Sample records for local surface potential

  1. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    PubMed

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen-bonded systems is demonstrated here.

  2. Charge transfer excitons and image potential states on organic semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Qingxin; Muntwiler, Matthias; Zhu, X.-Y.

    2009-09-01

    We report two types of excited electronic states on organic semiconductor surfaces: image potential states (IPS) and charge transfer excitons (CTE). In the former, an excited electron is localized in the surface-normal direction by the image potential and delocalized in the surface plane. In the latter, the electron is localized in all directions by both the image potential and the Coulomb potential from a photogenerated hole on an organic molecule. We use crystalline pentacene and tetracene surfaces as model systems, and time- and angle-resolved two-photon photoemission spectroscopy to probe the energetics and dynamics of both the IPS and the CTE states. On either pentacene or tetracene surfaces, we observe delocalized image bands and a series of CT excitons with binding energies <0.5eV below the image-band minimum. The binding energies of these CT excitons agree well with solutions to the atomic-H-like Schrödinger equation based on the image potential and the electron-hole Coulomb potential. We hypothesize that the formation of CT excitons should be general to the surfaces of organic semiconductors where the relatively narrow valance-band width facilitates the localization of the hole and the low dielectric constant ensures strong electron-hole attraction.

  3. Strongly localized image states of spherical graphitic particles.

    PubMed

    Gumbs, Godfrey; Balassis, Antonios; Iurov, Andrii; Fekete, Paula

    2014-01-01

    We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.

  4. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies.

    PubMed

    Esrafili, Mehdi D; Behzadi, Hadi

    2013-06-01

    A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.

  5. The limits of local correlation theory: electronic delocalization and chemically smooth potential energy surfaces.

    PubMed

    Subotnik, Joseph E; Sodt, Alex; Head-Gordon, Martin

    2008-01-21

    Local coupled-cluster theory provides an algorithm for measuring electronic correlation quickly, using only the spatial locality of localized electronic orbitals. Previously, we showed [J. Subotnik et al., J. Chem. Phys. 125, 074116 (2006)] that one may construct a local coupled-cluster singles-doubles theory which (i) yields smooth potential energy surfaces and (ii) achieves near linear scaling. That theory selected which orbitals to correlate based only on the distances between the centers of different, localized orbitals, and the approximate potential energy surfaces were characterized as smooth using only visual identification. This paper now extends our previous algorithm in three important ways. First, locality is now based on both the distances between the centers of orbitals as well as the spatial extent of the orbitals. We find that, by accounting for the spatial extent of a delocalized orbital, one can account for electronic correlation in systems with some electronic delocalization using fast correlation methods designed around orbital locality. Second, we now enforce locality on not just the amplitudes (which measure the exact electron-electron correlation), but also on the two-electron integrals themselves (which measure the bare electron-electron interaction). Our conclusion is that we can bump integrals as well as amplitudes, thereby gaining a tremendous increase in speed and paradoxically increasing the accuracy of our LCCSD approach. Third and finally, we now make a rigorous definition of chemical smoothness as requiring that potential energy surfaces not support artificial maxima, minima, or inflection points. By looking at first and second derivatives from finite difference techniques, we demonstrate complete chemical smoothness of our potential energy surfaces (bumping both amplitudes and integrals). These results are significant both from a theoretical and from a computationally practical point of view.

  6. The local work function: Concept and implications

    NASA Astrophysics Data System (ADS)

    Wandelt, K.

    1997-02-01

    The term 'local work function' is now widely applied. The present work discusses the common physical basis of 'photoemission of adsorbed xenon (PAX)' and 'two-photon photonemissionspectroscopy of image potential states' as local work function probes. New examples with bimetallic and defective surfaces are presented which demonstrate the capability of PAX measurements for the characterization of heterogeneous surfaces on an atomic scale. Finally, implications of the existence of short-range variations of the surface potential at surface steps are addressed. In particular, dynamical work function change measurements are a sensitive probe for the step-density at surfaces and, as such, a powerful in-situ method to monitor film growth.

  7. EEG source localization: Sensor density and head surface coverage.

    PubMed

    Song, Jasmine; Davey, Colin; Poulsen, Catherine; Luu, Phan; Turovets, Sergei; Anderson, Erik; Li, Kai; Tucker, Don

    2015-12-30

    The accuracy of EEG source localization depends on a sufficient sampling of the surface potential field, an accurate conducting volume estimation (head model), and a suitable and well-understood inverse technique. The goal of the present study is to examine the effect of sampling density and coverage on the ability to accurately localize sources, using common linear inverse weight techniques, at different depths. Several inverse methods are examined, using the popular head conductivity. Simulation studies were employed to examine the effect of spatial sampling of the potential field at the head surface, in terms of sensor density and coverage of the inferior and superior head regions. In addition, the effects of sensor density and coverage are investigated in the source localization of epileptiform EEG. Greater sensor density improves source localization accuracy. Moreover, across all sampling density and inverse methods, adding samples on the inferior surface improves the accuracy of source estimates at all depths. More accurate source localization of EEG data can be achieved with high spatial sampling of the head surface electrodes. The most accurate source localization is obtained when the voltage surface is densely sampled over both the superior and inferior surfaces. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Ground Simulations of Near-Surface Plasma Field and Charging at the Lunar Terminator

    NASA Astrophysics Data System (ADS)

    Polansky, J.; Ding, N.; Wang, J.; Craven, P.; Schneider, T.; Vaughn, J.

    2012-12-01

    Charging in the lunar terminator region is the most complex and is still not well understood. In this region, the surface potential is sensitively influenced by both solar illumination and plasma flow. The combined effects from localized shadow generated by low sun elevation angles and localized wake generated by plasma flow over the rugged terrain can generate strongly differentially charged surfaces. Few models currently exist that can accurately resolve the combined effects of plasma flow and solar illumination over realistic lunar terminator topographies. This paper presents an experimental investigation of lunar surface charging at the terminator region in simulated plasma environments in a vacuum chamber. The solar wind plasma flow is simulated using an electron bombardment gridded Argon ion source. An electrostatic Langmuir probe, nude Faraday probes, a floating emissive probe, and retarding potential analyzer are used to quantify the plasma flow field. Surface potentials of both conducting and dielectric materials immersed in the plasma flow are measured with a Trek surface potential probe. The conducting material surface potential will simultaneously be measured with a high impedance voltmeter to calibrate the Trek probe. Measurement results will be presented for flat surfaces and objects-on-surface for various angles of attack of the plasma flow. The implications on the generation of localized plasma wake and surface charging at the lunar terminator will be discussed. (This research is supported by the NASA Lunar Advanced Science and Exploration Research program.)

  9. Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: Method and application to N{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Jason D.; Doraiswamy, Sriram; Candler, Graham V., E-mail: truhlar@umn.edu, E-mail: candler@aem.umn.edu

    2014-02-07

    Fitting potential energy surfaces to analytic forms is an important first step for efficient molecular dynamics simulations. Here, we present an improved version of the local interpolating moving least squares method (L-IMLS) for such fitting. Our method has three key improvements. First, pairwise interactions are modeled separately from many-body interactions. Second, permutational invariance is incorporated in the basis functions, using permutationally invariant polynomials in Morse variables, and in the weight functions. Third, computational cost is reduced by statistical localization, in which we statistically correlate the cutoff radius with data point density. We motivate our discussion in this paper with amore » review of global and local least-squares-based fitting methods in one dimension. Then, we develop our method in six dimensions, and we note that it allows the analytic evaluation of gradients, a feature that is important for molecular dynamics. The approach, which we call statistically localized, permutationally invariant, local interpolating moving least squares fitting of the many-body potential (SL-PI-L-IMLS-MP, or, more simply, L-IMLS-G2), is used to fit a potential energy surface to an electronic structure dataset for N{sub 4}. We discuss its performance on the dataset and give directions for further research, including applications to trajectory calculations.« less

  10. The localization of focal heart activity via body surface potential measurements: tests in a heterogeneous torso phantom

    NASA Astrophysics Data System (ADS)

    Wetterling, F.; Liehr, M.; Schimpf, P.; Liu, H.; Haueisen, J.

    2009-09-01

    The non-invasive localization of focal heart activity via body surface potential measurements (BSPM) could greatly benefit the understanding and treatment of arrhythmic heart diseases. However, the in vivo validation of source localization algorithms is rather difficult with currently available measurement techniques. In this study, we used a physical torso phantom composed of different conductive compartments and seven dipoles, which were placed in the anatomical position of the human heart in order to assess the performance of the Recursively Applied and Projected Multiple Signal Classification (RAP-MUSIC) algorithm. Electric potentials were measured on the torso surface for single dipoles with and without further uncorrelated or correlated dipole activity. The localization error averaged 11 ± 5 mm over 22 dipoles, which shows the ability of RAP-MUSIC to distinguish an uncorrelated dipole from surrounding sources activity. For the first time, real computational modelling errors could be included within the validation procedure due to the physically modelled heterogeneities. In conclusion, the introduced heterogeneous torso phantom can be used to validate state-of-the-art algorithms under nearly realistic measurement conditions.

  11. Measurement System of Surface Electrostatic Potential on Insulation Board in Vacuum and its Application

    NASA Astrophysics Data System (ADS)

    Morita, Hiroshi; Hatanaka, Ayumu; Yokosuka, Toshiyuki; Seki, Yoshitaka; Tsumuraya, Yoshiaki; Doi, Motomichi

    The measurement system of the surface electrostatic potential on a solid insulation board in vacuum has been developed. We used this system to measure the electrostatic potential distribution of the surface of a borosilicate glass plate applied a high voltage. A local increase in the electric field was observed. It is considered that this phenomenon is caused by a positive electrostatic charge generated by a secondary emission of field emission electrons from an electrode. On the other hand, a local increase in the electric field was not observed on a glass plate coated with silica particles and a glass plate roughened by sandblast. We reasoned that this could be because the electrons were trapped by the roughness of the surface. It is considered that these phenomena make many types of equipment using the vacuum insulation more reliable.

  12. Temporal patterning of the potential induced by localized corrosion of iron passivity in acid media. Growth and breakdown of the oxide film described in terms of a point defect model.

    PubMed

    Sazou, Dimitra; Pavlidou, Maria; Pagitsas, Michael

    2009-10-21

    This work analyses the nature of temporal patterning of the anodic potential induced by chlorides during polarization of iron under current-controlled conditions in acid solutions. It is shown that potential oscillations emerged as a result of the local chloride attack of a thin oxide layer, which covers the iron surface in its passive state. The mechanism by which both the local oxide breakdown and the subsequent localized active dissolution (pitting) occur is explained by considering a point defect model (PDM) developed to describe the oxide growth and breakdown. According to the PDM, chlorides occupy oxygen vacancies resulting in the inhibition of oxide growth and autocatalytic generation of cation vacancies that destabilize the oxide layer. Simultaneous transformation of the outer surface of the inner oxide layer to non-adherent ferrous chloride or oxo-chloride species leads to a further thinning of the oxide layer and its lifting-on from the iron surface. The process repeats again yielding sustained oscillations of the anodic potential. Analysis of the oscillatory response obtained under current-controlled conditions as a function of either the current or the time allows the suggestion of a set of alternate diagnostic criteria, which might be used to characterize localized corrosion of iron in acid solutions.

  13. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan

    2017-07-01

    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  14. The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma

    NASA Astrophysics Data System (ADS)

    Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao

    2018-05-01

    The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.

  15. Electron solvation and localization at interfaces

    NASA Astrophysics Data System (ADS)

    Harris, Charles B.; Szymanski, Paul; Garrett-Roe, Sean; Miller, Andre D.; Gaffney, Kelly J.; Liu, Simon H.; Bezel, Ilya

    2003-12-01

    Two-photon photoemission of thiolate/Ag(111), nitrile/Ag(111), and alcohol/Ag(111) interfaces elucidates electron solvation and localization in two dimensions. For low coverages of thiolates on Ag(111), the occupied (HOMO) and unoccupied (LUMO) electronic states of the sulfer-silver bond are localized due to the lattice gas structure of the adsorbate. As the coverage saturates and the adsorbate-adsorbate nearest neighbor distance decreases, the HOMO and LUMO delocalize across many adsorbate molecules. Alcohol- and nitrile-covered Ag(111) surfaces solvate excess image potential state (IPS) electrons. In the case of alcohol-covered surfaces, this solvation is due to a shift in the local workfunction of the surface. For two-monolayer coverages of nitriles/Ag(111), localization accompanies solvation of the IPS. The size of the localized electron can be estimated by Fourier transformation of the wavefunction from momentum- to position-space. The IPS electron localizes to 15 +/- 4 angstroms full-width at half maximum in the plane of the surface, i.e., to a single lattice site.

  16. Saddle point localization of molecular wavefunctions.

    PubMed

    Mellau, Georg Ch; Kyuberis, Alexandra A; Polyansky, Oleg L; Zobov, Nikolai; Field, Robert W

    2016-09-15

    The quantum mechanical description of isomerization is based on bound eigenstates of the molecular potential energy surface. For the near-minimum regions there is a textbook-based relationship between the potential and eigenenergies. Here we show how the saddle point region that connects the two minima is encoded in the eigenstates of the model quartic potential and in the energy levels of the [H, C, N] potential energy surface. We model the spacing of the eigenenergies with the energy dependent classical oscillation frequency decreasing to zero at the saddle point. The eigenstates with the smallest spacing are localized at the saddle point. The analysis of the HCN ↔ HNC isomerization states shows that the eigenstates with small energy spacing relative to the effective (v1, v3, ℓ) bending potentials are highly localized in the bending coordinate at the transition state. These spectroscopically detectable states represent a chemical marker of the transition state in the eigenenergy spectrum. The method developed here provides a basis for modeling characteristic patterns in the eigenenergy spectrum of bound states.

  17. Polychromatic microdiffraction characterization of defect gradients in severely deformed materials.

    PubMed

    Barabash, Rozaliya I; Ice, Gene E; Liu, Wenjun; Barabash, Oleg M

    2009-01-01

    This paper analyzes local lattice rotations introduced in severely deformed polycrystalline titanium by friction stir welding. Nondestructive three-dimensional (3D) spatially resolved polychromatic X-ray microdiffraction, is used to resolve the local crystal structure of the restructured surface from neighboring local structures in the sample material. The measurements reveal strong gradients of strain and geometrically necessary dislocations near the surface and illustrate the potential of polychromatic microdiffraction for the study of deformation in complex materials systems.

  18. Spatial potential ripples of azimuthal surface modes in topological insulator Bi2Te3 nanowires

    PubMed Central

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V.; Alvaro, Raquel; Gooth, Johannes; Salmeron, Miquel; Martin-Gonzalez, Marisol

    2016-01-01

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices. PMID:26751282

  19. Spatial potential ripples of azimuthal surface modes in topological insulator Bi2Te3 nanowires.

    PubMed

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V; Alvaro, Raquel; Gooth, Johannes; Salmeron, Miquel; Martin-Gonzalez, Marisol

    2016-01-11

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices.

  20. Spatial potential ripples of azimuthal surface modes in topological insulator Bi 2Te 3 nanowires

    DOE PAGES

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V.; ...

    2016-01-11

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi 2Te 3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density ofmore » states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Finally, our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices.« less

  1. Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    PubMed

    Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.

  2. Correlated topographic and structural modification on Si surface during multi-shot femtosecond laser exposures: Si nanopolymorphs as potential local structural nanomarkers

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Kudryashov, S. I.; Levchenko, A. O.; Nguyen, L. V.; Saraeva, I. N.; Rudenko, A. A.; Ageev, E. I.; Potorochin, D. V.; Veiko, V. P.; Borisov, E. V.; Pankin, D. V.; Kirilenko, D. A.; Brunkov, P. N.

    2017-09-01

    High-pressure Si-XII and Si-III nanocrystalline polymorphs, as well as amorphous Si phase, appear consequently during multi-shot femtosecond-laser exposure of crystalline Si wafer surface above its spallation threshold along with permanently developing quasi-regular surface texture (ripples, microcones), residual hydrostatic stresses and subsurface damage, which are characterized by scanning and transmission electron microscopy, as well as by Raman micro-spectroscopy. The consequent yields of these structural Si phases indicate not only their spatially different appearance, but also potentially enable to track nanoscale, transient laser-induced high-pressure, high-temperature physical processes - local variation of ablation mechanism and rate, pressurization/pressure release, melting/resolidification, amorphization, annealing - versus cumulative laser exposure and the related development of the surface topography.

  3. Adsorption properties for urokinase on local diatomite surface

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiang; Zhang, Jianbo; Yang, Weimin; Wu, Jieda; Chen, Rongsan

    2003-02-01

    In this paper, adsorption isotherm of urokinase on two typical local diatomites were determined at 25 °C and their surface electrical potentials (ζ), isoelectrical point values (IEP) were determined. The properties of diatomites, the relationship among diatomite structure, pore-size distribution, surface ζ and adsorption isotherm were discussed. The adsorption equation of urokinase was calculated from the adsorption isotherm. The adsorption mode of urokinase on diatomite surface was judged by the configuration function α. The relationship between the amount of adsorbed urokinase and IEP value was also discussed.

  4. Local delivery of molecules from a nanopipette for quantitative receptor mapping on live cells.

    PubMed

    Babakinejad, Babak; Jönsson, Peter; López Córdoba, Ainara; Actis, Paolo; Novak, Pavel; Takahashi, Yasufumi; Shevchuk, Andrew; Anand, Uma; Anand, Praveen; Drews, Anna; Ferrer-Montiel, Antonio; Klenerman, David; Korchev, Yuri E

    2013-10-01

    Using nanopipettes to locally deliver molecules to the surface of living cells could potentially open up studies of biological processes down to the level of single molecules. However, in order to achieve precise and quantitative local delivery it is essential to be able to determine the amount and distribution of the molecules being delivered. In this work, we investigate how the size of the nanopipette, the magnitude of the applied pressure or voltage, which drives the delivery, and the distance to the underlying surface influences the number and spatial distribution of the delivered molecules. Analytical expressions describing the delivery are derived and compared with the results from finite element simulations and experiments on delivery from a 100 nm nanopipette in bulk solution and to the surface of sensory neurons. We then developed a setup for rapid and quantitative delivery to multiple subcellular areas, delivering the molecule capsaicin to stimulate opening of Transient Receptor Potential Vanilloid subfamily member 1 (TRPV1) channels, membrane receptors involved in pain sensation. Overall, precise and quantitative delivery of molecules from nanopipettes has been demonstrated, opening up many applications in biology such as locally stimulating and mapping receptors on the surface of live cells.

  5. Investigation of the surface potential of TiO2 (110) by frequency-modulation Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro

    2016-12-01

    We investigate the surface potential distribution on a TiO2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.

  6. Investigation of the surface potential of TiO2 (110) by frequency-modulation Kelvin probe force microscopy.

    PubMed

    Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro

    2016-12-16

    We investigate the surface potential distribution on a TiO 2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO 2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO 2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO 2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.

