; Yasnikov, I. S.
2014-06-21
We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a commonmore » platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.« less
NASA Technical Reports Server (NTRS)
Rosen, P. A.; Hensley, S.; Zebker, H. A.; Webb, F. H.; Fielding, E. J.
1996-01-01
The shuttle imaging radar C/X synthetic aperture radar (SIR-C/X-SAR) radar on board the space shuttle Endeavor imaged Kilauea Volcano, Hawaii, in April and October 1994 for the purpose of measuring active surface deformation by the methods of repeat-pass differential radar interferometry. Observations at 24 cm (L band) and 5.6 cm (C band) wavelengths were reduced to interferograms showing apparent surface deformation over the 6-month interval and over a succession of 1-day intervals in October. A statistically significant local phase signature in the 6-month interferogram is coincident with the Pu'u O'o lava vent. Interpreted as deformation, the signal implies centimeter-scale deflation in an area several kilometers wide surrounding the vent. Peak deflation is roughly 14 cm if the deformation is purely vertical, centered southward of the Pu'u O'o caldera. Delays in the radar signal phase induced by atmospheric refractivity anomalies introduce spurious apparent deformation signatures, at the level of 12 cm peak-to-peak in the radar line-of-sight direction. Though the phase observations are suggestive of the wide-area deformation measured by Global Positioning System (GPS) methods, the atmospheric effects are large enough to limit the interpretation of the result. It is difficult to characterize centimeter-scale deformations spatially distributed over tens of kilometers using differential interferometry without supporting simultaneous, spatially distributed measurements of reactivity along the radar line of sight. Studies of the interferometric correlation of images acquired at different times show that L band is far superior to C band in the vegetated areas, even when the observations are separated by only 1 day. These results imply longer wavelength instruments are more appropriate for studying surfaces by repeat-pass observations.
Surface Roughening Behavior of 6063 Aluminum Alloy during Bulging by Spun Tubes
Cai, Yang; Wang, Xiaosong; Yuan, Shijian
2017-01-01
Severe surface roughening during the hydroforming of aluminum alloy parts can produce surface defects that severely restrict their application in the automobile and aerospace industry. To understand the relation between strain, grain size and surface roughness under biaxial stress conditions, hydro-bulging tests of aluminum alloy tubes were carried out, and the tubes with different grain sizes were prepared by a spinning and annealing process. The surface roughness was measured by a laser scanning confocal microscope to evaluate the surface roughening macroscopical behavior, and the corresponding microstructures were observed using electron back-scattered diffraction (EBSD) to reveal the roughening microscopic behavior. The results obtained show that the surface roughness increased with both strain and grain size under biaxial stress. No surface defects were observed on the surface when the grain size was less than 105 μm if the strain was less than 18%, or when the grain size was between 130 and 175 μm if the strain was less than 15.88% and 7.15%, respectively. The surface roughening microscopic behavior was identified as an inhomogeneous grain size distribution, which became more pronounced with increasing grain size and resulted in greater local deformation. Concentrated grain orientation also results in severe inhomogeneous deformation during plastics deformation, and serious surface roughening. PMID:28772658
Localization of deformations within the amygdala in individuals with psychopathy.
Yang, Yaling; Raine, Adrian; Narr, Katherine L; Colletti, Patrick; Toga, Arthur W
2009-09-01
Despite the repeated findings of impaired fear conditioning and affective recognition in psychopathic individuals, there has been a paucity of brain imaging research on the amygdala and no evidence suggesting which regions within the amygdala may be structurally compromised in individuals with psychopathy. To detect global and regional anatomical abnormalities in the amygdala in individuals with psychopathy. Cross-sectional design using structural magnetic resonance imaging. Participants were recruited from high-risk communities (temporary employment agencies) in the Los Angeles, California, area and underwent imaging at a hospital research facility at the University of Southern California. Twenty-seven psychopathic individuals as defined by the Hare Psychopathy Checklist-Revised and 32 normal controls matched on age, sex, and ethnicity. Amygdala volumes were examined using traditional volumetric analyses and surface-based mesh modeling methods were used to localize regional surface deformations. Individuals with psychopathy showed significant bilateral volume reductions in the amygdala compared with controls (left, 17.1%; right, 18.9%). Surface deformations were localized in regions in the approximate vicinity of the basolateral, lateral, cortical, and central nuclei of the amygdala. Significant correlations were found between reduced amygdala volumes and increased total and facet psychopathy scores, with correlations strongest for the affective and interpersonal facets of psychopathy. Results provide the first evidence, to our knowledge, of focal amygdala abnormalities in psychopathic individuals and corroborate findings from previous lesion studies. Findings support prior hypotheses of amygdala deficits in individuals with psychopathy and indicate that amygdala abnormalities contribute to emotional and behavioral symptoms of psychopathy.
NASA Astrophysics Data System (ADS)
Brendan, Simon; François, Guillocheau; Cécile, Robin; Jean, Braun; Olivier, Dauteuil; Massimo, Dall'Asta
2016-04-01
African relief is characterized by planation surfaces, some of them of continental scale. These surfaces are slightly deformed according to different wavelengths (x10 km; x100 km, x1000 km) which record both mantle dynamics (very long wavelength, x 1000 km) and lithosphere deformation (long wavelength deformation, x 100 km). Different types of these planation surfaces are recognized: - Etchplains capped by iron-duricrust which correspond to erosional nearly flat weathered surfaces resulting from the growth of laterites under warm and humid conditions. - Pediments which define mechanical erosional surfaces with concave or rectilinear profiles delimited by upslope scarps connected upstream with the upper landforms. We here focused on the Lake Albert Rift at the northern termination of the western branch of the East African Rift System of which the two branches are surimposed on the East-African Dome. Different wavelengths of deformation were characterized based on the 3D mapping of stepped planation surfaces: (1) very long wavelength deformations resulting from the uplift of the East African Dome; (2) long wavelength deformations resulting from the opening of the eastern branch and (3) medium wavelength deformations represented by the uplift of rift shoulders like the Rwenzori Mountains. The paleo-landscape reconstruction of Uganda shows the existence of four generations of landforms dated according to their geometrical relationships with volcanic rocks. A four stepped evolution of the Ugandan landforms is proposed: • 70 - 22 Ma: generation of two weathered planation surfaces (etchplain Uw and Iw). The upper one (Uw) records a very humid period culminating at time of the Early Eocene Climatic Optimum (70-45 Ma). It corresponds to the African Surface. A first uplift of the East African Dome generates a second lower planation surface (Iw) connected to the Atlantic Ocean base level; • 17-2.7 Ma: planation of large pediplains connected to the local base level induced by the birth of the Albertine Rift System and the formation of the proto-Lake Albert; • 2.7-0.4 Ma: uplift of the Ruwenzori Mountains and degradation by river incision of the previous large pediplains; • 0.4-0 Ma: long wavelength downwarping of the Tanzania Craton between the two branches of the rift, creation of the Victoria Lake, inversion of the drainage and formation of the fault-bounded scarps of Albert Rift.
NASA Astrophysics Data System (ADS)
Bland, M. T.; McKinnon, W. B.
2010-12-01
Ganymede’s iconic topography offers clues to both the satellite’s thermal evolution, and the mechanics of tectonic deformation on icy satellites. Much of Ganymede’s surface consists of bright, young terrain, with a characteristic morphology dubbed “groove terrain”. As reviewed in Pappalardo et al. (2004), in Jupiter - The Planet, Satellites, and Magnetosphere (CUP), grooved terrain consists of sets of quasi-parallel, periodically-spaced, ridges and troughs. Peak-to-trough groove amplitudes are ~500 m, with low topographic slopes (~5°). Groove spacing is strongly periodic within a single groove set, ranging from 3-17 km; shorter wavelength deformation is also apparent in high-resolution images. Grooved terrain likely formed via unstable extension of Ganymede’s ice lithosphere, which was deformed into periodically-spaced pinches and swells, and accommodated by tilt-block normal faulting. Analytical models of unstable extension support this formation mechanism [Dombard and McKinnon 2001, Icarus 154], but initial numerical models of extending ice lithospheres struggled to produce large-amplitude, groove-like deformation [Bland and Showman 2007, Icarus 189]. Here we present simulations that reproduce many of the characteristics of Ganymede’s grooves [Bland et al. 2010, Icarus in press]. By more realistically simulating the decrease in material strength after initial fault development, our model allows strain to become readily localized into discrete zones. Such strain localization leads to the formation of periodic structures with amplitudes of 200-500 m, and wavelengths of 3-20 km. The morphology of the deformation depends on both the lithospheric thermal gradient, and the rate at which material strength decreases with increasing plastic strain. Large-amplitude, graben-like structures form when material weakening occurs rapidly with increasing strain, while lower-amplitude, periodic structures form when the ice retains its strength. Thus, extension can result in complex surface deformation, consistent with the variety of surface morphologies observed within the grooved terrain. Our modeling indicates that moderate thermal gradients (10 K km-1) may be sufficient to explain many of Ganymede’s groove morphologies. The implied heat flow (~50 mW m-2), however, is a factor of two greater than the expected radiogenic heat flux, suggesting additional energy input (e.g., tidal dissipation) may be required. Our modeling of groove formation suggests that understanding tectonic deformation on icy satellites requires a detailed understanding of the mechanical behavior of ice and ice lithospheres, and demonstrates the need for new tectonic models that include localization, realistic plasticity, and energy dissipation.
NASA Astrophysics Data System (ADS)
Vallage, Amaury; Klinger, Yann; Grandin, Raphael; Delorme, Arthur; Pierrot-Deseilligny, Marc
2016-04-01
The understanding of earthquake processes and the interaction of earthquake rupture with Earth's free surface relies on the resolution of the observations. Recent and detailed post-earthquake measurements bring new insights on shallow mechanical behavior of rupture processes as it becomes possible to measure and locate surficial deformation distribution. The 2013 Mw 7.7 Balochistan earthquake, Pakistan, offers a nice opportunity to comprehend where and why surficial deformation might differs from at-depth localized slip. This earthquake ruptured the Hoshab fault over 200 km; the motion was mainly left lateral with a small and discontinuous vertical component in the southern part of the rupture. Using images with the finest resolution currently available, we measured the surface displacement amplitude and its orientation at the ground surface (including the numerous tensile cracks). We combined these measurements with the 1:500 scale ground rupture map to focus on the behavior of the frontal rupture in the area where deformation distributes. Comparison with orientations of inherited tectonic structures, visible in older rocks formation surrounding the actual 2013 rupture, shows the control exercised by such structures on co-seismic rupture distribution. Such observation raises the question on how pre-existing tectonic structures in a medium, mapped in several seismically active places around the globe; can control the co-seismic distribution of the deformation during earthquakes.
NASA Astrophysics Data System (ADS)
Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng
2017-07-01
The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight aerodynamics are revealed, which is critical for the selection of structure material and design of flight control system.
Shallow Slip Localization Along Megathrusts: Investigating the Role of Scaly Fabric
NASA Astrophysics Data System (ADS)
Vannucchi, P.
2015-12-01
Scaly fabric is classically interpreted as a low strain-rate structure, resulting from progressive shearing with episodic formation and destruction of oriented and flattened clay layers and aggregates. Scientific Ocean drilling of the Japan Trench in response to the 2011 Tohoku-Oki EQ sampled the active plate-boundary décollement zone in a place of known, large, and very recent displacement. The visual inspection of core material from the plate boundary décollement reveals a clay layer with scaly fabric, cut by a sharp discontinuity that may be the record of co-seismic slip (Chester et al., 2013). This result brought to the need to re-evaluate the role and the characteristics of scaly fabric. Scaly fabric is the typical meso/microstructure marking the location of slip concentration in all the active décollements cored near the trench (i.e. Barbados, Nankai, Costa Rica, Japan Trench) and in analogue fossil examples cropping out onland. Scaly fabric tends to form self-similar patterns, and usually areas with smaller phacoids are interpreted as more deformed. We know that scaliness develops in the early stages of deformation, that the slip surfaces defining the phacoids are sharp and they do not occur randomly, that they grow and coalesce forming a progressively finer anastomosing network, and that eventually the anastomoising slip surfaces are "enhanced" or "cut" by straight slip surfaces. Advances in identifying detailed evolutionary history of slip localization from scaly fabric to discrete surfaces have been paralleled by laboratory experiments. Here we try to summarize direct and indirect information on physical properties of clay layers deformed at shallow depth and, possibly, their links to the seismic cycle. These challenges include future work on the role of scaly fabric on earthquake deformation along faults.
Argani, L. P.; Bigoni, D.; Capuani, D.; Movchan, N. V.
2014-01-01
The infinite-body three-dimensional Green's function set (for incremental displacement and mean stress) is derived for the incremental deformation of a uniformly strained incompressible, nonlinear elastic body. Particular cases of the developed formulation are the Mooney–Rivlin elasticity and the J2-deformation theory of plasticity. These Green's functions are used to develop a boundary integral equation framework, by introducing an ad hoc potential, which paves the way for a boundary element formulation of three-dimensional problems of incremental elasticity. Results are used to investigate the behaviour of a material deformed near the limit of ellipticity and to reveal patterns of shear failure. In fact, within the investigated three-dimensional framework, localized deformations emanating from a perturbation are shown to be organized in conical geometries rather than in planar bands, so that failure is predicted to develop through curved and thin surfaces of intense shearing, as can for instance be observed in the cup–cone rupture of ductile metal bars. PMID:25197258
Encoding Gaussian curvature in glassy and elastomeric liquid crystal solids
Mostajeran, Cyrus; Ware, Taylor H.; White, Timothy J.
2016-01-01
We describe shape transitions of thin, solid nematic sheets with smooth, preprogrammed, in-plane director fields patterned across the surface causing spatially inhomogeneous local deformations. A metric description of the local deformations is used to study the intrinsic geometry of the resulting surfaces upon exposure to stimuli such as light and heat. We highlight specific patterns that encode constant Gaussian curvature of prescribed sign and magnitude. We present the first experimental results for such programmed solids, and they qualitatively support theory for both positive and negative Gaussian curvature morphing from flat sheets on stimulation by light or heat. We review logarithmic spiral patterns that generate cone/anti-cone surfaces, and introduce spiral director fields that encode non-localized positive and negative Gaussian curvature on punctured discs, including spherical caps and spherical spindles. Conditions are derived where these cap-like, photomechanically responsive regions can be anchored in inert substrates by designing solutions that ensure compatibility with the geometric constraints imposed by the surrounding media. This integration of such materials is a precondition for their exploitation in new devices. Finally, we consider the radial extension of such director fields to larger sheets using nematic textures defined on annular domains. PMID:27279777
Local scattering stress distribution on surface of a spherical cell in optical stretcher
NASA Astrophysics Data System (ADS)
Bareil, Paul B.; Sheng, Yunlong; Chiou, Arthur
2006-12-01
We calculate stress distribution on the surface of a spherical cell trapped by two counter propagating beams in the optical stretcher in the ray optics regime. We demonstrate that the local scattering stress is perpendicular to the spherical refractive surface regardless of incident angle, polarization and the reflectance and transmittance at the surface. We explain the apparition of peaks in the stress distribution, which were not revealed in the existing theory. We consider the divergence of the incident beams from the fibers, and express the stress distribution as a function of fiber-to-cell distance. The new theory can predict the cell’s deformation more precisely.
Local-Scale Simulations of Nucleate Boiling on Micrometer Featured Surfaces: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, Hariswaran; Moreno, Gilberto; Narumanchi, Sreekant V
2017-08-03
A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulationsmore » pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.« less
Local-Scale Simulations of Nucleate Boiling on Micrometer-Featured Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, Hariswaran; Moreno, Gilberto; Narumanchi, Sreekant V
2017-07-12
A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulationsmore » pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.« less
Automatic recognition of surface landmarks of anatomical structures of back and posture
NASA Astrophysics Data System (ADS)
Michoński, Jakub; Glinkowski, Wojciech; Witkowski, Marcin; Sitnik, Robert
2012-05-01
Faulty postures, scoliosis and sagittal plane deformities should be detected as early as possible to apply preventive and treatment measures against major clinical consequences. To support documentation of the severity of deformity and diminish x-ray exposures, several solutions utilizing analysis of back surface topography data were introduced. A novel approach to automatic recognition and localization of anatomical landmarks of the human back is presented that may provide more repeatable results and speed up the whole procedure. The algorithm was designed as a two-step process involving a statistical model built upon expert knowledge and analysis of three-dimensional back surface shape data. Voronoi diagram is used to connect mean geometric relations, which provide a first approximation of the positions, with surface curvature distribution, which further guides the recognition process and gives final locations of landmarks. Positions obtained using the developed algorithms are validated with respect to accuracy of manual landmark indication by experts. Preliminary validation proved that the landmarks were localized correctly, with accuracy depending mostly on the characteristics of a given structure. It was concluded that recognition should mainly take into account the shape of the back surface, putting as little emphasis on the statistical approximation as possible.
Simple geometry tribological study of osteochondral graft implantation in the knee.
Bowland, Philippa; Ingham, Eileen; Fisher, John; Jennings, Louise M
2018-03-01
Robust preclinical test methods involving tribological simulations are required to investigate and understand the tribological function of osteochondral repair interventions in natural knee tissues. The aim of this study was to investigate the effects of osteochondral allograft implantation on the local tribology (friction, surface damage, wear and deformation) of the tissues in the natural knee joint using a simple geometry, reciprocating pin-on-plate friction simulator. In addition, the study aimed to assess the ability of osteochondral grafts to restore a low surface damage, deformation and wear articulation when compared to the native state. A method was developed to characterise and quantify surface damage wear and deformation of the opposing cartilage-bone pin surface using a non-contacting optical profiler (Alicona Infinite Focus). Porcine 12 mm diameter cartilage-bone pins were reciprocated against bovine cartilage-bone plates that had 6 mm diameter osteochondral allografts, cartilage defects or stainless steel pins (positive controls) inserted centrally. Increased levels of surface damage with changes in geometry were not associated with significant increases in the coefficient of dynamic friction. Significant damage to the opposing cartilage surface was observed in the positive control groups. Cartilage damage, deformation and wear (as measured by change in geometry) in the xenograft (2.4 mm 3 ) and cartilage defect (0.99 mm 3 ) groups were low and not significantly different (p > 0.05) compared to the negative control in either group. The study demonstrated the potential of osteochondral grafts to restore the congruent articular surface and biphasic tribology of the natural joint. An optical method has been developed to characterise cartilage wear, damage and deformation that can be applied to the tribological assessment of osteochondral grafts in a whole natural knee joint simulation model.
Simple geometry tribological study of osteochondral graft implantation in the knee
Bowland, Philippa; Ingham, Eileen; Fisher, John; Jennings, Louise M
2018-01-01
Robust preclinical test methods involving tribological simulations are required to investigate and understand the tribological function of osteochondral repair interventions in natural knee tissues. The aim of this study was to investigate the effects of osteochondral allograft implantation on the local tribology (friction, surface damage, wear and deformation) of the tissues in the natural knee joint using a simple geometry, reciprocating pin-on-plate friction simulator. In addition, the study aimed to assess the ability of osteochondral grafts to restore a low surface damage, deformation and wear articulation when compared to the native state. A method was developed to characterise and quantify surface damage wear and deformation of the opposing cartilage-bone pin surface using a non-contacting optical profiler (Alicona Infinite Focus). Porcine 12 mm diameter cartilage-bone pins were reciprocated against bovine cartilage-bone plates that had 6 mm diameter osteochondral allografts, cartilage defects or stainless steel pins (positive controls) inserted centrally. Increased levels of surface damage with changes in geometry were not associated with significant increases in the coefficient of dynamic friction. Significant damage to the opposing cartilage surface was observed in the positive control groups. Cartilage damage, deformation and wear (as measured by change in geometry) in the xenograft (2.4 mm3) and cartilage defect (0.99 mm3) groups were low and not significantly different (p > 0.05) compared to the negative control in either group. The study demonstrated the potential of osteochondral grafts to restore the congruent articular surface and biphasic tribology of the natural joint. An optical method has been developed to characterise cartilage wear, damage and deformation that can be applied to the tribological assessment of osteochondral grafts in a whole natural knee joint simulation model. PMID:29375001
NASA Astrophysics Data System (ADS)
Ben Kaabar, A.; Aoufi, A.; Descartes, S.; Desrayaud, C.
2017-05-01
During tribological contact’s life, different deformation paths lead to the formation of high deformed microstructure, in the near-surface layers of the bodies. The mechanical conditions (high pressure, shear) occurring under contact, are reproduced through unconstrained High Pressure Torsion configuration. A 3D finite element model of this HPT test is developed to study the local deformation history leading to high deformed microstructure with nominal pressure and friction coefficient. For the present numerical study the friction coefficient at the interface sample/anvils is kept constant at 0.3; the material used is high purity iron. The strain distribution in the sample bulk, as well as the main components of the strain gradients according to the spatial coordinates are investigated, with rotation angle of the anvil.
Trigger mechanism for the abrupt loss of energetic ions in magnetically confined plasmas.
Ida, K; Kobayashi, T; Yoshinuma, M; Akiyama, T; Tokuzawa, T; Tsuchiya, H; Itoh, K; Itoh, S-I
2018-02-12
Interaction between a quasi-stable stationary MHD mode and a tongue-shaped deformation is observed in the toroidal plasma with energetic particle driven MHD bursts. The quasi-stable stationary 1/1 MHD mode with interchange parity appears near the resonant rational surface of q = 1 between MHD bursts. The tongue-shaped deformation rapidly appears at the non-resonant non-rational surface as a localized large plasma displacement and then collapses (tongue event). It curbs the stationary 1/1 MHD mode and then triggers the collapse of energetic particle and magnetic field reconnection. The rotating 1/1 MHD mode with tearing parity at the q = 1 resonant surface, namely, the MHD burst, is excited after the tongue event.
Block versus continuum deformation in the Western United States
King, G.; Oppenheimer, D.; Amelung, F.
1994-01-01
The relative role of block versus continuum deformation of continental lithosphere is a current subject of debate. Continuous deformation is suggested by distributed seismicity at continental plate margins and by cumulative seismic moment sums which yield slip estimates that are less than estimates from plate motion studies. In contrast, block models are favored by geologic studies of displacement in places like Asia. A problem in this debate is a lack of data from which unequivocal conclusions may be reached. In this paper we apply the techniques of study used in regions such as the Alpine-Himalayan belt to an area with a wealth of instrumental data-the Western United States. By comparing plate rates to seismic moment release rates and assuming a typical seismogenic layer thickness of 15 km it appears that since 1850 about 60% of the Pacific-North America motion across the plate boundary in California and Nevada has occurred seismically and 40% aseismically. The San Francisco Bay area shows similar partitioning between seismic and aseismic deformation, and it can be shown that within the seismogenic depth range aseismic deformation is concentrated near the surface and at depth. In some cases this deformation can be located on creeping surface faults, but elsewhere it is spread over a several kilometer wide zone adjacent to the fault. These superficial creeping deformation zones may be responsible for the palaeomagnetic rotations that have been ascribed elsewhere to the surface expression of continuum deformation in the lithosphere. Our results support the dominant role of non-continuum deformation processes with the implication that deformation localization by strain softening must occur in the lower crust and probably the upper mantle. Our conclusions apply only to the regions where the data are good, and even within the Western United States (i.e., the Basin and Range) deformation styles remain poorly resolved. Nonetheless, we maintain that block motion is the deformation style of choice for those continental regions where the data are best. ?? 1994.
NASA Astrophysics Data System (ADS)
Pastier, Anne-Morwenn; Dauteuil, Olivier; Murray-Hudson, Michael; Makati, Kaelo; Moreau, Frédérique; Crave, Alain; Longuevergne, Laurent; Walpersdorf, Andrea
2017-04-01
Located in northern Botswana, the Okavango Delta is a vast wetland, fed from the Angolan highlands and constrained by a half-graben in the Kalahari depression. Since the 70's, the Okavango graben is usually considered as the terminus of the East African Rift System. But a recent geodetic study showed there has been no extension on the tectonic structure over the past 5 years, and recent geophysical studies began to call this hypothesis into question. The deformation in the area could instead be related to far-field deformation accommodation due to the motion of the Kalahari craton relative to the rest of the Nubian plate and to the opening of the Rift Valley. Getting to the vertical deformation isn't trivial. The GNSS time series show a strong annual deformation of the ground surface (3 cm of amplitude). On the vertical component, this periodic signal is so strong that it hides the tectonic long-term deformation, while this information would give a crucial insight on the geodynamic process at play. This periodic signal is related to the seasonal loading of water due to the rainy season. This hypothesis is corroborated by the modeling of the surface deformation based on the GRACE satellites data, interpreted as the variation of groundwater amount. In the Okavango Delta, the peak of water level isn't paced with the local precipitations, but is driven by a flood pulse coming from the Angolan Highlands. The migration of this massive water body isn't visible at first order in GRACE data. Yet, local precipitations are supposed to undergo too much evapotranspiration to be significant in the hydrological balance. Thus this later water body isn't supposed to produce a mass anomaly in GRACE time series. This paradox could highlight a relationship not yet defined between groundwater and local rainfall. The wide spatial resolution of GRACE data (about 300 km) doesn't allow a modeling accurate enough to give access to the slow tectonic deformation, nor to determine the groundwater behavior within the basin. While GRACE data show a strong groundwater variation in the area, very few direct data are available on this hydrological reservoir. We thus decided to implement a new geodetic and piezometric network in the Okavango Delta. The first results show an unpredicted influence of the local rainfall on the water table elevation, with disturbance or even stop of decrease of the water table. Signals differ between stations, in response to daily evapotranspiration as well as monthly behavior of the water table.
NASA Astrophysics Data System (ADS)
Chang, Lijun; Flesch, Lucy M.; Wang, Chun-Yung; Ding, Zhifeng
2015-07-01
We present 59 new SKS/SKKS and combine them with 69 previously published data to infer the mantle deformation field in SE Tibet. The dense set of anisotropy measurements in the eastern Himalayan syntaxis (EHS) are oriented along a NE-SW azimuth and rotate clockwise in the surround regions. We use GPS measurements and geologic data to determine a continuous surface deformation field that is then used to predict shear wave spitting directions at each station. Comparison of splitting observations with predictions yields an average misfit of 11.7° illustrating that deformation is vertically coherent, consistent with previous studies. Within the central EHS in areas directly surrounding the Namche-Barwa metamorphic massif, the average misfit of 11 stations increases to 60.8°, and vertical coherence is no longer present. The complexity of the mantle anisotropy and surface observations argues for local alteration of the strain fields here associated with recent rapid exhumation of the Indian crust.
Two dimensional wavefront retrieval using lateral shearing interferometry
NASA Astrophysics Data System (ADS)
Mancilla-Escobar, B.; Malacara-Hernández, Z.; Malacara-Hernández, D.
2018-06-01
A new zonal two-dimensional method for wavefront retrieval from a surface under test using lateral shearing interferometry is presented. A modified Saunders method and phase shifting techniques are combined to generate a method for wavefront reconstruction. The result is a wavefront with an error below 0.7 λ and without any global high frequency filtering. A zonal analysis over square cells along the surfaces is made, obtaining a polynomial expression for the wavefront deformations over each cell. The main advantage of this method over previously published methods is that a global filtering of high spatial frequencies is not present. Thus, a global smoothing of the wavefront deformations is avoided, allowing the detection of deformations with relatively small extensions, that is, with high spatial frequencies. Additionally, local curvature and low order aberration coefficients are obtained in each cell.
Surface deformation associated with the November 23, 1977, Caucete, Argentina, earthquake sequence
NASA Technical Reports Server (NTRS)
Kadinsky-Cade, K.; Reilinger, R.; Isacks, B.
1985-01-01
The 1977 Caucete (San Juan) earthquake considered in the present paper occurred near the Sierra Pie de Palo in the Sierras Pampeanas tectonic province of western Argentina. In the study reported, coseismic surface deformation is combined with seismic observations (main shock and aftershocks, both teleseismic and local data) to place constraints on the geometry and slip of the main fault responsible for the 1977 earthquake. The implications of the 1977 event for long-term crustal shortening and earthquake recurrence rates in this region are also discussed. It is concluded that the 1977 Caucete earthquake was accompanied by more than 1 m of vertical uplift.
Real-Time Large-Scale Dense Mapping with Surfels
Fu, Xingyin; Zhu, Feng; Wu, Qingxiao; Sun, Yunlei; Lu, Rongrong; Yang, Ruigang
2018-01-01
Real-time dense mapping systems have been developed since the birth of consumer RGB-D cameras. Currently, there are two commonly used models in dense mapping systems: truncated signed distance function (TSDF) and surfel. The state-of-the-art dense mapping systems usually work fine with small-sized regions. The generated dense surface may be unsatisfactory around the loop closures when the system tracking drift grows large. In addition, the efficiency of the system with surfel model slows down when the number of the model points in the map becomes large. In this paper, we propose to use two maps in the dense mapping system. The RGB-D images are integrated into a local surfel map. The old surfels that reconstructed in former times and far away from the camera frustum are moved from the local map to the global map. The updated surfels in the local map when every frame arrives are kept bounded. Therefore, in our system, the scene that can be reconstructed is very large, and the frame rate of our system remains high. We detect loop closures and optimize the pose graph to distribute system tracking drift. The positions and normals of the surfels in the map are also corrected using an embedded deformation graph so that they are consistent with the updated poses. In order to deal with large surface deformations, we propose a new method for constructing constraints with system trajectories and loop closure keyframes. The proposed new method stabilizes large-scale surface deformation. Experimental results show that our novel system behaves better than the prior state-of-the-art dense mapping systems. PMID:29747450
Representation, Modeling and Recognition of Outdoor Scenes
1994-04-01
B. C. Vemuri and R . Malladi . Deformable models: Canonical parameters for surface representation and multiple view integration. In Conference on...or a high disparity gradient. If both L- R and R -L disparity images are made available, then mirror images of this pattern may be sought in the two...et at., 1991, Terzopoulos and Vasilescu, 1991, Vemuri and Malladi , 1991], parameterized surfaces [Stokely and Wu, 1992, Lowe, 1991], local surfaces
Rubber friction: role of the flash temperature
NASA Astrophysics Data System (ADS)
Persson, B. N. J.
2006-08-01
When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10-2 m s-1 the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s-1. This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.
NASA Astrophysics Data System (ADS)
Sunil, A. S.; Bagiya, Mala S.; Catherine, Joshi; Rolland, Lucie; Sharma, Nitin; Sunil, P. S.; Ramesh, D. S.
2017-03-01
Ionospheric response to the recent 25 April 2015 Gorkha, Nepal earthquake is studied in terms of Global Positioning System-Total Electron Content (GPS-TEC) from the viewpoints of source directivity, rupture propagation and associated surface deformations, over and near the fault plane. The azimuthal directivity of co-seismic ionospheric perturbations (CIP) amplitudes from near field exhibit excellent correlation with east-southeast propagation of earthquake rupture and associated surface deformations. In addition, the amplitude of CIP is observed to be very small in the opposite direction of the rupture movement. Conceptual explanations on the poleward directivity of CIP exist in literature, we show the observational evidences of additional equator ward directivity, interpreted in terms of rupture propagation direction. We also discuss the coupling between earthquake induced acoustic waves and local geomagnetic field and its effects on near field CIP amplitudes. We suggest that variability of near field CIP over and near the fault plane are the manifestations of the geomagnetic field-wave coupling in addition to crustal deformations that observed through GPS measurements and corroborated by Interferometric Synthetic Aperture Radar (InSAR) data sets.
Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure.
Torres, Ashley M; Matheny, Jonathan B; Keaveny, Tony M; Taylor, David; Rimnac, Clare M; Hernandez, Christopher J
2016-03-15
Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure.
Local deformation behavior of surface porous polyether-ether-ketone.
Evans, Nathan T; Torstrick, F Brennan; Safranski, David L; Guldberg, Robert E; Gall, Ken
2017-01-01
Surface porous polyether-ether-ketone has the ability to maintain the tensile monotonic and cyclic strength necessary for many load bearing orthopedic applications while providing a surface that facilitates bone ingrowth; however, the relevant deformation behavior of the pore architecture in response to various loading conditions is not yet fully characterized or understood. The focus of this study was to examine the compressive and wear behavior of the surface porous architecture using micro Computed Tomography (micro CT). Pore architectures of various depths (~0.5-2.5mm) and pore sizes (212-508µm) were manufactured using a melt extrusion and porogen leaching process. Compression testing revealed that the pore architecture deforms in the typical three staged linear elastic, plastic, and densification stages characteristic of porous materials. The experimental moduli and yield strengths decreased as the porosity increased but there was no difference in properties between pore sizes. The porous architecture maintained a high degree of porosity available for bone-ingrowth at all strains. Surface porous samples showed no increase in wear rate compared to injection molded samples, with slight pore densification accompanying wear. Copyright © 2016 Elsevier Ltd. All rights reserved.
Olives, Juan
2010-03-03
The thermodynamics and mechanics of the surface of a deformable body are studied here, following and refining the general approach of Gibbs. It is first shown that the 'local' thermodynamic variables of the state of the surface are only the temperature, the chemical potentials and the surface strain tensor (true thermodynamic variables, for a viscoelastic solid or a viscous fluid). A new definition of the surface stress is given and the corresponding surface thermodynamics equations are presented. The mechanical equilibrium equation at the surface is then obtained. It involves the surface stress and is similar to the Cauchy equation for the volume. Its normal component is a generalization of the Laplace equation. At a (body-fluid-fluid) triple contact line, two equations are obtained, which represent: (i) the equilibrium of the forces (surface stresses) for a triple line fixed on the body; (ii) the equilibrium relative to the motion of the line with respect to the body. This last equation leads to a strong modification of Young's classical capillary equation.
NASA Astrophysics Data System (ADS)
Sun, Chen; Zhou, Yihao; Li, Yang; Chen, Jubing; Miao, Hong
2018-04-01
In this paper, a multiscale segmentation-aided digital image correlation method is proposed to characterize the strain concentration of a turbine blade fir-tree root during its contact with the disk groove. A multiscale approach is implemented to increase the local spatial resolution, as the strain concentration area undergoes highly non-uniform deformation and its size is much smaller than the contact elements. In this approach, a far-field view and several near-field views are selected, aiming to get the full-field deformation and local deformation simultaneously. To avoid the interference of different cameras, only the optical axis of the far-field camera is selected to be perpendicular to the specimen surface while the others are inclined. A homography transformation is optimized by matching the feature points, to rectify the artificial deformation caused by the inclination of the optical axis. The resultant genuine near-field strain is thus obtained after the transformation. A real-world experiment is carried out and the strain concentration is characterized. The strain concentration factor is defined accordingly to provide a quantitative analysis.
NASA Astrophysics Data System (ADS)
Lee, Ho-Young; Lee, Se-Hee
2017-08-01
Mechanical deformation, bending deformation, and distributive magnetic loads were evaluated numerically and experimentally for conducting materials excited with high current. Until now, many research works have extensively studied the area of magnetic force and mechanical deformation by using coupled approaches such as multiphysics solvers. In coupled analysis for magnetoelastic problems, some articles and commercial software have presented the resultant mechanical deformation and stress on the body. To evaluate the mechanical deformation, the Lorentz force density method (LZ) and the Maxwell stress tensor method (MX) have been widely used for conducting materials. However, it is difficult to find any experimental verification regarding mechanical deformation or bending deformation due to magnetic force density. Therefore, we compared our numerical results to those from experiments with two parallel conducting bars to verify our numerical setup for bending deformation. Before showing this, the basic and interesting coupled simulation was conducted to test the mechanical deformations by the LZ (body force density) and the MX (surface force density) methods. This resulted in MX gave the same total force as LZ, but the local force distribution in MX introduced an incorrect mechanical deformation in the simulation of a solid conductor.
What major faults look like, and why this matters for lithospheric dynamics
NASA Astrophysics Data System (ADS)
Fagereng, Ake
2016-04-01
Earthquakes involve seconds to minutes of frictional sliding on a discontinuity, likely of sub-cm thickness, within a damage zone. Earthquakes are separated by an interseismic period of hundreds to thousands of years, during which a number of healing and weakening processes occur within the fault zone. The next earthquake occurs as shear stress exceeds frictional resistance, on the same or a different discontinuity as the previous event, embedded within the fault damage zone. After incremental damage and healing in multiple earthquake cycles, the fault zone rock assemblage evolves to a structure and composition distinctly different from the host rock(s). This presentation presents field geology evidence from a range of settings, to discuss the interplay between the earthquake cycle, long-term deformation, and lithospheric rheology. Classic fault zone models are based on continental transforms, which generally form discrete faults in the upper crust, and wide, anastomosing shear zones in the lower crust. In oceanic crust, transforms are considered frictionally weak, and appear to exploit dyke margins and joint surfaces, but also locally cross-cut these structures in anastomosing networks. In the oceanic lower crust and upper mantle, serpentinisation significantly alters fault structure. In old continental crust, previous deformation events leave a heterogeneous geology affecting active faulting. For example, the amagmatic, southern East African Rift has long been thought to exploit weak Proterozoic 'mobile belts'. However, detailed look at the Bilila-Mtakataka border fault in Malawi indicates that this fault locally exploits weak foliation in existing deformed zones, but also locally forms a new set of anastomosing fault surfaces cross-cutting existing weak foliation. In exhumed lower crust, the Antarctic Maud Belt provides an example of multiple phases of plastic deformation, where the second event is only visible in localised shear zones, likely inherited from the first event. The subduction thrust interface provides an example of fault evolution in underthrust sediments as they deform and dewater. At shallow levels, distributed shear leads to development of scaly cleavage, which in places provides weak, clay surfaces on which earthquakes can propagate to the sea floor. With further deformation, a melange is progressively developed, with increasingly dismembered, sheared lenses of higher viscosity sedimentary rock and slivers of oceanic crust, in a low viscosity, cleaved matrix. The range of examples presented here illustrate how long-term deformation results in weak structures that likely control future deformation. Yet, the rheology of these structures is modulated by strength fluctuations during the earthquake cycle, illustrated by common evidence of episodic fault healing. The take home message from these field studies of fault zones is therefore the heterogeneity of the Earth's crust, the importance of long-term weak zones as a first order control on crustal deformation, and short-term strength fluctuations within these zones as a consequence of, and reason for, the earthquake cycle.
NASA Astrophysics Data System (ADS)
Ghiselli, Alice; Merazzi, Marzio; Strini, Andrea; Margutti, Roberto; Mercuriali, Michele
2011-06-01
As karst systems are natural windows to the underground, speleology, combined with geological surveys, can be useful tools for helping understand the geological evolution of karst areas. In order to enhance the reconstruction of the structural setting in a gypsum karst area (Vena del Gesso, Romagna Apennines), a detailed analysis has been carried out on hypogeal data. Structural features (faults, fractures, tectonic foliations, bedding) have been mapped in the "Grotta del Re Tiberio" cave, in the nearby gypsum quarry tunnels and open pit benches. Five fracture systems and six fault systems have been identified. The fault systems have been further analyzed through stereographic projections and geometric-kinematic evaluations in order to reconstruct the relative chronology of these structures. This analysis led to the detection of two deformation phases. The results permitted linking of the hypogeal data with the surface data both at a local and regional scale. At the local scale, fracture data collected in the underground have been compared with previous authors' surface data coming from the quarry area. The two data sets show a very good correspondence, as every underground fracture system matches with one of the surface fracture system. Moreover, in the cave, a larger number of fractures belonging to each system could be mapped. At the regional scale, the two deformation phases detected can be integrated in the structural setting of the study area, thereby enhancing the tectonic interpretation of the area ( e.g., structures belonging to a new deformation phase, not reported before, have been identified underground). The structural detailed hypogeal survey has, thus, provided very useful data, both by integrating the existing information and revealing new data not detected at the surface. In particular, some small structures ( e.g., displacement markers and short fractures) are better preserved in the hypogeal environment than on the surface where the outcropping gypsum is more exposed to dissolution and recrystallization. The hypogeal geological survey, therefore, can be considered a powerful tool for integrating the surface and log data in order to enhance the reconstruction of the deformational history and to get a three-dimensional model of the bedrock in karst areas.
Studying plastic shear localization in aluminum alloys under dynamic loading
NASA Astrophysics Data System (ADS)
Bilalov, D. A.; Sokovikov, M. A.; Chudinov, V. V.; Oborin, V. A.; Bayandin, Yu. V.; Terekhina, A. I.; Naimark, O. B.
2016-12-01
An experimental and theoretical study of plastic shear localization mechanisms observed under dynamic deformation using the shear-compression scheme on a Hopkinson-Kolsky bar has been carried out using specimens of AMg6 alloy. The mechanisms of plastic shear instability are associated with collective effects in the microshear ensemble in spatially localized areas. The lateral surface of the specimens was photographed in the real-time mode using a CEDIP Silver 450M high-speed infrared camera. The temperature distribution obtained at different times allowed us to trace the evolution of the localization of the plastic strain. Based on the equations that describe the effect of nonequilibrium transitions on the mechanisms of structural relaxation and plastic flow, numerical simulation of plastic shear localization has been performed. A numerical experiment relevant to the specimen-loading scheme was carried out using a system of constitutive equations that reflect the part of the structural relaxation mechanisms caused by the collective behavior of microshears with the autowave modes of the evolution of the localized plastic flow. Upon completion of the experiment, the specimens were subjected to microstructure analysis using a New View-5010 optical microscope-interferometer. After the dynamic deformation, the constancy of the Hurst exponent, which reflects the relationship between the behavior of defects and roughness induced by the defects on the surfaces of the specimens is observed in a wider range of spatial scales. These investigations revealed the distinctive features in the localization of the deformation followed by destruction to the script of the adiabatic shear. These features may be caused by the collective multiscale behavior of defects, which leads to a sharp decrease in the stress-relaxation time and, consequently, a localized plastic flow and generation of fracture nuclei in the form of adiabatic shear. Infrared scanning of the localization zone of the plastic strain in situ and the subsequent study of the defect structure corroborated the hypothesis about the decisive role of non-equilibrium transitions in defect ensembles during the evolution of a localized plastic flow.
Behavior of lateral-deformation coefficients during elastoplastic deformation of metals
NASA Astrophysics Data System (ADS)
Zimin, B. A.; Smirnov, I. V.; Sudenkov, Yu. V.
2017-06-01
The results of investigations into variation of the coefficients of lateral deformation (the Poisson ratio) during single-axis tension of samples of steel 12Kh18N10T and St3, titanium VT1, the aluminum alloy D16AM, copper M1, and a magnesium alloy are considered. The technique developed on the basis of the optoacoustic effect and simultaneous measurements of the longitudinal and surface speeds of sound in metallic samples during the tension makes it possible to measure the rates at various stages of the deformation process. The data obtained make it possible to construct the dependences of variation of the lateral-deformation coefficients at all stages of the plastic flow. The correlation of these variations both with known processes of structural reconstructions at various stages of plastic flow and with the process of localization of plastic-shear bands in the aluminum alloy is noted.
Deformation associated with continental normal faults
NASA Astrophysics Data System (ADS)
Resor, Phillip G.
Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master normal fault illustrate how these secondary structures influence the deformation in ways that are similar to fault/fold geometry mapped in the western Grand Canyon. Specifically, synthetic faults amplify hanging wall bedding dips, antithetic faults reduce dips, and joints act to localize deformation. The distribution of aftershocks in the hanging wall of the Kozani-Grevena earthquake suggests that secondary structures may accommodate strains associated with slip on a master fault during postseismic deformation.
Material heterogeneity in cancellous bone promotes deformation recovery after mechanical failure
Torres, Ashley M.; Matheny, Jonathan B.; Keaveny, Tony M.; Taylor, David; Rimnac, Clare M.; Hernandez, Christopher J.
2016-01-01
Many natural structures use a foam core and solid outer shell to achieve high strength and stiffness with relatively small amounts of mass. Biological foams, however, must also resist crack growth. The process of crack propagation within the struts of a foam is not well understood and is complicated by the foam microstructure. We demonstrate that in cancellous bone, the foam-like component of whole bones, damage propagation during cyclic loading is dictated not by local tissue stresses but by heterogeneity of material properties associated with increased ductility of strut surfaces. The increase in surface ductility is unexpected because it is the opposite pattern generated by surface treatments to increase fatigue life in man-made materials, which often result in reduced surface ductility. We show that the more ductile surfaces of cancellous bone are a result of reduced accumulation of advanced glycation end products compared with the strut interior. Damage is therefore likely to accumulate in strut centers making cancellous bone more tolerant of stress concentrations at strut surfaces. Hence, the structure is able to recover more deformation after failure and return to a closer approximation of its original shape. Increased recovery of deformation is a passive mechanism seen in biology for setting a broken bone that allows for a better approximation of initial shape during healing processes and is likely the most important mechanical function. Our findings suggest a previously unidentified biomimetic design strategy in which tissue level material heterogeneity in foams can be used to improve deformation recovery after failure. PMID:26929343
Morisaku, Toshinori; Yui, Hiroharu
2018-05-15
A laser-induced surface deformation (LISD) microscope is developed and applied to measurement of the dynamic relaxation responses of the plasma membrane in a living cell. A laser beam is tightly focused on an optional area of cell surface and the focused light induces microscopic deformation on the surface via radiation pressure. The LISD microscope not only allows non-contact and destruction-free measurement but provides power spectra of the surface responses depending on the frequency of the intensity of the laser beam. An optical system for the LISD is equipped via a microscope, allowing us to measure the relaxation responses in sub-cellular-sized regions of the plasma membrane. In addition, the forced oscillation caused by the radiation pressure for surface deformation extends the upper limit of the frequency range in the obtained power spectra to 106 Hz, which enables us to measure relaxation responses in local regions within the plasma membrane. From differences in power-law exponents at higher frequencies, it is realized that a cancerous cell obeys a weaker single power-law than a normal fibroblast cell. Furthermore, the power spectrum of a keratinocyte cell obeys a power-law with two exponents, indicating that alternative mechanical models to a conventional soft glassy rheology model (where single power-laws explain cells' responses below about 103 Hz) are needed for the understanding over a wider frequency range. The LISD microscope would contribute to investigation of microscopic cell rheology, which is important for clarifying the mechanisms of cell migration and tissue construction.
Sea-level and solid-Earth deformation feedbacks in ice sheet modelling
NASA Astrophysics Data System (ADS)
Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk
2014-05-01
The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.
Affatato, Saverio; Zanini, Filippo; Carmignato, Simone
2017-01-01
Wear is currently quantified as mass loss of the bearing materials measured using gravimetric methods. However, this method does not provide other information, such as volumetric loss or surface deviation. In this work, we validated a technique to quantify polyethylene wear in three different batches of ultrahigh-molecular-polyethylene acetabular cups used for hip implants using nondestructive microcomputed tomography. Three different configurations of polyethylene acetabular cups, previously tested under the ISO 14242 parameters, were tested on a hip simulator for an additional 2 million cycles using a modified ISO 14242 load waveform. In this context, a new approach was proposed in order to simulate, on a hip joint simulator, high-demand activities. In addition, the effects of these activities were analyzed in terms of wear and deformations of those polyethylenes by means of gravimetric method and micro X-ray computed tomography. In particular, while the gravimetric method was used for weight loss assessment, microcomputed tomography allowed for acquisition of additional quantitative information about the evolution of local wear and deformation through three-dimensional surface deviation maps for the entire cups’ surface. Experimental results showed that the wear and deformation behavior of these materials change according to different mechanical simulations. PMID:28772616
NASA Astrophysics Data System (ADS)
Stewart, R. A.; Reimold, W. U.; Charlesworth, E. G.; Ortlepp, W. D.
2001-07-01
In August 1998, a major deformation zone was exposed over several metres during mining operations on 87 Level (2463 m below surface) at Western Deep Levels Gold Mine, southwest of Johannesburg, providing a unique opportunity to study the products of a recent rockburst. This zone consists of three shear zones, with dip-slip displacements of up to 15 cm, that are oriented near-parallel to the advancing stope face. Jogs and a highly pulverised, cataclastic 'rock-flour' are developed on the displacement surfaces, and several sets of secondary extensional fractures occur on either side of the shear zones. A set of pinnate (feather) joints intersects the fault surfaces perpendicular to the slip vector. Microscopically, the shear zones consist of two pinnate joint sets that exhibit cataclastic joint fillings; quartz grains display intense intragranular fracturing. Secondary, intergranular extension fractures are associated with the pinnate joints. Extensional deformation is also the cause of the breccia fill of the pinnate joints. The initial deformation experienced by this zone is brittle and tensile, and is related to stresses induced by mining. This deformation has been masked by later changes in the stress field, which resulted in shearing. This deformation zone does not appear to be controlled by pre-existing geological features and, thus, represents a 'burst fracture', which is believed to be related to a seismic event of magnitude ML=2.1 recorded in July 1998, the epicentre of which was located to within 50 m of the study locality.
Mechanisms of Forming Intergranular Microcracks and Microscopic Surface Discontinuities in Welds
1992-06-01
SCC) is defined as slow stable crack extension occurring under static loading in sea water at stress intensity values below KIc (critical stress...preheating on the cold cracking resistance is reflected mainly in a reduction of the degree of localization of microplastic strains, their...deconcentration and an increase of the basis over which microplastic yielding takes place. This increases the amount of energy used for local plastic deformation
Rubber friction: role of the flash temperature.
Persson, B N J
2006-08-16
When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10(-2) m s(-1) the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s(-1). This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.
NASA Technical Reports Server (NTRS)
Castillo, J. L.; Garcia-Ybarra, P. L.; Rosner, D. E.
1991-01-01
The stability of solid planar growth from a binary vapor phase with a condensing species dilute in a carrier gas is examined when the ratio of depositing to carrier species molecular mass is large and the main diffusive transport mechanism is thermal diffusion. It is shown that a deformation of the solid-gas interface induces a deformation of the gas phase isotherms that increases the thermal gradients and thereby the local mass deposition rate at the crests and reduces them at the valleys. The initial surface deformation is enhanced by the modified deposition rates in the absence of appreciable Fick/Brownian diffusion and interfacial energy effects.
Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation
Ho, Duc Tam; Im, Youngtae; Kwon, Soon-Yong; Earmme, Youn Young; Kim, Sung Youb
2015-01-01
It is believed that the failure mode of metal nanowires under tensile loading is the result of the nucleation and propagation of dislocations. Such failure modes can be slip, partial slip or twinning and therefore they are regarded as local deformation. Here we provide numerical and theoretical evidences to show that global deformation is another predominant failure mode of nanowires under tensile loading. At the global deformation mode, nanowires fail with a large contraction along a lateral direction and a large expansion along the other lateral direction. In addition, there is a competition between global and local deformations. Nanowires loaded at low temperature exhibit global failure mode first and then local deformation follows later. We show that the global deformation originates from the intrinsic instability of the nanowires and that temperature is a main parameter that decides the global or local deformation as the failure mode of nanowires. PMID:26087445
Shape abnormalities of the striatum in Alzheimer's disease.
de Jong, Laura W; Ferrarini, Luca; van der Grond, Jeroen; Milles, Julien R; Reiber, Johan H C; Westendorp, Rudi G J; Bollen, Edward L E M; Middelkoop, Huub A M; van Buchem, Mark A
2011-01-01
Postmortem studies show pathological changes in the striatum in Alzheimer's disease (AD). Here, we examine the surface of the striatum in AD and assess whether changes of the surface are associated with impaired cognitive functioning. The shape of the striatum (n. accumbens, caudate nucleus, and putamen) was compared between 35 AD patients and 35 individuals without cognitive impairment. The striatum was automatically segmented from 3D T1 magnetic resonance images and automatic shape modeling tools (Growing Adaptive Meshes) were applied for morphometrical analysis. Repeated permutation tests were used to identify locations of consistent shape deformities of the striatal surface in AD. Linear regression models, corrected for age, gender, educational level, head size, and total brain parenchymal volume were used to assess the relation between cognitive performance and local surface deformities. In AD patients, differences of shape were observed on the medial head of the caudate nucleus and on the ventral lateral putamen, but not on the accumbens. The head of the caudate nucleus and ventral lateral putamen are characterized by extensive connections with the orbitofrontal and medial temporal cortices. Severity of cognitive impairment was associated with the degree of deformity of the surfaces of the accumbens, rostral medial caudate nucleus, and ventral lateral putamen. These findings provide evidence for the hypothesis that in AD primarily associative and limbic cerebral networks are affected.
Frictional behavior of large displacement experimental faults
Beeler, N.M.; Tullis, T.E.; Blanpied, M.L.; Weeks, J.D.
1996-01-01
The coefficient of friction and velocity dependence of friction of initially bare surfaces and 1-mm-thick simulated fault gouges (400 mm at 25??C and 25 MPa normal stress. Steady state negative friction velocity dependence and a steady state fault zone microstructure are achieved after ???18 mm displacement, and an approximately constant strength is reached after a few tens of millimeters of sliding on initially bare surfaces. Simulated fault gouges show a large but systematic variation of friction, velocity dependence of friction, dilatancy, and degree of localization with displacement. At short displacement (<10 mm), simulated gouge is strong, velocity strengthening and changes in sliding velocity are accompanied by relatively large changes in dilatancy rate. With continued displacement, simulated gouges become progressively weaker and less velocity strengthening, the velocity dependence of dilatancy rate decreases, and deformation becomes localized into a narrow basal shear which at its most localized is observed to be velocity weakening. With subsequent displacement, the fault restrengthens, returns to velocity strengthening, or to velocity neutral, the velocity dependence of dilatancy rate becomes larger, and deformation becomes distributed. Correlation of friction, velocity dependence of friction and of dilatancy rate, and degree of localization at all displacements in simulated gouge suggest that all quantities are interrelated. The observations do not distinguish the independent variables but suggest that the degree of localization is controlled by the fault strength, not by the friction velocity dependence. The friction velocity dependence and velocity dependence of dilatancy rate can be used as qualitative measures of the degree of localization in simulated gouge, in agreement with previous studies. Theory equating the friction velocity dependence of simulated gouge to the sum of the friction velocity dependence of bare surfaces and the velocity dependence of dilatancy rate of simulated gouge fails to quantitatively account for the experimental observations.
Localized crustal deformation in the Godavari failed rift, India
NASA Astrophysics Data System (ADS)
Mahesh, P.; Gahalaut, V. K.; Catherine, J. K.; Ambikapathy, A.; Kundu, Bhaskar; Bansal, Amit; Chadha, R. K.; Narsaiah, M.
2012-06-01
Six years of GPS measurements of crustal deformation in the Godavari failed rift (GFR) of stable India plate suggest very localized deformation. Elsewhere, all along the GFR the deformation is very low (<1.5 mm/yr). Localized deformation (up to 3.3±0.5 mm/yr) at least at two sites, implying compression on steep faults located on the southern margin of the GFR, is coincident with the region characterized by high level low-magnitude seismicity of past six years and implies strain accumulation for future moderate to strong magnitude earthquake in the region. The localized deformation is consistent with the view about deformation in such regions where seismicity migrates and deformation rate changes with time.
Monitoring the Wall Mechanics During Stent Deployment in a Vessel
Steinert, Brian D.; Zhao, Shijia; Gu, Linxia
2012-01-01
Clinical trials have reported different restenosis rates for various stent designs1. It is speculated that stent-induced strain concentrations on the arterial wall lead to tissue injury, which initiates restenosis2-7. This hypothesis needs further investigations including better quantifications of non-uniform strain distribution on the artery following stent implantation. A non-contact surface strain measurement method for the stented artery is presented in this work. ARAMIS stereo optical surface strain measurement system uses two optical high speed cameras to capture the motion of each reference point, and resolve three dimensional strains over the deforming surface8,9. As a mesh stent is deployed into a latex vessel with a random contrasting pattern sprayed or drawn on its outer surface, the surface strain is recorded at every instant of the deformation. The calculated strain distributions can then be used to understand the local lesion response, validate the computational models, and formulate hypotheses for further in vivo study. PMID:22588353
Sensing surface mechanical deformation using active probes driven by motor proteins
Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira
2016-01-01
Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937
Wu, Haibin; Liu, Zezhou; Jagota, Anand; Hui, Chung-Yuen
2018-03-07
A line force acting on a soft elastic solid, say due to the surface tension of a liquid drop, can cause significant deformation and the formation of a kink close to the point of force application. Analysis based on linearized elasticity theory shows that sufficiently close to its point of application, the force is borne entirely by the surface stress, not by the elasticity of the substrate; this local balance of three forces is called Neumann's triangle. However, it is not difficult to imagine realistic properties for which this force balance cannot be satisfied. For example, if the line force corresponds to surface tension of water, the numerical values of (unstretched) solid-vapor and solid-liquid surface stresses can easily be such that their sum is insufficient to balance the applied force. In such cases conventional (or naïve) Neumann's triangle of surface forces must break down. Here we study how force balance is rescued from the breakdown of naïve Neumann's triangle by a combination of (a) large hyperelastic deformations of the underlying bulk solid, and (b) increase in surface stress due to surface elasticity (surface stiffening). For a surface with constant surface stress (no surface stiffening), we show that the linearized theory remains accurate if the applied force is less than about 1.3 times the solid surface stress. For a surface in which the surface stress increases linearly with the surface stretch, we find that the Neumann's triangle construction works well as long as we replace the constant surface stress in the naïve Neumann triangle by the actual surface stress underneath the line load.
Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling
NASA Astrophysics Data System (ADS)
Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.
This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.
NASA Astrophysics Data System (ADS)
Kubanek, J.; Liu, Y.; Harrington, R. M.; Samsonov, S.
2017-12-01
In North America, the number of induced earthquakes related to fluid injection due to the unconventional recovery of oil and gas resources has increased significantly within the last five years. Recent studies demonstrate that InSAR is an effective tool to study surface deformation due to large-scale wastewater injection, and highlight the value of surface deformation monitoring with respect to understanding evolution of pore pressure and stress at depth - vital parameters to forecast fault reactivation, and thus, induced earthquakes. In contrast to earthquakes related to the injection of large amounts of wastewater, seismic activity related to the hydraulic fracturing procedure itself was, until recently, considered to play a minor role without significant hazard. In the Western Canadian Sedimentary Basin (WCSB), however, Mw>4 earthquakes have recently led to temporary shutdown of industrial injection activity, causing multi-million dollar losses to operators and raising safety concerns with the local population. Recent studies successfully utilize seismic data and modeling to link seismic activity with hydraulic fracturing in the WCSB. Although the study of surface deformation is likely the most promising tool for monitoring integrity of a well and to derive potential signatures prior to moderate or large induced events, InSAR has, to date, not been utilized to detect surface deformation related to hydraulic fracturing and seismicity. We therefore plan to analyze time-series of SAR data acquired between 1991 to present over two target sites in the WCSB that will enable the study of long- and short-term deformation. Since the conditions for InSAR are expected to be challenging due to spatial and temporal decorrelation, we have designed corner reflectors that will be installed at one target site to improve interferometric performance. The corner reflectors will be collocated with broadband seismometers and Trimble SeismoGeodetic Systems that simultaneously measure GNSS positioning and acceleration. We expect the joint data analysis of dense seismic and geodetic observations to give new insights about the correlation between surface deformation, fluid injection, and induced seismicity that can be used to assess the hazard potential of hydraulic fracturing in the WCSB.
NASA Astrophysics Data System (ADS)
Cheng, Guanwen; Chen, Congxin; Ma, Tianhui; Liu, Hongyuan; Tang, Chunan
2017-04-01
The regular pattern of surface deformation and the mechanism of underground strata movement, especially in iron mines constructed with the block caving method, have a great influence on infrastructure on the surface, so they are an important topic for research. Based on the engineering geology conditions and the surface deformation and fracture features in Chengchao Iron Mine, the mechanism of strata movement and the regular pattern of surface deformation in the footwall were studied by the geomechanical method, and the following conclusions can be drawn: I. The surface deformation process is divided into two stages over time, i.e., the chimney caving development stage and the post-chimney deformation stage. Currently, the surface deformation in Chengchao Iron Mine is at the post-chimney deformation stage. II. At the post-chimney deformation stage, the surface deformation and geological hazards in Chengchao Iron Mine are primarily controlled by the NWW-trending joints, with the phenomenon of toppling deformation and failure on the surface. Based on the surface deformation characteristics in Chengchao Iron Mine, the surface deformation area can be divided into the following four zones: the fracture extension zone, the fracture closure zone, the fracture formation zone and the deformation accumulation zone. The zones on the surface can be determined by the surface deformation characteristics. III. The cantilever beams near the chimney caving area, caused by the NWW-trending joints, have been subjected to toppling failure. This causes the different deformation and failure mechanisms in different locations of the deep rock mass. The deep rock can be divided into four zones, i.e., the fracture zone, fracture transition zone, deformation zone and undisturbed zone, according to the different deformation and failure mechanisms. The zones in the deep rock are the reason for the zones on the surface, so they can be determined by the zones on the surface. Through these findings, the degree of damage to the infrastructure in different locations can be determined based on the surface deformation zones. As the mining continues deeper, the development regulation of the zones on the surface and in deep rock mass can be further studied based on the zones in the deep rock.
Surface deformation analysis over Vrancea seismogenic area through radar and GPS geospatial data
NASA Astrophysics Data System (ADS)
Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Serban, Florin S.; Teleaga, Delia M.; Mateciuc, Doru N.
2017-10-01
Time series analysis of GPS (Global Positioning Systems) and InSAR (Interferometric Synthetic Aperture Radar) data are important tools for Earth's surface deformation assessment, which can result from a wide range of geological phenomena like as earthquakes, landslides or ground water level changes. The aim of this paper was to identify several types of earthquake precursors that might be observed from geospatial data in Vrancea seismogenic region in Romania. Continuous GPS Romanian network stations and few field campaigns data recorded between 2005-2012 years revealed a displacement of about 5 or 6 millimeters per year in horizontal direction relative motion, and a few millimeters per year in vertical direction. In order to assess possible deformations due to earthquakes and respectively for possible slow deformations, have been used also time series Sentinel 1 satellite data available for Vrancea zone during October 2014 till October 2016 to generate two types of interferograms (short-term and medium- term). During investigated period were not recorded medium or strong earthquakes, so interferograms over test area revealed small displacements on vertical direction (subsidence or uplifts) of 5-10 millimeters per year. Based on GPS continuous network data and satellite Sentinel 1 results, different possible tectonic scenarios were developed. The localization of horizontal and vertical motions, fault slip, and surface deformation of the continental blocks provides new information, in support of different geodynamic models for Vrancea tectonic active region in Romania and Europe.
Toroidal resonance: Relation to pygmy mode, vortical properties, and anomalous deformation splitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesterenko, V. O., E-mail: nester@theor.jinr.ru; Kvasil, J.; Repko, A.
2016-11-15
We review a recent progress in investigation of the isoscalar toroidal dipole resonance (TDR). A possible relation of the TDR and low-energy dipole excitations (also called a pygmy resonance) is analyzed. It is shown that the dipole strength in the pygmy region can be understood as a local manifestation of the collective vortical toroidalmotion at the nuclear surface. Application of the TDR as a measure of the nuclear dipole vorticity is discussed. An anomalous splitting of the TDR in deformed nuclei is inspected.
Stability of marginally outer trapped surfaces and symmetries
NASA Astrophysics Data System (ADS)
Carrasco, Alberto; Mars, Marc
2009-09-01
We study the properties of stable, strictly stable and locally outermost marginally outer trapped surfaces in spacelike hypersurfaces of spacetimes possessing certain symmetries such as isometries, homotheties and conformal Killings. We first obtain results for general diffeomorphisms in terms of the so-called metric deformation tensor and then particularize to different types of symmetries. In particular, we find restrictions at the surfaces on the vector field generating the symmetry. Some consequences are discussed. As an application, we present a result on non-existence of stable marginally outer trapped surfaces in slices of FLRW.
Localized surface plasmons in vibrating graphene nanodisks
NASA Astrophysics Data System (ADS)
Wang, Weihua; Li, Bo-Hong; Stassen, Erik; Mortensen, N. Asger; Christensen, Johan
2016-02-01
Localized surface plasmons are confined collective oscillations of electrons in metallic nanoparticles. When driven by light, the optical response is dictated by geometrical parameters and the dielectric environment and plasmons are therefore extremely important for sensing applications. Plasmons in graphene disks have the additional benefit of being highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters, such as molecules, for future nanophotonic devices.
Modeling Thermal Transport and Surface Deformation on Europa using Realistic Rheologies
NASA Astrophysics Data System (ADS)
Linneman, D.; Lavier, L.; Becker, T. W.; Soderlund, K. M.
2017-12-01
Most existing studies of Europa's icy shell model the ice as a Maxwell visco-elastic solid or viscous fluid. However, these approaches do not allow for modeling of localized deformation of the brittle part of the ice shell, which is important for understanding the satellite's evolution and unique geology. Here, we model the shell as a visco-elasto-plastic material, with a brittle Mohr-Coulomb elasto-plastic layer on top of a convective Maxwell viscoelastic layer, to investigate how thermal transport processes relate to the observed deformation and topography on Europa's surface. We use Fast Lagrangian Analysis of Continua (FLAC) code, which employs an explicit time-stepping algorithm to simulate deformation processes in Europa's icy shell. Heat transfer drives surface deformation within the icy shell through convection and tidal dissipation due to its elliptical orbit around Jupiter. We first analyze the visco-elastic behavior of a convecting ice layer and the parameters that govern this behavior. The regime of deformation depends on the magnitude of the stress (diffusion creep at low stresses, grain-size-sensitive creep at intermediate stresses, dislocation creep at high stresses), so we calculate effective viscosity each time step using the constitutive stress-strain equation and a combined flow law that accounts for all types of deformation. Tidal dissipation rate is calculated as a function of the temperature-dependent Maxwell relaxation time and the square of the second invariant of the strain rate averaged over each orbital period. After we initiate convection in the viscoelastic layer by instituting an initial temperature perturbation, we then add an elastoplastic layer on top of the convecting layer and analyze how the brittle ice reacts to stresses from below and any resulting topography. We also take into account shear heating along fractures in the brittle layer. We vary factors such as total shell thickness and minimum viscosity, as these parameters are not well constrained, and determine how this affects the thickness and deformation of the brittle layer.