  7. A scanning probe mounted on a field-effect transistor: Characterization of ion damage in Si.

    PubMed

    Shin, Kumjae; Lee, Hoontaek; Sung, Min; Lee, Sang Hoon; Shin, Hyunjung; Moon, Wonkyu

    2017-10-01

    We have examined the capabilities of a Tip-On-Gate of Field-Effect Transistor (ToGoFET) probe for characterization of FIB-induced damage in Si surface. A ToGoFET probe is the SPM probe which the Field Effect Transistor(FET) is embedded at the end of a cantilever and a Pt tip was mounted at the gate of FET. The ToGoFET probe can detect the surface electrical properties by measuring source-drain current directly modulated by the charge on the tip. In this study, a Si specimen whose surface was processed with Ga+ ion beam was prepared. Irradiation and implantation with Ga+ ions induce highly localized modifications to the contact potential. The FET embedded on ToGoFET probe detected the surface electric field profile generated by schottky contact between the Pt tip and the sample surface. Experimentally, it was shown that significant differences of electric field due to the contact potential barrier in differently processed specimens were observed using ToGOFET probe. This result shows the potential that the local contact potential difference can be measured by simple working principle with high sensitivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Investigation of tunneling current and local contact potential difference on the TiO2(110) surface by AFM/KPFM at 78 K.

    PubMed

    Wen, Huan Fei; Li, Yan Jun; Arima, Eiji; Naitoh, Yoshitaka; Sugawara, Yasuhiro; Xu, Rui; Cheng, Zhi Hai

    2017-03-10

    We propose a new multi-image method for obtaining the frequency shift, tunneling current and local contact potential difference (LCPD) on a TiO 2 (110) surface with atomic resolution. The tunneling current image reveals rarely observed surface oxygen atoms contrary to the conventional results. We analyze how the surface and subsurface defects affect the distribution of the LCPD. In addition, the subsurface defects are observed clearly in the tunneling current image, in contrast to a topographic image. To clarify the origin of the atomic contrast, we perform site-dependent spectroscopy as a function of the tip-sample distance. The multi-image method is expected to be widely used to investigate the charge transfer phenomena between the nanoparticles and surface sites, and it is useful for elucidating the mechanisms of catalytic reactions.

  9. Calculation of smooth potential energy surfaces using local electron correlation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mata, Ricardo A.; Werner, Hans-Joachim

    2006-11-14

    The geometry dependence of excitation domains in local correlation methods can lead to noncontinuous potential energy surfaces. We propose a simple domain merging procedure which eliminates this problem in many situations. The method is applied to heterolytic bond dissociations of ketene and propadienone, to SN2 reactions of Cl{sup -} with alkylchlorides, and in a quantum mechanical/molecular mechanical study of the chorismate mutase enzyme. It is demonstrated that smooth potentials are obtained in all cases. Furthermore, basis set superposition error effects are reduced in local calculations, and it is found that this leads to better basis set convergence when computing barriermore » heights or weak interactions. When the electronic structure strongly changes between reactants or products and the transition state, the domain merging procedure leads to a balanced description of all structures and accurate barrier heights.« less

  10. On a chaotic potential at the surface of a compensated semiconductor under conditions of the self-assembly of electrically active defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondarenko, V. B., E-mail: enter@spbstu.ru; Filimonov, A. V.

    2015-09-15

    Natural irregularities of the electric potential on the surface of a semiconductor under conditions of the partial self-assembly of electrically active defects, i.e., on the formation of donor–acceptor pairs in depletion layers, are studied. The amplitude and character of the spatial distribution of the chaotic potential on the surface of a semiconductor in the cases of localized and delocalized states are determined. The dependence of the amplitude of the chaotic potential on the degree of compensation of the semiconductor is obtained.

  11. The Poisson-Helmholtz-Boltzmann model.

    PubMed

    Bohinc, K; Shrestha, A; May, S

    2011-10-01

    We present a mean-field model of a one-component electrolyte solution where the mobile ions interact not only via Coulomb interactions but also through a repulsive non-electrostatic Yukawa potential. Our choice of the Yukawa potential represents a simple model for solvent-mediated interactions between ions. We employ a local formulation of the mean-field free energy through the use of two auxiliary potentials, an electrostatic and a non-electrostatic potential. Functional minimization of the mean-field free energy leads to two coupled local differential equations, the Poisson-Boltzmann equation and the Helmholtz-Boltzmann equation. Their boundary conditions account for the sources of both the electrostatic and non-electrostatic interactions on the surface of all macroions that reside in the solution. We analyze a specific example, two like-charged planar surfaces with their mobile counterions forming the electrolyte solution. For this system we calculate the pressure between the two surfaces, and we analyze its dependence on the strength of the Yukawa potential and on the non-electrostatic interactions of the mobile ions with the planar macroion surfaces. In addition, we demonstrate that our mean-field model is consistent with the contact theorem, and we outline its generalization to arbitrary interaction potentials through the use of a Laplace transformation. © EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2011

  12. Convection-Diffusion Layer in an "Open Space" for Local Surface Treatment and Microfabrication using a Four-Aperture Microchemical Pen.

    PubMed

    Mao, Sifeng; Zhang, Yong; Zhang, Weifei; Zeng, Hulie; Nakajima, Hizuru; Lin, Jin-Ming; Uchiyama, Katsumi

    2017-09-06

    A four-aperture microchemical pen was used to produce a stable convection-diffusion layer in an "open space" for microreactions and microfabrication. The process represents a new method for microreactions and microfabrication in a convection-diffusion layer. To prove the concept of a convection-diffusion layer in an "open space", bovine serum albumin was labeled with 4-fluoro-7-nitro-2,1,3-benzoxadiazole to confirm that the small convection-diffusion layer was effective for local surface treatment. To demonstrate the potential for microfabrication, silver patterns were fabricated on a glass surface with a convection-diffusion layer by using the silver-mirror reaction. The widths of each silver pattern could be easily controlled from 10 to 60 μm. Patterned silver lines with uniform widths or gradient widths were prepared. This is the first proof of concept study of a convection-diffusion layer in an "open space" used in local surface treatment and microfabrication on a surface. The microchemical pen represents a potential method for the region-selective microtreatment of tissues, cells, and other biological interfaces. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The concept of geodesic curvature applied to optical surfaces.

    PubMed

    Barbero, Sergio

    2015-07-01

    To propose geodesic curvature as a metric to characterise how an optical surface locally differs from axial symmetry. To derive equations to evaluate geodesic curvatures of arbitrary surfaces expressed in polar coordinates. The concept of geodesic curvature is explained in detail as compared to other curvature-based metrics. Starting with the formula representing a surface as function of polar coordinates, an equation for the geodesic curvature is obtained depending only on first and second radial and first order angular derivatives of the surface function. The potential of the geodesic curvature is illustrated using different surface tests. Geodesic curvature reveals local axial asymmetries more sharply than other types of curvatures such as normal curvatures. Geodesic curvature maps could be used to characterise local axial asymmetries for relevant optometry applications such as corneal topography anomalies (keratoconus) or ophthalmic lens metrology. © 2015 The Authors Ophthalmic & Physiological Optics © 2015 The College of Optometrists.

  14. Trapping charges at grain boundaries and degradation of CH3NH3Pb(I1-x Br x )3 perovskite solar cells.

    PubMed

    Nguyen, Bich Phuong; Kim, Gee Yeong; Jo, William; Kim, Byeong Jo; Jung, Hyun Suk

    2017-08-04

    The electrical properties of CH 3 NH 3 Pb(I 1-x Br x ) 3 (x = 0.13) perovskite materials were investigated under ambient conditions. The local work function and the local current were measured using Kelvin probe force microscopy and conductive atomic force microscopy, respectively. The degradation of the perovskite layers depends on their grain size. As the material degrades, an additional peak in the surface potential appears simultaneously with a sudden increase and subsequent relaxation of the local current. The potential bending at the grain boundaries and the intragrains is the most likely reason for the change of the local current surface of the perovskite layers. The improved understanding of the degradation mechanism garnered from this study helps pave the way toward an improved photo-conversion efficiency in perovskite solar cells.

  15. Trapping charges at grain boundaries and degradation of CH3NH3Pb(I1-x Br x )3 perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Phuong Nguyen, Bich; Kim, Gee Yeong; Jo, William; Kim, Byeong Jo; Jung, Hyun Suk

    2017-08-01

    The electrical properties of CH3NH3Pb(I1-x Br x )3 (x = 0.13) perovskite materials were investigated under ambient conditions. The local work function and the local current were measured using Kelvin probe force microscopy and conductive atomic force microscopy, respectively. The degradation of the perovskite layers depends on their grain size. As the material degrades, an additional peak in the surface potential appears simultaneously with a sudden increase and subsequent relaxation of the local current. The potential bending at the grain boundaries and the intragrains is the most likely reason for the change of the local current surface of the perovskite layers. The improved understanding of the degradation mechanism garnered from this study helps pave the way toward an improved photo-conversion efficiency in perovskite solar cells.

  16. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.

  17. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.

  18. Capturing strain localization behind a geosynthetic-reinforced soil wall

    NASA Astrophysics Data System (ADS)

    Lai, Timothy Y.; Borja, Ronaldo I.; Duvernay, Blaise G.; Meehan, Richard L.

    2003-04-01

    This paper presents the results of finite element (FE) analyses of shear strain localization that occurred in cohesionless soils supported by a geosynthetic-reinforced retaining wall. The innovative aspects of the analyses include capturing of the localized deformation and the accompanying collapse mechanism using a recently developed embedded strong discontinuity model. The case study analysed, reported in previous publications, consists of a 3.5-m tall, full-scale reinforced wall model deforming in plane strain and loaded by surcharge at the surface to failure. Results of the analysis suggest strain localization developing from the toe of the wall and propagating upward to the ground surface, forming a curved failure surface. This is in agreement with a well-documented failure mechanism experienced by the physical wall model showing internal failure surfaces developing behind the wall as a result of the surface loading. Important features of the analyses include mesh sensitivity studies and a comparison of the localization properties predicted by different pre-localization constitutive models, including a family of three-invariant elastoplastic constitutive models appropriate for frictional/dilatant materials. Results of the analysis demonstrate the potential of the enhanced FE method for capturing a collapse mechanism characterized by the presence of a failure, or slip, surface through earthen materials.

  19. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles.

    PubMed

    Asati, Atul; Santra, Santimukul; Kaittanis, Charalambos; Perez, J Manuel

    2010-09-28

    Cerium oxide nanoparticles (nanoceria) have shown great potential as antioxidant and radioprotective agents for applications in cancer therapy. Recently, various polymer-coated nanoceria preparations have been developed to improve their aqueous solubility and allow for surface functionalization of these nanoparticles. However, the interaction of polymer-coated nanoceria with cells, their uptake mechanism, and subcellular localization are poorly understood. Herein, we engineered polymer-coated cerium oxide nanoparticles with different surface charges (positive, negative, and neutral) and studied their internalization and toxicity in normal and cancer cell lines. The results showed that nanoceria with a positive or neutral charge enters most of the cell lines studied, while nanoceria with a negative charge internalizes mostly in the cancer cell lines. Moreover, upon entry into the cells, nanoceria is localized to different cell compartments (e.g., cytoplasm and lysosomes) depending on the nanoparticle's surface charge. The internalization and subcellular localization of nanoceria plays a key role in the nanoparticles' cytotoxicity profile, exhibiting significant toxicity when they localize in the lysosomes of the cancer cells. In contrast, minimal toxicity is observed when they localize into the cytoplasm or do not enter the cells. Taken together, these results indicate that the differential surface-charge-dependent localization of nanoceria in normal and cancer cells plays a critical role in the nanoparticles' toxicity profile.

  20. Biofilm formation and local electrostatic force characteristics of Escherichia coli O157:H7 observed by electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Oh, Y. J.; Jo, W.; Yang, Y.; Park, S.

    2007-04-01

    The authors report growth media dependence of electrostatic force characteristics in Escherichia coli O157:H7 biofilm through local measurement by electrostatic force microscopy (EFM). The difference values of electrostatic interaction between the bacterial surface and the abiotic surface show an exponential decay behavior during biofilm development. In the EFM data, the biofilm in the low nutrient media shows a faster decay than the biofilm in the rich media. The surface potential in the bacterial cells was changed from 957to149mV. Local characterization of extracellular materials extracted from the bacteria reveals the progress of the biofilm formation and functional complexities.

  1. Decoding spoken words using local field potentials recorded from the cortical surface

    NASA Astrophysics Data System (ADS)

    Kellis, Spencer; Miller, Kai; Thomson, Kyle; Brown, Richard; House, Paul; Greger, Bradley

    2010-10-01

    Pathological conditions such as amyotrophic lateral sclerosis or damage to the brainstem can leave patients severely paralyzed but fully aware, in a condition known as 'locked-in syndrome'. Communication in this state is often reduced to selecting individual letters or words by arduous residual movements. More intuitive and rapid communication may be restored by directly interfacing with language areas of the cerebral cortex. We used a grid of closely spaced, nonpenetrating micro-electrodes to record local field potentials (LFPs) from the surface of face motor cortex and Wernicke's area. From these LFPs we were successful in classifying a small set of words on a trial-by-trial basis at levels well above chance. We found that the pattern of electrodes with the highest accuracy changed for each word, which supports the idea that closely spaced micro-electrodes are capable of capturing neural signals from independent neural processing assemblies. These results further support using cortical surface potentials (electrocorticography) in brain-computer interfaces. These results also show that LFPs recorded from the cortical surface (micro-electrocorticography) of language areas can be used to classify speech-related cortical rhythms and potentially restore communication to locked-in patients.

  2. Resolution and contrast in Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, H. O.; Leuchtmann, P.; Homan, O. J.; Stemmer, A.

    1998-08-01

    The combination of atomic force microscopy and Kelvin probe technology is a powerful tool to obtain high-resolution maps of the surface potential distribution on conducting and nonconducting samples. However, resolution and contrast transfer of this method have not been fully understood, so far. To obtain a better quantitative understanding, we introduce a model which correlates the measured potential with the actual surface potential distribution, and we compare numerical simulations of the three-dimensional tip-specimen model with experimental data from test structures. The observed potential is a locally weighted average over all potentials present on the sample surface. The model allows us to calculate these weighting factors and, furthermore, leads to the conclusion that good resolution in potential maps is obtained by long and slender but slightly blunt tips on cantilevers of minimal width and surface area.

  3. The observed cooling effect of desert blooms based on high-resolution Moderate Resolution Imaging Spectroradiometer products

    NASA Astrophysics Data System (ADS)

    He, Bin; Huang, Ling; Liu, Junjie; Wang, Haiyan; Lż, Aifeng; Jiang, Weiguo; Chen, Ziyue

    2017-05-01

    Desert greening through planting or irrigation is a potential approach to mitigate desertification and climate warming, but its influence on regional climate is unclear due to scarcity of observations. "Desert blooms," which are natural phenomena usually associated with the El Niño-Southern Oscillation, regularly occur in the world's driest desert, the Atacama Desert. This sudden conversion of land cover likely has a large impact on regional climate through alteration of local energy budgets and provides a unique opportunity to study the potential climatic and environmental consequences of desert greening. Here we evaluated the land surface effects of blooms in the Atacama Desert using vegetation and climate data acquired from remote sensing. The rapid vegetation growth during blooms led to an increase in evapotranspiration and a decrease in albedo. These two processes caused a 0.31°C ± 0.05°C decrease in daytime land surface temperature. During nighttime, we observed a 0.02°C ± 0.02°C increase in land surface temperature due to enhanced heat capacity associated with blooms. This asymmetric diurnal variation in land surface temperature produced a net decrease in daily land surface temperature of 0.29°C ± 0.07°C. Our observations demonstrate the potential benefits of desert blooms on local climate. Results from this study also provide new evidence for plausible climate consequences expected from local "desert greening" strategies.

  4. Surface Wave Propagation on a Laterally Heterogeneous Earth

    NASA Astrophysics Data System (ADS)

    Tromp, Jeroen

    1992-01-01

    Love and Rayleigh waves propagating on the surface of the Earth exhibit path, phase and amplitude anomalies as a result of the lateral heterogeneity of the mantle. In the JWKB approximation, these anomalies can be determined by tracing surface wave trajectories, and calculating phase and amplitude anomalies along them. A time- or frequency -domain JWKB analysis yields local eigenfunctions, local dispersion relations, and conservation laws for the surface wave energy. The local dispersion relations determine the surface wave trajectories, and the energy equations determine the surface wave amplitudes. On an anisotrophic Earth model the local dispersion relation and the local vertical eigenfunctions depend explicitly on the direction of the local wavevector. Apart from the usual dynamical phase, which is the integral of the local wavevector along a raypath, there is an additional variation is phase. This additional phase, which is an analogue of the Berry phase in adiabatic quantum mechanics, vanishes in a waveguide with a local vertical two-fold symmetry axis or a local horizontal mirror plane. JWKB theory breaks down in the vicinity of caustics, where neighboring rays merge and the surface wave amplitude diverges. Based upon a potential representation of the surface wave field, a uniformly valid Maslov theory can be obtained. Surface wave trajectories are determined by a system of four ordinary differential equations which define a three-dimensional manifold in four-dimensional phase space (theta,phi,k_theta,k _phi), where theta is colatitude, phi is longitude, and k_theta and k _phi are the covariant components of the wavevector. There are no caustics in phase space; it is only when the rays in phase space are projected onto configuration space (theta,phi), the mixed spaces (k_theta,phi ) and (theta,k_phi), or onto momentum space (k_theta,k _phi), that caustics occur. The essential strategy is to employ a mixed or momentum space representation of the wavefield in the vicinity of a configuration space caustic.

  5. First principles calculations on the influence of solute elements and chlorine adsorption on the anodic corrosion behavior of Mg (0001) surface

    NASA Astrophysics Data System (ADS)

    Luo, Zhe; Zhu, Hong; Ying, Tao; Li, Dejiang; Zeng, Xiaoqin

    2018-06-01

    The influences of solute atoms (Li, Al, Mn, Zn, Fe, Ni, Cu, Y, Zr) and Cl adsorption on the anodic corrosion performance on Mg (0001) surface have been investigated based on first-principles calculations, which might be useful for the design of corrosion-resistant Mg alloys. Work function and local electrode potential shift are chosen as descriptors since they quantify the barrier for charge transfer and anodic stability. We found that at 25% surface doping rate, Y decreased the work function of Mg, while the impact of remaining doping elements on the work function of Mg was trivial due to the small surface dipole moment change. The adsorption of Cl destabilized the Mg atoms at surface by weakening the bonding between surface Mg atoms. We find that a stronger hybridization of d orbits of alloying elements (e.g. Zr) with the orbits of Mg can greatly increase the local electrode potential,which even overbalances the negative effect introduced by Cl adsorbates and hence improves the corrosion resistance of Mg alloys.

  6. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.