NASA Astrophysics Data System (ADS)
Hu, Zheng; Lei, Xianqi; Wang, Yang; Zhang, Kun
2018-03-01
The oxidation behaviors of as-cast, pre-deformed, and crystallized Zr47.9Ti0.3Ni3.1Cu39.3Al9.4 metallic glasses (MGs) were studied near the glass transition point. The oxidation kinetics of the crystallized MGs followed a parabolic-rate law, and the as-cast and pre-deformed MGs exerted a typical two-stage behavior above the glass transition temperature (T g). Most interesting, pre-deformed treatment can significantly improve the oxidation rate of MGs, as the initial oxidation appeared earlier than for the as-cast MGs, and was accompanied by much thicker oxide scale. The EDS and XPS results showed that the metal Al acted as the preferred scavenger that absorbed intrinsic oxygen in the near-surface region of as-cast MGs. However, a homogeneous mixed layer without Al was observed in the pre-deformed MGs. We speculated the accelerated diffusion of other elements in the MGs was due to the local increase in the free volume and significant shear-induced dilation of the local structure. The results from this study demonstrate that MGs exhibit controllable atomic diffusion during the oxidation process, which can facilitate use in super-cooled liquid region applications.
NASA Astrophysics Data System (ADS)
Manzo, Mariarosaria; De Martino, Prospero; Castaldo, Raffaele; De Luca, Claudio; Dolce, Mario; Scarpato, Giovanni; Tizzani, Pietro; Zinno, Ivana; Lanari, Riccardo
2017-04-01
Ischia Island is a densely populated volcanic area located in the North-Western sector of the Gulf of Napoli (South Italy), whose activity is characterized by eruptions (the last one occurred in 1302 A.D.), earthquakes (the most disastrous ones occurred in 1881 and in 1883), fumarolic-hydrothermal manifestations and ground deformation. In this work we carry out the surface deformation time-series analysis occurring at the Island by jointly exploiting data collected via two different monitoring systems. In particular, we take advantage from the large amount of periodic and continuous geodetic measurements collected by the GPS (campaign and permanent) stations deployed on the Island and belonging to the INGV-OV monitoring network. Moreover, we benefit from the large, free and open archive of C-band SAR data acquired over the Island by the Sentinel-1 constellation of the Copernicus Program, and processed via the advanced Differential SAR Interferometry (DInSAR) technique referred to as Small BAseline Subset (SBAS) algorithm [Berardino et al., 2002]. We focus on the 2014-2017 time period to analyze the recent surface deformation phenomena occurring on the Island, thus extending a previous study, aimed at investigating the temporal evolution of the ground displacements affecting the Island and limited to the 1992-2003 time interval [Manzo et al., 2006]. The performed integrated analysis provides relevant spatial and temporal information on the Island surface deformation pattern. In particular, it reveals a rather complex deformative scenario, where localized phenomena overlap/interact with a spatially extended deformation pattern that involves many Island sectors, with no evidence of significant uplift phenomena. Moreover, it shows a good agreement and consistency between the different kinds of data, thus providing a clear picture of the recent dynamics at Ischia Island that can be profitably exploited to deeply investigate the physical processes behind the observed deformation phenomena. Acknowledgments This work is partially supported by the IREA-CNR/Italian Department of Civil Protection agreement and the I-AMICA project (Infrastructure of High Technology for Environmental and Climate Monitoring-PONa3_00363). References Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti (2002), A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Remote Sens., 40, 2375-2383, doi:10.1109/TGRS.2002.803792. Manzo, M., G. P. Ricciardi, F. Casu, G. Ventura, G. Zeni, S. Borgström, P. Berardino, C. Del Gaudio, and R. Lanari (2006), Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry, Journal of Volcanology and Geothermal Research, 151, 399-416, doi:10.1016/j.jvolgeores.2005.09.010.
Reeve, A.S.; Glaser, P.H.; Rosenberry, Donald O.
2013-01-01
Northern peatlands appear to hold large volumes of free-phase gas (e.g., CH4 and CO2), which has been detected by surface deformations, pore pressure profiles, and electromagnetic surveys. Determining the gas content and its impact in peat is challenging because gas storage depends on both the elastic properties of the peat matrix and the buoyant forces exerted by pore fluids. We therefore used a viscoelastic deformation model to estimate these variables by adjusting model runs to reproduce observed changes in peat surface elevation within a 1300 km2 peatland. A local GPS network documented significant changes in surface elevations throughout the year with the greatest vertical displacements associated with rapid changes in peat water content and unloadings due to melting of the winter snowpack. These changes were coherent with changes in water table elevation and also abnormal pore pressure changes measured by nests of instrumented piezometers. The deformation model reproduced these changes when the gas content was adjusted to 10% of peat volume, and Young's modulus was varied between 5 and 100 kPa as the peat profile shifted from tension to compression. In contrast, the model predicted little peat deformation when the gas content was 3% or lower. These model simulations are consistent with previous estimates of gas volume in northern peatlands and suggest an upper limit of gas storage controlled by the elastic moduli of the peat fabric.
Kustas, Andrew B.; Johnson, David R.; Trumble, Kevin P.; ...
2018-07-01
Enhanced workability, as characterized by the magnitude and heterogeneity of accommodated plastic strains during sheet processing, is demonstrated in high Si content Fe-Si alloys containing 4 and 6.5 wt% Si using two single-step, simple-shear deformation techniques – peeling and large strain extrusion machining (LSEM). The model Fe-Si material system was selected for its intrinsically poor material workability, and well-known applications potential in next-generation electric machines. In a comparative study of the deformation characteristics of the shear processes with conventional rolling, two distinct manifestations of workability are observed. For rolling, the relatively diffuse and unconfined deformation zone geometry leads to crackingmore » at low strains, with sheet structures characterized by extensive deformation twinning and banding. Workpiece pre-heating is required to improve the workability in rolling. In contrast, peeling and LSEM produce continuous sheet at large plastic strains without cracking, the result of more confined deformation geometries that enhances the workability. Peeling, however, results in heterogeneous, shear-banded microstructures, pointing to a second type of workability issue – flow localization – that limits sheet processing. This shear banding is to a large extent facilitated by unrestricted flow at the sheet surface, unavoidable in peeling. With additional confinement of this free surface deformation and appropriately designed deformation zone geometry, LSEM is shown to suppress shear banding, resulting in continuous sheet with homogeneous microstructure. Thus LSEM is shown to produce the greatest enhancement in process workability for producing sheet. In conclusion, these workability findings are explained and discussed based on differences in process mechanics and deformation zone geometry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kustas, Andrew B.; Johnson, David R.; Trumble, Kevin P.
Enhanced workability, as characterized by the magnitude and heterogeneity of accommodated plastic strains during sheet processing, is demonstrated in high Si content Fe-Si alloys containing 4 and 6.5 wt% Si using two single-step, simple-shear deformation techniques – peeling and large strain extrusion machining (LSEM). The model Fe-Si material system was selected for its intrinsically poor material workability, and well-known applications potential in next-generation electric machines. In a comparative study of the deformation characteristics of the shear processes with conventional rolling, two distinct manifestations of workability are observed. For rolling, the relatively diffuse and unconfined deformation zone geometry leads to crackingmore » at low strains, with sheet structures characterized by extensive deformation twinning and banding. Workpiece pre-heating is required to improve the workability in rolling. In contrast, peeling and LSEM produce continuous sheet at large plastic strains without cracking, the result of more confined deformation geometries that enhances the workability. Peeling, however, results in heterogeneous, shear-banded microstructures, pointing to a second type of workability issue – flow localization – that limits sheet processing. This shear banding is to a large extent facilitated by unrestricted flow at the sheet surface, unavoidable in peeling. With additional confinement of this free surface deformation and appropriately designed deformation zone geometry, LSEM is shown to suppress shear banding, resulting in continuous sheet with homogeneous microstructure. Thus LSEM is shown to produce the greatest enhancement in process workability for producing sheet. In conclusion, these workability findings are explained and discussed based on differences in process mechanics and deformation zone geometry.« less
NASA Astrophysics Data System (ADS)
Okubo, C. H.
2012-12-01
In order to yield new insight into the process of faulting in fine-grained, poorly indurated volcanic ash, the distribution of strain around faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah, is investigated. Several distinct styles of inelastic strain are identified. Deformation bands are observed in tuff that is porous and granular in nature, or is inferred to have been so at the time of deformation. Where silicic alteration is pervasive, fractures are the dominant form of localized strain. Non-localized strain within the host rock is manifest as pore space compaction, including crushing of pumice clasts. Distinct differences in fault zone architecture are observed at different magnitudes of normal fault displacement, in the mode II orientation. A fault with cm-scale displacements is manifest as a single well-defined surface. Off-fault damage occurs as pore space compaction near the fault tips and formation of deformation band damage zones that are roughly symmetric about the fault. At a fault with larger meter-scale displacements, a fault core is present. A recognizable fault-related deformation band damage zone is not observed here, even though large areas of the host rock remain porous and granular and deformation bands had formed prior to faulting. The host rock is instead fractured in areas of pervasive alteration and shows possible textural evidence of fault pulverization. The zones of localized and distributed strain have notably different spatial extents around the causative fault. The region of distributed deformation, as indicated by changes in gas permeability of the macroscopically intact rock, extends up to four times farther from the fault than the highest densities of localized deformation (i.e., fractures and deformation bands). This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in poorly indurated tuff. Not surprisingly, the type of structural discontinuity that forms in the fault environment is found to be a function of the porosity and granularity of the host rock. Non-localized deformation in the form of pore space compaction of the host rock is found to be prominent around the fault tips at First Spring Hollow. Interestingly, the spatial distribution of host rock compaction and the occurrences of dilational deformation bands around this fault do not correlate with the classic pattern of compression and dilation generally anticipated for slipped normal faults when viewed in mode II. Therefore, while broad generalities regarding the types of discontinuities that form around faults in tuff can be drawn based on current principles, additional work is needed to better understand the genesis of the observed spatial distributions of strain.
Impact of a compound droplet on a flat surface: A model for single cell epitaxy.
Tasoglu, Savas; Kaynak, Gozde; Szeri, Andrew J; Demirci, Utkan; Muradoglu, Metin
2010-08-01
The impact and spreading of a compound viscous droplet on a flat surface are studied computationally using a front-tracking method as a model for the single cell epitaxy. This is a technology developed to create two-dimensional and three-dimensional tissue constructs cell by cell by printing cell-encapsulating droplets precisely on a substrate using an existing ink-jet printing method. The success of cell printing mainly depends on the cell viability during the printing process, which requires a deeper understanding of the impact dynamics of encapsulated cells onto a solid surface. The present study is a first step in developing a model for deposition of cell-encapsulating droplets. The inner droplet representing the cell, the encapsulating droplet, and the ambient fluid are all assumed to be Newtonian. Simulations are performed for a range of dimensionless parameters to probe the deformation and rate of deformation of the encapsulated cell, which are both hypothesized to be related to cell damage. The deformation of the inner droplet consistently increases: as the Reynolds number increases; as the diameter ratio of the encapsulating droplet to the cell decreases; as the ratio of surface tensions of the air-solution interface to the solution-cell interface increases; as the viscosity ratio of the cell to encapsulating droplet decreases; or as the equilibrium contact angle decreases. It is observed that maximum deformation for a range of Weber numbers has (at least) one local minimum at We=2. Thereafter, the effects of cell deformation on viability are estimated by employing a correlation based on the experimental data of compression of cells between parallel plates. These results provide insight into achieving optimal parameter ranges for maximal cell viability during cell printing.
Odum, J.K.; Stephenson, W.J.; Williams, R.A.
2003-01-01
Recent studies have demonstrated a plausible link between surface and near-surface tectonic features and the vertical projection of the Commerce geophysical lineament (CGL). The CGL is a 5- to 10-km-wide zone of basement magnetic and gravity anomalies traceable for more than 600 km, extending from Arkansas through southeast Missouri and southern Illinois and into Indiana. Twelve kilometers of high-resolution seismic reflection data, collected at four sites along a 175-km segment of the CGL projection, are interpreted to show varying amounts of deformation involving Tertiary and some Quaternary sediments. Some of the locally anomalous geomorphic features in the northern Mississippi embayment region (i.e., paleoliquefaction features, anomalous directional changes in stream channels, and areas of linear bluff escarpments) overlying the CGL can be correlated with specific faults and/or narrow zones of deformed (faulted and folded) strata that are imaged on high-resolution seismic reflection data. There is an observable change in near-surface deformation style and complexity progressing from the southwest to the northeast along the trace of the CGL. The seismic reflection data collaborate mapping evidence which suggests that this region has undergone a complex history of deformation, some of which is documented to be as young as Quaternary, during multiple episodes of reactivation under varying stress fields. This work, along with that of other studies presented in this volume, points to the existence of at least one major crustal feature outside the currently defined zone of seismic activity (New Madrid Seismic Zone) that should be considered as a significant potential source zone for seismogenic activity within the midcontinent region of the United States. ?? 2003 Elsevier B.V. All rights reserved.
Nanosecond pulsed laser generation of holographic structures on metals
NASA Astrophysics Data System (ADS)
Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.
2016-03-01
A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.
Subsidence Evaluation of High-Speed Railway in Shenyang Based on Time-Series Insar
NASA Astrophysics Data System (ADS)
Zhang, Yun; Wei, Lianhuan; Li, Jiayu; Liu, Shanjun; Mao, Yachun; Wu, Lixin
2018-04-01
More and more high-speed railway are under construction in China. The slow settlement along high-speed railway tracks and newly-built stations would lead to inhomogeneous deformation of local area, and the accumulation may be a threat to the safe operation of high-speed rail system. In this paper, surface deformation of the newly-built high-speed railway station as well as the railway lines in Shenyang region will be retrieved by time series InSAR analysis using multi-orbit COSMO-SkyMed images. This paper focuses on the non-uniform subsidence caused by the changing of local environment along the railway. The accuracy of the settlement results can be verified by cross validation of the results obtained from two different orbits during the same period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilbert, L.B. Jr.; Fredrich, J.T.; Bruno, M.S.
1996-05-01
In this paper the authors present the results of a coupled nonlinear finite element geomechanics model for reservoir compaction and well-to-well interactions for the high-porosity, low strength diatomite reservoirs of the Belridge field near Bakersfield, California. They show that well damage and failures can occur under the action of two distinct mechanisms: shear deformations induced by pore compaction, and subsidence, and shear deformations due to well-to-well interactions during production or water injection. They show such casting damage or failure can be localized to weak layers that slide or slip under shear due to subsidence. The magnitude of shear displacements andmore » surface subsidence agree with field observations.« less
Time Domain Reflectometry (TDR) monitoring system for deep seated landslides
NASA Astrophysics Data System (ADS)
Singer, J.; Thuro, K.; Festl, J.
2012-04-01
In the 1980s Time Domain Reflectometry (TDR) has been introduced as a subsurface deformation monitoring system in boreholes, which allows identifying and localizing discrete deformation zones with high accuracy. While TDR offers several advantages as e.g. low costs and the possibility to continuously monitor deformation along the complete borehole,TDR was not used widespread due to the fact that the amount of deformation sometimes could not be determined accurately and in some cases no deformation was detected at all. By the definition of calibrated installation standards and the usage of advanced signal analysis methods, it is possible to overcome this and a reliable quantification of deformation using TDR is possible. In the ongoing research the attempt is made to define different TDR measuring system configurations (measuring cable and grout combinations), where each is designated for a specific geological environment. These set-ups are then calibrated in laboratory shear tests and finally tested in field, if possible by comparing them with inclinometer measurements. To date monitoring data of three different deep seated landslides in the European Alps (Gschliefgraben, Aggenalm and Triesenberg) have been collected. The field test results clearly show that the new TDR system can fulfill the expectations and the deformation can be determined with sub-centimeter accuracy if one basic prerequisite concerning the mode of deformation is fulfilled: TDR can only be used when localized shear deformation is present. Since TDR data easily can be acquired continuously as well as remotely, it is possible to use a TDR measuring system as a valuable part of a monitoring system for landslide early warning. Since 2008 such a monitoring system is in operation at the Aggenalm landslide, where the TDR subsurface deformation measurements supplement the information on surface deformation from geotechnical and geodetic measuring systems to a 3D early warning system for instable slopes.
Kinematics of fault-related folding derived from a sandbox experiment
NASA Astrophysics Data System (ADS)
Bernard, Sylvain; Avouac, Jean-Philippe; Dominguez, StéPhane; Simoes, Martine
2007-03-01
We analyze the kinematics of fault tip folding at the front of a fold-and-thrust wedge using a sandbox experiment. The analog model consists of sand layers intercalated with low-friction glass bead layers, deposited in a glass-sided experimental device and with a total thickness h = 4.8 cm. A computerized mobile backstop induces progressive horizontal shortening of the sand layers and therefore thrust fault propagation. Active deformation at the tip of the forward propagating basal décollement is monitored along the cross section with a high-resolution CCD camera, and the displacement field between pairs of images is measured from the optical flow technique. In the early stage, when cumulative shortening is less than about h/10, slip along the décollement tapers gradually to zero and the displacement gradient is absorbed by distributed deformation of the overlying medium. In this stage of detachment tip folding, horizontal displacements decrease linearly with distance toward the foreland. Vertical displacements reflect a nearly symmetrical mode of folding, with displacements varying linearly between relatively well defined axial surfaces. When the cumulative slip on the décollement exceeds about h/10, deformation tends to localize on a few discrete shear bands at the front of the system, until shortening exceeds h/8 and deformation gets fully localized on a single emergent frontal ramp. The fault geometry subsequently evolves to a sigmoid shape and the hanging wall deforms by simple shear as it overthrusts the flat ramp system. As long as strain localization is not fully established, the sand layers experience a combination of thickening and horizontal shortening, which induces gradual limb rotation. The observed kinematics can be reduced to simple analytical expressions that can be used to restore fault tip folds, relate finite deformation to incremental folding, and derive shortening rates from deformed geomorphic markers or growth strata.
NASA Astrophysics Data System (ADS)
Harding, D. J.; Miuller, J. R.
2005-12-01
Modeling the kinematics of the 2004 Great Sumatra-Andaman earthquake is limited in the northern two-thirds of the rupture zone by a scarcity of near-rupture geodetic deformation measurements. Precisely repeated Ice, Cloud, and Land Elevation Satellite (ICESat) profiles across the Andaman and Nicobar Islands provide a means to more fully document the spatial pattern of surface vertical displacements and thus better constrain geomechanical modeling of the slip distribution. ICESat profiles that total ~45 km in length cross Car Nicobar, Kamorta, and Katchall in the Nicobar chain. Within the Andamans, the coverage includes ~350 km on North, Central, and South Andaman Islands along two NNE and NNW-trending profiles that provide elevations on both the east and west coasts of the island chain. Two profiles totaling ~80 km in length cross South Sentinel Island, and one profile ~10 km long crosses North Sentinel Island. With an average laser footprint spacing of 175 m, the total coverage provides over 2700 georeferenced surface elevations measurements for each operations period. Laser backscatter waveforms recorded for each footprint enable detection of forest canopy top and underlying ground elevations with decimeter vertical precision. Surface elevation change is determined from elevation profiles, acquired before and after the earthquake, that are repeated with a cross-track separation of less than 100 m by precision pointing of the ICESat spacecraft. Apparent elevation changes associated with cross-track offsets are corrected according to local slopes calculated from multiple post-earthquake repeated profiles. The surface deformation measurements recorded by ICESat are generally consistent with the spatial distribution of uplift predicted by a preliminary slip distribution model. To predict co-seismic surface deformation, we apply a slip distribution, derived from the released energy distribution computed by Ishii et al. (2005), as the displacement discontinuity boundary condition on the Sumatra-Andaman subduction interface fault. The direction of slip on the fault surface is derived from the slip directions computed by Tsai et al. (in review) for centroid moment tensor focal mechanisms spatially distributed along the rupture. The slip model will be refined to better correspond to the observed surface deformation as additional results from the ICESat profiles become available.
Machining and grinding: High rate deformation in practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follansbee, P.S.
1993-04-01
Machining and grinding are well-established material-working operations involving highly non-uniform deformation and failure processes. A typical machining operation is characterized by uncertain boundary conditions (e.g.,surface interactions), three-dimensional stress states, large strains, high strain rates, non-uniform temperatures, highly localized deformations, and failure by both nominally ductile and brittle mechanisms. While machining and grinding are thought to be dominated by empiricism, even a cursory inspection leads one to the conclusion that this results more from necessity arising out of the complicated and highly interdisciplinary nature of the processes than from the lack thereof. With these conditions in mind, the purpose of thismore » paper is to outline the current understanding of strain rate effects in metals.« less
Machining and grinding: High rate deformation in practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follansbee, P.S.
1993-01-01
Machining and grinding are well-established material-working operations involving highly non-uniform deformation and failure processes. A typical machining operation is characterized by uncertain boundary conditions (e.g.,surface interactions), three-dimensional stress states, large strains, high strain rates, non-uniform temperatures, highly localized deformations, and failure by both nominally ductile and brittle mechanisms. While machining and grinding are thought to be dominated by empiricism, even a cursory inspection leads one to the conclusion that this results more from necessity arising out of the complicated and highly interdisciplinary nature of the processes than from the lack thereof. With these conditions in mind, the purpose of thismore » paper is to outline the current understanding of strain rate effects in metals.« less
NASA Astrophysics Data System (ADS)
Holdsworth, R.; De Paola, N.; Bullock, R. J.; Collettini, C.; Viti, C.; Nielsen, S. B.
2015-12-01
Shear displacements in upper crustal faults are typically localized within cm- to m-thick high strain fault cores composed of interlayered tabular domains of cataclasite and gouge. Evidence from exhumed/exposed seismic faults shows that the great majority of co-seismic slip is taken up along narrow (<10 cm) ultracataclasite slip zones, containing thin (<100μm) principal slip zones (PSZ) bounded by sharp, polished and striated principal slip surfaces (PSS). Even in unconsolidated materials deformed near to the surface, seismogenic slip is observed to localize within discrete, narrow PSZs. Theoretical studies suggest that in all but the shallowest settings, the natural PSZs may be sufficiently thin to generate localised frictional heating that potentially promotes thermally-activated dynamic weakening mechanisms. We can recreate these processes in the laboratory using displacement-controlled friction experiments performed in a rotary shear apparatus on fault gouges of known composition deformed at seismic slip rates (v > 1ms-1) and normal stresses of up to 20 MPa. A sequential sampling approach is used in which slip is arrested at different stages of the observed friction evolution (e.g. post-compaction, peak friction, steady state after weakening). This allows the evolution of gouge microstructures and deformation mechanisms in the experimental samples to be: a) related to the evolving temperature regimes in the PSZ and changing mechanical behavior; and b) compared to natural PSZ/PSSs. Using this approach we have investigated the behavior and deformation mechanisms of gouges made of common, rock-forming minerals (calcite, clays, olivine, quartz) both in pure form and, in some cases, as mixed compositions deformed under a range of experimental conditions. We have studied the effects of varying confining pressure, fluid content (room humidity vs water saturated) and composition (de-ionized water vs brine) and slip rate (e.g. seismic vs. sub-seismic). Our findings - and those of others - reveal a startling diversity of 'non-brittle' micro- to nano-scale deformation processes (e.g. viscous GBS, particulate flow). This has implications for our understanding of the frictional strength of faults, the recognition of past seismogenic events in natural examples and the forecasting of future earthquakes.
Deformation of a flexible disk bonded to an elastic half space-application to the lung.
Lai-Fook, S J; Hajji, M A; Wilson, T A
1980-08-01
An analysis is presented of the deformation of a homogeneous, isotropic, elastic half space subjected to a constant radial strain in a circular area on the boundary. Explicit analytic expressions for the normal and radial displacements and the shear stress on the boundary are used to interpret experiments performed on inflated pig lungs. The boundary strain was induced by inflating or deflating the lung after bonding a flexible disk to the lung surface. The prediction that the surface bulges outward for positive boundary strain and inward for negative strain was observed in the experiments. Poisson's ratio at two transpulmonary pressures was measured, by use of the normal displacement equation evaluated at the surface. A direct estimate of Poisson's ratio was possible because the normal displacement of the surface depended uniquely on the compressibility of the material. Qualitative comparisons between theory and experiment support the use of continuum analyses in evaluating the behavior of the lung parenchyma when subjected to small local distortions.
Interactive surface correction for 3D shape based segmentation
NASA Astrophysics Data System (ADS)
Schwarz, Tobias; Heimann, Tobias; Tetzlaff, Ralf; Rau, Anne-Mareike; Wolf, Ivo; Meinzer, Hans-Peter
2008-03-01
Statistical shape models have become a fast and robust method for segmentation of anatomical structures in medical image volumes. In clinical practice, however, pathological cases and image artifacts can lead to local deviations of the detected contour from the true object boundary. These deviations have to be corrected manually. We present an intuitively applicable solution for surface interaction based on Gaussian deformation kernels. The method is evaluated by two radiological experts on segmentations of the liver in contrast-enhanced CT images and of the left heart ventricle (LV) in MRI data. For both applications, five datasets are segmented automatically using deformable shape models, and the resulting surfaces are corrected manually. The interactive correction step improves the average surface distance against ground truth from 2.43mm to 2.17mm for the liver, and from 2.71mm to 1.34mm for the LV. We expect this method to raise the acceptance of automatic segmentation methods in clinical application.
NASA Astrophysics Data System (ADS)
Reitman, Nadine G.; Ge, Shemin; Mueller, Karl
2014-09-01
Groundwater flow is an important control on subsurface evaporite (salt) dissolution. Salt dissolution can drive faulting and associated subsidence on the land surface and increase salinity in groundwater. This study aims to understand the groundwater flow system of Gypsum Canyon watershed in the Paradox Basin, Utah, USA, and whether or not groundwater-driven dissolution affects surface deformation. The work characterizes the groundwater flow and solute transport systems of the watershed using a three-dimensional (3D) finite element flow and transport model, SUTRA. Spring samples were analyzed for stable isotopes of water and total dissolved solids. Spring water and hydraulic conductivity data provide constraints for model parameters. Model results indicate that regional groundwater flow is to the northwest towards the Colorado River, and shallow flow systems are influenced by topography. The low permeability obtained from laboratory tests is inconsistent with field observed discharges, supporting the notion that fracture permeability plays a significant role in controlling groundwater flow. Model output implies that groundwater-driven dissolution is small on average, and cannot account for volume changes in the evaporite deposits that could cause surface deformation, but it is speculated that dissolution may be highly localized and/or weaken evaporite deposits, and could lead to surface deformation over time.
3D visualization of liquefaction-induced dune collapse in the Navajo Sandstone, Utah, USA
NASA Astrophysics Data System (ADS)
Ford, Colby; Nick, Kevin; Bryant, Gerald
2015-04-01
The eolian Navajo Sandstone outcrop on the Canyon Overlook Trail in Zion National Park in Southern Utah is dissected by modern erosion in a way which reveals a great deal of the three-dimensional architecture of a major soft-sediment deformation event. The feature is bounded below by a well-developed interdune complex made up of two superimposed carbonate lenses, above by an irregular truncational surface, and incorporates 3 - 10 m of sandstone over an approximately 2 km area. The material above the deformed interval is undeformed cross-bedded sandstone, with crossbeds downlapping onto the surface of truncation. The stratigraphic confinement of deformation and the irregularity of the upper bounding surface suggests a deformation process which created topography, which was in turn covered by the next upwind dune before it could be eroded flat. The deformed material itself is laterally segmented by a stacked succession of shear surfaces, which all strike approximately perpendicular to the paleo-wind direction and dip at decreasing angles in the down paleo-wind direction. These factors point to the collapse of a major dune into the downwind interdune area, likely initiated by liquefaction in the interdune complex. The foundering of the dune's toe into the liquefied area created a powerful lateral stress field which did not extend significantly into the subsurface. The dune collapse process has been used in the past to describe other soft-sediment deformation features in the Navajo Sandstone, but this site provides a wealth of physical details which were not previously associated with dune collapse. Shear surfaces originate in the interdune deposit as slip between laminae, then the cohesive muds provided support as they were thrust upward to angles of up to 50 degrees. The margins of the site also contain important paleoenvironmental indicators. Dinosaur tracks are exposed both at the extreme upwind and downwind margins of the interdune deposit in and slightly above the deformed interval. In addition, a smaller liquefaction feature is visible in the deposit just below the interdune deposit, far enough away from the main feature to suggest that it is a separate event, not directly caused by the dune collapse. It may have been an earlier episode, or was initiated by the same trigger, but it illustrates the susceptibility of this particular interdune to liquefaction. Details such as the confinement of deformation between irregular bounding surfaces, development of major shear planes, and nearby indicators of liquefaction may be used as new and more robust criteria for the recognition of dune collapse features in other localities and deposits.
A computer vision system for diagnosing scoliosis using moiré images.
Batouche, M; Benlamri, R; Kholladi, M K
1996-07-01
For young people, scoliosis deformities are an evolving process which must be detected and treated as early as possible. The moiré technique is simple, inexpensive, not aggressive and especially convenient for detecting spinal deformations. Doctors make their diagnosis by analysing the symmetry of fringes obtained by such techniques. In this paper, we present a computer vision system for help diagnosing spinal deformations using noisy moiré images of the human back. The approach adopted in this paper consists of extracting fringe contours from moiré images, then localizing some anatomical features (the spinal column, lumbar hollow and shoulder blades) which are crucial for 3D surface generation carried out using Mota's relaxation operator. Finally, rules furnished by doctors are used to derive the kind of spinal deformation and to yield the diagnosis. The proposed system has been tested on a set of noisy moiré images, and the experimental result have shown its robustness and reliability for the recognition of most scoliosis deformities.
Mechanisms-based viscoplasticity: Theoretical approach and experimental validation for steel 304L
Zubelewicz, Aleksander; Oliferuk, Wiera
2016-01-01
We propose a mechanisms-based viscoplasticity approach for metals and alloys. First, we derive a stochastic model for thermally-activated motion of dislocations and, then, introduce power-law flow rules. The overall plastic deformation includes local plastic slip events taken with an appropriate weight assigned to each angle of the plane misorientation from the direction of maximum shear stress. As deformation progresses, the material experiences successive reorganizations of the slip systems. The microstructural evolution causes that a portion of energy expended on plastic deformation is dissipated and the rest is stored in the defect structures. We show that the reorganizations are stable in a homogeneously deformed material. The concept is tested for steel 304L, where we reproduce experimentally obtained stress-strain responses, we construct the Frost-Ashby deformation map and predict the rate of the energy storage. The storage is assessed in terms of synchronized measurements of temperature and displacement distributions on the specimen surface during tensile loading. PMID:27026209
High-power visible laser effect on a Boston Micromachines' MEMS deformable mirror
NASA Astrophysics Data System (ADS)
Norton, Andrew; Gavel, Donald; Dillon, Daren; Cornelissen, Steven
2010-07-01
Continuous-facesheet and segmented Boston Micromachines Corporations' (BMC) Micro-Electrical Mechanical Systems (MEMS) Deformable Mirrors (DM) have been tested for their response to high-power visible-wavelength laser light. The deformable mirrors, coated with either protected silver or bare aluminum, were subjected to a maximum of 2 Watt laser-light at a wavelength of 532 nanometers. The laser light was incident on a ~ 3.5×3.5 cm area for time periods from minutes to 7 continuous hours. Spot heating from the laser-light is measured to induce a local bulge in the surface of each DM. For the aluminum-coated continuous facesheet DM, the induced spot heating changes the surface figure by 16 nm rms. The silver-coated continuous-facesheet and segmented (spatial light modulator) DMs experience a 6 and 8 nm surface rms change in surface quality with the laser at 2 Watts. For spatial frequencies less than the actuator spacing (300 mm), the laser induced surface bulge is shown to be removable, as the DMs continued to be fully functional during and after their exposure. Over the full 10 mm aperture one could expect the same results with a 15 Watt laser guide star (LGS). These results are very promising for use of the MEMS DM to pre-correct the outgoing laser light in the Laboratory for Adaptive Optics' (LAO) laser uplink application.
NASA Astrophysics Data System (ADS)
Liu, Zhanwei; Huang, Xianfu; Xie, Huimin
2013-02-01
Deformed liquid surface directly involves the surface tension, which can always be used to account for the kinematics of aquatic insects in gas-liquid interface and the light metal floating on the water surface. In this paper a novel method based upon deformed transmission-virtual grating is proposed for determination of deformed liquid surface. By addressing an orthogonal grating (1-5 line/mm) under the transparent water groove and then capturing images from upset of the deformed water surface, a displacement vector of full-field which directly associates the 3-D deformed liquid surface then can be evaluated by processing the recorded deformed fringe pattern in the two directions (x- and y-direction). Theories and equations for the method are thoroughly delivered. Validation test to measure the deformed water surface caused by a Chinese 1-cent coin has been conducted to demonstrate the ability of the developed method. The obtained results show that the method is robust in determination of micro 3-D surface of deformed liquid with a submicron scale resolution and with a wide range application scope.
Simple shearing flow of dry soap foams with TCP structure[Tetrahedrally Close-Packed
DOE Office of Scientific and Technical Information (OSTI.GOV)
REINELT,DOUGLAS A.; KRAYNIK,ANDREW M.
2000-02-16
The microrheology of dry soap foams subjected to large, quasistatic, simple shearing deformations is analyzed. Two different monodisperse foams with tetrahedrally close-packed (TCP) structure are examined: Weaire-Phelan (A15) and Friauf-Laves (C15). The elastic-plastic response is evaluated by calculating foam structures that minimize total surface area at each value of strain. The minimal surfaces are computed with the Surface Evolver program developed by Brakke. The foam geometry and macroscopic stress are piecewise continuous functions of strain. The stress scales as T/V{sup 1/3} where T is surface tension and V is cell volume. Each discontinuity corresponds to large changes in foam geometrymore » and topology that restore equilibrium to unstable configurations that violate Plateau's laws. The instabilities occur when the length of an edge on a polyhedral foam cell vanishes. The length can tend to zero smoothly or abruptly with strain. The abrupt case occurs when a small increase in strain changes the energy profile in the neighborhood of a foam structure from a local minimum to a saddle point, which can lead to symmetry-breaking bifurcations. In general, the new foam topology associated with each stable solution branch results from a cascade of local topology changes called T1 transitions. Each T1 cascade produces different cell neighbors, reduces surface energy, and provides an irreversible, film-level mechanism for plastic yield behavior. Stress-strain curves and average stresses are evaluated by examining foam orientations that admit strain-periodic behavior. For some orientations, the deformation cycle includes Kelvin cells instead of the original TCP structure; but the foam does not remain perfectly ordered. Bifurcations during subsequent T1 cascades lead to disorder and can even cause strain localization.« less
Geodesic active fields--a geometric framework for image registration.
Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe
2011-05-01
In this paper we present a novel geometric framework called geodesic active fields for general image registration. In image registration, one looks for the underlying deformation field that best maps one image onto another. This is a classic ill-posed inverse problem, which is usually solved by adding a regularization term. Here, we propose a multiplicative coupling between the registration term and the regularization term, which turns out to be equivalent to embed the deformation field in a weighted minimal surface problem. Then, the deformation field is driven by a minimization flow toward a harmonic map corresponding to the solution of the registration problem. This proposed approach for registration shares close similarities with the well-known geodesic active contours model in image segmentation, where the segmentation term (the edge detector function) is coupled with the regularization term (the length functional) via multiplication as well. As a matter of fact, our proposed geometric model is actually the exact mathematical generalization to vector fields of the weighted length problem for curves and surfaces introduced by Caselles-Kimmel-Sapiro. The energy of the deformation field is measured with the Polyakov energy weighted by a suitable image distance, borrowed from standard registration models. We investigate three different weighting functions, the squared error and the approximated absolute error for monomodal images, and the local joint entropy for multimodal images. As compared to specialized state-of-the-art methods tailored for specific applications, our geometric framework involves important contributions. Firstly, our general formulation for registration works on any parametrizable, smooth and differentiable surface, including nonflat and multiscale images. In the latter case, multiscale images are registered at all scales simultaneously, and the relations between space and scale are intrinsically being accounted for. Second, this method is, to the best of our knowledge, the first reparametrization invariant registration method introduced in the literature. Thirdly, the multiplicative coupling between the registration term, i.e. local image discrepancy, and the regularization term naturally results in a data-dependent tuning of the regularization strength. Finally, by choosing the metric on the deformation field one can freely interpolate between classic Gaussian and more interesting anisotropic, TV-like regularization.
NASA Astrophysics Data System (ADS)
Oliver-Cabrera, T.; Wdowinski, S.; Kruse, S.
2016-12-01
Central Florida's thick carbonate deposits and hydrological conditions make the area prone to sinkhole development. Sinkhole collapse is a major geologic hazard, threatening human life and causing substantial damage to property. Detecting sinkhole deformation before a collapse is a difficult task, due to small and typically unnoticeable surface changes. Most techniques used to map sinkholes, such as ground penetrating radar, require ground contact and are practical for localized (typically 2D, tens to hundreds of meters) surveys but not for broad study areas. In this study we use Persistent Scatterer (PS) time series analysis of Interferometric Synthetic Aperture Radar (InSAR), which is a very useful technique for detecting localized deformation while covering vast areas. We acquired SAR images over four locations in central Florida in order to detect possible pre-collapse or slow subsidence surface movements. The data used in this study were acquired by TerraSAR-X and COSMO-SkyMed satellites with pixel resolutions ranging between 25cm and 2m. To date, we have obtained four datasets, each of 25-30 acquisitions, covering a period of roughly one year over a total of roughly 2200 km2. We also installed two corner reflectors over a subsiding sinkhole located in an open vegetated area, to provide strong scattering and improve coherence over that particular location. We generate PS time series for each of the four datasets. Preliminary results show localized deformation at several houses and commercial buildings in several locations. Deforming areas vary in size from approximately 10mx20m of a single house to 60mx60m for a commercial building. On site ground penetrating radar surveys will be performed in these areas to verify their relationship to possible sinkhole activities. Our results also confirm that the corner reflectors improved PS detection over low coherence areas.
Nanomechanical behavior of MoS2 and WS2 multi-walled nanotubes and Carbon nanohorns
Maharaj, Dave; Bhushan, Bharat
2015-01-01
Nano-objects have been investigated for drug delivery, oil detection, contaminant removal, and tribology applications. In some applications, they are subjected to friction and deformation during contact with each other and their surfaces on which they slide. Experimental studies directly comparing local and global deformation are lacking. This research performs nanoindentation (local deformation) and compression tests (global deformation) with a nanoindenter (sharp tip and flat punch, respectively) on molybdenum disulfide (MoS2) multi-walled nanotubes (MWNTs), ~500 nm in diameter. Hardness of the MoS2 nanotube was similar to bulk and does not follow the “smaller is stronger” phenomenon as previously reported for other nano-objects. Tungsten disulfide (WS2) MWNTs, ~300 nm in diameter and carbon nanohorns (CNHs) 80–100 nm in diameter were of interest and also selected for compression studies. These studies aid in understanding the mechanisms involved during global deformation when nano-objects are introduced to reduce friction and wear. For compression, highest loads were required for WS2 nanotubes, then MoS2 nanotubes and CNHs to achieve the same displacement. This was due to the greater number of defects with the MoS2 nanotubes and the flexibility of the CNHs. Repeat compression tests of nano-objects were performed showing a hardening effect for all three nano-objects. PMID:25702922
NASA Astrophysics Data System (ADS)
Tavani, Stefano; Granado, Pablo; Cantanero, Irene; Balsamo, Fabrizio; Corradetti, Amerigo; Muñoz, Josep
2017-04-01
In this contribution we describe deformation bands developed due to the interplay between shearing and mechanical and chemical compaction in Paleocene quartz-rich calcarenites. The studied structures are located in the footwall of the Cotiella Thrust (Spanish Pyrennes) and form anastomosed, mm-thick tabular bands, composed of high concentration of quartz grains. The bands strike perpendicular to the local transport direction of the regional thrust sheet, thus indicating a tectonic origin, and are organized in three sets. One set is perpendicular to the shallow-dipping bedding surface, while the other two are roughly perpendicular to each other and form an angle of 45°, in opposite directions, with the bedding. No macroscopic evidence of shearing is found along these bands. Optical microscope and SEM investigations on both undeformed and deformed rocks indicate that the high concentration of quartz within the deformation bands was caused by the localized pressure-enhanced dissolution of calcite grains, which determined the enrichment of the less soluble quartz grains. Quartz grains fracturing, fragmentation and crushing was observed along in all deformation bands, whereas cataclasis and shear occurs only along oblique oblique-to-bedding sets. All these features indicate that studied deformation bands are hybrid structures most likely developed during layer-parallel shortening. In detail, bedding perpendicular and bedding oblique structures can be interpreted as pure compaction and shear-enhanced compaction bands, respectively.
The correlation of local deformation and stress-assisted local phase transformations in MMC foams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berek, H., E-mail: harry.berek@ikgb.tu-freiberg.de; Ballaschk, U.; Aneziris, C.G.
2015-09-15
Cellular structures are of growing interest for industry, and are of particular importance for lightweight applications. In this paper, a special case of metal matrix composite foams (MMCs) is investigated. The investigated foams are composed of austenitic steel exhibiting transformation induced plasticity (TRIP) and magnesia partially stabilized zirconia (Mg-PSZ). Both components exhibit martensitic phase transformation during deformation, thus generating the potential for improved mechanical properties such as strength, ductility, and energy absorption capability. The aim of these investigations was to show that stress-assisted phase transformations within the ceramic reinforcement correspond to strong local deformation, and to determine whether they canmore » trigger martensitic phase transformations in the steel matrix. To this end, in situ interrupted compression experiments were performed in an X-ray computed tomography device (XCT). By using a recently developed registration algorithm, local deformation could be calculated and regions of interest could be defined. Corresponding cross sections were prepared and used to analyze the local phase composition by electron backscatter diffraction (EBSD). The results show a strong correlation between local deformation and phase transformation. - Graphical abstract: Display Omitted - Highlights: • In situ compressive deformation on MMC foams was performed in an XCT. • Local deformation fields and their gradient amplitudes were estimated. • Cross sections were manufactured containing defined regions of interest. • Local EBSD phase analysis was performed. • Local deformation and local phase transformation are correlated.« less
NASA Astrophysics Data System (ADS)
Zhai, Guang; Shirzaei, Manoochehr
2017-12-01
Geodetic observations of surface deformation associated with volcanic activities can be used to constrain volcanic source parameters and their kinematics. Simple analytical models, such as point and spherical sources, are widely used to model deformation data. The inherent nature of oversimplified model geometries makes them unable to explain fine details of surface deformation. Current nonparametric, geometry-free inversion approaches resolve the distributed volume change, assuming it varies smoothly in space, which may detect artificial volume change outside magmatic source regions. To obtain a physically meaningful representation of an irregular volcanic source, we devise a new sparsity-promoting modeling scheme assuming active magma bodies are well-localized melt accumulations, namely, outliers in the background crust. First, surface deformation data are inverted using a hybrid L1- and L2-norm regularization scheme to solve for sparse volume change distributions. Next, a boundary element method is implemented to solve for the displacement discontinuity distribution of the reservoir, which satisfies a uniform pressure boundary condition. The inversion approach is thoroughly validated using benchmark and synthetic tests, of which the results show that source dimension, depth, and shape can be recovered appropriately. We apply this modeling scheme to deformation observed at Kilauea summit for periods of uplift and subsidence leading to and following the 2007 Father's Day event. We find that the magmatic source geometries for these periods are statistically distinct, which may be an indicator that magma is released from isolated compartments due to large differential pressure leading to the rift intrusion.
Characterizing the structural maturity of fault zones using high-resolution earthquake locations.
NASA Astrophysics Data System (ADS)
Perrin, C.; Waldhauser, F.; Scholz, C. H.
2017-12-01
We use high-resolution earthquake locations to characterize the three-dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on immature faults (i.e., slow moving and small cumulative displacement), such as the 1992 (Mw7.3) Landers and 1999 (Mw7.1) Hector Mine events, and earthquakes that occurred on mature faults, such as the 1984 (Mw6.2) Morgan Hill and 2004 (Mw6.0) Parkfield events. Unlike previous studies which typically estimated the width of fault zones from the distribution of earthquakes perpendicular to the surface fault trace, we resolve fault zone widths with respect to the 3D fault surface estimated from principal component analysis of local seismicity. We find that the zone of brittle deformation around the fault core is narrower along mature faults compared to immature faults. We observe a rapid fall off of the number of events at a distance range of 70 - 100 m from the main fault surface of mature faults (140-200 m fault zone width), and 200-300 m from the fault surface of immature faults (400-600 m fault zone width). These observations are in good agreement with fault zone widths estimated from guided waves trapped in low velocity damage zones. The total width of the active zone of deformation surrounding the main fault plane reach 1.2 km and 2-4 km for mature and immature faults, respectively. The wider zone of deformation presumably reflects the increased heterogeneity in the stress field along complex and discontinuous faults strands that make up immature faults. In contrast, narrower deformation zones tend to align with well-defined fault planes of mature faults where most of the deformation is concentrated. Our results are in line with previous studies suggesting that surface fault traces become smoother, and thus fault zones simpler, as cumulative fault slip increases.
Local Deformation Precursors of Large Earthquakes Derived from GNSS Observation Data
NASA Astrophysics Data System (ADS)
Kaftan, Vladimir; Melnikov, Andrey
2017-12-01
Research on deformation precursors of earthquakes was of immediate interest from the middle to the end of the previous century. The repeated conventional geodetic measurements, such as precise levelling and linear-angular networks, were used for the study. Many examples of studies referenced to strong seismic events using conventional geodetic techniques are presented in [T. Rikitake, 1976]. One of the first case studies of geodetic earthquake precursors was done by Yu.A. Meshcheryakov [1968]. Rare repetitions, insufficient densities and locations of control geodetic networks made difficult predicting future places and times of earthquakes occurrences. Intensive development of Global Navigation Satellite Systems (GNSS) during the recent decades makes research more effective. The results of GNSS observations in areas of three large earthquakes (Napa M6.1, USA, 2014; El Mayor Cucapah M7.2, USA, 2010; and Parkfield M6.0, USA, 2004) are treated and presented in the paper. The characteristics of land surface deformation before, during, and after earthquakes have been obtained. The results prove the presence of anomalous deformations near their epicentres. The temporal character of dilatation and shear strain changes show existence of spatial heterogeneity of deformation of the Earth’s surface from months to years before the main shock close to it and at some distance from it. The revealed heterogeneities can be considered as deformation precursors of strong earthquakes. According to historical data and proper research values of critical deformations which are offered to be used for seismic danger scale creation based on continuous GNSS observations are received in a reference to the mentioned large earthquakes. It is shown that the approach has restrictions owing to uncertainty of the moment in the beginning of deformation accumulation and the place of expectation of another seismic event. Verification and clarification of the derived conclusions are proposed.
Method for formation of high quality back contact with screen-printed local back surface field
Rohatgi, Ajeet; Meemongkolkiat, Vichai
2010-11-30
A thin silicon solar cell having a back dielectric passivation and rear contact with local back surface field is described. Specifically, the solar cell may be fabricated from a crystalline silicon wafer having a thickness from 50 to 500 micrometers. A barrier layer and a dielectric layer are applied at least to the back surface of the silicon wafer to protect the silicon wafer from deformation when the rear contact is formed. At least one opening is made to the dielectric layer. An aluminum contact that provides a back surface field is formed in the opening and on the dielectric layer. The aluminum contact may be applied by screen printing an aluminum paste having from one to 12 atomic percent silicon and then applying a heat treatment at 750 degrees Celsius.
NASA Astrophysics Data System (ADS)
Proctor, B.; Mitchell, T. M.; Hirth, G.; Goldsby, D. L.; Di Toro, G.; Zorzi, F.
2013-12-01
High-velocity friction (HVF) experiments on bare rock surfaces have revealed various dynamic weakening processes (e.g., flash weakening, gel weakening, melt lubrication) that likely play a fundamental role in coseismic fault weakening. However, faults generally contain a thin layer of gouge separating the solid wallrocks, thus it is important to understand how the presence of gouge modifies the efficiency of these weakening processes at seismic slip rates. We explored the frictional behavior of bare surfaces and powdered samples of an antigorite-rich serpentinite (ARS) and a lizardite-rich serpentinite (LRS) at earthquake slip rates. HVF experiments were conducted with slip displacements ranging from ~0.5 to 2m, at velocities ranging from 0.002m/s to 6.5 m/s, and with normal stresses ranging from 2-22 MPa for gouge and 5-100MPa for bare surfaces. Our results demonstrate that the friction coefficient (μ) of powdered serpentine is significantly larger than that of bare surfaces under otherwise identical conditions. Bare surface friction decreases over a weakening distance of a few centimeters to a nominally steady-state value of ~0.1 at velocities greater than 0.1m/s. The nominal steady-state friction decreases non-linearly with increasing normal stress from 0.14 to 0.045 at 5 and ~100MPa respectfully at a slip velocity of 1m/s. Additionally, the recovery of frictional strength during deceleration depends on total displacement; samples slipped for ~50mm recover faster than samples slipped for ~0.5m. Microstructural analysis of bare surfaces deformed at the highest normal stresses revealed translucent glass-like material on the slip surfaces and XRD analysis of wear material revealed an increasing presence of olivine and enstatite with increasing normal stress. In contrast, gouge requires an order of magnitude higher velocity than bare surfaces to induce frictional weakening, has a larger weakening distance and higher steady state friction values for equivalent deformation conditions. Furthermore, we observe a strong normal stress dependence of the nominal steady state friction and the weakening distance of ARS and LRS gouge from 0.51 to 0.39 and from 25-10cm at 4MPa and 22MPa, respectfully, for at a slip velocity of 1m/s. Strain was localized onto a shear surface in the range of 100-300 microns wide in all gouge samples deformed at >10cm/s and XRD analyses revealed the presence of olivine and enstatite in samples with the most weakening and none in samples with no weakening. Our results indicate that dynamic weakening occurs in gouge at low normal stress in response to strain localization and shear heating of the slip surface. However, because more initial displacement is required to localize strain, weakening initiates at higher velocities and after larger weakening distances than bare surfaces. At higher normal stress, localization occurs after less displacement and the differences between gouge and bare-surface friction diminish; extrapolation of our data suggests that the behavior of serpentine gouge will approach that of bare surfaces at normal stresses ≥60 MPa.
Plastic strain arrangement in copper single crystals in sliding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumaevskii, Andrey V., E-mail: tch7av@gmail.com; Lychagin, Dmitry V., E-mail: dvl-tomsk@mail.ru; Tarasov, Sergei Yu., E-mail: tsy@ispms.tsc.ru
2014-11-14
Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zonesmore » were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.« less
Deformable structure registration of bladder through surface mapping.
Xiong, Li; Viswanathan, Akila; Stewart, Alexandra J; Haker, Steven; Tempany, Clare M; Chin, Lee M; Cormack, Robert A
2006-06-01
Cumulative dose distributions in fractionated radiation therapy depict the dose to normal tissues and therefore may permit an estimation of the risk of normal tissue complications. However, calculation of these distributions is highly challenging because of interfractional changes in the geometry of patient anatomy. This work presents an algorithm for deformable structure registration of the bladder and the verification of the accuracy of the algorithm using phantom and patient data. In this algorithm, the registration process involves conformal mapping of genus zero surfaces using finite element analysis, and guided by three control landmarks. The registration produces a correspondence between fractions of the triangular meshes used to describe the bladder surface. For validation of the algorithm, two types of balloons were inflated gradually to three times their original size, and several computerized tomography (CT) scans were taken during the process. The registration algorithm yielded a local accuracy of 4 mm along the balloon surface. The algorithm was then applied to CT data of patients receiving fractionated high-dose-rate brachytherapy to the vaginal cuff, with the vaginal cylinder in situ. The patients' bladder filling status was intentionally different for each fraction. The three required control landmark points were identified for the bladder based on anatomy. Out of an Institutional Review Board (IRB) approved study of 20 patients, 3 had radiographically identifiable points near the bladder surface that were used for verification of the accuracy of the registration. The verification point as seen in each fraction was compared with its predicted location based on affine as well as deformable registration. Despite the variation in bladder shape and volume, the deformable registration was accurate to 5 mm, consistently outperforming the affine registration. We conclude that the structure registration algorithm presented works with reasonable accuracy and provides a means of calculating cumulative dose distributions.
NASA Astrophysics Data System (ADS)
Konrad, H.; Sasgen, I.; Thoma, M.; Klemann, V.; Grosfeld, K.; Martinec, Z.
2013-12-01
The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation, and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.
NASA Astrophysics Data System (ADS)
Müller, Daniel; Walter, Thomas R.; Schöpa, Anne; Witt, Tanja; Steinke, Bastian; Gudmundsson, Magnús T.; Dürig, Tobias
2017-07-01
Fissure eruptions are commonly linked to magma dikes at depth, associated with elastic and anelastic surface deformation. Elastic deformation is well described by subsidence above, uplift and lateral widening perpendicular to the dike plane. The anelastic part is associated with the formation of a graben, bordered by graben parallel faults that might express as sets of fractures at the surface. Additionally secondary structures, like push ups, bends and step overs yield information about the deforming domain. The formation of such structures associated with fissure eruptions, however, is barely preserved in nature because of the rapid erosion or sediment coverage. Therefore, simple normal fault displacements are commonly assumed at dikes. At the 2014/2015 Holuhraun eruption sites (Iceland), evidence is increasing that the developing fractures are showing variations in their displacement modes. In an attempt to investigate these variations, a fieldwork mapping project combining Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicle (UAV) based aerophoto analysis was realized. From this data, we generated locally high resolution Digital Elevation Models (DEMs) and a structural map that allows for identification of kinematic indicators and assessing particularities of the observed structures. We identified 315 fracture segments from satellite data. For single segments we measured strike directions including the amount of opening and opening angles, indicating that many of the measured fractures show transtensional dislocations. Out of these, 81 % are showing significant left-lateral slip, only 17% right-lateral slip and 2% pure tensile opening. We show that local complexities in the fracture traces and geometries are closely related to variations in the transtensional opening direction. Moreover, we identified local changes in fracture azimuths and offsets close to eruption sites, which we speculate to be associated with geometrical changes in the magma feeder itself. Results highlight that opening of fractures associated with an erupting fissure commonly show transtensional modes having both, left-lateral and right-lateral slip, with important implications for interpreting the expression of surface structures at rift zones elsewhere. Results further highlight the great value of UAV based high resolution data to contribute to the integrity of observations of structural complexities at local geologic events.
Lithospheric thinning beneath rifted regions of Southern California.
Lekic, Vedran; French, Scott W; Fischer, Karen M
2011-11-11
The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.
Shatter cones at the Keurusselkä impact structure and their relation to local jointing
NASA Astrophysics Data System (ADS)
Hasch, Maximilian; Reimold, Wolf Uwe; Raschke, Ulli; Zaag, Patrice Tristan
2016-08-01
Shatter cones are the only distinct meso- to macroscopic recognition criterion for impact structures, yet not all is known about their formation. The Keurusselkä impact structure, Finland, is interesting in that it presents a multitude of well-exposed shatter cones in medium- to coarse-grained granitoids. The allegedly 27 km wide Keurusselkä impact structure was formed about 1150 Ma ago in rocks of the Central Finland Granitoid Complex. Special attention was paid in this work to possible relationships between shatter cones and local, as well as regionally occurring, fracture or joint systems. A possible shatter cone find outside the previously suggested edge of the structure could mean that the Keurusselkä impact structure is larger than previously thought. The spacing between joints/fractures from regional joint systems was influenced by the impact, but impact-induced fractures strongly follow the regional joint orientation trends. There is a distinct relationship between shatter cones and joints: shatter cones occur on and against joint surfaces of varied orientations and belonging to the regional orientation trends. Planar fractures (PF) and planar deformation features (PDF) were found in three shatter cone samples from the central-most part of the impact structure, whereas other country rock samples from the same level of exposure but further from the assumed center lack shock deformation features. PDF occurrence is enhanced within 5 mm of shatter cone surfaces, which is interpreted to suggest that shock wave reverberation at preimpact joints could be responsible for this local enhancement of shock deformation. Some shatter cone surfaces are coated with a quasi-opaque material which is also found in conspicuous veinlets that branch off from shatter cone surfaces and resemble pseudotachylitic breccia veins. The vein-filling is composed of two mineral phases, one of which could be identified as a montmorillonitic phyllosilicate. The second phase could not be identified yet. The original composition of the fill could not be determined. Further work is required on this material. Observed joints and fractures were discussed against findings from Barringer impact crater. They show that impact-induced joints in the basement rock do not follow impact-specific orientations (such as radial, conical, or concentric).
NASA Technical Reports Server (NTRS)
Van Dam, T. M.; Wahr, J. M.
1987-01-01
Atmospheric mass loads and deforms the earth's crust. By performing a convolution sum between daily, global barometric pressure data and mass loading Green's functions, the time dependent effects of atmospheric loading, including those associated with short-term synoptic storms, on surface point positioning measurements and surface gravity observations are estimated. The response for both an oceanless earth and an earth with an inverted barometer ocean is calculated. Load responses for near-coastal stations are significantly affected by the inclusion of an inverted barometer ocean. Peak-to-peak vertical displacements are frequently 15-20 mm with accompanying gravity perturbations of 3-6 micro Gal. Baseline changes can be as large as 20 mm or more. The perturbations are largest at higher latitudes and during winter months. These amplitudes are consistent with the results of Rabbel and Zschau (1985), who modeled synoptic pressure disturbances as Gaussian functions of radius around a central point. Deformation can be adequately computed using real pressure data from points within about 1000 km of the station. Knowledge of local pressure, alone, is not sufficient. Rabbel and Zschau's hypothesized corrections for these displacements, which use local pressure and the regionally averaged pressure, prove accurate at points well inland but are, in general, inadequate within a few hundred kilometers of the coast.
NASA Astrophysics Data System (ADS)
Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.
2012-09-01
The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.
3-D Localization Method for a Magnetically Actuated Soft Capsule Endoscope and Its Applications
Yim, Sehyuk; Sitti, Metin
2014-01-01
In this paper, we present a 3-D localization method for a magnetically actuated soft capsule endoscope (MASCE). The proposed localization scheme consists of three steps. First, MASCE is oriented to be coaxially aligned with an external permanent magnet (EPM). Second, MASCE is axially contracted by the enhanced magnetic attraction of the approaching EPM. Third, MASCE recovers its initial shape by the retracting EPM as the magnetic attraction weakens. The combination of the estimated direction in the coaxial alignment step and the estimated distance in the shape deformation (recovery) step provides the position of MASCE in 3-D. It is experimentally shown that the proposed localization method could provide 2.0–3.7 mm of distance error in 3-D. This study also introduces two new applications of the proposed localization method. First, based on the trace of contact points between the MASCE and the surface of the stomach, the 3-D geometrical model of a synthetic stomach was reconstructed. Next, the relative tissue compliance at each local contact point in the stomach was characterized by measuring the local tissue deformation at each point due to the preloading force. Finally, the characterized relative tissue compliance parameter was mapped onto the geometrical model of the stomach toward future use in disease diagnosis. PMID:25383064
Zhu, Liangjia; Gao, Yi; Appia, Vikram; Yezzi, Anthony; Arepalli, Chesnal; Faber, Tracy; Stillman, Arthur; Tannenbaum, Allen
2014-01-01
The left ventricular myocardium plays a key role in the entire circulation system and an automatic delineation of the myocardium is a prerequisite for most of the subsequent functional analysis. In this paper, we present a complete system for an automatic segmentation of the left ventricular myocardium from cardiac computed tomography (CT) images using the shape information from images to be segmented. The system follows a coarse-to-fine strategy by first localizing the left ventricle and then deforming the myocardial surfaces of the left ventricle to refine the segmentation. In particular, the blood pool of a CT image is extracted and represented as a triangulated surface. Then, the left ventricle is localized as a salient component on this surface using geometric and anatomical characteristics. After that, the myocardial surfaces are initialized from the localization result and evolved by applying forces from the image intensities with a constraint based on the initial myocardial surface locations. The proposed framework has been validated on 34-human and 12-pig CT images, and the robustness and accuracy are demonstrated. PMID:24723531
NASA Astrophysics Data System (ADS)
Brüstle, A.; Nivière, B.; Bertrand, G.; Gourry, J. C.; Carretier, S.; Fracassi, U.; Winter, T.
2003-04-01
The Upper Rhine Graben (URG) is a NNE-trending continental rift that was mostly active from Upper Eocene to Lower Miocene. However, the relatively well-preserved topography of its shoulders, at the scale of the whole basin, suggests a Pleistocene reactivation of its borders. We evaluate here such a possibility along its SE border, in the vincinity of Freiburg (Germany). Despite a continuous but diffuse seismic activity, evidences of near-surface deformations are not yet described. We coupled at the regional and local scales a multi-disciplinary approach, including morphological and geological analyses, to identify the markers of an assumed Pleistocene deformation. The imagery analysis reveals that the Oligocene structural pattern is yet well-marked in the topography by continuous escarpments, few tenth of kilometers long and from 20--30 to 300--500 m high. The correlation of boreholes allowed us to build isohypse and isopach maps of the Quaternary deposits and to propose a river system evolution scenario for the Quaternary. More interesting are the local depocenters located above the hanging wall of the faults and suggesting a Pleistocene tectonic reactivation. Thus, a minimum Pleistocene vertical offset of about 30 m can be illustrated above the main border fault. We then focused on the western Rhine river fault where very young deposits are suspected to have recorded a wechselian deformation. The morphological aspect of the scarp (location above the structural fault, linearity and continuity of the scarp, topographic tilting and presence of hanging valleys...), borehole data and electric tomography survey realized across the scarplet, located at toe of the main scarp, testify of a possible deformation. In particular, a ˜15 m vertical offset of the Wechselian deposits is illustrated in two localities, along the fault, where trenching will be performed in a near future to validate the ages of deformed deposits and obtain information on the strain scenario.
DeLong, Stephen B.; Lienkaemper, James J.; Pickering, Alexandra J; Avdievitch, Nikita N.
2015-01-01
The A.D. 2014 M6.0 South Napa earthquake, despite its moderate magnitude, caused significant damage to the Napa Valley in northern California (USA). Surface rupture occurred along several mapped and unmapped faults. Field observations following the earthquake indicated that the magnitude of postseismic surface slip was likely to approach or exceed the maximum coseismic surface slip and as such presented ongoing hazard to infrastructure. Using a laser scanner, we monitored postseismic deformation in three dimensions through time along 0.5 km of the main surface rupture. A key component of this study is the demonstration of proper alignment of repeat surveys using point cloud–based methods that minimize error imposed by both local survey errors and global navigation satellite system georeferencing errors. Using solid modeling of natural and cultural features, we quantify dextral postseismic displacement at several hundred points near the main fault trace. We also quantify total dextral displacement of initially straight cultural features. Total dextral displacement from both coseismic displacement and the first 2.5 d of postseismic displacement ranges from 0.22 to 0.29 m. This range increased to 0.33–0.42 m at 59 d post-earthquake. Furthermore, we estimate up to 0.15 m of vertical deformation during the first 2.5 d post-earthquake, which then increased by ∼0.02 m at 59 d post-earthquake. This vertical deformation is not expressed as a distinct step or scarp at the fault trace but rather as a broad up-to-the-west zone of increasing elevation change spanning the fault trace over several tens of meters, challenging common notions about fault scarp development in strike-slip systems. Integrating these analyses provides three-dimensional mapping of surface deformation and identifies spatial variability in slip along the main fault trace that we attribute to distributed slip via subtle block rotation. These results indicate the benefits of laser scanner surveys along active faults and demonstrate that fine-scale variability in fault slip has been missed by traditional earthquake response methods.
Modeling plastic deformation of post-irradiated copper micro-pillars
NASA Astrophysics Data System (ADS)
Crosby, Tamer; Po, Giacomo; Ghoniem, Nasr M.
2014-12-01
We present here an application of a fundamentally new theoretical framework for description of the simultaneous evolution of radiation damage and plasticity that can describe both in situ and ex situ deformation of structural materials [1]. The theory is based on the variational principle of maximum entropy production rate; with constraints on dislocation climb motion that are imposed by point defect fluxes as a result of irradiation. The developed theory is implemented in a new computational code that facilitates the simulation of irradiated and unirradiated materials alike in a consistent fashion [2]. Discrete Dislocation Dynamics (DDD) computer simulations are presented here for irradiated fcc metals that address the phenomenon of dislocation channel formation in post-irradiated copper. The focus of the simulations is on the role of micro-pillar boundaries and the statistics of dislocation pinning by stacking-fault tetrahedra (SFTs) on the onset of dislocation channel and incipient surface crack formation. The simulations show that the spatial heterogeneity in the distribution of SFTs naturally leads to localized plastic deformation and incipient surface fracture of micro-pillars.
NASA Astrophysics Data System (ADS)
Salvini, Francesco; Storti, Fabrizio
2001-01-01
In fault-related folds that form by axial surface migration, rocks undergo deformation as they pass through axial surfaces. The distribution and intensity of deformation in these structures has been impacted by the history of axial surface migration. Upon fold initiation, unique dip panels develop, each with a characteristic deformation intensity, depending on their history. During fold growth, rocks that pass through axial surfaces are transported between dip panels and accumulate additional deformation. By tracking the pattern of axial surface migration in model folds, we predict the distribution of relative deformation intensity in simple-step, parallel fault-bend and fault-propagation anticlines. In both cases the deformation is partitioned into unique domains we call deformation panels. For a given rheology of the folded multilayer, deformation intensity will be homogeneously distributed in each deformation panel. Fold limbs are always deformed. The flat crests of fault-propagation anticlines are always undeformed. Two asymmetric deformation panels develop in fault-propagation folds above ramp angles exceeding 29°. For lower ramp angles, an additional, more intensely-deformed panel develops at the transition between the crest and the forelimb. Deformation in the flat crests of fault-bend anticlines occurs when fault displacement exceeds the length of the footwall ramp, but is never found immediately hinterland of the crest to forelimb transition. In environments dominated by brittle deformation, our models may serve as a first-order approximation of the distribution of fractures in fault-related folds.
Kong, Seong-Ho; Haouchine, Nazim; Soares, Renato; Klymchenko, Andrey; Andreiuk, Bohdan; Marques, Bruno; Shabat, Galyna; Piechaud, Thierry; Diana, Michele; Cotin, Stéphane; Marescaux, Jacques
2017-07-01
Augmented reality (AR) is the fusion of computer-generated and real-time images. AR can be used in surgery as a navigation tool, by creating a patient-specific virtual model through 3D software manipulation of DICOM imaging (e.g., CT scan). The virtual model can be superimposed to real-time images enabling transparency visualization of internal anatomy and accurate localization of tumors. However, the 3D model is rigid and does not take into account inner structures' deformations. We present a concept of automated AR registration, while the organs undergo deformation during surgical manipulation, based on finite element modeling (FEM) coupled with optical imaging of fluorescent surface fiducials. Two 10 × 1 mm wires (pseudo-tumors) and six 10 × 0.9 mm fluorescent fiducials were placed in ex vivo porcine kidneys (n = 10). Biomechanical FEM-based models were generated from CT scan. Kidneys were deformed and the shape changes were identified by tracking the fiducials, using a near-infrared optical system. The changes were registered automatically with the virtual model, which was deformed accordingly. Accuracy of prediction of pseudo-tumors' location was evaluated with a CT scan in the deformed status (ground truth). In vivo: fluorescent fiducials were inserted under ultrasound guidance in the kidney of one pig, followed by a CT scan. The FEM-based virtual model was superimposed on laparoscopic images by automatic registration of the fiducials. Biomechanical models were successfully generated and accurately superimposed on optical images. The mean measured distance between the estimated tumor by biomechanical propagation and the scanned tumor (ground truth) was 0.84 ± 0.42 mm. All fiducials were successfully placed in in vivo kidney and well visualized in near-infrared mode enabling accurate automatic registration of the virtual model on the laparoscopic images. Our preliminary experiments showed the potential of a biomechanical model with fluorescent fiducials to propagate the deformation of solid organs' surface to their inner structures including tumors with good accuracy and automatized robust tracking.
NASA Astrophysics Data System (ADS)
Reaungamornrat, S.; Liu, W. P.; Schafer, S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Richmon, J.; Sorger, J.; Siewerdsen, J. H.; Taylor, R. H.
2013-03-01
Purpose: An increasingly popular minimally invasive approach to resection of oropharyngeal / base-of-tongue cancer is made possible by a transoral technique conducted with the assistance of a surgical robot. However, the highly deformed surgical setup (neck flexed, mouth open, and tongue retracted) compared to the typical patient orientation in preoperative images poses a challenge to guidance and localization of the tumor target and adjacent critical anatomy. Intraoperative cone-beam CT (CBCT) can account for such deformation, but due to the low contrast of soft-tissue in CBCT images, direct localization of the target and critical tissues in CBCT images can be difficult. Such structures may be more readily delineated in preoperative CT or MR images, so a method to deformably register such information to intraoperative CBCT could offer significant value. This paper details the initial implementation of a deformable registration framework to align preoperative images with the deformed intraoperative scene and gives preliminary evaluation of the geometric accuracy of registration in CBCT-guided TORS. Method: The deformable registration aligns preoperative CT or MR to intraoperative CBCT by integrating two established approaches. The volume of interest is first segmented (specifically, the region of the tongue from the tip to the hyoid), and a Gaussian mixture (GM) mode1 of surface point clouds is used for rigid initialization (GMRigid) as well as an initial deformation (GMNonRigid). Next, refinement of the registration is performed using the Demons algorithm applied to distance transformations of the GM-registered and CBCT volumes. The registration accuracy of the framework was quantified in preliminary studies using a cadaver emulating preoperative and intraoperative setups. Geometric accuracy of registration was quantified in terms of target registration error (TRE) and surface distance error. Result: With each step of the registration process, the framework demonstrated improved registration, achieving mean TRE of 3.0 mm following the GM rigid, 1.9 mm following GM nonrigid, and 1.5 mm at the output of the registration process. Analysis of surface distance demonstrated a corresponding improvement of 2.2, 0.4, and 0.3 mm, respectively. The evaluation of registration error revealed the accurate alignment in the region of interest for base-of-tongue robotic surgery owing to point-set selection in the GM steps and refinement in the deep aspect of the tongue in the Demons step. Conclusions: A promising framework has been developed for CBCT-guided TORS in which intraoperative CBCT provides a basis for registration of preoperative images to the highly deformed intraoperative setup. The registration framework is invariant to imaging modality (accommodating preoperative CT or MR) and is robust against CBCT intensity variations and artifact, provided corresponding segmentation of the volume of interest. The approach could facilitate overlay of preoperative planning data directly in stereo-endoscopic video in support of CBCT-guided TORS.
NASA Astrophysics Data System (ADS)
Hwang, Byoungchul; Lee, Tae-Ho; Kim, Sung-Joon
2010-12-01
Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-(0.3˜0.6)N stainless steels with different alloying elements were investigated by means of Charpy impact tests and microstructural analyses. The steels all exhibited ductile-to-brittle transition behavior due to unusual brittle fracture at low temperatures despite having a face-centered cubic structure. The ductileto-brittle transition temperature (DBTT) obtained from Chapry impact tests did not coincide with that predicted by an empirical equation depending on N content in austenitic Cr-Mn-N stainless steels. Furthermore, a decrease of grain size was not effective in terms of lowering DBTT. Electron back-scattered diffraction and transmission electron microscopy analyses of the cross-sectional area of the fracture surface showed that some austenites with lower stability could be transformed to α'-martensite by localized plastic deformation near the fracture surface. Based on these results, it was suggested that when austenitic 18Cr-10Mn-N stainless steels have limited Ni, Mo, and N content, the deterioration of austenite stability promotes the formation of deformation-induced martensite and thus increases DBTT by substantially decreasing low-temperature toughness.
Are Geotehrmal Reservoirs Stressed Out?
NASA Astrophysics Data System (ADS)
Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.
2017-12-01
Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the correlation between the reservoir geometry and models of the local stress state.
Recently active contractile deformation in the forearc of southern Peru
NASA Astrophysics Data System (ADS)
Hall, S. R.; Farber, D.; Audin, L.; Finkel, R. C.
2010-12-01
In the Precordillera and Western Cordillera of southern Peru (14°-18°S), vast pediment surfaces have been abandoned through drainage diversion and river incision, with the major drainages carving deep canyons. Within this region, we have identified range-sub-parallel contractile structures that accommodate significant distributed crustal deformation. Young geomorphic features document both the presence and youthfulness of these contractile structures. Here, we determine exposure ages on geomorphic features such as pediment surfaces and fluvial terraces using in situ produced cosmogenic radionuclides, in conjunction with field and remote mapping. This chronologic data reveals that ancient surfaces have been preserved as a result of very low erosion rates. We measure this rate to be <0.5m/Ma on genetically similar surfaces spanning over 4 degrees of latitude throughout this region. While many ancient surfaces are preserved in forearc localities, we also observe young (30ka-1Ma) low-relief pediment surfaces modified by recent processes. Specifically, active structures accommodating compressional stresses locally displace active drainages and offset river terraces leading to their abandonment. Based on our chronology and geomorphic mapping, we calculate a Pleistocene river incision rate of ~0.3mm/yr determined from data collected along exoreic rivers. This rate is consistent with longer-term incision rates measured in other localities along this margin. We suggest that, in this region of southern Peru, the steep western wedge of the Andean margin supports the high topography of the Altiplano through a combination of uplift along steeply dipping contractile west-vergent structures and isostatic responses to the focused removal of large amounts of crustal material through canyon incision. Further, that these range sub-parallel structures are related at depth to a thrust system that plays a role in not only the maintenance of the Andean margin, but potentially in its formation as well.
Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass
Gao, Meng; Dong, Jie; Huan, Yong; Wang, Yong Tian; Wang, Wei-Hua
2016-01-01
The macroscopic tensile plasticity of bulk metallic glasses (BMGs) is highly desirable for various engineering applications. However, upon yielding, plastic deformation of BMGs is highly localized into narrow shear bands and then leads to the “work softening” behaviors and subsequently catastrophic fracture, which is the major obstacle for their structural applications. Here we report that macroscopic tensile plasticity in BMG can be obtained by designing surface pore distribution using laser surface texturing. The surface pore array by design creates a complex stress field compared to the uniaxial tensile stress field of conventional glassy specimens, and the stress field scalarization induces the unusual tensile plasticity. By systematically analyzing fracture behaviors and finite element simulation, we show that the stress field scalarization can resist the main shear band propagation and promote the formation of larger plastic zones near the pores, which undertake the homogeneous tensile plasticity. These results might give enlightenment for understanding the deformation mechanism and for further improvement of the mechanical performance of metallic glasses. PMID:26902264
Nassar, H; Lebée, A; Monasse, L
2017-01-01
Origami tessellations are particular textured morphing shell structures. Their unique folding and unfolding mechanisms on a local scale aggregate and bring on large changes in shape, curvature and elongation on a global scale. The existence of these global deformation modes allows for origami tessellations to fit non-trivial surfaces thus inspiring applications across a wide range of domains including structural engineering, architectural design and aerospace engineering. The present paper suggests a homogenization-type two-scale asymptotic method which, combined with standard tools from differential geometry of surfaces, yields a macroscopic continuous characterization of the global deformation modes of origami tessellations and other similar periodic pin-jointed trusses. The outcome of the method is a set of nonlinear differential equations governing the parametrization, metric and curvature of surfaces that the initially discrete structure can fit. The theory is presented through a case study of a fairly generic example: the eggbox pattern. The proposed continuous model predicts correctly the existence of various fittings that are subsequently constructed and illustrated.
NASA Astrophysics Data System (ADS)
Nassar, H.; Lebée, A.; Monasse, L.
2017-01-01
Origami tessellations are particular textured morphing shell structures. Their unique folding and unfolding mechanisms on a local scale aggregate and bring on large changes in shape, curvature and elongation on a global scale. The existence of these global deformation modes allows for origami tessellations to fit non-trivial surfaces thus inspiring applications across a wide range of domains including structural engineering, architectural design and aerospace engineering. The present paper suggests a homogenization-type two-scale asymptotic method which, combined with standard tools from differential geometry of surfaces, yields a macroscopic continuous characterization of the global deformation modes of origami tessellations and other similar periodic pin-jointed trusses. The outcome of the method is a set of nonlinear differential equations governing the parametrization, metric and curvature of surfaces that the initially discrete structure can fit. The theory is presented through a case study of a fairly generic example: the eggbox pattern. The proposed continuous model predicts correctly the existence of various fittings that are subsequently constructed and illustrated.
NASA Astrophysics Data System (ADS)
Salzer, Jacqueline T.; Milillo, Pietro; Varley, Nick; Perissin, Daniele; Pantaleo, Michele; Walter, Thomas R.
2017-04-01
Active volcanoes often display cyclic behaviour with alternating quiescent and eruptive periods. Continuously monitoring volcanic processes such as deformation, seismicity and degassing, irrespective of their current status, is crucial for understanding the parameters governing the fluid transport within the edifice and the transitions between different regimes. However, mapping the deformation and details of fluid escape at the summit of steep sloped volcanoes and integrating these with other types of data is challenging. Here we present for the first time the near-3D surface deformation field derived from high resolution radar interferometry (InSAR) acquired by the satellite TerraSAR-X at a degassing volcano dome and interpret the results in combination with overflight infrared and topographic data. We find that the results strongly differ depending on the chosen InSAR time series method, which potentially overprints the true physical complexities of small scale, shallow deformation processes. We present a new method for accurate mapping of heterogeneities in the dome deformation, and comparison to the topography and precisely located surface temperature anomalies. The identified deformation is dominated by strong but highly localized subsidence of the summit dome. Our results highlight the competing effects of the topography, permeability and shallow volcanic structures controlling the degassing pathways. On small spatial scales compaction sufficiently reduced the dome permeability to redirect the fluid flow. High resolution InSAR monitoring of volcanic domes thus provides valuable data for constraining models of their internal structure, degassing pathways and densification processes.
NASA Astrophysics Data System (ADS)
Branicio, Paulo S.; Vastola, Guglielmo; Jhon, Mark H.; Sullivan, Michael B.; Shenoy, Vivek B.; Srolovitz, David J.
2016-10-01
The deformation of graphene due to the chemisorption of hydrogen atoms on its surface and the long-range elastic interaction between hydrogen atoms induced by these deformations are investigated using a multiscale approach based on first principles, empirical interactions, and continuum modeling. Focus is given to the intrinsic low-temperature structure and interactions. Therefore, all calculations are performed at T =0 , neglecting possible temperature or thermal fluctuation effects. Results from different methods agree well and consistently describe the local deformation of graphene on multiple length scales reaching 500 Å . The results indicate that the elastic interaction mediated by this deformation is significant and depends on the deformation of the graphene sheet both in and out of plane. Surprisingly, despite the isotropic elasticity of graphene, within the linear elastic regime, atoms elastically attract or repel each other depending on (i) the specific site they are chemisorbed; (ii) the relative position of the sites; (iii) and if they are on the same or on opposite surface sides. The interaction energy sign and power-law decay calculated from molecular statics agree well with theoretical predictions from linear elasticity theory, considering in-plane or out-of-plane deformations as a superposition or in a coupled nonlinear approach. Deviations on the exact power law between molecular statics and the linear elastic analysis are evidence of the importance of nonlinear effects on the elasticity of monolayer graphene. These results have implications for the understanding of the generation of clusters and regular formations of hydrogen and other chemisorbed atoms on graphene.
Sinuous Flow in Cutting of Metals
NASA Astrophysics Data System (ADS)
Yeung, Ho; Viswanathan, Koushik; Udupa, Anirudh; Mahato, Anirban; Chandrasekar, Srinivasan
2017-11-01
Using in situ high-speed imaging, we unveil details of a highly unsteady plastic flow mode in the cutting of annealed and highly strain-hardening metals. This mesoscopic flow mode, termed sinuous flow, is characterized by repeated material folding, large rotation, and energy dissipation. Sinuous flow effects a very large shape transformation, with local strains of ten or more, and results in a characteristic mushroomlike surface morphology that is quite distinct from the well-known morphologies of metal-cutting chips. Importantly, the attributes of this unsteady flow are also fundamentally different from other well-established unsteady plastic flows in large-strain deformation, like adiabatic shear bands. The nucleation and development of sinuous flow, its dependence on material properties, and its manifestation across material systems are demonstrated. Plastic buckling and grain-scale heterogeneity are found to play key roles in triggering this flow at surfaces. Implications for modeling and understanding flow stability in large-strain plastic deformation, surface quality, and preparation of near-strain-free surfaces by cutting are discussed. The results point to the inadequacy of the widely used shear-zone models, even for ductile metals.
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.
1976-01-01
A lamellar nickel-base directionally-solidified eutectic gamma/gamma prime-delta alloy has potential as an advanced gas turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 750 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability may not be a serious problem in the use of this alloy.
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.
1975-01-01
The lamellar directionally solidified nickel-base eutectic alloy gamma/gamma prime-delta has potential as an advanced turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 705 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and the appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability is not a serious problem in the use of this alloy.
NASA Astrophysics Data System (ADS)
Chikode, Prashant; Sabale, Sandip; Chavan, Sugam
2017-01-01
Holographic interferometry is mainly used for the non-destructive testing of various materials and metals in industry, engineering and technological fields. This technique may used to study the elastic properties of materials. We have used the double exposure holographic interferometry (DEHI) to study the surface deformation and elastic constant such as Young's modulus of mechanically stressed aerogel samples. Efforts have been made in the past to use non-destructive techniques like sound velocity measurements through aerogels. Hydrophobic Silica aerogels were prepared by the sol-gel process followed by supercritical methanol drying. The molar ratio of tetramethoxysilane: methyltrimethoxysilane: H2O constant at 1.2:0.8:6 while the methanol / tetramethoxysilane molar ratio (M) was varied systematically from 14 to 20 to obtain hydrophobic silica aerogels. After applying the weights on the sample in grams, double exposure holograms of aerogel samples have been successfully recorded. Double exposure causes localization of interference fringes on the aerogel surface and these fringes are used to determine the surface deformation and elastic modulus of the aerogels and they are in good agreement with the experiments performed by using four point bending. University Grants Commission for Minor Research Project and Department of Science and Technology for FIST Program.
Nishimura, T.; Thatcher, W.
2003-01-01
We have modeled the broad postseismic uplift measured by geodetic leveling in the epicentral area of the 1959 Mw = 7.3 Hebgen Lake, Montana earthquake, a normal faulting event in the northern Basin and Range province. To fit the observed uplift we calculate synthetic postseismic deformation using the relaxation response of a gravitational viscoelastic Earth to the earthquake. For a model with an elastic plate overlying a viscoelastic half-space, we find that the elastic thickness is 38 ?? 8 km, which isclose to the local crustal thickness. The half-space viscosity is estimated at 4 ?? 1018??0.5 Pa s. The leveling data do not require a viscous lower crust but permit a lower bound viscosity of 1020 Pa s. The observed broad uplift cannot be explained by physically plausible afterslip on and below the coseismic fault. However, local deformation across the coseismic surface rupture requires shallow afterslip reaching the surface. The postseismic deformation induced by the estimated viscoelastic structure decays exponentially with a time constant of ???15 years. Because of coupling between the elastic layer and the viscoelastic substrate, this relaxation time is significantly longer than the 2 year Maxwell relaxation time of the viscous half-space itself. Our result suggests the importance of postseismic relaxation in interpreting high-precision global positioning system velocities. For example, our model results suggest that postseismic transient velocities from both the 1959 Hebgen Lake and the 1983 Mw = 6.9 Borah Peak earthquakes are currently as large as 1-2 mm/yr.
NASA Astrophysics Data System (ADS)
Kukla, D.; Brynk, T.; Pakieła, Z.
2017-08-01
This work presents the results of fatigue tests of MAR 247 alloy flat specimens with aluminides layers of 20 or 40 µm thickness obtained in CVD process. Fatigue test was conducted at amplitude equal to half of maximum load and ranging between 300 and 650 MPa (stress asymmetry ratio R = 0, frequency f = 20 Hz). Additionally, 4 of the tests, characterized by the highest amplitude, were accompanied with non-contact strain field measurements by means of electronic speckle pattern interferometry and digital image correlation. Results of these measurements allowed to localize the areas of deformation concentration identified as the damage points of the surface layer or advanced crack presence in core material. Identification and observation of the development of deformation in localization areas allowed to assess fatigue-related phenomena in both layer and substrate materials.
Ocean Classification of Dynamical Structures Detected by SAR and Spectral Methods
NASA Astrophysics Data System (ADS)
Redondo, J. M.; Martinez-Benjamin, J. J.; Tellez, J. D.; Jorge, J.; Diez, M.; Sekula, E.
2016-08-01
We discuss a taxonomy of different dynamical features in the ocean surface and provide some eddy and front statistics, as well as describing some events detected by several satellites and even with additional cruise observations and measurements, in the North-west Mediterranean Sea area between 1996 and 2012. The structure of the flows are presented using self-similar traces that may be used to parametrize mixing at both limits of the Rossby Deformation Radius scale, RL. Results show the ability to identify different SAR signatures and at the same time provide calibrations for the different local configurations of vortices, spirals, Langmuir cells, oil spills and tensioactive slicks that eventually allow the study of the self-similar structure of the turbulence. Depending on the surface wind and wave level, and also on the fetch. the bathimetry, the spiral parameters and the resolution of vortical features change. Previous descriptions did not include the new wind and buoyancy features. SAR images also show the turbulence structure of the coastal area and the Regions of Fresh Water Influence (ROFI). It is noteworthy tt such complex coastal field-dependent behavior is strongly influenced by stratification and rotation of the turbulence spectrum is observed only in the range smaller than the local Rossby deformation radius, RL. The measures of diffusivity from buoy or tracer experiments are used to calibrate the behavior of different tracers and pollutants, both natural and man-made in the NW Mediterranean Sea. Thanks to different polarization and intensity levels in ASAR satellite imagery, these can be used to distinguish between natural and man-made sea surface features due to their distinct self-similar and fractal as a function of spill and slick parameters, environmental conditions and history of both oil releases and weather conditions. Eddy diffusivity map derived from SAR measurements of the ocean surface, performing a feature spatial correlation of the available images of the region are presented. Both the multi fractal discrimination of the local features and the diffusivity measurements are important to evaluate the state of the environment. The distribution of meso-scale vortices of size, the Rossby deformation scale and other dominant features can be used to distinguish features in the ocean surface. Multi-fractal analysis is then very usefull. The SAR images exhibited a large variation of natural features produced by winds, internal waves, the bathymetric distribution, by convection, rain, etc as all of these produce variations in the sea surface roughness so that the topological changes may be studied and classified. In a similar way bathimetry may be studied with the methodology described here using the coastline and the thalwegs as generators of local vertical vorticity.
The effect of short ground vegetation on terrestrial laser scans at a local scale
NASA Astrophysics Data System (ADS)
Fan, Lei; Powrie, William; Smethurst, Joel; Atkinson, Peter M.; Einstein, Herbert
2014-09-01
Terrestrial laser scanning (TLS) can record a large amount of accurate topographical information with a high spatial accuracy over a relatively short period of time. These features suggest it is a useful tool for topographical survey and surface deformation detection. However, the use of TLS to survey a terrain surface is still challenging in the presence of dense ground vegetation. The bare ground surface may not be illuminated due to signal occlusion caused by vegetation. This paper investigates vegetation-induced elevation error in TLS surveys at a local scale and its spatial pattern. An open, relatively flat area vegetated with dense grass was surveyed repeatedly under several scan conditions. A total station was used to establish an accurate representation of the bare ground surface. Local-highest-point and local-lowest-point filters were applied to the point clouds acquired for deriving vegetation height and vegetation-induced elevation error, respectively. The effects of various factors (for example, vegetation height, edge effects, incidence angle, scan resolution and location) on the error caused by vegetation are discussed. The results are of use in the planning and interpretation of TLS surveys of vegetated areas.
Surface dynamics and mechanics in liquid crystal polymer coatings
NASA Astrophysics Data System (ADS)
Liu, Danqing; Broer, Dirk J.
2015-03-01
Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.
Investigation of Portevin-Le Chatelier effect in 5456 Al-based alloy using digital image correlation
NASA Astrophysics Data System (ADS)
Cheng, Teng; Xu, Xiaohai; Cai, Yulong; Fu, Shihua; Gao, Yue; Su, Yong; Zhang, Yong; Zhang, Qingchuan
2015-02-01
A variety of experimental methods have been proposed for Portevin-Le Chatelier (PLC) effect. They mainly focused on the in-plane deformation. In order to achieve the high-accuracy measurement, three-dimensional digital image correlation (3D-DIC) was employed in this work to investigate the PLC effect in 5456 Al-based alloy. The temporal and spatial evolutions of deformation in the full field of specimen surface were observed. The large deformation of localized necking was determined experimentally. The distributions of out-of-plane displacement over the loading procedure were also obtained. Furthermore, a comparison of measurement accuracy between two-dimensional digital image correlation (2D-DIC) and 3D-DIC was also performed. Due to the theoretical restriction, the measurement accuracy of 2D-DIC decreases with the increase of deformation. A maximum discrepancy of about 20% with 3D-DIC was observed in this work. Therefore, 3D-DIC is actually more essential for the high-accuracy investigation of PLC effect.
Droplet Breakup Mechanisms in Air-blast Atomizers
NASA Astrophysics Data System (ADS)
Aliabadi, Amir Abbas; Taghavi, Seyed Mohammad; Lim, Kelly
2011-11-01
Atomization processes are encountered in many natural and man-made phenomena. Examples are pollen release by plants, human cough or sneeze, engine fuel injectors, spray paint and many more. The physics governing the atomization of liquids is important in understanding and utilizing atomization processes in both natural and industrial processes. We have observed the governing physics of droplet breakup in an air-blast water atomizer using a high magnification, high speed, and high resolution LASER imaging technique. The droplet breakup mechanisms are investigated in three major categories. First, the liquid drops are flattened to form an oblate ellipsoid (lenticular deformation). Subsequent deformation depends on the magnitude of the internal forces relative to external forces. The ellipsoid is converted into a torus that becomes stretched and disintegrates into smaller drops. Second, the drops become elongated to form a long cylindrical thread or ligament that break up into smaller drops (Cigar-shaped deformation). Third, local deformation on the drop surface creates bulges and protuberances that eventually detach themselves from the parent drop to form smaller drops.
NASA Astrophysics Data System (ADS)
Liu, Yuan-Kai; Ruch, Joël; Vasyura-Bathke, Hannes; Jónsson, Sigurjón
2017-04-01
Ground deformation analyses of several subsiding calderas have shown complex and overlapping deformation signals, with a broad deflation signal that affects the entire volcanic edifice and localized subsidence focused within the caldera. However, the relation between deep processes at subsiding calderas, including magmatic sources and faulting, and the observed surface deformation is still debated. Several recent examples of subsiding calderas in the Galápagos archipelago and at the Axial seamount in the Pacific Ocean indicate that ring fault activity plays an important role not only during caldera collapse, but also during initial stages of caldera subsidence. Nevertheless, ring fault activity has rarely been integrated into numerical models of subsiding calderas. Here we report on sandbox analogue experiments that we use to study the processes involved from an initial subsidence to a later collapse of calderas. The apparatus is composed of a subsiding half piston section connected to the bottom of a glass box and driven by a motor to control its subsidence. We analyze at the same time during the subsidence the 3D displacement at the model surface with a laser scanner and the 2D ring fault evolution on the side of the model (cross-section) with a side-view digital camera. We further use PIVLab, a time-resolved digital image correlation software tool, to extract strain and velocity fields at both the surface and in cross-section. This setup allows to track processes acting at depth and assess their relative importance as the collapse evolves. We further compare our results with the examples observed in nature as well as with numerical models that integrate ring faults.
Neotectonic Deformation in Central Eurasia: A Geodynamic Model Approach
NASA Astrophysics Data System (ADS)
Tunini, Lavinia; Jiménez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume; Bird, Peter
2017-11-01
Central Eurasia hosts wide orogenic belts of collision between India and Arabia with Eurasia, with diffuse or localized deformation occurring up to hundreds of kilometers from the primary plate boundaries. Although numerous studies have investigated the neotectonic deformation in central Eurasia, most of them have focused on limited segments of the orogenic systems. Here we explore the neotectonic deformation of all of central Eurasia, including both collision zones and the links between them. We use a thin-spherical sheet approach in which lithosphere strength is calculated from lithosphere structure and its thermal regime. We investigate the contributions of variations in lithospheric structure, rheology, boundary conditions, and fault friction coefficients on the predicted velocity and stress fields. Results (deformation pattern, surface velocities, tectonic stresses, and slip rates on faults) are constrained by independent observations of tectonic regime, GPS, and stress data. Our model predictions reproduce the counterclockwise rotation of Arabia and Iran, the westward escape of Anatolia, and the eastward extrusion of the northern Tibetan Plateau. To simulate the observed extensional faults in the Tibetan Plateau, a weaker lithosphere is required, provided by a change in the rheological parameters. The southward movement of the SE Tibetan Plateau can be explained by the combined effects of the Sumatra trench retreat, a thinner lithospheric mantle, and strik-slip faults in the region. This study offers a comprehensive model for regions with little or no data coverage, like the Arabia-India intercollision zone, where the surface velocity is northward showing no deflection related to Arabia and India indentations.
Postseismic Deformation: Different mechanisms in different times and places.
NASA Astrophysics Data System (ADS)
Segall, P.
2004-12-01
Improved understanding of postseismic deformation may elucidate time dependent stress transfer and triggered seismicity following large earthquakes. Afterslip, distributed viscoelastic flow, and poroelastic relaxation alter crustal stress and pore pressure distributions and in many cases lead to distinctive surface deformation patterns. Delayed triggering, due to rate and state dependent friction, on the other hand need not lead to detectable surface deformation. Postseismic deformation recorded following the 1999 ChiChi, Taiwan, 2003 Tokachi-Oki, Japan, and 2000 south Iceland earthquakes can be used to test for the effects of these processes. Horizontal displacements of 10 cm accumulated in the first year following the Chi-Chi quake. These are best explained with continued slip on the Chelungpu fault (Hsu et al, G.R.L. 2002). Inversions indicate the afterslip was roughly localized in a ring around the locus of maximum coseismic slip. The observed displacement pattern is inconsistent with predictions from viscoelastic and poroelastic models. Viscoelastic relaxation of the lower crust produces shortening of the hanging wall instead of the observed extension. The fully drained poroelastic response predicts deformation concentrated near the fault ends, which was not observed. Fully time dependent calculations, however, are still required because poroelastic displacements need not be monotonic. Afterslip following the M 8 Tokachi Oki earthquake is also localized around the area of high mainshock slip (Miyazaki et al, GRL, 2004). Surprisingly, the slip is not located downdip of the mainshock, but along strike of the source region. This indicates that the transient deformation is not caused by deceleration of the earthquake instability, but rather by stress increases due to the mainshock. A major question is whether intermediate depth afterslip following the Tokachi Oki and ChiChi earthquakes occurs in stable (steady state velocity strengthening) areas which will never initiate fast earthquake slip, or on unstable (velocity weakening) parts of the fault that slipped in a stable fashion following the earthquakes due to the pre-earthquake fault state and stress. Resolution of this question has important implications for future earthquakes in these areas. Postseismic deformation in the month following the South Iceland earthquakes was clearly detected by InSAR. The spatial and temporal patterns are inconsistent with both afterslip and viscoelastic deformation. The InSAR data are, however, well explained by a rapid poroelastic response. This was confirmed by water level changes with the same spatial and temporal scales as the deformation (Jónsson et al, Nature, 2003). The decay of aftershocks is substantially longer that the poroelastic relaxation, suggesting that poroelastic effects do not control the timing of triggered earthquakes. The InsAR data, however, are insensitive to pore pressure changes at the depths of most aftershocks. At longer time scales, other processes dominate the observed deformation (Arnadottir, this meeting). An inescapable conclusion of these studies is that different physical processes dominate postseismic deformation in different geologic environments at different time scales.
Shells, orbit bifurcations, and symmetry restorations in Fermi systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magner, A. G., E-mail: magner@kinr.kiev.ua; Koliesnik, M. V.; Arita, K.
The periodic-orbit theory based on the improved stationary-phase method within the phase-space path integral approach is presented for the semiclassical description of the nuclear shell structure, concerning themain topics of the fruitful activity ofV.G. Soloviev. We apply this theory to study bifurcations and symmetry breaking phenomena in a radial power-law potential which is close to the realistic Woods–Saxon one up to about the Fermi energy. Using the realistic parametrization of nuclear shapes we explain the origin of the double-humped fission barrier and the asymmetry in the fission isomer shapes by the bifurcations of periodic orbits. The semiclassical origin of themore » oblate–prolate shape asymmetry and tetrahedral shapes is also suggested within the improved periodic-orbit approach. The enhancement of shell structures at some surface diffuseness and deformation parameters of such shapes are explained by existence of the simple local bifurcations and new non-local bridge-orbit bifurcations in integrable and partially integrable Fermi-systems. We obtained good agreement between the semiclassical and quantum shell-structure components of the level density and energy for several surface diffuseness and deformation parameters of the potentials, including their symmetry breaking and bifurcation values.« less
Influence of deformed surface diffuseness on alpha decay half-lives of actinides and lanthanides
NASA Astrophysics Data System (ADS)
Dahmardeh, S.; Alavi, S. A.; Dehghani, V.
2017-07-01
By using semiclassical WKB method and taking into account the Bohr-Sommerfeld quantization condition, the alpha decay half-lives of some deformed lanthanide (with 151 ≤ A ≤ 160 and 66 ≤ Z ≤ 73) and rare-earth nuclei (with 217 ≤ A ≤ 261 and 92 ≤ Z ≤ 104) have been calculated. The effective potential has been considered as sum of deformed Woods-Saxon nuclear potential, deformed Coulomb potential, and centrifugal potential. The influence of deformed surface diffuseness on the potential barrier, transmission coefficient at each angle, assault frequency, and alpha decay half-lives has been investigated. Good agreement between calculated half-lives with deformed surface diffuseness and experiment is observed. Relative differences between calculated half-lives with deformed surface diffuseness and with constant surface diffuseness were significant.
NASA Astrophysics Data System (ADS)
Welch, Mark D.; Schmidt, David A.
2017-09-01
Over the past two decades, GPS and leveling surveys have recorded cycles of inflation and deflation associated with dome building eruptions at Mount St. Helens. Due to spatial and temporal limitations of the data, it remains unknown whether any deformation occurred prior to the most recent eruption of 2004, information which could help anticipate future eruptions. Interferometric Synthetic Aperture Radar (InSAR), which boasts fine spatial resolution over large areas, has the potential to resolve pre-eruptive deformation that may have occurred, but eluded detection by campaign GPS surveys because it was localized to the edifice or crater. Traditional InSAR methods are challenging to apply in the Cascades volcanic arc because of a combination of environmental factors, and past attempts to observe deformation at Mount St. Helens were unable to make reliable observations in the crater or on much of the edifice. In this study, Persistent Scatterer InSAR, known to mitigate issues of decorrelation caused by environmental factors, is applied to four SAR data sets in an attempt to resolve localized sources of deformation on the volcano between 1995 and 2010. Many interferograms are strongly influenced by phase delay from atmospheric water vapor and require correction, evidenced by a correlation between phase and topography. To assess the bias imposed by the atmosphere, we perform sensitivity tests on a suite of atmospheric correction techniques, including several that rely on the correlation of phase delay to elevation, and explore approaches that directly estimate phase delay using the ERA-Interim and NARR climate reanalysis data sets. We find that different correction methods produce velocities on the edifice of Mount St. Helens that differ by up to 1 cm/yr due to variability in how atmospheric artifacts are treated in individual interferograms. Additionally, simple phase-based techniques run the risk of minimizing any surface deformation signals that may themselves be correlated with elevation. The atmospherically corrected PS InSAR results for data sets overlapping in time are inconsistent with one another, and do not provide conclusive evidence for any pre-eruptive deformation at a broad scale or localized to the crater or edifice leading up to the 2004 eruption. However, we cannot rule out the possibility of deformation less than 1 cm/yr, or discern whether deformation rates increased in the months preceding the eruption. The results do significantly improve the spatial density of observations and our ability to resolve or rule out models for a potential deformation source for the pre-eruptive period.
Microstructural characterization of ultrasonic impact treated aluminum-magnesium alloy
NASA Astrophysics Data System (ADS)
Tran, Kim Ngoc Thi
Aluminum 5456-H116 has high as-welded strength, is formable, and highly corrosion resistant, however, it can become sensitized when exposed to elevated temperatures for a prolonged time. Sensitization results in the formation of a continuous β phase at the grain boundaries that is anodic to the matrix. Thus the grain boundaries become susceptible to stress corrosion cracking (SCC) and intergranular corrosion cracking (IGC). Cracking issues on aluminum superstructures have prompted the use of a severe plastic deformation processes, such as ultrasonic impact treatment (UIT), to improve SCC resistance. This study correlated the effects of UIT on the properties of 5456-H116 alloy to the microstructural evolution of the alloy and helped develop a fundamental understanding of the mechanisms that cause the microstructural evolution. Ultrasonic impact treatment produces a deformed layer at the surface ˜ 10 to 18 µm thick that is characterized by micro-cracks, tears, and voids. Ultrasonic impact treatment results in grain refinement within the deformation layer and extending below the deformed layer. The microstructure exhibits weak crystallographic texture with larger fraction of high angle grain boundaries. Nanocrystalline grains within the deformation layer vary in size from 2 to 200 nm in diameter and exhibit curved or wavy grain boundaries. The nanocrystalline grains are thermally stable up to 300°C. Above 300°C, grain growth occurs with an activation energy of ˜ 32 kJ/mol. Below the deformation layer, the microstructure is characterized by submicron grains, complex structure of dislocations, sub-boundaries, and Moiré fringes depicting overlapping grains. The deformation layer does not exhibit the presence of a continuous β phase, however below the deformation layer; a continuous β phase along the grain boundaries is present. In general the highest hardness and yield strength is at the UIT surface which is attributed to the formation of nanocrystalline grains. Although the highest hardness and yield strength was observed at the UIT surface, the results were mixed with some lower values. The lower hardness and yield strength values at the UIT surface are attributed to the voids and micro cracking/micro voids observed in the deformation layer. The fracture mode was transgranular ductile fracture with micro void coalescence and dimples. Both UIT and untreated material exhibit similar levels of intergranular corrosion susceptibility. Corrosive attack was intergranular with slightly deeper attack in the untreated material. Numerical simulation modeling showed that the calculated residual stress under the tool, ˜80 MPa, is of the same order of magnitude as the compressive residual stresses measured by XRD measurements near the surface. Modeling also showed that high effective strains were induced almost immediately. The UIT process also resulted in rapid localized heating to a maximum temperature of ˜32°C during the first eleven pin tool cycles. The model also showed that during UIT processing, the material undulates as the pin tool impacts and retracts from the surface of the material. The undulations represent the elastic response of the surface to the compressive stresses built up during a pin tool cycle.
NASA Astrophysics Data System (ADS)
Salzer, Jacqueline T.; Milillo, Pietro; Varley, Nick; Perissin, Daniele; Pantaleo, Michele; Walter, Thomas R.
2017-12-01
Dome building activity is common at many volcanoes and due to the gravitational instability, a dome represents one of the most hazardous volcanic phenomena. Shallow volcanic processes as well as rheological and structural changes of the dome affecting the fluid transport have been linked to transitions in eruptive activity. Also, hydrothermal alteration may affect the structural integrity of the dome, increasing the potential for collapse. However, mapping the deformation and details of fluid escape at the summit of steep sloped volcanoes and integrating these with other types of data is challenging due to difficult access and poor coverage. Here we present for the first time the near-vertical and near-horizontal surface deformation field of a quiescent summit dome and the relationships with degassing and topographic patterns. Our results are derived from high resolution satellite radar interferometry (InSAR) time series based on a year of TerraSAR-X SpotLight acquisitions and Structure from Motion (SfM) processing of overflight infrared data at Volcán de Colima, Mexico. The identified deformation is dominated by localized heterogeneous subsidence of the summit dome exceeding rates of 15 cm/yr, and strongly decreasing over the year 2012, up to the renewal of explosive and extrusive activity in early 2013. We tentatively attribute the deformation to the degassing, cooling and contraction of the dome and shallow conduit material. We also find that the results strongly differ depending on the chosen InSAR time series method, which potentially overprints the true physical complexities of small scale, shallow deformation processes. The combined interpretation of the deformation and infrared data reveals a complex spatial relationship between the degassing pathways and the deformation. While we observe no deformation across the crater rim fumaroles, discontinuities in the deformation field are more commonly observed around the dome rim fumaroles and occasionally on the dome upper surface. We propose that the deformation pattern is also linked to processes controlling the fumarole formation and distribution (topography, permeability and volcanic activity), and the lack of direct relationships may be explained by how the influence of these processes varies across the volcanic summit. The presented work provides a new approach for safely monitoring the activity and stability of internal dome structures, as well as for constraining and validating models of dome degassing pathways and densification processes.
Molecular dynamics simulation of shock induced ejection on fused silica surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Rui; Xiang, Meizhen; Jiang, Shengli
2014-05-21
Shock response and surface ejection behaviors of fused silica are studied by using non-equilibrium molecular dynamics combining with the Tersoff potential. First, bulk structure and Hugoniot curves of fused silica are calculated and compared with experimental results. Then, the dynamical process of surface ejection behavior is simulated under different loading velocities ranging from 3.5 to 5.0 km∕s, corresponding to shock wave velocities from 7.1 to 8.8 km∕s. The local atomistic shear strain parameter is used to describe the local plastic deformation under conditions of shock compression or releasing. Our result shows that the shear strain is localized in the bottom area ofmore » groove under the shock compression. Surface ejection is observed when the loading velocity exceeds 4.0 km∕s. Meanwhile, the temperature of the micro-jet is ∼5574.7 K, which is close to experiment measurement. Several kinds of structural defects including non-bridging oxygen are found in the bulk area of the sample after ejection.« less
Laser irradiation effects on thin aluminum plates subjected to surface flow
NASA Astrophysics Data System (ADS)
Jiang, Houman; Zhao, Guomin; Chen, Minsun; Peng, Xin
2016-10-01
The irradiation effects of LD laser on thin aluminum alloy plates are studied in experiments characterized by relatively large laser spot and the presence of 0.3Ma surface airflow. A high speed profilometer is used to record the profile change along a vertical line in the rear surface of the target, and the history of the displacement along the direction of thickness of the central point at the rear surface is obtained. The results are compared with those without airflow and those by C. D. Boley. We think that it is the temperature rise difference along the direction of thickness instead of the pressure difference caused by the airflow that makes the thin target bulge into the incoming beam, no matter whether the airflow is blown or not, and that only when the thin aluminum target is heated thus softened enough by the laser irradiation, can the aerodynamic force by the surface airflow cause non-ignorable localized plastic deformation and result a burn-through without melting in the target. However, though the target isn't softened enough in terms of the pressure difference, it might have experienced notable deformation as it is heated from room temperature to several hundred degree centigrade.
Probing softness of the parietal pleural surface at the micron scale
Kim, Jae Hun; Butler, James P.; Loring, Stephen H.
2011-01-01
The pleural surfaces of the chest wall and lung slide against each other, lubricated by pleural fluid. During sliding motion of soft tissues, shear induced hydrodynamic pressure deforms the surfaces, promoting uniformity of the fluid layer thickness, thereby reducing friction. To assess pleural deformability at length scales comparable to pleural fluid thickness, we measured the modulus of the parietal pleura of rat chest wall using atomic force microscopy (AFM) to indent the pleural surface with spheres (radius 2.5 µm and 5 µm). The pleura exhibited two distinct indentation responses depending on location, reflecting either homogeneous or significantly heterogeneous tissue properties. We found an elastic modulus of 0.38–0.95 kPa, lower than the values measured using flat-ended cylinders > 100 µm radii (Gouldstone et al., 2003, Journal of Applied Physiology 95, 2345–2349). Interestingly, the pleura exhibited a three-fold higher modulus when probed using 2.5 µm vs. 5 µm spherical tips at the same normalized depth, confirming depth dependent inhomogeneous elastic properties. The observed softness of the pleura supports the hypothesis that unevenness of the pleural surface on this scale is smoothed by local hydrodynamic pressure. PMID:21820660
Localized geohazards in West Texas, captured by multi-temporal Sentinel-1A/B interferometry
NASA Astrophysics Data System (ADS)
Kim, J. W.; Lu, Z.
2017-12-01
West Texas contains the Permian Basin and is particularly composed of three major geologic sedimentary basins: Delaware Basin, Central Basin Platform, and Midland Basin. Because the vast region was once covered by a shallow sea and had experienced long-lasting evaporation million years ago, the West Texas is underlain by a thick layer of water soluble rocks including the carbonate and evaporite rocks. In addition, the geologic composition provided abundant hydrocarbons in the depth of several kilometers, but the human activities exploiting the massive oil and gas from the subsurface made negative impacts on the stability of underground and ground surface. Most deformation and localized geohazards have been unnoticed by means of field measurements or remote sensing methods, because the West Texas is located in the low populated, remote region. The Sentinel-1A/B has continuously acquired the SAR imagery with a large swath of 250 km over the region, and its multi-temporal measurements can provide clues on what are really taking place on the ground surface, what are the causes to trigger the localized subsidence/uplift, and what should be done to prevent more severe disasters in the future. We have established an automated Sentinel-1A/B InSAR processing system on SMU supercomputer (Maneframe), its continuous monitoring will help us unveil the current status of deformation occurring in West Texas.
NASA Astrophysics Data System (ADS)
Wang, Shing-Hoa; Huang, Chih-Sheng; Lee, Woei-Shyan; Chen, Tao-Hsing; Wu, Chia-Chang; Lien, Charles; Tsai, Hung-Yin
2009-12-01
A considerable volume of γ phase increases in the fusion zone (weld metal) for two duplex stainless steels after a high-strain-rate impact. The strain-induced γ phase formation in the fusion zone results in local hardness variation depending on the strain rate. The α phase content in the fusion zone decreases as the impact strain rate increases for SAF 2205 DSS and SAF 2507 DSS. The results of the two-phase content measured by Ferritoscope correspond to that assessed by image analyses. In contrast, superaustenite stainless steel is unaffected by such an impact owing to its fully stable austenization. Impacted welds at a high strain rate of 5 × 103 s-1 reveal feather-like surface creases along the solidified curved columnar grain boundaries. The apparent surface creases are formed due to the presence of diffuse Lüders bands, which are caused by heavy plastic deformation in coarse-grain materials.
Theoretical model of impact damage in structural ceramics
NASA Technical Reports Server (NTRS)
Liaw, B. M.; Kobayashi, A. S.; Emery, A. G.
1984-01-01
This paper presents a mechanistically consistent model of impact damage based on elastic failures due to tensile and shear overloading. An elastic axisymmetric finite element model is used to determine the dynamic stresses generated by a single particle impact. Local failures in a finite element are assumed to occur when the primary/secondary principal stresses or the maximum shear stress reach critical tensile or shear stresses, respectively. The succession of failed elements thus models macrocrack growth. Sliding motions of cracks, which closed during unloading, are resisted by friction and the unrecovered deformation represents the 'plastic deformation' reported in the literature. The predicted ring cracks on the contact surface, as well as the cone cracks, median cracks, radial cracks, lateral cracks, and damage-induced porous zones in the interior of hot-pressed silicon nitride plates, matched those observed experimentally. The finite element model also predicted the uplifting of the free surface surrounding the impact site.
NASA Astrophysics Data System (ADS)
Picazo, S.; Manatschal, G.; Cannat, M.; Andréani, M.
2013-08-01
Although the exhumation of ultramafic rocks in slow and ultraslow spreading Mid-Ocean Ridges and Ocean Continent Transitions (OCTs) has been extensively investigated, the deformation processes related to mantle exhumation are poorly constrained. In this paper we present a new geological map and a section across the exhumed serpentinized peridotites of the Totalp unit near Davos (SE Switzerland), and we propose that the Totalp unit is formed by two Alpine thrust sheets. Geological mapping indicates local exposure of a paleo-seafloor that is formed by an exhumed detachment surface and serpentinized peridotites. The top of the exhumed mantle rocks is made of ophicalcites that resulted from the carbonation of serpentine under static conditions at the seafloor. The ophicalcites preserve depositional contacts with Upper Jurassic to Lower Cretaceous pelagic sediments (Bernoulli and Weissert, 1985). These sequences did not exceed prehnite-pumpellyite metamorphic facies conditions, and locally escaped Alpine deformation. Thin mylonitic shear zones as well as foliated amphibole-bearing ultramafic rocks have been mapped. The age of these rocks and the link with the final exhumation history are yet unknown but since amphibole-bearing ultramafic rocks can be found as clasts in cataclasites related to the detachment fault, they pre-date detachment faulting. Our petrostructural study of the exhumed serpentinized rocks also reveals a deformation gradient from cataclasis to gouge formation within 150 m in the footwall of the proposed paleo-detachment fault. This deformation postdates serpentinization. It involves a component of plastic deformation of serpentine in the most highly strained intervals that has suffered pronounced grain-size reduction and a polyphase cataclastic overprint.
Magma-Tectonic Interactions in the Main Ethiopian Rift; Insights into Rifting Processes
NASA Astrophysics Data System (ADS)
Greenfield, T.; Keir, D.; Tessema, T.; Lloyd, R.; Biggs, J.; Ayele, A.; Kendall, J. M.
2017-12-01
We report observations made around the Bora-Tulu Moye volcanic field, in the Main Ethiopian Rift (MER). A network of seismometers deployed around the volcano for one and a half years reveals the recent state of the volcano. Accurate earthquake locations and focal mechanisms are combined with surface deformation and mapping of faults, fissures and geothermally active areas to reveal the interaction between magmatism and intra-rift faulting. More than 1000 earthquakes are detected and located, making the Bora-Tulu Moye volcanic field one of the most seismically active regions of the MER. Earthquakes are located at depths of less than 5 km below the surface and range between magnitudes of 1.5 - 3.5. Surface deformation of Bora-Tulu Moye is observed using satellite based radar interferometry (InSAR) recorded before and during the seismic deployment. Since 2004, deformation has oscillated between uplift and subsidence centered at the same spatial location but different depths. We constrain the source of the uplift to be at 7 km depth while the source of the subsidence is shallower. Micro-earthquake locations reveal that earthquakes are located around the edge of the observed deformation and record the activation of normal faults orientated at 025°. The spatial link between surface deformation and brittle failure suggest that significant hydrothermal circulation driven by an inflating shallow heat source is inducing brittle failure. Elsewhere, seismicity is focused in areas of significant surface alteration from hydrothermal processes. We use shear wave splitting using local earthquakes to image the stress state of the volcano. A combination of rift parallel and rift-oblique fast directions are observed, indicating the volcano has a significant influence on the crustal stresses. Volcanic activity around Bora-Tulu Moye has migrated eastwards over time, closer to the intra-rift fault system, the Wonji Fault Belt. How and why this occurs relates to changes in the melt supply to the upper crust from depth and has implications for the early stages of rift evolution and for volcanic and tectonic hazard in Ethiopia and rifts generally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Zhen, X; Zhou, L
Purpose: To propose and validate a novel real-time surface-mesh-based internal organ-external surface motion and deformation tracking method for lung cancer radiotherapy. Methods: Deformation vector fields (DVFs) which characterizes the internal and external motion are obtained by registering the internal organ and tumor contours and external surface meshes to a reference phase in the 4D CT images using a recent developed local topology preserved non-rigid point matching algorithm (TOP). A composite matrix is constructed by combing the estimated internal and external DVFs. Principle component analysis (PCA) is then applied on the composite matrix to extract principal motion characteristics and finally yieldmore » the respiratory motion model parameters which correlates the internal and external motion and deformation. The accuracy of the respiratory motion model is evaluated using a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and three lung cancer cases. The center of mass (COM) difference is used to measure the tumor motion tracking accuracy, and the Dice’s coefficient (DC), percent error (PE) and Housdourf’s distance (HD) are used to measure the agreement between the predicted and ground truth tumor shape. Results: The mean COM is 0.84±0.49mm and 0.50±0.47mm for the phantom and patient data respectively. The mean DC, PE and HD are 0.93±0.01, 0.13±0.03 and 1.24±0.34 voxels for the phantom, and 0.91±0.04, 0.17±0.07 and 3.93±2.12 voxels for the three lung cancer patients, respectively. Conclusions: We have proposed and validate a real-time surface-mesh-based organ motion and deformation tracking method with an internal-external motion modeling. The preliminary results conducted on a synthetic 4D NCAT phantom and 4D CT images from three lung cancer cases show that the proposed method is reliable and accurate in tracking both the tumor motion trajectory and deformation, which can serve as a potential tool for real-time organ motion and deformation monitoring in lung cancer radiotherapy. This work is supported in part by grant from VARIAN MEDICAL SYSTEMS INC, the National Natural Science Foundation of China (no 81428019 and no 81301940), the Guangdong Natural Science Foundation (2015A030313302)and the 2015 Pearl River S&T Nova Program of Guangzhou (201506010096).« less
NASA Astrophysics Data System (ADS)
Liang, Yuan; Qin, Haifeng; Hou, Xiaoning; Doll, Gary L.; Ye, Chang; Dong, Yalin
2018-07-01
Mechanical force can crucially affect form and function of cells, and play critical roles in many diseases. While techniques to conveniently apply mechanical force to cells are limited, we fabricate a surface actuator prototype for cellular mechanotransduction by imparting severe plastic deformation into the surface of shape memory alloy (SMA). Using ultrasonic nanocrystal surface modification (UNSM), a deformation-based surface engineering technique with high controllability, micro surface patterns can be generated on the surface of SMA so that the micro-size cell can conform to the pattern; meanwhile, phase transformation can be induced in the subsurface by severe plastic deformation. By controlling plastic deformation and phase transformation, it is possible to establish a quantitative relation between deformation and temperature. When cells are cultured on the UNSM-treated surface, such surface can dynamically deform in response to external temperature change, and therefore apply controllable mechanical force to cells. Through this study, we demonstrate a novel way to fabricate a low-cost surface actuator that has the potential to be used for high-throughput cellular mechanotransduction.
Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 Landers earthquake
NASA Astrophysics Data System (ADS)
Milliner, Christopher W. D.; Dolan, James F.; Hollingsworth, James; Leprince, Sebastien; Ayoub, Francois; Sammis, Charles G.
2015-05-01
Coseismic surface deformation in large earthquakes is typically measured using field mapping and with a range of geodetic methods (e.g., InSAR, lidar differencing, and GPS). Current methods, however, either fail to capture patterns of near-field coseismic surface deformation or lack preevent data. Consequently, the characteristics of off-fault deformation and the parameters that control it remain poorly understood. We develop a standardized method to fully measure the surface, near-field, coseismic deformation patterns at high resolution using the COSI-Corr program by correlating pairs of aerial photographs taken before and after the 1992 Mw 7.3 Landers earthquake. COSI-Corr offers the advantage of measuring displacement across the entire zone of surface deformation and over a wider aperture than that available to field geologists. For the Landers earthquake, our measured displacements are systematically larger than the field measurements, indicating the presence of off-fault deformation. We show that 46% of the total surface displacement occurred as off-fault deformation, over a mean deformation width of 154 m. The magnitude and width of off-fault deformation along the rupture is primarily controlled by the macroscopic structural complexity of the fault system, with a weak correlation with the type of near-surface materials through which the rupture propagated. Both the magnitude and width of distributed deformation are largest in stepovers, bends, and at the southern termination of the surface rupture. We find that slip along the surface rupture exhibits a consistent degree of variability at all observable length scales and that the slip distribution is self-affine fractal with dimension of 1.56.
Method for a Leading Edge Slat on a Wing of an Aircraft
NASA Technical Reports Server (NTRS)
Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)
2016-01-01
A method for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.
A fast, model-independent method for cerebral cortical thickness estimation using MRI.
Scott, M L J; Bromiley, P A; Thacker, N A; Hutchinson, C E; Jackson, A
2009-04-01
Several algorithms for measuring the cortical thickness in the human brain from MR image volumes have been described in the literature, the majority of which rely on fitting deformable models to the inner and outer cortical surfaces. However, the constraints applied during the model fitting process in order to enforce spherical topology and to fit the outer cortical surface in narrow sulci, where the cerebrospinal fluid (CSF) channel may be obscured by partial voluming, may introduce bias in some circumstances, and greatly increase the processor time required. In this paper we describe an alternative, voxel based technique that measures the cortical thickness using inversion recovery anatomical MR images. Grey matter, white matter and CSF are identified through segmentation, and edge detection is used to identify the boundaries between these tissues. The cortical thickness is then measured along the local 3D surface normal at every voxel on the inner cortical surface. The method was applied to 119 normal volunteers, and validated through extensive comparisons with published measurements of both cortical thickness and rate of thickness change with age. We conclude that the proposed technique is generally faster than deformable model-based alternatives, and free from the possibility of model bias, but suffers no reduction in accuracy. In particular, it will be applicable in data sets showing severe cortical atrophy, where thinning of the gyri leads to points of high curvature, and so the fitting of deformable models is problematic.
An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.
NASA Astrophysics Data System (ADS)
Olszta, Matthew J.; Schreiber, Daniel K.; Thomas, Larry E.; Bruemmer, Stephen M.
Analytical electron microscopy and three-dimensional atom probe tomography (ATP) examinations of surface and near-surface oxidation have been performed on Ni-30%Cr alloy 690 materials after exposure to high-temperature, simulated PWR primary water. The oxidation nanostructures have been characterized at crack walls after stress-corrosion crack growth tests and at polished surfaces of unstressed specimens for the same alloys. Localized oxidation was discovered for both crack walls and surfaces as continuous filaments (typically <10 nm in diameter) extending from the water interface into the alloy 690 matrix reaching depths of 500 nm. These filaments consisted of discrete, plate-shaped Cr2O3 particles surrounded by a distribution of nanocrystalline, rock-salt (Ni-Cr-Fe) oxide. The oxide-containing filament depth was found to increase with exposure time and, at longer times, the filaments became very dense at the surface leaving only isolated islands of metal. Individual dislocations were oxidized in non-deformed materials, while the oxidation path appeared to be along more complex dislocation substructures in heavily deformed materials. This paper will highlight the use of high resolution scanning and transmission electron microscopy in combination with APT to better elucidate the microstructure and microchemistry of the filamentary oxidation.
Brain Morphometry on Congenital Hand Deformities based on Teichmüller Space Theory.
Peng, Hao; Wang, Xu; Duan, Ye; Frey, Scott H; Gu, Xianfeng
2015-01-01
Congenital Hand Deformities (CHD) are usually occurred between fourth and eighth week after the embryo is formed. Failure of the transformation from arm bud cells to upper limb can lead to an abnormal appearing/functioning upper extremity which is presented at birth. Some causes are linked to genetics while others are affected by the environment, and the rest have remained unknown. CHD patients develop prehension through the use of their hands, which affect the brain as time passes. In recent years, CHD have gain increasing attention and researches have been conducted on CHD, both surgically and psychologically. However, the impacts of CHD on brain structure are not well-understood so far. Here, we propose a novel approach to apply Teichmüller space theory and conformal welding method to study brain morphometry in CHD patients. Conformal welding signature reflects the geometric relations among different functional areas on the cortex surface, which is intrinsic to the Riemannian metric, invariant under conformal deformation, and encodes complete information of the functional area boundaries. The computational algorithm is based on discrete surface Ricci flow, which has theoretic guarantees for the existence and uniqueness of the solutions. In practice, discrete Ricci flow is equivalent to a convex optimization problem, therefore has high numerically stability. In this paper, we compute the signatures of contours on general 3D surfaces with surface Ricci flow method, which encodes both global and local surface contour information. Then we evaluated the signatures of pre-central and post-central gyrus on healthy control and CHD subjects for analyzing brain cortical morphometry. Preliminary experimental results from 3D MRI data of CHD/control data demonstrate the effectiveness of our method. The statistical comparison between left and right brain gives us a better understanding on brain morphometry of subjects with Congenital Hand Deformities, in particular, missing the distal part of the upper limb.
NASA Astrophysics Data System (ADS)
Ferry, Matthieu; Tsutsumi, Hiroyuki; Meghraoui, Mustapha; Toda, Shinji
2013-04-01
The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping dominates as well but with some strain localization along two major splays that exhibit 15-20 cm of vertical offset. On both walls, the basal silt unit is vertically deformed by ~0.6 m, similarly to what is observed for the 2011 rupture. Furthermore, the base of said silt unit exhibits indication for secondary faulting prior to the 2011 event and that resemble cracks observed at the present-day surface. This suggests that the Itozawa fault has already ruptured in a similar fashion in the late Pleistocene). Hence, recent activity of the Itozawa fault may be controlled entirely by large to giant earthquakes along the Japan Trench.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar
Here, we study universal features in the shape dependence of entanglement entropy in the vacuum state of a conformal field theory (CFT) on R 1,d--1. We consider the entanglement entropy across a deformed planar or spherical entangling surface in terms of a perturbative expansion in the infinitesimal shape deformation. In particular, we focus on the second order term in this expansion, known as the entanglement density. This quantity is known to be non-positive by the strong-subadditivity property. We also show from a purely field theory calculation that the non-local part of the entanglement density in any CFT is universal, andmore » proportional to the coefficient C T appearing in the two-point function of stress tensors in that CFT. As applications of our result, we prove the conjectured universality of the corner term coefficient σ/CT=π 2/24 in d = 3 CFTs, and the holographic Mezei formula for entanglement entropy across deformed spheres.« less
Effect of Methylation on Local Mechanics and Hydration Structure of DNA.
Teng, Xiaojing; Hwang, Wonmuk
2018-04-24
Cytosine methylation affects mechanical properties of DNA and potentially alters the hydration fingerprint for recognition by proteins. The atomistic origin for these effects is not well understood, and we address this via all-atom molecular dynamics simulations. We find that the stiffness of the methylated dinucleotide step changes marginally, whereas the neighboring steps become stiffer. Stiffening is further enhanced for consecutively methylated steps, providing a mechanistic origin for the effect of hypermethylation. Steric interactions between the added methyl groups and the nonpolar groups of the neighboring nucleotides are responsible for the stiffening in most cases. By constructing hydration maps, we found that methylation also alters the surface hydration structure in distinct ways. Its resistance to deformation may contribute to the stiffening of DNA for deformational modes lacking steric interactions. These results highlight the sequence- and deformational-mode-dependent effects of cytosine methylation. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Cratons are from Earth, Planum are from Venus
NASA Astrophysics Data System (ADS)
Cooper, C. M.; Lenardic, A.; Moresi, L.
2004-12-01
Both the Earth and Venus exhibit ancient features that are associated with long-term stability from deformation after their initial formation. On the Earth, these features are referred to as cratons. On Venus, a classic example of such a feature is Lakshmi Planum, a large plateau that sits 4 km above the surface. Both cratons and the Lakshmi Planum have been proposed to form through some form of crustal thickening over mantle downwellings, though the physical viability of these models have not been tested. Here we present the work of numerical simulations and scaling analysis, which suggest that the formation and preservation of such features can be achieved through crustal thickening via localized deformation (i.e., thrust stacking) even in the presence of a high viscosity crust, which would inhibit viscous deformation. We choose to present this work in such a way that will highlight the similarities and differences between the two formation histories using an alternative poster format.
Metal nanoplates: Smaller is weaker due to failure by elastic instability
NASA Astrophysics Data System (ADS)
Ho, Duc Tam; Kwon, Soon-Yong; Park, Harold S.; Kim, Sung Youb
2017-11-01
Under mechanical loading, crystalline solids deform elastically, and subsequently yield and fail via plastic deformation. Thus crystalline materials experience two mechanical regimes: elasticity and plasticity. Here, we provide numerical and theoretical evidence to show that metal nanoplates exhibit an intermediate mechanical regime that occurs between elasticity and plasticity, which we call the elastic instability regime. The elastic instability regime begins with a decrease in stress, during which the nanoplates fail via global, and not local, deformation mechanisms that are distinctly different from traditional dislocation-mediated plasticity. Because the nanoplates fail via elastic instability, the governing strength criterion is the ideal strength, rather than the yield strength, and as a result, we observe a unique "smaller is weaker" trend. We develop a simple surface-stress-based analytic model to predict the ideal strength of the metal nanoplates, which accurately reproduces the smaller is weaker behavior observed in the atomistic simulations.
Establishment of a Cutting Fluid Control System (Phase 1)
1981-01-01
that prevent or reduce welding of contacting areas and minimize both material transfer and generation of metallic debris within the contact zone...not on ceramic abrasives. Welding between ceramics and workpiece materials is, however, less of a problem than metal-metal contact phenomena in...fluid film (hatched area) - no wear and low friction. Mating surfaces contacting at asperities with local plastic deformation and welding - wear with
Study of the deformation in Central Afar using InSAR NSBAS chain
NASA Astrophysics Data System (ADS)
Deprez, A.; Doubre, C.; Grandin, R.; Saad, I.; Masson, F.; Socquet, A.
2013-12-01
The Afar Depression (East Africa) connects all three continental plates of Arabia, Somalia and Nubia plates. For over 20 Ma, the divergent motion of these plates has led to the formation of large normal faults building tall scarps between the high plateaus and the depression, and the development of large basins and an incipient seafloor spreading along a series of active volcano-tectonic rift segments within the depression. The space-time evolution of the active surface deformation over the whole Afar region remains uncertain. Previous tectonic and geodetic studies confirm that a large part of the current deformation is concentrated along these segments. However, the amount of extension accommodated by other non-volcanic basins and normal faulting remains unclear, despite significant micro-seismic activity. Due to the active volcanism, large transient displacements related to dyking sequence, notably in the Manda Hararo rift (2005-2010), increase the difficulty to characterize the deformation field over simple time and space scales. In this study, we attempt to obtain a complete inventory of the deformation within the whole Afar Depression and to understand the associated phenomena, which occurred in this singular tectonic environment. We study in particular, the behavior of the structures activated during the post-dyking stage of the rift segments. For this purpose, we conduct a careful processing of a large set of SAR ENVISAT images over the 2004-2010 period, we also use previous InSAR results and GPS data from permanent stations and from campaigns conducted in 1999, 2003, 2010, 2012 within a GPS network particularly dense along the Asal-Ghoubbet segment. In one hand, in the western part of Afar, the far-field response of the 2005-2010 dyke sequence appears to be the dominant surface motion on the mean velocity field. In an other hand, more eastward across the Asal-Ghoubbet rift, strong gradients of deformation are observed. The time series analysis of both InSAR and GPS data allow us to (1) point out the role of volcano activity on the localization of the extensive deformation within these rifts, (2) describe the temporal evolution of the mostly aseismic fault slips, and eventually (3) characterize the behavior of the crust after the dyking events in relation to visco-elastic relaxation. Moreover, we analyze several interesting small patches of localized deformation revealing transient displacements by combining time series results and seismic data collected by the Arta Geophysical Observatory in Djibouti. In particular, a specific clear deformation pattern on the northern margin of the Tadjoura Bay could be associated with a seismic swarm, probably resulting from the occurrence of an offshore dyking event sequence along the immerged Tadjoura rift segment.
Deformation mechanisms in experimentally deformed Boom Clay
NASA Astrophysics Data System (ADS)
Desbois, Guillaume; Schuck, Bernhard; Urai, Janos
2016-04-01
Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures within the host rock and the undeformed sample shows that the sample underwent compaction prior shearing that results in a change of power law exponent of the pore size distribution within the clay matrix and a slight reorientation of clastic grains' long axis perpendicular to σ1. Microstructures in the shear zone indicate ductile behavior before the specimen's failure. Deformation mechanisms are bending of clay plates and sliding along clay-clay contacts. Strain is strongly localised in thin, anastomosing zones of strong preferred orientation, producing slickensided shear surfaces common in shallow clays. There is no evidence for intragranular cracking.We propose that the deformation localizes in regions without hard quartz grains.
Tensile deformation and fracture properties of a 14YWT nanostructured ferritic alloy
Alam, M. Ershadul; Pal, Soupitak; Fields, Kirk; ...
2016-08-13
Here, a new larger heat of a 14YWT nanostructured ferritic alloy (NFA), FCRD NFA-1, was synthesized by ball milling FeO and argon atomized Fe-14Cr-3W-0.4Ti-0.2Y (wt%) powders, followed by hot extrusion, annealing and cross rolling to produce an ≈10 mm-thick plate. NFA-1 contains a bimodal size distribution of pancake-shaped, mostly very fine scale, grains. The as-processed plate also contains a large population of microcracks running parallel to its broad surfaces. The small grains and large concentration of Y–Ti–O nano-oxides (NOs) result in high strength up to 800 °C. The uniform and total elongations range from ≈1–8%, and ≈10–24%, respectively. The strengthmore » decreases more rapidly above ≈400 °C and deformation transitions to largely viscoplastic creep by ≈600 °C. While the local fracture mechanism is generally ductile-dimple microvoid nucleation, growth and coalescence, perhaps the most notable feature of tensile deformation behavior of NFA-1 is the occurrence of periodic delamination, manifested as fissures on the fracture surfaces.« less
3D full field strain analysis of polymerization shrinkage in a dental composite.