    PubMed

    Ertsgaard, Christopher T; McKoskey, Rachel M; Rich, Isabel S; Lindquist, Nathan C

    2014-10-28

    In this paper, we demonstrate dynamic placement of locally enhanced plasmonic fields using holographic laser illumination of a silver nanohole array. To visualize these focused "hotspots", the silver surface was coated with various biological samples for surface-enhanced Raman spectroscopy (SERS) imaging. Due to the large field enhancements, blinking behavior of the SERS hotspots was observed and processed using a stochastic optical reconstruction microscopy algorithm enabling super-resolution localization of the hotspots to within 10 nm. These hotspots were then shifted across the surface in subwavelength (<100 nm for a wavelength of 660 nm) steps using holographic illumination from a spatial light modulator. This created a dynamic imaging and sensing surface, whereas static illumination would only have produced stationary hotspots. Using this technique, we also show that such subwavelength shifting and localization of plasmonic hotspots has potential for imaging applications. Interestingly, illuminating the surface with randomly shifting SERS hotspots was sufficient to completely fill in a wide field of view for super-resolution chemical imaging.

  7. Development of a laser-induced heat flux technique for measurement of convective heat transfer coefficients in a supersonic flowfield

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.

  8. Localized Surface Plasmon Resonance as a Biosensing Platform for Developing Countries

    PubMed Central

    Hammond, Jules L.; Bhalla, Nikhil; Rafiee, Sarah D.; Estrela, Pedro

    2014-01-01

    The discovery of the phenomena known as localized surface plasmon resonance (LSPR) has provided the basis for many research areas, ranging from materials science to biosensing. LSPR has since been viewed as a transduction platform that could yield affordable, portable devices for a multitude of applications. This review aims to outline the potential applications within developing countries and the challenges that are likely to be faced before the technology can be effectively employed. PMID:25587417

  9. Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave.

    PubMed

    Lin, Jiao; Dellinger, Jean; Genevet, Patrice; Cluzel, Benoit; de Fornel, Frederique; Capasso, Federico

    2012-08-31

    A new surface wave is introduced, the cosine-Gauss beam, which does not diffract while it propagates in a straight line and tightly bound to the metallic surface for distances up to 80 μm. The generation of this highly localized wave is shown to be straightforward and highly controllable, with varying degrees of transverse confinement and directionality, by fabricating a plasmon launcher consisting of intersecting metallic gratings. Cosine-Gauss beams have potential for applications in plasmonics, notably for efficient coupling to nanophotonic devices, opening up new design possibilities for next-generation optical interconnects.

  10. Detection of Influenza Virus with Specific Subtype by Using Localized Surface Plasmons Excited on a Flat Metal Surface

    NASA Astrophysics Data System (ADS)

    Ning, Jun; Nagata, Kotaro; Ainai, Akira; Hasegawa, Hideki; Kano, Hiroshi

    2013-08-01

    We report on a method to determine subtype of influenza viruses by using surface plasmons localized in microscopic region on a flat metal surface. In this method, refractive index variation arisen from interactions between viruses and their monoclonal antibodies is measured. The developed sensor shows stability of refractive index in the order of 10-4 against sample exchange. In our experiment, A/H1N1 viruses are distinguished from A/H3N2 viruses by using monoclonal antibodies immobilized on the metal surface. Since the measurement probe has the volume of ˜6 al, the method has potential to handle multiple subtypes in the measurement of a sample with ultra small volume.

  11. Effect of Applied Potential on Fatigue Life of Electropolished Nitinol Wires

    NASA Astrophysics Data System (ADS)

    Sivan, Shiril; Di Prima, Matthew; Weaver, Jason D.

    2017-09-01

    Nitinol is used as a metallic biomaterial in medical devices due to its shape memory and pseudoelastic properties. The clinical performance of nitinol depends on factors which include the surface finish, the local environment, and the mechanical loads to which the device is subjected. Preclinical evaluations of device durability are performed with fatigue tests while electrochemical characterization methods such as ASTM F2129 are employed to evaluate corrosion susceptibility by determining the rest potential and breakdown potential. However, it is well established that the rest potential of a metal surface can vary with the local environment. Very little is known regarding the influence of voltage on fatigue life of nitinol. In this study, we developed a fatigue testing method in which an electrochemical system was integrated with a rotary bend wire fatigue tester. Samples were fatigued at various strain levels at electropotentials anodic and cathodic to the rest potential to determine if it could influence fatigue life. Wires at potentials negative to the rest potential had a significantly higher number of cycles to fracture than wires held at potentials above the breakdown potential. For wires for which no potential was applied, they had fatigue life similar to wires at negative potentials.

  12. NeuroGrid: recording action potentials from the surface of the brain.

    PubMed

    Khodagholy, Dion; Gelinas, Jennifer N; Thesen, Thomas; Doyle, Werner; Devinsky, Orrin; Malliaras, George G; Buzsáki, György

    2015-02-01

    Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultraconformable, biocompatible and scalable neural interface array (the 'NeuroGrid') that can record both local field potentials(LFPs) and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneously acquired by multiple neighboring electrodes of the NeuroGrid, allowing for the isolation of putative single neurons in rats. Spiking activity demonstrated consistent phase modulation by ongoing brain oscillations and was stable in recordings exceeding 1 week's duration. We also recorded LFP-modulated spiking activity intraoperatively in patients undergoing epilepsy surgery. The NeuroGrid constitutes an effective method for large-scale, stable recording of neuronal spikes in concert with local population synaptic activity, enhancing comprehension of neural processes across spatiotemporal scales and potentially facilitating diagnosis and therapy for brain disorders.

  13. An adaptive interpolation scheme for molecular potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  14. Inherent structures of crystalline pentacene

    NASA Astrophysics Data System (ADS)

    Della Valle, Raffaele Guido; Venuti, Elisabetta; Brillante, Aldo; Girlando, Alberto

    2003-01-01

    Using a quasi-Monte Carlo scheme, we search the potential energy surface of crystalline pentacene to sample its local minima, which represent the "inherent" structures, i.e., the possible configurations of mechanical equilibrium. The system is described in terms of rigid molecules interacting through a standard atom-atom potential model. Several hundreds of distinct minima are encountered, with a surprising variety of structural arrangements. We find that deep minima are easily accessible because they exhibit a favorable energy distribution and their attraction basins tend to be wide. Thanks to these features of the potential surface, the localization the global minimum becomes entirely feasible, allowing reliable a priori predictions of the crystallographic structures. The results for pentacene are very satisfactory. In fact, the two deepest minima correspond to the structures of the two known experimental polymorphs, which are described correctly. Further polymorphs are also likely to exist.

  15. Usefulness of ventricular endocardial electric reconstruction from body surface potential maps to noninvasively localize ventricular ectopic activity in patients

    NASA Astrophysics Data System (ADS)

    Lai, Dakun; Sun, Jian; Li, Yigang; He, Bin

    2013-06-01

    As radio frequency (RF) catheter ablation becomes increasingly prevalent in the management of ventricular arrhythmia in patients, an accurate and rapid determination of the arrhythmogenic site is of important clinical interest. The aim of this study was to test the hypothesis that the inversely reconstructed ventricular endocardial current density distribution from body surface potential maps (BSPMs) can localize the regions critical for maintenance of a ventricular ectopic activity. Patients with isolated and monomorphic premature ventricular contractions (PVCs) were investigated by noninvasive BSPMs and subsequent invasive catheter mapping and ablation. Equivalent current density (CD) reconstruction (CDR) during symptomatic PVCs was obtained on the endocardial ventricular surface in six patients (four men, two women, years 23-77), and the origin of the spontaneous ectopic activity was localized at the location of the maximum CD value. Compared with the last (successful) ablation site (LAS), the mean and standard deviation of localization error of the CDR approach were 13.8 and 1.3 mm, respectively. In comparison, the distance between the LASs and the estimated locations of an equivalent single moving dipole in the heart was 25.5 ± 5.5 mm. The obtained CD distribution of activated sources extending from the catheter ablation site also showed a high consistency with the invasively recorded electroanatomical maps. The noninvasively reconstructed endocardial CD distribution is suitable to predict a region of interest containing or close to arrhythmia source, which may have the potential to guide RF catheter ablation.

  16. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface.

    PubMed

    Wang, Zhenhui; Liu, Yanming; Tao, Peng; Shen, Qingchen; Yi, Nan; Zhang, Fangyu; Liu, Quanlong; Song, Chengyi; Zhang, Di; Shang, Wen; Deng, Tao

    2014-08-27

    Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.

    2017-10-01

    Recent advances in finite-difference time-domain (FDTD) modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers) are much smaller than the wavelengths of fast (tens of cm) and slow (millimeter) waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC) models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core) FDTD/PIC simulations of Alcator C-Mod antenna operation.

  18. A unifying model for non-adiabatic coupling at metallic surfaces beyond the local harmonic approximation: From vibrational relaxation to scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tremblay, Jean Christophe

    2013-06-01

    A model for treating excitation and relaxation of adsorbates at metallic surfaces induced by non-adiabatic coupling is developed. The derivation is based on the concept of resonant electron transfer, where the adsorbate serves as a molecular bridge for the inelastic transition between an electron source and a sink. In this picture, energy relaxation and scanning tunneling microscopy (STM) at metallic surfaces are treated on an equal footing as a quasi-thermal process. The model goes beyond the local harmonic approximation and allows for an unbiased description of floppy systems with multiple potential wells. Further, the limitation of the product ansatz for the vibronic wave function to include the position-dependence of the non-adiabatic couplings is avoided by explicitly enforcing detailed balance. The theory is applied to the excitation of hydrogen on palladium, which has multiple local potential minima connected by low energy barriers. The main aspects investigated are the lifetimes of adsorbate vibrations in different adsorption sites, as well as the dependence of the excitation, response, and transfer rates on an applied potential bias. The excitation and relaxation simulations reveal intricate population dynamics that depart significantly from the simplistic tunneling model in a truncated harmonic potential. In particular, the population decay from an initially occupied local minimum induced by the contact with an STM tip is found to be better described by a double exponential. The two rates are interpreted as a response to the system perturbation and a transfer rate following the perturbation. The transfer rate is found to obey a power law, as was the case in previous experimental and theoretical work.

  19. Local mass and energy transports in evaporation processes from a vapor-liquid interface in a slit pore based on molecular dynamics

    NASA Astrophysics Data System (ADS)

    Fujiwara, K.; Shibahara, M.

    2018-02-01

    Molecular evaporation processes from a vapor-liquid interface formed in a slit-like pore were examined based on the classical molecular dynamics method, in order to elucidate a molecular mechanism of local mass and energy transports in a slit. The calculation system consisted of monatomic molecules and atoms which interact through the 12-6 Lennard-Jones potential. At first, a liquid was situated in a slit with a vapor-liquid interface, and instantaneous amounts of the mass and energy fluxes defined locally in the slit were obtained in two dimensions to reveal local fluctuation properties of the fluid in equilibrium states. Then, imposing a temperature gradient in the calculation system, non-equilibrium evaporation processes in the slit were investigated in details based on the local mass and energy fluxes. In this study, we focused on the fluid which is in the vicinity of the solid surface and in contact with the vapor phase. In the non-equilibrium evaporation processes, the results revealed that the local energy transport mechanism in the vicinity of the solid surface is different from that of the vapor phase, especially in the case of the relatively strong fluid-solid interaction. The results also revealed that the local mass transport in the vicinity of the solid surface can be interpreted based on the mechanism of the local energy transport, and the mechanism provides valuable information about pictures of the evaporation phenomena especially in the vicinity of the hydrophilic surfaces. It suggests that evaluating and changing this mechanism of the local energy transport are necessary to control the local mass flux more precisely in the vicinity of the solid surface.

  20. Efficient Geometry Minimization and Transition Structure Optimization Using Interpolated Potential Energy Surfaces and Iteratively Updated Hessians.

    PubMed

    Zheng, Jingjing; Frisch, Michael J

    2017-12-12

    An efficient geometry optimization algorithm based on interpolated potential energy surfaces with iteratively updated Hessians is presented in this work. At each step of geometry optimization (including both minimization and transition structure search), an interpolated potential energy surface is properly constructed by using the previously calculated information (energies, gradients, and Hessians/updated Hessians), and Hessians of the two latest geometries are updated in an iterative manner. The optimized minimum or transition structure on the interpolated surface is used for the starting geometry of the next geometry optimization step. The cost of searching the minimum or transition structure on the interpolated surface and iteratively updating Hessians is usually negligible compared with most electronic structure single gradient calculations. These interpolated potential energy surfaces are often better representations of the true potential energy surface in a broader range than a local quadratic approximation that is usually used in most geometry optimization algorithms. Tests on a series of large and floppy molecules and transition structures both in gas phase and in solutions show that the new algorithm can significantly improve the optimization efficiency by using the iteratively updated Hessians and optimizations on interpolated surfaces.

  1. Evaluation of pollution susceptibility of Karst aquifers of Rewa Town (Madhya Pradesh) using "DRASTIC" approach.

    PubMed

    Dubey, D P; Tiwari, R N; Dwivedi, Umesh

    2006-04-01

    Pollution susceptibility of groundwater of Rewa town situated on karstified Bhander limestones of the Bhander group is discussed in this paper. Pollution potential of selected localities in the town has been determined using the DRASTIC INDEX methodology. Pollution potential for these localities varied between 162 to 217. Shallow aquifers in karstified limestones having direct access to surface water were found more susceptible to pollution. Accordingly, remedial measures were suggested for minimising pollution.

  2. Surface wave resonance and chirality in a tubular cavity with metasurface design

    NASA Astrophysics Data System (ADS)

    Qin, Yuzhou; Fang, Yangfu; Wang, Lu; Tang, Shiwei; Sun, Shulin; Liu, Zhaowei; Mei, Yongfeng

    2018-06-01

    Optical microcavities with whispering-gallery modes (WGMs) have been indispensable in both photonic researches and applications. Besides, metasurfaces, have attracted much attention recently due to their strong abilities to manipulate electromagnetic waves. Here, combining these two optical elements together, we show a tubular cavity can convert input propagating cylindrical waves into directed localized surface waves (SWs), enabling the circulating like WGMs along the wall surface of the designed tubular cavity. Finite element method (FEM) simulations demonstrate that such near-field WGM shows both large chirality and high local field. This work may stimulate interesting potential applications in e.g. directional emission, sensing, and lasing.

  3. Numerical Study of Nonlinear Structures of Locally Excited Marangoni Convection in the Long-Wave Approximation

    NASA Astrophysics Data System (ADS)

    Wertgeim, Igor I.

    2018-02-01

    We investigate stationary and non-stationary solutions of nonlinear equations of the long-wave approximation for the Marangoni convection caused by a localized source of heat or a surface active impurity (surfactant) in a thin horizontal layer of a viscous incompressible fluid with a free surface. The distribution of heat or concentration flux is determined by the uniform vertical gradient of temperature or impurity concentration, distorted by the imposition of a slightly inhomogeneous heating or of surfactant, localized in the horizontal plane. The lower boundary of the layer is considered thermally insulated or impermeable, whereas the upper boundary is free and deformable. The equations obtained in the long-wave approximation are formulated in terms of the amplitudes of the temperature distribution or impurity concentration, deformation of the surface, and vorticity. For a simplification of the problem, a sequence of nonlinear equations is obtained, which in the simplest form leads to a nonlinear Schrödinger equation with a localized potential. The basic state of the system, its dependence on the parameters and stability are investigated. For stationary solutions localized in the region of the surface tension inhomogeneity, domains of parameters corresponding to different spatial patterns are delineated.

  4. Localized N, {lambda}, {sigma}, and {xi} single-particle potentials in finite nuclei calculated with SU{sub 6} quark-model baryon-baryon interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, M.; Fujiwara, Y.

    Localized single-particle potentials for all octet baryons, N, {lambda}, {sigma}, and {xi}, in finite nuclei, {sup 12}C, {sup 16}O, {sup 28}Si, {sup 40}Ca, {sup 56}Fe, and {sup 90}Zr, are calculated using the quark-model baryon-baryon interactions. G matrices evaluated in symmetric nuclear matter in the lowest order Brueckner theory (LOBT) are applied to finite nuclei in local density approximation. Nonlocal potentials are localized by a zero-momentum Wigner transformation. Empirical single-particle properties of the nucleon and the {lambda} hyperon in a nuclear medium have been known to be explained semiquantitatively in the LOBT framework. Attention is focused in the present consideration onmore » predictions for the {sigma} and {xi} hyperons. The unified description for the octet baryon-baryon interactions by the SU{sub 6} quark model enables us to obtain less ambiguous extrapolation to the S=-1 and S=-2 sectors based on the knowledge in the NN sector than other potential models. The {sigma} mean field is shown to be weakly attractive at the surface, but turns out to be repulsive inside, which is consistent with the experimental evidence. The {xi} hyperon s.p. potential is also attractive at the nuclear surface region, and inside it fluctuates around zero. Hence {xi} hypernuclear bound states are unlikely. We also evaluate energy shifts of the {sigma}{sup -} and {xi}{sup -} atomic levels in {sup 28}Si and {sup 56}Fe, using the calculated s.p. potentials.« less

  5. A New Kinetic Simulation Model with Self-Consistent Calculation of Regolith Layer Charging for Moon-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Han, D.; Wang, J.

    2015-12-01

    The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.

  6. Sex-specific local life-history adaptation in surface- and cave-dwelling Atlantic mollies (Poecilia mexicana).

    PubMed

    Riesch, Rüdiger; Reznick, David N; Plath, Martin; Schlupp, Ingo

    2016-03-10

    Cavefishes have long been used as model organisms showcasing adaptive diversification, but does adaptation to caves also facilitate the evolution of reproductive isolation from surface ancestors? We raised offspring of wild-caught surface- and cave-dwelling ecotypes of the neotropical fish Poecilia mexicana to sexual maturity in a 12-month common garden experiment. Fish were raised under one of two food regimes (high vs. low), and this was crossed with differences in lighting conditions (permanent darkness vs. 12:12 h light:dark cycle) in a 2 × 2 factorial design, allowing us to elucidate potential patterns of local adaptation in life histories. Our results reveal a pattern of sex-specific local life-history adaptation: Surface molly females had the highest fitness in the treatment best resembling their habitat of origin (high food and a light:dark cycle), and suffered from almost complete reproductive failure in darkness, while cave molly females were not similarly affected in any treatment. Males of both ecotypes, on the other hand, showed only weak evidence for local adaptation. Nonetheless, local life-history adaptation in females likely contributes to ecological diversification in this system and other cave animals, further supporting the role of local adaptation due to strong divergent selection as a major force in ecological speciation.