Martinsen, Michael; El-Hajjar, Rani F; Berzins, David W
2013-08-01
The objective of this research was to study the polymerization shrinkage in a dental composite using 3D digital image correlation (DIC). Using 2 coupled cameras, digital images were taken of bar-shaped composite (Premise Universal Composite; Kerr) specimens before light curing and after for 10 min. Three-dimensional DIC was used to assess in-plane and out-of-plane deformations associated with polymerization shrinkage. The results show the polymerization shrinkage to be highly variable with the peak values occurring 0.6-0.8mm away from the surface. Volumetric shrinkage began to significantly decrease at 3.2mm from the specimen surface and reached a minimum at 4mm within the composite. Approximately 25-30% of the strain registered at 5 min occurred after light-activation. Application of 3D DIC dental applications can be performed without the need for assumptions on the deformation field. Understanding the local deformations and strain fields from the initial polymerization shrinkage can lead to a better understanding of the composite material and interaction with surrounding tooth structure, aiding in their further development and clinical prognosis. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Diapir-induced reorientation of Saturn's moon Enceladus.
Nimmo, Francis; Pappalardo, Robert T
2006-06-01
Enceladus is a small icy satellite of Saturn. Its south polar region consists of young, tectonically deformed terrain and has an anomalously high heat flux. This heat flux is probably due to localized tidal dissipation within either the ice shell or the underlying silicate core. The surface deformation is plausibly due to upwelling of low-density material (diapirism) as a result of this tidal heating. Here we show that the current polar location of the hotspot can be explained by reorientation of the satellite's rotation axis because of the presence of a low-density diapir. If the diapir is in the ice shell, then the shell must be relatively thick and maintain significant rigidity (elastic thickness greater than approximately 0.5 km); if the diapir is in the silicate core, then Enceladus cannot possess a global subsurface ocean, because the core must be coupled to the overlying ice for reorientation to occur. The reorientation generates large (approximately 10 MPa) tectonic stress patterns that are compatible with the observed deformation of the south polar region. We predict that the distribution of impact craters on the surface will not show the usual leading hemisphere-trailing hemisphere asymmetry. A low-density diapir also yields a potentially observable negative gravity anomaly.
A smooth exit from eternal inflation?
NASA Astrophysics Data System (ADS)
Hawking, S. W.; Hertog, Thomas
2018-04-01
The usual theory of inflation breaks down in eternal inflation. We derive a dual description of eternal inflation in terms of a deformed Euclidean CFT located at the threshold of eternal inflation. The partition function gives the amplitude of different geometries of the threshold surface in the no-boundary state. Its local and global behavior in dual toy models shows that the amplitude is low for surfaces which are not nearly conformal to the round three-sphere and essentially zero for surfaces with negative curvature. Based on this we conjecture that the exit from eternal inflation does not produce an infinite fractal-like multiverse, but is finite and reasonably smooth.
Neef, W.S.; Lambert, D.R.
1982-08-10
Sealing apparatus and method, comprising first and second surfaces or membranes, at least one of which surfaces is deformable, placed in proximity to one another. Urging means cause these surfaces to contact one another in a manner such that the deformable surface deforms to conform to the geometry of the other surface, thereby creating a seal. The seal is capable of undergoing multiple cycles of sealing and unsealing.
Method and Apparatus for a Leading Edge Slat on a Wing of an Aircraft
NASA Technical Reports Server (NTRS)
Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)
2013-01-01
A method and apparatus for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.
NASA Technical Reports Server (NTRS)
Kadel, Steven D.; Chuang, Frank C.; Greeley, Ronald; Moore, Jeffrey M.
2000-01-01
Galileo images of the Tyre Macula region of Europa at regional (170 m/pixel) and local (approx. 40 m/pixel) scales allow mapping and understanding of surface processes and landforms. Ridged plains, doublet and complex ridges, shallow pits, domes, "chaos" areas. impact structures, tilted blocks and massifs, and young fracture systems indicate a complex history of surface deformation on Europa. Regional and local morphologies of the Tyre region of Europa suggest that an impactor penetrated through several kilometers of water ice tc a mobile layer below. The surface morphology was initially dominated by formation of ridged plains, followed by development of ridge bands and doublet ridges, with chaos and fracture formation dominating the latter part of the geologic history of the Tyre region. Two distinct types of chaos have been identified which, along with upwarped dome materials, appear to represent a continuum of features (domes-play chaos-knobby chaos) resulting from increasing degree of surface disruption associated with local lithospheric heating and thinning. Local and regional stratigraphic relationships, block heights, and the morphology of the Tyre impact structure suggest the presence of low-viscosity ice or liquid water beneath a thin (severa1 kilometers) surface ice shell at the time of the impact. The very low impact crater density on the surface of Europa suggests that this thin shell has either formed or been thoroughly resurfaced in the very recent past.
A generalized law for brittle deformation of Westerly granite
Lockner, D.A.
1998-01-01
A semiempirical constitutive law is presented for the brittle deformation of intact Westerly granite. The law can be extended to larger displacements, dominated by localized deformation, by including a displacement-weakening break-down region terminating in a frictional sliding regime often described by a rate- and state-dependent constitutive law. The intact deformation law, based on an Arrhenius type rate equation, relates inelastic strain rate to confining pressure Pc, differential stress ????, inelastic strain ??i, and temperature T. The basic form of the law for deformation prior to fault nucleation is In ????i = c - (E*/RT) + (????/a??o)sin-??(???? i/2??o) where ??o and ??o are normalization constants (dependent on confining pressure), a is rate sensitivity of stress, and ?? is a shape parameter. At room temperature, eight experimentally determined coefficients are needed to fully describe the stress-strain-strain rate response for Westerly granite from initial loading to failure. Temperature dependence requires apparent activation energy (E* ??? 90 kJ/mol) and one additional experimentally determined coefficient. The similarity between the prefailure constitutive law for intact rock and the rate- and state-dependent friction laws for frictional sliding on fracture surfaces suggests a close connection between these brittle phenomena.
Scoliosis curve type classification using kernel machine from 3D trunk image
NASA Astrophysics Data System (ADS)
Adankon, Mathias M.; Dansereau, Jean; Parent, Stefan; Labelle, Hubert; Cheriet, Farida
2012-03-01
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
Elevated-Temperature Tribology of Metallic Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, Peter Julian
The wear of metals and alloys takes place in many forms, and the type of wear that dominates in each instance is influenced by the mechanics of contact, material properties, the interfacial temperature, and the surrounding environment. The control of elevated-temperature friction and wear is important for applications like internal combustion engines, aerospace propulsion systems, and metalworking equipment. The progression of interacting, often synergistic processes produces surface deformation, subsurface damage accumulation, the formation of tribolayers, and the creation of free particles. Reaction products, particularly oxides, play a primary role in debris formation and microstructural evolution. Chemical reactions are known tomore » be influenced by the energetic state of the exposed surfaces, and that surface energy is in turn affected by localized deformation and fracture. At relatively low temperatures, work-hardening can occur beneath tribo-contacts, but exposure to high temperatures can modify the resultant defect density and grain structure to affect the mechanisms of re-oxidation. As research by others has shown, the rate of wear at elevated temperatures can either be enhanced or reduced, depending on contact conditions and nature of oxide layer formation. Furthermore, the thermodynamic driving force for certain chemical reactions is moderated by kinetics and microstructure. The role of deformation, oxidation, and tribo-corrosion in the elevated temperature tribology of metallic alloys will be exemplified by three examples involving sliding wear, single-point abrasion, and repetitive impact plus slip.« less
NASA Astrophysics Data System (ADS)
Liu, Yuanyuan; Zhao, Chaoying; Zhang, Qin; Yang, Chengsheng
2018-02-01
Qingxu-Jiaocheng, China has been suffering severe land subsidence along with the development of ground fissure, which are controlled by local fault and triggered by groundwater withdrawal. With multi-sensor SAR images, we study the spatiotemporal evolution of ground deformation over Qingxu-Jiaocheng with an IPTA InSAR technique and assess the role of groundwater withdrawal to the observed deformation. Discrete GPS measurements are applied to verify the InSAR results. The RMSE of the differences between InSAR and GPS, i.e. ALOS and GPS and Envisat and GPS, are 5.7 mm and 6.3 mm in the LOS direction, respectively. The east-west and vertical components of the observed deformation from 2007 to 2010 are decomposed by using descending-track Envisat and ascending-track ALOS interferograms, indicating that the east-west component cannot be neglected when the deformation is large or the ground fissure is active. Four phases of land subsidence in the study region are successfully retrieved, and its spatiotemporal evolution is quantitatively analyzed. Lastly, a flat lying sill model with distributed contractions is implemented to model the InSAR deformation over Qingxu-Jiaocheng, which manifests that the ground deformation is mainly caused by groundwater withdrawal. This research provides new insights into the land subsidence monitoring and its mechanism inversion over Qingxu-Jiaocheng region.
Block Tectonic Motion on Venus
NASA Astrophysics Data System (ADS)
Byrne, P. K.; Ghail, R.; Sengor, A. M. C.; Klimczak, C.; Solomon, S. C.
2017-12-01
Despite close similarities in mass and bulk composition to Earth, Venus apparently shows no evidence for Earth-like plate tectonics, except perhaps for limited plume-induced subduction. We use Magellan radar data to survey numerous examples of low-lying areas infilled with plains lavas and delimited by networks of narrow belts of substantial tectonic deformation; such sites include those at Lavinia and Llorona Planitiæ and to the north of Helen Planitia. This deformation is locally extensional or shortening in style but very often also includes structures that denote substantial lateral motion. Cross-cutting relations suggest that this motion occurred both before and after the lavas were emplaced. Together, these observations imply that many of the belt-bounded areas have acted as relatively rigid blocks that experienced considerable horizontal movement relative to each other, in a manner similar to blocks that constitute parts of the Terran continental lithosphere. On Earth, continental deformation is enabled by the low strength of the lower crust and/or upper mantle. On Venus, the shallow brittle-ductile transition (BDT), a result of the planet's elevated surface temperature, likely acts in a similar way to decouple the upper and lower crust. Subcrustal lid rejuvenation, a recently proposed mechanism for renewal of the mantle portion of Venus' stagnant lithospheric lid through thinning and recycling, could drive the horizontal movement of these rigid blocks. It may be, then, that the blocks move as continental blocks do on Earth, with mantle motion transferred to the surface and manifest as narrow zones of tectonic deformation akin to, for example, the Tian Shan and Altin Tagh ranges that bound the Tarim Basin in northwestern China. The shallow BDT on Venus precludes the blocks from subducting, and so their fate is to shorten, lengthen, or retain their geometry at the expense of adjacent blocks. We suggest that this behavior is analogous to plate-tectonic-driven continental deformation on Earth, and that this activity has operated in the regions documented on Venus since the time of emplacement of the local plains material.
A viscoelastic damage rheology and rate- and state-dependent friction
NASA Astrophysics Data System (ADS)
Lyakhovsky, Vladimir; Ben-Zion, Yehuda; Agnon, Amotz
2005-04-01
We analyse the relations between a viscoelastic damage rheology model and rate- and state-dependent (RS) friction. Both frameworks describe brittle deformation, although the former models localization zones in a deforming volume while the latter is associated with sliding on existing surfaces. The viscoelastic damage model accounts for evolving elastic properties and inelastic strain. The evolving elastic properties are related quantitatively to a damage state variable representing the local density of microcracks. Positive and negative changes of the damage variable lead, respectively, to degradation and recovery of the material in response to loading. A model configuration having an existing narrow zone with localized damage produces for appropriate loading and temperature-pressure conditions an overall cyclic stick-slip motion compatible with a frictional response. Each deformation cycle (limit cycle) can be divided into healing and weakening periods associated with decreasing and increasing damage, respectively. The direct effect of the RS friction and the magnitude of the frictional parameter a are related to material strengthening with increasing rate of loading. The strength and residence time of asperities (model elements) in the weakening stage depend on the rates of damage evolution and accumulation of irreversible strain. The evolutionary effect of the RS friction and overall change in the friction parameters (a-b) are controlled by the duration of the healing period and asperity (element) strengthening during this stage. For a model with spatially variable properties, the damage rheology reproduces the logarithmic dependency of the steady-state friction coefficient on the sliding velocity and the normal stress. The transition from a velocity strengthening regime to a velocity weakening one can be obtained by varying the rate of inelastic strain accumulation and keeping the other damage rheology parameters fixed. The developments unify previous damage rheology results on deformation localization leading to formation of new fault zones with detailed experimental results on frictional sliding. The results provide a route for extending the formulation of RS friction into a non-linear continuum mechanics framework.
Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe
2015-02-01
Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Worthington, Lindsay L.; Gulick, Sean P. S.; Pavlis, Terry L.
Within the northern Gulf of Alaska, the Yakutat (YAK) microplate obliquely collides with and subducts beneath the North American (NA) continent at near-Pacific plate velocities. We investigate the extent that thin-skinned deformation on offshore structures located within the western portion of the unsubducted YAK block accommodates YAK-NA convergence. We compare faulting and folding observed on high-resolution and basin-scale multichannel seismic (MCS) reflection data with earthquake locations and surface ruptures observed on high-resolution bathymetric data. Holocene sediments overlying the Kayak Island fault zone (KIZ), previously interpreted as a region of active contraction, are relatively flat-lying, suggesting that active convergence within the KIZ is waning. Seismic reflection profiles east of KIZ show up to ˜200 m of undisturbed sediments overlying older folds in the Bering Trough, indicating that this area has been tectonically inactive since at least the last ˜1.3 Ma. Farther east, MCS profiles image active deformation in surface sediments along the eastern edge of the Pamplona zone (PZ) fold-and-thrust belt, that are collocated with a concentration of earthquake events that continues southwest to Khitrov Ridge and onshore through Icy Bay. These observations suggest that during the late Quaternary offshore shallow deformation style changed from distributed across the western Yakutat block to localized at the eastern edge of the PZ with extrusion of sediments southwest through the Khitrov Ridge area to the Aleutian Trench. This shallow deformation is interpreted as deformation of an accretionary complex above a shallow decollement.
NASA Astrophysics Data System (ADS)
Aly, M. H.; Hughes, S. S.; Rodgers, D. W.; Glenn, N. F.; Thackray, G. D.
2007-12-01
The Snake River Plain-Yellowstone tectono-volcanic province was created when North America migrated over a fixed hotspot in the mantle. Synthetic Aperture Radar Interferometry (InSAR) has been applied in this study to address the recent tectono-volcanic activity in the Eastern Snake River Plain (ESRP) and the southwestern part of Yellowstone Plateau. InSAR results show that crustal deformation across the tectono-volcanic province is episodic. An episode of uplift (about 1 cm/yr) along the ESRP axial volcanic zone, directly southwest of Island Park, has been detected from a time-series of independent differential interferograms created for the 1993-2000 period. Episodes of subsidence (1 cm/yr) during 1997-2000 and uplift (3 cm/yr) during 2004-2006 have been also detected in the active Yellowstone caldera, just northeast of Island Park. The detected interferometric signals indicate that deformation across the axial volcanic zone near Island Park is inversely linked to deformation in the active Yellowstone caldera. One explanation is that the inverse motions reflect a flexure response of the ESRP crust to magma chamber activity beneath the active caldera, although other interpretations are possible. The time-series of differential interferograms shows that no regional deformation has occurred across the central part of ESRP during the periods of observations, but local surface displacements of 1-3 cm magnitude have been detected in the adjacent Basin-Range province. Differential surface movements of varying rates have been also detected along Centennial, Madison, and Hebgen faults between 1993 and 2006.
Deformation of contact surfaces in a vacuum interrupter after high-current interruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haoran; Wang, Zhenxing, E-mail: zxwang@xjtu.edu.cn; Zhou, Zhipeng
2016-08-07
In a high-current interruption, the contact surface in a vacuum interrupter might be severely damaged by constricted vacuum arcs causing a molten area on it. As a result, a protrusion will be initiated by a transient recovery voltage after current zero, enhancing the local electric field and making breakdowns occur easier. The objective of this paper is to simulate the deformation process on the molten area under a high electric field by adopting the finite element method. A time-dependent Electrohydrodynamic model was established, and the liquid-gas interface was tracked by the level-set method. From the results, the liquid metal canmore » be deformed to a Taylor cone if the applied electric field is above a critical value. This value is correlated to the initial geometry of the liquid metal, which increases as the size of the liquid metal decreases. Moreover, the buildup time of a Taylor cone obeys the power law t = k × E{sup −3}, where E is the initial electric field and k is a coefficient related to the material property, indicating a temporal self-similar characteristic. In addition, the influence of temperature has little impact on the deformation but has great impact on electron emission. Finally, the possible reason to initiate a delayed breakdown is associated with the deformation. The breakdown does not occur immediately when the voltage is just applied upon the gap but is postponed to several milliseconds later when the tip is formed on the liquid metal.« less
Goetz, Jessica E.; Kunze, Nicole M.; Main, Erin K.; Thedens, Daniel R.; Baer, Thomas E.; Lawler, Ericka A.; Brown, Thomas D.
2013-01-01
In MR images, the median nerve of carpal tunnel syndrome (CTS) patients frequently appears flatter than in healthy subjects. The purpose of this work was to develop a metric to quantify localized median nerve deformation rather than global nerve flattening, the hypothesis being that localized median nerve deformation would be elevated in CTS patients. Twelve patients with CTS and 12 matched normals underwent MRI scanning in eight isometrically loaded hand conditions. 2D cross sections of the proximal and distal tunnel were analyzed for nerve cross sectional area, flattening ratio, and a position shift to the dorsal side of the tunnel. Additionally, new metrics based on the angulation of the nerve perimeter in 0.5-mm lengths around the boundary were calculated. The localized deformation metrics were able to detect differences between CTS patients and healthy subjects that could not be appreciated from the flattening ratio. During most hand activities, normal subjects had a higher average percentage of locally deformed nerve boundary than did CTS patients, despite having a rounder overall shape. Less local nerve deformation in the CTS patient group resulting from its interaction with flexor tendons suggests that the nerve may be less compliant in CTS patients. PMID:23612911
NASA Astrophysics Data System (ADS)
Fournier, L.; Savoie, M.; Delafosse, D.
2007-06-01
The low cycle fatigue (LCF) behaviour of precipitation-strengthened A-286 austenitic stainless steel was first investigated at room temperature under 0.2% plastic strain control. LCF led to hardening for the first 20 cycles and then to significant softening. LCF-induced dislocation microstructure was characterized using both bright and dark-field imaging techniques in transmission electron microscopy. Cycling softening was correlated with the formation of precipitate-free localized deformation bands. The effect of these precipitate-free localized deformation bands on A-286 stress corrosion cracking (SCC) behaviour in PWR primary water was then examined by means of constant extension rate tensile (CERT) tests at 320 °C and 360 °C. Comparative CERT tests were performed on companion specimens with similar yield stress but pre-fatigued to a few cycles (4-8) or between 125 and 200 cycles. Specimens pre-fatigued to a few cycles with no precipitate-free localized deformation bands exhibited little susceptibility to intergranular SCC (IGSCC). In contrast, the presence of precipitate-free localized deformation bands formed by pre-fatigue to between 125 and 200 cycles strongly promoted IGSCC. The interest of the approach used in this study is to provide insight into the role of localized deformation in irradiation assisted stress corrosion cracking.
Geodetic monitoring of subrosion-induced subsidence processes in urban areas
NASA Astrophysics Data System (ADS)
Kersten, Tobias; Kobe, Martin; Gabriel, Gerald; Timmen, Ludger; Schön, Steffen; Vogel, Detlef
2017-03-01
The research project SIMULTAN applies an advanced combination of geophysical, geodetic, and modelling techniques to gain a better understanding of the evolution and characteristics of sinkholes. Sinkholes are inherently related to surface deformation and, thus, of increasing societal relevance, especially in dense populated urban areas. One work package of SIMULTAN investigates an integrated approach to monitor sinkhole-related mass translations and surface deformations induced by salt dissolution. Datasets from identical and adjacent points are used for a consistent combination of geodetic and geophysical techniques. Monitoring networks are established in Hamburg and Bad Frankenhausen (Thuringia). Levelling surveys indicate subsidence rates of about 4-5 mm per year in the main subsidence areas of Bad Frankenhausen with a local maximum of 10 mm per year around the leaning church tower. Here, the concept of combining geodetic and gravimetric techniques to monitor and characterise geological processes on and below the Earth's surface is exemplary discussed for the focus area Bad Frankenhausen. For the different methods (levelling, GNSS, relative/absolute gravimetry) stable network results at identical points are obtained by the first campaigns, i.e., the results are generally in agreement.
An externally and internally deformable, programmable lung motion phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Yam; Sawant, Amit, E-mail: amit.sawant@utsouthwestern.edu
Purpose: Most clinically deployed strategies for respiratory motion management in lung radiotherapy (e.g., gating and tracking) use external markers that serve as surrogates for tumor motion. However, typical lung phantoms used to validate these strategies are based on a rigid exterior and a rigid or a deformable-interior. Such designs do not adequately represent respiration because the thoracic anatomy deforms internally as well as externally. In order to create a closer approximation of respiratory motion, the authors describe the construction and experimental testing of an externally as well as internally deformable, programmable lung phantom. Methods: The outer shell of a commerciallymore » available lung phantom (RS-1500, RSD, Inc.) was used. The shell consists of a chest cavity with a flexible anterior surface, and embedded vertebrae, rib-cage and sternum. A custom-made insert was designed using a piece of natural latex foam block. A motion platform was programmed with sinusoidal and ten patient-recorded lung tumor trajectories. The platform was used to drive a rigid foam “diaphragm” that compressed/decompressed the phantom interior. Experimental characterization comprised of determining the reproducibility and the external–internal correlation of external and internal marker trajectories extracted from kV x-ray fluoroscopy. Experiments were conducted to illustrate three example applications of the phantom—(i) validating the geometric accuracy of the VisionRT surface photogrammetry system; (ii) validating an image registration tool, NiftyReg; and (iii) quantifying the geometric error due to irregular motion in four-dimensional computed tomography (4DCT). Results: The phantom correctly reproduced sinusoidal and patient-derived motion, as well as realistic respiratory motion-related effects such as hysteresis. The reproducibility of marker trajectories over multiple runs for sinusoidal as well as patient traces, as characterized by fluoroscopy, was within 0.25 mm RMS error. The motion trajectories of internal and external radio-opaque markers as measured by fluoroscopy were found to be highly correlated (R > 0.95). Using the phantom, it was demonstrated that the motion trajectories of regions-of-interest on the surface as measured by VisionRT are highly consistent with corresponding fluoroscopically acquired surface marker trajectories, with RMS errors within 0.26 mm. Furthermore, it was shown that the trajectories of external and internal marker trajectories derived from NiftyReg deformation vector fields were within 1 mm root mean square errors comparing to trajectories obtained by segmenting markers from individual fluoro frames. Finally, it was shown that while 4DCT can be used to localize internal markers for sinusoidal motion with reasonable accuracy, the localization error increases significantly (by a factor of ∼2) in the presence of cycle-to-cycle variations that are observed in patient-derived respiratory motion. Conclusions: The authors have developed a realistic externally and internally deformable, programmable lung phantom that will serve as a valuable tool for clinical and investigational motion management studies in thoracic and abdominal radiation therapies.« less
Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel
NASA Astrophysics Data System (ADS)
Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying
2018-05-01
Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.
Sealing apparatus utilizing a conformable member
Neef, William S.; Lambert, Donald R.
1988-01-01
Sealing apparatus and method, comprising first and second surfaces or membranes, at least one of which surfaces is deformable, placed in proximity to one another. Urging means cause these surfaces to contact one another in a manner such that the deformable surface "deforms" to conform to the geometry of the other surface, thereby creating a seal. The seal is capable of undergoing multiple cycles of sealing and unsealing.
NASA Astrophysics Data System (ADS)
Mi, S. J.; Li, Y. T.; Wang, F.; Li, L.; Ge, Y.; Luo, L.; Zhang, C. L.; Chen, J. B.
2017-09-01
The Qinghai Tibetan Plateau permafrost has been the largest permafrost region in middle-low latitude in the world for its high altitude. For the large area permafrost, especially surface deformation brought by it, have serious influence on the road engineering, road maintaining and regional economic development. Consequently, it is essential to monitor the surface deformation and study factors that influent it. We monitored an area named Wudaoliang from July 25, 2015 to June 1, 2016 and 15 Sentinel images were obtained during this time. The area we chose is about 35 kilometers long and 2 kilometers wide, and the national road 109 of China passes through the area. The traditional PS-INSAR (Persistent Scatterer Interferometric Synthetic Aperture Radar) method is not suitable because less historical images in the research area and leading to the number of PS (Persistent Scatterer) points is not enough to obtain accurate deformation results. Therefore, in this paper, we used another method which named QUASI-PSInSAR (QUASI Persistent Scatterer Interferometric Synthetic Aperture Radar) to acquire deformation for it has the advantage to weaken or eliminate the effects of spatial and temporal correlation, which has proved by other scholar. After processing 15 images in the SARproz software, we got the conclusions that, 1) the biggest deformation velocity in the whole area was about 127.9mm/year and about 109.3 mm/year in the road; 2) apparent deformation which have surface deformation more than 30mm/year was about 1.7Km in the road. Meanwhile, soil moisture(SM), Land surface temperature (LST) and surface water(SW), which are primary parameters of the land surface over the same time were reversed by using Sentinel data, Landsat data and ZY-3 data, respectively. After analyzing SM, LST , SW and deformation, we obtained that wet areas which had bigger SM, lower LST and more SW, had greater percentage of severe deformation than arid areas; besides, deformation pattern were different in arid areas and wet areas. During the research time, frost heaving firstly accounted for a large proportion both in the arid and wet areas with the decrease of downward radiation from July to December; after December, thaw settlement came into prominence with the increase downward radiation in the arid areas, while in the wet areas, surface put into diverse situations because of water transformation leading to severe deformation. In summary, soil moisture is an important factor that influences the surface deformation. This relationship between deformation process and soil moisture will be researched more in our further work.
Improving the engine power of a catalytic Janus-sphere micromotor by roughening its surface.
Longbottom, Brooke W; Bon, Stefan A F
2018-03-15
Microspheres with catalytic caps have become a popular model system for studying self-propelled colloids. Existing experimental studies involve predominantly "smooth" particle surfaces. In this study we determine the effect of irregular surface deformations on the propulsive mechanism with a particular focus on speed. The particle surfaces of polymer microspheres were deformed prior to depositing a layer of platinum which resulted in the formation of nanoscopic pillars of catalyst. Self-propulsion was induced upon exposure of the micromotors to hydrogen peroxide, whilst they were dispersed in water. The topological surface features were shown to boost speed (~2×) when the underlying deformations are small (nanoscale), whilst large deformations afforded little difference despite a substantial apparent catalytic surface area. Colloids with deformed surfaces were more likely to display a mixture of rotational and translational propulsion than their "smooth" counterparts.
Investigation of heavy-ion fusion with deformed surface diffuseness: Actinide and lanthanide targets
NASA Astrophysics Data System (ADS)
Alavi, S. A.; Dehghani, V.
2017-05-01
By using a deformed Broglia-Winther nuclear interaction potential in the framework of the WKB method, the near- and above-barrier heavy-ion-fusion cross sections of 16O with some lanthanides and actinides have been calculated. The effect of deformed surface diffuseness on the nuclear interaction potential, the effective interaction potential at distinct angle, barrier position, barrier height, cross section at each angles, and fusion cross sections of 16O+147Sm,150Nd,154Sm , and 166Er and 16O+232Th,238U,237Np , and 248Cm have been studied. The differences between the results obtained by using deformed surface diffuseness and those obtained by using constant surface diffuseness were noticeable. Good agreement between experimental data and theoretical calculation with deformed surface diffuseness were observed for 16O+147Sm,154Sm,166Er,238U,237Np , and 248Cm reactions. It has been observed that deformed surface diffuseness plays a significant role in heavy-ion-fusion studies.
Grain-scale investigations of deformation heterogeneities in aluminum alloys
NASA Astrophysics Data System (ADS)
Güler, Baran; Şimşek, Ülke; Yalçınkaya, Tuncay; Efe, Mert
2018-05-01
The anisotropic deformation of Aluminum alloys at micron scale exhibits localized deformation, which has negative implications on the macroscale mechanical and forming behavior. The scope of this work is twofold. Firstly, micro-scale deformation heterogeneities affecting forming behavior of aluminum alloys is investigated through experimental microstructure analysis at large strains and various strain paths. The effects of initial texture, local grain misorientation, and strain paths on the strain localizations are established. In addition to uniaxial tension condition, deformation heterogeneities are also investigated under equibiaxial tension condition to determine the strain path effects on the localization behavior. Secondly, the morphology and the crystallographic data obtained from the experiments is transferred to Abaqus software, in order to predict both macroscopic response and the microstructure evolution though crystal plasticity finite element simulations. The model parameters are identified through the comparison with experiments and the capability of the model to capture real material response is discussed as well.
Medial-based deformable models in nonconvex shape-spaces for medical image segmentation.
McIntosh, Chris; Hamarneh, Ghassan
2012-01-01
We explore the application of genetic algorithms (GA) to deformable models through the proposition of a novel method for medical image segmentation that combines GA with nonconvex, localized, medial-based shape statistics. We replace the more typical gradient descent optimizer used in deformable models with GA, and the convex, implicit, global shape statistics with nonconvex, explicit, localized ones. Specifically, we propose GA to reduce typical deformable model weaknesses pertaining to model initialization, pose estimation and local minima, through the simultaneous evolution of a large number of models. Furthermore, we constrain the evolution, and thus reduce the size of the search-space, by using statistically-based deformable models whose deformations are intuitive (stretch, bulge, bend) and are driven in terms of localized principal modes of variation, instead of modes of variation across the entire shape that often fail to capture localized shape changes. Although GA are not guaranteed to achieve the global optima, our method compares favorably to the prevalent optimization techniques, convex/nonconvex gradient-based optimizers and to globally optimal graph-theoretic combinatorial optimization techniques, when applied to the task of corpus callosum segmentation in 50 mid-sagittal brain magnetic resonance images.
NASA Astrophysics Data System (ADS)
Palano, Mimmo; Imprescia, Paola; Agnon, Amotz; Gresta, Stefano
2018-04-01
We present an improved picture of the ongoing crustal deformation field for the Zagros Fold-and-Thrust Belt continental collision zone by using an extensive combination of both novel and published GPS observations. The main results define the significant amount of oblique Arabia-Eurasia convergence currently being absorbed within the Zagros: right-lateral shear along the NW trending Main Recent fault in NW Zagros and accommodated between fold-and-thrust structures and NS right-lateral strike-slip faults on Southern Zagros. In addition, taking into account the 1909-2016 instrumental seismic catalogue, we provide a statistical evaluation of the seismic/geodetic deformation-rate ratio for the area. On Northern Zagros and on the Turkish-Iranian Plateau, a moderate to large fraction (˜49 and >60 per cent, respectively) of the crustal deformation occurs seismically. On the Sanandaj-Sirjan zone, the seismic/geodetic deformation-rate ratio suggests that a small to moderate fraction (<40 per cent) of crustal deformation occurs seismically; locally, the occurrence of large historic earthquakes (M ≥ 6) coupled with the high geodetic deformation, could indicate overdue M ≥ 6 earthquakes. On Southern Zagros, aseismic strain dominates crustal deformation (the ratio ranges in the 15-33 per cent interval). Such aseismic deformation is probably related to the presence of the weak evaporitic Hormuz Formation which allows the occurrence of large aseismic motion on both subhorizontal faults and surfaces of décollement. These results, framed into the seismotectonic framework of the investigated region, confirm that the fold-and-thrust-dominated deformation is driven by buoyancy forces; by contrast, the shear-dominated deformation is primary driven by plate stresses.
The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling.
Lou, Hsin-Ya; Zhao, Wenting; Zeng, Yongpeng; Cui, Bianxiao
2018-05-15
Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies allowing the visualization of membrane deformation at the cell membrane-to-substrate interface with nanometer precision and demonstrate that vertical nanostructures induce local curvatures on the plasma membrane. These local curvatures enhance the process of clathrin-mediated endocytosis and affect actin dynamics. We also present evidence that vertical nanostructures can induce significant deformation of the nuclear membrane, which can affect chromatin distribution and gene expression. Finally, we provide a brief perspective on the curvature hypothesis and the challenges and opportunities for the design of nanotopography for manipulating cell behavior.
Localization in Naturally Deformed Systems - the Default State?
NASA Astrophysics Data System (ADS)
Clancy White, Joseph
2017-04-01
Based on the extensive literature on localized rock deformation, conventional wisdom would interpret it to be a special behaviour within an anticipated background of otherwise uniform deformation. The latter notwithstanding, the rock record is so rife with transient (cyclic), heterogeneous deformation, notably shear localization, as to characterize localization as the anticipated 'normal' behaviour. The corollary is that steady, homogeneous deformation is significantly less common, and if achieved must reflect some special set of conditions that are not representative of the general case. An issue central to natural deformation is then not the existance of localized strain, but rather how the extant deformation processes scale across tectonic phenomena and in turn organize to enable a coherent(?) descripion of Earth deformation. Deformation is fundamentally quantized, discrete (diffusion, glide, crack propagation) and reliant on the defect state of rock-forming minerals. The strain energy distribution that drives thermo-mechanical responses is in the first instance established at the grain-scale where the non-linear interaction of defect-mediated micromechanical processes introduces heterogeneous behaviour described by various gradient theories, and evidenced by the defect microstructures of deformed rocks. Hence, the potential for non-uniform response is embedded within even quasi-uniform, monomineralic materials, seen, for example, in the spatially discrete evolution of dynamic recrystallization. What passes as homogeneous or uniform deformation at various scales is the aggregation of responses at some characteristic dimension at which heterogeneity is not registered or measured. Nevertheless, the aggregate response and associated normalized parameters (strain, strain rate) do not correspond to any condition actually experienced by the deforming material. The more common types of macroscopic heterogeneity promoting localization comprise mechanically contrasting materials typical of most rocks. Such perturbations are of themselves only larger examples of variation in the fundamental defect distribution and response; that is the boundary conditions that induce heterogeneous response are reflections of the microphysical behaviour seen in aggregate as strain accommodating softening or stabilization processes such as grain size reduction and independent grain displacements. Additionally, cyclic interplay between inelastic rupture and subsequent plastic material softening resulting from the concomitant introduction of exogenous material in the form of igneous melts, deformation-induced melts and fluid precipitates (veins). This two-stage process determines the siting and temporary stabilization of the shear phenomena, and indicates that material hardening and non-associated flow over some characteristic time are precursors to any particular instability, with stabilization of localized shear correlated with system softening tied to redistribution of strain energy dissipation within what is effectively a reconstituted material.
NASA Astrophysics Data System (ADS)
Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier; Voudouris, Panagiotis; Rigaudier, Thomas; Photiades, Adonis; Morin, Denis; Alloucherie, Alison
2017-10-01
The impact of lithological heterogeneities on deformation, fluid flow and ore deposition is discussed based on the example of the Lavrion low-angle detachment partly accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula is characterised by a multiphase Pb-Zn-Fe-Cu-Ag ore system with a probable pre-concentration before subduction followed by progressive remobilisation and deposition coeval with the development of a low-angle ductile to brittle shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, carbonaceous material). Ductile mylonitic deformation is more pervasive in the less competent impure blue marble. We propose that localised deformation in the impure marble is associated with fluid circulation and dolomitisation, which in turn causes an increase in competence of these layers. Mineralised cataclastic zones, crosscutting the mylonitic fabric, are preferentially localised in the more competent dolomitic layers. Oxygen and carbon isotopic signatures of marble invaded by carbonate replacement deposits during ductile to ductile-brittle deformation are consistent with decarbonation coeval with the invasion of magmatic fluids. Mineralised cataclastic zones reflecting brittle deformation evolve from low 13C to low 18O signatures, interpreted as local interaction with carbonaceous material that trends toward the contribution of a surface-derived fluid. These features indicate that the Lavrion area records a complex deposition history influenced by the evolution of fluid reservoirs induced by the thermal and mechanical evolution of the marble nappe stack. Ore remobilisation and deposition associated with the activity of the low-angle detachment is (i) firstly related to the intrusion of the Plaka granodiorite leading to porphyry-type and carbonate replacement mineralisation during ductile-brittle deformation and (ii) then marked by progressive penetration of surface-derived fluids guided by strain localisation in the more competent levels leading to epithermal mineralisation associated with brittle deformation.
NASA Astrophysics Data System (ADS)
H, D.
2017-12-01
The Gendakan ancient landslide is located on the West bank of the upstream on Lancang River and about 4 km downstream from the Gushui hydropower station dam site. The ancient landslide is 850 m long and 700 m wide, the drill cores show that the maximum thickness of the landslide body is 107 m, with a mean thickness of approximately 80 m. Thus, the overall volume is about 3000×104m3. At present, the landslide has obvious deformation and failure signs, the leading edge is collapsing step by step. Once the landslide is unstable, it will affect the construction and operation of the Gushui hydropower station. In this paper, the development characteristics of the landslide accumulation body and the characteristics of the resurrection deformation are summarized in detail from the regional geological environment of the Gandakan landslide accumulation body. The three-dimensional geological model is established to analyze the stress and strain, displacement change and deformation failure characteristics and further evaluate its resurrection evolution trend , Combined with the developmental characteristics of the typical rock mass in the nearshore slope of the engineering area, analyzes the process of the resurrection and evolution of the rooted landslide accumulation. The FLAC-3D finite difference software was used to analyze the shear strain increment, displacement and plastic zone of the landslide accumulation body under natural conditions and rainfall conditions. The results show: the Gendakan landslide is stable in the natural state, and its deformation and failure are mainly caused by the tensile and shearing of the surface, under the rainfall condition, the local deformation and failure of the landslide accumulation body is obvious and the resurrection deformation Intensified. The resurrection evolutionary process of Gendakan ancient landslide includes three steps below. 1) The landslide body trailing edge creep cracking, leading edge shear deformation. 2) Sliding surface, accelerate the decline. 3)Disintegration of collision and impact into the dam.
Effect of bending on the dynamics and wrinkle formation for a capsule in shear flow
NASA Astrophysics Data System (ADS)
Salsac, Anne-Virginie; Dupont, Claire; Barthes-Biesel, Dominique; Vidrascu, Marina; Le Tallec, Patrick
2014-11-01
When microcapsules are subjected to an external flow, the droplets enclosed within a thin hyperelastic wall undergo large deformations, which often lead to buckling of the thin capsule wall. The objective is to study numerically an initially spherical capsule in shear flow and analyze the influence of the membrane bending rigidity on the capsule dynamics and wrinkle formation. The 3D fluid-structure interactions are modeled coupling a boundary integral method to solve for the internal and external Stokes flows with a thin shell finite element method to solve for the wall deformation. Hyperelastic constitutive laws are implemented to model the deformation of the capsule mid-surface and the generalized Hooke's law for the bending effects. We show that the capsule global motion and deformation are mainly governed by in-plane membrane tensions and are marginally influenced by the bending stiffness Ks. The bending stiffness, however, plays a role locally in regions of compressive tensions. The wrinkle wavelength depends on Ks following a power law, which provides an experimental technique to determine the value of Ks through inverse analysis.
A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addessio, Francis L.; Bronkhorst, Curt Allan; Bolme, Cynthia Anne
2016-08-09
An anisotropic, rate-dependent, single-crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientationsmore » relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.« less
Dynamic monitoring of compliant bodies impacting the water surface through local strain measurements
NASA Astrophysics Data System (ADS)
Panciroli, Riccardo; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano
2016-04-01
The understanding and the experimental characterization of the evolution of impulsive loading is crucial in several fields in structural, mechanical and ocean engineering, naval architecture and aerospace. In this regards, we developed an experimental methodology to reconstruct the deformed shape of compliant bodies subjected to impulsive loadings, as those encountered in water entry events, starting from a finite number of local strain measurements performed through Fiber Bragg Gratings. The paper discusses the potential applications of the proposed methodology for: i) real-time damage detection and structural health monitoring, ii) fatigue assessment and iii) impulsive load estimation.
Deformable mirror-based optical design of dynamic local athermal longwave infrared optical systems
NASA Astrophysics Data System (ADS)
Shen, Benlan; Chang, Jun; Niu, Yajun; Chen, Weilin; Ji, Zhongye
2018-07-01
This paper presents a dynamic local athermalisation method for longwave infrared (LWIR) optical systems; the proposed design uses a deformable mirror and is based on active optics theory. A local athermal LWIR optical system is designed as an example. The deformable mirror is tilted by 45° near the exit pupil of the system. The thermal aberrations are corrected by the deformable mirror for the local athermal field of view (FOV) that ranges from -40 °C to 80 °C. The types of thermal aberrations are analysed. Simulated results show that the local athermal LWIR optical system can effectively detect targets in the region of interest within a large FOV and correct thermal aberrations in actual working environments in real time. The system has numerous potential applications in infrared detection and tracking, surveillance and remote sensing.
Finsler geometry of nonlinear elastic solids with internal structure
NASA Astrophysics Data System (ADS)
Clayton, J. D.
2017-02-01
Concepts from Finsler differential geometry are applied towards a theory of deformable continua with internal structure. The general theory accounts for finite deformation, nonlinear elasticity, and various kinds of structural features in a solid body. The general kinematic structure of the theory includes macroscopic and microscopic displacement fields-i.e., a multiscale representation-whereby the latter are represented mathematically by the director vector of pseudo-Finsler space, not necessarily of unit magnitude. A physically appropriate fundamental (metric) tensor is introduced, leading to affine and nonlinear connections. A deformation gradient tensor is defined via differentiation of the macroscopic motion field, and another metric indicative of strain in the body is a function of this gradient. A total energy functional of strain, referential microscopic coordinates, and horizontal covariant derivatives of the latter is introduced. Variational methods are applied to derive Euler-Lagrange equations and Neumann boundary conditions. The theory is shown to encompass existing continuum physics models such as micromorphic, micropolar, strain gradient, phase field, and conventional nonlinear elasticity models, and it can reduce to such models when certain assumptions on geometry, kinematics, and energy functionals are imposed. The theory is applied to analyze two physical problems in crystalline solids: shear localization/fracture in a two-dimensional body and cavitation in a spherical body. In these examples, a conformal or Weyl-type transformation of the fundamental tensor enables a description of dilatation associated, respectively, with cleavage surface roughness and nucleation of voids or vacancies. For the shear localization problem, the Finsler theory is able to accurately reproduce the surface energy of Griffith's fracture mechanics, and it predicts dilatation-induced toughening as observed in experiments on brittle crystals. For the cavitation problem, the Finsler theory is able to accurately reproduce the vacancy formation energy at a nanoscale resolution, and various solutions describe localized cavitation at the core of the body and/or distributed dilatation and softening associated with amorphization as observed in atomic simulations, with relative stability of solutions depending on the regularization length.
Monitoring Tensile Fatigue of Superelastic NiTi Wire in Liquids by Electrochemical Potential
NASA Astrophysics Data System (ADS)
Racek, Jan; Stora, Marc; Šittner, Petr; Heller, Luděk; Kopeček, Jaromir; Petrenec, Martin
2015-06-01
Fatigue of superelastic NiTi wires was investigated by cyclic tension in simulated biofluid. The state of the surface of the fatigued NiTi wire was monitored by following the evolution of the electrochemical open circuit potential (OCP) together with macroscopic stresses and strains. The ceramic TiO2 oxide layer on the NiTi wire surface cannot withstand the large transformation strain and fractures in the first cycle. Based on the analysis of the results of in situ OCP experiments and SEM observation of cracks, it is claimed that the cycled wire surface develops mechanochemical reactions at the NiTi/liquid interface leading to cumulative generation of hydrogen, uptake of the hydrogen by the NiTi matrix, local loss of the matrix strength, crack transfer into the NiTi matrix, accelerated crack growth, and ultimately to the brittle fracture of the wire. Fatigue degradation is thus claimed to originate from the mechanochemical processes occurring at the excessively deforming surface not from the accumulation of defects due to energy dissipative bulk deformation processes. Ironically, combination of the two exciting properties of NiTi—superelasticity due to martensitic transformation and biocompatibility due to the protective TiO2 surface oxide layer—leads to excessive fatigue damage during cyclic mechanical loading in biofluids.
Ramakrishna, Shivaprakash N; Nalam, Prathima C; Clasohm, Lucy Y; Spencer, Nicholas D
2013-01-08
We have previously investigated the dependence of adhesion on nanometer-scale surface roughness by employing a roughness gradient. In this study, we correlate the obtained adhesion forces on nanometer-scale rough surfaces to their frictional properties. A roughness gradient with varying silica particle (diameter ≈ 12 nm) density was prepared, and adhesion and frictional forces were measured across the gradient surface in perfluorodecalin by means of atomic force microscopy with a polyethylene colloidal probe. Similarly to the pull-off measurements, the frictional forces initially showed a reduction with decreasing particle density and later an abrupt increase as the colloidal sphere began to touch the flat substrate beneath, at very low particle densities. The friction-load relation is found to depend on the real contact area (A(real)) between the colloid probe and the underlying particles. At high particle density, the colloidal sphere undergoes large deformations over several nanoparticles, and the contact adhesion (JKR type) dominates the frictional response. However, at low particle density (before the colloidal probe is in contact with the underlying surface), the colloidal sphere is suspended by a few particles only, resulting in local deformations of the colloid sphere, with the frictional response to the applied load being dominated by long-range, noncontact (DMT-type) interactions with the substrate beneath.
Seismic damage identification for steel structures using distributed fiber optics.
Hou, Shuang; Cai, C S; Ou, Jinping
2009-08-01
A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.
1989-09-01
angle to the applied tension and failure rapidly follows, as the volume of metal now deforming is small. Local necking Contributes virtually nothing...into components. It is thought that the 9 phase may be responsible for grain refinement, but it may be due to minute traces of oxide on the original...order to minimize oxidation and related detrimental surface degradation due to the reactivity of titanium. The use of such protective gases is not
European Scientific Notes. Volume 37, Numbers 10/11.
1983-11-01
percent decrease in the intensity of space-geodetic methods for monitoring solar radiation reachipg the earth’s local crustal deformations. surface, the...1983) - and solids. The average power available 35-nm range at the Comitato Nazionale and the predicted high efficiency of Energia Nucleare laboratory in...the David W. Taylor Naval gated for transmittance. These measure- Ship Research and Development Center, ments are important for solar energy Bethesda
NASA Astrophysics Data System (ADS)
Hong, Sungmin; Fishbaugh, James; Rezanejad, Morteza; Siddiqi, Kaleem; Johnson, Hans; Paulsen, Jane; Kim, Eun Young; Gerig, Guido
2017-02-01
Modeling subject-specific shape change is one of the most important challenges in longitudinal shape analysis of disease progression. Whereas anatomical change over time can be a function of normal aging, anatomy can also be impacted by disease related degeneration. Anatomical shape change may also be affected by structural changes from neighboring shapes, which may cause non-linear variations in pose. In this paper, we propose a framework to analyze disease related shape changes by coupling extrinsic modeling of the ambient anatomical space via spatiotemporal deformations with intrinsic shape properties from medial surface analysis. We compare intrinsic shape properties of a subject-specific shape trajectory to a normative 4D shape atlas representing normal aging to isolate shape changes related to disease. The spatiotemporal shape modeling establishes inter/intra subject anatomical correspondence, which in turn enables comparisons between subjects and the 4D shape atlas, and also quantitative analysis of disease related shape change. The medial surface analysis captures intrinsic shape properties related to local patterns of deformation. The proposed framework jointly models extrinsic longitudinal shape changes in the ambient anatomical space, as well as intrinsic shape properties to give localized measurements of degeneration. Six high risk subjects and six controls are randomly sampled from a Huntington's disease image database for qualitative and quantitative comparison.
Deformable Image Registration for Cone-Beam CT Guided Transoral Robotic Base of Tongue Surgery
Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.
2013-01-01
Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base of tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam CT (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e., volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC), and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid, and Demons steps was 4.6, 2.1, and 1.7 mm, respectively. The respective ECC was 0.57, 0.70, and 0.73 and NPMI was 0.46, 0.57, and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to support safer, high-precision base of tongue robotic surgery. PMID:23807549
Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery
NASA Astrophysics Data System (ADS)
Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.
2013-07-01
Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to support safer, high-precision base-of-tongue robotic surgery.
Lee, Wei Li; Low, Hong Yee
2016-01-01
Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets. PMID:27026290
Field aided characterization of a sandstone reservoir: Arroyo Grande Oil Field, California, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonellini, M.; Aydin, A.
1995-08-01
The Arroyo Grande Oil Field in Central California has been productive since 1905 from the miopliocene Edna member of the Pismo formation. The Edna member is a massive poorly consolidated sandstone unit with an average porosity of 0.2 and a permeability of 1000-5000 md; the producing levels are shallow, 100 to 500 m from the ground surface. Excellent surface exposures of the same formation along road cuts across the field and above the reservoir provide an opportunity to study reservoir rocks at the surface and to relate fracture and permeability distribution obtained from cores to folds and faults observed inmore » outcrops. We mapped in outcrops the major structures of the oil field and determine the statistical distribution and orientation of small faults (deformation bands) that have been observed both in cores and outcrop. The relation between deformation bands and major structures has also been characterized with detailed mapping. By using synthetic logs it is possible to determine the log signature of structural heterogeneities such as deformation bands in sandstone; these faults cause a neutron porosity drop respect to the host rock in the order of 1-4%. Image analysis has been used to determine the petrophysical properties of the sandstone in outcrop and in cores; permeability is three orders of magnitude lower in faults than in the host rock and capillary pressure is 1-2 orders of magnitude larger in faults than in the host rock. Faults with tens of meters offsets are associated with an high density of deformation bands (10 to 250 m{sup -1}) and with zones of cement precipitation up to 30 m from the fault. By combining well and field data, we propose a structural model for the oil field in which high angle reverse faults with localized deformation bands control the distribution of the hydrocarbons on the limb of a syncline, thereby explaining the seemingly unexpected direction of slope of the top surface of the reservoir which was inferred by well data only.« less
Quantifying cortical surface harmonic deformation with stereovision during open cranial neurosurgery
NASA Astrophysics Data System (ADS)
Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Paulsen, Keith D.
2012-02-01
Cortical surface harmonic motion during open cranial neurosurgery is well observed in image-guided neurosurgery. Recently, we quantified cortical surface deformation noninvasively with synchronized blood pressure pulsation (BPP) from a sequence of stereo image pairs using optical flow motion tracking. With three subjects, we found the average cortical surface displacement can reach more than 1 mm and in-plane principal strains of up to 7% relative to the first image pair. In addition, the temporal changes in deformation and strain were in concert with BPP and patient respiration [1]. However, because deformation was essentially computed relative to an arbitrary reference, comparing cortical surface deformation at different times was not possible. In this study, we extend the technique developed earlier by establishing a more reliable reference profile of the cortical surface for each sequence of stereo image acquisitions. Specifically, fast Fourier transform (FFT) was applied to the dynamic cortical surface deformation, and the fundamental frequencies corresponding to patient respiration and BPP were identified, which were used to determine the number of image acquisitions for use in averaging cortical surface images. This technique is important because it potentially allows in vivo characterization of soft tissue biomechanical properties using intraoperative stereovision and motion tracking.
Le Dantec, Nicolas; Hogarth, Leah J.; Driscoll, Neal W.; Babcock, Jeffrey M.; Barnhardt, Walter A.; Schwab, William C.
2010-01-01
CHIRP seismic and swath bathymetry data acquired offshore La Jolla, California provide an unprecedented three-dimensional view of the La Jolla and Scripps submarine canyons. Shore-parallel patterns of tectonic deformation appear to control nearshore sediment thickness and distribution around the canyons. These shore-parallel patterns allow the impact of local tectonic deformation to be separated from the influence of eustatic sea-level fluctuations. Based on stratal geometry and acoustic character, we identify a prominent angular unconformity inferred to be the transgressive surface and three sedimentary sequences: an acoustically laminated estuarine unit deposited during early transgression, an infilling or “healing-phase” unit formed during the transgression, and an upper transparent unit. Beneath the transgressive surface, steeply dipping reflectors with several dip reversals record faulting and folding along the La Jolla margin. Scripps Canyon is located at the crest of an antiform, where the rocks are fractured and more susceptible to erosion. La Jolla Canyon is located along the northern strand of the Rose Canyon Fault Zone, which separates Cretaceous lithified rocks to the south from poorly cemented Eocene sands and gravels to the north. Isopach and structure contour maps of the three sedimentary units reveal how their thicknesses and spatial distributions relate to regional tectonic deformation. For example, the estuarine unit is predominantly deposited along the edges of the canyons in paleotopographic lows that may have been inlets along barrier beaches during the Holocene sea-level rise. The distribution of the infilling unit is controlled by pre-existing relief that records tectonic deformation and erosional processes. The thickness and distribution of the upper transparent unit are controlled by long-wavelength, tectonically induced relief on the transgressive surface and hydrodynamics.
NASA Technical Reports Server (NTRS)
Gomberg, Joan; Ellis, Michael
1994-01-01
We present results of a series of numerical experiments designed to test hypothetical mechanisms that derive deformation in the New Madrid seismic zone. Experiments are constrained by subtle topography and the distribution of seismicity in the region. We use a new boundary element algorithm that permits calcuation of the three-dimensional deformation field. Surface displacement fields are calculated for the New Madrid zone under both far-field (plate tectonics scale) and locally derived driving strains. Results demonstrate that surface displacement fields cannot distinguish between either a far-field simple or pure shear strain field or one that involves a deep shear zone beneath the upper crustal faults. Thus, neither geomorphic nor geodetic studies alone are expected to reveal the ultimate driving mechanism behind the present-day deformation. We have also tested hypotheses about strain accommodation within the New Madrid contractional step-over by including linking faults, two southwest dipping and one vertical, recently inferred from microearthquake data. Only those models with step-over faults are able to predict the observed topography. Surface displacement fields for long-term, relaxed deformation predict the distribution of uplift and subsidence in the contractional step-over remarkably well. Generation of these displacement fields appear to require slip on both the two northeast trending vertical faults and the two dipping faults in the step-over region, with very minor displacements occurring during the interseismic period when the northeast trending vertical faults are locked. These models suggest that the gently dippling central step-over fault is a reverse fault and that the steeper fault, extending to the southeast of the step-over, acts as a normal fault over the long term.
Plate tectonics beyond plate boundaries: the role of ancient structures in intraplate orogenesis
NASA Astrophysics Data System (ADS)
Heron, Philip; Pysklywec, Russell; Stephenson, Randell
2015-04-01
The development of orogens that occur at a distance from plate boundaries (i.e., `intraplate' deformation) cannot be adequately explained through conventional plate tectonic theory. Intraplate deformation infers a more complex argument for lithospheric and mantle interaction than plate tectonic theory allows. As a result, the origins of intraplate orogenesis are enigmatic. One hypothesis is the amalgamation of continental material (i.e., micro-plates) leaves inherent scars on the crust and mantle lithosphere. Previous studies into continent-continent collisions identify a number of scenarios from accretionary tectonics that affect the crust and mantle (namely, the development of a Rayleigh-Taylor instability, lithospheric underplating, lithospheric delamination, and lithospheric subduction). Any of these processes may weaken the lithosphere allowing episodic reactivation of faults within continental interiors. Hence, continental convergence (i.e., shortening) at a time after continental collision may cause the already weakened crust and mantle lithosphere to produce intraplate deformation. In order to better understand the processes involved in deformation away from plate boundaries, we present suites of continental shortening models (using the high-resolution thermal-mechanical modelling code SOPALE) to identify the preferred style of deformation. We model ancient structures by applying weak subduction scarring, changing the rheological conditions, and modifying the thermal structure within the lithosphere. To highlight the role of surface processes on plate and lithosphere deformation, the effect of climate-driven erosion and deposition on the tectonic structure of intraplate deformation is also addressed. We explore the relevance of the models to previously studied regions of intraplate orogenesis, including the Pyrenees in Europe, the Laramide orogen in North America, Tien Shan orogen in Central Asia, and Central Australia. The findings of the simulations with regards to past and future North American intraplate deformation are also discussed. Our results indicate that there exists a number of tectonic environments that can be produced relating to continental accretion, and that specific observational constraints to the local area (e.g., geological, geophysical, geodetic) are required to be integrated directly into the analyses for better interpretation. The models shown here find that although rheological changes to the lithosphere can produce a range of deformation during continental convergence (i.e., crustal thickening, thinning, and folding), mantle weak zones from ancient subduction can generate more localized deformation and topography.
Visualization of scoliotic spine using ultrasound-accessible skeletal landmarks
NASA Astrophysics Data System (ADS)
Church, Ben; Lasso, Andras; Schlenger, Christopher; Borschneck, Daniel P.; Mousavi, Parvin; Fichtinger, Gabor; Ungi, Tamas
2017-03-01
PURPOSE: Ultrasound imaging is an attractive alternative to X-ray for scoliosis diagnosis and monitoring due to its safety and inexpensiveness. The transverse processes as skeletal landmarks are accessible by means of ultrasound and are sufficient for quantifying scoliosis, but do not provide an informative visualization of the spine. METHODS: We created a method for visualization of the scoliotic spine using a 3D transform field, resulting from thin-spline interpolation of a landmark-based registration between the transverse processes that we localized in both the patient's ultrasound and an average healthy spine model. Additional anchor points were computationally generated to control the thin-spline interpolation, in order to gain a transform field that accurately represents the deformation of the patient's spine. The transform field is applied to the average spine model, resulting in a 3D surface model depicting the patient's spine. We applied ground truth CT from pediatric scoliosis patients in which we reconstructed the bone surface and localized the transverse processes. We warped the average spine model and analyzed the match between the patient's bone surface and the warped spine. RESULTS: Visual inspection revealed accurate rendering of the scoliotic spine. Notable misalignments occurred mainly in the anterior-posterior direction, and at the first and last vertebrae, which is immaterial for scoliosis quantification. The average Hausdorff distance computed for 4 patients was 2.6 mm. CONCLUSIONS: We achieved qualitatively accurate and intuitive visualization to depict the 3D deformation of the patient's spine when compared to ground truth CT.
On the three-dimensional interaction of a rotor-tip vortex with a cylindrical surface
NASA Astrophysics Data System (ADS)
Radcliff, Thomas D.; Burggraf, Odus R.; Conlisk, A. T.
2000-12-01
The collision of a strong vortex with a surface is an important problem because significant impulsive loads may be generated. Prediction of helicopter fatigue lifetime may be limited by an inability to predict these loads accurately. Experimental results for the impingement of a helicopter rotor-tip vortex on a cylindrical airframe show a suction peak on the top of the airframe that strengthens and then weakens within milliseconds. A simple line-vortex model can predict the experimental results if the vortex is at least two vortex-core radii away from the airframe. After this, the model predicts continually deepening rather than lessening suction as the vortex stretches. Experimental results suggest that axial flow within the core of a tip vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex as the axial velocity stagnates. Two models of a tip vortex with axial flow are considered. First, a classical axisymmetric line vortex with a cutoff parameter is superimposed with vortex ringlets suitably placed to represent the helically wound vortex shed by the rotor tip. Thus, inclusion of axial flow is found to advect vortex core thinning away from the point of closest interaction as the vortex stretches around the cylindrical surface during the collision process. With less local thinning, vorticity in the cutoff parameter model significantly overlaps the solid cylinder in an unphysical manner, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is then developed in which axial and azimuthal vorticity are confined within a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both axial velocity and core deformation are shown to be important to calculate the local induced pressure loads properly. The computational results are compared with experiments conducted at the Georgia Institute of Technology.
Compliant deformable mirror approach for wavefront improvement
NASA Astrophysics Data System (ADS)
Clark, James H.; Penado, F. Ernesto
2016-04-01
We describe a compliant static deformable mirror approach to reduce the wavefront concavity at the Navy Precision Optical Interferometer (NPOI). A single actuator pressing on the back surface of just one of the relay mirrors deforms the front surface in a correcting convex shape. Our design uses the mechanical advantage gained from a force actuator sandwiched between a rear flexure plate and the back surface of the mirror. We superimpose wavefront contour measurements with our finite element deformed mirror model. An example analysis showed improvement from 210-nm concave-concave wavefront to 51-nm concave-concave wavefront. With our present model, a 100-nm actuator increment displaces the mirror surface by 1.1 nm. We describe the need for wavefront improvement that arises from the NPOI reconfigurable array, offer a practical design approach, and analyze the support structure and compliant deformable mirror using the finite element method. We conclude that a 20.3-cm-diameter, 1.9-cm-thick Zerodur® mirror shows that it is possible to deform the reflective surface and cancel out three-fourths of the wavefront deformation without overstressing the material.
NASA Astrophysics Data System (ADS)
Hulikal, Srivatsan; Lapusta, Nadia; Bhattacharya, Kaushik
2018-07-01
Friction in static and sliding contact of rough surfaces is important in numerous physical phenomena. We seek to understand macroscopically observed static and sliding contact behavior as the collective response of a large number of microscopic asperities. To that end, we build on Hulikal et al. (2015) and develop an efficient numerical framework that can be used to investigate how the macroscopic response of multiple frictional contacts depends on long-range elastic interactions, different constitutive assumptions about the deforming contacts and their local shear resistance, and surface roughness. We approximate the contact between two rough surfaces as that between a regular array of discrete deformable elements attached to a elastic block and a rigid rough surface. The deformable elements are viscoelastic or elasto/viscoplastic with a range of relaxation times, and the elastic interaction between contacts is long-range. We find that the model reproduces the main macroscopic features of evolution of contact and friction for a range of constitutive models of the elements, suggesting that macroscopic frictional response is robust with respect to the microscopic behavior. Viscoelasticity/viscoplasticity contributes to the increase of friction with contact time and leads to a subtle history dependence. Interestingly, long-range elastic interactions only change the results quantitatively compared to the meanfield response. The developed numerical framework can be used to study how specific observed macroscopic behavior depends on the microscale assumptions. For example, we find that sustained increase in the static friction coefficient during long hold times suggests viscoelastic response of the underlying material with multiple relaxation time scales. We also find that the experimentally observed proportionality of the direct effect in velocity jump experiments to the logarithm of the velocity jump points to a complex material-dependent shear resistance at the microscale.
Seafloor Geodetic Monitoring of the Central Andean Subduction Zone: The Geosea Array
NASA Astrophysics Data System (ADS)
Kopp, H.; Lange, D.; Contreras Reyes, E.; Behrmann, J. H.; McGuire, J. J.; Flueh, E. R.
2014-12-01
Seafloor geodesy has been identified as one of the central tools in marine geosciences to monitor seafloor deformation at high resolution. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising a total of 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distance. Vertical motion is obtained from pressure gauges. Integrated inclinometers monitor station settlement in two horizontal directions. Travel time between instruments and the local water sound velocity will be recorded autonomously subsea without system or human intervention for up to 3.5 years. Data from the autonomous network on the seafloor can be retrieved via the integrated high-speed acoustic telemetry link without recovering the seafloor units. In late 2015 GeoSEA will be installed on the Iquique segment of the South America - Nazca convergent plate boundary to monitor crustal deformation. The Iquique seismic gap experienced the 2014 Mw 8.1 Pisagua earthquake, which apparently occurred within a local locking minimum. It is thus crucial to better resolve resolve strain in the forearc between the mainland and the trench in order to improve our understanding of forearc deformation required for hazard assessment. Mobile autonomous seafloor arrays for continuous measurement of active seafloor deformation in hazard zones have the potential to lead to transformative discoveries of plate boundary/fault zone tectonic processes and address a novel element of marine geophysical research.
NASA Astrophysics Data System (ADS)
Hillers, Gregor; Husen, Stephan; Obermann, Anne; Planes, Thomas; Campillo, Michel; Larose, Eric
2014-05-01
We explore the applicability of noise-based monitoring and imaging techniques in the context of the 2006 Basel stimulation experiment using data from five borehole velocimeters and five surface accelerometers located around the injection site. We observe a significant perturbation of medium properties associated with the reservoir stimulation. The transient perturbation, with a duration of 20-30 days, reaches its maximum about 15 days after shut in, when microseismic activity has ceased; it is thus associated with aseismic deformation. Inverting relative velocity change and decorrelation observations using techniques developed and applied on laboratory and local to regional seismological scales, we can image the associated deformation pattern. We discuss limits of the the frequency- and lapse-time dependent resolution and suggestions for improvements considering the 3-D network geometry together with wave propagation models. The depth sensitivity of the analyzed wave field indicates resolution of perturbation in the shallow parts of the sedimentary layer above the stimulated deep volume located in the crystalline base layer. The deformation pattern is similar to InSAR/satellite observations associated with CO2 sequestration experiments, and indicates the transfer of deformation beyond scales associated with the instantaneously stimulated volume. Our detection and localization of delayed induced shallow aseismic transient deformation indicates that monitoring the evolution of reservoir properties using the ambient seismic field provides observables that complement information obtained with standard microseismic approaches. The results constitute a significant advance for the resolution of reservoir dynamics; the technology has the potential to provide critical constraints in related geotechnical situations associated with fluid injection, fracking, (nuclear) waste management, and carbon capture and storage.
NASA Astrophysics Data System (ADS)
Hernandez, S.; Schiek, C. G.; Zeiler, C. P.; Velasco, A. A.; Hurtado, J. M.
2008-12-01
The San Miguel volcano lies within the Central American volcanic chain in eastern El Salvador. The volcano has experienced at least 29 eruptions with Volcano Explosivity Index (VEI) of 2. Since 1970, however, eruptions have decreased in intensity to an average of VEI 1, with the most recent eruption occurring in 2002. Eruptions at San Miguel volcano consist mostly of central vent and phreatic eruptions. A critical challenge related to the explosive nature of this volcano is to understand the relationships between precursory surface deformation, earthquake activity, and volcanic activity. In this project, we seek to determine sub-surface structures within and near the volcano, relate the local deformation to these structures, and better understand the hazard that the volcano presents in the region. To accomplish these goals, we deployed a six station, broadband seismic network around San Miguel volcano in collaboration with researchers from Servicio Nacional de Estudios Territoriales (SNET). This network operated continuously from 23 March 2007 to 15 January 2008 and had a high data recovery rate. The data were processed to determine earthquake locations, magnitudes, and, for some of the larger events, focal mechanisms. We obtained high precision locations using a double-difference approach and identified at least 25 events near the volcano. Ongoing analysis will seek to identify earthquake types (e.g., long period, tectonic, and hybrid events) that occurred in the vicinity of San Miguel volcano. These results will be combined with radar interferometric measurements of surface deformation in order to determine the relationship between surface and subsurface processes at the volcano.