  7. Sex-specific local life-history adaptation in surface- and cave-dwelling Atlantic mollies (Poecilia mexicana)

    PubMed Central

    Riesch, Rüdiger; Reznick, David N.; Plath, Martin; Schlupp, Ingo

    2016-01-01

    Cavefishes have long been used as model organisms showcasing adaptive diversification, but does adaptation to caves also facilitate the evolution of reproductive isolation from surface ancestors? We raised offspring of wild-caught surface- and cave-dwelling ecotypes of the neotropical fish Poecilia mexicana to sexual maturity in a 12-month common garden experiment. Fish were raised under one of two food regimes (high vs. low), and this was crossed with differences in lighting conditions (permanent darkness vs. 12:12 h light:dark cycle) in a 2 × 2 factorial design, allowing us to elucidate potential patterns of local adaptation in life histories. Our results reveal a pattern of sex-specific local life-history adaptation: Surface molly females had the highest fitness in the treatment best resembling their habitat of origin (high food and a light:dark cycle), and suffered from almost complete reproductive failure in darkness, while cave molly females were not similarly affected in any treatment. Males of both ecotypes, on the other hand, showed only weak evidence for local adaptation. Nonetheless, local life-history adaptation in females likely contributes to ecological diversification in this system and other cave animals, further supporting the role of local adaptation due to strong divergent selection as a major force in ecological speciation. PMID:26960566

  8. Dust Grain Charge in the Lunar Environment

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Richterova, Ivana; Vysinka, Marek; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2014-05-01

    Interaction of a lunar surface with solar wind and magnetosphere plasmas leads to it charging by several processes as photoemission, a collection of primary particles and secondary electron emission. Nevertheless, charging of the lunar surface is complicated by a presence of crustal magnetic anomalies with can generate a "mini-magnetosphere" capable for more or less complete shielding the surface. On the other hand, shielding of solar light and plasma particles by rocks and craters can also locally influence the surface potential as well as a presence of a plasma wake strongly changes this potential at the night side of the Moon. A typical surface potential varies from slightly positive (dayside) to negative values of the order of several hundred of volts (night side). At the night side, negative potentials can reach -4 kV during solar energetic particle (SEP) events. Recent measurements of the surface potential by Lunar Prospector and Artemis spacecraft have shown surprisingly high negative dayside surface potentials (-500 V) during the magnetotail crossings as well as the positive surface potential higher than 100 V. One possible explanation is its non-monotonic profile above a surface where the potential minimum is formed by the space charge. Dust grains presented in this complicated environment are also charged by similar processes as the lunar surface. A strong dependence of the secondary electron yield on the grain size can significantly influence dust charging mainly in the Earth's plasma sheet where an equilibrium grain potential can by different than the surface potential and can reach even the opposite sign. This process can lead to levitation of dust above a surface observed by the Surveyor spacecraft.

  9. Utilizing Functionalized Nano-Paterned Surfaces as a clue to Cell Metastasis in Prostate and Breast Cancer

    NASA Astrophysics Data System (ADS)

    Matthews, James; Bastatas, Lyndon

    2012-03-01

    There is a direct relation between the survival of a patient diagnosed with prostate or breast cancer and the metastatic potential of the patient's cancer. It is therefore extremely important to prognose metastatic potentials. In this study we investigated whether the behaviors of cancer cells responding to our state of the art nano-patterns differ by the metastatic potential of the cancer cells. We have used lowly (LNCaP) and highly (CL-1) metastatic human prostate cancer cells and lowly (MCF-7) and highly (MB231) metastatic breast cancer cells. A surface functionalization study was then performed first on uniform gold and glass surfaces, then on gold nano-patterned surfaces made by nano-sphere lithography using nano-spheres in diameter of 200nm to 800nm. The gold surfaces were functionalized with fibronectin (FN) and confirmed through XPS analysis. The CL-1, MCF-7, and MB231 cells show similar proliferation on all surfaces regardless of the presence of FN, whereas LNCaP show a clear preference for FN coated surfaces. The proliferation of the LNCaP was reduced when grown on finer nano-scaffolds, but the more aggressive CL-1, MB231, and MCF-7 cells show an abnormal proliferation regardless of pattern size. The difference in adhesion is intrinsic and was verified through dual fluorescent imaging. Clear co-localization of actin-vinculin were found on CL-1, MCF-7, and MB231. However LNCaP cells showed the co-localization only on the tips of the cells. These results provide vital clues to the bio-mechanical differences between the cancer cells with different metastatic potential.

  10. 2001 Mars Odyssey THEMIS: Thermophysics at a New Local Time

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Christensen, P. R.

    2017-12-01

    During its sixth extended mission, the 2001 Mars Odyssey transitioned to a new, rarely-seen, post-sunset (morning daylight) local time designed to reduce stress on the spacecraft. Since then, Thermal Emission Imaging System (THEMIS) observations have provided an unprecedented opportunity to investigate dynamic phenomena in the atmosphere and on the surface. In this new local time ( 6:45 am/pm) orbit, Odyssey's camera is acquiring expanded diurnal thermal imaging coverage, providing insight into surface texture, layering, and ice content, as well as dynamic, temperature-dependent surface, atmospheric, and polar processes. New THEMIS observations at dawn and dusk local times are filling major gaps in current knowledge about the diurnal variation of clouds, hazes and surface frost. In this presentation, we will highlight some of these data and discuss the unique scientific results that can be obtained from Mars Odyssey THEMIS observations, including: insights into potential past and present habitability of Mars, the processes and history of climate, the nature and evolution of geologic processes, and aspects of the environment relevant to future human exploration.

  11. Stochastic Formalism for Thermally Driven Distribution Frontier: A Nonempirical Approach to the Potential Escape Problem

    NASA Astrophysics Data System (ADS)

    Akashi, Ryosuke; Nagornov, Yuri S.

    2018-06-01

    We develop a non-empirical scheme to search for the minimum-energy escape paths from the minima of the potential surface to unknown saddle points nearby. A stochastic algorithm is constructed to move the walkers up the surface through the potential valleys. This method employs only the local gradient and diagonal part of the Hessian matrix of the potential. An application to a two-dimensional model potential is presented to demonstrate the successful finding of the paths to the saddle points. The present scheme could serve as a starting point toward first-principles simulation of rare events across the potential basins free from empirical collective variables.

  12. An adaptive interpolation scheme for molecular potential energy surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalewski, Markus, E-mail: mkowalew@uci.edu; Larsson, Elisabeth; Heryudono, Alfa

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within amore » given accuracy compared to the non-adaptive version.« less

  13. Laboratory studies of magnetic anomaly effects on electric potential distributions near the lunar surface

    NASA Astrophysics Data System (ADS)

    Wang, X.; Robertson, S. H.; Horanyi, M.; NASA Lunar Science Institute: Colorado CenterLunar Dust; Atmospheric Studies

    2011-12-01

    The Moon does not have a global magnetic field, unlike the Earth, rather it has strong crustal magnetic anomalies. Data from Lunar Prospector and SELENE (Kaguya) observed strong interactions between the solar wind and these localized magnetic fields. In the laboratory, a configuration of a horseshoe permanent magnet below an insulating surface is used as an analogue of lunar crustal magnetic anomalies. Plasmas are created above the surface by a hot filament discharge. Potential distributions are measured with an emissive probe and show complex spatial structures. In our experiments, electrons are magnetized with gyro-radii r smaller than the distance from the surface d (r < d) and ions are un-magnetized with r > d. Unlike negative charging on surfaces with no magnetic fields, the surface potential at the center of the magnetic dipole is found close to the plasma bulk potential. The surface charging is dominated by the cold unmagnetized ions, while the electrons are shielded away. A potential minimum is formed between the center of the surface and the bulk plasma, most likely caused by the trapped electrons between the two magnetic mirrors at the cusps. The value of the potential minimum with respect to the bulk plasma potential decreases with increasing plasma density and neutral pressure, indicating that the mirror-trapped electrons are scattered by electron-electron and electron-neutral collisions. The potential at the two cusps are found to be more negative due to the electrons following the magnetic field lines onto the surface.

  14. Structure of solar coronal streamers

    NASA Astrophysics Data System (ADS)

    Schultz, C. G.

    The present, direct method for the solution of generalized potential problems works outward from an O-point, under an assumption of the existence of flux surfaces. At each flux surface, a Fourier filter is used for the flux surface length variable to prevent numerical error amplifications, and the value of the inverse curvature radius and the normal direction are filtered to avoid the effects of local wrinkles.

  15. Sniffing out the Story on the Habitability Potential of Mars: Follow the Volatiles!

    NASA Technical Reports Server (NTRS)

    Conrad, Pamela Gales

    2013-01-01

    Curiosity's primary goal is to explore and quantitatively assess a local region on Mars' surface as a potential habitat for life, past or present. This presentation will discuss what makes a habitable environment with some scientific data from the mars rover.

  16. Measurement and dynamics of the spatial distribution of an electron localized at a metal-dielectric interface

    NASA Astrophysics Data System (ADS)

    Bezel, Ilya; Gaffney, Kelly J.; Garrett-Roe, Sean; Liu, Simon H.; Miller, André D.; Szymanski, Paul; Harris, Charles B.

    2004-01-01

    The ability of time- and angle-resolved two-photon photoemission to estimate the size distribution of electron localization in the plane of a metal-adsorbate interface is discussed. It is shown that the width of angular distribution of the photoelectric current is inversely proportional to the electron localization size within the most common approximations in the description of image potential states. The localization of the n=1 image potential state for two monolayers of butyronitrile on Ag(111) is used as an example. For the delocalized n=1 state, the shape of the signal amplitude as a function of momentum parallel to the surface changes rapidly with time, indicating efficient intraband relaxation on a 100 fs time scale. For the localized state, little change was observed. The latter is related to the constant size distribution of electron localization, which is estimated to be a Gaussian with a 15±4 Å full width at half maximum in the plane of the interface. A simple model was used to study the effect of a weak localization potential on the overall width of the angular distribution of the photoemitted electrons, which exhibited little sensitivity to the details of the potential. This substantiates the validity of the localization size estimate.

  17. In situ KPFM imaging of local photovoltaic characteristics of structured organic photovoltaic devices.

    PubMed

    Watanabe, Satoshi; Fukuchi, Yasumasa; Fukasawa, Masako; Sassa, Takafumi; Kimoto, Atsushi; Tajima, Yusuke; Uchiyama, Masanobu; Yamashita, Takashi; Matsumoto, Mutsuyoshi; Aoyama, Tetsuya

    2014-02-12

    Here, we discuss the local photovoltaic characteristics of a structured bulk heterojunction, organic photovoltaic devices fabricated with a liquid carbazole, and a fullerene derivative based on analysis by scanning kelvin probe force microscopy (KPFM). Periodic photopolymerization induced by an interference pattern from two laser beams formed surface relief gratings (SRG) in the structured films. The surface potential distribution in the SRGs indicates the formation of donor and acceptor spatial distribution. Under illumination, the surface potential reversibly changed because of the generation of fullerene anions and hole transport from the films to substrates, which indicates that we successfully imaged the local photovoltaic characteristics of the structured photovoltaic devices. Using atomic force microscopy, we confirmed the formation of the SRG because of the material migration to the photopolymerized region of the films, which was induced by light exposure through photomasks. The structuring technique allows for the direct fabrication and the control of donor and acceptor spatial distribution in organic photonic and electronic devices with minimized material consumption. This in situ KPFM technique is indispensable to the fabrication of nanoscale electron donor and electron acceptor spatial distribution in the devices.

  18. A guide to potential soil carbon sequestration; land-use management for mitigation of greenhouse gas emissions

    USGS Publications Warehouse

    Markewich, H.W.; Buell, G.R.

    2001-01-01

    Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) 'map' carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon.

  19. Improvements to the Noah Land Surface Model in WRF-CMAQ, and its Application to Future Changes in the Chesapeake Bay Region

    EPA Science Inventory

    Regional, state, and local environmental regulatory agencies often use Eulerian meteorological and air quality models to investigate the potential impacts of climate, emissions, and land use changes on nutrient loading and air quality. The Noah land surface model in WRF could be...

  20. An Ab Initio Full Potential Fully Relativistic Study of the (0001) Surface of Double Hexagonal Close Packed Americium*

    NASA Astrophysics Data System (ADS)

    Gao, Da; Ray, Asok

    2007-03-01

    The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and anti-ferromagnetic configurations via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of both bulk and the (0001) surface of dhcp Am with the 5f electrons primarily localized. Our results show that magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Quantum size effects are found to be more pronounced in work functions than in surface energies. *This work is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy and the Welch Foundation, Houston, Texas.

  1. Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations

    PubMed Central

    Miller, Kai J; Honey, Christopher J; Hermes, Dora; Rao, Rajesh PN; denNijs, Marcel; Ojemann, Jeffrey G

    2013-01-01

    We illustrate a general principal of electrical potential measurements from the surface of the cerebral cortex, by revisiting and reanalyzing experimental work from the visual, language and motor systems. A naïve decomposition technique of electrocorticographic power spectral measurements reveals that broadband spectral changes reliably track task engagement. These broadband changes are shown to be a generic correlate of local cortical function across a variety of brain areas and behavioral tasks. Furthermore, they fit a power-law form that is consistent with simple models of the dendritic integration of asynchronous local population firing. Because broadband spectral changes covary with diverse perceptual and behavioral states on the timescale of 20–50ms, they provide a powerful and widely applicable experimental tool. PMID:24018305

  2. Direct simulation of electroosmosis around a spherical particle with inhomogeneously acquired surface charge.

    PubMed

    Alizadeh, Amer; Wang, Moran

    2017-03-01

    Uncovering electroosmosis around an inhomogeneously acquired charge spherical particle in a confined space could provide detailed insights into its broad applications from biology to geology. In the present study, we developed a direct simulation method with the effects of inhomogeneously acquired charges on the particle surface considered, which has been validated by the available analytical and experimental data. Modeling results reveal that the surface charge and zeta potential, which are acquired through chemical interactions, strongly depend on the local solution properties and the particle size. The surface charge and zeta potential of the particle would significantly vary with the tangential positions on the particle surface by increasing the particle radius. Moreover, regarding the streaming potential for a particle-fluid tube system, our results uncover that the streaming potential has a reverse relation with the particle size in a micro or nanotube. To explain this phenomenon, we present a simple relation that bridges the streaming potential with the particle size and tube radius, zeta potential, bulk and surface conductivity. This relation could predict good results specifically for higher ion concentrations and provide deeper understanding of the particle size effects on the streaming potential measurements of the particle fluid tube system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Noninvasive monitoring local variations of fever and edema on human: potential for point-of-care inflammation assessment

    NASA Astrophysics Data System (ADS)

    Li, Zebin; Li, Xianglin; Li, Ting

    2018-02-01

    Tissue inflammation is often accompanied by fever and edema, which are common and troublesome problems that probably trigger disability, lymphangitis, cosmetic deformity and cellulitis. Here we developed a device, which can measure concentration and temperature variations of water in local human body by extended near infrared spectroscopy in 900 1000 nm wavelength range. An experiment of four steps incremental cycling exercise was designed to change tissue water concentration and temperature of subjects. Body temperature was also estimated by tympanic thermometer and surface thermometer as comparisons during the experiment. In the stage of recovery after exercise, the signal detected by custom device is similar to tympanic thermometer at the beginning, but it is closer to the temperature of surface later. In particular, this signal shows a better linearity, and a significant change when the exercise was suspended. This study demonstrated the potential of optical touch-sensing for inflammation severity monitoring by measuring water concentration and temperature variations in local lesions.

  4. New molecular descriptors based on local properties at the molecular surface and a boiling-point model derived from them.

    PubMed

    Ehresmann, Bernd; de Groot, Marcel J; Alex, Alexander; Clark, Timothy

    2004-01-01

    New molecular descriptors based on statistical descriptions of the local ionization potential, local electron affinity, and the local polarizability at the surface of the molecule are proposed. The significance of these descriptors has been tested by calculating them for the Maybridge database in addition to our set of 26 descriptors reported previously. The new descriptors show little correlation with those already in use. Furthermore, the principal components of the extended set of descriptors for the Maybridge data show that especially the descriptors based on the local electron affinity extend the variance in our set of descriptors, which we have previously shown to be relevant to physical properties. The first nine principal components are shown to be most significant. As an example of the usefulness of the new descriptors, we have set up a QSPR model for boiling points using both the old and new descriptors.

  5. Experimental Simulation of Solar Wind Interactions with Magnetic Dipole Fields above Insulating Surfaces

    NASA Astrophysics Data System (ADS)

    Munsat, Tobin; Deca, Jan; Han, Jia; Horanyi, Mihaly; Wang, Xu; Werner, Greg; Yeo, Li Hsia; Fuentes, Dominic

    2017-10-01

    Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection of the charged particles and thus localized surface charging. This interaction is studied in the Colorado Solar Wind Experiment with large-cross-section ( 300 cm2) high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole embedded under various insulating surfaces. Measured 2D plasma potential profiles indicate that in the dipole lobe regions, the surfaces are charged to high positive potentials due to the collection of unmagnetized ions, while the electrons are magnetically shielded. At low ion beam energies, the surface potential follows the beam energy in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of studies indicate that secondary electrons are likely to play a dominant role in determining the surface potential. Early results will also be presented from a second experiment, in which a strong permanent magnet with large dipole moment (0.55 T, 275 A*m2) is inserted into the flowing plasma beam to replicate aspects of the solar wind interaction with the earth's magnetic field. This work is supported by the NASA SSERVI program.

  6. Copper plasmonics and catalysis: role of electron-phonon interactions in dephasing localized surface plasmons

    NASA Astrophysics Data System (ADS)

    Sun, Qi-C.; Ding, Yuchen; Goodman, Samuel M.; H. Funke, Hans; Nagpal, Prashant

    2014-10-01

    Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04719b

  7. Environmental Assessment of the 445th Airlift Wing Conversion from C-5 to C-17 Aircraft at Wright-Patterson Air Force Base

    DTIC Science & Technology

    2010-12-01

    effects on ground - water would continue to occur as a result of aircraft operations. Long-Term: No impact. Surface Water...that existed at the time the 15 study was prepared as well as a Maximum Mission Scenario that was based on the noise effects of various 16 potentially ...and human health of a community or locale. Storm water 19 is an important component of surface water systems because of its potential to

  8. A Noninvasive Imaging Modality for Cardiac Arrhythmias

    PubMed Central

    Burnes, John E.; Taccardi, Bruno; Rudy, Yoram

    2007-01-01

    Background The last decade witnessed an explosion of information regarding the genetic, molecular, and mechanistic basis of heart disease. Translating this information into clinical practice requires the development of novel functional imaging modalities for diagnosis, localization, and guided intervention. A noninvasive modality for imaging cardiac arrhythmias is not yet available. Present electrocardiographic methods cannot precisely localize a ventricular tachycardia (VT) or its key reentrant circuit components. Recently, we developed a noninvasive electrocardiographic imaging modality (ECGI) that can reconstruct epicardial electrophysiological information from body surface potentials. Here, we extend its application to image reentrant arrhythmias. Methods and Results Epicardial potentials were recorded during VT with a 490 electrode sock during an open chest procedure in 2 dogs with 4-day-old myocardial infarctions. Body surface potentials were generated from these epicardial potentials in a human torso model. Realistic geometry errors and measurement noise were added to the torso data, which were then used to noninvasively reconstruct epicardial isochrones, electrograms, and potentials with excellent accuracy. ECGI reconstructed the reentry pathway and its key components, including (1) the central common pathway, (2) the VT exit site, (3) lines of block, and (4) regions of slow and fast conduction. This allowed for detailed characterization of the reentrant circuit morphology. Conclusions ECGI can noninvasively image arrhythmic activation on the epicardium during VT to identify and localize key components of the arrhythmogenic pathway that can be effective targets for antiarrhythmic intervention. PMID:11044435

  9. Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form.

    PubMed

    Galvão, B R L; Rodrigues, S P J; Varandas, A J C

    2008-07-28

    A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.

  10. Reversible electrochemical modification of the surface of a semiconductor by an atomic-force microscope probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V.

    A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.

  11. The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases.

    PubMed

    Pielke, Roger A; Marland, Gregg; Betts, Richard A; Chase, Thomas N; Eastman, Joseph L; Niles, John O; Niyogi, Dev Dutta S; Running, Steven W

    2002-08-15

    Our paper documents that land-use change impacts regional and global climate through the surface-energy budget, as well as through the carbon cycle. The surface-energy budget effects may be more important than the carbon-cycle effects. However, land-use impacts on climate cannot be adequately quantified with the usual metric of 'global warming potential'. A new metric is needed to quantify the human disturbance of the Earth's surface-energy budget. This 'regional climate change potential' could offer a new metric for developing a more inclusive climate protocol. This concept would also implicitly provide a mechanism to monitor potential local-scale environmental changes that could influence biodiversity.

  12. Aerodynamic analysis of three advanced configurations using the TranAir full-potential code

    NASA Technical Reports Server (NTRS)

    Madson, M. D.; Carmichael, R. L.; Mendoza, J. P.

    1989-01-01

    Computational results are presented for three advanced configurations: the F-16A with wing tip missiles and under wing fuel tanks, the Oblique Wing Research Aircraft, and an Advanced Turboprop research model. These results were generated by the latest version of the TranAir full potential code, which solves for transonic flow over complex configurations. TranAir embeds a surface paneled geometry definition in a uniform rectangular flow field grid, thus avoiding the use of surface conforming grids, and decoupling the grid generation process from the definition of the configuration. The new version of the code locally refines the uniform grid near the surface of the geometry, based on local panel size and/or user input. This method distributes the flow field grid points much more efficiently than the previous version of the code, which solved for a grid that was uniform everywhere in the flow field. TranAir results are presented for the three configurations and are compared with wind tunnel data.

  13. High resolution imaging of latent fingerprints by localized corrosion on brass surfaces.

    PubMed

    Goddard, Alex J; Hillman, A Robert; Bond, John W

    2010-01-01

    The Atomic Force Microscope (AFM) is capable of imaging fingerprint ridges on polished brass substrates at an unprecedented level of detail. While exposure to elevated humidity at ambient or slightly raised temperatures does not change the image appreciably, subsequent brief heating in a flame results in complete loss of the sweat deposit and the appearance of pits and trenches. Localized elemental analysis (using EDAX, coupled with SEM imaging) shows the presence of the constituents of salt in the initial deposits. Together with water and atmospheric oxygen--and with thermal enhancement--these are capable of driving a surface corrosion process. This process is sufficiently localized that it has the potential to generate a durable negative topographical image of the fingerprint. AFM examination of surface regions between ridges revealed small deposits (probably microscopic "spatter" of sweat components or transferred particulates) that may ultimately limit the level of ridge detail analysis.

  14. Intracranial EEG potentials estimated from MEG sources: A new approach to correlate MEG and iEEG data in epilepsy.

    PubMed

    Grova, Christophe; Aiguabella, Maria; Zelmann, Rina; Lina, Jean-Marc; Hall, Jeffery A; Kobayashi, Eliane

    2016-05-01

    Detection of epileptic spikes in MagnetoEncephaloGraphy (MEG) requires synchronized neuronal activity over a minimum of 4cm2. We previously validated the Maximum Entropy on the Mean (MEM) as a source localization able to recover the spatial extent of the epileptic spike generators. The purpose of this study was to evaluate quantitatively, using intracranial EEG (iEEG), the spatial extent recovered from MEG sources by estimating iEEG potentials generated by these MEG sources. We evaluated five patients with focal epilepsy who had a pre-operative MEG acquisition and iEEG with MRI-compatible electrodes. Individual MEG epileptic spikes were localized along the cortical surface segmented from a pre-operative MRI, which was co-registered with the MRI obtained with iEEG electrodes in place for identification of iEEG contacts. An iEEG forward model estimated the influence of every dipolar source of the cortical surface on each iEEG contact. This iEEG forward model was applied to MEG sources to estimate iEEG potentials that would have been generated by these sources. MEG-estimated iEEG potentials were compared with measured iEEG potentials using four source localization methods: two variants of MEM and two standard methods equivalent to minimum norm and LORETA estimates. Our results demonstrated an excellent MEG/iEEG correspondence in the presumed focus for four out of five patients. In one patient, the deep generator identified in iEEG could not be localized in MEG. MEG-estimated iEEG potentials is a promising method to evaluate which MEG sources could be retrieved and validated with iEEG data, providing accurate results especially when applied to MEM localizations. Hum Brain Mapp 37:1661-1683, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Evaluation of the constant potential method in simulating electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Yang, Yang; Olmsted, David L.; Asta, Mark; Laird, Brian B.

    2014-11-01

    A major challenge in the molecular simulation of electric double layer capacitors (EDLCs) is the choice of an appropriate model for the electrode. Typically, in such simulations the electrode surface is modeled using a uniform fixed charge on each of the electrode atoms, which ignores the electrode response to local charge fluctuations in the electrolyte solution. In this work, we evaluate and compare this Fixed Charge Method (FCM) with the more realistic Constant Potential Method (CPM), [S. K. Reed et al., J. Chem. Phys. 126, 084704 (2007)], in which the electrode charges fluctuate in order to maintain constant electric potential in each electrode. For this comparison, we utilize a simplified LiClO4-acetonitrile/graphite EDLC. At low potential difference (ΔΨ ⩽ 2 V), the two methods yield essentially identical results for ion and solvent density profiles; however, significant differences appear at higher ΔΨ. At ΔΨ ⩾ 4 V, the CPM ion density profiles show significant enhancement (over FCM) of "inner-sphere adsorbed" Li+ ions very close to the electrode surface. The ability of the CPM electrode to respond to local charge fluctuations in the electrolyte is seen to significantly lower the energy (and barrier) for the approach of Li+ ions to the electrode surface.

  16. Organic electronics for high-resolution electrocorticography of the human brain.

    PubMed

    Khodagholy, Dion; Gelinas, Jennifer N; Zhao, Zifang; Yeh, Malcolm; Long, Michael; Greenlee, Jeremy D; Doyle, Werner; Devinsky, Orrin; Buzsáki, György

    2016-11-01

    Localizing neuronal patterns that generate pathological brain signals may assist with tissue resection and intervention strategies in patients with neurological diseases. Precise localization requires high spatiotemporal recording from populations of neurons while minimizing invasiveness and adverse events. We describe a large-scale, high-density, organic material-based, conformable neural interface device ("NeuroGrid") capable of simultaneously recording local field potentials (LFPs) and action potentials from the cortical surface. We demonstrate the feasibility and safety of intraoperative recording with NeuroGrids in anesthetized and awake subjects. Highly localized and propagating physiological and pathological LFP patterns were recorded, and correlated neural firing provided evidence about their local generation. Application of NeuroGrids to brain disorders, such as epilepsy, may improve diagnostic precision and therapeutic outcomes while reducing complications associated with invasive electrodes conventionally used to acquire high-resolution and spiking data.

  17. Localization with a mobile beacon in underwater acoustic sensor networks.

    PubMed

    Lee, Sangho; Kim, Kiseon

    2012-01-01

    Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB). The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node's location and then the node's location is determined through the weighted mean of all the potential locations with the weights computed based on residuals.

  18. Localization with a Mobile Beacon in Underwater Acoustic Sensor Networks

    PubMed Central

    Lee, Sangho; Kim, Kiseon

    2012-01-01

    Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB). The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node's location and then the node's location is determined through the weighted mean of all the potential locations with the weights computed based on residuals. PMID:22778597

  19. Simulation of electric double-layer capacitors: evaluation of constant potential method

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Laird, Brian; Yang, Yang; Olmsted, David; Asta, Mark

    2014-03-01

    Atomistic simulations can play an important role in understanding electric double-layer capacitors (EDLCs) at a molecular level. In such simulations, typically the electrode surface is modeled using fixed surface charges, which ignores the charge fluctuation induced by local fluctuations in the electrolyte solution. In this work we evaluate an explicit treatment of charges, namely constant potential method (CPM)[1], in which the electrode charges are dynamically updated to maintain constant electrode potential. We employ a model system with a graphite electrode and a LiClO4/acetonitrile electrolyte, examined as a function of electrode potential differences. Using various molecular and macroscopic properties as metrics, we compare CPM simulations on this system to results using fixed surface charges. Specifically, results for predicted capacity, electric potential gradient and solvent density profile are identical between the two methods; However, ion density profiles and solvation structure yield significantly different results.

  20. Layer Dependence and Light Tuning Surface Potential of 2D MoS2 on Various Substrates.

    PubMed

    Li, Feng; Qi, Junjie; Xu, Minxuan; Xiao, Jiankun; Xu, Yuliang; Zhang, Xiankun; Liu, Shuo; Zhang, Yue

    2017-04-01

    Here surface potential of chemical vapor deposition (CVD) grown 2D MoS 2 with various layers is reported, and the effect of adherent substrate and light illumination on surface potential of monolayer MoS 2 are investigated. The surface potential of MoS 2 on Si/SiO 2 substrate decreases from 4.93 to 4.84 eV with the increase in the number of layer from 1 to 4 or more. Especially, the surface potentials of monolayer MoS 2 are strongly dependent on its adherent substrate, which are determined to be 4.55, 4.88, 4.93, 5.10, and 5.50 eV on Ag, graphene, Si/SiO 2 , Au, and Pt substrates, respectively. Light irradiation is introduced to tuning the surface potential of monolayer MoS 2 , with the increase in light intensity, the surface potential of MoS 2 on Si/SiO 2 substrate decreases from 4.93 to 4.74 eV, while increases from 5.50 to 5.56 eV on Pt substrate. The I-V curves on vertical of monolayer MoS 2 /Pt heterojunction show the decrease in current with the increase of light intensity, and Schottky barrier height at MoS 2 /Pt junctions increases from 0.302 to 0.342 eV. The changed surface potential can be explained by trapped charges on surface, photoinduced carriers, charge transfer, and local electric field. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

    NASA Astrophysics Data System (ADS)

    Chaney, Nathaniel W.; Herman, Jonathan D.; Ek, Michael B.; Wood, Eric F.

    2016-11-01

    With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.

  2. Surface localization of sacral foramina for neuromodulation of bladder function. An anatomical study.

    PubMed

    Hasan, S T; Shanahan, D A; Pridie, A K; Neal, D E

    1996-01-01

    A method is described for percutaneous localization of the sacral foramina, for neuromodulation of bladder function. We carried out an anatomical study of 5 male and 5 female human cadaver pelves. Using the described surface markings, needles were placed percutaneously into all sacral foramina from nine different angles. Paths of needle entry were studied by subsequent dissection. We observed that although it was possible to enter any sacral foramen at a wide range of insertion angles, the incidence of nerve root/vascular penetration increased with increasing angle of needle entry. Also, the incidence of nerve root penetration was higher with the medial approach compared with lateral entry. The insertion of a needle into the S1 foramen was associated with a higher incidence of nerve root penetration and presents a potential for arterial haemorrhage. On the other hand the smaller S3 and S4 nerve roots were surrounded by venous plexuses, presenting a potential source of venous haemorrhage during procedures. Our study suggests a new method for identifying the surface markings of sacral foramina and it describes the paths of inserted needles into the respective foramina. In addition, it has highlighted some potential risk factors secondary to needle insertion.

  3. High-Performance Computational Modeling of ICRF Physics and Plasma-Surface Interactions in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, David

    2016-10-01

    Inefficiencies and detrimental physical effects may arise in conjunction with ICRF heating of tokamak plasmas. Large wall potential drops, associated with sheath formation near plasma-facing antenna hardware, give rise to high-Z impurity sputtering from plasma-facing components and subsequent radiative cooling. Linear and nonlinear wave excitations in the plasma edge/SOL also dissipate injected RF power and reduce overall antenna efficiency. Recent advances in finite-difference time-domain (FDTD) modeling techniques allow the physics of localized sheath potentials, and associated sputtering events, to be modeled concurrently with the physics of antenna near- and far-field behavior and RF power flow. The new methods enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We present results/animations from high-performance (10k-100k core) FDTD/PIC simulations spanning half of Alcator C-Mod at mm-scale resolution, exploring impurity production due to localized sputtering (in response to self-consistent sheath potentials at antenna surfaces) and the physics of parasitic slow wave excitation near the antenna hardware and SOL. Supported by US DoE (Award DE-SC0009501) and the ALCC program.

  4. Scanning tunneling microscopy studies of Si donors (Si[sub Ga]) in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, J.F.; Liu, X.; Newman, N.

    1994-03-07

    We report scanning tunneling microscopy (STM) studies of Si substitutional donors (Si[sub Ga]) in GaAs that reveal delocalized and localized electronic features corresponding to Si[sub Ga] in the top few layers of the (110) cleavage surface. The delocalized features appear as protrusions a few nm in size, superimposed on the background lattice. These features are attributed to enhanced tunneling due to the local perturbation of the band bending by the Coulomb potential of subsurface Si[sub Ga]. In contrast, STM images of surface Si[sub Ga] show very localized electronic structures, in good agreement with a recent theoretical prediction [J. Wang [italmore » et] [ital al]., Phys. Rev. B 47, 10 329 (1993)].« less

  5. Electronic structure of metals and semiconductors: bulk, surface, and interface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, S.G.S.

    1976-09-01

    A theoretical study of the electronic structure of various metals and semiconductors is presented with the emphasis on understanding the properties of these materials when they are subjected to extreme conditions and in various different configurations. Among the bulk systems studied, the properties of cesium under high pressure are discussed in terms of the electronic structure calculated at various cell volumes using the pseudopotential method. Local fields or umklapp processes in semiconductors are studied within the random phase approximation (RPA). Specifically the dielectric response matrix epsilon/sub GG'/ (q = 0,omega) is evaluated numerically to determine the effects of local-field correctionsmore » in the optical spectrum of Si. Also, some comments on the excitonic mechanism of superconductivity are presented and the role of local fields is discussed. The pseudo-potential method is next extended to calculate the electronic structure of a transition metal Nb. The calculation is performed self-consistently with the use of a non-local ionic potential determined from atomic spectra. Finally the theory of the superconducting transition temperature T/sub c/ is discussed in the strong-coupling formulation of the BCS theory. The Eliashberg equations in the Matsubara representation are solved analytically and a general T/sub c/ equation is obtained. A new method is developed using pseudopotentials in a self-consistent manner to describe non-periodic systems. The method is applicable to localized configurations such as molecules, surfaces, impurities, vacancies, finite chains of atoms, adsorbates, and solid interfaces. Specific applications to surfaces, metal-semiconductor interfaces and vacancies are presented.« less

  6. Strong localization induced anomalous temperature dependence exciton emission above 300 K from SnO{sub 2} quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, S. S., E-mail: sspan@issp.ac.cn, E-mail: ghli@issp.ac.cn; Li, F. D.; Liu, Q. W.

    2015-05-07

    SnO{sub 2} quantum dots (QDs) are potential materials for deep ultraviolet (DUV) light emitting devices. In this study, we report the temperature and excitation power-dependent exciton luminescence from SnO{sub 2} QDs. The exciton emission exhibits anomalous blue shift, accompanied with band width reduction with increasing temperature and excitation power above 300 K. The anomalous temperature dependences of the peak energy and band width are well interpreted by the strongly localized carrier thermal hopping process and Gaussian shape of band tails states, respectively. The localized wells and band tails at conduction minimum are considered to be induced by the surface oxygen defectsmore » and local potential fluctuation in SnO{sub 2} QDs.« less

  7. Solid rocket exhaust in the stratosphere: Plume diffusion and chemical reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denison, M.R.; Lamb, J.J.; Bjorndahl, W.D.

    1994-05-01

    A model has been developed to examine, on a local scale, the reactions of rocket exhaust from solid rocket motors with stratospheric ozone. The effects were examined at two different altitudes. Results of the modeling study indicate that afterburning chemistry of reactive exhaust products can cause local but transient (on the order of several minutes) loss of ozone. The modeling study included potential heterogeneous reactions at aluminum oxide surfaces. Results indicate that these potential heterogeneous reactions do not have a major impact on the local plume chemistry. Homogeneous reactions appear to be of more consequence during the early dispersion ofmore » the plume. It has also been found that the rate of plume dispersion has a very significant effect on local ozone loss.« less

  8. Electron-beam-induced potentials in semiconductors: calculation and measurement with an SEM/SPM hybrid system

    NASA Astrophysics Data System (ADS)

    Thomas, Ch; Joachimsthaler, I.; Heiderhoff, R.; Balk, L. J.

    2004-10-01

    In this work electron-beam-induced potentials are analysed theoretically and experimentally for semiconductors. A theoretical model is developed to describe the surface potential distribution produced by an electron beam. The distribution of generated carriers is calculated using semiconductor equations. This distribution causes a local change in surface potential, which is derived with the help of quasi-Fermi energies. The potential distribution is simulated using the model developed and measured with a scanning probe microscope (SPM) built inside a scanning electron microscope (SEM), for different samples, for different beam excitations and for different cantilever voltages of SPM. In the end, some fields of application are shown where material properties can be determined using an SEM/SPM hybrid system.

  9. Space Weathering Impact on Solar System Surfaces and Planetary Mission Science

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2011-01-01

    We often look "through a glass, darkly" at solar system bodies with tenuous atmospheres and direct surface exposure to the local space environment. Space weathering exposure acts via universal space-surface interaction processes to produce a thin patina of outer material covering, potentially obscuring endogenic surface materials of greatest interest for understanding origins and interior evolution. Examples of obscuring exogenic layers are radiation crusts on cometary nuclei and iogenic components of sulfate hydrate deposits on the trailing hemisphere of Europa. Weathering processes include plasma ion implantation into surfaces, sputtering by charged particles and solar ultraviolet photons, photolytic chemistry driven by UV irradiation, and radiolytic chemistry evolving from products of charged particle irradiation. Regolith structure from impacts, and underlying deeper structures from internal evolution, affects efficacy of certain surface interactions, e.g. sputtering as affected by porosity and surface irradiation dosage as partly attenuated by local topographic shielding. These processes should be regarded for mission science planning as potentially enabling, e.g. since direct surface sputtering, and resultant surface-bound exospheres, can provide in-situ samples of surface composition to ion and neutral mass spectrometers on orbital spacecraft. Sample return for highest sensitivity compOSitional and structural analyses at Earth will usually be precluded by limited range of surface sampling, long times for return, and high cost. Targeted advancements in instrument technology would be more cost efficient for local remote and in-situ sample analysis. More realistic laboratory simulations, e.g. for bulk samples, are needed to interpret mission science observations of weathered surfaces. Space environment effects on mission spacecraft and science operations must also be specified and mitigated from the hourly to monthly changes in space weather and from longer term (e.g., solar cycle) evolution of space climate. Capable instrumentation on planetary missions can and should be planned to contribute to knowledge of interplanetary space environments. Evolving data system technologies such as virtual observatories should be explored for more interdisciplinary application to the science of planetary surface, atmospheric, magnetospheric, and interplanetary interactions.