Discrete Surface Evolution and Mesh Deformation for Aircraft Icing Applications
NASA Technical Reports Server (NTRS)
Thompson, David; Tong, Xiaoling; Arnoldus, Qiuhan; Collins, Eric; McLaurin, David; Luke, Edward; Bidwell, Colin S.
2013-01-01
Robust, automated mesh generation for problems with deforming geometries, such as ice accreting on aerodynamic surfaces, remains a challenging problem. Here we describe a technique to deform a discrete surface as it evolves due to the accretion of ice. The surface evolution algorithm is based on a smoothed, face-offsetting approach. We also describe a fast algebraic technique to propagate the computed surface deformations into the surrounding volume mesh while maintaining geometric mesh quality. Preliminary results presented here demonstrate the ecacy of the approach for a sphere with a prescribed accretion rate, a rime ice accretion, and a more complex glaze ice accretion.
A design for a dynamic biomimetic sonarhead inspired by horseshoe bats.
Caspers, Philip; Mueller, Rolf
2018-05-24
The noseleaf and pinnae of horseshoe bats (Rhinolophus ferrumequinum) have both been shown to actively deform during biosonar operation. Since these baffle structures directly affect the properties of the animal's biosonar system, this work mimics horseshoe bat sonar system with the goal of developing a platform to study the dynamic sensing principles horseshoe bats employ. Consequently, two robotic devices were developed to mimic the dynamic emission and reception characteristics of horseshoe bats. The noseleaf and pinnae shapes were modeled as smooth blanks matched to digital representations of a horseshoe bat specimen's noseleaf and pinnae. Local shape features mimicking structures on the pinnae and noseleaf were added digitally. Flexible baffles with local shape feature combinations were manufactured and paired with actuation mechanisms to mimic pinnae and noseleaf deformations in-vivo. Two noseleaves with and without local shape features were considered. Each noseleaf baffle was mounted to a platform called the dynamic emission head to actuate three surface elements of the baffle. Similarly, 12 pinna realizations composed of combinations of three local shape features were mounted to a platform called the dynamic reception head to deform the left and right pinnae independently. Motion of the noseleaf and pinnae were synchronized to the incoming and outgoing sonar waveform, and the joint time-frequency properties of the noseleaf and pinnae local feature combinations and combinations of the pinnae and noseleaf thereof were characterized across spatial direction. Amplitude modulations to the outgoing and incoming sonar pulse information across spatial direction were observed for all pinnae and noseleaf local shape feature combinations. Peak modulation variance generated by motion of the pinnae and combinations of the noseleaf and pinnae approached a white Gaussian noise variance bound. However, it was found the dynamic emitter generated less modulation than either the combined or reception scenarios. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Aïdi, B.; Bertrand, C.; Viltange, M.; Dimitrov, O.
1993-09-01
The influence of plastic deformation, by extension at room temperature, on electrical resistivity has been determined in four austenitic Fe-Cr-Ni alloys with 16 wt% Cr and 20, 25, 45 or 75 wt% Ni, in two different states of local order. Two experimental methods have been used (4.2 K resistance measurements before and after deformation, continuous resistance measurements during room-temperature extension tests); the possibilities of the second method and the corrections to be applied are particularly discussed. Resistivity is found to slightly increase at the beginning of deformation ( e < 0.05), then to strongly decrease. The amplitude of the observed effects increases with the nickel content, and with the initial degree of local order. In the high deformation range ( e = 0.15), the resistivity decrease varies linearly with the initial contribution of local order to electrical resistivity. These effects are attributed to a destruction of the local order existing in the solid solutions, by the glide of dislocations during plastic deformation.
Analysis of Abrasive Blasting of DOP-26 Iridium Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B
2012-01-01
The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast processmore » conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.« less
Interaction of a Vortex with Axial Flow and a Cylindrical Surface
NASA Astrophysics Data System (ADS)
Radcliff, T. D.; Burgraff, O. R.; Conlisk, A. T.
1998-11-01
The direct collision of a vortex with a surface is an important problem because significant impulsive loads may be generated leading to premature fatigue. Experimental results for the impingement of a tip-vortex on a cylindrical airframe indicate that a suction peak forms on the top of the airframe which is subsequently reduced within milliseconds of vortex-surface contact. A simple line-vortex model can predict the experimental results until the vortex is within a vortex-core radius of the airframe. After this the model predicts continually deepening rather than lessening suction. Study of the experimental results suggests that axial flow within the core of a tip-vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex coupled with deformation of the vortex core. Two models of a tip-vortex with axial flow are considered. First a classical line vortex with a cut-off parameter is superimposed with suitably placed vortex rings. This model simulates the helically wound vortex shed by the rotor tip. Inclusion of axial flow is found to prevent thinning of the vortex core as the vortex stretches around the cylindrical surface during the collision process. With less thinning, vorticity is observed to overlap the solid cylinder, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is developed in which axial and azimuthal vorticity are uniformly distributed throughout a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both vorticity redistribution and core deformation are shown to be important to properly calculate the local induced pressure loads. The computational results are compared with the results of experiments conducted at the Georgia Institute of Technology.
Ductile deformation mechanisms of synthetic halite: a full field measurement approach
NASA Astrophysics Data System (ADS)
Dimanov, Alexandre; Bourcier, Mathieu; Héripré, Eva; Bornert, Michel; Raphanel, Jean
2013-04-01
Halite is a commonly used analog polycristalline material. Compared to most rock forming minerals, halite exhibits extensively ductile behavior at even low temperatures and fast deformation rates. Therefore, it allows an easier study of the fundamental mechanisms of crystal plasticity, recrystallization, grain growth and texture development than any other mineral. Its high solubility also makes it an ideal candidate for investigating pressure solution creep. Most importantly, halite is very convenient to study the interactions of simultaneously occurring deformation mechanisms. We investigated uniaxial deformation of pure synthetic NaCl polycrystals with controlled grain sizes and grain size distributions at room and moderate temperatures (400°C). The mechanical tests were combined with "in-situ" optical and scanning electron microscopy, in order to perform 2D digital image correlation (2D-DIC) and to obtain the full surface strain fields at the sample scale and at the scales of the microstructure. We observed dominantly intracrystalline plasticity, as revealed by the occurrence of physical slip lines on the surface of individual grains and of deformation bands at the microstructure (aggregate) scale, as revealed by DIC. Crystal orientation mapping (performed by EBSD) allowed relating the latter to the traces of crystallographic slip planes and inferring the active slip systems considering the macroscopic stress state and computing Schmid factors. The strain heterogeneities are more pronounced at low temperature, at both the aggregate scale and within individual grains. The local activity of slip systems strongly depends on the relative crystallographic and interfacial orientations of the adjacent grains with respect to the loading direction. The easy glide {110} <110> systems are not the only active ones. We could identify the activity of all slip systems, especially near grain boundaries, which indicates local variations of the stress state. But, we also clearly evidenced grain boundary sliding (GBS), which occurred as a secondary but necessary mechanism for accommodation of local strain incompatibilities between neighboring grains, related to the anisotropy of crystal plasticity. The DIC technique allowed the precise quantification of the relative contribution of each mechanism. The latter clearly depends on the microstructure (i.e. grain size and its distribution): the smaller is the grain size and the stronger is the GBS contribution. Finite element modeling of the viscoplastic polycrystalline behavior was started on the basis of our experimental microstructures with large grains (where GBS activity is limited to < 10 %), considering an extruded columnar structure in depth and single crystal flow laws from literature. The results show that the computed strain fields do not sufficiently match the experimentally measured ones. The reasons for the discrepancies are likely related to the activity of GBS, which was not accounted for, and to the influence of the real microstructure at depth (underlying grains and orientations of interfaces), which strongly condition the surface response.
Fluid Surface Deformation by Objects in the Cheerios Effect
NASA Astrophysics Data System (ADS)
Nguyen, Khoi; Miller, Michael; Mandre, Shreyas; Mandre Lab Team
2012-11-01
Small objects floating on a fluid/air interface deform of the surface depending on material surface properties, density, and geometry. These objects attract each other through capillary interactions, a phenomenon dubbed the ``cheerios effect.'' The attractive force and torque exerted on these objects by the interface can be estimated if the meniscus deformation is known. In addition, the floating objects can also rotate due to such an interaction. We present a series of experiments focused on visualizing the the motions of the floating objects and the deformation of the interface. The experiments involve thin laser-cut acrylic pieces attracting each other on water in a large glass petri dish and a camera set-up to capture the process. Furthermore, optical distortion of a grid pattern is used to visualize the water surface deformation near the edge of the objects. This study of the deformation of the water surface around a floating object, of the attractive/repulsive forces, and of post-contact rotational dynamics are potentially instrumental in the study of colloidal self-assembly.
Relativistic elasticity of stationary fluid branes
NASA Astrophysics Data System (ADS)
Armas, Jay; Obers, Niels A.
2013-02-01
Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.
Lai, Min; Zhang, Xiaodong; Fang, Fengzhou
2017-12-01
Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.
Topology-guided deformable registration with local importance preservation for biomedical images
NASA Astrophysics Data System (ADS)
Zheng, Chaojie; Wang, Xiuying; Zeng, Shan; Zhou, Jianlong; Yin, Yong; Feng, Dagan; Fulham, Michael
2018-01-01
The demons registration (DR) model is well recognized for its deformation capability. However, it might lead to misregistration due to erroneous diffusion direction when there are no overlaps between corresponding regions. We propose a novel registration energy function, introducing topology energy, and incorporating a local energy function into the DR in a progressive registration scheme, to address these shortcomings. The topology energy that is derived from the topological information of the images serves as a direction inference to guide diffusion transformation to retain the merits of DR. The local energy constrains the deformation disparity of neighbouring pixels to maintain important local texture and density features. The energy function is minimized in a progressive scheme steered by a topology tree graph and we refer to it as topology-guided deformable registration (TDR). We validated our TDR on 20 pairs of synthetic images with Gaussian noise, 20 phantom PET images with artificial deformations and 12 pairs of clinical PET-CT studies. We compared it to three methods: (1) free-form deformation registration method, (2) energy-based DR and (3) multi-resolution DR. The experimental results show that our TDR outperformed the other three methods in regard to structural correspondence and preservation of the local important information including texture and density, while retaining global correspondence.
An Exposition on the Nonlinear Kinematics of Shells, Including Transverse Shearing Deformations
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2013-01-01
An in-depth exposition on the nonlinear deformations of shells with "small" initial geometric imperfections, is presented without the use of tensors. First, the mathematical descriptions of an undeformed-shell reference surface, and its deformed image, are given in general nonorthogonal coordinates. The two-dimensional Green-Lagrange strains of the reference surface derived and simplified for the case of "small" strains. Linearized reference-surface strains, rotations, curvatures, and torsions are then derived and used to obtain the "small" Green-Lagrange strains in terms of linear deformation measures. Next, the geometry of the deformed shell is described mathematically and the "small" three-dimensional Green-Lagrange strains are given. The deformations of the shell and its reference surface are related by introducing a kinematic hypothesis that includes transverse shearing deformations and contains the classical Love-Kirchhoff kinematic hypothesis as a proper, explicit subset. Lastly, summaries of the essential equations are given for general nonorthogonal and orthogonal coordinates, and the basis for further simplification of the equations is discussed.
Deformation processes within wheel-rail adhesion in contact area
NASA Astrophysics Data System (ADS)
Albagachiev, A. Yu; Keropyan, A. M.
2018-03-01
The study of working surface deformation during interaction of open-pit locomotive tires allowed defining outstanding features of phenomena occurring in the contact area of interacting surfaces. It was found that processes typical for plastic saturated contact occur in the area of wheel-rail interaction of industrial railway transport. In case of plastic deformation exposed to heavy loads typical for open-pit locomotives, upon all rough surfaces of the contour contact area being fully deformed, the frame on which they are found is exposed to plastic deformation. Plastic deformation of roughness within the contact area of interacting surfaces leads to the increase in the actual area of their contact and, therefore, increases the towing capacity of mining machines. Finally, the available data on deformation characteristics with regard to processes occurring in the contact area of wheel-rail interaction will allow making theoretical forecasts on the expected design value of friction coefficient and, therefore, the towing capacity of open-pit locomotives.
Seafloor Deformation and Localized Source Mechanisms of the 2011 M9 Tohoku Earthquake and Tsunami.
NASA Astrophysics Data System (ADS)
Masterlark, T.; Grilli, S. T.; Tappin, D. R.; Kirby, J. T.
2012-12-01
The 2011 M9 Tohoku Earthquake (TE) ruptured the interface separating the Pacific and Okhotsk Plates. This rupture was about hundred kilometers in the along-strike direction and 200 kilometers in the down-dip direction. The TE was primarily thrust having substantial slip along the up-dip portion of the rupture, near the Japan Trench. The regional-scale seafloor deformation from the TE triggered a tsunami with run-ups of a few tens of meters that caused extensive damage along the east coast of Tohoku, Japan. We construct finite element models (FEMs) to simulate the deformation caused by a distribution of coseismic slip along the curved rupture surface of the TE. The FEMs include a distribution of material properties that accounts for the subduction zone structure -a weak forearc, volcanic arc, and backarc basin of the overriding Okhotsk Plate overriding the relatively strong subducting slab that is capped by basaltic oceanic crust. The coseismic rupture is simulated as a distribution of elastic dislocations along the interface separating the forearc of the overriding plate and the oceanic crust of the subducting slab. The slip distribution is calibrated to both onshore and offshore geodetic data, using linear least-squares inverse methods with FEM-generated Greens Functions and second order regularization. The regularization is imposed with a conductance matrix, constructed using Galerkin's Method to account for the curvilinear relationships among the dislocating node pairs. The estimated slip distribution is generally characterized as a few tens of meters of slip over the entire rupture, with greater slip magnitudes (>50 meters) concentrated up-dip and near the Japan Trench. The offshore geodetic data provide critical constraints for the location of the polarity reversal of predicted seafloor vertical deformation. Wave models excited by the predicted regional-scale seafloor deformation generally well predict observed tsunami run-ups and the vertical displacement magnitudes of low frequency waves of coastal GPS buoys. However, coastal areas near Sanriku, Japan experienced anomalously high run-ups of 40 meters and local offshore GPS buoys indicate high frequency waveforms that are incompatible with the coseismic seafloor deformation of the TE. These observations require a localized deformation source near the Japan Trench and just to the north of the TE rupture zone, which models solely based on tsunami waveform inversion predict. Others suggest that a submarine mass failure at this location, presumably triggered by the TE, can excite such waveforms. In this study, we investigate an alternative hypothesis that localized splay faulting, also presumably triggered by the TE, can excite the anomalous waveforms. To do so, we will estimate plausible suites of splay fault and slip parameters that can account for the anomalously high magnitude and high frequency tsunami waves sourced from a localized area near the Japan Trench and north of the TE rupture.
Lagrangian particle drift and surface deformation in a rotating wave on a free liquid surface
NASA Astrophysics Data System (ADS)
Fontana, Paul W.; Francois, Nicolas; Xia, Hua; Punzmann, Horst; Shats, Michael
2017-11-01
A nonlinear model of a rotating wave on the free surface of a liquid is presented. The flow is assumed to be inviscid and irrotational. The wave is constructed as a superposition of two perpendicular, monochromatic standing Stokes waves and is standing-wave-like, but with ``antinodes'' or cells consisting of rotating surface gradients of alternating polarity. Lagrangian fluid particle trajectories show a rotational drift about each cell in the direction of wave rotation, corresponding to a rotating Stokes drift. Each cell therefore has a circulating flow and localized angular momentum even though the Eulerian flow is irrotational. Meanwhile, the wave sets up a static displacement of the free surface, making a trough in each cell. This static surface gradient provides a centripetal force that may account for additional rotation seen in experiments.
NASA Astrophysics Data System (ADS)
Zhao, Chaoying; Qu, Feifei; Zhang, Qin; Zhu, Wu
2012-10-01
The accuracy of DEM generated with interferometric synthetic aperture radar (InSAR) technique mostly depends on phase unwrapping errors, atmospheric effects, baseline errors and phase noise. The first term is more serious if the high-resolution TerraSAR-X data over urban regions and mountainous regions are applied. In addition, the deformation effect cannot be neglected if the study regions are suffering from surface deformation within the SAR acquisition dates. In this paper, several measures have been taken to generate high resolution DEM over urban regions and mountainous regions with TerraSAR data. The SAR interferometric pairs are divided into two subsets: (a) DEM subsets and (b) deformation subsets. These two interferometric sets serve to generate DEM and deformation, respectively. The external DEM is applied to assist the phase unwrapping with "remove-restore" procedure. The deformation phase is re-scaled and subtracted from each DEM observations. Lastly, the stochastic errors including atmospheric effects and phase noise are suppressed by averaging heights from several interferograms with weights. Six TerraSAR-X data are applied to generate a 6-m-resolution DEM over Xi'an, China using these procedures. Both discrete GPS heights and local high resolution and high precision DEM data are applied to calibrate the DEM generated with our algorithm, and around 4.1 m precision is achieved.
Deformation of compound shells under action of internal shock wave loading
NASA Astrophysics Data System (ADS)
Chernobryvko, Marina; Kruszka, Leopold; Avramov, Konstantin
2015-09-01
The compound shells under the action of internal shock wave loading are considered. The compound shell consists of a thin cylindrical shell and two thin parabolic shells at the edges. The boundary conditions in the shells joints satisfy the equality of displacements. The internal shock wave loading is modelled as the surplus pressure surface. This pressure is a function of the shell coordinates and time. The strain rate deformation of compound shell takes place in both the elastic and in plastic stages. In the elastic stage the equations of the structure motions are obtained by the assumed-modes method, which uses the kinetic and potential energies of the cylindrical and two parabolic shells. The dynamic behaviour of compound shells is treated. In local plastic zones the 3-D thermo-elastic-plastic model is used. The deformations are described by nonlinear model. The stress tensor elements are determined using dynamic deformation theory. The deformation properties of materials are influenced by the strain rate behaviour, the influence of temperature parameters, and the elastic-plastic properties of materials. The dynamic yield point of materials and Pisarenko-Lebedev's criterion of destruction are used. The modified adaptive finite differences method of numerical analysis is suggested for those simulations. The accuracy of the numerical simulation is verified on each temporal step of calculation and in the case of large deformation gradients.
NASA Astrophysics Data System (ADS)
Pan, Bing; Wu, Dafang; Xia, Yong
2010-09-01
To determine the full-field high-temperature thermal deformation of the structural materials used in high-speed aerospace flight vehicles, a novel non-contact high-temperature deformation measurement system is established by combining transient aerodynamic heating simulation device with the reliability-guided digital image correlation (RG-DIC). The test planar sample with size varying from several mm 2 to several hundreds mm 2 can be heated from room temperature to 1100 °C rapidly and accurately using the infrared radiator of the transient aerodynamic heating simulation system. The digital images of the test sample surface at various temperatures are recorded using an ordinary optical imaging system. To cope with the possible local decorrelated regions caused by black-body radiation within the deformed images at the temperatures over 450 °C, the RG-DIC technique is used to extract full-field in-plane thermal deformation from the recorded images. In validation test, the thermal deformation fields and the values of coefficient of thermal expansion (CTEs) of a chromiumnickel austenite stainless steel sample from room temperature to 550 °C is measured and compared with the well-established handbook value, confirming the effectiveness and accuracy of the proposed technique. The experimental results reveal that the present system using an ordinary optical imaging system, is able to accurately measure full-field thermal deformation of metals and alloys at temperatures not exceeding 600 °C.
NASA Astrophysics Data System (ADS)
Cissé, Sarata; Tanguy, Benoit; Laffont, Lydia; Lafont, Marie-Christine; Guerre, Catherine; Andrieu, Eric
The sensibility of precipitation-strengthened A286 austenitic stainless steel to Stress Corrosion Cracking (SCC) is studied by means of Slow Strain Rate Tests (SSRT). First, alloy cold working by Low Cycle Fatigue (LCF) is investigated. Fatigue tests under plastic strain control are performed at different strain levels (Δ ɛp/2=0.2%, 0.5% and 0.8%) in order to establish correlation between stress softening and deformation microstructure resulting from LCF tests. Deformed microstructures have been identified through TEM investigations. Three states of cyclic behaviour for precipitation-strengthened A286 have been identified: hardening, cyclic softening and finally saturation of softening. It is shown that the A286 alloy cyclic softening is due to microstructural features such as defects — free deformation bands resulting from dislocations motion along family plans <111>, that swept defects or γ' precipitates and lead to deformation localization. In order to quantify effects of plastic localized deformation on intergranular stress corrosion cracking (IGSCC) of the A286 alloy in PWR primary water, slow strain rate tests are conducted. For each cycling conditions, two specimens at a similar stress level are tested: the first containing free precipitate deformation bands, the other not significant of a localized deformation state. SSRT tests are still in progress.
Methodology for heritage conservation in Belgium based on multi-temporal interferometry
NASA Astrophysics Data System (ADS)
Bejarano-Urrego, L.; Verstrynge, E.; Shimoni, M.; Lopez, J.; Walstra, J.; Declercq, P.-Y.; Derauw, D.; Hayen, R.; Van Balen, K.
2017-09-01
Soil differential settlements that cause structural damage to heritage buildings are precipitating cultural and economic value losses. Adequate damage assessment as well as protection and preservation of the built patrimony are priorities at national and local levels, so they require advanced integration and analysis of environmental, architectural and historical parameters. The GEPATAR project (GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium) aims to create an online interactive geo-information tool that allows the user to view and to be informed about the Belgian heritage buildings at risk due to differential soil settlements. Multi-temporal interferometry techniques (MTI) have been proven to be a powerful technique for analyzing earth surface deformation patterns through time series of Synthetic Aperture Radar (SAR) images. These techniques allow to measure ground movements over wide areas at high precision and relatively low cost. In this project, Persistent Scatterer Synthetic Aperture Radar Interferometry (PS-InSAR) and Multidimensional Small Baseline Subsets (MSBAS) are used to measure and monitor the temporal evolution of surface deformations across Belgium. This information is integrated with the Belgian heritage data by means of an interactive toolbox in a GIS environment in order to identify the level of risk. At country scale, the toolbox includes ground deformation hazard maps, geological information, location of patrimony buildings and land use; while at local scale, it includes settlement rates, photographic and historical surveys as well as architectural and geotechnical information. Some case studies are investigated by means of on-site monitoring techniques and stability analysis to evaluate the applied approaches. This paper presents a description of the methodology being implemented in the project together with the case study of the Saint Vincent's church which is located on a former colliery zone. For this building, damage is assessed by means of PSInSAR.
NASA Astrophysics Data System (ADS)
Wodzinski, Marek; Skalski, Andrzej; Ciepiela, Izabela; Kuszewski, Tomasz; Kedzierawski, Piotr; Gajda, Janusz
2018-02-01
Knowledge about tumor bed localization and its shape analysis is a crucial factor for preventing irradiation of healthy tissues during supportive radiotherapy and as a result, cancer recurrence. The localization process is especially hard for tumors placed nearby soft tissues, which undergo complex, nonrigid deformations. Among them, breast cancer can be considered as the most representative example. A natural approach to improving tumor bed localization is the use of image registration algorithms. However, this involves two unusual aspects which are not common in typical medical image registration: the real deformation field is discontinuous, and there is no direct correspondence between the cancer and its bed in the source and the target 3D images respectively. The tumor no longer exists during radiotherapy planning. Therefore, a traditional evaluation approach based on known, smooth deformations and target registration error are not directly applicable. In this work, we propose alternative artificial deformations which model the tumor bed creation process. We perform a comprehensive evaluation of the most commonly used deformable registration algorithms: B-Splines free form deformations (B-Splines FFD), different variants of the Demons and TV-L1 optical flow. The evaluation procedure includes quantitative assessment of the dedicated artificial deformations, target registration error calculation, 3D contour propagation and medical experts visual judgment. The results demonstrate that the currently, practically applied image registration (rigid registration and B-Splines FFD) are not able to correctly reconstruct discontinuous deformation fields. We show that the symmetric Demons provide the most accurate soft tissues alignment in terms of the ability to reconstruct the deformation field, target registration error and relative tumor volume change, while B-Splines FFD and TV-L1 optical flow are not an appropriate choice for the breast tumor bed localization problem, even though the visual alignment seems to be better than for the Demons algorithm. However, no algorithm could recover the deformation field with sufficient accuracy in terms of vector length and rotation angle differences.
NASA Astrophysics Data System (ADS)
Kim, J.; Lin, S. Y.; Tsai, Y.; Singh, S.; Singh, T.
2017-12-01
A large ground deformation which may be caused by a significant groundwater depletion of the Northwest India Aquifer has been successfully observed throughout space geodesy techniques (Tsai et al, 2016). Employing advanced time-series ScanSAR InSAR analysis and Gravity Recovery and Climate Experiment (GRACE) satellites data, it revealed 400-km wide huge ground deformation in and around Haryana. It was further notified that the Ambala city located in northern Haryana district shown the most significant ground subsidence with maximum cumulative deformation up to 0.2 meters within 3 years in contrast to the nearby cities such as Patiala and Chandigarh that did not present similar subsidence. In this study, we investigated the details of "Ambala Anomaly" employing advanced time-series InSAR and spatial analyses together with local geology and anthropogenic contexts and tried to identify the factors causing such a highly unique ground deformation pattern. To explore the pattern and trend of Ambala' subsidence, we integrated the time-series deformation results of both ascending L-band PALSAR-1 (Phased Array type L-band Synthetic Aperture Radar) from 2007/1 to 2011/1 and descending C-band ASAR (Advanced Synthetic Aperture Radar) from 2008/9 to 2010/8 to process the 3D decomposition, expecting to reveal the asymmetric movement of the surface. In addition. The spatial analyses incorporating detected ground deformations and local economical/social factors were then applied for the interpretation of "Ambala Anomaly". The detailed interrelationship of driving factors of the "Ambala Anomaly" and the spatial pattern of corresponding ground subsidence will be further demonstrated. After all, we determined the uniqueness of Ambala subsidence possibly be driven by both anthropogenic behaviors including the rapid growth rate of population and constructing of industrial centers as well as the natural geological characteristics and sediment deposition.
NASA Astrophysics Data System (ADS)
Cortés-Aranda, J.; Vassallo, R.; Jomard, H.; Pousse-Beltrán, L.; Astudillo, L.; Mugnier, J.-L.; Jouanne, F.; Malik, M.; Carcaillet, J.
2018-06-01
The Kangra Reentrant is a convex-to-the-northeast U-shaped structure in the NW Himalaya, where the Sub-Himalayan fold-and-thrust belt is ∼90 km wide. This region has not been struck by large earthquakes since the 1905 Mw 7.8 Kangra Earthquake. Out-of-sequence deformation has been reported at the millennial timescale along intracrustal thrusts within this reentrant, such as the Jawalamukhi Thrust. Up to now, the occurrence of out-of-sequence deformation along inner thrusts within the Kangra Reentrant, during the Late Quaternary, has not yet been addressed. In this study, the results of a neotectonic survey undertaken in this reentrant are presented; the studied zone is located between the Beas and the Neogad rivers, and encompasses from the Jawalamukhi Thrust to the Main Boundary Thrust. Two terraces that are deformed by branches of the Medlicott-Wadia Thrust, locally named the Palampur Thrust, are identified; this is evidenced in the field by metric-scale fault scarps. By using 10Be dating, the ages of these terraces were constrained to ca. 7.5 and ca. 6.2 ka. This is clear evidence of the Late Quaternary out-of-sequence deformation in the innermost part of this reentrant, implying that strain is distributed along all the arc-orthogonal extent of the local fold and thrust belt over this timespan. A cumulative slip rate of ca. 1 mm/yr along the studied thrusts, which represents 10% of the bulk-strain accommodated by the whole reentrant for this timespan, is calculated. In spite of the marginal appearance of this figure, this deformation rate is attributed to 7 < Mw < 8 earthquakes triggered along the brittle/ductile zone of Main Himalayan Thrust and emerging at the surface along crustal ramps, such as those represented by the Palampur Thrust in the study area. Earthquakes of this magnitude may severely impact the Kangra District, which currently hosts 1.5 million people.
NASA Astrophysics Data System (ADS)
Picazo, S.; Manatschal, G.; Cannat, M.
2013-12-01
The exhumation of upper mantle rocks along detachment faults is widespread at Mid-Ocean Ridges and at the Ocean-Continent Transition (OCT) of rifted continental margins. Thermo-mechanical models indicate that significant strain softening of the fault rocks in the footwall is required in order to produce such large fault offsets. Our work focuses on deformation textures, and the associated mineralogy in ultramafic rocks sampled in the upper levels of the footwall next to the exhumation fault. We present two OCT examples, the Totalp relict of a paleo-Tethys OCT exposed in SE Switzerland, and the Iberian distal margin (ODP Leg 173 Site 1070). We built a new geological map and a section of the Totalp unit near Davos (SE Switzerland) and interpreted this area as a local exposure of a paleo-seafloor that is formed by an exhumed detachment surface and serpentinized peridotites. The top of the exhumed mantle rocks is made of ophicalcites that resulted from the carbonation of serpentine under static conditions at the seafloor. The ophicalcites preserve depositional contacts with Upper Jurassic to Lower Cretaceous pelagic sediments. These sequences did not exceed prehnite-pumpellyite metamorphic facies conditions, and locally escaped Alpine deformation. Thin mylonitic shear zones as well as foliated amphibole-bearing ultramafic rocks have been mapped. The age of these rocks and the link with the final exhumation history are yet unknown but since amphibole-bearing ultramafic rocks can be found as clasts in cataclasites related to the detachment fault, they pre-date detachment faulting. Our petrostructural study of the exhumed serpentinized rocks also reveals a deformation gradient from cataclasis to gouge formation within 150m in the footwall of the proposed paleo-detachment fault. This deformation postdates serpentinization. It involves a component of plastic deformation of serpentine in the most highly strained intervals that has suffered pronounced grain-size reduction and a polyphase cataclastic overprint.
NASA Astrophysics Data System (ADS)
Picazo, Suzanne; Cannat, Mathilde; Delacour, AdéLie; EscartíN, Javier; RouméJon, StéPhane; Silantyev, Sergei
2012-09-01
Outcrops of deeply derived ultramafic rocks and gabbros are widespread along slow spreading ridges where they are exposed in the footwall of detachment faults. We report on the microstructural and petrological characteristics of a large number of samples from ultramafic exposures in the walls of the Mid-Atlantic Ridge (MAR) axial valley at three distinct locations at lat. 13°N and 14°45'N. One of these locations corresponds to the footwall beneath a corrugated paleo-fault surface. Bearing in mind that dredging and ROV sampling may not preserve the most fragile lithologies (fault gouges), this study allows us to document a sequence of deformation, and the magmatic and hydrothermal history recorded in the footwall within a few hundred meters of the axial detachment fault. At the three sampled locations, we find that tremolitic amphiboles have localized deformation in the ultramafic rocks prior to the onset of serpentinization. We interpret these tremolites as hydrothermal alteration products after evolved gabbroic rocks intruded into the peridotites. We also document two types of brittle deformation in the ultramafic rocks, which we infer could produce the sustained low magnitude seismicity recorded at ridge axis detachment faults. The first type of brittle deformation affects fresh peridotite and is associated with the injection of the evolved gabbroic melts, and the second type affects serpentinized peridotites and is associated with the injection of Si-rich hydrothermal fluids that promote talc crystallization, leading to strain localization in thin talc shear zones. We also observed chlorite + serpentine shear zones but did not identify samples with serpentine-only shear zones. Although the proportion of magmatic injections in the ultramafic rocks is variable, these characteristics are found at each investigated location and are therefore proposed as fundamental components of the deformation in the footwall of the detachment faults associated with denudation of mantle-derived rocks at the MAR.
NASA Astrophysics Data System (ADS)
Dichter, M.; Roy, M.
2015-12-01
Interpreting surface deformation patterns in terms of deeper processes in regions of active magmatism is challenging and inherently non-unique. This study focuses on interpreting the unusual sombrero-shaped pattern of surface deformation in the Altiplano Puna region of South America, which has previously been modeled as the effect of an upwelling diapir of material in the lower crust. Our goal is to investigate other possible interpretations of the surface deformation feature using a suite of viscoelastic models with varying material heterogeneity. We use the finite-element code PyLith to study surface deformation due to a buried time-varying (periodic) overpressure source, a magma body, at depth within a viscoelastic half-space. In our models, the magma-body is a penny-shaped crack, with a cylindrical region above the crack that is weak relative to the surrounding material. We initially consider a magma body within a homogeneous viscoelastic half-space to determine the effect of the free surface upon deformation above and beneath the source region. We observe a complex depth-dependent phase relationship between stress and strain for elements that fall between the ground surface and the roof of the magma body. Next, we consider a volume of weak material (faster relaxation time relative to background) that is distributed with varying geometry around the magma body. We investigate how surface deformation is governed by the spatial distribution of the weak material and its rheologic parameters. We are able to reproduce a "sombrero" pattern of surface velocities for a range of models with material heterogeneity. The wavelength of the sombrero pattern is primarily controlled by the extent of the heterogeneous region, modulated by flexural effects. Our results also suggest an "optimum overpressure forcing frequency" where the lifetime of the sombrero pattern (a transient phenomenon due to the periodic nature of the overpressure forcing) reaches a maximum. Through further research we hope to better understand how the parameter space of our forward model controls the distribution of surface deformation and eventually develop a better understanding of the observed pattern of surface deformation in the Altiplano Puna.
NASA Astrophysics Data System (ADS)
Hernandez-Marin, M.; Pacheco, J.; Ortiz-Lozano, J. A.; Ramirez-Cortes, A.; Araiza, G.
2014-12-01
Surface deformation in the form of land subsidence and ground failure in the Chapala Basin has caused serious damage to structures, mostly homes. In this work, the conditions for the occurrence of deformation particularly regarding the physical and mechanical properties of the soil are discussed. In 2012 a maximum land subsidence of 7.16 cm in a short period of 8 months was recorded with maximum velocities of deformation close to 0.89 centimeters per month. Natural conditions of the zone of study include a lacustrine low land with the perennial Chapala Lake, surrounded by ranges formed by volcanic extrusive rocks, mostly basalts and andesites. Two soil cores of 11 meters depth show the predominance of fine soil but with the incrustation of several sandy lenses of volcanic ash. In the first core closer to the piedmont, the volcanic ash presents an accumulated thickness close to three meters, starting at 4.5 meters depth; on the contrary, this thickness in the second core closer to the lake is critically reduced to no more than 50 centimeters. Even though the predominance of fine soil is significant, water-content averages 100 % and the liquid limit is low, suggesting amongst other possibilities, low content of clay or at least low content of smectites or allophanes in the clayey portion. Other properties of the soil are being determined for analyses. The occurrence of three alignments of ground failures in the community of Jocotepec at the west, mostly faults, suggests highly heterogeneous subsoil. The high volumes of groundwater withdrawn from the local aquifers mainly for agriculture are directly contributing to the increase of the effective stress and surface deformation, however, the relationship between level descents and surficial deformation is still not clear.
Dynamic characterization of human breast cancer cells using a piezoresistive microcantilever.
Shim, Sangjo; Kim, Man Geun; Jo, Kyoungwoo; Kang, Yong Seok; Lee, Boreum; Yang, Sung; Shin, Sang-Mo; Lee, Jong-Hyun
2010-10-01
In this paper, frequency response (dynamic compression and recovery) is suggested as a new physical marker to differentiate between breast cancer cells (MCF7) and normal cells (MCF10A). A single cell is placed on the laminated piezoelectric actuator and a piezoresistive microcantilever is placed on the upper surface of the cell at a specified preload displacement (or an equivalent force). The piezoelectric actuator excites the single cell in a sinusoidal fashion and its dynamic deformation is then evaluated from the displacement converted by measuring the voltage output through a piezoresistor in the microcantilever. The microcantilever has a flat contact surface with no sharp tip, making it possible to measure the overall properties of the cell rather than the local properties. These results indicate that the MCF7 cells are more deformable in quasi-static conditions compared with MCF10A cells, consistent with known characteristics. Under conditions of high frequency of over 50 Hz at a 1 μm preload displacement, 1 Hz at a 2 μm preload displacement, and all frequency ranges tested at a 3 μm preload displacement, MCF7 cells showed smaller deformation than MCF10A cells. MCF7 cells have higher absorption than MCF10A cells such that MCF7 cells appear to have higher deformability according to increasing frequency. Moreover, larger preload and higher frequencies are shown to enhance the differences in cell deformability between the MCF7 cells and MCF10A cells, which can be used as a physical marker for differentiating between MCF10A cells and MCF7 cells, even for high-speed screening devices.
NASA Astrophysics Data System (ADS)
Vreeland, Nicholas Paul
According to some theories, subglacial deformation of sediment is the process of sediment transport most responsible for drumlin formation. If so, strain indicators in the sediment should yield deformation patterns that are systematically related to drumlin morphology. Clast fabrics have been used most commonly to make inferences about strain patterns in drumlins but with a wide range of sometimes divergent interpretations. These divergent interpretations reflect, in part, a lack of experimental control on the relationship between the state of strain and resulting fabrics. Herein, fabrics determined from the anisotropy of magnetic susceptibility (AMS) of till within selected drumlins of the Green Bay Lobe are used to study the role of bed deformation in drumlin formation. AMS fabrics are a proxy for fabrics formed by non-equant, silt-sized, magnetite grains. Unlike past fabric studies of drumlins, laboratory deformation experiments conducted with this till provide a quantitative foundation for inferring strain magnitude, shearing direction, and shear-plane orientations from fabrics determined from principal directions of magnetic susceptibility (k1, k2, and k3). Intact till samples were collected from transects in seven drumlins in Dane, Dodge, Jefferson, Waupaca, and Waushara counties of south-central Wisconsin, by both exploiting five existing outcrops and collecting 42 89 mm-diameter cores and sub-sampling them. Overall, ˜2800 samples were collected for AMS analysis, and 112 AMS fabrics were computed. Much of the till sampled (84% of fabrics) has k1 fabric strengths weaker than the lower 95% confidence limit for till (S1< 0.82) sheared to moderate strains (˜10), suggesting the till has been deformed but to strains too small to indicate that bed deformation was the principal till transport mechanism. Three of five drumlins studied have k1 fabric orientations that are not symmetrically disposed about the local flow direction indicated by drumlins. Rather, these fabrics are oriented 7-25° to the southeast of the drumlin orientations, consistent with reinterpreted microfabric data collected from nearby drumlins (Evenson, 1971). Furthermore, in all drumlins, orientations of shear planes inferred from principal susceptibilities deviate markedly from the local surface slopes of drumlins, with a 23.8° average difference between the poles to inferred shear planes and to local slopes. We infer that the drumlin fabric was set by basal till deformation during glacier flow to the southeast prior to drumlin formation and that drumlinization did not significantly reset the fabric. Thus, these drumlins are inferred to have been formed by differential erosion of a pre-existing till layer by processes unrelated to bed deformation.
NASA Astrophysics Data System (ADS)
Ferry, M.; Tsutsumi, H.; Meghraoui, M.; Toda, S.
2012-12-01
The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping dominates as well but with some strain localization along two major splays that exhibit 15-20 cm of vertical offset. On both walls, the basal silt unit is vertically deformed by ~0.6 m, similarly to what is observed for the 2011 rupture. Furthermore, the base of said silt unit exhibits indication for secondary faulting prior to the 2011 event and that resemble cracks observed at the present-day surface. This suggests that the Itozawa fault has already ruptured in a similar fashion; probably in the late Pleistocene-early Holocene (radiocarbon samples are being processed). Hence, recent activity of the Itozawa fault may be controlled entirely by large to giant earthquakes along the Japan Trench.
Tracking the movement of Hawaiian volcanoes; Global Positioning System (GPS) measurement
Dvorak, J.J.
1992-01-01
At some well-studied volcanoes, surface movements of at least several centimeters take place out to distances of about 10 km from the summit of the volcano. Widespread deformation of this type is relatively easy to monitor, because the necessary survey stations can be placed at favorable sites some distance from the summit of the volcano. Examples of deformation of this type include Kilauea and Mauna Loa in Hawaii, Krafla in Iceland, Long Valley in California, Camp Flegrei in Italy, and Sakurajima in Japan. In contrast, surface movement at some other volcanoes, usually volcanoes with steep slopes, is restricted to places within about 1 km of their summits. Examples of this class of volcanoes include Mount St. Helens in Washington, Etna in Italy, and Tangkuban Parahu in Indonesia. Local movement on remote, rugged volcanoes of this type is difficult to observe using conventional methods of measuring ground movement, which generally require a clear line-of-sight between points of interest. However, a revolutionary new technique, called the Global Positional System (GPS), provides a very efficient, alternative method of making such measurements. GPS, which uses satellites and ground-based receivers to accurately record slight crustal movements, is rapidly becoming the method of choice to measure deformation at volcanoes.
ASAR images a diverse set of deformation patterns at Kilauea volcano, Hawai'i
Poland, Michael P.
2007-01-01
Since 2003, 27 independent look angles have been acquired by ENVISAT’s Advanced Synthetic Aperture Radar (ASAR) instrument over the island of Hawai`i, allowing for the formation of thousands of interferograms showing deformation of the ground surface. On Kīlauea volcano, a transition from minor to broad-scale summit inflation was observed by interferograms that span 2003 to 2006. In addition, radar interferometry (InSAR) observations of Kīlauea led to the discovery of several previously unknown areas of localized subsidence in the caldera and along the volcano’s east rift zone. These features are probably caused by the cooling and contraction of accumulated lavas. After November 2005, a surface instability near the point that lava entered the ocean on the south flank of Kīlauea was observed in interferograms. The motion is most likely a result of unbuttressing of a portion of the coast following the collapse of a large lava delta in November 2005. InSAR data can also be used to map lava flow development over time, providing ~30 m spatial resolution maps at approximately monthly intervals. Future applications of InSAR to Kīlauea will probably result in more discoveries and insights, both as the style of volcano deformation changes and as data from new instruments are acquired.
Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust
NASA Astrophysics Data System (ADS)
Okazaki, Keishi; Hirth, Greg
2016-02-01
Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the mantle. In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Mohorovičić discontinuity. These observations have stimulated interest in relationships between blueschist-facies metamorphism and seismicity, particularly through dehydration reactions involving the mineral lawsonite. Here we conducted deformation experiments on lawsonite, while monitoring acoustic emissions, in a Griggs-type deformation apparatus. The temperature was increased above the thermal stability of lawsonite, while the sample was deforming, to test whether the lawsonite dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (that is, stick-slip) occurred during dehydration reactions in the lawsonite and acoustic emission signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shears), and that the fault surface develops slickensides (very smooth fault surfaces polished by frictional sliding). The unloading slope during the unstable slip follows the stiffness of the apparatus at all experimental conditions, regardless of the strain rate and temperature ramping rate. A thermomechanical scaling factor for the experiments is within the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers.
NASA Astrophysics Data System (ADS)
Wang, Ning; Su, Xinbing; Ma, Binlin; Zhang, Xiaofei
2017-10-01
In order to study the influence of elastic forward-swept wing (FSW) with single control surface, the computational fluid dynamics/computational structural dynamics (CFD/CSD) loose coupling static aero elastic numerical calculation method was adopted for numerical simulation. The effects of the elastic FSW with leading- or trailing-edge control surface on aero elastic characteristics were calculated and analysed under the condition of high subsonic speed. The result shows that, the deflection of every single control surface could change the aero elastic characteristics of elastic FSW greatly. Compared with the baseline model, when leading-edge control surface deflected up, under the condition of small angles of attack, the aerodynamic characteristics was poor, but the bending and torsional deformation decreased. Under the condition of moderate angles of attack, the aerodynamic characteristics was improved, but bending and torsional deformation increased; When leading-edge control surface deflected down, the aerodynamic characteristics was improved, the bending and torsional deformation decreased/increased under the condition of small/moderate angles of attack. Compared with the baseline model, when trailing-edge control surface deflected down, the aerodynamic characteristics was improved. The bending and torsional deformation increased under the condition of small angles of attack. The bending deformation increased under the condition of small angles of attack, but torsional deformation decreases under the condition of moderate angles of attack. So, for the elastic FSW, the deflection of trailing-edge control surface play a more important role on the improvement of aerodynamic and elastic deformation characteristics.
A Thermo-Optic Propagation Modeling Capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrader, Karl; Akau, Ron
2014-10-01
A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developedmore » for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.« less
Low-strain laser-based solder joining of mounted lenses
NASA Astrophysics Data System (ADS)
Burkhardt, Thomas; Hornaff, Marcel; Kamm, Andreas; Burkhardt, Diana; Schmidt, Erik; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas
2015-09-01
A novel laser-based soldering technique - Solderjet Bumping - using liquid solder droplets in a flux-free process with only localized heating is presented. We demonstrate an all inorganic, adhesive free bonding of optical components and support structures suitable for optical assemblies and instruments under harsh environmental conditions. Low strain bonding suitable for a following high-precision adjustment turning process is presented, addressing components and subsystems for objectives for high power and short wavelengths. The discussed case study shows large aperture transmissive optics (diameter approx. 74 mm and 50 mm) made of fused silica and LAK9G15, a radiation resistant glass, bonded to thermally matched metallic mounts. The process chain of Solderjet Bumping - cleaning, solderable metallization, handling, bonding and inspection - is discussed. This multi-material approach requires numerical modelling for dimensioning according to thermal and mechanical loads. The findings of numerical modelling, process parametrization and environmental testing (thermal and vibrational loads) are presented. Stress and strain introduced into optical components as well as deformation of optical surfaces can significantly deteriorate the wave front of passing light and therefore reduce system performance significantly. The optical performance with respect to stress/strain and surface deformation during bonding and environmental testing were evaluated using noncontact and nondestructive optical techniques: polarimetry and interferometry, respectively. Stress induced surface deformation of less than 100 nm and changes in optical path difference below 5 nm were achieved. Bond strengths of about 55 MPa are reported using tin-silver-copper soft solder alloy.
Aluminizing a Ni sheet through severe plastic deformation induced by ball collisions
NASA Astrophysics Data System (ADS)
Romankov, S.; Shchetinin, I. V.; Park, Y. C.
2015-07-01
Aluminizing a Ni sheet was performed through severe plastic deformation induced by ball collisions. The Ni sheet was fixed in the center of a mechanically vibrated vial between two connected parts. The balls were loaded into the vial on both sides of the Ni disk. Al disks, which were fixed on the top and the bottom of the vial, served as the sources of Al contamination. During processing, the Ni sheet was subject to intense ball collisions. The Al fragments were transferred and alloyed to the surface of the Ni sheet by these collisions. The combined effects of deformation-induced plastic flow, mechanical intermixing, and grain refinement resulted in the formation of a dense, continuous nanostructured Al layer on the Ni surface on both sides of the sheet. The Al layer consisted of Al grains with an average size of about 40 nm. The Al layer was reinforced with nano-sized Ni flakes that were introduced from the Ni surface during processing. The local amorphization at the Ni/Al interface revealed that the bonding between Ni and Al was formed by mechanical intermixing of atomic layers at the interface. The hardness of the fabricated Al layer was 10 times that of the initial Al plate. The ball collisions destroyed the initial rolling texture of the Ni sheet and induced the formation of the mixed [1 0 0] + [1 1 1] fiber texture. The laminar rolling structure of the Ni was transformed into an ultrafine grain structure.
A Multi-Scale Simulation Approach to Deformation Mechanism Prediction in Superalloys
NASA Astrophysics Data System (ADS)
Lv, Duchao
High-temperature alloys in general and superalloys in particular are crucial for manufacturing gas turbines for aircraft and power generators. Among the superalloy family, the Ni-based superalloys are the most frequently used due to their excellent strength-to-weight ratio. Their strength results from their ordered intermetallic phases (precipitates), which are relatively stable at elevated temperatures. The major deformation processes of Ni-based and Co-based superalloys are precipitate shearing and Orowan looping. The key to developing physics-based models of creep and yield strength of aircraft engine components is to understand the two deformation mechanisms mentioned above. Recent discoveries of novel dislocation structures and stacking-fault configurations in deformed superalloys implied that the traditional anti-phase boundary (APB)-type, yield-strength model is unable to explain the shearing mechanisms of the gamma" phase in 718-type (Ni-based) superalloys. While the onset of plastic deformation is still related to the formation of highly-energetic stacking faults, the physics-based yield strength prediction requires that the novel dislocation structure and the correct intermediate stacking-fault be considered in the mathematical expressions. In order to obtain the dependence of deformation mechanisms on a materials chemical composition, the relationship between the generalized-stacking-fault (GSF) surface and its chemical composition must be understood. For some deformation scenarios in which one precipitate phase and one mechanism are dominant (e.g., Orowan looping), their use in industry requires a fast-acting model that can capture the features of the deformation (e.g., the volume fraction of the sheared matrix) and reduces lost time by not repeating fine-scale simulations. The objective of this thesis was to develop a multi-scale, physics-based simulation approach that can be used to optimize existing superalloys and to accelerate the design of new alloys. In particular, density functional theory (DFT) was used to calculate the GSF surface of the gamma" phase in the 718-type superalloy. In addition, the deformation pathways inside the gamma" particles were identified, and the dislocation emissions were predicted. Many novel dislocation sources inside the gamma" particles were simulated by using the phase-field method, which predicts and explains the dislocation configurations that appear during the deformation process or that are left as debris. Moreover, based on the stacking-fault energies in the available literature, we calculated the dependence of the chemical composition of the GSF surface of the gamma' phase in Co-based, CoNi-based, and Ni-based superalloys. The phase-field simulation, which used the GSF surfaces as inputs, explained the relationship between the shearing mechanism and chemical composition. Thus, two fast-acting models were developed by using the modified analytic expressions of particle shearing and Orowan looping. These expressions were calibrated by using the GSF surface and the simulation of the phase-field, and they were used to predict the yield strength of 718-type superalloy and the localized creep features of the gamma/gamma' microstructure. The fast-acting yield models were trained by the available experimental results. Since the chemical re-ordering and the segregation effects are not considered in this work, the fast-acting models are designed to the predict mechanical behaviors at the room temperature and the intermediate temperature.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2009-01-01
The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.
Mori, H; Rafiq, K; Kobara, H; Fujihara, S; Nishiyama, N; Kobayashi, M; Himoto, T; Haba, R; Hagiike, M; Izuishi, K; Okano, K; Suzuki, Y; Masaki, T
2012-07-01
Endoscopic submucosal dissection (ESD) of large gastric lesions results in an extensive artificial ulcer that can lead to marked gastric deformity. The aim of the current study was to evaluate therapeutic efficacy in the prevention of gastric deformity of local triamcinolone acetonide (TCA) injection into the extensive artificial ulcer following ESD. A total of 45 patients who were diagnosed with early gastric cancer were enrolled. Patients were randomly assigned by the sealed-envelope randomization method to either local TCA injections (n = 21) or sham-control (n = 20) groups. Two clips were placed at the two maximum outer edges of the artificial ulcer after the lesion had been resected (Day 0). Local TCA injections were performed on postoperative Day 5 and Day 12. The distance between the two clips was measured by endoscopic measuring forceps on Days 5, 12, 30, and 60. Granulation formation and gastric deformity were evaluated by visual analog scale (VAS) on Days 30 and 60. Local TCA injection did not alter clip-to-clip distance on postoperative Day 60, and formation of flat granulation tissue over the ulcer was followed by regenerative mucosa without any gastric deformity. The sham-control group showed significant shortening of clip-to-clip distance compared with the local steroid-injected group and protruded forms of granulation tissue with mucosal convergence. Histological evaluation revealed prominent growth of neovessels, swelling, and marked increases in endothelial cells in the local steroid-injected group compared with the sham-control group. Local steroid injection into the floor of a post-ESD artificial ulcer promotes the formation of granulation tissue at an early stage of the healing process leading to regeneration of gastric mucosa without mucosal convergence or gastric deformity. © Georg Thieme Verlag KG Stuttgart · New York.
Crossover from localized to cascade relaxations in metallic glasses
Fan, Yue; Iwashita, Takuya; Egami, Takeshi
2015-07-21
Thermally activated deformation is investigated in two metallic glass systems with different cooling histories. By probing the atomic displacements and stress changes on the potential energy landscape, two deformation modes, a localized process and cascade process, have observed. The localized deformation involves fewer than 30 atoms and appears in both systems, and its size is invariant with cooling history. However, the cascade deformation is more frequently observed in the fast quenched system than in the slowly quenched system. As a result, the origin of the cascade process in the fast quenched system is attributed to the higher density of localmore » minima on the underlying potential energy landscape.« less
NASA Astrophysics Data System (ADS)
Li, Xin; Zhao, Zhi-Jun; Park, Sang-Hu
2016-07-01
This study demonstrates a simple and flexible out-of-plane induced mechanical stretching method for generating labyrinthic, waving, and straight orderly microscale directional wrinkles. Different complex wrinkling patterns were fabricated simultaneously using a UV-curable thin layer of resin NOA-68T that was coated on a soft foundation. Then an out-of-plane pre-straining deformation was applied by a specially designed punch to generate internal elastic instabilities. The surface wrinkling pattern characteristics (shapes and size) changed according to the amount of punch stroke (pre-strain) and the cross-sectional shape of the punch. This study confirms the usefulness of this method for controlling and generating local wrinkling patterns for diverse applications. As an example, the contact angles of a water droplet on a local area of the same pattern were measured to identify the change in wettability with respect to different wrinkling shapes. This method can be utilized in topographical tunable wrinkle fabrication for local surface modification.
NASA Astrophysics Data System (ADS)
Li, Zebin; Li, Xianglin; Li, Ting
2018-02-01
Tissue inflammation is often accompanied by fever and edema, which are common and troublesome problems that probably trigger disability, lymphangitis, cosmetic deformity and cellulitis. Here we developed a device, which can measure concentration and temperature variations of water in local human body by extended near infrared spectroscopy in 900 1000 nm wavelength range. An experiment of four steps incremental cycling exercise was designed to change tissue water concentration and temperature of subjects. Body temperature was also estimated by tympanic thermometer and surface thermometer as comparisons during the experiment. In the stage of recovery after exercise, the signal detected by custom device is similar to tympanic thermometer at the beginning, but it is closer to the temperature of surface later. In particular, this signal shows a better linearity, and a significant change when the exercise was suspended. This study demonstrated the potential of optical touch-sensing for inflammation severity monitoring by measuring water concentration and temperature variations in local lesions.
Pukšič, Nuša; Jenko, Monika; Godec, Matjaž; McGuiness, Paul J.
2017-01-01
While a lot is known about the deformation of metallic surfaces from experiments, elasticity theory and simulations, this investigation represents the first molecular-dynamics-based simulation of uniaxial deformation for the vicinal surfaces in a comparison of copper and nickel. These vicinal surfaces are composed of terraces divided by equidistant, mono-atomic steps. The periodicity of vicinals makes them good candidates for the study of the surface steps’ influences on surface dynamics. The simulations of tensile and compressive uniaxial deformations were performed for the (1 1 19) vicinal surfaces. Since the steps on the surfaces serve as stress concentrators, the first defects were expected to nucleate here. In the case of copper, this was found to be the case. In the case of nickel, however, dislocations nucleated beneath the near-surface layer affected by the displacement field generated by the steps. Slip was hindered at the surface step by the vortex in the displacement field. The differences in the deformation mechanisms for the Ni(1 1 19) and Cu(1 1 19) surfaces can be linked to the differences in their displacement fields. This could lead to novel bottom-up approaches to the nanostructuring of surfaces using strain. PMID:28169377
Giske, Kristina; Stoiber, Eva M; Schwarz, Michael; Stoll, Armin; Muenter, Marc W; Timke, Carmen; Roeder, Falk; Debus, Juergen; Huber, Peter E; Thieke, Christian; Bendl, Rolf
2011-06-01
To evaluate the local positioning uncertainties during fractionated radiotherapy of head-and-neck cancer patients immobilized using a custom-made fixation device and discuss the effect of possible patient correction strategies for these uncertainties. A total of 45 head-and-neck patients underwent regular control computed tomography scanning using an in-room computed tomography scanner. The local and global positioning variations of all patients were evaluated by applying a rigid registration algorithm. One bounding box around the complete target volume and nine local registration boxes containing relevant anatomic structures were introduced. The resulting uncertainties for a stereotactic setup and the deformations referenced to one anatomic local registration box were determined. Local deformations of the patients immobilized using our custom-made device were compared with previously published results. Several patient positioning correction strategies were simulated, and the residual local uncertainties were calculated. The patient anatomy in the stereotactic setup showed local systematic positioning deviations of 1-4 mm. The deformations referenced to a particular anatomic local registration box were similar to the reported deformations assessed from patients immobilized with commercially available Aquaplast masks. A global correction, including the rotational error compensation, decreased the remaining local translational errors. Depending on the chosen patient positioning strategy, the remaining local uncertainties varied considerably. Local deformations in head-and-neck patients occur even if an elaborate, custom-made patient fixation method is used. A rotational error correction decreased the required margins considerably. None of the considered correction strategies achieved perfect alignment. Therefore, weighting of anatomic subregions to obtain the optimal correction vector should be investigated in the future. Copyright © 2011 Elsevier Inc. All rights reserved.
Shape dependence of entanglement entropy in conformal field theories
Faulkner, Thomas; Leigh, Robert G.; Parrikar, Onkar
2016-04-14
Here, we study universal features in the shape dependence of entanglement entropy in the vacuum state of a conformal field theory (CFT) on R 1,d--1. We consider the entanglement entropy across a deformed planar or spherical entangling surface in terms of a perturbative expansion in the infinitesimal shape deformation. In particular, we focus on the second order term in this expansion, known as the entanglement density. This quantity is known to be non-positive by the strong-subadditivity property. We also show from a purely field theory calculation that the non-local part of the entanglement density in any CFT is universal, andmore » proportional to the coefficient C T appearing in the two-point function of stress tensors in that CFT. As applications of our result, we prove the conjectured universality of the corner term coefficient σ/CT=π 2/24 in d = 3 CFTs, and the holographic Mezei formula for entanglement entropy across deformed spheres.« less
Detection of surface deformation and ionospheric perturbation by the North Korea nuclear test
NASA Astrophysics Data System (ADS)
Park, S. C.; Lee, W. J.; Sohn, D. H.; Lee, D. K.; Jung, H. S.
2017-12-01
We used remote sensing data to detect the changes on surface and ionosphere due to the North Korea nuclear test. To analyze the surface deformation before and after the 6th North Korea (NK) nuclear test, we used Satellite Aperture Radar (SAR) images. It was reported that there were some surface deformation with about 10 cm by the 4th test (Wei, 2017) and the 5th test (Jo, 2017) using Interferometric SAR (InSAR) technique. However we could not obtain surface deformation by the 6th test using InSAR with Advanced Land Observation Satellite 2 (ALOS-2) data because of low coherence in the area close to the epicenter. Although the low coherence can be occurred due to several reasons, the main reason may be large deformation in this particular case. Therefore we applied pixel offset method to measure the amount of surface deformation in the area with low coherence. Pixel offset method calculates the deformation in the directions along track and Line-of-Sight (LOS) using cross correlation of intensity of two SAR images before and after the event for a pixel and is used frequently to obtain large deformation of glacier (e.g. Lee et al., 2015). Applying pixel offset method to the area of the 6th NK nuclear test, we obtained about 3 m surface deformation in maximum. It seems that the larger deformation occurs as the mountain slope is steeper.We then analyzed ionospheric perturbation using Global Navigation Satellite System (GNSS) data. If acoustic wave by a nuclear test goes up to the ionosphere and disturbs electron density, then the changes in slant total electron content (STEC) may be detected by GNSS satellites. STEC perturbation has been reported in the previous NK nuclear tests (e.g. Park et al., 2011). We analyzed the third order derivatives of STEC for 51 GNSS stations in South Korea and found that some perturbation were appeared at 4 stations about 20 40 minutes after the test.
Boyle, John J.; Kume, Maiko; Wyczalkowski, Matthew A.; Taber, Larry A.; Pless, Robert B.; Xia, Younan; Genin, Guy M.; Thomopoulos, Stavros
2014-01-01
When mechanical factors underlie growth, development, disease or healing, they often function through local regions of tissue where deformation is highly concentrated. Current optical techniques to estimate deformation can lack precision and accuracy in such regions due to challenges in distinguishing a region of concentrated deformation from an error in displacement tracking. Here, we present a simple and general technique for improving the accuracy and precision of strain estimation and an associated technique for distinguishing a concentrated deformation from a tracking error. The strain estimation technique improves accuracy relative to other state-of-the-art algorithms by directly estimating strain fields without first estimating displacements, resulting in a very simple method and low computational cost. The technique for identifying local elevation of strain enables for the first time the successful identification of the onset and consequences of local strain concentrating features such as cracks and tears in a highly strained tissue. We apply these new techniques to demonstrate a novel hypothesis in prenatal wound healing. More generally, the analytical methods we have developed provide a simple tool for quantifying the appearance and magnitude of localized deformation from a series of digital images across a broad range of disciplines. PMID:25165601
Kaczmarek, P; Celichowski, J; Drzymała-Celichowska, H; Kasiński, A
2009-08-01
The mechanomyographic (MMG) signal analysis has been performed during single motor unit (MU) contractions of the rat medial gastrocnemius muscle. The MMG has been recorded as a muscle surface displacement by using a laser distance sensor. The profiles of the MMG signal let to categorize these signals for particular MUs into three classes. Class MMG-P (positive) comprises MUs with the MMG signal similar to the force signal profile, where the distance between the muscle surface and the laser sensor increases with the force increase. The class MMG-N (negative) has also the MMG profile similar to the force profile, however the MMG is inverted in comparison to the force signal and the distance measured by using laser sensor decreases with the force increase. The third class MMG-M (mixed) characterize the MMG which initially increases with the force increases and when the force exceeds some level it starts to decrease towards the negative values. The semi-pennate muscle model has been proposed, enabling estimation of the MMG generated by a single MU depending on its localization. The analysis have shown that in the semi-pennate muscle the localization of the MU and the relative position of the laser distance sensor determine the MMG profile and amplitude. Thus, proposed classification of the MMG recordings is not related to the physiological types of MUs, but only to the MU localization and mentioned sensor position. When the distance sensor is located over the middle of the muscle belly, a part of the muscle fibers have endings near the location of the sensor beam. For the MU MMG of class MMG-N the deflection of the muscle surface proximal to the sensor mainly influences the MMG recording, whereas for the MU MMG class MMG-P, it is mainly the distal muscle surface deformation. For the MU MMG of MMG-M type the effects of deformation within the proximal and distal muscle surfaces overlap. The model has been verified with experimental recordings, and its responses are consistent and adequate in comparison to the experimental data.
NASA Astrophysics Data System (ADS)
Bonilla Sierra, V.; Donze, F. V.; Duriez, J.; Klinger, Y.; Scholtes, L.
2016-12-01
At the very early stages of a pure strike-slip fault zone formation, shear displacement along a deep buried parent fault produces a characteristic set of "evenly-spaced" strike-slip faults at the surface, e.g. Southern San Andreas, North Anatolian, Central Asian, and Northern Tibetan fault systems. This mode III fracture propagation is initiated by the rotation of the local principal stress at the tip of the parent discontinuity, generating twisted fractures with a helicoidal shape. In sandbox or clay-cake experiments used to reproduce these structures, it has been observed that the spacing and possibly the characteristic length of the fractures appearing at the surface are proportional to the overburden thickness of the deformed layer. Based on a Discrete Element Method (YADE DEM-Open Source), we have investigated the conditions controlling the linear relationships between the spacing of the surface "evenly-spaced" strike-slip discontinuities and the thickness of the deformed layer. Increasing the basement displacement of the model, a diffused shear zone appears first at the tip of the basal parent discontinuity. From this mist zone, localized and strongly interacting shear fractures start to propagate. This interaction process can generate complex internal structures: some fractures will propagate faster than their neighbors, modifying their close surrounding stress environment. Some propagating fractures can stop growing and asymmetrical fracture sets can be observed. This resulting hierarchical bifurcation process leads to a set of "en echelon" discontinuities appearing at the surface (Figure 1). In a pure strike-slip mode, fracture spacing is proportional to the thickness, with a ratio and a bifurcation mode controlled by the cohesion value at the first order. Depending on the Poisson's ratio value, which mainly controls the orientation of the discontinuities, this ratio can be affected at a lower degree. In presence of mixed-mode (transpression or transtension), these linear relationships disappear. Figure 1: Effects of the cohesion C and the thickness T of the deformed layer on the surface discontinuity pattern (a) T = Tref and C = Cref (b) T = Tref and C= 10×Cref (c) T = 2×Tref and C = Cref (d) T = 2×Tref and 10×Cref. The color code corresponds to the instantaneous velocity in the Y direction.
Freeform correction polishing for optics with semi-kinematic mounting
NASA Astrophysics Data System (ADS)
Huang, Chien-Yao; Kuo, Ching-Hsiang; Peng, Wei-Jei; Yu, Zong-Ru; Ho, Cheng-Fang; Hsu, Ming-Ying; Hsu, Wei-Yao
2015-10-01
Several mounting configurations could be applied to opto-mechanical design for achieving high precise optical system. The retaining ring mounting is simple and cost effective. However, it would deform the optics due to its unpredictable over-constraint forces. The retaining ring can be modified to three small contact areas becoming a semi-kinematic mounting. The semi-kinematic mounting can give a fully constrained in lens assembly and avoid the unpredictable surface deformation. However, there would be still a deformation due to self-weight in large optics especially in vertical setup applications. The self-weight deformation with a semi-kinematic mounting is a stable, repeatable and predictable combination of power and trefoil aberrations. This predictable deformation can be pre-compensated onto the design surface and be corrected by using CNC polisher. Thus it is a freeform surface before mounting to the lens cell. In this study, the freeform correction polishing is demonstrated in a Φ150 lens with semi-kinematic mounting. The clear aperture of the lens is Φ143 mm. We utilize ANSYS simulation software to analyze the lens deformation due to selfweight deformation with semi-kinematic mounting. The simulation results of the self-weight deformation are compared with the measurement results of the assembled lens cell using QED aspheric stitching interferometer (ASI). Then, a freeform surface of a lens with semi-kinematic mounting due to self-weight deformation is verified. This deformation would be corrected by using QED Magnetorheological Finishing (MRF® ) Q-flex 300 polishing machine. The final surface form error of the assembled lens cell after MRF figuring is 0.042 λ in peak to valley (PV).