  10. Tapered optical fiber sensor based on localized surface plasmon resonance.

    PubMed

    Lin, Hsing-Ying; Huang, Chen-Han; Cheng, Gia-Ling; Chen, Nan-Kuang; Chui, Hsiang-Chen

    2012-09-10

    A tapered fiber localized surface plasmon resonance (LSPR) sensor is demonstrated for refractive index sensing and label-free biochemical detection. The sensing strategy relies on the interrogation of the transmission intensity change due to the evanescent field absorption of immobilized gold nanoparticles on the tapered fiber surface. The refractive index resolution based on the interrogation of transmission intensity change is calculated to be 3.2×10⁻⁵ RIU. The feasibility of DNP-functionalized tapered fiber LSPR sensor in monitoring anti-DNP antibody with different concentrations spiked in buffer is examined. Results suggest that the compact sensor can perform qualitative and quantitative biochemical detection in real-time and thus has potential to be used in biomolecular sensing applications.

  11. Wavelet-sparsity based regularization over time in the inverse problem of electrocardiography.

    PubMed

    Cluitmans, Matthijs J M; Karel, Joël M H; Bonizzi, Pietro; Volders, Paul G A; Westra, Ronald L; Peeters, Ralf L M

    2013-01-01

    Noninvasive, detailed assessment of electrical cardiac activity at the level of the heart surface has the potential to revolutionize diagnostics and therapy of cardiac pathologies. Due to the requirement of noninvasiveness, body-surface potentials are measured and have to be projected back to the heart surface, yielding an ill-posed inverse problem. Ill-posedness ensures that there are non-unique solutions to this problem, resulting in a problem of choice. In the current paper, it is proposed to restrict this choice by requiring that the time series of reconstructed heart-surface potentials is sparse in the wavelet domain. A local search technique is introduced that pursues a sparse solution, using an orthogonal wavelet transform. Epicardial potentials reconstructed from this method are compared to those from existing methods, and validated with actual intracardiac recordings. The new technique improves the reconstructions in terms of smoothness and recovers physiologically meaningful details. Additionally, reconstruction of activation timing seems to be improved when pursuing sparsity of the reconstructed signals in the wavelet domain.

  12. Analysis of rainfall-induced slope instability using a field of local factor of safety

    USGS Publications Warehouse

    Lu, Ning; Şener-Kaya, Başak; Wayllace, Alexandra; Godt, Jonathan W.

    2012-01-01

    Slope-stability analyses are mostly conducted by identifying or assuming a potential failure surface and assessing the factor of safety (FS) of that surface. This approach of assigning a single FS to a potentially unstable slope provides little insight on where the failure initiates or the ultimate geometry and location of a landslide rupture surface. We describe a method to quantify a scalar field of FS based on the concept of the Coulomb stress and the shift in the state of stress toward failure that results from rainfall infiltration. The FS at each point within a hillslope is called the local factor of safety (LFS) and is defined as the ratio of the Coulomb stress at the current state of stress to the Coulomb stress of the potential failure state under the Mohr-Coulomb criterion. Comparative assessment with limit-equilibrium and hybrid finite element limit-equilibrium methods show that the proposed LFS is consistent with these approaches and yields additional insight into the geometry and location of the potential failure surface and how instability may initiate and evolve with changes in pore water conditions. Quantitative assessments applying the new LFS field method to slopes under infiltration conditions demonstrate that the LFS has the potential to overcome several major limitations in the classical FS methodologies such as the shape of the failure surface and the inherent underestimation of slope instability. Comparison with infinite-slope methods, including a recent extension to variably saturated conditions, shows further enhancement in assessing shallow landslide occurrence using the LFS methodology. Although we use only a linear elastic solution for the state of stress with no post-failure analysis that require more sophisticated elastoplastic or other theories, the LFS provides a new means to quantify the potential instability zones in hillslopes under variably saturated conditions using stress-field based methods.

  13. Modeling the Effects of Groundwater-fed Irrigation on Terrestrial Hydrology over the Conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong

    2014-06-01

    Human alteration of the land surface hydrologic cycle is substantial. Recent studies suggest that local water management practices including groundwater pumping and irrigation could significantly alter the quantity and distribution of water in the terrestrial system, with potential impacts on weather and climate through land-atmosphere feedbacks. In this study, we incorporated a groundwater withdrawal scheme into the Community Land Model version 4 (CLM4). To simulate the impact of irrigation realistically, we calibrated the CLM4 simulated irrigation amount against observations from agriculture census at the county scale over the conterminous United States (CONUS). The water used for irrigation was then removedmore » from the surface runoff and groundwater aquifer according to a ratio determined from the county-level agricultural census data. Based on the simulations, the impact of groundwater withdrawals for irrigation on land surface and subsurface fluxes were investigated. Our results suggest that the impacts of irrigation on latent heat flux and potential recharge when water is withdrawn from surface water alone or from both surface and groundwater are comparable and local to the irrigation areas. However, when water is withdrawn from groundwater for irrigation, greater effects on the subsurface water balance were found, leading to significant depletion of groundwater storage in regions with low recharge rate and high groundwater exploitation rate. Our results underscore the importance of local hydrologic feedbacks in governing hydrologic response to anthropogenic change in CLM4 and the need to more realistically simulate the two-way interactions among surface water, groundwater, and atmosphere to better understand the impacts of groundwater pumping on irrigation efficiency and climate.« less

  14. Dust Grain Charge above the Lunar terminator

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Richterova, Ivana; Nemecek, Zdenek; Safrankova, Jana; Pavlu, Jiri; Vysinka, Marek

    Interaction of a lunar surface with the solar wind and magnetosphere leads to its charging by several processes as photoemission, a collection of primary particles, and secondary electron emission. Nevertheless, charging of the lunar surface is complicated by a shielding of solar light and solar wind ions by hills, craters, and boulders that can locally influence the surface potential. Moreover, a presence of a plasma wake can strongly affect this potential at the night side of the Moon. A typical surface potential varies from slightly positive (dayside) to negative values of the order of several hundred volts (night side). An electric field above the charged surface can lead to a levitation of dust grains as it has been observed by several spacecraft and by astronauts during Apollo missions. Although charging and transport of dust grains above the lunar surface are in the center of interest for many years, these phenomena are not still completely understood. We present calculation of an equilibrium potential of dust grains above the lunar surface. We focus on a terminator area during the Earth’s plasma sheet crossing. We use the secondary electron emission model for dust grains which takes into account an influence of the grain size, material, and surface roughness and findings from laboratory experiments with charging of lunar dust simulants by an electron beam.

  15. Analyzing the molecular mechanism of lipoprotein localization in Brucella

    PubMed Central

    Goolab, Shivani; Roth, Robyn L.; van Heerden, Henriette; Crampton, Michael C.

    2015-01-01

    Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria are well characterized and may be useful to infer a solution to better understand the translocation process in Brucella. PMID:26579096

  16. Higher dimensional curved domain walls on Kähler surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id; Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id; Radjabaycolle, Flinn C.

    In this paper we study some aspects of curved BPS-like domain walls in higher dimensional gravity theory coupled to scalars where the scalars span a complex Kähler surface with scalar potential turned on. Assuming that a fake superpotential has a special form which depends on Kähler potential and a holomorphic function, we prove that BPS-like equations have a local unique solution. Then, we analyze the vacuum structure of the theory including their stability using dynamical system and their existence in ultraviolet-infrared regions using renormalization group flow.

  17. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    PubMed Central

    Lusher, Amy L.; Tirelli, Valentina; O’Connor, Ian; Officer, Rick

    2015-01-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment. PMID:26446348

  18. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples

    NASA Astrophysics Data System (ADS)

    Lusher, Amy L.; Tirelli, Valentina; O'Connor, Ian; Officer, Rick

    2015-10-01

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

  19. Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples.

    PubMed

    Lusher, Amy L; Tirelli, Valentina; O'Connor, Ian; Officer, Rick

    2015-10-08

    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.

  20. Direct imaging of defect formation in strained organic flexible electronics by Scanning Kelvin Probe Microscopy

    PubMed Central

    Cramer, Tobias; Travaglini, Lorenzo; Lai, Stefano; Patruno, Luca; de Miranda, Stefano; Bonfiglio, Annalisa; Cosseddu, Piero; Fraboni, Beatrice

    2016-01-01

    The development of new materials and devices for flexible electronics depends crucially on the understanding of how strain affects electronic material properties at the nano-scale. Scanning Kelvin-Probe Microscopy (SKPM) is a unique technique for nanoelectronic investigations as it combines non-invasive measurement of surface topography and surface electrical potential. Here we show that SKPM in non-contact mode is feasible on deformed flexible samples and allows to identify strain induced electronic defects. As an example we apply the technique to investigate the strain response of organic thin film transistors containing TIPS-pentacene patterned on polymer foils. Controlled surface strain is induced in the semiconducting layer by bending the transistor substrate. The amount of local strain is quantified by a mathematical model describing the bending mechanics. We find that the step-wise reduction of device performance at critical bending radii is caused by the formation of nano-cracks in the microcrystal morphology of the TIPS-pentacene film. The cracks are easily identified due to the abrupt variation in SKPM surface potential caused by a local increase in resistance. Importantly, the strong surface adhesion of microcrystals to the elastic dielectric allows to maintain a conductive path also after fracture thus providing the opportunity to attenuate strain effects. PMID:27910889

  1. Effective Detection of Sub-Surface Archeological Features from Laser Scanning Point Clouds and Imagery Data

    NASA Astrophysics Data System (ADS)

    Fryskowska, A.; Kedzierski, M.; Walczykowski, P.; Wierzbicki, D.; Delis, P.; Lada, A.

    2017-08-01

    The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

  2. Tradeoff between mixing and transport for electroosmotic flow in heterogeneous microchannels with nonuniform surface potentials.

    PubMed

    Tian, Fuzhi; Li, Baoming; Kwok, Daniel Y

    2005-02-01

    Electroosmotic flow (EOF) is a phenomenon associated with the movement of an aqueous solution induced by the application of an electric field in microchannels. The characteristics of EOF depend on the nature of the surface potential, i.e., whether it is uniform or nonuniform. In this paper, a lattice Boltzmann model (LBM) combined with the Poisson-Boltzmann equation is used to simulate flow field in a rectangular microchannel with nonuniform (step change) surface potentials. The simulation results indicate that local circulations can occur near a heterogeneous region with nonuniform surface potentials, in agreement with those by other authors. Largest circulations, which imply a highest mixing efficiency due to convection and short-range diffusion, were found when the average surface potential is zero, regardless of whether the distribution of the heterogeneous patches is symmetric or asymmetric. In this work, we have illustrated that there is a trade-off between the mixing and liquid transport in EOF microfluidics. One should not simply focus on mixing and neglect liquid transport, as performed in the literature. Excellent mixing could lead to a poor transport of electroosmotic flow in microchannels.

  3. Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes.

    PubMed

    Pieters, Thomas A; Conner, Christopher R; Tandon, Nitin

    2013-05-01

    Precise localization of subdural electrodes (SDEs) is essential for the interpretation of data from intracranial electrocorticography recordings. Blood and fluid accumulation underneath the craniotomy flap leads to a nonlinear deformation of the brain surface and of the SDE array on postoperative CT scans and adversely impacts the accurate localization of electrodes located underneath the craniotomy. Older methods that localize electrodes based on their identification on a postimplantation CT scan with coregistration to a preimplantation MR image can result in significant problems with accuracy of the electrode localization. The authors report 3 novel methods that rely on the creation of a set of 3D mesh models to depict the pial surface and a smoothed pial envelope. Two of these new methods are designed to localize electrodes, and they are compared with 6 methods currently in use to determine their relative accuracy and reliability. The first method involves manually localizing each electrode using digital photographs obtained at surgery. This is highly accurate, but requires time intensive, operator-dependent input. The second uses 4 electrodes localized manually in conjunction with an automated, recursive partitioning technique to localize the entire electrode array. The authors evaluated the accuracy of previously published methods by applying the methods to their data and comparing them against the photograph-based localization. Finally, the authors further enhanced the usability of these methods by using automatic parcellation techniques to assign anatomical labels to individual electrodes as well as by generating an inflated cortical surface model while still preserving electrode locations relative to the cortical anatomy. The recursive grid partitioning had the least error compared with older methods (672 electrodes, 6.4-mm maximum electrode error, 2.0-mm mean error, p < 10(-18)). The maximum errors derived using prior methods of localization ranged from 8.2 to 11.7 mm for an individual electrode, with mean errors ranging between 2.9 and 4.1 mm depending on the method used. The authors also noted a larger error in all methods that used CT scans alone to localize electrodes compared with those that used both postoperative CT and postoperative MRI. The large mean errors reported with these methods are liable to affect intermodal data comparisons (for example, with functional mapping techniques) and may impact surgical decision making. The authors have presented several aspects of using new techniques to visualize electrodes implanted for localizing epilepsy. The ability to use automated labeling schemas to denote which gyrus a particular electrode overlies is potentially of great utility in planning resections and in corroborating the results of extraoperative stimulation mapping. Dilation of the pial mesh model provides, for the first time, a sense of the cortical surface not sampled by the electrode, and the potential roles this "electrophysiologically hidden" cortex may play in both eloquent function and seizure onset.

  4. The Robin Hood method - A novel numerical method for electrostatic problems based on a non-local charge transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazic, Predrag; Stefancic, Hrvoje; Abraham, Hrvoje

    2006-03-20

    We introduce a novel numerical method, named the Robin Hood method, of solving electrostatic problems. The approach of the method is closest to the boundary element methods, although significant conceptual differences exist with respect to this class of methods. The method achieves equipotentiality of conducting surfaces by iterative non-local charge transfer. For each of the conducting surfaces, non-local charge transfers are performed between surface elements, which differ the most from the targeted equipotentiality of the surface. The method is tested against analytical solutions and its wide range of application is demonstrated. The method has appealing technical characteristics. For the problemmore » with N surface elements, the computational complexity of the method essentially scales with N {sup {alpha}}, where {alpha} < 2, the required computer memory scales with N, while the error of the potential decreases exponentially with the number of iterations for many orders of magnitude of the error, without the presence of the Critical Slowing Down. The Robin Hood method could prove useful in other classical or even quantum problems. Some future development ideas for possible applications outside electrostatics are addressed.« less

  5. Molecular dynamics simulation of shock induced ejection on fused silica surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Rui; Xiang, Meizhen; Jiang, Shengli

    2014-05-21

    Shock response and surface ejection behaviors of fused silica are studied by using non-equilibrium molecular dynamics combining with the Tersoff potential. First, bulk structure and Hugoniot curves of fused silica are calculated and compared with experimental results. Then, the dynamical process of surface ejection behavior is simulated under different loading velocities ranging from 3.5 to 5.0 km∕s, corresponding to shock wave velocities from 7.1 to 8.8 km∕s. The local atomistic shear strain parameter is used to describe the local plastic deformation under conditions of shock compression or releasing. Our result shows that the shear strain is localized in the bottom area ofmore » groove under the shock compression. Surface ejection is observed when the loading velocity exceeds 4.0 km∕s. Meanwhile, the temperature of the micro-jet is ∼5574.7 K, which is close to experiment measurement. Several kinds of structural defects including non-bridging oxygen are found in the bulk area of the sample after ejection.« less

  6. Constructing superhydrophobic WO3@TiO2 nanoflake surface beyond amorphous alloy against electrochemical corrosion on iron steel

    NASA Astrophysics Data System (ADS)

    Yu, S. Q.; Ling, Y. H.; Wang, R. G.; Zhang, J.; Qin, F.; Zhang, Z. J.

    2018-04-01

    To eliminate harmful localized corrosion, a new approach by constructing superhydrophobic WO3@TiO2 hierarchical nanoflake surface beyond FeW amorphous alloy formed on stainless steel was proposed. Facile dealloying and liquid deposition was employed at low temperature to form a nanostructured layer composing inner WO3 nanoflakes coated with TiO2 nanoparticles (NPs) layer. After further deposition of PFDS on nanoflakes, the contact angle reached 162° while the corrosion potential showed a negative shift of 230 mV under illumination, resulting in high corrosion resistance in 3.5 wt% NaCl solution. The tradeoff between superhydrophobic surface and photo-electro response was investigated. It was found that this surface feature makes 316 SS be immune to localized corrosion and a pronounced photo-induced process of electron storage/release as well as the stability of the functional layer were detected with or without illumination, and the mechanism behind this may be related to the increase of surface potential due to water repellence and the delayed cathodic protection of semiconducting coating derived mainly from the valence state changes of WO3. This study demonstrates a simple and low-cost electrochemical approach for protection of steel and novel means to produce superhydrophobic surface and cathodic protection with controllable electron storage/release on engineering scale.

  7. Estimation of Leakage Potential of Selected Sites in Interstate and Tri-State Canals Using Geostatistical Analysis of Selected Capacitively Coupled Resistivity Profiles, Western Nebraska, 2004

    USGS Publications Warehouse

    Vrabel, Joseph; Teeple, Andrew; Kress, Wade H.

    2009-01-01

    With increasing demands for reliable water supplies and availability estimates, groundwater flow models often are developed to enhance understanding of surface-water and groundwater systems. Specific hydraulic variables must be known or calibrated for the groundwater-flow model to accurately simulate current or future conditions. Surface geophysical surveys, along with selected test-hole information, can provide an integrated framework for quantifying hydrogeologic conditions within a defined area. In 2004, the U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, performed a surface geophysical survey using a capacitively coupled resistivity technique to map the lithology within the top 8 meters of the near-surface for 110 kilometers of the Interstate and Tri-State Canals in western Nebraska and eastern Wyoming. Assuming that leakage between the surface-water and groundwater systems is affected primarily by the sediment directly underlying the canal bed, leakage potential was estimated from the simple vertical mean of inverse-model resistivity values for depth levels with geometrically increasing layer thickness with depth which resulted in mean-resistivity values biased towards the surface. This method generally produced reliable results, but an improved analysis method was needed to account for situations where confining units, composed of less permeable material, underlie units with greater permeability. In this report, prepared by the U.S. Geological Survey in cooperation with the North Platte Natural Resources District, the authors use geostatistical analysis to develop the minimum-unadjusted method to compute a relative leakage potential based on the minimum resistivity value in a vertical column of the resistivity model. The minimum-unadjusted method considers the effects of homogeneous confining units. The minimum-adjusted method also is developed to incorporate the effect of local lithologic heterogeneity on water transmission. Seven sites with differing geologic contexts were selected following review of the capacitively coupled resistivity data collected in 2004. A reevaluation of these sites using the mean, minimum-unadjusted, and minimum-adjusted methods was performed to compare the different approaches for estimating leakage potential. Five of the seven sites contained underlying confining units, for which the minimum-unadjusted and minimum-adjusted methods accounted for the confining-unit effect. Estimates of overall leakage potential were lower for the minimum-unadjusted and minimum-adjusted methods than those estimated by the mean method. For most sites, the local heterogeneity adjustment procedure of the minimum-adjusted method resulted in slightly larger overall leakage-potential estimates. In contrast to the mean method, the two minimum-based methods allowed the least permeable areas to control the overall vertical permeability of the subsurface. The minimum-adjusted method refined leakage-potential estimation by additionally including local lithologic heterogeneity effects.

  8. Detecting Local Ligand-Binding Site Similarity in Non-Homologous Proteins by Surface Patch Comparison

    PubMed Central

    Sael, Lee; Kihara, Daisuke

    2012-01-01

    Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algorithm, named Patch-Surfer, represents a binding pocket as a combination of segmented surface patches, each of which is characterized by its geometrical shape, the electrostatic potential, the hydrophobicity, and the concaveness. Representing a pocket by a set of patches is effective to absorb difference of global pocket shape while capturing local similarity of pockets. The shape and the physicochemical properties of surface patches are represented using the 3D Zernike descriptor, which is a series expansion of mathematical 3D function. Two pockets are compared using a modified weighted bipartite matching algorithm, which matches similar patches from the two pockets. Patch-Surfer was benchmarked on three datasets, which consist in total of 390 proteins that bind to one of 21 ligands. Patch-Surfer showed superior performance to existing methods including a global pocket comparison method, Pocket-Surfer, which we have previously introduced. Particularly, as intended, the accuracy showed large improvement for flexible ligand molecules, which bind to pockets in different conformations. PMID:22275074

  9. Detecting local ligand-binding site similarity in nonhomologous proteins by surface patch comparison.

    PubMed

    Sael, Lee; Kihara, Daisuke

    2012-04-01

    Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algorithm, named Patch-Surfer, represents a binding pocket as a combination of segmented surface patches, each of which is characterized by its geometrical shape, the electrostatic potential, the hydrophobicity, and the concaveness. Representing a pocket by a set of patches is effective to absorb difference of global pocket shape while capturing local similarity of pockets. The shape and the physicochemical properties of surface patches are represented using the 3D Zernike descriptor, which is a series expansion of mathematical 3D function. Two pockets are compared using a modified weighted bipartite matching algorithm, which matches similar patches from the two pockets. Patch-Surfer was benchmarked on three datasets, which consist in total of 390 proteins that bind to one of 21 ligands. Patch-Surfer showed superior performance to existing methods including a global pocket comparison method, Pocket-Surfer, which we have previously introduced. Particularly, as intended, the accuracy showed large improvement for flexible ligand molecules, which bind to pockets in different conformations. Copyright © 2011 Wiley Periodicals, Inc.

  10. Isolated molecular dopants in pentacene observed by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Kahn, Antoine

    2009-11-01

    Doping is essential to the control of electronic structure and conductivity of semiconductor materials. Whereas doping of inorganic semiconductors is well established, doping of organic molecular semiconductors is still relatively poorly understood. Using scanning tunneling microscopy, we investigate, at the molecular scale, surface and subsurface tetrafluoro-tetracyanoquinodimethane p -dopants in the prototypical molecular semiconductor pentacene. Surface dopants diffuse to pentacene vacancies and appear as negatively charged centers, consistent with the standard picture of an ionized acceptor. Subsurface dopants, however, have the effect of a positive charge, evidence that the donated hole is localized by the parent acceptor counterion, in contrast to the model of doping in inorganic semiconductors. Scanning tunneling spectroscopy shows that the electron potential energy is locally lowered near a subsurface dopant feature, in agreement with the localized hole model.

  11. The behavior of small helium clusters near free surfaces in tungsten

    NASA Astrophysics Data System (ADS)

    Barashev, A. V.; Xu, H.; Stoller, R. E.

    2014-11-01

    The results of a computational study of helium-vacancy clusters in tungsten are reported. A recently developed atomistic kinetic Monte Carlo method employing empirical interatomic potentials was used to investigate the behavior of clusters composed of three interstitial-helium atoms near {1 1 1}, {1 1 0} and {1 0 0} free surfaces. Multiple configurations were examined and the local energy landscape was characterized to determine cluster mobility and the potential for interactions with the surface. The clusters were found to be highly mobile if far from the surface, but were attracted and bound to the surface when within a distance of a few lattice parameters. When near the surface, the clusters were transformed into an immobile configuration due to the creation of a Frenkel pair; the vacancy was incorporated into what became a He3-vacancy complex. The corresponding interstitial migrated to and became an adatom on the free surface. This process can contribute to He retention, and may be responsible for the observed deterioration of the plasma-exposed tungsten surfaces.

  12. DNA molecules on periodically microstructured lipid membranes: Localization and coil stretching

    NASA Astrophysics Data System (ADS)

    Hochrein, Marion B.; Leierseder, Judith A.; Golubović, Leonardo; Rädler, Joachim O.

    2007-02-01

    We explore large scale conformations of DNA molecules adsorbed on curved surfaces. For that purpose, we investigate the behavior of DNA adsorbed on periodically shaped cationic lipid membranes. These unique membrane morphologies are supported on grooved, one-dimensionally periodic microstructured surfaces. Strikingly, we find that these periodically structured membranes are capable to stretch DNA coils. We elucidate this phenomenon in terms of surface curvature dependent potential energy attained by the adsorbed DNA molecules. Due to it, DNA molecules undergo a localization transition causing them to stretch by binding to highly curved sections (edges) of the supported membranes. This effect provides a new venue for controlling conformations of semiflexible polymers such as DNA by employing their interactions with specially designed biocompatible surfaces. We report the first experimental observation of semiflexible polymers unbinding transition in which DNA molecules unbind from one-dimensional manifolds (edges) while remaining bound to two-dimensional manifolds (cationic membranes).

  13. Problems in determining the surface density of the Galactic disk

    NASA Technical Reports Server (NTRS)

    Statler, Thomas S.

    1989-01-01

    A new method is presented for determining the local surface density of the Galactic disk from distance and velocity measurements of stars toward the Galactic poles. The procedure is fully three-dimensional, approximating the Galactic potential by a potential of Staeckel form and using the analytic third integral to treat the tilt and the change of shape of the velocity ellipsoid consistently. Applying the procedure to artificial data superficially resembling the K dwarf sample of Kuijken and Gilmore (1988, 1989), it is shown that the current best estimates of local disk surface density are uncertain by at least 30 percent. Of this, about 25 percent is due to the size of the velocity sample, about 15 percent comes from uncertainties in the rotation curve and the solar galactocentric distance, and about 10 percent from ignorance of the shape of the velocity distribution above z = 1 kpc, the errors adding in quadrature. Increasing the sample size by a factor of 3 will reduce the error to 20 percent. To achieve 10 percent accuracy, observations will be needed along other lines of sight to constrain the shape of the velocity ellipsoid.

  14. Colloidal aluminum nanoparticles with tunable localized surface plasmon resonances for energy applications

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Smith, Kenneth; Arinze, Ebuka; Nyirjesy, Gabrielle; Bragg, Arthur; Thon, Susanna

    Localized surface plasmon resonances (LSPRs) of noble metal nanoparticles are of interest for energy applications due to their visible and near infrared wavelength sensitivity. However, application of these materials in optoelectronic devices is limited by their rarity and high cost. Earth-abundant, inexpensive and non-toxic aluminum is a promising alternative material with a plasmon resonance that can also be tuned via size-, shape- and surface-oxide-control. Here, we employ solution-processed methods to synthesize stable colloidal aluminum nanoparticles. We systematically investigate parameters in the synthesis that control size, shape and oxidation of the aluminum nanoparticles and tune their LSPRs over the ultraviolet and visible spectral regions. We optically characterize the nanoparticle solutions and evaluate their potential for future integration into photovoltaic, photocatalytic and photosensing systems.

  15. Functional mapping of cell surface proteins with localized stimulation of single cells

    NASA Astrophysics Data System (ADS)

    Sun, Bingyun; Chiu, Daniel T.

    2003-11-01

    This paper describes the development of using individual micro and nano meter-sized vesicles as delivery vessels to functionally map the distribution of cell surface proteins at the level of single cells. The formation of different sizes of vesicles from tens of nanometers to a few micrometers in diameter that contain the desired molecules is addressed. An optical trap is used to manipulate the loaded vesicle to specific cell morphology of interest, and a pulsed UV laser is used to photo-release the stimuli onto the cell membrane. Carbachol activated cellular calcium flux, upon binding to muscarinic acetylcholine receptors, is studied by this method, and the potential of using this method for the functional mapping of localized proteins on the cell surface membrane is discussed.

  16. A Semi-Structured MODFLOW-USG Model to Evaluate Local Water Sources to Wells for Decision Support.

    PubMed

    Feinstein, Daniel T; Fienen, Michael N; Reeves, Howard W; Langevin, Christian D

    2016-07-01

    In order to better represent the configuration of the stream network and simulate local groundwater-surface water interactions, a version of MODFLOW with refined spacing in the topmost layer was applied to a Lake Michigan Basin (LMB) regional groundwater-flow model developed by the U.S. Geological. Regional MODFLOW models commonly use coarse grids over large areas; this coarse spacing precludes model application to local management issues (e.g., surface-water depletion by wells) without recourse to labor-intensive inset models. Implementation of an unstructured formulation within the MODFLOW framework (MODFLOW-USG) allows application of regional models to address local problems. A "semi-structured" approach (uniform lateral spacing within layers, different lateral spacing among layers) was tested using the LMB regional model. The parent 20-layer model with uniform 5000-foot (1524-m) lateral spacing was converted to 4 layers with 500-foot (152-m) spacing in the top glacial (Quaternary) layer, where surface water features are located, overlying coarser resolution layers representing deeper deposits. This semi-structured version of the LMB model reproduces regional flow conditions, whereas the finer resolution in the top layer improves the accuracy of the simulated response of surface water to shallow wells. One application of the semi-structured LMB model is to provide statistical measures of the correlation between modeled inputs and the simulated amount of water that wells derive from local surface water. The relations identified in this paper serve as the basis for metamodels to predict (with uncertainty) surface-water depletion in response to shallow pumping within and potentially beyond the modeled area, see Fienen et al. (2015a). Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  17. A semi-structured MODFLOW-USG model to evaluate local water sources to wells for decision support

    USGS Publications Warehouse

    Feinstein, Daniel T.; Fienen, Michael N.; Reeves, Howard W.; Langevin, Christian D.

    2016-01-01

    In order to better represent the configuration of the stream network and simulate local groundwater-surface water interactions, a version of MODFLOW with refined spacing in the topmost layer was applied to a Lake Michigan Basin (LMB) regional groundwater-flow model developed by the U.S. Geological. Regional MODFLOW models commonly use coarse grids over large areas; this coarse spacing precludes model application to local management issues (e.g., surface-water depletion by wells) without recourse to labor-intensive inset models. Implementation of an unstructured formulation within the MODFLOW framework (MODFLOW-USG) allows application of regional models to address local problems. A “semi-structured” approach (uniform lateral spacing within layers, different lateral spacing among layers) was tested using the LMB regional model. The parent 20-layer model with uniform 5000-foot (1524-m) lateral spacing was converted to 4 layers with 500-foot (152-m) spacing in the top glacial (Quaternary) layer, where surface water features are located, overlying coarser resolution layers representing deeper deposits. This semi-structured version of the LMB model reproduces regional flow conditions, whereas the finer resolution in the top layer improves the accuracy of the simulated response of surface water to shallow wells. One application of the semi-structured LMB model is to provide statistical measures of the correlation between modeled inputs and the simulated amount of water that wells derive from local surface water. The relations identified in this paper serve as the basis for metamodels to predict (with uncertainty) surface-water depletion in response to shallow pumping within and potentially beyond the modeled area, see Fienen et al. (2015a).

  18. Photonic surface waves on metamaterial interfaces

    NASA Astrophysics Data System (ADS)

    Takayama, O.; Bogdanov, A. A.; Lavrinenko, A. V.

    2017-11-01

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. Research on surface waves has been flourishing in the last few decades due to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on near-field techniques, contributing to the establishment of nanophotonics as a field of research. Up to now, a wide variety of surface waves has been investigated in numerous material and structure settings. This article reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of surface wave, we discuss the material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods.

  19. Observed increase in local cooling effect of deforestation at higher latitudes

    Treesearch

    Xuhui Lee; Michael L. Goulden; David Y. Hollinger; Alan Barr; T. Andrew Black; Gil Bohrer; Rosvel Bracho; Bert Drake; Allen Goldstein; Lianhong Gu; Gabriel Katul; Thomas Kolb; Beverly E. Law; Hank Margolis; Tilden Meyers; Russell Monson; William Munger; Ram Oren; Kyaw Tha Paw U; Andrew D. Richardson; Hans Peter Schmid; Ralf Staebler; Steven Wofsy; Lei Zhao

    2011-01-01

    Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo–sea ice feedback. This feedback is crucial in the model predictions; without it...

  20. Optical properties of plasmonic nanostructures: Theory & experiments

    NASA Astrophysics Data System (ADS)

    Bala Krishna, Juluri

    Metal nanoparticles and thin films enable localization of electromagnetic energy in the form of localized surface plasmon resonances (LSPR) and propagating surface plasmons respectively. This research field, also known as plasmonics, involves understanding and fabricating innovative nanostructures designed to manage and utilize localized light in the nanoscale. Advances in plasmonics will facilitate innovation in sensing, biomedical engineering, energy harvesting and nanophotonic devices. In this thesis, three aspects of plasmonics are studied: 1) active plasmonic systems using charge-induced plasmon shifts (CIPS) and plasmon-molecule resonant coupling; 2) scalable solutions to fabricate large electric field plasmonic nanostructures; and 3) controlling the propagation of designer surface plasmons (DSPs) using parabolic graded media. The full potential of plasmonics can be realized with active plasmonic devices which provide tunable plasmon resonances. The work reported here develops both an understanding for and realization of various mechanisms to achieve tunable plasmonic systems. First, we show that certain nanoparticle geometries and material compositions enable large CIPS. Second, we propose and investigate systems which exhibit coupling between molecular and plasmonic resonances where energy splitting is observed due to interactions between plasmons and molecules. Large electric field nanostructures have many promising applications in the areas of surface enhanced Raman spectroscopy, higher harmonic light generation, and enhanced uorescence. High throughput techniques that utilize simple nanofabrication are essential their advancement. We contribute to this effort by using a salting-out quenching technique and colloidal lithography to fabricate nanodisc dimers and cusp nanostructures that allow localization of large electric fields, and are comparable to structures fabricated by conventional lithography/milling techniques. Designer surface plasmons (DSPs) are surface waves that are localized to the interface between a structured perfect electric conductor (PEC) surface and dielectric medium. Terahertz (THz) DSPs excited on microscale structured PEC are localized in the out-of-plane direction, with negligible in-plane localization. We addressed this problem by subjecting DSPs to a parabolic graded-index structure. Lateral confinement such as focusing, collimation, and waveguiding of DSPs is demonstrated. Such control will pave the way towards THz energy concentration, diffusion, guiding, and beam aperture modifcation.

  1. Potential energy surface interpolation with neural networks for instanton rate calculations

    NASA Astrophysics Data System (ADS)

    Cooper, April M.; Hallmen, Philipp P.; Kästner, Johannes

    2018-03-01

    Artificial neural networks are used to fit a potential energy surface (PES). We demonstrate the benefits of using not only energies but also their first and second derivatives as training data for the neural network. This ensures smooth and accurate Hessian surfaces, which are required for rate constant calculations using instanton theory. Our aim was a local, accurate fit rather than a global PES because instanton theory requires information on the potential only in the close vicinity of the main tunneling path. Elongations along vibrational normal modes at the transition state are used as coordinates for the neural network. The method is applied to the hydrogen abstraction reaction from methanol, calculated on a coupled-cluster level of theory. The reaction is essential in astrochemistry to explain the deuteration of methanol in the interstellar medium.

  2. Susceptibility of nitinol to localized corrosion.

    PubMed

    Pound, Bruce G

    2006-04-01

    The effect of different conditions on the susceptibility of nitinol to localized corrosion was examined using the cyclic potentiodynamic polarization technique. Tests were performed on mechanically polished (MP) and electropolished (EP) nitinol wire in 0.9 wt % NaCl and phosphate-buffered saline (PBS). A polarization curve was also obtained for an EP stent in the NaCl. Differences between the breakdown potential and the corrosion potential (E(corr)) and between the protection potential and E(corr) were used to evaluate the susceptibility to pitting corrosion and crevice corrosion, respectively. The type of solution and, particularly, the surface condition affected the resistance of nitinol to pitting corrosion. Both EP and MP nitinol were more susceptible to breakdown in the NaCl than in PBS, indicating that the NaCl provides a more severe test environment than does PBS. Electropolishing increased the breakdown resistance of nitinol in PBS and the NaCl, as found in previous studies with Hank's solution. Surface condition, however, did not have a significant effect on the repassivation behavior of nitinol, as is also the case with titanium. The EP wire and stent showed similar breakdown and repassivation behavior in the NaCl, suggesting that the nature of the EP surface was similar in both cases. (c) 2005 Wiley Periodicals, Inc.

  3. Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity.

    PubMed

    Eckhard, Kathrin; Chen, Xingxing; Turcu, Florin; Schuhmann, Wolfgang

    2006-12-07

    In order to locally analyse catalytic activity on modified surfaces a transient redox competition mode of scanning electrochemical microscopy (SECM) has been developed. In a bi-potentiostatic experiment the SECM tip competes with the sample for the very same analyte. This leads to a current decrease at the SECM tip, if it is positioned in close proximity to an active catalyst site on the surface. Specifically, local catalytic activity of a Pt-catalyst modified sample with respect to the catalytic reduction of molecular oxygen was investigated. At higher local catalytic activity the local 02 partial pressure within the gap between accurately positioned SECM tip and sample is depleted, leading to a noticeable tip current decrease over active sites. A flexible software module has been implemented into the SECM to adapt the competition conditions by proper definition of tip and sample potentials. A potential pulse profile enables the localised electrochemically induced generation of molecular oxygen prior to the competition detection. The current decay curves are recorded over the entire duration of the applied reduction pulse. Hence, a time resolved processing of the acquired current values provides movies of the local oxygen concentration against x,y-position. The SECM redox competition mode was verified with a macroscopic Pt-disk electrode as a test sample to demonstrate the feasibility of the approach. Moreover, highly dispersed electro-deposited spots of gold and platinum on glassy carbon were visualised using the redox competition mode of SECM. Catalyst spots of different nature as well as activity inhomogeneities within one spot caused by local variations in Pt-loading were visualised successfully.