Jung, Hyung-Sup; Hong, Soo-Min
2017-01-01
Mapping three-dimensional (3D) surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR) systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR) and multiple aperture interferometry (MAI). In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake.
Jung, Hyung-Sup; Hong, Soo-Min
2017-01-01
Mapping three-dimensional (3D) surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR) systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR) and multiple aperture interferometry (MAI). In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake. PMID:29145475
NASA Astrophysics Data System (ADS)
Kuebler, S.; Friedrich, A. M.; Strecker, M. R.
2011-12-01
One of the most enigmatic problems in intraplate earthquake geology is the spatio-temporal recurrence pattern of large earthquakes. Intraplate regions such as the New Madrid seismic zone or the central European rift system are subject to considerable seismic hazards, because fault activity is highly disparate in space and time and our knowledge about the recurrence of large earthquakes is still rudimentary. The current debate in central Europe ranges from slip dominated by repeated large coseismic events to slip dominated by aseismic creep. Here, field evidence in support of the former is sparse, and hence, some authors concluded that many faults move by slow aseismic creep rather than by ground rupturing earthquakes. We report new results from a paleoseismic study carried out in the Lower Rhine Embayment across a subsidiary normal fault in the area of Germany's largest historical earthquake (1756 AD, ML 6.2±0.2) that clearly revealed field evidence of dynamic surface faulting. At the trench site, the fault is covered by <5 m-thick Holocene fluvial gravel and flood deposits overlaying Devonian shale. We mapped a surface offset of ~1 m and a ~10 m wide zone of localized deformation expressed by abundant fractures with aligned and broken clasts extending vertically throughout the entire gravel. Mapping of 237 fractured clasts and the long-axis orientation of ~10.000 clasts defines a deformation zone coinciding with the surface offset and two offset markers within the gravel layers. We interpret these features as the result of coseismic deformation at the near-surface end of the rupture. We rule out alternative processes which may lead to fracturing of pebbles such as freeze-thaw weathering or sediment loading effects, since both the gravel fabric and fracture planes coincide well with the fault orientation. We preclude slow deformation due to aseismic creep as governing process to cause rupturing of pebbles this close to the surface, as this would require an overburden stress of several hundreds of meters according to modelling results (e. g. Eidelmann, 1992, Geology). With a significantly smaller overburden, as in this study, a high differential acceleration force, such as a shock wave produced by an earthquake rupture or a seismic wave would be needed to overcome the pebble's shear resistance. Preliminary radiocarbon data bracket the youngest event horizon to Latest Holocene age. In conclusion, we identified coseismic deformation at the trench site, because special conditions produced a number of features not usually observed in other fault exposures. The thin sedimentary cover (<5 m) above basement rocks and the high groundwater table, which may reduce the shear strength of the pebbles, may have played an important role in producing this deformation pattern. Our results imply that large surface rupturing earthquakes in low-strain intraplate regions may be more common than previously thought.
Study on Plastic Deformation Characteristics of Shot Peening of Ni-Based Superalloy GH4079
NASA Astrophysics Data System (ADS)
Zhong, L. Q.; Liang, Y. L.; Hu, H.
2017-09-01
In this paper, the X-ray stress diffractometer, surface roughness tester, field emission scanning electron microscope(SEM), dynamic ultra-small microhardness tester were used to measure the surface residual stress and roughness, topography and surface hardness changes of GH4079 superalloy, which was processed by metallographic grinding, turning, metallographic grinding +shot peening and turning + shot peening. Analysized the effects of shot peening parameters on shot peening plastic deformation features; and the effects of the surface state before shot peening on shot peening plastic deformation characteristics. Results show that: the surface residual compressive stress, surface roughness and surface hardness of GH4079 superalloy were increased by shot peening, in addition, the increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening increased with increasing shot peening intensity, shot peening time, shot peening pressure and shot hardness, but harden layer depth was not affected considerably. The more plastic deformation degree of before shot peening surface state, the less increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening.
A fundamental discussion of what triggers localized deformation in geological materials
NASA Astrophysics Data System (ADS)
Peters, Max; Paesold, Martin; Poulet, Thomas; Herwegh, Marco; Regenauer-Lieb, Klaus; Veveakis, Manolis
2015-04-01
Discontinuous or localized structures are often marked by the transition from a homogeneously deforming into a highly localized mode. This transition has extensively been described in ductile shear zones, folding and pinch-and-swell boudinage, in natural examples, rock deformation experiments and numerical simulations, at various scales. It is conventionally assumed that ductile instabilities, which act as triggers for localized deformation, exclusively arise from structural heterogeneities, i.e. geometric interactions or material imperfections. However, Hansen et al. (2012) concluded from recent laboratory experiments that localized deformation might arise out of steady-state conditions, where the size of initial perturbations was either insufficiently large to trigger localization, or these heterogeneities were simply negligible at the scale of observation. We therefore propose the existence of a principal localization phenomenon, which is based on the material-specific rate-dependency of deformation at elevated temperatures. The concept of strain localization out of a mechanical steady state in a homogeneous material at a critical material parameter and/or deformation rate has previously been discussed for engineering materials (Gruntfest, 1963) and frictional faults (Veveakis et al., 2010). We expand this theory to visco-plastic carbonate rocks, considering deformation conditions and mechanisms encountered in naturally deformed rocks. In the numerical simulation, we implement a grain-size evolution based on the Paleowattmeter scaling relationship of Austin & Evans (2007), which takes both grain size sensitive (diffusion) and insensitive (dislocation) creep combined with grain growth into account (Herwegh et al., 2014). Based on constant strain rate simulations carried out under isothermal boundary conditions, we explore the parameter space in order to obtain the criteria for localization. We determine the criteria for the onset of localization, i.e. the critical amount of dissipative work translated into heat over the diffusive capacity of the system by an instability study designed for such materials (Gruntfest, 1963). With respect to our numerical experiments, this critical parameter determines the timing when the entire amount of deformation energy translated into heat cannot be diffusively transported out of the system anymore. The resulting local temperature rise then induces strain localization. In contrast to classical shear heating scenarios with (catastrophic) thermal runaways, temperature variations of less than 1 K are sufficient for this localization mode to occur due to the balance between heat producing (e.g. dislocation creep) and consuming (grain growth) processes in the present setup. We demonstrate that this rise in latent heat is sufficient to provoke grain growth, operating as an endothermic reaction, stabilizing the simulated localized structure in turn. Various localized ductile structures, such as folded or boudinaged layers, can therefore be placed at the same material failure mode due to fundamental energy bifurcations triggered by dissipative work out of homogeneous state. Finally, we will discuss situations, in which structural heterogeneities are considered negligible and where the energy theory described here plays an underlying role by means of a comparison between numerical experiments and natural examples. REFERENCES Austin, N. and Evans, B. (2007). Paleowattmeters: A scaling relation for dynamically recrystallized grain size. Geology, 35. Gruntfest, I.J. (1963). Thermal feedback in liquid flow, plane shear at constant stress. Transactions of the Society of Rheology, 7. Hansen, L.N. and Zimmermann, M.E. and Dillman, A.M. and Kohlstedt, D.L (2012). Strain localization in olivine aggregates at high temperature: a laboratory comparison of constant-strain-rate and constant-stress boundary conditions. Earth and Planetary Science Letters, 333-334. Herwegh, M., Poulet, T., Karrech, A. and Regenauer-Lieb, K. (2014). From transient to steady state deformation and grain size: A thermodynamic approach using elasto-visco-plastic numerical modeling. Journal of Geophysical Research, 119. Veveakis, E., Alevizos, S. and Vardoulakis, I. (2010). Chemical reaction capping of thermal instability during shear of frictional faults. Journal of Mechanics and Physics of Solids, 58.
From local to national scale DInSAR analysis for the comprehension of Earth's surface dynamics.
NASA Astrophysics Data System (ADS)
De Luca, Claudio; Casu, Francesco; Manunta, Michele; Zinno, Ivana; lanari, Riccardo
2017-04-01
Earth Observation techniques can be very helpful for the estimation of several sources of ground deformation due to their characteristics of large spatial coverage, high resolution and cost effectiveness. In this scenario, Differential Synthetic Aperture Radar Interferometry (DInSAR) is one of the most effective methodologies for its capability to generate spatially dense deformation maps with centimeter to millimeter accuracy. DInSAR exploits the phase difference (interferogram) between SAR image pairs relevant to acquisitions gathered at different times, but with the same illumination geometry and from sufficiently close flight tracks, whose separation is typically referred to as baseline. Among several, the SBAS algorithm is one of the most used DInSAR approaches and it is aimed at generating displacement time series at a multi-scale level by exploiting a set of small baseline interferograms. SBAS, and generally DInSAR, has taken benefit from the large availability of spaceborne SAR data collected along years by several satellite systems, with particular regard to the European ERS and ENVISAT sensors, which have acquired SAR images worldwide during approximately 20 years. While the application of SBAS to ERS and ENVISAT data at local scale is widely testified, very few examples involving those archives for analysis at huge spatial scale are available in literature. This is mainly due to the required processing power (in terms of CPUs, memory and storage) and the limited availability of automatic processing procedures (unsupervised tools), which are mandatory requirements for obtaining displacement results in a time effective way. Accordingly, in this work we present a methodology for generating the Vertical and Horizontal (East-West) components of Earth's surface deformation at very large (national/continental) spatial scale. In particular, it relies on the availability of a set of SAR data collected over an Area of Interest (AoI), which could be some hundreds of thousands of square kilometers wide, from ascending and descending orbits. The exploited SAR data are processed, on a local basis, through the Parallel SBAS (P-SBAS) approach thus generating the displacement time series and the corresponding mean deformation velocity maps. Subsequently, starting from the so generated DInSAR results, the proposed methodology lays on a proper mosaicking procedure to finally retrieve the mean velocity maps of the Vertical and Horizontal (East-West) deformation components relevant to the overall AoI. This technique permits to account for possible regional trends (tectonics trend) not easily detectable by the local scale DInSAR analyses. We tested the proposed methodology with the ENVISAT ASAR archives that have been acquired, from ascending and descending orbits, over California (US), covering an area of about 100.000 km2. The presented methodology can be easily applied also to other SAR satellite data. Above all, it is particularly suitable to deal with the very large data flow provided by the Sentinel-1 constellation, which collects data with a global coverage policy and an acquisition mode specifically designed for interferometric applications.
NASA Astrophysics Data System (ADS)
Pan, Y.; Shen, W.; Hwang, C.
2015-12-01
As an elastic Earth, the surface vertical deformation is in response to hydrological mass change on or near Earth's surface. The continuous GPS (CGPS) records show surface vertical deformations which are significant information to estimate the variation of terrestrial water storage. We compute the loading deformations at GPS stations based on synthetic models of seasonal water load distribution and then invert the synthetic GPS data for surface mass distribution. We use GRACE gravity observations and hydrology models to evaluate seasonal water storage variability in Nepal and Himalayas. The coherence among GPS inversion results, GRACE and hydrology models indicate that GPS can provide quantitative estimates of terrestrial water storage variations by inverting the surface deformation observations. The annual peak-to-peak surface mass change derived from GPS and GRACE results reveal seasonal loads oscillations of water, snow and ice. Meanwhile, the present uplifting of Nepal and Himalayas indicates the hydrology mass loss. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).
Strain localization along micro-boudinage
NASA Astrophysics Data System (ADS)
Chatziioannou, Eleftheria; Rogowitz, Anna; Grasemann, Bernhard; Habler, Gerlinde; Soukis, Konstantinos; Schneider, David
2016-04-01
The progressive development of boudinage strongly depends on the kinematic framework and the mechanical properties of the boudinaged layer and host rock. A common type of boudin, which can often be observed in natural examples, is the domino boudinage. This boudin type typically reflects a strong competency contrast of the interlayered rock sequences. Numerical models have shown that a relatively high amount of strain is necessary in order to develop separated boudin segments. With ongoing deformation and consequent rotation of the individual segments into the shear direction, the terminal sectors tend to experience a higher rotation rate, progressively resulting in isoclinal folding. Whereas most investigations of domino boudinage are cm- to dm-scale examples, we examined one order of magnitude smaller examples, where the deformation mechanism between the segments and the matrix could be directly investigated. The samples are from Kalymnos Island located in the southeastern Aegean Sea (Dodecanese islands-Greece). The analysed sample belongs to the upper unit of the pre-Alpidic basement, which consists of a succession of marbles, which were deformed under lower-greenschist facies conditions during the Variscan orogeny. 40Ar/39Ar geochronological dating on white micas in the adjacent upper quartz-mica schists unit yielded deformation ages between 240 and 334 Ma. The calcitic marble comprises boudinaged dolomite layers with thickness varying between 1 and 20 mm. Progressive deformation of the boudinaged layers resulted in the development of ptygmatic folds with fold axes parallel to the stretching lineation. The grain size from the host rock marbles (10 μm) decreases towards the boudinaged dolomite layer (5 μm) indicating strain localization adjacent to the dolomite layers. Furthermore, strain is localized within micro shear zones which nucleate in the necks of rotated boudin segments. Crystallographic preferred orientations (CPO) derived from electron backscatter diffraction analysis show a distinct variation in CPO between the coarser and finer grained calcite next to the boudinaged dolomite. Detailed microstructural analysis revealed that strain is strongly partitioned parallel to the boudin segments and to the almost oblique inter-boudin surfaces.
Caine, Jonathan S.; Bruhn, R.L.; Forster, C.B.
2010-01-01
Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.
NASA Astrophysics Data System (ADS)
Sato, H. P.; Nakajima, H.; Nakano, T.; Daimaru, H.
2014-12-01
Synthetic Aperture Radar (SAR) is the technique to obtain ground surface images using microwave that is emitted from and received on the antenna. The Kuchi-Sakamoto area, 2.2 km2 in precipitous mountains, central Japan, has suffered from frequent landslides, and slow landslide surface deformation has been monitored by on-site extensometer; however, such the monitoring method cannot detect the deformation in the whole area. Because satellite InSAR is effective tool to monitor slow landslide suface deformation, it is a promising tool for detecting precursor deformation and preparing effective measures against serious landslide disasters. In this study Advanced Land Observing Satellite (ALOS) / Phased Array type L-band SAR (PALSAR) data were used, and InSAR images were produced from the PALSAR data that were observed between 5 Sep 2008 and 21 Oct 2008 (from descending orbit) and between 20 Jul 2008 and 7 Sep 2009 (from ascending orbit). InSAR image from descending orbit was found to detect clear precursor landslide surface deformation on a slope; however, InSAR image on ascending orbit did not always detect clear precursor deformation. It is thought to be related with atmospheric moisture condition, length of observation baseline and so on. Furthermore, after phase unwrapping on InSAR images, 2.5-dimensional deformation was analized. This analysis needed both ascending and descending InSAR images and culculated quasi east-west deformation component (Figs. (a) and (b)) and quasi up-down deformation component (Figs. (c) and (d)). The resulting 2.5D calculation gave westward deformation and mixture of upward and downward deformations on the precursor landslide surface deformation slope (blue circles in Figs. (c) and (d)), where remarkable disrupted deep landslide occurred during Nov 2012 and 25 Jun 2013, judging from result of airborne LiDAR survey and field survey; the occurrence date is not precisely identified. The figure remains the issue that eliminating "real" precursor deformation from other candidate deformations. Preparation of this paper was supported by part of Individual Research Fund in College of Humanities and Sciences, Nihon University and part of Grants-in-Aid for Scientific Research, Challenging Exploratory (#25560185, Principal Investigator: Dr. Hiromu Daimaru).
NASA Astrophysics Data System (ADS)
Coridan, Robert H.; Schmidt, Nathan W.; Lai, Ghee Hwee; Abbamonte, Peter; Wong, Gerard C. L.
2012-03-01
Nanoconfined water and surface-structured water impacts a broad range of fields. For water confined between hydrophilic surfaces, measurements and simulations have shown conflicting results ranging from “liquidlike” to “solidlike” behavior, from bulklike water viscosity to viscosity orders of magnitude higher. Here, we investigate how a homogeneous fluid behaves under nanoconfinement using its bulk response function: The Green's function of water extracted from a library of S(q,ω) inelastic x-ray scattering data is used to make femtosecond movies of nanoconfined water. Between two confining surfaces, the structure undergoes drastic changes as a function of surface separation. For surface separations of ≈9 Å, although the surface-associated hydration layers are highly deformed, they are separated by a layer of bulklike water. For separations of ≈6 Å, the two surface-associated hydration layers are forced to reconstruct into a single layer that modulates between localized “frozen’ and delocalized “melted” structures due to interference of density fields. These results potentially reconcile recent conflicting experiments. Importantly, we find a different delocalized wetting regime for nanoconfined water between surfaces with high spatial frequency charge densities, where water is organized into delocalized hydration layers instead of localized hydration shells, and are strongly resistant to `freezing' down to molecular distances (<6 Å).
A shear localization mechanism for lubricity of amorphous carbon materials
Ma, Tian-Bao; Wang, Lin-Feng; Hu, Yuan-Zhong; Li, Xin; Wang, Hui
2014-01-01
Amorphous carbon is one of the most lubricious materials known, but the mechanism is not well understood. It is counterintuitive that such a strong covalent solid could exhibit exceptional lubricity. A prevailing view is that lubricity of amorphous carbon results from chemical passivation of dangling bonds on surfaces. Here we show instead that lubricity arises from shear induced strain localization, which, instead of homogeneous deformation, dominates the shearing process. Shear localization is characterized by covalent bond reorientation, phase transformation and structural ordering preferentially in a localized region, namely tribolayer, resulting in shear weakening. We further demonstrate an anomalous pressure induced transition from stick-slip friction to continuous sliding with ultralow friction, due to gradual clustering and layering of graphitic sheets in the tribolayer. The proposed shear localization mechanism sheds light on the mechanism of superlubricity, and would enrich our understanding of lubrication mechanism of a wide variety of amorphous materials. PMID:24412998
Stress fields and energy of disclination-type defects in zones of localized elastic distortions
NASA Astrophysics Data System (ADS)
Sukhanov, Ivan I.; Tyumentsev, Alexander N.; Ditenberg, Ivan A.
2016-11-01
This paper studies theoretically the elastically deformed state and analyzes deformation mechanisms in nanocrystals in the zones of localized elastic distortions and related disclination-type defects, such as dipole, quadrupole and multipole of partial disclinations. Significant differences in the energies of quadrupole and multipole configurations in comparison with nanodipole are revealed. The mechanism of deformation localization in the field of elastic distortions is proposed, which is a quasi-periodic sequence of formation and relaxation of various disclination ensembles with a periodic change in the energy of the defect.
NASA Astrophysics Data System (ADS)
Poujol, Antoine; Ritz, Jean-François; Vernant, Philippe; Huot, Sebastien; Maate, Soufian; Tahayt, Abdelilah
2017-08-01
In this paper, we present the first estimate of the Holocene deformation along the southern front of Gibraltar arc (Morocco) and the first field constraints on the local 1755 CE Fes-Meknes surface rupturing earthquake which could be associated to the "Great Lisbon Earthquake" (M > 8.5) in November 1st, 1755. Using satellite imagery, aerial photographs and field investigations, we carried out a morphotectonic study along the 150 km-long Southern Rif Front (SRF) to identify the most recent evidences of tectonic activity. Analyzed offset alluvial deposits confirm that (i) the last 5 ka cumulative deformation leading to a slip rate of 3.5 ± 1 mm/yr for this segment of the SRF is consistent with the GPS derived horizontal shortening rate of 2-4 mm/yr and (ii) a recent major earthquake ruptured a 30 km-long segment along the SRF. Based on deposits dating and historical seismicity we propose that this seismic event occurred in 1755 as a local earthquake. Even though this 1755 local event cannot be considered as a strong aftershock of the main Lisbon seismic event (M > 8.5), their temporal closeness, their occurrence under the same convergent stress regime ( NNW-SSE-oriented compression) and the fact that Fes-Meknes area was strongly shaken during the Lisbon earthquake, raises the question of the possible triggering of the Fes earthquake. Anyway, our new results suggest that most of the Nubia-Rif belt convergence is accommodated by the SRF, making it potentially the most destructive structure of the Rif.
Analysing surface deformation in Surabaya from sentinel-1A data using DInSAR method
NASA Astrophysics Data System (ADS)
Anjasmara, Ira Mutiara; Yusfania, Meiriska; Kurniawan, Akbar; Resmi, Awalina L. C.; Kurniawan, Roni
2017-07-01
The rapid population growth and increasing industrial space in the urban area of Surabaya have caused an excessive ground water use and load of infrastructures. This condition triggers surface deformation, especially the vertical deformation (subsidence or uplift), in Surabaya and its surroundings. The presence of dynamic processes of the Earth and geological form of Surabaya area can also fasten the rate of the surface deformation. In this research, Differential Interferometry Synthetic Aperture Radar (DInSAR) method is chosen to infer the surface deformation over Surabaya area. The DInSAR processing utilized Sentinel 1A satellite images from May 2015 to September 2016 using two-pass interferometric. Two-pass interferometric method is a method that uses two SAR imageries and Digital Elevation Model (DEM). The results from four pairs of DInSAR processing indicate the occurrence of surface deformation in the form of land subsidence and uplift based on the displacement Line of Sight (LOS) in Surabaya. The average rate of surface deformation from May 2015 to September 2016 varies from -3.52 mm/4months to +2.35 mm/4months. The subsidence mostly occurs along the coastal area. However, the result still contains errors from the processing of displacement, due to the value of coherence between the image, noise, geometric distortion of a radar signal and large baseline on image pair.
NASA Astrophysics Data System (ADS)
Bradbury, Kelly K.; Davis, Colter R.; Shervais, John W.; Janecke, Susanne U.; Evans, James P.
2015-05-01
We examine the fine-scale variations in mineralogical composition, geochemical alteration, and texture of the fault-related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Observatory at Depth (SAFOD) borehole near Parkfield, California. This work provides insight into the physical and chemical properties, structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. Exhumed outcrops within the SAF system comprised of serpentinite-bearing protolith are examined for comparison at San Simeon, Goat Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple juxtaposed lenses of sheared, foliated siltstone and shale with block-in-matrix fabric, black cataclasite to ultracataclasite, and sheared serpentinite-bearing, finely foliated fault gouge. Meters-wide zones of sheared rock and fault gouge correlate to the sites of active borehole casing deformation and are characterized by scaly clay fabric with multiple discrete slip surfaces or anastomosing shear zones that surround conglobulated or rounded clasts of compacted clay and/or serpentinite. The fine gouge matrix is composed of Mg-rich clays and serpentine minerals (saponite ± palygorskite, and lizardite ± chrysotile). Whole-rock geochemistry data show increases in Fe-, Mg-, Ni-, and Cr-oxides and hydroxides, Fe-sulfides, and C-rich material, with a total organic content of >1 % locally in the fault-related rocks. The faults sampled in the field are composed of meters-thick zones of cohesive to non-cohesive, serpentinite-bearing foliated clay gouge and black fine-grained fault rock derived from sheared Franciscan Formation or serpentinized Coast Range Ophiolite. X-ray diffraction of outcrop samples shows that the foliated clay gouge is composed primarily of saponite and serpentinite, with localized increases in Ni- and Cr-oxides and C-rich material over several meters. Mesoscopic and microscopic textures and deformation mechanisms interpreted from the outcrop sites are remarkably similar to those observed in the SAFOD core. Micro-scale to meso-scale fabrics observed in the SAFOD core exhibit textural characteristics that are common in deformed serpentinites and are often attributed to aseismic deformation with episodic seismic slip. The mineralogy and whole-rock geochemistry results indicate that the fault zone experienced transient fluid-rock interactions with fluids of varying chemical composition, including evidence for highly reducing, hydrocarbon-bearing fluids.
Venus tectonics: initial analysis from magellan.
Solomon, S C; Head, J W; Kaula, W M; McKenzie, D; Parsons, B; Phillips, R J; Schubert, G; Talwani, M
1991-04-12
Radar imaging and altimetry data from the Magellan mission have revealed a diversity of deformational features at a variety of spatial scales on the Venus surface. The plains record a superposition of different episodes of deformation and volcanism; strain is both areally distributed and concentrated into zones of extension and shortening. The common coherence of strain patterns over hundreds of kilometers implies that many features in the plains reflect a crustal response to mantle dynamic processes. Ridge belts and mountain belts represent successive degrees of lithospheric shortening and crustal thickening; the mountain belts also show widespread evidence for extension and collapse both during and following crustal compression. Venus displays two geometrical patterns of concentrated lithospheric extension: quasi-circular coronae and broad rises with linear rift zones; both are sites of significant volcanism. No long, large-offset strike-slip faults have been observed, although limited local horizontal shear is accommodated across many zones of crustal shortening. In general, tectonic features on Venus are unlike those in Earth's oceanic regions in that strain typically is distributed across broad zones that are one to a few hundred kilometers wide, and separated by stronger and less deformed blocks hundreds of kilometers in width, as in actively deforming continental regions on Earth.
Seismic Response Analysis of an Unanchored Steel Tank under Horizontal Excitation
NASA Astrophysics Data System (ADS)
Rulin, Zhang; Xudong, Cheng; Youhai, Guan
2017-06-01
The seismic performance of liquid storage tank affects the safety of people’s life and property. A 3-D finite element method (FEM) model of storage tank is established, which considers the liquid-solid coupling effect. Then, the displacement and stress distribution along the tank wall is studied under El Centro earthquake. Results show that, large amplitude sloshing with long period appears on liquid surface. The elephant-foot deformation occurs near the tank bottom, and at the elephant-foot deformation position maximum hoop stress and axial stress appear. The maximum axial compressive stress is very close to the allowable critical stress calculated by the design code, and may be local buckling failure occurs. The research can provide some reference for the seismic design of storage tanks.
Stream response to repeated coseismic folding, Tiptonville dome, New Madrid seismic zone
NASA Astrophysics Data System (ADS)
Guccione, M. J.; Mueller, K.; Champion, J.; Shepherd, S.; Carlson, S. D.; Odhiambo, B.; Tate, A.
2002-03-01
Fluvial response to tectonic deformation is dependent on the amount and style of surface deformation and the relative size of the stream. Active folding in the New Madrid seismic zone (NMSZ) forms the Tiptonville dome, a 15-km long and 5-km wide surface fold with up to 11 m of late Holocene structural relief. The fold is crossed by streams of varying size, from the Mississippi River to small flood-plain streams. Fluvial response of these streams to repeated coseismic folding has only been preserved for the past 2.3 ka, since the Tiptonville meander of the Mississippi River migrated across the area forming the present flood plain. This surface comprises a sandy point-bar deposit locally overlain by clayey overbank and silty sand crevasse-splay deposits, an abandoned chute channel infilled with laminated sandy silt and silty clay, and an abandoned neck cutoff filled with a sandy cutoff bar and silty clay oxbow lake deposits. Dating various stream responses to coseismic folding has more tightly constrained the timing of earthquake events in the central NMSZ and provides a means of partitioning the deformation amount into individual seismic events. Three earthquakes have been dated in the Reelfoot Lake area, ca. A.D. 900, 1470, and 1812. The latter two earthquakes had large local coseismic deformation. Both of these events were responsible for numerous stream responses such as shifting depocenters, modification of Mississippi River channel geometry, and derangement of small streams. Overbank sedimentation ceased on the dome as it was uplifted above the normal flood stage, and sedimentation of crevasse-splay deposits from the Mississippi River, colluvium from the scarp, and lacustrine sediment accumulated in the adjacent Reelfoot basin. The much larger Mississippi River channel responded to uplift by increasing its sinuosity across the uplift relative to both upstream and downstream, increasing its width/depth ratio across and downstream of the uplift, and decreasing the width/depth ratio upstream of the uplift. Despite the size of the Mississippi River, it has not yet attained equilibrium since the latest uplift 190 years ago. Small channels that could not downcut through the uplift were filled, locally reversed flow direction, or formed a lake where they were dammed. Uplift and stream response to folding along the Tiptonville dome is less dramatic between 2.3 and 0.53 ka. During this interval, abandoned channel fill and overbank deposition across the dome suggests that it was not a high-relief feature. One earthquake event occurred during this interval (ca. A.D. 900), but coseismic stream response was probably limited to a slight aggradation of a small flood-plain stream.
Effect of elastic excitations on the surface structure of hadfield steel under friction
NASA Astrophysics Data System (ADS)
Kolubaev, A. V.; Ivanov, Yu. F.; Sizova, O. V.; Kolubaev, E. A.; Aleshina, E. A.; Gromov, V. E.
2008-02-01
The structure of the Hadfield steel (H13) surface layer forming under dry friction is examined. The deformation of the material under the friction surface is studied at a low slip velocity and a low pressure (much smaller than the yields stress of H13 steel). The phase composition and defect substructure on the friction surface are studied using scanning, optical, and diffraction electron microscopy methods. It is shown that a thin highly deformed nanocrystalline layer arises near the friction surface that transforms into a polycrystalline layer containing deformation twins and dislocations. The nanocrystalline structure and the presence of oxides in the surface layer and friction zone indicate a high temperature and high plastic strains responsible for the formation of the layer. It is suggested that the deformation of the material observed far from the surface is due to elastic wave generation at friction.
1991-01-01
bimodal theory . 1. Introduction Numerous analytical models have been proposed for prediction of the inelastic response of fibrous composites, an...necessity - especially at a higher c1 - to use the local-field theory . The shear creep strain of the composite is slightly larger in the transverse... gauge surface were also monitored. Theoretical Consideration Failure theories for anisotropic materials in plane stress conditions are in general
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xiong; Viswanathan, Akila; Stewart, Alexandra J.
Cumulative dose distributions in fractionated radiation therapy depict the dose to normal tissues and therefore may permit an estimation of the risk of normal tissue complications. However, calculation of these distributions is highly challenging because of interfractional changes in the geometry of patient anatomy. This work presents an algorithm for deformable structure registration of the bladder and the verification of the accuracy of the algorithm using phantom and patient data. In this algorithm, the registration process involves conformal mapping of genus zero surfaces using finite element analysis, and guided by three control landmarks. The registration produces a correspondence between fractionsmore » of the triangular meshes used to describe the bladder surface. For validation of the algorithm, two types of balloons were inflated gradually to three times their original size, and several computerized tomography (CT) scans were taken during the process. The registration algorithm yielded a local accuracy of 4 mm along the balloon surface. The algorithm was then applied to CT data of patients receiving fractionated high-dose-rate brachytherapy to the vaginal cuff, with the vaginal cylinder in situ. The patients' bladder filling status was intentionally different for each fraction. The three required control landmark points were identified for the bladder based on anatomy. Out of an Institutional Review Board (IRB) approved study of 20 patients, 3 had radiographically identifiable points near the bladder surface that were used for verification of the accuracy of the registration. The verification point as seen in each fraction was compared with its predicted location based on affine as well as deformable registration. Despite the variation in bladder shape and volume, the deformable registration was accurate to 5 mm, consistently outperforming the affine registration. We conclude that the structure registration algorithm presented works with reasonable accuracy and provides a means of calculating cumulative dose distributions.« less
Deformation and relaxation of an incompressible viscoelastic body with surface viscoelasticity
NASA Astrophysics Data System (ADS)
Liu, Liping; Yu, Miao; Lin, Hao; Foty, Ramsey
2017-01-01
Measuring mechanical properties of cells or cell aggregates has proven to be an involved process due to their geometrical and structural complexity. Past measurements are based on material models that completely neglect the elasticity of either the surface membrane or the interior bulk. In this work, we consider general material models to account for both surface and bulk viscoelasticity. The boundary value problems are formulated for deformations and relaxations of a closed viscoelastic surface coupled with viscoelastic media inside and outside of the surface. The linearized surface elasticity models are derived for the constant surface tension model and the Helfrich-Canham bending model for coupling with the bulk viscoelasticity. For quasi-spherical surfaces, explicit solutions are obtained for the deformation, stress-strain and relaxation behaviors under a variety of loading conditions. These solutions can be applied to extract the intrinsic surface and bulk viscoelastic properties of biological cells or cell aggregates in the indentation, electro-deformation and relaxation experiments.
Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen
2014-05-06
A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.
NASA Astrophysics Data System (ADS)
Kalenchuk, K. S.; Hutchinson, D.; Diederichs, M. S.
2013-12-01
Downie Slide, one of the world's largest landslides, is a massive, active, composite, extremely slow rockslide located on the west bank of the Revelstoke Reservoir in British Columbia. It is a 1.5 billion m3 rockslide measuring 2400 m along the river valley, 3300m from toe to headscarp and up to 245 m thick. Significant contributions to the field of landslide geomechanics have been made by analyses of spatially and temporally discriminated slope deformations, and how these are controlled by complex geological and geotechnical factors. Downie Slide research demonstrates the importance of delineating massive landslides into morphological regions in order to characterize global slope behaviour and identify localized events, which may or may not influence the overall slope deformation patterns. Massive slope instabilities do not behave as monolithic masses, rather, different landslide zones can display specific landslide processes occurring at variable rates of deformation. The global deformation of Downie Slide is extremely slow moving; however localized regions of the slope incur moderate to high rates of movement. Complex deformation processes and composite failure mechanism are contributed to by topography, non-uniform shear surfaces, heterogeneous rockmass and shear zone strength and stiffness characteristics. Further, from the analysis of temporal changes in landslide behaviour it has been clearly recognized that different regions of the slope respond differently to changing hydrogeological boundary conditions. State-of-the-art methodologies have been developed for numerical simulation of large landslides; these provide important tools for investigating dynamic landslide systems which account for complex three-dimensional geometries, heterogenous shear zone strength parameters, internal shear zones, the interaction of discrete landslide zones and piezometric fluctuations. Numerical models of Downie Slide have been calibrated to reproduce observed slope behaviour, and the calibration process has provided important insight to key factors controlling massive slope mechanics. Through numerical studies it has been shown that the three-dimensional interpretation of basal slip surface geometry and spatial heterogeneity in shear zone stiffness are important factors controlling large-scale slope deformation processes. The role of secondary internal shears and the interaction between landslide morphological zones has also been assessed. Further, numerical simulation of changing groundwater conditions has produced reasonable correlation with field observations. Calibrated models are valuable tools for the forward prediction of landslide dynamics. Calibrated Downie Slide models have been used to investigate how trigger scenarios may accelerate deformations at Downie Slide. The ability to reproduce observed behaviour and forward test hypothesized changes to boundary conditions has valuable application in hazard management of massive landslides. The capacity of decision makers to interpret large amounts of data, respond to rapid changes in a system and understand complex slope dynamics has been enhanced.
NASA Astrophysics Data System (ADS)
Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie
2017-06-01
The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.
Modeling and simulation of dynamics of a planar-motion rigid body with friction and surface contact
NASA Astrophysics Data System (ADS)
Wang, Xiaojun; Lv, Jing
2017-07-01
The modeling and numerical method for the dynamics of a planar-motion rigid body with frictional contact between plane surfaces were presented based on the theory of contact mechanics and the algorithm of linear complementarity problem (LCP). The Coulomb’s dry friction model is adopted as the friction law, and the normal contact forces are expressed as functions of the local deformations and their speeds in contact bodies. The dynamic equations of the rigid body are obtained by the Lagrange equation. The transition problem of stick-slip motions between contact surfaces is formulated and solved as LCP through establishing the complementary conditions of the friction law. Finally, a numerical example is presented as an example to show the application.
Dynamic soft tissue deformation estimation based on energy analysis
NASA Astrophysics Data System (ADS)
Gao, Dedong; Lei, Yong; Yao, Bin
2016-10-01
The needle placement accuracy of millimeters is required in many needle-based surgeries. The tissue deformation, especially that occurring on the surface of organ tissue, affects the needle-targeting accuracy of both manual and robotic needle insertions. It is necessary to understand the mechanism of tissue deformation during needle insertion into soft tissue. In this paper, soft tissue surface deformation is investigated on the basis of continuum mechanics, where a geometry model is presented to quantitatively approximate the volume of tissue deformation. The energy-based method is presented to the dynamic process of needle insertion into soft tissue based on continuum mechanics, and the volume of the cone is exploited to quantitatively approximate the deformation on the surface of soft tissue. The external work is converted into potential, kinetic, dissipated, and strain energies during the dynamic rigid needle-tissue interactive process. The needle insertion experimental setup, consisting of a linear actuator, force sensor, needle, tissue container, and a light, is constructed while an image-based method for measuring the depth and radius of the soft tissue surface deformations is introduced to obtain the experimental data. The relationship between the changed volume of tissue deformation and the insertion parameters is created based on the law of conservation of energy, with the volume of tissue deformation having been obtained using image-based measurements. The experiments are performed on phantom specimens, and an energy-based analytical fitted model is presented to estimate the volume of tissue deformation. The experimental results show that the energy-based analytical fitted model can predict the volume of soft tissue deformation, and the root mean squared errors of the fitting model and experimental data are 0.61 and 0.25 at the velocities 2.50 mm/s and 5.00 mm/s. The estimating parameters of the soft tissue surface deformations are proven to be useful for compensating the needle-targeting error in the rigid needle insertion procedure, especially for percutaneous needle insertion into organs.
Pre-slip and Localized Strain Band - A Study Based on Large Sample Experiment and DIC
NASA Astrophysics Data System (ADS)
Ji, Y.; Zhuo, Y. Q.; Liu, L.; Ma, J.
2017-12-01
Meta-instability stage (MIS) is the stage occurs between a fault reaching the peak differential stress and the onset of the final stress drop. It is the crucial stage during which a fault transits from "stick" to "slip". Therefore, if one can quantitatively analyze the spatial and temporal characteristics of the deformation field of a fault at MIS, it will be of great significance both to fault mechanics and earthquake prediction study. In order to do so, a series of stick-slip experiments were conducted using a biaxial servo-controlled pressure machine. Digital images of the sample surfaces were captured by a high speed camera and processed using a digital image correlation method (DIC). If images of a rock sample are acquired before and after deformation, then DIC can be used to infer the displacement and strain fields. In our study, sample images were captured at the rate of 1000 frame per second and the resolution is 2048 by 2048 in pixel. The displacement filed, strain filed and fault displacement were calculated from the captured images. Our data shows that (1) pre-sliding can be a three-stage process, including a relative long and slow first stage at slipping rate of 7.9nm/s, a relatively short and fast second one at rate of 3µm/s and the last stage only last for 0.2s but the slipping rate reached as high as 220µm/s. (2) Localized strain bands were observed nearly perpendicular to the fault. A possible mechanism is that the pre-sliding is distributed heterogeneously along the fault, which means there are relatively adequately sliding segments and the less sliding ones, they become the constrain condition of deformation of the adjacent subregion. The localized deformation band tends to radiate from the discontinuity point of sliding. While the adequately sliding segments are competing with the less sliding ones, the strain bands are evolving accordingly.
NASA Astrophysics Data System (ADS)
Takeuchi, Christopher S.
In this dissertation, I study the influence of transform faults on the structure and deformation of the lithosphere, using shipboard and geodetic observations as well as numerical experiments. I use marine topography, gravity, and magnetics to examine the effects of the large age-offset Andrew Bain transform fault on accretionary processes within two adjacent segments of the Southwest Indian Ridge. I infer from morphology, high gravity, and low magnetization that the extremely cold and thick lithosphere associated with the Andrew Bain strongly suppresses melt production and crustal emplacement to the west of the transform fault. These effects are counteracted by enhanced temperature and melt production near the Marion Hotspot, east of the transform fault. I use numerical models to study the development of lithospheric shear zones underneath continental transform faults (e.g. the San Andreas Fault in California), with a particular focus on thermomechanical coupling and shear heating produced by long-term fault slip. I find that these processes may give rise to long-lived localized shear zones, and that such shear zones may in part control the magnitude of stress in the lithosphere. Localized ductile shear participates in both interseismic loading and postseismic relaxation, and predictions of models including shear zones are within observational constraints provided by geodetic and surface heat flow data. I numerically investigate the effects of shear zones on three-dimensional postseismic deformation. I conclude that the presence of a thermally-activated shear zone minimally impacts postseismic deformation, and that thermomechanical coupling alone is unable to generate sufficient localization for postseismic relaxation within a ductile shear zone to kinematically resemble that by aseismic fault creep (afterslip). I find that the current record geodetic observations of postseismic deformation do not provide robust discriminating power between candidate linear and power-law rheologies for the sub-Mojave Desert mantle, but longer observations may potentially allow such discrimination.
Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation
NASA Astrophysics Data System (ADS)
Keep, Myra; Hansen, Vicki L.
1994-12-01
Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surface deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus' northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structure fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength and inferred amplitude of mapped structures are small; (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implications of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a 'deformation-from-below' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.
Water Surface Impact and Ricochet of Deformable Elastomeric Spheres
NASA Astrophysics Data System (ADS)
Hurd, Randy C.
Soft and deformable silicone rubber spheres ricochet from a water surface when rigid spheres and disks (or skipping stones) cannot. This dissertation investigates why these objects are able to skip so successfully. High speed cameras allow us to see that these unique spheres deform significantly as they impact the water surface, flattening into pancake-like shapes with greater area. Though the water entry behavior of deformable spheres deviates from that of rigid spheres, our research shows that if this deformation is accounted for, their behavior can be predicted from previously established methods. Soft spheres skip more easily because they deform significantly when impacting the water surface. We present a diagram which enables the prediction of a ricochet from sphere impact conditions such as speed and angle. Experiments and mathematical representations of the sphere skipping both show that these deformable spheres skip more readily because deformation momentarily increases sphere area and produces an attack angle with the water which is favorable to skipping. Predictions from our mathematical representation of sphere skipping agree strongly with observations from experiments. Even when a sphere was allowed to skip multiple times in the laboratory, the mathematical predictions show good agreement with measured impact conditions through subsequent skipping events. While studying multiple impact events in an outdoor setting, we discovered a previously unidentified means of skipping, which is unique to deformable spheres. This new skipping occurs when a relatively soft sphere first hits the water at a high speed and low impact angle and the sphere begins to rotate very quickly. This quick rotation causes the sphere to stretch into a shape similar to an American football and maintain this shape while it spins. The sphere is observed to move nearly parallel with the water surface with the tips of this "football" dipping into the water as it rotates and the sides passing just over the surface. This sequence of rapid impact events give the impression that the sphere is walking across the water surface.
NASA Astrophysics Data System (ADS)
López-Sánchez, M. A.; Llana-Fúnez, S.; Marcos, A.; Martínez, F. J.
2012-04-01
Metamorphic reactions, deformation mechanism and chemical changes during mylonitization and ultramylonitization of granite affected by a crustal-scale shear zone are investigated using microstructural observations and quantitative analysis. The Vivero Fault (VF) is a large extensional shear zone (>140Km) in NW of Iberia that follows the main Variscan trend dipping 60° toward the West. The movement accumulated during its tectonic history affects the major lithostratigraphic sequence of Palaeozoic and Neoproterozoic rocks and the metamorphic facies developed during Variscan orogenesis. Staurolite, and locally, andalucite plus biotite grew in the hangingwall during the development of VF, overprinted the previous regional Variscan greenschist facies metamorphism. Andalusite growth took place during the intrusion of syntectonic granitic bodies, such as the deformed granite studied here. The Penedo Gordo granite is coarse-grained two-mica biotite-rich granite intruding the VF and its hangingwall. This granite developed a localized deformation consisting of a set of narrow zones (mm to metric scales) heterogeneously distributed subsequently to its intrusion. Based on pseudosections for representative hangingwall pelites hosting the granite and the inferred metamorphic evolution, the shear zone that outcrops at present-day erosion surface was previously active at 14,7-17 km depth (390-450 MPa). Temperature estimates during deformation reach at least the range 500-600° C, implying a local gradient of 35±6°C/km. Microstructures in the mylonites are characterized by bulging (BLG) to subgrain rotation (SGR) recristallization in quartz with the increasing of deformation. Albitisation, flame-perthite and tartan twining are common in K-feldspar at the early stage of deformation. The inferred dominant deformation mechanisms are: i) intracrystalline plasticity in quartz, ii) cataclasis with syntectonic crystallisation of very fine albite-oligoclase and micas in K-feldspar, and iii) cataclasis with precipitation of K-feldspar in fractures and other dilatational sites in plagioclase. Ultramylonites consist of a matrix mainly containing feldspar, quartz and micas (mainly biotite) with an average grain size below 15 μm, usually featuring some quartz pods and small feldspar porphyroclast. Quartz pods disintegrate into polycrystalline aggregates, and the resultant grains are mixed into the surrounding matrix reaching its average grain size. In the matrix, grain size is uniform and the distribution of mineral phases tends to be homogeneous. Mass balance analysis based on major elements indicates that the deformation process was not isochemical for some elements. Preliminary XRF results show that the mylonitic/ultramylonitic samples are depleted in Na and Mn and enriched in K and Ca respect to the original protolith, while others remains stable (Si, Al or Fe). This data suggests a large-scale transport of some components, and therefore, that fluids were involved during deformation. Similar feldspar microstructures in mylonites, implying cataclasis and neocrystallisation, have been previously reported in natural rocks where the temperature was estimated between 250 to 450°C (see Fitz-Gerald and Stünitz 1993, Hippertt 1998 or Ree et al. 2005). In opposition to this, petrological and mineralogical thermometry data indicate that temperatures during deformation of FV reached at 500-600°C, extending the temperature range previously reported.
Bed-Deformation Experiments Beneath a Temperate Glacier
NASA Astrophysics Data System (ADS)
Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.
2002-12-01
Fast flow of glaciers and genesis of glacial landforms are commonly attributed to shear deformation of subglacial sediment. Although models of this process abound, data gathered subglacially on the kinematics and mechanics of such deformation are difficult to interpret. Major difficulties stem from the necessity of either measuring deformation near glacier margins, where conditions may be abnormal, or at the bottoms of boreholes, where the scope of instrumentation is limited, drilling disturbs sediment, and local boundary conditions are poorly known. A different approach is possible at the Svartisen Subglacial Laboratory, where tunnels melted in the ice provide temporary human access to the bed of Engabreen, a temperate outlet glacier of the Svartisen Ice Cap in Norway. A trough (2 m x 1.5 m x 0.5 m deep) was blasted in the rock bed, where the glacier is 220 m thick and sliding at 0.1-0.2 m/d. During two spring field seasons, this trough was filled with 2.5 tons of simulated till. Instruments in the till recorded shear (tiltmeters), volume change, total normal stress, and pore-water pressure as ice moved across the till surface. Pore pressure was brought to near the total normal stress by feeding water to the base of the till with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. Results illustrate some fundamental aspects of bed deformation. Permanent shear deformation requires low effective normal stress and hence high pore-water pressure, owing to the frictional nature of till. Shear strain generally increases upward in the bed toward the glacier sole, consistent with previous measurements beneath thinner ice at glacier margins. At low effective normal stresses, ice sometimes decouples from underlying till. Overall, bed deformation accounts for 10-35 % of basal motion, although this range excludes shear in the uppermost 0.05 m of till where shear was not measured. Pump tests with durations ranging from seconds to hours highlight the need to consider both elastic and permanent strain in evaluating tiltmeter records of bed kinematics.
NASA Astrophysics Data System (ADS)
Sauer, Roger A.
2013-08-01
Recently an enriched contact finite element formulation has been developed that substantially increases the accuracy of contact computations while keeping the additional numerical effort at a minimum reported by Sauer (Int J Numer Meth Eng, 87: 593-616, 2011). Two enrich-ment strategies were proposed, one based on local p-refinement using Lagrange interpolation and one based on Hermite interpolation that produces C 1-smoothness on the contact surface. Both classes, which were initially considered for the frictionless Signorini problem, are extended here to friction and contact between deformable bodies. For this, a symmetric contact formulation is used that allows the unbiased treatment of both contact partners. This paper also proposes a post-processing scheme for contact quantities like the contact pressure. The scheme, which provides a more accurate representation than the raw data, is based on an averaging procedure that is inspired by mortar formulations. The properties of the enrichment strategies and the corresponding post-processing scheme are illustrated by several numerical examples considering sliding and peeling contact in the presence of large deformations.
Measurement of Strain Distributions in Mouse Femora with 3D-Digital Speckle Pattern Interferometry
Yang, Lianxiang; Zhang, Ping; Liu, Sheng; Samala, Praveen R; Su, Min; Yokota, Hiroki
2007-01-01
Bone is a mechanosensitive tissue that adapts its mass, architecture and mechanical properties to external loading. Appropriate mechanical loads offer an effective means to stimulate bone remodeling and prevent bone loss. A role of in situ strain in bone is considered essential in enhancement of bone formation, and establishing a quantitative relationship between 3D strain distributions and a rate of local bone formation is important. Digital speckle pattern interferometry (DSPI) can achieve whole-field, non-contacting measurements of microscopic deformation for high-resolution determination of 3D strain distributions. However, the current system does not allow us to derive accurate strain distributions because of complex surface contours inherent to biological samples. Through development of a custom-made piezoelectric loading device as well as a new DSPI-based force calibration system, we built an advanced DSPI system and integrated local contour information to deformation data. Using a mouse femur in response to a knee loading modality as a model system, we determined 3D strain distributions and discussed effectiveness and limitations of the described system. PMID:18670581
Interaction of acoustic levitation field with liquid reflecting surface
NASA Astrophysics Data System (ADS)
Hong, Z. Y.; Xie, W. J.; Wei, B.
2010-01-01
Single-axis acoustic levitation of substances, such as foam, water, polymer, and aluminum, is achieved by employing various liquids as the sound reflectors. The interaction of acoustic levitation field with liquid reflecting surface is investigated theoretically by considering the deformation of the liquid surface under acoustic radiation pressure. Numerical calculations indicate that the deformation degree of the reflecting surface shows a direct proportion to the acoustic radiation power. Appropriate deformation is beneficial whereas excessive deformation is unfavorable to enhance the levitation capability. Typically, the levitation capability with water reflector is smaller than that with the concave rigid reflector but slightly larger than that with the planar rigid reflector at low emitter vibration intensity. Liquid reflectors with larger surface tension and higher density behave more closely to the planar rigid reflector.
Overview of Recent Coastal Tectonic Deformation in the Mexican Subduction Zone
NASA Astrophysics Data System (ADS)
Ramírez-Herrera, M. Teresa; Kostoglodov, Vladimir; Urrutia-Fucugauchi, Jaime
2011-08-01
Holocene and Pleistocene tectonic deformation of the coast in the Mexico subudction margin is recorded by geomorphic and stratigraphic markers. We document the spatial and temporal variability of active deformation on the coastal Mexican subduction margin. Pleistocene uplift rates are estimated using wave-cut platforms at ca. 0.7-0.9 m/ka on the Jalisco block coast, Rivera-North America tectonic plate boundary. We examine reported measurements from marine notches and shoreline angle elevations in conjunction with their radiocarbon ages that indicate surface uplift rates increasing during the Holocene up to ca. 3 ± 0.5 m/ka. In contrast, steady rates of uplift (ca. 0.5-1.0 m/ka) in the Pleistocene and Holocene characterize the Michoacan coastal sector, south of El Gordo graben and north of the Orozco Fracture Zone (OFZ), incorporated within the Cocos-North America plate boundary. Significantly higher rates of surface uplift (ca. 7 m/ka) across the OFZ subduction may reflect the roughness of subducting plate. Absence of preserved marine terraces on the coastal sector across El Gordo graben likely reflects slow uplift or coastal subsidence. Stratigraphic markers and their radiocarbon ages show late Holocene (ca. last 6 ka bp) coastal subsidence on the Guerrero gap sector in agreement with a landscape barren of marine terraces and with archeological evidence of coastal subsidence. Temporal and spatial variability in recent deformation rates on the Mexican Pacific coast may be due to differences in tectonic regimes and to localized processes related to subduction, such as crustal faults, subduction erosion and underplating of subducted materials under the southern Mexico continental margin.
NASA Astrophysics Data System (ADS)
Materna, K.; Feng, L.; Lindsey, E. O.; Hill, E.; Burgmann, R.
2017-12-01
The elastic response of the lithosphere to surface mass redistributions produces significant deformation that can be observed in geodetic time series. This deformation is especially pronounced in Southeast Asia, where the annual monsoon produces large-amplitude hydrological loads. The MIBB network of 20 continuous GPS stations in Myanmar, India, Bangladesh, and Bhutan, operational since 2012, provides an opportunity to study the earth's response to these loads. In this study, we use GRACE gravity products as an estimate of surface water distribution, and input these estimates into an elastic loading calculation. We compare the predicted deformation with that observed with GPS. We find that elastic loading from the GRACE gravity field is able to explain the phase and the peak-to-peak amplitude (typically 2-3 cm) of the vertical GPS oscillations in northeast India and central Myanmar. GRACE-based corrections reduce the RMS scatter of the GPS data by 30%-45% in these regions. However, this approach does not capture all of the variation in central Bangladesh and southern Myanmar. Local hydrological effects, non-tidal ocean loads, poroelastic deformation, or differences in elastic properties may explain discrepancies between the GPS and GRACE signals in these places. The results of our calculations have practical implications for campaign GPS measurements in Myanmar, which make up the majority of geodetic measurements at this point. We may be able to reduce errors in campaign measurements and increase the accuracy of velocity estimates by correcting for hydrologic signals with GRACE data. The results also have potential implications for crustal rheology in Southeast Asia.
NASA Astrophysics Data System (ADS)
Sandstrom, R. M.; O'Leary, M.; Barham, M.; Cai, Y.; Jacome, A. P.; Raymo, M. E.
2015-12-01
Correcting fossil shorelines for vertical displacement subsequent to deposition is a vital consideration in estimating sea level and ice volume during past warm periods. Field observations of paleo-sea level indicators must be adjusted for local tectonic deformation, subsequent sediment loading, dynamic topography (DT), and glacial isostatic adjustment (GIA). Dynamic topography is often the most difficult of these corrections to determine, especially on million year timescales, but is essential when providing constraints on sea level and ice volume changes. GIA effects from high latitude ice sheets minimally impact northwestern Australia, making this region well suited for observing surface displacement due to mantle and tectonic processes. This study presents centimeter accuracy paleo-shoreline data from four distinct marine terraces in the Cape Range National Park, Australia, which document vertical displacement history along 100 kilometers of coastline. The mapped region has an anticlinal structure in the center that has been slowly uplifting the three older reef complexes over the Neogene, constraining the timing of deformation. These neotectonics are probably caused by reactivation of ancient fault zones normal to the principal horizontal compressive stress, resulting in the warping of overlaying units. The elevation data also suggests minimal vertical displacement since the last interglacial highstand. Well-preserved fossil coral were collected from each terrace and will be geochemically dated using Sr isotope and U-series dating methods. This dataset provides a better understanding of DT and neotectonic deformation in this region (useful for improving mantle viscosity models), and offers a means for improving past sea level reconstructions in northwestern Australia.
NASA Astrophysics Data System (ADS)
Rao, Xiong; Tang, Yunwei
2014-11-01
Land surface deformation evidently exists in a newly-built high-speed railway in the southeast of China. In this study, we utilize the Small BAseline Subsets (SBAS)-Differential Synthetic Aperture Radar Interferometry (DInSAR) technique to detect land surface deformation along the railway. In this work, 40 Cosmo-SkyMed satellite images were selected to analyze the spatial distribution and velocity of the deformation in study area. 88 pairs of image with high coherence were firstly chosen with an appropriate threshold. These images were used to deduce the deformation velocity map and the variation in time series. This result can provide information for orbit correctness and ground control point (GCP) selection in the following steps. Then, more pairs of image were selected to tighten the constraint in time dimension, and to improve the final result by decreasing the phase unwrapping error. 171 combinations of SAR pairs were ultimately selected. Reliable GCPs were re-selected according to the previously derived deformation velocity map. Orbital residuals error was rectified using these GCPs, and nonlinear deformation components were estimated. Therefore, a more accurate surface deformation velocity map was produced. Precise geodetic leveling work was implemented in the meantime. We compared the leveling result with the geocoding SBAS product using the nearest neighbour method. The mean error and standard deviation of the error were respectively 0.82 mm and 4.17 mm. This result demonstrates the effectiveness of DInSAR technique for monitoring land surface deformation, which can serve as a reliable decision for supporting highspeed railway project design, construction, operation and maintenance.
Gauge Field Localization on Deformed Branes
NASA Astrophysics Data System (ADS)
Tofighi, A.; Moazzen, M.; Farokhtabar, A.
2016-02-01
In this paper, we utilise the Chumbes-Holf da Silva-Hott (CHH) mechanism to investigate the issue of gauge field localization on a deformed brane constructed with one scalar field, which can be coupled to gravity minimally or non-minimally. The study of deformed defects is important because they contain internal structures which may have implications in braneworld models. With the CHH mechanism, we find that the massless zero mode of gauge field, in the case of minimal or non-minimal coupling is localized on the brane. Moreover, in the case of non-minimal coupling, it is shown that, when the non-minimal coupling constant is larger than its critical value, then the zero mode is localized on each sub brane.
Flutter of wings involving a locally distributed flexible control surface
NASA Astrophysics Data System (ADS)
Mozaffari-Jovin, S.; Firouz-Abadi, R. D.; Roshanian, J.
2015-11-01
This paper undertakes to facilitate appraisal of aeroelastic interaction of a locally distributed, flap-type control surface with aircraft wings operating in a subsonic potential flow field. The extended Hamilton's principle serves as a framework to ascertain the Euler-Lagrange equations for coupled bending-torsional-flap vibration. An analytical solution to this boundary-value problem is then accomplished by assumed modes and the extended Galerkin's method. The developed aeroelastic model considers both the inherent flexibility of the control surface displaced on the wing and the inertial coupling between these two flexible bodies. The structural deformations also obey the Euler-Bernoulli beam theory, along with the Kelvin-Voigt viscoelastic constitutive law. Meanwhile, the unsteady thin-airfoil and strip theories are the tools of producing the three-dimensional airloads. The origin of aerodynamic instability undergoes analysis in light of the oscillatory loads as well as the loads owing to arbitrary motions. After successful verification of the model, a systematic flutter survey was conducted on the theoretical effects of various control surface parameters. The results obtained demonstrate that the flapping modes and parameters of the control surface can significantly impact the flutter characteristics of the wings, which leads to a series of pertinent conclusions.
Boostream: a dynamic fluid flow process to assemble nanoparticles at liquid interface
NASA Astrophysics Data System (ADS)
Delléa, Olivier; Lebaigue, Olivier
2017-12-01
CEA-LITEN develops an original process called Boostream® to manipulate, assemble and connect micro- or nanoparticles of various materials, sizes, shapes and functions to obtain monolayer colloidal crystals (MCCs). This process uses the upper surface of a liquid film flowing down a ramp to assemble particles in a manner that is close to the horizontal situation of a Langmuir-Blodgett film construction. In presence of particles at the liquid interface, the film down-flow configuration exhibits an unusual hydraulic jump which results from the fluid flow accommodation to the particle monolayer. In order to master our process, the fluid flow has been modeled and experimentally characterized by optical means, such as with the moiré technique that consists in observing the reflection of a succession of periodic black-and-red fringes on the liquid surface mirror. The fringe images are deformed when reflected by the curved liquid surface associated with the hydraulic jump, the fringe deformation being proportional to the local slope of the surface. This original experimental setup allowed us to get the surface profile in the jump region and to measure it along with the main process parameters (liquid flow rate, slope angle, temperature sensitive fluid properties such as dynamic viscosity or surface tension, particle sizes). This work presents the experimental setup and its simple model, the different experimental characterization techniques used and will focus on the way the hydraulic jump relies on the process parameters.
Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge.
Jadamec, Margarete A; Billen, Magali I
2010-05-20
The direction of tectonic plate motion at the Earth's surface and the flow field of the mantle inferred from seismic anisotropy are well correlated globally, suggesting large-scale coupling between the mantle and the surface plates. The fit is typically poor at subduction zones, however, where regional observations of seismic anisotropy suggest that the direction of mantle flow is not parallel to and may be several times faster than plate motions. Here we present three-dimensional numerical models of buoyancy-driven deformation with realistic slab geometry for the Alaska subduction-transform system and use them to determine the origin of this regional decoupling of flow. We find that near a subduction zone edge, mantle flow velocities can have magnitudes of more than ten times the surface plate motions, whereas surface plate velocities are consistent with plate motions and the complex mantle flow field is consistent with observations from seismic anisotropy. The seismic anisotropy observations constrain the shape of the eastern slab edge and require non-Newtonian mantle rheology. The incorporation of the non-Newtonian viscosity results in mantle viscosities of 10(17) to 10(18) Pa s in regions of high strain rate (10(-12) s(-1)), and this low viscosity enables the mantle flow field to decouple partially from the motion of the surface plates. These results imply local rapid transport of geochemical signatures through subduction zones and that the internal deformation of slabs decreases the slab-pull force available to drive subducting plates.
Structural defects in natural plastically deformed diamonds: Evidence from EPR spectroscopy
NASA Astrophysics Data System (ADS)
Mineeva, R. M.; Titkov, S. V.; Speransky, A. V.
2009-06-01
Structural defects formed as a result of plastic deformation in natural diamond crystals have been studied by EPR spectroscopy. The spectra of brown, pink-brown, black-brown, pink-purple, and gray plastically deformed diamonds of type Ia from deposits in Yakutia and the Urals were recorded. The results of EPR spectroscopy allowed us to identify various deformation centers in the structure of natural diamonds and to show that nitrogen centers were transformed under epigenetic mechanical loading. Abundant A centers, consisting of two isomorphic nitrogen atoms located in neighboring structural sites, were destroyed as a result of this process to form a series of N1, N4, W7, M2, and M3 nitrogen centers. Such centers are characterized by an anisotropic spatial distribution and a positive charge, related to the mechanism of their formation. In addition, N2 centers (probably, deformation-produced dislocations decorated by nitrogen) were formed in all plastically deformed diamonds and W10 and W35 centers (the models have not been finally ascertained) were formed in some of them. It has been established that diamonds with various types of deformation-induced color contain characteristic associations of these deformation centers. The diversity of associations of deformation centers indicates appreciable variations in conditions of disintegration of deep-seated rocks, transfer of diamonds to the Earth’s surface, and formation of kimberlitic deposits. Depending on the conditions of mechanical loading, the diamond crystals were plastically deformed by either dislocation gliding or mechanical twinning. Characteristic features of plastic deformation by dislocation gliding are the substantial prevalence of the N2 centers over other deformation centers and the occurrence of the high-spin W10 and W35 centers. The attributes of less frequent plastic deformation by mechanical twinning are unusual localization of the M2 centers and, in some cases, the N1 centers in microtwinned lamellae. Numerous data on models of deformation centers in natural diamonds, including the M2 and M3 centers, which were observed in the studied collection for the first time, are discussed.
NASA Astrophysics Data System (ADS)
Milliner, C. W. D.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.
2016-10-01
Subpixel correlation of preevent and postevent air photos reveal the complete near-field, horizontal surface deformation patterns of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine ruptures. Total surface displacement values for both earthquakes are systematically larger than "on-fault" displacements from geologic field surveys, indicating significant distributed, inelastic deformation occurred along these ruptures. Comparison of these two data sets shows that 46 ± 10% and 39 ± 22% of the total surface deformation were distributed over fault zones averaging 154 m and 121 m in width for the Landers and Hector Mine events, respectively. Spatial variations of distributed deformation along both ruptures show correlations with the type of near-surface lithology and degree of fault complexity; larger amounts of distributed shear occur where the rupture propagated through loose unconsolidated sediments and areas of more complex fault structure. These results have basic implications for geologic-geodetic rate comparisons and probabilistic seismic hazard analysis.
NASA Astrophysics Data System (ADS)
Carreon-Freyre, D.; Cerca, M.; Barrientos, B.; Gutierrez, R.; Blancas, D.
2012-12-01
Major cities of Central Mexico with lowering of land elevation problems are located in inter-volcanic and fault bounded basins within the central Trans-Mexican Volcanic Belt (TMVB). The most representative and studied case of ground deformation is Mexico City, where the Iztapalapa Municipality presents the highest population density. This area is located over the geological contact between the "Sierra de Santa Catarina" volcanic range and a lacustrine plain. Filling of lacustrine basins includes silty and clayey sediments as well as pyroclastic deposits (coarse and fine grained) and volcanic rocks layers. We used Ground Penetrating Radar (GPR) and MASW prospection to evaluate contrasts in the physical properties of fine grained soils and identify geometry of the deformational features and implemented a mechanical system for in situ monitoring in fractured sites. Deformational features in this basin reflect an interplay between the geological history (depositional conditions), load history, seismic activity, and faulting. Plastic mechanical behaviour predominates in these clayey sediments and differential deformation locally triggers brittle fracturing and/or subsidence of the surface. In this work we present the results of monitoring and characterization of ground deformation and fracturing in different sequences, our results show a dynamic interplay between the mechanisms of ground fracturing and the stress history of sedimentary sequences. Relating the mechanical behaviour of the studied sequences with variations of physical and geological properties should be taken into account to estimate land level lowering and risk of fracturing for urban development planning.
Earth Surface Deformation in the North China Plain Detected by Joint Analysis of GRACE and GPS Data
Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C.K.; Li, Zhao
2014-01-01
Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1–4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1–2 mm/year and a correlation of 85.0%–98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements. PMID:25340454
Earth surface deformation in the North China Plain detected by joint analysis of GRACE and GPS data.
Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C K; Li, Zhao
2014-10-22
Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1-4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1-2 mm/year and a correlation of 85.0%-98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements.
NASA Astrophysics Data System (ADS)
Crosby, B. T.; Rodgers, D. W.; Lauer, I. H.
2017-12-01
The 1983 Borah Peak, Idaho, earthquake (M 7.0) produced both local ground surface rupture and notable far-field geodetic elevation changes that inspired a suite of investigations into coseismic flexural response. Shortly after the earthquake, Stein and Barrientos revisited a 50 km leveling line that runs roughly perpendicular to and spanning the Lost River normal fault. They found 1 meter of surface subsidence adjacent to the fault on the hanging wall that decays to no detectable change over 25 km distance from the fault. On the footwall, 20 cm of surface uplift was observed adjacent to the fault, decaying to zero change over 17 km. Though the changes in elevation are calculated as a difference between the first leveling in 1933 and the post-event leveling in 1984, they treat this change as the coseismic period, assuming little change between 1933 and 1983. A subsequent survey in 1985 revealed no significant change, suggesting that postseismic relaxation was complete. We evaluate the assumption that no detectable interseismic slip occurred between 1933 and the Borah Peak event by resurveying the line and differencing elevations between 2017 and 1985. If interseismic slip is insignificant, then there should be no detectable change over these 32 years. Using RTK GNSS with a 3D error ellipse of 0.9 cm, we resurveyed all leveling monuments in June, 2017. Significant deformation was observed. Between 1985 and 2017, 28 cm of displacement occurred across the fault. The hanging wall, adjacent to the fault, subsided 8 cm while the footwall rose 20 cm. Subsidence on the hanging wall increases slightly with distance away from the fault, reaching a maximum of 10 cm at a distance of 4 km from the fault and decaying to zero by 17 km. On the footwall surface uplift increases from 20 cm at the fault to 42 cm by 6.5 km before decaying. Clearly interseismic deformation has occurred over the last 32 years, including both discrete slip at the fault and distributed subsidence or surface uplift with distance away from the fault. A difference between the 2017 and 1933 data reveal that the opposing patterns of deformation pre and post event at on the footwall largely balance each other out, creating block-like surface uplift. These vertical changes are complemented by observations from continuous geodetic GNSS that corroborate the interseismic extension.
The notion of a plastic material spin in atomistic simulations
NASA Astrophysics Data System (ADS)
Dickel, D.; Tenev, T. G.; Gullett, P.; Horstemeyer, M. F.
2016-12-01
A kinematic algorithm is proposed to extend existing constructions of strain tensors from atomistic data to decouple elastic and plastic contributions to the strain. Elastic and plastic deformation and ultimately the plastic spin, useful quantities in continuum mechanics and finite element simulations, are computed from the full, discrete deformation gradient and an algorithm for the local elastic deformation gradient. This elastic deformation gradient algorithm identifies a crystal type using bond angle analysis (Ackland and Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship between bond angles to determine the local deformation from an ideal crystal lattice. Full definitions of plastic deformation follow directly using a multiplicative decomposition of the deformation gradient. The results of molecular dynamics simulations of copper in simple shear and torsion are presented to demonstrate the ability of these new discrete measures to describe plastic material spin in atomistic simulation and to compare them with continuum theory.
NASA Astrophysics Data System (ADS)
Antoniou, Antonia Maki
2006-12-01
Bulk metallic glasses (BMGs), or amorphous metal alloys, have a unique combination of properties such as high strength, large elastic strain limit (up to 2%), corrosion resistance and formability. These unique properties make them candidates for precision mechanical elements, hinge supports, contact surfaces as well as miniaturized systems (MEMS). However, their limited ductility hinders further realizations of their industrial potential. Under uniaxial tension tests, metallic glass fails in a brittle manner with unstable propagation of a single shear band. There is a need to understand the conditions for shear band nucleation and propagation in order to achieve a superior material system with adequate toughness to ensure in-service reliability. This dissertation focuses on understanding the nucleation and propagation mechanisms of shear bands in BMGs under constrained deformation. The nature of the work is primarily experimental with integrated finite element simulations to elucidate the observed trends. Wedge indentation with a circular profile of different radii is used to provide a stable loading path for in situ monitoring of shear band nucleation, propagation in Vitreloy-1. Detailed analyses of the in-plane finite deformation fields are carried out using digital image correlation. The incremental surface analysis showed that multiple shear bands are developed beneath the indenter. The observed pattern closely follow the traces of slip line field for a pressure sensitive material. The first shear bands initiate in the bulk beneath the indenter when a critical level of mean pressure is achieved. Two distinct shear band patterns are developed, that conform to either the alpha or beta lines for each sector. The deformation zones developed under indenters with different radii were found to be self-similar. The evolution of shear bands beneath the indenter is also characterized into two different categories. A set of primary bands is identified to evolve with the process zone front and presents an included angle of 78°-80°. The other set of bands evolves at a later stage of loading within the originally formed ones but with consistently higher included angle of around 87°. The band spacing is found to scale with the local average of maximum in-plane shear strain such that the local strain energy is minimized. The measurements shed light on the critical shear strain needed to initiate these bands. The richness of the shear band network establishes a basis for calibration of constitutive models. Experimental in-plane deformation maps show the amount of total strain that builds prior to the initiation of localized deformation. Furthermore, the maps help examine the change imposed on the surrounding strain field by the appearance of shear bands. It was verified that shear bands relax the asymptotic field by changing the order of singularity. Finally, it was seen that the shear bands are not the only accumulation of permanent deformation but that the surrounding material can accrue relatively high level of inelastic deformation (up to 5%). To rationalize these findings, the Johnson cavity expansion model is adapted and modified to account for pressure-dependent yielding conditions. The elasto-plastic boundary from such analysis is used to scale the experimental measurements for all indenter radii, loading level and spatial position beneath the indenter. The continuum finite element simulations have shown that the macroscopic measurements of force-depth indentation curves would predict a lower value of the pressure sensitivity than those observed from the detailed microscopic measurements. Moreover, a transition from pressure insensitive response to progressive pressure sensitivity is observed by decreasing the indenter radius, or in effect by increasing the level of hydrostatic pressure under the indenter. This leads to the belief that the BMG's pressure sensitivity parameter is in itself dependent on the level of the applied pressure. These observations give detailed insight on the post-yield behavior of BMGs, which cannot be obtained from macroscopic uniaxial tension or compression tests. Despite the richness of the shear band details, the current framework has provided several notable results. First, the macroscopic trends, force-indentation depth response and the extent of deformation zones are well captured for this constrained deformation mode by continuum models that address only the onset of yielding. Second, the apparent pressure dependence of the shear band angle on the macroscopic measurements is minimal. Third, the initiation point, and not the shear band development is of critical importance. These findings would formulate the basis for simulation of shear band nucleation, propagation and interactions. They would also elucidate the role of secondary particle inclusion for toughening. Another form of inhomogeneous deformation in the form of shear bands is also studied in constrained layer of ductile metal subjected to shearing deformation. The material system utilized was comprised of a ductile layer of tin based solder, encapsulated within relatively hard copper shoulders. The experimental configuration provides pure shear state within the constrained solder layer. Different Pb/Sn compositions are tested with grain size approaching the film thickness. The in-plane strain distribution within the joint thickness is measured by a microscopic digital image correlation system. The toughness evolution within such highly gradient deformation field is monitored qualitatively through a 2D surface scan with a nanoindenter. The measurements showed a highly inhomogeneous deformation field within the film with discreet shear bands of concentrated strain. The localized shear bands showed long-range correlations of the order of 2-3 grain diameter. A size-dependent macroscopic response on the layer thickness is observed. However, the corresponding film thickness is approximately 100-1000 times larger than those predicted by non-local continuum theories and discreet dislocation.
Two-dimensional and three-dimensional evaluation of the deformation relief
NASA Astrophysics Data System (ADS)
Alfyorova, E. A.; Lychagin, D. V.
2017-12-01
This work presents the experimental results concerning the research of the morphology of the face-centered cubic single crystal surface after compression deformation. Our aim is to identify the method of forming a quasiperiodic profile of single crystals with different crystal geometrical orientation and quantitative description of deformation structures. A set of modern methods such as optical and confocal microscopy is applied to determine the morphology of surface parameters. The results show that octahedral slip is an integral part of the formation of the quasiperiodic profile surface starting with initial strain. The similarity of the formation process of the surface profile at different scale levels is given. The size of consistent deformation regions is found. This is 45 µm for slip lines ([001]-single crystal) and 30 µm for mesobands ([110]-single crystal). The possibility of using two- and three-dimensional roughness parameters to describe the deformation structures was shown.
Examples of deformation-dependent flow simulations of conjunctive use with MF-OWHM
Hanson, Randall T.; Traum, Jonathan A.; Boyce, Scott E.; Schmid, Wolfgang; Hughes, Joseph D.
2015-01-01
The dependency of surface- and groundwater flows and aquifer hydraulic properties on deformation induced by changes in aquifer head is not accounted for in the standard version of MODFLOW. A new USGS integrated hydrologic model, MODFLOW-OWHM, incorporates this dependency by linking subsidence and mesh deformation with changes in aquifer transmissivity and storage coefficient, and with flows that also depend on aquifer characteristics and land-surface geometry. This new deformation-dependent approach is being used for the further development of the integrated Central Valley hydrologic model (CVHM) in California. Preliminary results from this application and from hypothetical test cases of similar systems show that changes in canal flows, stream seepage, and evapotranspiration from groundwater (ETgw) are sensitive to deformation. Deformation feedback has been shown to also have an indirect effect on conjunctive surface- and groundwater use components with increased stream seepage and streamflows influencing surface-water deliveries and return flows. In the Central Valley model, land subsidence may significantly degrade the ability of the major canals to deliver surface water from the Delta to the San Joaquin and Tulare basins. Subsidence can also affect irrigation demand and ETgw, which, along with altered surface-water supplies, causes a feedback response resulting in changed estimates of groundwater pumping for irrigation. This modeling feature also may improve the impact assessment of dewatering-induced land subsidence/uplift (following irrigation pumping or coal-seam gas extraction) on surface receptors, inter-basin transfers, and surface infrastructure integrity.
DeLorenzo, Christine; Papademetris, Xenophon; Staib, Lawrence H.; Vives, Kenneth P.; Spencer, Dennis D.; Duncan, James S.
2010-01-01
During neurosurgery, nonrigid brain deformation prevents preoperatively-acquired images from accurately depicting the intraoperative brain. Stereo vision systems can be used to track intraoperative cortical surface deformation and update preoperative brain images in conjunction with a biomechanical model. However, these stereo systems are often plagued with calibration error, which can corrupt the deformation estimation. In order to decouple the effects of camera calibration from the surface deformation estimation, a framework that can solve for disparate and often competing variables is needed. Game theory, which was developed to handle decision making in this type of competitive environment, has been applied to various fields from economics to biology. In this paper, game theory is applied to cortical surface tracking during neocortical epilepsy surgery and used to infer information about the physical processes of brain surface deformation and image acquisition. The method is successfully applied to eight in vivo cases, resulting in an 81% decrease in mean surface displacement error. This includes a case in which some of the initial camera calibration parameters had errors of 70%. Additionally, the advantages of using a game theoretic approach in neocortical epilepsy surgery are clearly demonstrated in its robustness to initial conditions. PMID:20129844
Prediction of fracture profile using digital image correlation
NASA Astrophysics Data System (ADS)
Chaitanya, G. M. S. K.; Sasi, B.; Kumar, Anish; Babu Rao, C.; Purnachandra Rao, B.; Jayakumar, T.
2015-04-01
Digital Image Correlation (DIC) based full field strain mapping methodology is used for mapping strain on an aluminum sample subjected to tensile deformation. The local strains on the surface of the specimen are calculated at different strain intervals. Early localization of strain is observed at a total strain of 0.050ɛ; itself, whereas a visually apparent localization of strain is observed at a total strain of 0.088ɛ;. Orientation of the line of fracture (12.0°) is very close to the orientation of locus of strain maxima (11.6°) computed from the strain mapping at 0.063ɛ itself. These results show the efficacy of the DIC based method to predict the location as well as the profile of the fracture, at an early stage.
NASA Astrophysics Data System (ADS)
Guo, Kai; Xie, Yongjie; Ye, Hu; Zhang, Song; Li, Yunfei
2018-04-01
Due to the uncertainty of stratospheric airship's shape and the security problem caused by the uncertainty, surface reconstruction and surface deformation monitoring of airship was conducted based on laser scanning technology and a √3-subdivision scheme based on Shepard interpolation was developed. Then, comparison was conducted between our subdivision scheme and the original √3-subdivision scheme. The result shows our subdivision scheme could reduce the shrinkage of surface and the number of narrow triangles. In addition, our subdivision scheme could keep the sharp features. So, surface reconstruction and surface deformation monitoring of airship could be conducted precisely by our subdivision scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petit, Clémence; Maire, Eric, E-mail: eric.maire@insa-lyon.fr; Meille, Sylvain
The work focuses on the structural and mechanical characterization of Co-Cr-Mo cellular samples with cubic pore structure made by Electron Beam Melting (EBM). X-ray tomography was used to characterize the architecture of the sample. High resolution images were also obtained thanks to local tomography in which the specimen is placed close to the X-ray source. These images enabled to observe some defects due to the fabrication process: small pores in the solid phase, partially melted particles attached to the surface. Then, in situ compression tests were performed in the tomograph. The images of the deformed sample show a progressive bucklingmore » of the vertical struts leading to final fracture. The deformation initiated where the defects were present in the strut i.e. in regions with reduced local thickness. The finite element modelling confirmed the high stress concentrations of these weak points leading to the fracture of the sample. - Highlights: • CoCrMo samples fabricated by Electron Beam Melting (EBM) process are considered. • X-ray Computed Tomography is used to observe the structure of the sample. • The mechanical properties are tested thanks to an in situ test in the tomograph. • A finite element model is developed to model the mechanical behaviour.« less
ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-07-20
Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.
NASA Astrophysics Data System (ADS)
De Guidi, Giorgio; Vecchio, Alessia; Brighenti, Fabio; Caputo, Riccardo; Carnemolla, Francesco; Di Pietro, Adriano; Lupo, Marco; Maggini, Massimiliano; Marchese, Salvatore; Messina, Danilo; Monaco, Carmelo; Naso, Salvatore
2017-11-01
On 24 August 2016 a strong earthquake (Mw = 6.0) affected central Italy and an intense seismic sequence started. Field observations, DInSAR (Differential INterferometry Synthetic-Aperture Radar) analyses and preliminary focal mechanisms, as well as the distribution of aftershocks, suggested the reactivation of the northern sector of the Laga fault, the southern part of which was already rebooted during the 2009 L'Aquila sequence, and of the southern segment of the Mt Vettore fault system (MVFS). Based on this preliminary information and following the stress-triggering concept (Stein, 1999; Steacy et al., 2005), we tentatively identified a potential fault zone that is very vulnerable to future seismic events just north of the earlier epicentral area. Accordingly, we planned a local geodetic network consisting of five new GNSS (Global Navigation Satellite System) stations located a few kilometres away from both sides of the MVFS. This network was devoted to working out, at least partially but in some detail, the possible northward propagation of the crustal network ruptures. The building of the stations and a first set of measurements were carried out during a first campaign (30 September and 2 October 2016). On 26 October 2016, immediately north of the epicentral area of the 24 August event, another earthquake (Mw = 5.9) occurred, followed 4 days later (30 October) by the main shock (Mw = 6.5) of the whole 2016 summer-autumn seismic sequence. Our local geodetic network was fully affected by the new events and therefore we performed a second campaign soon after (11-13 November 2016). In this brief note, we provide the results of our geodetic measurements that registered the co-seismic and immediately post-seismic deformation of the two major October shocks, documenting in some detail the surface deformation close to the fault trace. We also compare our results with the available surface deformation field of the broader area, obtained on the basis of the DInSAR technique, and show an overall good fit.
Myofibroblast distribution in Dupuytren's cords: correlation with digital contracture.
Verjee, Liaquat Suleman; Midwood, Kim; Davidson, Dominique; Essex, David; Sandison, Ann; Nanchahal, Jagdeep
2009-12-01
Dupuytren's tissue has typically been described as being composed of myofibroblast-rich palmar nodules and relatively acellular tendon-like cords. We aimed to determine myofibroblast distribution (alpha-smooth muscle actin [alpha-SMA] positive cells) within Dupuytren's tissue and to correlate histologically defined alpha-SMA-positive nodules with digital contracture and recurrent disease. One hundred and three digital Dupuytren's cords (72 fasciectomy, 31 dermofasciectomy) were stained with anti-alpha-SMA antibody. The presence of alpha-SMA-positive nodules, their surface area, and alpha-SMA-positive cells were quantified throughout excised Dupuytren's tissue. Clinical data on diathesis, flexion deformity, and previous surgeries were collected. Cords were nodular (66%) or non-nodular (34%). Nodular cords contained 1 (55%), 2 (33%), or 3 or more nodules (12%) composed of localized collections of cells. The mean total nodule surface area was 23 mm(2) (range, 1.3-105 mm(2)). Nodules contained the highest number of alpha-SMA-positive cells (mean 97%, 2374 cells/mm(2)) compared to peri-nodular areas (mean 32%, 763 cells/mm(2)), and more distant cord (mean 8%, 495 cells/mm(2)). Non-nodular cords contained 9% to 17% alpha-SMA-positive cells (mean 475-663 cells/mm(2)), with higher numbers distally. There was greater digital contracture in patients with non-nodular cords. Thirty-six of 38 proximal interphalangeal (PIP) joint-marked samples had a nodule that co-localized with the PIP joint. Nodule size did not correlate with flexion deformity or with primary or recurrent disease. We found that two thirds of digital cords were nodular. Nodules were hypercellular, the majority being alpha-SMA-positive cells. Nodules varied in size and co-localized with the PIP joint. Cord was relatively cellular throughout; a proportion of these cells were alpha-SMA-positive and cells aligned with collagen fibers. Non-nodular cords correlated with significantly greater digital flexion contracture. We propose that cells in nodular cords contract and deposit extracellular matrix components. The matrix is then remodeled in shortened configuration, and as fixed flexion deformity develops, stress shielding eventually leads to myofibroblast apoptosis, and cord becomes less cellular.
Do mesoscale faults in a young fold belt indicate regional or local stress?
NASA Astrophysics Data System (ADS)
Kokado, Akihiro; Yamaji, Atsushi; Sato, Katsushi
2017-04-01
The result of paleostress analyses of mesoscale faults is usually thought of as evidence of a regional stress. On the other hand, the recent advancement of the trishear modeling has enabled us to predict the deformation field around fault-propagation folds without the difficulty of assuming paleo mechanical properties of rocks and sediments. We combined the analysis of observed mesoscale faults and the trishear modeling to understand the significance of regional and local stresses for the formation of mesoscale faults. To this end, we conducted the 2D trishear inverse modeling with a curved thrust fault to predict the subsurface structure and strain field of an anticline, which has a more or less horizontal axis and shows a map-scale plane strain perpendicular to the axis, in the active fold belt of Niigata region, central Japan. The anticline is thought to have been formed by fault-propagation folding under WNW-ESE regional compression. Based on the attitudes of strata and the positions of key tephra beds in Lower Pleistocene soft sediments cropping out at the surface, we obtained (1) a fault-propagation fold with the fault tip at a depth of ca. 4 km as the optimal subsurface structure, and (2) the temporal variation of deformation field during the folding. We assumed that mesoscale faults were activated along the direction of maximum shear strain on the faults to test whether the fault-slip data collected at the surface were consistent with the deformation in some stage(s) of folding. The Wallace-Bott hypothesis was used to estimate the consistence of faults with the regional stress. As a result, the folding and the regional stress explained 27 and 33 of 45 observed faults, respectively, with the 11 faults being consistent with the both. Both the folding and regional one were inconsistent with the remaining 17 faults, which could be explained by transfer faulting and/or the gravitational spreading of the growing anticline. The lesson we learnt from this work was that we should pay attention not only to regional but also to local stresses to interpret the results of paleostress analysis in the shallow levels of young orogenic belts.
Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Zargarian, A; Schmauder, S
2017-06-01
Modulating deformation mechanism through manipulating morphological parameters of scaffold internal pore architecture provides potential to tailor the overall mechanical properties under physiological loadings. Whereas cells sense local strains, cell differentiation is also impressed by the elastic deformations. In this paper, structure-property relations were developed for Ti6-Al-4V scaffolds designed based on triply periodic minimal surfaces. 10mm cubic scaffolds composed of 5×5×5 unit cells formed of F-RD (bending dominated) and I-WP (stretching dominated) architectures were additively manufactured at different volume fractions and subjected to compressive tests. The first stages of deformation for stretching dominated structure, was accompanied by bilateral layer-by-layer failure of unit cells owing to the buckling of micro-struts, while for bending dominated structure, namely F-RD, global shearing bands appeared since the shearing failure of struts in the internal architecture. Promoted mechanical properties were found for stretching dominated structure since the global orientation of struts were parallel to loading direction while inclination of struts diminished specific properties for bending dominated structure. Moreover, elastic-plastic deformation was computationally studied by applying Johnson-Cook damage model to the voxel-based models in FE analysis. Scaling analysis was performed for mechanical properties with respect to the relative density thereby failure mechanism was correlated to the constants of power law describing mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abu-Farha, Fadi; Hu, Xiaohua; Sun, Xin; Ren, Yang; Hector, Louis G.; Thomas, Grant; Brown, Tyson W.
2018-05-01
Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.
Gait control in a soft robot by sensing interactions with the environment using self-deformation.
Umedachi, Takuya; Kano, Takeshi; Ishiguro, Akio; Trimmer, Barry A
2016-12-01
All animals use mechanosensors to help them move in complex and changing environments. With few exceptions, these sensors are embedded in soft tissues that deform in normal use such that sensory feedback results from the interaction of an animal with its environment. Useful information about the environment is expected to be embedded in the mechanical responses of the tissues during movements. To explore how such sensory information can be used to control movements, we have developed a soft-bodied crawling robot inspired by a highly tractable animal model, the tobacco hornworm Manduca sexta . This robot uses deformations of its body to detect changes in friction force on a substrate. This information is used to provide local sensory feedback for coupled oscillators that control the robot's locomotion. The validity of the control strategy is demonstrated with both simulation and a highly deformable three-dimensionally printed soft robot. The results show that very simple oscillators are able to generate propagating waves and crawling/inching locomotion through the interplay of deformation in different body parts in a fully decentralized manner. Additionally, we confirmed numerically and experimentally that the gait pattern can switch depending on the surface contact points. These results are expected to help in the design of adaptable, robust locomotion control systems for soft robots and also suggest testable hypotheses about how soft animals use sensory feedback.
NASA Astrophysics Data System (ADS)
Abu-Farha, Fadi; Hu, Xiaohua; Sun, Xin; Ren, Yang; Hector, Louis G.; Thomas, Grant; Brown, Tyson W.
2018-07-01
Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.
Choi, Jiyoung; Hong, Kyunghi
2015-05-01
With the advent of 3D technology in the design process, a tremendous amount of scanned data is available. However, it is difficult to trace the quantitative skin deformation of a designated location on the 3D body surface data during movement. Without identical landmarks or reflective markers, tracing the same reference points on the different body postures is not easy because of the complex shape change of the body. To find the least deformed location on the body, which is regarded as the optimal position of seams for the various lengths of functional compression pants, landmarks were directly marked on the skin of six subjects and scanned during knee joint flexion. Lines of non-extension (LoNE) and maximum stretch (LoMS) were searched for, both by tracing landmarks and newly drawn guidelines based on ratio division in various directions. Considering the waist as the anchoring position of the pants, holistic changes were quantified and visualized from the waistline in lengthwise and curvilinear deformation along the dermatomes of the lower body for various lengths of pants. Widthwise and unit area skin deformation data of the skin were also provided as guidelines for further use such as streamlined pants or design of other local wearing devices. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Gait control in a soft robot by sensing interactions with the environment using self-deformation
Ishiguro, Akio; Trimmer, Barry A.
2016-01-01
All animals use mechanosensors to help them move in complex and changing environments. With few exceptions, these sensors are embedded in soft tissues that deform in normal use such that sensory feedback results from the interaction of an animal with its environment. Useful information about the environment is expected to be embedded in the mechanical responses of the tissues during movements. To explore how such sensory information can be used to control movements, we have developed a soft-bodied crawling robot inspired by a highly tractable animal model, the tobacco hornworm Manduca sexta. This robot uses deformations of its body to detect changes in friction force on a substrate. This information is used to provide local sensory feedback for coupled oscillators that control the robot's locomotion. The validity of the control strategy is demonstrated with both simulation and a highly deformable three-dimensionally printed soft robot. The results show that very simple oscillators are able to generate propagating waves and crawling/inching locomotion through the interplay of deformation in different body parts in a fully decentralized manner. Additionally, we confirmed numerically and experimentally that the gait pattern can switch depending on the surface contact points. These results are expected to help in the design of adaptable, robust locomotion control systems for soft robots and also suggest testable hypotheses about how soft animals use sensory feedback. PMID:28083114
Thermal elastic deformations of the planet Mercury
NASA Technical Reports Server (NTRS)
Liu, H.
1971-01-01
The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is shown that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of 0.004 and a period of 176 days.
Thermal elastic deformations of the planet Mercury.
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1972-01-01
The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is found that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of .004 and a period of 176 days.
NASA Astrophysics Data System (ADS)
Molli, G.; Cortecci, G.; Vaselli, L.; Ottria, G.; Cortopassi, A.; Dinelli, E.; Mussi, M.; Barbieri, M.
2010-09-01
We studied the geometry, intensity of deformation and fluid-rock interaction of a high angle normal fault within Carrara marble in the Alpi Apuane NW Tuscany, Italy. The fault is comprised of a core bounded by two major, non-parallel slip surfaces. The fault core, marked by crush breccia and cataclasites, asymmetrically grades to the host protolith through a damage zone, which is well developed only in the footwall block. On the contrary, the transition from the fault core to the hangingwall protolith is sharply defined by the upper main slip surface. Faulting was associated with fluid-rock interaction, as evidenced by kinematically related veins observable in the damage zone and fluid channelling within the fault core, where an orange-brownish cataclasite matrix can be observed. A chemical and isotopic study of veins and different structural elements of the fault zone (protolith, damage zone and fault core), including a mathematical model, was performed to document type, role, and activity of fluid-rock interactions during deformation. The results of our studies suggested that deformation pattern was mainly controlled by processes associated with a linking-damage zone at a fault tip, development of a fault core, localization and channelling of fluids within the fault zone. Syn-kinematic microstructural modification of calcite microfabric possibly played a role in confining fluid percolation.
Spectromicroscopy measurements of surface morphology and band structure of exfoliated graphene
NASA Astrophysics Data System (ADS)
Knox, Kevin; Locatelli, Andrea; Cvetko, Dean; Mentes, Tevfik; Nino, Miguel; Wang, Shancai; Yilmaz, Mehmet; Kim, Philip; Osgood, Richard; Morgante, Alberto
2011-03-01
Monolayer-thick crystals, such as graphene, are an area of intense interest in condensed matter research. ~However, crystal deformations in these 2D systems are known to adversely affect conductivity and increase local chemical reactivity. Additionally, surface roughness in graphene complicates band-mapping and limits resolution in techniques such as angle resolved photoemission spectroscopy (ARPES), the theory of which was developed for atomically flat surfaces. Thus, an understanding of the surface morphology of graphene is essential to making high quality devices and important for interpreting ARPES results. In this talk, we will describe a non-invasive approach to examining the corrugation in exfoliated graphene using a combination of low energy electron microscopy (LEEM) and micro-spot low energy electron diffraction (LEED). We will also describe how such knowledge of surface roughness can be used in the analysis of ARPES data to improve resolution and extract useful information about the band-structure.
Rheology of the lithosphere: selected topics.
Kirby, S.H.; Kronenberg, A.K.
1987-01-01
Reviews recent results concerning the rheology of the lithosphere with special attention to the following topics: 1) the flexure of the oceanic lithosphere, 2) deformation of the continental lithosphere resulting from vertical surface loads and forces applied at plate margins, 3) the rheological stratification of the continents, 4) strain localization and shear zone development, and 5) strain-induced crystallographic preferred orientations and anisotropies in body-wave velocities. We conclude with a section citing the 1983-1986 rock mechanics literature by category.-Authors
Method for cleaning a solar cell surface opening made with a solar etch paste
Rohatgi, Ajeet; Meemongkolkiat, Vichai
2010-06-22
A thin silicon solar cell having a back dielectric passivation and rear contact with local back surface field is described. Specifically, the solar cell may be fabricated from a crystalline silicon wafer having a thickness from 50 to 500 micrometers. A barrier layer and a dielectric layer are applied at least to the back surface of the silicon wafer to protect the silicon wafer from deformation when the rear contact is formed. At least one opening is made to the dielectric layer. An aluminum contact that provides a back surface field is formed in the opening and on the dielectric layer. The aluminum contact may be applied by screen printing an aluminum paste having from one to 12 atomic percent silicon and then applying a heat treatment at 750 degrees Celsius.
Strain localization in usnaturated soils with large deformation
NASA Astrophysics Data System (ADS)
Song, X.; Borja, R. I.
2014-12-01
Strain localization is a ubiquitous feature of granular materials undergoing nonhomogeneous deformation. In unsaturated porous media, how the localized deformation band is formed depends crucially on the degree of saturation, since fluid in the pores of a solid imposes a volume constraint on the deformation of the solid. When fluid flow is involved, the inception of the localized deformation band also depends on the heterogeneity of a material, which is quantified in terms of the spatial variation of density, the degree of saturation, and matric suction. We present a mathematical framework for coupled solid-deformation/fluid-diffusion in unsaturated porous media that takes into account material and geometric nonlinearities [1, 2]. The framework relies on the continuum principle of thermodynamics to identify an effective, or constitutive, stress for the solid matrix, and a water retention law that highlights the interdependence of degree of saturation, suction, and porosity of the material. We discuss the role of heterogeneity, quantified either deterministically or stochastically, on the development of a persistent shear band. We derive bifurcation conditions [3] governing the initiation of such a shear band. This research is inspired by current testing techniques that allow nondestructive and non-invasive measurement of density and the degree of saturation through high-resolution imaging [4]. The numerical simulations under plane strain condition demonstrate that the bifurcation not only manifests itself on the loading response curve and but also in the space of the degree of saturation, specific volume and suction stress. References[1] Song X, Borja RI, Mathematical framework for unsaturated flow in the finite deformation range. Int. J. Numer. Meth. Engng 2014; 97: 658-686. [2] Song X, Borja RI, Finite deformation and fluid flow in unsaturated soils with random heterogeneity. Vadose Zone Journal 2014; doi:10.2136/vzj2013.07.0131. [3] Song X, Borja RI, Instability and bifurcation in partially saturated porous media. 2014. to be submitted. [4] Song X, Strain localization in unsaturated porous media. 2014. Ph.D. Dissertation, Stanford University, California.
Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna; Lipinska, Agnieszka; Cueff, Anne; Bouyer, Guillaume; Egée, Stéphane; Bennekou, Poul; Lew, Virgilio L.; Thomas, Serge L. Y.
2010-01-01
Background The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. Methodology/Principal Findings The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K+ and Cl− currents were strictly dependent on the presence of Ca2+. The Ca2+-dependent currents were transient, with typical decay half-times of about 5–10 min, suggesting the spontaneous inactivation of a stretch-activated Ca2+ permeability (PCa). These results indicate that local membrane deformations can transiently activate a Ca2+ permeability pathway leading to increased [Ca2+]i, secondary activation of Ca2+-sensitive K+ channels (Gardos channel, IK1, KCa3.1), and hyperpolarization-induced anion currents. Conclusions/Significance The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca2+-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca2+ content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia. PMID:20195477
Dyrda, Agnieszka; Cytlak, Urszula; Ciuraszkiewicz, Anna; Lipinska, Agnieszka; Cueff, Anne; Bouyer, Guillaume; Egée, Stéphane; Bennekou, Poul; Lew, Virgilio L; Thomas, Serge L Y
2010-02-26
The mechanical, rheological and shape properties of red blood cells are determined by their cortical cytoskeleton, evolutionarily optimized to provide the dynamic deformability required for flow through capillaries much narrower than the cell's diameter. The shear stress induced by such flow, as well as the local membrane deformations generated in certain pathological conditions, such as sickle cell anemia, have been shown to increase membrane permeability, based largely on experimentation with red cell suspensions. We attempted here the first measurements of membrane currents activated by a local and controlled membrane deformation in single red blood cells under on-cell patch clamp to define the nature of the stretch-activated currents. The cell-attached configuration of the patch-clamp technique was used to allow recordings of single channel activity in intact red blood cells. Gigaohm seal formation was obtained with and without membrane deformation. Deformation was induced by the application of a negative pressure pulse of 10 mmHg for less than 5 s. Currents were only detected when the membrane was seen domed under negative pressure within the patch-pipette. K(+) and Cl(-) currents were strictly dependent on the presence of Ca(2+). The Ca(2+)-dependent currents were transient, with typical decay half-times of about 5-10 min, suggesting the spontaneous inactivation of a stretch-activated Ca(2+) permeability (PCa). These results indicate that local membrane deformations can transiently activate a Ca(2+) permeability pathway leading to increased [Ca(2+)](i), secondary activation of Ca(2+)-sensitive K(+) channels (Gardos channel, IK1, KCa3.1), and hyperpolarization-induced anion currents. The stretch-activated transient PCa observed here under local membrane deformation is a likely contributor to the Ca(2+)-mediated effects observed during the normal aging process of red blood cells, and to the increased Ca(2+) content of red cells in certain hereditary anemias such as thalassemia and sickle cell anemia.
NASA Technical Reports Server (NTRS)
Wang, P. K. C.; Hadaegh, F. Y.
1996-01-01
In modeling micromachined deformable mirrors with electrostatic actuators whose gap spacings are of the same order of magnitude as those of the surface deformations, it is necessary to use nonlinear models for the actuators. In this paper, we consider micromachined deformable mirrors modeled by a membrane or plate equation with nonlinear electrostatic actuator characteristics. Numerical methods for computing the mirror deformation due to given actuator voltages and the actuator voltages required for producing the desired deformations at the actuator locations are presented. The application of the proposed methods to circular deformable mirrors whose surfaces are modeled by elastic membranes is discussed in detail. Numerical results are obtained for a typical circular micromachined mirror with electrostatic actuators.
Land subsidence near oil and gas fields, Houston, Texas.
Holzer, T.L.; Bluntzer, R.L.
1984-01-01
Subsidence profiles across 29 oil and gas fields in the 12 200 km2 Houston, Texas, regional subsidence area, which is caused by the decline of ground-water level, suggest that the contribution of petroleum withdrawal to local land subsidence is small. In addition to land subsidence, faults with an aggregate length of more than 240 km have offset the land surface in historical time. Natural geologic deformation, ground-water pumping, and petroleum withdrawal have all been considered as potential causes of the historical offset across these faults. The minor amount of localized land subsidence associated with oil and gas fields, suggests that petroleum withdrawal is not a major cause of the historical faulting. -from Authors
Measurement of rock mass deformation with grouted coaxial antenna cables
NASA Astrophysics Data System (ADS)
Dowding, C. H.; Su, M. B.; O'Connor, K.
1989-01-01
Techniques presented herein show how reflected voltage pulses from coaxial antenna cable grouted in rock masses can be employed to quantify the type and magnitude of rock mass deformation. This measurement is similar to that obtained from a combined full profile extensometer (to measure local extension) and inclinometer (to measure local shearing). Rock mass movements deform the grouted cable, which locally changes cable capacitance and thereby the reflected wave form of the voltage pulse. Thus, by monitoring changes in these reflection signatures, it is possible to monitor rock mass deformation. This paper presents laboratory measurements necessary to quantitatively interpret the reflected voltage signatures. Cables were sheared and extended to correlate measured cable deformation with reflected voltage signals. Laboratory testing included development of grout mixtures with optimum properties for field installation and performance of a TDR (Time Domain Reflectometry) monitoring system. Finally, the interpretive techniques developed through laboratory measurements were applied to previously collected field data to extract hitherto unrealized information.
NASA Astrophysics Data System (ADS)
Del Soldato, Matteo; Bianchini, Silvia; Nolesini, Teresa; Frodella, William; Casagli, Nicola
2017-04-01
Multisystem remote sensing techniques were exploited to provide a comprehensive overview of Volterra (Italy) site stability with regards to its landscape, urban fabric and cultural heritage. Interferometric Synthetic Aperture Radar (InSAR) techniques allow precise measurements of Earth surface displacement, as well as the detection of building deformations on large urban areas. In the field of cultural heritage conservation Infrared thermography (IRT) provides surface temperature mapping and therefore detects various potential criticalities, such as moisture, seepage areas, cracks and structural anomalies. Between winter 2014 and spring 2015 the historical center and south-western sectors of Volterra (Tuscany region, central Italy) were affected by instability phenomena. The spatial distribution, typology and effect on the urban fabrics of the landslide phenomena were investigated by analyzing the geological and geomorphological settings, traditional geotechnical monitoring and advanced remote sensing data such as Persistent Scatterers Interferometry (PSI). The ground deformation rates and the maximum settlement values derived from SAR acquisitions of historical ENVISAT and recent COSMO-SkyMed sensors, in 2003-2009 and 2010-2015 respectively, were compared with background geological data, constructive features, in situ evidences and detailed field inspections in order to classify landslide-damaged buildings. In this way, the detected movements and their potential correspondences with recognized damages were investigated in order to perform an assessment of the built-up areas deformations and damages on Volterra. The IRT technique was applied in order to survey the surface temperature of the historical Volterra wall-enclosure, and allowed highlighting thermal anomalies on this cultural heritage element of the site. The obtained results permitted to better correlate the landslide effects of the recognized deformations in the urban fabric, in order to provide useful information for future risk mitigation strategies to be planned by the local authorities and the involved technicians and conservators.
Deformable image registration for tissues with large displacements
Huang, Xishi; Ren, Jing; Green, Mark
2017-01-01
Abstract. Image registration for internal organs and soft tissues is considered extremely challenging due to organ shifts and tissue deformation caused by patients’ movements such as respiration and repositioning. In our previous work, we proposed a fast registration method for deformable tissues with small rotations. We extend our method to deformable registration of soft tissues with large displacements. We analyzed the deformation field of the liver by decomposing the deformation into shift, rotation, and pure deformation components and concluded that in many clinical cases, the liver deformation contains large rotations and small deformations. This analysis justified the use of linear elastic theory in our image registration method. We also proposed a region-based neuro-fuzzy transformation model to seamlessly stitch together local affine and local rigid models in different regions. We have performed the experiments on a liver MRI image set and showed the effectiveness of the proposed registration method. We have also compared the performance of the proposed method with the previous method on tissues with large rotations and showed that the proposed method outperformed the previous method when dealing with the combination of pure deformation and large rotations. Validation results show that we can achieve a target registration error of 1.87±0.87 mm and an average centerline distance error of 1.28±0.78 mm. The proposed technique has the potential to significantly improve registration capabilities and the quality of intraoperative image guidance. To the best of our knowledge, this is the first time that the complex displacement of the liver is explicitly separated into local pure deformation and rigid motion. PMID:28149924
NASA Astrophysics Data System (ADS)
Leiss, B.; Gudmundsson, A.; Philipp, S. L.
2005-12-01
By definition, composite volcanoes are composed of numerous alternating material units or layers such as lavas, sediments, and pyroclastics. Commonly, these layers have widely different mechanical properties. In particular, some lava flows and welded pyroclastic flows may be stiff (with a high Young's modulus), whereas others, such as non-welded pyroclastic units and sediments, may be soft (with a low Young's modulus). As a consequence, even if the loading (tectonic stress, magmatic pressure, or displacement) is uniform, the stresses within the composite volcano will vary widely. In this sense, the behavior of composite volcanoes is similar to that of general composite materials. The deformation of the surface of a volcano during an unrest period results from stresses generated by processes and parameters such as fluid pressure in a geothermal field or a magma chamber, a regional tectonic event, and a dike injection. Here we present new numerical models on mechanics of magma chambers and dikes, and the associated surface deformation of composite volcanoes. The models show that the surface deformation during magma-chamber inflation and deflation depends much on the chamber geometry, the loading conditions, and the mechanical properties of the rock units that constitute the volcano. The models also indicate that the surface deformation induced by a propagating dike depends much on the mechanical properties of the layers between the dike tip and the surface. In particular, the numerical results show that soft layers and weak contacts between layers may suppress the dike-induced tensile stresses and the associated surface deformation. Many dikes may therefore become injected and arrested at shallow depths in a volcano while giving rise to little or no surface deformation. Traditional analytical surface-deformation models such as a point source (Mogi model) for a magma-chamber pressure change and a dislocation for a dike normally assume the volcano to behave as a homogeneous, isotropic half space. The present numerical results, combined with field studies, indicate that such analytical models may yield results that have little similarity with the actual structure being modeled.
Strength of Rocks Affected by Deformation Enhanced Grain Growth
NASA Astrophysics Data System (ADS)
Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.
2005-12-01
One way of looking into the possibility of long-term strength changes in the lithosphere is to study transient effects resulting from modifications of the microstructure of rocks. It is generally accepted that mechanical weakening may occur due to progressive grain size refinement resulting from dynamic recrystallization. A decrease in grain size may induce a switch from creep controlled by grain size insensitive dislocation mechanisms to creep governed by grain size sensitive (GSS) mechanisms involving diffusion and grain boundary sliding processes. This switch forms a well-known scenario to explain localization in the lithosphere. However, fine-grained rocks in localized deformation zones are prone to grain coarsening due to surface energy driven grain boundary migration (SED-GBM). This might harden the rock, affecting its role in localizing strain in the long term. The question has arisen if grain growth by SED-GBM in a rock deforming in the GSS creep field can be significantly affected by strain. The broad aim of this study is to shed more light onto this. We have experimentally investigated the microstructural and strength evolution of fine-grained (~0.6 μm) synthetic forsterite and Fe-bearing olivine aggregates that coarsen in grain size while deforming by GSS creep at elevated pressure (600 MPa) and temperature (850-1000 °C). The materials were prepared by `sol-gel' method and contained 0.3-0.5 wt% water and 5-10 vol% enstatite. We performed i) static heat treatment tests of various time durations involving hot isostatic pressing (HIP), and ii) heat treatment tests starting with HIP and continuing with deformation up to 45% axial strain at strain rates in the range 4x10-7 - 1x10-4 s-1. Microstructures were characterized by analyzing full grain size distributions and textures using SEM/EBSD. In addition to the experiments, we studied microstructural evolution in simple two-dimensional numerical models, combining deformation and SED-GBM by means of the modeling package ELLE. Synthetic olivine samples that were heat treated without straining showed only minor grain growth. Presumably, the second phase (enstatite) and/or porosity remaining in the starting material after densification slowed down or inhibited SED-GBM in the static situation. In contrast, samples heat treated and deformed for time durations similar to those of the static tests demonstrated, at identical temperature, an increase in grain size with increasing strain up to a value twice that of the static counterpart. This grain coarsening was associated with continuous hardening of the material, witnessed by the stress-strain curves. A random lattice preferred orientation combined with a low stress sensitivity (n~2) suggested dominant GSS creep controlled by grain boundary sliding. A dynamic grain growth model involving an increase in the fraction of non-hexagonal grains, related to grain neighbor switching, appears applicable to the observed grain growth that is held responsible for the hardening. The ELLE numerical modeling demonstrated that a combination of SED-GBM and geometrical deformation of a 2D grain aggregate can indeed result in enhanced grain growth compared to static grain growth tests. The fraction of non-hexagonal grains was found to remain more or less constant during static grain growth but increased during deformation. We suggest that the application of the dynamic grain growth model to the long-term microstructural evolution of fine-grained lithospheric shear zones can further improve our understanding of the transient or permanent character of strain localizations and related rheological behavior.
Optimal Multiple Surface Segmentation With Shape and Context Priors
Bai, Junjie; Garvin, Mona K.; Sonka, Milan; Buatti, John M.; Wu, Xiaodong
2014-01-01
Segmentation of multiple surfaces in medical images is a challenging problem, further complicated by the frequent presence of weak boundary evidence, large object deformations, and mutual influence between adjacent objects. This paper reports a novel approach to multi-object segmentation that incorporates both shape and context prior knowledge in a 3-D graph-theoretic framework to help overcome the stated challenges. We employ an arc-based graph representation to incorporate a wide spectrum of prior information through pair-wise energy terms. In particular, a shape-prior term is used to penalize local shape changes and a context-prior term is used to penalize local surface-distance changes from a model of the expected shape and surface distances, respectively. The globally optimal solution for multiple surfaces is obtained by computing a maximum flow in a low-order polynomial time. The proposed method was validated on intraretinal layer segmentation of optical coherence tomography images and demonstrated statistically significant improvement of segmentation accuracy compared to our earlier graph-search method that was not utilizing shape and context priors. The mean unsigned surface positioning errors obtained by the conventional graph-search approach (6.30 ± 1.58 μm) was improved to 5.14 ± 0.99 μm when employing our new method with shape and context priors. PMID:23193309
NASA Astrophysics Data System (ADS)
Yamamoto, Y.; Okutsu, N.; Yamada, Y.; Bowden, S.; Tonai, S.; Yang, K.; Tsang, M. Y.; Hirose, T.; Kamiya, N.
2017-12-01
Expedition 370 penetrated the accretionary prism, plate boundary décollement zone, and underthrust sediment and touched the basement basalt on the Philippine Sea Plate. The drilling site (C0023) is located 4 km NE from the legacy sites, Sites 808 and 1174. Compared to the legacy sites, the décollement zone is characterized by weak and intermittent negative reflectors in the seismic profile. Onboard physical properties, e.g. porosity and P-wave velocity data, indeed show the smaller gaps at the top of the décollement zone. The nature of the deformation along the décollement zone represented 40 m thick phacoidal deformation zone composed of fragmented mudstone with slickenlines on the surfaces in the Sites 808 and 1174. Compare with this, décollement zone in Site C0023 represented the weaker and non-localized deformation zone comprised of alternating zone of 1 m thick phacoidal deformation zones and a few 10 m of intact intervals in the Site C0023. Many normal faults striking parallel to the trench were identified just below the décollement zone, which is indicative of non-localized deformations along the décollement zone. Many of these faults were accompanied with calcite and sulphate mineral veins (anhydrite and barite), indicative of high-temperature fluid migration just above the ridge-spreading center. Based on the paleomagnetic restoration of structure to the geologic coordinate, attitudes of the bedding and fault planes in the Site C0023 are controlled by two factors: 1) subduction/accretion producing the trench-parallel bedding strikes and trench-perpendicular principal stress and 2) ridge spreading that produces ridge-parallel bedding and vein strikes. The former developed in the accretionary prism and the upper part of the underthrust sediment (<900 mbsf), whereas the latter occurs in the lower part (>900 mbsf). These tectonic variations might affect fluid migration pathways.
Role of structural inheritance on present-day deformation in intraplate domains
NASA Astrophysics Data System (ADS)
Tarayoun, A.; Mazzotti, S.; Gueydan, F.
2017-12-01
Understanding the role of structural inheritance on present day surface deformation is a key element for better characterizing the dynamism of intraplate earthquakes. Current deformation and seismicity are poorly understood phenomenon in intra-continental domains. A commonly used hypothesis, based on observations, suggests that intraplate deformation is related to the reactivation of large tectonic paleo-structures, which can act as locally weakened domains. The objective of our study is to quantify the impact of these weakened areas on present-day strain localizations and rates. We combine GPS observations and numerical modeling to analyze the role of structural inheritance on strain rates, with specific observations along the St. Lawrence Valley of eastern Canada. We processed 143 GPS stations from five different networks, in particular one dense campaign network situated along a recognized major normal faults system of the Iapetus paleo-rift, in order to accurately determine the GPS velocities and strain rates. Results of strain rates show magnitude varying from 1.5x10-10 to 6.8x10-9 yr-1 in the St Lawrence valley. Weakened area strain rates are up to one order of magnitude higher than surrounding areas. We compare strain rates inferred from GPS and the new postglacial rebound model. We found that GPS signal is one order of magnitude higher in the weakened zone, which is likely due to structural inheritance. The numerical modeling investigates the steady-state deformation of the continental lithosphere with presence of a weak area. Our new approach integrates ductile structural inheritance using a weakening coefficient that decreases the lithosphere strength at different depths. This allows studying crustal strain rates mainly as a function of rheological contrast and geometry of the weakened domains. Comparison between model predictions and observed GPS strain rates will allow us to investigate the respective role of crustal and mantle tectonic inheritance.
Anserina Bursitis—A Treatable Cause of Knee Pain in Patients with Degenerative Arthritis
Brookler, Morton I.; Mongan, Edward S.
1973-01-01
The anserina bursa is located on the medial surface of the tibia deep to the tendons of the sartorius, gracilis, and semimembranosus muscles and superficial to the insertion of the tibial collateral ligament. Knee pain, a palpable swelling of the bursa, and tenderness over the medial anterior aspect of the tibia just below the knee are the hallmarks of anserina bursitis. In a three-year period, 24 patients with anserina bursitis were seen in a rheumatology clinic. All but one were women, 18 were obese, and only four were under 50 years old. Knee x-ray studies showed degenerative arthritis in 20 of the 24 patients. In ten, varus knee deformities were present, while three had valgus deformities. Ultrasound or local steroid injections gave dramatic relief in all but one patient. PMID:4731586
NASA Astrophysics Data System (ADS)
Piazolo, Sandra; Daczko, Nathan R.; Smith, James R.; Evans, Lynn
2015-04-01
The effect of pre-tectonic reaction and annealing extent on the rheology of lower crustal rocks during a subsequent deformation event was studied using field and detailed microstructural analyses combined with numerical simulations to examine. In the studied rocks (Pembroke granulite, South Island, New Zealand) granulite facies two-pyroxene-pargasite orthogneiss partially to completely reacted to garnet bearing granulite either side of felsic dykes. The metamorphic reaction not only changed the abundance of phases but also their shape and grain size distribution. The reaction is most advanced close to the dykes, whereas further away the reaction is incomplete. As a consequence, grain size and the abundance of the rheologically hard phase garnet decreases away from the felsic dykes. Aspect ratios of mafic clusters which may include garnet decrease from high in the host, to near equidimensional close to the dyke. Post-reaction deformation localized in those areas that experienced minor to moderate reaction extent producing two spaced "paired" shear zones within the garnet-bearing reaction zone at either side of the felsic dykes. Our study shows how rock flow properties are governed by the pre-deformation history of a rock in terms of reaction and coupled annealing extent. If the grain size is sufficiently reduced by metamorphic reaction, deformation localizes in the partially finer grained rock domains, where deformation dominantly occurs by grain size sensitive deformation flow. Even if the reaction produces a nominally stronger phase (e.g. garnet) than the reactants, a local switch in dominant deformation behaviour from a grain size insensitive to a grain size sensitive in reaction induced fine-grained portions of the rock may occur and result in significant strain localization.
Full-Field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.
2008-01-01
Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape out of triaxial braided composite materials. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A more detailed investigation of deformation and failure processes in large-unit-cell-size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. This report presents some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12- and 24-k yarns and a 0 /+60 /-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed and correlations were made between these local failures and global composite deformation and strength.
NASA Astrophysics Data System (ADS)
García Morabito, Ezequiel; Terrizzano, Carla; Zech, Roland; Willett, Sean; Yamin, Marcela; Haghipour, Negar; Wuethrich, Lorenz; Christl, Marcus; María Cortes, José; Ramos, Victor
2016-04-01
Understanding the deformation associated with active thrust wedges is essential to evaluate seismic hazard. How is active faulting distributed throughout the wedge, and how much deformation is taken up by individual structures? We address these questions for our study region, the central Andean backarc of Argentina. We combined a structural and geomorphological approach with surface exposure dating (10Be) of alluvial fans and strath terraces in two key localities at ~32° S: the Cerro Salinas, located in the active orogenic front of the Precordillera, and the Barreal block in the interior of the Andean mountain range. We analysed 22 surface samples and 6 depth profiles. At the thrust front, the oldest terrace (T1) yields an age of 100-130 ka, the intermediate terrace (T2) between 40-95 ka, and the youngest terrace (T3) an age of ~20 ka. In the Andean interior, T1´ dates to 117-146 ka, T2´ to ~70 ka, and T3´ to ~20 ka, all calculations assuming negligible erosion and using the scaling scheme for spallation based on Lal 1991, Stone 2000. Vertical slip rates of fault offsets are 0.3-0.5 mm/yr and of 0.6-1.2 mm/yr at the thrust front and in the Andean interior, respectively. Our results highlight: i) fault activity related to the growth of the Andean orogenic wedge is not only limited to a narrow thrust front zone. Internal structures have been active during the last 150 ka, ii) deformation rates in the Andean interior are comparable or even higher that those estimated and reported along the emerging thrust front, iii) distribution of active faulting seems to account for unsteady state conditions, and iv) seismic hazards may be more relevant in the internal parts of the Andean orogen than assumed so far. References Lal, D., 1991: Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104: 424-439. Stone, J.O., 2000: Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105 (B10): 23753-23759
NASA Astrophysics Data System (ADS)
Han, Xuesong; Li, Haiyan; Zhao, Fu
2017-07-01
Particle-fluid based surface generation process has already become one of the most important materials processing technology for many advanced materials such as optical crystal, ceramics and so on. Most of the particle-fluid based surface generation technology involves two key process: chemical reaction which is responsible for surface softening; physical behavior which is responsible for materials removal/deformation. Presently, researchers cannot give a reasonable explanation about the complex process in the particle-fluid based surface generation technology because of the small temporal-spatial scale and the concurrent influence of physical-chemical process. Molecular dynamics (MD) method has already been proved to be a promising approach for constructing effective model of atomic scale phenomenon and can serve as a predicting simulation tool in analyzing the complex surface generation mechanism and is employed in this research to study the essence of surface generation. The deformation and piles of water molecule is induced with the feeding of abrasive particle which justifies the property mutation of water at nanometer scale. There are little silica molecule aggregation or materials removal because the water-layer greatly reduce the strength of mechanical interaction between particle and materials surface and minimize the stress concentration. Furthermore, chemical effect is also observed at the interface: stable chemical bond is generated between water and silica which lead to the formation of silconl and the reaction rate changes with the amount of water molecules in the local environment. Novel ring structure is observed in the silica surface and it is justified to be favored of chemical reaction with water molecule. The siloxane bond formation process quickly strengthened across the interface with the feeding of abrasive particle because of the compressive stress resulted by the impacting behavior.
Microfabric and Structures in Glacial Ice
NASA Astrophysics Data System (ADS)
Monz, M.; Hudleston, P. J.
2017-12-01
Similar to rocks in active orogens, glacial ice develops both structures and fabrics that reflect deformation. Crystallographic preferred orientation (CPO), associated with mechanical anisotropy, develops as ice deforms, and as in rock, directly reflects the conditions and mechanisms of deformation and influences the overall strength. This project aims to better constrain the rheologic properties of natural ice through microstructural analysis and to establish the relationship of microfabric to macroscale structures. The focus is on enigmatic fabric patterns found in coarse grained, "warm" (T > -10oC) ice deep in ice sheets and in valley glaciers. Deformation mechanisms that produce such patterns are poorly understood. Detailed mapping of surface structures, including bedding, foliation, and blue bands (bubble-free veins of ice), was done in the ablation zone of Storglaciären, a polythermal valley glacier in northern Sweden. Microstructural studies on samples from a transect across the ablation zone were carried out in a cold room. Crystal size was too large for use of electron backscattered diffraction to determine CPO, therefore a Rigsby universal stage, designed specifically for ice, was used. In thick and thin sections, recrystallized grains are locally variable in both size (1mm-7cm in one thin section) and shape and clearly reflect recrystallization involving highly mobile grain boundaries. Larger crystals are often branching, and appear multiple times throughout one thin section. There is a clear shape preferred orientation that is generally parallel with foliation defined by bubble alignment and concentration. Locally, there appears to be an inverse correlation between bubble concentration and smoothness of grain boundaries. Fabric in samples that have undergone prolonged shear display roughly symmetrical multimaxima patterns centered around the pole to foliation. The angular distances between maxima suggest a possible twin relationship that may have developed from a preexisting single-maximum fabric.
Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting
NASA Astrophysics Data System (ADS)
Huismans, R. S.; Duclaux, G.; May, D.
2017-12-01
Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.
The shear band controlled deformation in metallic glass: a perspective from fracture
NASA Astrophysics Data System (ADS)
Yang, G. N.; Shao, Y.; Yao, K. F.
2016-02-01
Different from the homogenous deformation in conventional crystalline alloys, metallic glasses and other work-softening materials deform discontinuously by localized plastic strain in shear bands. Here by three-point bending test on a typical ductile Pd-Cu-Si metallic glass, we found that the plastic deformed region during fracture didn’t follow the yielding stress distribution as the conventional material mechanics expected. We speculated that such special behavior was because the shear bands in metallic glasses could propagate easily along local shear stress direction once nucleated. Based on a 3D notch tip stress field simulation, we considered a new fracture process in a framework of multiple shear band deformation mechanism instead of conventional materials mechanics, and successfully reproduced the as-observed complicate shear band morphologies. This work clarifies many common misunderstandings on metallic glasses fracture, and might also provide a new insight to the shear band controlled deformation. It suggests that the deformation of metallic glasses is sensitive to local stress condition, and therefore their mechanical properties would depend on not only the material, but also other external factors on stress condition. We hope that start from this work, new methods, criteria, or definitions could be proposed to further study these work-softening materials, especially for metallic glasses.
Grabens on Io: Evidence for Extensional Tectonics
NASA Astrophysics Data System (ADS)
Hoogenboom, T.; Schenk, P.
2012-12-01
Io may well be the most geologically active body in the solar system. A variety of volcanic features have been identified, including a few fissure eruptions, but tectonism is generally assumed to be limited to compression driven mountain formation (Schenk et al., 2001). A wide range of structural features can also be identified including scarps, lineaments, faults, and circular depressions (pits and patera rims). Narrow curvilinear graben (elongated, relatively depressed crustal unit or block that is bounded by faults on its sides) are also scattered across Io's volcanic plains. These features are dwarfed by the more prominent neighboring volcanoes and mountains, and have been largely ignored in the literature. Although they are likely to be extensional in origin, their relationship to local or global stress fields is unknown. We have mapped the locations, length and width of graben on Io using all available Voyager and Galileo images with a resolution better than 5 km. We compare the locations of graben with existing volcanic centers, paterae and mountain data to determine the degree of correlation between these geologic features and major topographic variations (basins/swells) in our global topographic map of Io (White et al., 2011). Graben are best observed in > 1-2 km low-sun angle images. Approximately 300 images were converted from ISIS to ArcMap format to allow easy comparison with the geological map of Io (Williams et al., 2012) along with previous higher resolution structural mapping of local areas (e.g. Crown et al., 1992). We have located >45 graben to date. Typically 1-3 kilometers across, some of these features can stretch for over 500 kilometers in length. Their formation may be related to global tidal stresses or local deformation. Io's orbit is eccentric and its solid surface experiences daily tides of up to ˜0.1 km, leading to repetitive surface strains of 10-4 or greater. These tides flex and stress the lithosphere and can cause it to fracture (as also occurs extensively on neighboring Europa). The record can be confused if the features formed at different times or if the stress pattern shifts due to nonsynchronous rotation of the lithosphere (Milazzo et al., 2001). Alternatively, curvilinear or concentric extensional fractures (graben) could be related to local loading of planetary lithospheres. On Io, this could be the result of construction of volcanic edifices or global convection patterns forming localized sites of upwelling and downwelling (e.g., Tackley et al., 2001). However, constructional volcanic edifices are quite rare on Io (Schenk et al., 2004a) and convective stresses on Io are likely to be quite small (Kirchoff and McKinnon, 2009). An obvious caveat to stress analyses is the possibility of resurfacing locally erasing tectonic signatures of graben, in part or entirely. Despite resurfacing, erosional and tectonic scarps, lineaments and grabens are relatively abundant at all latitudes and longitudes on Io, given the limited global mapping. Grabens are typically not found on the younger units, suggesting that tectonic forces on Io were of greater magnitude in the past, that much of the surface is very young and has not yet undergone deformation, or that only with age do the surface materials become strong enough to deform by brittle failure rather than ductile flow (Whitford-Stark et al., 1990).
Vorticity models of ocean surface diffusion in coastal jets and eddies
NASA Astrophysics Data System (ADS)
Cano, D.; Matulka, A.; Sekula, E.
2010-05-01
We present and discuss the use of multi-fractal techniques used to investigete vorticity and jet dynamical state of these features detected in the sea surface as well as to identify possible local parametrizations of turbulent diffusion in complex non-homogeneous flows. We use a combined vorticity/energy equation to parametrize mixing at the Rossby Deformation Radius, which may be used even in non Kolmogorov types of flows. The vorticity cascade is seen to be different to the energy cascade and may have important cnsecuences in pollutant dispersion prediction, both in emergency accidental releases and on a day to day operational basis. We also identify different SAR signatures of river plumes near the coast, which are usefull to provide calibrations for the different local configurations that allow to predict the behaviour of different tracers and tensioactives in the coastal sea surface area by means of as a geometrical characterization of the vorticity and velocity maps which induce local mixing and dilution jet processes. The satellite-borne SAR seems to be a good system for the identification of dynamic. lt is also a convenient tool to investigate the eddy structures of a certain area where the effect of bathymetry and local currents are important in describing the ocean surface behavior. Maximum eddy size agrees remarkably well with the limit imposed by the local Rossby deformation radius using the usual thermocline induced stratification, Redondo and Platonov (2000). The Rossby deformation radius, defined as Rd = (N/f)h, where N is the Brunt-Vaisalla frequency, f is the local Coriolis parameter (f=2Osin(lat), where O is the rotation of the earth as function of the latitude), The role of buoyancy may be also detected by seasonal changes in h, the thermocline depth, with these considerations Rd is ranged between 6 and 30 Km. Bezerra M.O., Diez M., Medeiros C. Rodriguez A., Bahia E., Sanchez Arcilla A and Redondo J.M. (1998) "Study on the influence of waves on coastal diffusion using image analysis'. Applied Scientific Research, 59,127-142. Carrillo, A.; Sanchez, M.A.; Platonov, A.; Redondo, J.M., (2001). Coastal and Interfacial Mixing. Laboratory Experiments and Satellite Observations. Physics and Chemistry of the Earth, v. B, 26/4. pp. 305-311. Gade, M. and W. Alpers. (1999). Using ERS-2 SAR images for routine observation of marine pollution in European margins. Mediterranean Target Project (MPT)-EUROMARGE-NB Project. Luxemburg, 38, 57. Gade, M., and J. M. Redondo (1999) 'Marine pollution in European coastal waters monitored by the ERS-2 SAR: a comprehensive statistical analysis". IGARSS 99. Hamburg. v. III, 1637-1639., pp. 308-312. Jolly G. W., A. Mangin, F. Cauneau, M. Calatuyud, V. Barale, H. M. Snaith, O.Rud, M. Ishii, M. Gade, J. M. Redondo, A. Platonov (2000). The Clean Seas Project Final Report (ENV4-CT96-0334). Ed. DG XII/D, Brusselas. Martinez Benjamin J.J., L.M. Redondo, J.Jorge & A.Platonov.(1999). Aplication of SAR images in the western Mediterranean Sea. Remote Sensing in 21st Century: Economic and Environmental Applications. Proceedings of the 19th EARSel Symposium on Remote Sensing in the 21st Century. Eds. A.A. Balkema ,Ed. J.L. Casanova. Rotterdam / Brookfiel. pp. 461-465.
2012-04-01
extremely lightweight metal , weighing 30% less than aluminum, and 70% less than steel, it also has the highest strength-to-weight ratio among any of the...commonly used non- ferrous and ferrous metallic materials [2]. As magnesium is used more often in structural components, there is an increasing...mechanism of deformation in metals has been shown to be shear localization [6] [7]. The shear localization seen in high strain rate deformation is
Deformations of amygdala morphology in familial pediatric bipolar disorder.
Kelley, Ryan; Chang, Kiki D; Garrett, Amy; Alegría, Dylan; Thompson, Paul; Howe, Meghan; L Reiss, Allan
2013-11-01
Smaller amygdalar volumes have been consistently observed in pediatric bipolar disorder subjects compared to healthy control subjects. Whether smaller amygdalar volume is a consequence or antecedent of the first episode of mania is not known. Additionally, smaller volume has not been localized to specific amygdala subregions. We compared surface contour maps of the amygdala between 22 youths at high risk for bipolar disorder, 26 youths meeting full diagnostic criteria for pediatric familial bipolar disorder, and 24 healthy control subjects matched for age, gender, and intelligence quotient. Amygdalae were manually delineated on three-dimensional spoiled gradient echo images by a blinded rater using established tracing protocols. Statistical surface mesh modeling algorithms supported by permutation statistics were used to identify regional surface differences between the groups. When compared to high-risk subjects and controls, youth with bipolar disorder showed surface deformations in specific amygdalar subregions, suggesting smaller volume of the basolateral nuclei. The high-risk subjects did not differ from controls in any subregion. These findings support previous reports of smaller amygdala volume in pediatric bipolar disorder and map the location of abnormality to specific amygdala subregions. These subregions have been associated with fear conditioning and emotion-enhanced memory. The absence of amygdala size abnormalities in youth at high risk for bipolar disorder suggests that reductions might occur after the onset of mania. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yang, Xiaochen; Clements, Logan W.; Conley, Rebekah H.; Thompson, Reid C.; Dawant, Benoit M.; Miga, Michael I.
2016-03-01
Brain shift compensation using computer modeling strategies is an important research area in the field of image-guided neurosurgery (IGNS). One important source of available sparse data during surgery to drive these frameworks is deformation tracking of the visible cortical surface. Possible methods to measure intra-operative cortical displacement include laser range scanners (LRS), which typically complicate the clinical workflow, and reconstruction of cortical surfaces from stereo pairs acquired with the operating microscopes. In this work, we propose and demonstrate a craniotomy simulation device that permits simulating realistic cortical displacements designed to measure and validate the proposed intra-operative cortical shift measurement systems. The device permits 3D deformations of a mock cortical surface which consists of a membrane made of a Dragon Skin® high performance silicone rubber on which vascular patterns are drawn. We then use this device to validate our stereo pair-based surface reconstruction system by comparing landmark positions and displacements measured with our systems to those positions and displacements as measured by a stylus tracked by a commercial optical system. Our results show a 1mm average difference in localization error and a 1.2mm average difference in displacement measurement. These results suggest that our stereo-pair technique is accurate enough for estimating intra-operative displacements in near real-time without affecting the surgical workflow.
NASA Astrophysics Data System (ADS)
Makarov, S. V.; Plotnikov, V. A.; Lysikov, M. V.
2017-12-01
Stepwise kinetics of deformation accumulation and monotonous and pulsed acoustic emission bear witness to the active role of acoustic emission in deformation processes. A standing acoustic wave in the region of deformation localization determines the effect of self-organization of dislocations on macroscopic scales around the natural resonator of the system.
Local and transient nanoscale strain mapping during in situ deformation
Gammer, C.; Kacher, J.; Czarnik, C.; ...
2016-08-26
The mobility of defects such as dislocations controls the mechanical properties of metals. This mobility is determined both by the characteristics of the defect and the material, as well as the local stress and strain applied to the defect. Therefore, the knowledge of the stress and strain during deformation at the scale of defects is important for understanding fundamental deformation mechanisms. In this paper, we demonstrate a method of measuring local stresses and strains during continuous in situ deformation with a resolution of a few nanometers using nanodiffraction strain mapping. Finally, our results demonstrate how large multidimensional data sets capturedmore » with high speed electron detectors can be analyzed in multiple ways after an in situ TEM experiment, opening the door for true multimodal analysis from a single electron scattering experiment.« less
NASA Astrophysics Data System (ADS)
Cissé, Sarata; Laffont, Lydia; Lafont, Marie-Christine; Tanguy, Benoit; Andrieu, Eric
2013-02-01
The sensitivity of precipitation-strengthened A286 austenitic stainless steel to stress corrosion cracking was studied by means of slow-strain-rate tests. First, alloy cold working by low cycle fatigue (LCF) was investigated. Fatigue tests under plastic strain control were performed at different strain levels (Δɛp/2 = 0.2%, 0.5%, 0.8% and 2%) to establish correlations between stress softening and the deformation microstructure resulting from the LCF tests. Deformed microstructures were identified through TEM investigations. The interaction between oxidation and localized deformation bands was also studied and it resulted that localized deformation bands are not preferential oxide growth channels. The pre-cycling of the alloy did not modify its oxidation behaviour. However, intergranular oxidation in the subsurface under the oxide layer formed after exposure to PWR primary water was shown.
Modeling the Inhomogeneous Response of Steady and Transient Flows of Entangled Micellar Solutions
NASA Astrophysics Data System (ADS)
McKinley, Gareth
2008-03-01
Surfactant molecules can self-assemble in solution into long flexible structures known as wormlike micelles. These structures entangle, forming a viscoelastic network similar to those in entangled polymer melts and solutions. However, in contrast to `inert' polymeric networks, wormlike micelles continuously break and reform leading to an additional relaxation mechanism and the name `living polymers'. Observations in both classes of entangled fluids have shown that steady and transient shearing flows of these solutions exhibit spatial inhomogeneities such as `shear-bands' at sufficiently large applied strains. In the present work, we investigate the dynamical response of a class of two-species elastic network models which can capture, in a self-consistent manner, the creation and destruction of elastically-active network segments, as well as diffusive coupling between the microstructural conformations and the local state of stress in regions with large spatial gradients of local deformation. These models incorporate a discrete version of the micellar breakage and reforming dynamics originally proposed by Cates and capture, at least qualitatively, non-affine tube deformation and chain disentanglement. The `flow curves' of stress and apparent shear rate resulting from an assumption of homogeneous deformation is non-monotonic and linear stability analysis shows that the region of non-monotonic response is unstable. Calculation of the full inhomogeneous flow field results in localized shear bands that grow linearly in extent across the gap as the apparent shear rate increases. Time-dependent calculations in step strain, large amplitude oscillatory shear (LAOS) and in start up of steady shear flow show that the velocity profile in the gap and the total stress measured at the bounding surfaces are coupled and evolve in a complex non-monotonic manner as the shear bands develop and propagate.
NASA Astrophysics Data System (ADS)
Clements, Logan W.; Collins, Jarrod A.; Wu, Yifei; Simpson, Amber L.; Jarnagin, William R.; Miga, Michael I.
2015-03-01
Soft tissue deformation represents a significant error source in current surgical navigation systems used for open hepatic procedures. While numerous algorithms have been proposed to rectify the tissue deformation that is encountered during open liver surgery, clinical validation of the proposed methods has been limited to surface based metrics and sub-surface validation has largely been performed via phantom experiments. Tracked intraoperative ultrasound (iUS) provides a means to digitize sub-surface anatomical landmarks during clinical procedures. The proposed method involves the validation of a deformation correction algorithm for open hepatic image-guided surgery systems via sub-surface targets digitized with tracked iUS. Intraoperative surface digitizations were acquired via a laser range scanner and an optically tracked stylus for the purposes of computing the physical-to-image space registration within the guidance system and for use in retrospective deformation correction. Upon completion of surface digitization, the organ was interrogated with a tracked iUS transducer where the iUS images and corresponding tracked locations were recorded. After the procedure, the clinician reviewed the iUS images to delineate contours of anatomical target features for use in the validation procedure. Mean closest point distances between the feature contours delineated in the iUS images and corresponding 3-D anatomical model generated from the preoperative tomograms were computed to quantify the extent to which the deformation correction algorithm improved registration accuracy. The preliminary results for two patients indicate that the deformation correction method resulted in a reduction in target error of approximately 50%.
Data-Driven Modeling and Rendering of Force Responses from Elastic Tool Deformation
Rakhmatov, Ruslan; Ogay, Tatyana; Jeon, Seokhee
2018-01-01
This article presents a new data-driven model design for rendering force responses from elastic tool deformation. The new design incorporates a six-dimensional input describing the initial position of the contact, as well as the state of the tool deformation. The input-output relationship of the model was represented by a radial basis functions network, which was optimized based on training data collected from real tool-surface contact. Since the input space of the model is represented in the local coordinate system of a tool, the model is independent of recording and rendering devices and can be easily deployed to an existing simulator. The model also supports complex interactions, such as self and multi-contact collisions. In order to assess the proposed data-driven model, we built a custom data acquisition setup and developed a proof-of-concept rendering simulator. The simulator was evaluated through numerical and psychophysical experiments with four different real tools. The numerical evaluation demonstrated the perceptual soundness of the proposed model, meanwhile the user study revealed the force feedback of the proposed simulator to be realistic. PMID:29342964
Elastic-plastic deformation of a metal-matrix composite coupon with a center slot
NASA Technical Reports Server (NTRS)
Post, D.; Czarnek, R.; Joh, D.; Jo, J.; Guo, Y.
1985-01-01
A comprehensive experimental analysis of deformations of the surface of a metal-matrix specimen is reported. The specimen is a 6-ply 0 + or - 45 sub s boron-aluminum tensile coupon with a central slot. Moire interferometry is used for high-sensitivity whole-field measurements of in-plane displacements. Normal and shear strains are calculated from displacement gradients. Displacement fields are analyzed at various load levels from 15% to 95% of the failure load. Deformations of the boron fibers could be distinguished from those of the matrix. Highly localized plastic slip zones occur tangent to the ends of the slot. Shear strains and concurrent transverse compressive strains in the slip zones reach approximately 10% and 1%, respectively. Upon unloading, elastic recovery in surrounding regions causes a reverse plastic shear strain in the slip zone of about 4%. Longitudinal normal strains on the unslotted ligament peak at the slot boundary at about 1% strain. The strain concentration factor at the end of the slot decreases with load level and the advance of plasticity.
Self-dual phase space for (3 +1 )-dimensional lattice Yang-Mills theory
NASA Astrophysics Data System (ADS)
Riello, Aldo
2018-01-01
I propose a self-dual deformation of the classical phase space of lattice Yang-Mills theory, in which both the electric and magnetic fluxes take value in the compact gauge Lie group. A local construction of the deformed phase space requires the machinery of "quasi-Hamiltonian spaces" by Alekseev et al., which is reviewed here. The results is a full-fledged finite-dimensional and gauge-invariant phase space, the self-duality properties of which are largely enhanced in (3 +1 ) spacetime dimensions. This enhancement is due to a correspondence with the moduli space of an auxiliary noncommutative flat connection living on a Riemann surface defined from the lattice itself, which in turn equips the duality between electric and magnetic fluxes with a neat geometrical interpretation in terms of a Heegaard splitting of the space manifold. Finally, I discuss the consequences of the proposed deformation on the quantization of the phase space, its quantum gravitational interpretation, as well as its relevance for the construction of (3 +1 )-dimensional topological field theories with defects.
NASA Astrophysics Data System (ADS)
Laurent, Valentin; Scaillet, Stéphane; Jolivet, Laurent; Augier, Romain
2017-04-01
The complex interplay between rheology, temperature and deformation profoundly influences how crustal-scale shear zones form and then evolve across a deforming lithosphere. Understanding early exhumation processes in subduction zones requires quantitative age constraints on the timing of strain localization within high-pressure shear zones. Using both the in situ laser ablation and conventional step-heating 40Ar/39Ar dating (on phengite single grains and populations) methods, this study aims at quantifying the duration of ductile deformation and the timing of strain localization within HP-LT shear zones of the Cycladic Blueschist Unit (CBU, Greece). The rate of this progressive strain localization is unknown, and in general, poorly known in similar geological contexts. Critical to retrieve realistic estimates of rates of strain localization during exhumation, dense 40Ar/39Ar age transects were sampled along shear zones recently identified on Syros and Sifnos islands. There, field observations suggest that deformation progressively localized downward in the CBU during exhumation. In parallel, these shear zones are characterized by different degrees of retrogression from blueschist-facies to greenschist-facies P-T conditions overprinting eclogite-facies record throughout the CBU. Results show straightforward correlations between the degree of retrogression, the finite strain intensity and 40Ar/39Ar ages; the most ductilely deformed and retrograded rocks yielded the youngest 40Ar/39Ar ages. The possible effects of strain localization during exhumation on the record of the argon isotopic system in HP-LT shear zones are addressed. Our results show that strain has localized in shear zones over a 30 Ma long period and that individual shear zones evolve during 7-15 Ma. We also discuss these results at small-scale to see whether deformation and fluid circulations, channelled within shear bands, can homogenize chemical compositions and reset the 40Ar/39Ar isotopic record. This study brings new perspective on the process of strain localization through the dating of structures along strain gradients, especially on possible variation of rates of localisation through the entire exhumation history.
NASA Astrophysics Data System (ADS)
Wintsch, R. P.; Yi, D.; Yi, K.; Wang, Q. F.; Wang, G. H.
2014-12-01
The orthogneisses in the core of the Xuelong Shan block are surrounded by ductile and then brittle fault rocks. This lens-shape block is in fault contact with Triassic marbles on the eastern margin and Jurassic-Cretaceous mudstones on the western margin. The rocks in the core of the Xuelong Shan block contain multiply foliated feldspathic orthogneisses with local amphibolites, largely overprinted by protomylonitic deformation. Foliation strengthens to the east to become mylonites and ultramylonites, with a 30 m wide zone of loosely cemented fault breccia adjacent to brittlely faulted Triassic marbles. In contrast, the rocks to the west are dominated by brittle deformation, with mylonites becoming cataclasites and then breccias facing the mudstones to the east. Well-foliated phyllonites are locally present within the cataclasites. Early S1 gneissosity striking ENE are recognized only in the interior protomylonite. In the east, the dominate mylonitic S2 foliation strikes 340° with a moderate dip to the east, and an L2 mineral stretching lineation plunges gently north. However, in the west S2 cleavage is transposed into a NNW trending schistosity that dips steeply to the ENE, with down-dip mineral stretching lineations. Whole rock chemistry indicates a granitic to granodioritic protolith for all the rocks including the ultramylonites, but also suggests the progressive loss of alkalis with increasing deformation. Trace element compositions show these rocks lie in the volcanic arc/syn-collisional granite field. U-Pb SHRIMP ages show an Early Triassic age for these granite, with possible Middle Permian inheritance in some cores. These ages are consistent with the period of the closure of the northern Paleo-Tethys ocean. Metamorphic rim ages of ~ 30 Ma record a small amount of zircon dissolution/precipitation probably associated with the Oligocene ductile deformation that produced the upper greenschist facies mylonites. These results support the geologic history of the ASRRSZ based on data obtained in the southern Diancang Shan block. Permian granitoids were intruded and ductily deformed in the Early Triassic. The left lateral shearing that brought these blocks to the surface was delayed until the Neogene extrusion of the Indochina block.
NFIRAOS beamsplitters subsystems optomechanical design
NASA Astrophysics Data System (ADS)
Lamontagne, Frédéric; Desnoyers, Nichola; Nash, Reston; Boucher, Marc-André; Martin, Olivier; Buteau-Vaillancourt, Louis; Châteauneuf, François; Atwood, Jenny; Hill, Alexis; Byrnes, Peter W. G.; Herriot, Glen; Véran, Jean-Pierre
2016-07-01
The early-light facility adaptive optics system for the Thirty Meter Telescope (TMT) is the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS). The science beam splitter changer mechanism and the visible light beam splitter are subsystems of NFIRAOS. This paper presents the opto-mechanical design of the NFIRAOS beam splitters subsystems (NBS). In addition to the modal and the structural analyses, the beam splitters surface deformations are computed considering the environmental constraints during operation. Surface deformations are fit to Zernike polynomials using SigFit software. Rigid body motion as well as residual RMS and peak-to-valley surface deformations are calculated. Finally, deformed surfaces are exported to Zemax to evaluate the transmitted and reflected wave front error. The simulation results of this integrated opto-mechanical analysis have shown compliance with all optical requirements.
Gratings Fabricated on Flat Surfaces and Reproduced on Non-Flat Substrates
NASA Technical Reports Server (NTRS)
Content, David; Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christopher M.
2009-01-01
A method has been developed for fabricating gratings on flat substrates, and then reproducing the groove pattern on a curved (concave or convex) substrate and a corresponding grating device. First, surface relief diffraction grating grooves are formed on flat substrates. For example, they may be fabricated using photolithography and reactive ion etching, maskless lithography, holography, or mechanical ruling. Then, an imprint of the grating is made on a deformable substrate, such as plastic, polymer, or other materials using thermoforming, hot or cold embossing, or other methods. Interim stamps using electroforming, or other methods, may be produced for the imprinting process or if the same polarity of the grating image is required. The imprinted, deformable substrate is then attached to a curved, rigid substrate using epoxy or other suitable adhesives. The imprinted surface is facing away from the curved rigid substrate. As an alternative fabrication method, after grating is imprinted on the deformable substrate as described above, the grating may be coated with thin conformal conductive layer (for example, using vacuum deposition of gold). Then the membrane may be mounted over an opening in a pressured vessel in a manner of a membrane on a drum, grating side out. The pressure inside of the vessel may be changed with respect to the ambient pressure to produce concave or convex membrane surface. The shape of the opening may control the type of the surface curvature (for example, a circular opening would create spherical surface, oval opening would create toroidal surface, etc.). After that, well-known electroforming methods may be used to create a replica of the grating on the concave or convex membrane. For example, the pressure vessel assembly may be submerged into an electro-forming solution and negative electric potential applied to the metal coated membrane using an insulated wire. Positive electric potential may be then applied to a nickel or other metal plate submerged into the same solution. Metal ions would transfer from the plate through the solution into the membrane, producing high fidelity metal replica of the grating on the membrane. In one variation, an adhesive may be deposited on the deformable substrate, and then cured without touching the rigid, curved substrate. Edges of the deformable substrate may be attached to the rigid substrate to ensure uniform deformation of the deformable substrate. The assembly may be performed in vacuum, and then taken out to atmospheric pressure conditions to ensure that no air is trapped between the deformable and rigid substrates. Alternatively, a rigid surface with complementary curvature to the rigid substrate may be used to ensure uniform adhesion of the deformable substrate to the rigid substrate. Liquid may be applied to the surface of the deformable substrate to uniformly distribute pressure across its surface during the curing or hardening of the adhesive, or the film may be pressed into the surface using a deformable object or surface. After the attachment is complete, the grooves may be coated with reflective or dielectric layers to improve diffraction efficiency.
NASA Astrophysics Data System (ADS)
Milliner, C. W. D.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.
2014-12-01
Coseismic surface deformation is typically measured in the field by geologists and with a range of geophysical methods such as InSAR, LiDAR and GPS. Current methods, however, either fail to capture the near-field coseismic surface deformation pattern where vital information is needed, or lack pre-event data. We develop a standardized and reproducible methodology to fully constrain the surface, near-field, coseismic deformation pattern in high resolution using aerial photography. We apply our methodology using the program COSI-corr to successfully cross-correlate pairs of aerial, optical imagery before and after the 1992, Mw 7.3 Landers and 1999, Mw 7.1 Hector Mine earthquakes. This technique allows measurement of the coseismic slip distribution and magnitude and width of off-fault deformation with sub-pixel precision. This technique can be applied in a cost effective manner for recent and historic earthquakes using archive aerial imagery. We also use synthetic tests to constrain and correct for the bias imposed on the result due to use of a sliding window during correlation. Correcting for artificial smearing of the tectonic signal allows us to robustly measure the fault zone width along a surface rupture. Furthermore, the synthetic tests have constrained for the first time the measurement precision and accuracy of estimated fault displacements and fault-zone width. Our methodology provides the unique ability to robustly understand the kinematics of surface faulting while at the same time accounting for both off-fault deformation and measurement biases that typically complicates such data. For both earthquakes we find that our displacement measurements derived from cross-correlation are systematically larger than the field displacement measurements, indicating the presence of off-fault deformation. We show that the Landers and Hector Mine earthquake accommodated 46% and 38% of displacement away from the main primary rupture as off-fault deformation, over a mean deformation width of 183 m and 133 m, respectively. We envisage that correlation results derived from our methodology will provide vital data for near-field deformation patterns and will be of significant use for constraining inversion solutions for fault slip at depth.
Surface phenomena revealed by in situ imaging: studies from adhesion, wear and cutting
NASA Astrophysics Data System (ADS)
Viswanathan, Koushik; Mahato, Anirban; Yeung, Ho; Chandrasekar, Srinivasan
2017-03-01
Surface deformation and flow phenomena are ubiquitous in mechanical processes. In this work we present an in situ imaging framework for studying a range of surface mechanical phenomena at high spatial resolution and across a range of time scales. The in situ framework is capable of resolving deformation and flow fields quantitatively in terms of surface displacements, velocities, strains and strain rates. Three case studies are presented demonstrating the power of this framework for studying surface deformation. In the first, the origin of stick-slip motion in adhesive polymer interfaces is investigated, revealing a intimate link between stick-slip and surface wave propagation. Second, the role of flow in mediating formation of surface defects and wear particles in metals is analyzed using a prototypical sliding process. It is shown that conventional post-mortem observation and inference can lead to erroneous conclusions with regard to formation of surface cracks and wear particles. The in situ framework is shown to unambiguously capture delamination wear in sliding. Third, material flow and surface deformation in a typical cutting process is analyzed. It is shown that a long-standing problem in the cutting of annealed metals is resolved by the imaging, with other benefits such as estimation of energy dissipation and power from the flow fields. In closure, guidelines are provided for profitably exploiting in situ observations to study large-strain deformation, flow and friction phenomena at surfaces that display a variety of time-scales.
On space of integrable quantum field theories
Smirnov, F. A.; Zamolodchikov, A. B.
2016-12-21
Here, we study deformations of 2D Integrable Quantum Field Theories (IQFT) which preserve integrability (the existence of infinitely many local integrals of motion). The IQFT are understood as “effective field theories”, with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields X s, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars X s are built from the components of the associated conserved currents in a universal way. The first of these scalars, X 1, coincides with the composite field View the MathMLmore » source(TT¯) built from the components of the energy–momentum tensor. The deformations of quantum field theories generated by X 1 are “solvable” in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations X s are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators X s in sine-Gordon theory. Lastly, we also make some remarks on the problem of UV completeness of such integrable deformations.« less
NASA Astrophysics Data System (ADS)
Borsa, A. A.; Adusumilli, S.; Agnew, D. C.; Silverii, F.; Small, E. E.
2017-12-01
Modern geodetic observations of Earth surface deformation, initially targeted at processes such as tectonics and volcanism, also record the subtle signature of mass movements within Earth's atmosphere and hydrosphere. These observations, which track the elastic response of the solid earth to changing surface mass loads, are clearly evident in position time series from permanent Global Navigation Satellite System (GNSS) stations, which recent work has used to recover changes in terrestrial water storage (TWS) over seasonal and multi-annual time scales. Earth's elastic reponse is nearly instantaneous, which suggests the possibility of observing TWS changes at much shorter periods, limited only by the 24 hour resolution of standard GNSS data products and noise in the GNSS position estimates. We present results showing that TWS increases from individual storms can be recovered using the GNSS network in the United States, and that the water mass changes are similar to gridded precipitation estimates from the National Centers for Environmental Prediction (NCEP). The gradual decline we observe in TWS following each storm is diagnostic of runoff and local evapotranspiration, and varies by location. By greatly increasing the temporal resolution of GNSS-derived estimates of TWS, we hope to provide constraints on integrated water fluxes from hydrological models on all relevant timescales.
Harrison, Richard W.; Schindler, J. Stephen; Pavich, Milan J.; Horton, J. Wright; Carter, Mark W.
2016-08-25
Centimeter-scale ground-surface deformation was produced by the August 23, 2011, magnitude (M) 5.8 earthquake that occurred in Mineral, Virginia. Ground-surface deformation also resulted from the earthquake aftershock sequence. This deformation occurred along a linear northeast-trend near Pendleton, Virginia. It is approximately 10 kilometers (km) northeast of the M5.8 epicenter and near the northeastern periphery of the epicentral area as defined by aftershocks. The ground-surface deformation extends over a distance of approximately 1.4 km and consists of parallel, small-scale (a few centimeters (cm) in amplitude) linear ridges and swales. Individual ridge and swale features are discontinuous and vary in length across a zone that ranges from about 20 meters (m) to less than 5 m in width. At one location, three fence posts and adjoining rails were vertically misaligned. Approximately 5 cm of uplift on one post provides a maximum estimate of vertical change from pre-earthquake conditions along the ridge and swale features. There was no change in the alignment of fence posts, indicating that deformation was entirely vertical. A broad monoclinal flexure with approximately 1 m of relief was identified by transit survey across surface deformation at the Carter farm site. There, surface deformation overlies the Carter farm fault, which is a zone of brittle faulting and fracturing along quartz veins, striking N40°E and dipping approximately 75°SE. Brecciation and shearing along this fault is interpreted as Quaternary in age because it disrupts the modern B-soil horizon. However, deformation is confined to saprolitized schist of the Ordovician Quantico Formation and the lowermost portion of overlying residuum, and is absent in the uppermost residuum and colluvial layer at the ground surface. Because there is a lack of surface shearing and very low relief, landslide processes were not a causative mechanism for the surface deformation. Two possible tectonic models and one non-tectonic model are considered: (1) tectonic, monoclinal flexuring along the Carter farm fault, probably aseismic, (2) tectonic, monoclinal flexuring related to a shallow (1–3 km) cluster of aftershocks (M2 to M3) that occurred approximately 1 to 1.5 km to the east of Carter farm, and (3) non-tectonic, differential response to seismic shaking between more-rigid quartz veins and soft residuum-saprolite under vertical motions that were created by Rayleigh surface waves radiating away from the August 23, 2011, hypocenter and propagating along strike of the Carter farm fault. These processes are not considered mutually exclusive, and all three support brittle deformation on the Carter farm fault during the Quaternary. In addition, abandoned stream valleys and active stream piracy are consistent with long-term uplift in vicinity of the Carter farm fault.
Wang, Shan; Cui, Lishan; Hao, Shijie; ...
2014-10-24
This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strainmore » of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.« less
Rates and style of Cenozoic deformation around the Gonghe Basin, northeastern Tibetan Plateau
Craddock, William H.; Kirby, Eric; Zhang, Huiping; Clark, Marin K.; Champagnac, Jean-Daniel; Yuan, Daoyang
2014-01-01
The northeastern Tibetan Plateau constitutes a transitional region between the low-relief physiographic plateau to the south and the high-relief ranges of the Qilian Shan to the north. Cenozoic deformation across this margin of the plateau is associated with localized growth of fault-cored mountain ranges and associated basins. Herein, we combine detailed structural analysis of the geometry of range-bounding faults and deformation of foreland basin strata with geomorphic and exhumational records of erosion in hanging-wall ranges in order to investigate the magnitude, timing, and style of deformation along the two primary fault systems, the Qinghai Nan Shan and the Gonghe Nan Shan. Structural mapping shows that both ranges have developed above imbricate fans of listric thrust faults, which sole into décollements in the middle crust. Restoration of shortening along balanced cross sections suggests a minimum of 0.8–2.2 km and 5.1–6.9 km of shortening, respectively. Growth strata in the associated foreland basin record the onset of deformation on the two fault systems at ca. 6–10 Ma and ca. 7–10 Ma, respectively, and thus our analysis suggests late Cenozoic shortening rates of 0.2 +0.2/–0.1 km/m.y. and 0.7 +0.3/–0.2 km/m.y. along the north and south sides of Gonghe Basin. Along the Qinghai Nan Shan, these rates are similar to late Pleistocene slip rates of ∼0.10 ± 0.04 mm/yr, derived from restoration and dating of a deformed alluvial-fan surface. Collectively, our results imply that deformation along both flanks of the doubly vergent Qilian Shan–Nan Shan initiated by ca. 10 Ma and that subsequent shortening has been relatively steady since that time.
NASA Astrophysics Data System (ADS)
Guerit, Laure; Goren, Liran; Dominguez, Stéphane; Malavieille, Jacques; Castelltort, Sébastien
2017-04-01
The morphology of a fluvial landscape reflects a balance between its own dynamics and external forcings, and therefore holds the potential to reveal local or large-scale tectonic patterns. Commonly, particular focus has been cast on the longitudinal profiles of rivers as they constitute sensitive recorders of vertical movements, that can be recovered based on models of bedrock incision. However, several recent studies have suggested that maps of rescaled distance along channel called chi (χ), derived from the commonly observed power law relation between the slope and the drainage area , could reveal transient landscapes in state of reorganization of basin geometry and location of water divides. If river networks deforms in response to large amount of distributed strain, then they might be used to reconstruct the mode and rate of horizontal deformation away from major active structures through the use of the parameter χ. To explore how streams respond to tectonic horizontal deformation, we develop an experimental model for studying river pattern evolution over a doubly-vergent orogenic wedge growing in a context of oblique convergence. We use a series of sprinklers located about the experimental table to activate erosion, sediment transport and river development on the surface of the experimental wedge. At the end of the experiment, the drainage network is statistically rotated clockwise, confirming that rivers can record the distribution of motion along the wedge. However, the amount of rotation does not match with the imposed deformation, and thus we infer that stream networks are not purely passive markers. Based on the comparison between the observed evolution of the fluvial system and the predictions made from χ maps, we show that the plan-view morphology of the streams results from the competition between the imposed deformation and fluvial processes of drainage reorganization.
NASA Technical Reports Server (NTRS)
Sarrafzadeh-Khoee, Adel K. (Inventor)
2000-01-01
The invention provides a method of triple-beam and triple-sensor in a laser speckle strain/deformation measurement system. The triple-beam/triple-camera configuration combined with sequential timing of laser beam shutters is capable of providing indications of surface strain and structure deformations. The strain and deformation quantities, the four variables of surface strain, in-plane displacement, out-of-plane displacement and tilt, are determined in closed form solutions.
Feedback of land subsidence on the movement and conjunctive use of water resources
Schmid, Wolfgang; Hanson, Randall T.; Leake, Stanley A.; Hughes, Joseph D.; Niswonger, Richard G.
2014-01-01
The dependency of surface- or groundwater flows and aquifer hydraulic properties on dewatering-induced layer deformation is not available in the USGS's groundwater model MODFLOW. A new integrated hydrologic model, MODFLOW-OWHM, formulates this dependency by coupling mesh deformation with aquifer transmissivity and storage and by linking land subsidence/uplift with deformation-dependent flows that also depend on aquifer head and other flow terms. In a test example, flows most affected were stream seepage and evapotranspiration from groundwater (ETgw). Deformation feedback also had an indirect effect on conjunctive surface- and groundwater use components: Changed stream seepage and streamflows influenced surface-water deliveries and returnflows. Changed ETgw affected irrigation demand, which jointly with altered surface-water supplies resulted in changed supplemental groundwater requirements and pumping and changed return runoff. This modeling feature will improve the impact assessment of dewatering-induced land subsidence/uplift (following irrigation pumping or coal-seam gas extraction) on surface receptors, inter-basin transfers, and surface-infrastructure integrity.
NASA Technical Reports Server (NTRS)
Feonychev, Alexander I.; Kalachinskaya, Irina S.; Pokhilko, Victor I.
1996-01-01
The deformation of the fluid column by an action of a low-frequency vibration is considered. It is shown that behavior of the free fluid surface depends on the frequency of applied vibration and its amplitude. In the area of very low frequencies when fluid has time to comment on travel of bounding solid walls limiting column, the harmonical oscillations of free surface with given frequency are observed. With increase of vibration frequency the steady-state relief on free fluid surface is formed. If the amplitude of vibration is very small and the frequency corresponding to the first peak in the vibration spectrum on the Mir orbital station, the deformation of free surface tends to zero. Fluid flow induced thermocapillary effect on deformed free surface is more unstable as in the case of smooth cylindrical surface. It was shown that width of heating zone affects very essentially the flow pattern and transition to oscillatory regime of thermocapillary convection.
Deformation relief induced by scratch testing on the surface of Hadfield steel
NASA Astrophysics Data System (ADS)
Lychagin, D. V.; Filippov, A. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.
2017-12-01
The paper is devoted to deformation relief formed on the surface of Hadfield steel while scratching under a linearly increasing load. The deformation relief is analyzed to detect regions with microfracture of the surface layer of Hadfield steel. Crack generation regions coincide with regions of the most intense acoustic emission (AE) signal. Single and multiple slip bands are observed in various grains of the material. As the load increases, slip bands thicken and grains with multiple slip are more frequent.
Hössl, Bernhard; Böhm, Helmut J; Schaber, Clemens F; Rammerstorfer, Franz G; Barth, Friedrich G
2009-09-01
Arachnid slit sensilla respond to minute strains in the exoskeleton. After having applied finite element (FE) analysis to simplified arrays of five straight slits (Hössl et al. J Comp Physiol A 193:445-459, 2007) we now present a computational study of the effects of more subtle natural variations in geometry, number and arrangement of slits on the slit face deformations. Our simulations show that even minor variations in these parameters can substantially influence a slit's directional response. Using white-light interferometric measurements of the surface deformations of a lyriform organ, it is shown that planar FE models are capable of predicting the principal characteristics of the mechanical responses. The magnitudes of the measured and calculated slit face deformations are in good agreement. At threshold, they measure between 1.7 and 43 nm. In a lyriform organ and a closely positioned loose group of slits, the detectable range of loads increases to approximately 3.5 times the range of the lyriform organ alone. Stress concentration factors (up to ca. 29) found in the vicinity of the slits were evaluated from the models. They are mitigated due to local thickening of the exocuticle and the arrangement of the chitinous microfibers that prevents the formation of cracks under physiological loading conditions.
NASA Astrophysics Data System (ADS)
Kaven, J. Ole; Barbour, Andrew J.; Ali, Tabrez
2017-04-01
Continual production of geothermal energy at times leads to significant surface displacement that can be observed in high spatial resolution using InSAR imagery. The surface displacement can be analyzed to resolve volume change within the reservoir revealing the often-complicated patterns of reservoir deformation. Simple point source models of reservoir deformation in a homogeneous elastic or poro-elastic medium can be superimposed to provide spatially varying, kinematic representations of reservoir deformation. In many cases, injection and production data are known in insufficient detail; but, when these are available, the same Green functions can be used to constrain the reservoir deformation. Here we outline how the injection and production data can be used to constrain bounds on the solution by posing the inversion as a quadratic programming with inequality constraints and regularization rather than a conventional least squares solution with regularization. We apply this method to InSAR-derived surface displacements at the Coso and Salton Sea Geothermal Fields in California, using publically available injection and production data. At both geothermal fields the available surface deformation in conjunction with the injection and production data permit robust solutions for the spatially varying reservoir deformation. The reservoir deformation pattern resulting from the constrained quadratic programming solution is more heterogeneous when compared to a conventional least squares solution. The increased heterogeneity is consistent with the known structural controls on heat and fluid transport in each geothermal reservoir.
NASA Astrophysics Data System (ADS)
Wassmann, Sara; Stöckhert, Bernhard
2012-09-01
Exhumed high pressure-low temperature metamorphic mélanges of tectonic origin are believed to reflect high strain accumulated in large scale interplate shear zones during subduction. Rigid blocks of widely varying size are embedded in a weak matrix, which takes up the deformation and controls the rheology of the composite. The microfabrics of a highly deformed jadeite-blueschist from the Franciscan Complex, California, are investigated to help understand deformation mechanisms at depth. The specimen shows a transposed foliation with dismembered fold hinges and boudinage structures. Several generations of open fractures have been sealed to become veins at high-pressure metamorphic conditions. The shape of these veins, frequently restricted to specific layers, indicates distributed host rock deformation during and after sealing. Small cracks in jadeite and lawsonite are healed, with tiny quartz inclusions aligned along the former fracture surface. Large jadeite porphyroblasts show strain caps and strain shadows. Open fractures are sealed by quartz and new jadeite epitactically grown on the broken host. Monophase glaucophane aggregates consist of undeformed needles with a diameter between 0.1 and 2 μm, grown after formation of isoclinal folds. Only quartz microfabrics indicate some stage of crystal-plastic deformation, followed by annealing and grain growth. Aragonite in the latest vein generation shows retrogression to calcite along its rims. The entire deformation happened under HP-LT metamorphic conditions in the stability field of jadeite and quartz, at temperatures between 300 and 450 °C and pressures exceeding 1-1.4 GPa. The microfabrics indicate that dissolution precipitation creep was the predominant deformation mechanism, accompanied by brittle failure and vein formation at quasi-lithostatic pore fluid pressure. This indicates low flow strength and, combined with high strain rates expected for localized deformation between the plates, a very low viscosity of material in the interplate shear zone at a depth > 30-45 km.
Fracture and healing of elastomers: A phase-transition theory and numerical implementation
NASA Astrophysics Data System (ADS)
Kumar, Aditya; Francfort, Gilles A.; Lopez-Pamies, Oscar
2018-03-01
A macroscopic theory is proposed to describe, explain, and predict the nucleation and propagation of fracture and healing in elastomers undergoing arbitrarily large quasistatic deformations. The theory, which can be viewed as a natural generalization of the phase-field approximation of the variational theory of brittle fracture of Francfort and Marigo (1998) to account for physical attributes innate to elastomers that have been recently unveiled by experiments at high spatio-temporal resolution, rests on two central ideas. The first one is to view elastomers as solids capable to undergo finite elastic deformations and capable also to phase transition to another solid of vanishingly small stiffness: the forward phase transition serves to model the nucleation and propagation of fracture while the reverse phase transition models the possible healing. The second central idea is to take the phase transition to be driven by the competition between a combination of strain energy and hydrostatic stress concentration in the bulk and surface energy on the created/healed new surfaces in the elastomer. From an applications point of view, the proposed theory amounts to solving a system of two coupled and nonlinear PDEs for the deformation field and an order parameter, or phase field. A numerical scheme is presented to generate solutions for these PDEs in N = 2 and 3 space dimensions. This is based on an efficient non-conforming finite-element discretization, which remains stable for large deformations and elastomers of any compressibility, together with an implicit gradient flow solver, which is able to deal with the large changes in the deformation field that can ensue locally in space and time from the nucleation of fracture. The last part of this paper is devoted to presenting sample simulations of the so-called Gent-Park experiment. Those are confronted with recent experimental results for various types of silicone elastomers.
Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation
NASA Astrophysics Data System (ADS)
Keep, Myra; Hansen, Vicki L.
1994-12-01
Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surfce deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus, northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structural fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength, and inferred amplitude of mapped structures are small, (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implication of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a ``deformation-from-below'' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.
Nanoparticle agglomeration in an evaporating levitated droplet for different acoustic amplitudes
NASA Astrophysics Data System (ADS)
Tijerino, Erick; Basu, Saptarshi; Kumar, Ranganathan
2013-01-01
Radiatively heated levitated functional droplets with nanosilica suspensions exhibit three distinct stages namely pure evaporation, agglomeration, and finally structure formation. The temporal history of the droplet surface temperature shows two inflection points. One inflection point corresponds to a local maximum and demarcates the end of transient heating of the droplet and domination of vaporization. The second inflection point is a local minimum and indicates slowing down of the evaporation rate due to surface accumulation of nanoparticles. Morphology and final precipitation structures of levitated droplets are due to competing mechanisms of particle agglomeration, evaporation, and shape deformation. In this work, we provide a detailed analysis for each process and propose two important timescales for evaporation and agglomeration that determine the final diameter of the structure formed. It is seen that both agglomeration and evaporation timescales are similar functions of acoustic amplitude (sound pressure level), droplet size, viscosity, and density. However, we show that while the agglomeration timescale decreases with initial particle concentration, the evaporation timescale shows the opposite trend. The final normalized diameter can be shown to be dependent solely on the ratio of agglomeration to evaporation timescales for all concentrations and acoustic amplitudes. The structures also exhibit various aspect ratios (bowls, rings, spheroids) which depend on the ratio of the deformation timescale (tdef) and the agglomeration timescale (tg). For tdef
Local heat treatment of high strength steels with zoom-optics and 10kW-diode laser
NASA Astrophysics Data System (ADS)
Baumann, Markus; Krause, Volker; Bergweiler, Georg; Flaischerowitz, Martin; Banik, Janko
2012-03-01
High strength steels enable new solutions for weight optimized car bodies without sacrificing crash safety. However, cold forming of these steels is limited due to the need of high press capacity, increased tool wear, and limitations in possible geometries. One can compensate for these drawbacks by local heat treatment of the blanks. In high-deformation areas the strength of the material is reduced and the plasticity is increased by diode laser irradiation. Local heat treatment with diode laser radiation could also yield key benefits for the applicability of press hardened parts. High strength is not desired all over the part. Joint areas or deformation zones for requested crash properties require locally reduced strength. In the research project "LOKWAB" funded by the German Federal Ministry of Education and Research (BMBF), heat treatment of high strength steels was investigated in cooperation with Audi, BMW, Daimler, ThyssenKrupp, Fraunhofer- ILT, -IWU and others. A diode laser with an output power of 10 kW was set up to achieve acceptable process speed. Furthermore a homogenizing zoom-optics was developed, providing a rectangular focus with homogeneous power density. The spot size in x- and y-direction can be changed independently during operation. With pyrometer controlled laser power the surface temperature is kept constant, thus the laser treated zone can be flexibly adapted to the needs. Deep-drawing experiments show significant improvement in formability. With this technique, parts can be manufactured, which can conventionally only be made of steel with lower strength. Locally reduced strength of press hardened serial parts was demonstrated.
NASA Astrophysics Data System (ADS)
Weiss, J. R.; Ito, G.; Brooks, B. A.; Olive, J. A. L.; Foster, J. H.; Howell, S. M.
2015-12-01
Some of the most destructive earthquakes on Earth are associated with active orogenic wedges. Despite a sound understanding of the basic mechanics that govern whole wedge structure over geologic time scales and a growing body of studies that have characterized the deformation associated with historic to recent earthquakes, first order questions remain about the linkage of the two sets of processes at the intermediate seismotectonic timescales. Numerical models have the power to test the effects of specific mechanical conditions on the evolution of observables at active orogenic wedges. Here we use a two-dimensional, continuum mechanics-based, finite difference method with a visco-elasto-plastic rheology coupled with surface processes to investigate the spatiotemporal distribution of deformation during wedge growth. The model simulates the contraction of a crustal layer overlying a weak base (décollement) against a rigid backstop and the spontaneous nucleation and evolution of fault zones due to cohesive, Mohr-Coulomb failure with strain weakening. Consistent with critical wedge theory, the average slope across the wedge is controlled by the relative frictional strengths of the wedge and décollement. Initial calculations predict changes in wedge deformation on short geologic timescales (103-105yrs) that involve episodes of widening as new, foreland-verging thrusts nucleate near the surface beyond the wedge toe and propagate down-dip to intersect the décollement. All the while, the wedge thickens via slip on older, internal fault zones. The aim of this study is to identify the parameters controlling the timescales of 1) episodic widening versus thickening and 2) nucleation and life-span of individual fault zones. These are initial steps needed to link earthquake observations to the long-term tectonic states inferred at various orogenic belts around the world.
Gravimetric control of active volcanic processes
NASA Astrophysics Data System (ADS)
Saltogianni, Vasso; Stiros, Stathis
2017-04-01
Volcanic activity includes phases of magma chamber inflation and deflation, produced by movement of magma and/or hydrothermal processes. Such effects usually leave their imprint as deformation of the ground surfaces which can be recorded by GNSS and other methods, on one hand, and on the other hand they can be modeled as elastic deformation processes, with deformation produced by volcanic masses of finite dimensions such as spheres, ellipsoids and parallelograms. Such volumes are modeled on the basis of inversion (non-linear, numerical solution) of systems of equations relating the unknown dimensions and location of magma sources with observations, currently mostly GNSS and INSAR data. Inversion techniques depend on the misfit between model predictions and observations, but because systems of equations are highly non-linear, and because adopted models for the geometry of magma sources is simple, non-unique solutions can be derived, constrained by local extrema. Assessment of derived magma models can be provided by independent observations and models, such as micro-seismicity distribution and changes in geophysical parameters. In the simplest case magmatic intrusions can be modeled as spheres with diameters of at least a few tens of meters at a depth of a few kilometers; hence they are expected to have a gravimetric signature in permanent recording stations on the ground surface, while larger intrusions may also have an imprint in sensors in orbit around the earth or along precisely defined air paths. Identification of such gravimetric signals and separation of the "true" signal from the measurement and ambient noise requires fine forward modeling of the wider areas based on realistic simulation of the ambient gravimetric field, and then modeling of its possible distortion because of magmatic anomalies. Such results are useful to remove ambiguities in inverse modeling of ground deformation, and also to detect magmatic anomalies offshore.
NASA Astrophysics Data System (ADS)
Bour, O.; Ruelleu, S.; Le Borgne, T.; Boudin, F.; Moreau, F.; Durand, S.; Longuevergne, L.
2011-12-01
Crystalline rocks aquifers are difficult to characterize since flow is mainly localized in few fractures or faults. In particular, the geometry of the main flow paths and the connections of the aquifer with the sub-surface are often poorly constrained. Here, we present results from different geophysical and hydraulic methods to quantify fault zone hydrology of a crystalline confined aquifer (Ploemeur, French Brittany). This outstandingly productive crystalline rock aquifer is exploited at a rate of about 10 6 m3 per year since 1991. The pumping site is located at the intersection of two main structures: the contact zone between granite roof and overlying micaschists, and a steeply dipping fault striking North 20°, with combined dextral strike-slip and normal components. Core samples and borehole optical imagery reveals that the contact zone at the granite roof consists of alternating deformed granitic sheets and enclaves of micaschists, pegmatite and aplite dykes, as well as quartz veins. Locally, this contact is marked by mylonites and pegmatite-bearing breccias that are often but not systematically associated with major borehole inflows. Other significant inflows are localized within single fractures independently of the lithologies encountered. At the borehole scale the structural and hydraulic properties of the aquifer are thus highly variable. At the site scale - typically a kilometer squared - the water levels are monitored in 22 boreholes, 100 meters deep in average. The connectivity of the main flow paths and the hydraulic properties are relatively well constrained and quantified thanks to cross-borehole flowmeter tests and traditional pumping tests. In complement, long-base tiltmeters monitoring and ground-surface leveling allows to monitor sub-surface deformation. It provides a quantification of the hydro-mechanical properties of the aquifer and better constraints about the geometry of the main fault zone. Surprisingly, the storage coefficient of the confined aquifer is relatively high, in agreement with ground-surface deformation measurements that suggest a relativity high compressibility of the fault zone. At larger scale, we show through a high-resolution gravimetric survey that the highly fractured contact between granite and micaschists, which constitutes the main path for groundwater flow, is a gently dipping structure. A 3D gravimetric model confirms also the presence of sub-vertical faults that may constitute important drains for the aquifer recharge. In addition, groundwater temperature monitoring allows to shows that the main water supply comes from a depth of at least 300 meters. Such a depth in a low relief region involves relatively deep groundwater circulation that can be achieved only thanks to major permeable fault zone. This field example shows the advantages and limitations of some traditional and innovative methods to characterize fault zone hydrology in crystalline bedrock aquifers.
Quantitative estimation of source complexity in tsunami-source inversion
NASA Astrophysics Data System (ADS)
Dettmer, Jan; Cummins, Phil R.; Hawkins, Rhys; Jakir Hossen, M.
2016-04-01
This work analyses tsunami waveforms to infer the spatiotemporal evolution of sea-surface displacement (the tsunami source) caused by earthquakes or other sources. Since the method considers sea-surface displacement directly, no assumptions about the fault or seafloor deformation are required. While this approach has no ability to study seismic aspects of rupture, it greatly simplifies the tsunami source estimation, making it much less dependent on subjective fault and deformation assumptions. This results in a more accurate sea-surface displacement evolution in the source region. The spatial discretization is by wavelet decomposition represented by a trans-D Bayesian tree structure. Wavelet coefficients are sampled by a reversible jump algorithm and additional coefficients are only included when required by the data. Therefore, source complexity is consistent with data information (parsimonious) and the method can adapt locally in both time and space. Since the source complexity is unknown and locally adapts, no regularization is required, resulting in more meaningful displacement magnitudes. By estimating displacement uncertainties in a Bayesian framework we can study the effect of parametrization choice on the source estimate. Uncertainty arises from observation errors and limitations in the parametrization to fully explain the observations. As a result, parametrization choice is closely related to uncertainty estimation and profoundly affects inversion results. Therefore, parametrization selection should be included in the inference process. Our inversion method is based on Bayesian model selection, a process which includes the choice of parametrization in the inference process and makes it data driven. A trans-dimensional (trans-D) model for the spatio-temporal discretization is applied here to include model selection naturally and efficiently in the inference by sampling probabilistically over parameterizations. The trans-D process results in better uncertainty estimates since the parametrization adapts parsimoniously (in both time and space) according to the local data resolving power and the uncertainty about the parametrization choice is included in the uncertainty estimates. We apply the method to the tsunami waveforms recorded for the great 2011 Japan tsunami. All data are recorded on high-quality sensors (ocean-bottom pressure sensors, GPS gauges, and DART buoys). The sea-surface Green's functions are computed by JAGURS and include linear dispersion effects. By treating the noise level at each gauge as unknown, individual gauge contributions to the source estimate are appropriately and objectively weighted. The results show previously unreported detail of the source, quantify uncertainty spatially, and produce excellent data fits. The source estimate shows an elongated peak trench-ward from the hypo centre that closely follows the trench, indicating significant sea-floor deformation near the trench. Also notable is a bi-modal (negative to positive) displacement feature in the northern part of the source near the trench. The feature has ~2 m amplitude and is clearly resolved by the data with low uncertainties.
Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load.
Sedmák, P; Pilch, J; Heller, L; Kopeček, J; Wright, J; Sedlák, P; Frost, M; Šittner, P
2016-08-05
The stress-induced martensitic transformation in tensioned nickel-titanium shape-memory alloys proceeds by propagation of macroscopic fronts of localized deformation. We used three-dimensional synchrotron x-ray diffraction to image at micrometer-scale resolution the grain-resolved elastic strains and stresses in austenite around one such front in a prestrained nickel-titanium wire. We found that the local stresses in austenite grains are modified ahead of the nose cone-shaped buried interface where the martensitic transformation begins. Elevated shear stresses at the cone interface explain why the martensitic transformation proceeds in a localized manner. We established the crossover from stresses in individual grains to a continuum macroscopic internal stress field in the wire and rationalized the experimentally observed internal stress field and the topology of the macroscopic front by means of finite element simulations of the localized deformation. Copyright © 2016, American Association for the Advancement of Science.
Texture- and deformability-based surface recognition by tactile image analysis.
Khasnobish, Anwesha; Pal, Monalisa; Tibarewala, D N; Konar, Amit; Pal, Kunal
2016-08-01
Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material recognition based on its deformability and texture.
Earthquake cycle deformation in the Tibetan plateau with a weak mid-crustal layer
NASA Astrophysics Data System (ADS)
DeVries, Phoebe M. R.; Meade, Brendan J.
2013-06-01
observations of interseismic deformation across the Tibetan plateau contain information about both tectonic and earthquake cycle processes. Time-variations in surface velocities between large earthquakes are sensitive to the rheological structure of the subseismogenic crust, and, in particular, the viscosity of the middle and lower crust. Here we develop a semianalytic solution for time-dependent interseismic velocities resulting from viscoelastic stress relaxation in a localized midcrustal layer in response to forcing by a sequence of periodic earthquakes. Earthquake cycle models with a weak midcrustal layer exhibit substantially more near-fault preseismic strain localization than do classic two-layer models at short (<100 yr) Maxwell times. We apply both this three-layer model and the classic two-layer model to geodetic observations before and after the 1997 MW = 7.6 Manyi and 2001 MW = 7.8 Kokoxili strike-slip earthquakes in Tibet to estimate the viscosity of the crust below a 20 km thick seismogenic layer. For these events, interseismic stress relaxation in a weak (viscosity ≤1018.5 Paṡs) and thin (height ≤20 km) midcrustal layer explains observations of both preseismic near-fault strain localization and rapid (>50 mm/yr) postseismic velocities in the years following the coseismic ruptures. We suggest that earthquake cycle models with a localized midcrustal layer can simultaneously explain both preseismic and postseismic geodetic observations with a single Maxwell viscosity, while the classic two-layer model requires a rheology with multiple relaxation time scales.
Characterization of Damage in Triaxial Braid Composites Under Tensile Loading
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Roberts, Gary D.; Goldberg, Robert K.
2009-01-01
Carbon fiber composites utilizing flattened, large tow yarns in woven or braided forms are being used in many aerospace applications. Their complex fiber architecture and large unit cell size present challenges in both understanding deformation processes and measuring reliable material properties. This report examines composites made using flattened 12k and 24k standard modulus carbon fiber yarns in a 0 /+60 /-60 triaxial braid architecture. Standard straight-sided tensile coupons are tested with the 0 axial braid fibers either parallel with or perpendicular to the applied tensile load (axial or transverse tensile test, respectively). Nonuniform surface strain resulting from the triaxial braid architecture is examined using photogrammetry. Local regions of high strain concentration are examined to identify where failure initiates and to determine the local strain at the time of initiation. Splitting within fiber bundles is the first failure mode observed at low to intermediate strains. For axial tensile tests splitting is primarily in the 60 bias fibers, which were oriented 60 to the applied load. At higher strains, out-of-plane deformation associated with localized delamination between fiber bundles or damage within fiber bundles is observed. For transverse tensile tests, the splitting is primarily in the 0 axial fibers, which were oriented transverse to the applied load. The initiation and accumulation of local damage causes the global transverse stress-strain curves to become nonlinear and causes failure to occur at a reduced ultimate strain. Extensive delamination at the specimen edges is also observed.
NASA Astrophysics Data System (ADS)
Laslandes, M.; Ferrari, M.; Hugot, E.; Lemaitre, G.
2017-11-01
The need for both high quality images and light structures is a constant concern in the conception of space telescopes. In this paper, we present an active optics system as a way to fulfill those two objectives. Indeed, active optics consists in controlling mirrors' deformations in order to improve the images quality [1]. The two main applications of active optics techniques are the in-situ compensation of phase errors in a wave front by using a corrector deformable mirror [2] and the manufacturing of aspherical mirrors by stress polishing or by in-situ stressing [3]. We will focus here on the wave-front correction. Indeed, the next generation of space telescopes will have lightweight primary mirrors; in consequence, they will be sensitive to the environment variations, inducing optical aberrations in the instrument. An active optics system is principally composed of a deformable mirror, a wave front sensor, a set of actuators deforming the mirror and control/command electronics. It is used to correct the wave-front errors due to the optical design, the manufacturing imperfections, the large lightweight primary mirrors' deflection in field gravity, the fixation devices, and the mirrors and structures' thermal distortions due to the local turbulence [4]. Active optics is based on the elasticity theory [5]; forces and/or load are used to deform a mirror. Like in adaptive optics, actuators can simply be placed under the optical surface [1,2], but other configurations have also been studied: a system's simplification, inducing a minimization of the number of actuators can be achieved by working on the mirror design [5]. For instance, in the so called Vase form Multimode Deformable Mirror [6], forces are applied on an external ring clamped on the pupil. With this method, there is no local effect due to the application of forces on the mirror's back face. Furthermore, the number of actuators needed to warp the mirror does not depend on the pupil size; it is a fully scalable configuration. The insertion of a Vase form Multimode Deformable Mirror on the design of an optical instrument will allow correcting the most common low spatial frequency aberrations. This concept could be applied in a space telescope. A Finite Element Analysis of the developed model has been conducted in order to characterize the system's behavior and to validate the concept.
Seismic anisotropy and large-scale deformation of the Eastern Alps
NASA Astrophysics Data System (ADS)
Bokelmann, Götz; Qorbani, Ehsan; Bianchi, Irene
2013-12-01
Mountain chains at the Earth's surface result from deformation processes within the Earth. Such deformation processes can be observed by seismic anisotropy, via the preferred alignment of elastically anisotropic minerals. The Alps show complex deformation at the Earth's surface. In contrast, we show here that observations of seismic anisotropy suggest a relatively simple pattern of internal deformation. Together with earlier observations from the Western Alps, the SKS shear-wave splitting observations presented here show one of the clearest examples yet of mountain chain-parallel fast orientations worldwide, with a simple pattern nearly parallel to the trend of the mountain chain. In the Eastern Alps, the fast orientations do not connect with neighboring mountain chains, neither the present-day Carpathians, nor the present-day Dinarides. In that region, the lithosphere is thin and the observed anisotropy thus resides within the asthenosphere. The deformation is consistent with the eastward extrusion toward the Pannonian basin that was previously suggested based on seismicity and surface geology.
Multiscale deformation of a liquid surface in interaction with a nanoprobe
NASA Astrophysics Data System (ADS)
Ledesma-Alonso, R.; Tordjeman, P.; Legendre, D.
2012-06-01
The interaction between a nanoprobe and a liquid surface is studied. The surface deformation depends on physical and geometric parameters, which are depicted by employing three dimensionless parameters: Bond number Bo, modified Hamaker number Ha, and dimensionless separation distance D*. The evolution of the deformation is described by a strongly nonlinear partial differential equation, which is solved by means of numerical methods. The dynamic analysis of the liquid profile points out the existence of a critical distance Dmin*, below which the irreversible wetting process of the nanoprobe happens. For D*≥Dmin*, the numerical results show the existence of two deformation profiles, one stable and another unstable from the energetic point of view. Different deformation length-scales, characterizing the stable liquid equilibrium interface, define the near- and the far-field deformation zones, where self-similar profiles are found. Finally, our results allow us to provide simple relationships between the parameters, which leads to determine the optimal conditions when performing atomic force microscope measurements over liquids.
Micrographic detection of plastic deformation in nickel base alloys
Steeves, Arthur F.; Bibb, Albert E.
1984-01-01
A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm.sup.2 and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.
Micrographic detection of plastic deformation in nickel-base alloys
Steeves, A.F.; Bibb, A.E.
1980-09-20
A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm/sup 2/ and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.
NASA Astrophysics Data System (ADS)
Denneulin, T.; Wollschläger, N.; Everhardt, A. S.; Farokhipoor, S.; Noheda, B.; Snoeck, E.; Hÿtch, M.
2018-05-01
Lead zirconate titanate samples are used for their piezoelectric and ferroelectric properties in various types of micro-devices. Epitaxial layers of tetragonal perovskites have a tendency to relax by forming ferroelastic domains. The accommodation of the a/c/a/c polydomain structure on a flat substrate leads to nanoscale deformation gradients which locally influence the polarization by flexoelectric effect. Here, we investigated the deformation fields in epitaxial layers of Pb(Zr0.2Ti0.8)O3 grown on SrTiO3 substrates using transmission electron microscopy (TEM). We found that the deformation gradients depend on the domain walls inclination ( or to the substrate interface) of the successive domains and we describe three different a/c/a domain configurations: one configuration with parallel a-domains and two configurations with perpendicular a-domains (V-shaped and hat--shaped). In the parallel configuration, the c-domains contain horizontal and vertical gradients of out-of-plane deformation. In the V-shaped and hat--shaped configurations, the c-domains exhibit a bending deformation field with vertical gradients of in-plane deformation. Each of these configurations is expected to have a different influence on the polarization and so the local properties of the film. The deformation gradients were measured using dark-field electron holography, a TEM technique, which offers a good sensitivity (0.1%) and a large field-of-view (hundreds of nanometers). The measurements are compared with finite element simulations.
Tough and deformable glasses with bioinspired cross-ply architectures.
Yin, Zhen; Dastjerdi, Ahmad; Barthelat, Francois
2018-05-15
Glasses are optically transparent, hard materials that have been in sustained demand and usage in architectural windows, optical devices, electronics and solar panels. Despite their outstanding optical qualities and durability, their brittleness and low resistance to impact still limits wider applications. Here we present new laminated glass designs that contain toughening cross-ply architectures inspired from fish scales and arthropod cuticles. This seemingly minor enrichment completely transforms the way laminated glass deforms and fractures, and it turns a traditionally brittle material into a stretchy and tough material with little impact on surface hardness and optical quality. Large ply rotation propagates over large volumes, and localization is delayed in tension, even if a strain softening interlayer is used, in a remarkable mechanism which is generated by the kinematics of the plies and geometrical hardening. Compared to traditional laminated glass which degrades significantly in performance when damaged, our cross-ply architecture glass is damage-tolerant and 50 times tougher in energy terms. Despite the outstanding optical qualities and durability of glass, its brittleness and low resistance to impact still limits its wider application. Here we present new laminated glass designs that contain toughening cross-ply architectures inspired from fish scales and arthropod cuticles. Enriching laminated designs with crossplies completely transforms the material deforms and fractures, and turns a traditionally brittle material into a stretchy and tough material - with little impact on surface hardness and optical quality. Large ply rotation propagates over large volumes and localization is delayed in tension because of a remarkable and unexpected geometrical hardening effect. Compared to traditional laminated glass which degrades significantly in performance when damaged, our cross-ply architecture glass is damage-tolerant and it is 50 times tougher in energy terms. Our glass-based, transparent material is highly innovative and it is the first of its kind. We believe it will have impact in broad range of applications in construction, coatings, chemical engineering, electronics, photovoltaics. Copyright © 2018. Published by Elsevier Ltd.
Exactly solved models on planar graphs with vertices in {Z}^3
NASA Astrophysics Data System (ADS)
Kels, Andrew P.
2017-12-01
It is shown how exactly solved edge interaction models on the square lattice, may be extended onto more general planar graphs, with edges connecting a subset of next nearest neighbour vertices of {Z}3 . This is done by using local deformations of the square lattice, that arise through the use of the star-triangle relation. Similar to Baxter’s Z-invariance property, these local deformations leave the partition function invariant up to some simple factors coming from the star-triangle relation. The deformations used here extend the usual formulation of Z-invariance, by requiring the introduction of oriented rapidity lines which form directed closed paths in the rapidity graph of the model. The quasi-classical limit is also considered, in which case the deformations imply a classical Z-invariance property, as well as a related local closure relation, for the action functional of a system of classical discrete Laplace equations.
NASA Astrophysics Data System (ADS)
Hyman, David; Bursik, Marcus
2018-03-01
The pressurization of pore fluids plays a significant role in deforming volcanic materials; however, understanding of this process remains incomplete, especially scenarios accompanying phreatic eruptions. Analog experiments presented here use a simple geometry to study the mechanics of this type of deformation. Syrup was injected into the base of a sand medium, simulating the permeable flow of fluids through shallow volcanic systems. The experiments examined surface deformation over many source depths and pressures. Surface deformation was recorded using a Microsoft® Kinect™ sensor, generating high-spatiotemporal resolution lab-scale digital elevation models (DEMs). The behavior of the system is controlled by the ratio of pore pressure to lithostatic loading (λ =p/ρ g D). For λ <10, deformation was accommodated by high-angle, reversed-mechanism shearing along which fluid preferentially flowed, leading to a continuous feedback between deformation and pressurization wherein higher pressure ratios yielded larger deformations. For λ >10, fluid expulsion from the layer was much faster, vertically fracturing to the surface with larger pressure ratios yielding less deformation. The temporal behavior of deformation followed a characteristic evolution that produced an approximately exponential increase in deformation with time until complete layer penetration. This process is distinguished from magmatic sources in continuous geodetic data by its rapidity and characteristic time evolution. The time evolution of the experiments compares well with tilt records from Mt. Ontake, Japan, in the lead-up to the deadly 2014 phreatic eruption. Improved understanding of this process may guide the evolution of magmatic intrusions such as dikes, cone sheets, and cryptodomes and contribute to caldera resurgence or deformation that destabilizes volcanic flanks.
Procedures for experimental measurement and theoretical analysis of large plastic deformations
NASA Technical Reports Server (NTRS)
Morris, R. E.
1974-01-01
Theoretical equations are derived and analytical procedures are presented for the interpretation of experimental measurements of large plastic strains in the surface of a plate. Orthogonal gage lengths established on the metal surface are measured before and after deformation. The change in orthogonality after deformation is also measured. Equations yield the principal strains, deviatoric stresses in the absence of surface friction forces, true stresses if the stress normal to the surface is known, and the orientation angle between the deformed gage line and the principal stress-strain axes. Errors in the measurement of nominal strains greater than 3 percent are within engineering accuracy. Applications suggested for this strain measurement system include the large-strain-stress analysis of impact test models, burst tests of spherical or cylindrical pressure vessels, and to augment small-strain instrumentation tests where large strains are anticipated.
NASA Astrophysics Data System (ADS)
Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane; Lavenant, Nicolas
2015-12-01
Fractured aquifers which bear valuable water resources are often difficult to characterize with classical hydrogeological tools due to their intrinsic heterogeneities. Here we implement ground surface deformation tools (tiltmetry and optical leveling) to monitor groundwater pressure changes induced by a classical hydraulic test at the Ploemeur observatory. By jointly analyzing complementary time constraining data (tilt) and spatially constraining data (vertical displacement), our results strongly suggest that the use of these surface deformation observations allows for estimating storativity and structural properties (dip, root depth, and lateral extension) of a large hydraulically active fracture, in good agreement with previous studies. Hence, we demonstrate that ground surface deformation is a useful addition to traditional hydrogeological techniques and opens possibilities for characterizing important large-scale properties of fractured aquifers with short-term well tests as a controlled forcing.
Self-peeling of impacting droplets
NASA Astrophysics Data System (ADS)
de Ruiter, Jolet; Soto, Dan; Varanasi, Kripa K.
2018-01-01
Whether an impacting droplet sticks or not to a solid surface has been conventionally controlled by functionalizing the target surface or by using additives in the drop. Here we report on an unexpected self-peeling phenomenon that can happen even on smooth untreated surfaces by taking advantage of the solidification of the impacting drop and the thermal properties of the substrate. We control this phenomenon by tuning the coupling of the short-timescale fluid dynamics--leading to interfacial defects upon local freezing--and the longer-timescale thermo-mechanical stresses--leading to global deformation. We establish a regime map that predicts whether a molten metal drop impacting onto a colder substrate will bounce, stick or self-peel. In many applications, avoiding adhesion of impacting droplets around designated target surfaces can be as crucial as bonding onto them to minimize waste or cleaning. These insights have broad applicability in processes ranging from thermal spraying and additive manufacturing to extreme ultraviolet lithography.
New signatures of underground nuclear tests revealed by satellite radar interferometry
Vincent, P.; Larsen, S.; Galloway, D.; Laczniak, R.J.; Walter, W.R.; Foxall, W.; Zucca, J.J.
2003-01-01
New observations of surface displacement caused by past underground nuclear tests at the Nevada Test Site (NTS) are presented using interferometric synthetic aperture radar (InSAR). The InSAR data reveal both coseismic and postseismic subsidence signals that extend one kilometer or more across regardless of whether or not a surface crater was formed from each test. While surface craters and other coseismic surface effects (ground cracks, etc.) may be detectable using high resolution optical or other remote sensing techniques, these broader, more subtle subsidence signals (one to several centimeters distributed over an area 1-2 kilometers across) are not detectable using other methods [Barker et al., 1998]. A time series of interferograms reveal that the postseismic signals develop and persist for months to years after the tests and that different rates and styles of deformation occur depending on the geologic and hydrologic setting and conditions of the local test area.
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Starnes, James H., Jr.; Prasad, Chunchu B.
1993-01-01
An analytical procedure is presented for determining the transient response of simply supported, rectangular laminated composite plates subjected to impact loads from airgun-propelled or dropped-weight impactors. A first-order shear-deformation theory is included in the analysis to represent properly any local short-wave-length transient bending response. The impact force is modeled as a locally distributed load with a cosine-cosine distribution. A double Fourier series expansion and the Timoshenko small-increment method are used to determine the contact force, out-of-plane deflections, and in-plane strains and stresses at any plate location due to an impact force at any plate location. The results of experimental and analytical studies are compared for quasi-isotropic laminates. The results indicate that using the appropriate local force distribution for the locally loaded area and including transverse-shear-deformation effects in the laminated plate response analysis are important. The applicability of the present analytical procedure based on small deformation theory is investigated by comparing analytical and experimental results for combinations of quasi-isotropic laminate thicknesses and impact energy levels. The results of this study indicate that large-deformation effects influence the response of both 24- and 32-ply laminated plates, and that a geometrically nonlinear analysis is required for predicting the response accurately.
Cramer, Tobias; Travaglini, Lorenzo; Lai, Stefano; Patruno, Luca; de Miranda, Stefano; Bonfiglio, Annalisa; Cosseddu, Piero; Fraboni, Beatrice
2016-01-01
The development of new materials and devices for flexible electronics depends crucially on the understanding of how strain affects electronic material properties at the nano-scale. Scanning Kelvin-Probe Microscopy (SKPM) is a unique technique for nanoelectronic investigations as it combines non-invasive measurement of surface topography and surface electrical potential. Here we show that SKPM in non-contact mode is feasible on deformed flexible samples and allows to identify strain induced electronic defects. As an example we apply the technique to investigate the strain response of organic thin film transistors containing TIPS-pentacene patterned on polymer foils. Controlled surface strain is induced in the semiconducting layer by bending the transistor substrate. The amount of local strain is quantified by a mathematical model describing the bending mechanics. We find that the step-wise reduction of device performance at critical bending radii is caused by the formation of nano-cracks in the microcrystal morphology of the TIPS-pentacene film. The cracks are easily identified due to the abrupt variation in SKPM surface potential caused by a local increase in resistance. Importantly, the strong surface adhesion of microcrystals to the elastic dielectric allows to maintain a conductive path also after fracture thus providing the opportunity to attenuate strain effects. PMID:27910889
A compressible multiphase framework for simulating supersonic atomization
NASA Astrophysics Data System (ADS)
Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark
2016-11-01
The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.