  4. Impact of nitinol stent surface processing on in-vivo nickel release and biological response.

    PubMed

    Nagaraja, Srinidhi; Sullivan, Stacey J L; Stafford, Philip R; Lucas, Anne D; Malkin, Elon

    2018-05-01

    Although nitinol is widely used in percutaneous cardiovascular interventions, a causal relationship between nickel released from implanted cardiovascular devices and adverse systemic or local biological responses has not been established. The objective of this study was to investigate the relationship between nitinol surface processing, in-vivo nickel release, and biocompatibility. Nitinol stents manufactured using select surface treatments were implanted into the iliac arteries of minipigs for 6 months. Clinical chemistry profile, complete blood count, serum and urine nickel analyses were performed periodically during the implantation period. After explant, stented arteries were either digested and analyzed for local nickel concentration or fixed and sectioned for histopathological analysis of stenosis and inflammation within the artery. The results indicated that markers for liver and kidney function were not different than baseline values throughout 180 days of implantation regardless of surface finish. In addition, white blood cell, red blood cell, and platelet counts were similar to baseline values for all surface finishes. Systemic nickel concentrations in serum and urine were not significantly different between processing groups and comparable to baseline values during 180 days of implantation. However, stents with non-optimized surface finishing had significantly greater nickel levels in the surrounding artery compared to polished stents. These stents had increased stenosis with potential for local inflammation compared to polished stents. These findings demonstrate that proper polishing of nitinol surfaces can reduce in-vivo nickel release locally, which may aid in minimizing adverse inflammatory reactions and restenosis. Nitinol is a commonly used material in cardiovascular medical devices. However, relationships between nitinol surface finishing, in-vivo metal ion release, and adverse biological responses have yet to be established. We addressed this knowledge gap by implanting single and overlapped nitinol stents with different surface finishes to assess systemic impact on minipigs (i.e. serum and urine nickel levels, liver and kidney function, immune and blood count) over the 6 month implantation period. In addition, nickel levels and histopathology in stented arteries were analyzed on explant to determine relationships between surface processing and local adverse tissue reactions. The findings presented here highlight the importance of surface processing on in-vivo nickel release and subsequent impact on local biological response for nitinol implants. Published by Elsevier Ltd.

  5. Data-Driven Learning of Total and Local Energies in Elemental Boron

    NASA Astrophysics Data System (ADS)

    Deringer, Volker L.; Pickard, Chris J.; Csányi, Gábor

    2018-04-01

    The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated β -rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.

  6. Data-Driven Learning of Total and Local Energies in Elemental Boron.

    PubMed

    Deringer, Volker L; Pickard, Chris J; Csányi, Gábor

    2018-04-13

    The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated β-rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.

  7. Imaging energy landscapes with concentrated diffusing colloidal probes

    NASA Astrophysics Data System (ADS)

    Bahukudumbi, Pradipkumar; Bevan, Michael A.

    2007-06-01

    The ability to locally interrogate interactions between particles and energetically patterned surfaces provides essential information to design, control, and optimize template directed self-assembly processes. Although numerous techniques are capable of characterizing local physicochemical surface properties, no current method resolves interactions between colloids and patterned surfaces on the order of the thermal energy kT, which is the inherent energy scale of equilibrium self-assembly processes. Here, the authors describe video microscopy measurements and an inverse Monte Carlo analysis of diffusing colloidal probes as a means to image three dimensional free energy and potential energy landscapes due to physically patterned surfaces. In addition, they also develop a consistent analysis of self-diffusion in inhomogeneous fluids of concentrated diffusing probes on energy landscapes, which is important to the temporal imaging process and to self-assembly kinetics. Extension of the concepts developed in this work suggests a general strategy to image multidimensional and multiscale physical, chemical, and biological surfaces using a variety of diffusing probes (i.e., molecules, macromolecules, nanoparticles, and colloids).

  8. Local climate change induced by groundwater overexploitation in a high Andean arid watershed, Laguna Lagunillas basin, northern Chile

    NASA Astrophysics Data System (ADS)

    Scheihing, Konstantin; Tröger, Uwe

    2018-05-01

    The Laguna Lagunillas basin in the arid Andes of northern Chile exhibits a shallow aquifer and is exposed to extreme air temperature variations from 20 to -25 °C. Between 1991 and 2012, groundwater levels in the Pampa Lagunillas aquifer fell from near-surface to 15 m below ground level (bgl) due to severe overexploitation. In the same period, local mean monthly minimum temperatures started a declining trend, dropping by 3-8 °C relative to a nearby reference station. Meanwhile, mean monthly maximum summer temperatures shifted abruptly upwards by 2.7 °C on average in around 1996. The observed air temperature downturns and upturns are in accordance with detected anomalies in land-surface temperature imagery. Two major factors may be causing the local climate change. One is related to a water-table decline below the evaporative energy potential extinction depth of 2 m bgl, which causes an up-heating of the bare soil surface and, in turn, influences the lower atmosphere. At the same time, the removal of near-surface groundwater reduces the thermal conductivity of the upper sedimentary layer, which consequently diminishes the heat exchange between the aquifer (constant heat source of 10 °C) and the lower atmosphere during nights, leading to a severe dropping of minimum air temperatures. The observed critical water-level drawdown was 2-3 m bgl. Future and existing water-production projects in arid high Andean basins with shallow groundwater should avoid a decline of near-surface groundwater below 2 m bgl and take groundwater-climate interactions into account when identifying and monitoring potential environmental impacts.

  9. Energy-switching potential energy surface for ground-state C3

    NASA Astrophysics Data System (ADS)

    Rocha, C. M. R.; Varandas, A. J. C.

    2018-05-01

    The multiple energy switching scheme [J. Chem. Phys. 119 (2003) 2596] has been used to improve the double many-body expansion (DMBE II) potential energy surface of C3 near its linear global minima by morphing it with an accurate Taylor-series expansion [J. Chem. Phys. 144 (2016) 044307]. The final ES form attains the accuracy of the local form in reproducing the rovibrational spectrum of C3 while keeping unaltered all key attributes of the original DMBE II, namely conical intersection seams and dissociative channels. The ES form is therefore commended for adiabatic spectroscopic and reaction dynamics studies.

  10. G‐LoSA: An efficient computational tool for local structure‐centric biological studies and drug design

    PubMed Central

    2016-01-01

    Abstract Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G‐LoSA. G‐LoSA aligns protein local structures in a sequence order independent way and provides a GA‐score, a chemical feature‐based and size‐independent structure similarity score. Our benchmark validation shows the robust performance of G‐LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure‐centric comparative biology studies. In particular, G‐LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G‐LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer‐aided drug design. We hope that G‐LoSA can be a useful computational method for exploring interesting biological problems through large‐scale comparison of protein local structures and facilitating drug discovery research and development. G‐LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/. PMID:26813336

  11. G-LoSA: An efficient computational tool for local structure-centric biological studies and drug design.

    PubMed

    Lee, Hui Sun; Im, Wonpil

    2016-04-01

    Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G-LoSA. G-LoSA aligns protein local structures in a sequence order independent way and provides a GA-score, a chemical feature-based and size-independent structure similarity score. Our benchmark validation shows the robust performance of G-LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure-centric comparative biology studies. In particular, G-LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G-LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer-aided drug design. We hope that G-LoSA can be a useful computational method for exploring interesting biological problems through large-scale comparison of protein local structures and facilitating drug discovery research and development. G-LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/. © 2016 The Protein Society.

  12. Computational design of surfaces, nanostructures and optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of the materials to ensure that no spurious phases had a lower cohesive energy. Thirdly, lanthanide doped and co-doped Y3Al5O 12 were examined using density functional theory (DFT) with semi-local and local functional. Theoretical results were compared and validated with experimental data and new co-doped materials with high efficiency were predicted. Finally, Transition element doped CH3NH3PbI3 were studied with DFT for validation of the model with experimental data and replacement materials for toxic Pb were predicted.

  13. Borneo on Fire

    Atmospheric Science Data Center

    2016-12-23

    ... the land surface, meaning it had the potential to affect air quality not only locally but as far as 1,000 miles (1,600 kilometers) away in Malaysia. For several weeks, episodes of hazardous pollution from the heavy smoke have been causing emergency school closures and ...

  14. Relating isotopic composition of precipitation to atmospheric patterns and local moisture recycling

    NASA Astrophysics Data System (ADS)

    Logan, K. E.; Brunsell, N. A.; Nippert, J. B.

    2016-12-01

    Local land management practices such as irrigation significantly alter surface evapotranspiration (ET), regional boundary layer development, and potentially modify precipitation likelihood and amount. How strong this local forcing is in comparison to synoptic-scale dynamics, and how much ET is recycled locally as precipitation are areas of great uncertainty and are especially important when trying to forecast the impact of local land management strategies on drought mitigation. Stable isotope analysis has long been a useful tool for tracing movement throughout the water cycle. In this study, reanalysis data and stable isotope samples of precipitation events are used to estimate the contribution of local moisture recycling to precipitation at the Konza Prairie LTER - located in the Great Plains, downwind of intensive agricultural areas. From 2001 to 2014 samples of all precipitation events over 5mm were collected and 18O and D isotopes measured. Comparison of observed precipitation totals and MERRA and ERA-interim reanalysis totals is used to diagnose periods of strong local moisture contribution (especially from irrigation) to precipitation. Large discrepancies in precipitation between observation and reanalysis, particularly MERRA, tend to follow dry periods during the growing season, presumably because while ERA-Interim adjusts soil moisture using observed surface temperature and humidity, MERRA includes no such local soil moisture adjustment and therefore lacks potential precipitation feedbacks induced by irrigation. The δ18O and δD signature of local irrigation recycling is evaluated using these incongruous observations. Self-organizing maps (SOM) are then used to identify a comprehensive range of synoptic conditions that result in precipitation at Konza LTER. Comparison of isotopic signature and SOM classification of rainfall events allows for identification of the primary moisture source and estimation of the contribution of locally recycled moisture. The climatology of precipitation source and changes in the influence of local moisture over the course of 14 years of observation are explored.

  15. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    NASA Astrophysics Data System (ADS)

    Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie

    2017-06-01

    The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  16. On the role of spatial position of bridged oxygen atoms as surface passivants on the ground-state gap and photo-absorption spectrum of silicon nano-crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazemi, Sanaz; Soleimani, Ebrahim Asl; Pourfath, Mahdi, E-mail: pourfath@ut.ac.ir, E-mail: pourfath@iue.tuwien.ac.at

    2015-11-28

    Silicon nano-crystals (NCs) are potential candidates for enhancing and tuning optical properties of silicon for optoelectronic and photo-voltaic applications. Due to the high surface-to-volume ratio, however, optical properties of NC result from the interplay of quantum confinement and surface effects. In this work, we show that both the spatial position of surface terminants and their relative positions have strong effects on NC properties as well. This is accomplished by investigating the ground-state HOMO-LUMO band-gap, the photo-absorption spectra, and the localization and overlap of HOMO and LUMO orbital densities for prototype ∼1.2 nm Si{sub 32–x}H{sub 42–2x}O{sub x} hydrogenated silicon NC with bridgedmore » oxygen atoms as surface terminations. It is demonstrated that the surface passivation geometry significantly alters the localization center and thus the overlap of frontier molecular orbitals, which correspondingly modifies the electronic and optical properties of NC.« less

  17. Preparation of an injectable doxorubicin surface modified cellulose nanofiber gel and evaluation of its anti-tumor and anti-metastasis activity in melanoma.

    PubMed

    Alizadeh, Najmeh; Akbari, Vajihe; Nurani, Maryam; Taheri, Azade

    2018-03-01

    Cellulose nanofibers (Cel-NFs) gel can be considered as a useful drug carrier because of its biocompatibility, high specific surface area, and high loading capacity of drugs. Injectable Cel-NFs gel could deliver doxorubicin (DOX) for localized chemotherapy of melanoma and suppress melanoma cells migration because of the physical barrier property of Cel-NFs. We prepared DOX surface modified Cel-NFs (DOX-Cel-NFs) gel by the electrostatic attachment of DOX molecules on the surface of Cel-NFs. The increase in the zeta potential of nanofibers and the changes in the FTIR spectra of DOX-Cel-NFs compared to Cel-NFs proved this attachment. DOX-Cel-NFs showed nano-fibrous structure with an average diameter of 22.32 ± 10.66 nm after analyzing using field emission scanning electron microscopy. The suitable injectability of DOX-Cel-NFs gel verified its promising application for the localized chemotherapy. DOX-Cel-NFs gel exhibited a sustained drug release manner. The cytotoxicity results showed that DOX-Cel-NFs were more cytotoxic against melanoma cancer cells than the free DOX during 48 h incubation period. Moreover, DOX-Cel-NFs gel can suppress the melanoma cancer cells migration efficiently. Thus our results emphasize the potential of DOX-Cel-NFs gel as a chemotherapeutic agent for local delivery of DOX in order to treat melanoma and prevent its metastasis. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:537-545, 2018. © 2018 American Institute of Chemical Engineers.

  18. Formation of a physiological complex between TRPV2 and RGA protein promotes cell surface expression of TRPV2.

    PubMed

    Stokes, Alexander J; Wakano, Clay; Del Carmen, Kimberly A; Koblan-Huberson, Murielle; Turner, Helen

    2005-03-01

    The transient receptor potential, sub-family Vanilloid (TRPV)(2) cation channel is activated in response to extreme temperature elevations in sensory neurons. However, TRPV2 is widely expressed in tissues with no sensory function, including cells of the immune system. Regulation of GRC, the murine homolog of TRPV2 has been studied in insulinoma cells and myocytes. GRC is activated in response to certain growth factors and neuropeptides, via a mechanism that involves regulated access of the channel to the plasma membrane. This is likely to be an important primary control mechanism for TRPV2 outside the CNS. Here, we report that a regulated trafficking step controls the access of TRPV2 to the cell surface in mast cells. In mast cells, elevations in cytosolic cAMP are sufficient to drive plasma membrane localization of TRPV2. We have previously proposed that the recombinase gene activator protein (RGA), a four-transmembrane domain, intracellular protein, associates with TRPV2 during the biosynthesis and early trafficking of the channel. We use a polyclonal antibody to RGA to confirm the formation of a physiological complex between RGA and TRPV2. Finally, we show that over-expression of the RGA protein potentiates the basal surface localization of TRPV2. We propose that trafficking and activation mechanisms intersect for TRPV2, and that cAMP mobilizing stimuli may regulate TRPV2 localization in non-sensory cells. RGA participates in the control of TRPV2 surface levels, and co-expression of RGA may be a key component of experimental systems that seek to study TRPV2 physiology.

  19. Corrected body surface potential mapping.

    PubMed

    Krenzke, Gerhard; Kindt, Carsten; Hetzer, Roland

    2007-02-01

    In the method for body surface potential mapping described here, the influence of thorax shape on measured ECG values is corrected. The distances of the ECG electrodes from the electrical heart midpoint are determined using a special device for ECG recording. These distances are used to correct the ECG values as if they had been measured on the surface of a sphere with a radius of 10 cm with its midpoint localized at the electrical heart midpoint. The equipotential lines of the electrical heart field are represented on the virtual surface of such a sphere. It is demonstrated that the character of a dipole field is better represented if the influence of the thorax shape is reduced. The site of the virtual reference electrode is also important for the dipole character of the representation of the electrical heart field.

  20. The Role of Law-of-the-Wall and Roughness Scale in the Surface Stress Model for LES of the Rough-wall Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brasseur, James; Paes, Paulo; Chamecki, Marcelo

    2017-11-01

    Large-eddy simulation (LES) of the high Reynolds number rough-wall boundary layer requires both a subfilter-scale model for the unresolved inertial term and a ``surface stress model'' (SSM) for space-time local surface momentum flux. Standard SSMs assume proportionality between the local surface shear stress vector and the local resolved-scale velocity vector at the first grid level. Because the proportionality coefficient incorporates a surface roughness scale z0 within a functional form taken from law-of-the-wall (LOTW), it is commonly stated that LOTW is ``assumed,'' and therefore ``forced'' on the LES. We show that this is not the case; the LOTW form is the ``drag law'' used to relate friction velocity to mean resolved velocity at the first grid level consistent with z0 as the height where mean velocity vanishes. Whereas standard SSMs do not force LOTW on the prediction, we show that parameterized roughness does not match ``true'' z0 when LOTW is not predicted, or does not exist. By extrapolating mean velocity, we show a serious mismatch between true z0 and parameterized z0 in the presence of a spurious ``overshoot'' in normalized mean velocity gradient. We shall discuss the source of the problem and its potential resolution.

  1. Controlled modulation of hard and soft X-ray induced tunneling currents utilizing coaxial metal-insulator-metal probe tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummings, Marvin; Shirato, Nozomi; Kersell, Heath

    Here, the effect of a local external electric field on the barrier potential of a tunneling gap is studied utilizing an emerging technique, synchrotron x-ray scanning tunneling microscopy. Here, we demonstrate that the shape of the potential barrier in the tunneling gap can be altered by a localized external electric field, generated by voltages placed on the metallic outer shield of a nanofabricated coaxial metal-insulator-metal tip, resulting in a controlled linear modulation of the tunneling current. Experiments at hard and soft x-ray synchrotron beamlines reveal that both the chemical contrast and magnetic contrast signals measured by the tip can bemore » drastically enhanced, resulting in improved local detection of chemistry and magnetization at the surface.« less

  2. Controlled modulation of hard and soft X-ray induced tunneling currents utilizing coaxial metal-insulator-metal probe tips

    DOE PAGES

    Cummings, Marvin; Shirato, Nozomi; Kersell, Heath; ...

    2017-01-05

    Here, the effect of a local external electric field on the barrier potential of a tunneling gap is studied utilizing an emerging technique, synchrotron x-ray scanning tunneling microscopy. Here, we demonstrate that the shape of the potential barrier in the tunneling gap can be altered by a localized external electric field, generated by voltages placed on the metallic outer shield of a nanofabricated coaxial metal-insulator-metal tip, resulting in a controlled linear modulation of the tunneling current. Experiments at hard and soft x-ray synchrotron beamlines reveal that both the chemical contrast and magnetic contrast signals measured by the tip can bemore » drastically enhanced, resulting in improved local detection of chemistry and magnetization at the surface.« less

  3. α-Actinin Promotes Surface Localization and Current Density of the Ca2+ Channel CaV1.2 by Binding to the IQ Region of the α1 Subunit.

    PubMed

    Tseng, Pang-Yen; Henderson, Peter B; Hergarden, Anne C; Patriarchi, Tommaso; Coleman, Andrea M; Lillya, Mark W; Montagut-Bordas, Carlota; Lee, Boram; Hell, Johannes W; Horne, Mary C

    2017-07-18

    The voltage-gated L-type Ca 2+ channel Ca V 1.2 is crucial for initiating heartbeat and control of a number of neuronal functions such as neuronal excitability and long-term potentiation. Mutations of Ca V 1.2 subunits result in serious health problems, including arrhythmia, autism spectrum disorders, immunodeficiency, and hypoglycemia. Thus, precise control of Ca V 1.2 surface expression and localization is essential. We previously reported that α-actinin associates and colocalizes with neuronal Ca V 1.2 channels and that shRNA-mediated depletion of α-actinin significantly reduces localization of endogenous Ca V 1.2 in dendritic spines in hippocampal neurons. Here we investigated the hypothesis that direct binding of α-actinin to Ca V 1.2 supports its surface expression. Using two-hybrid screens and pull-down assays, we identified three point mutations (K1647A, Y1649A, and I1654A) in the central, pore-forming α 1 1.2 subunit of Ca V 1.2 that individually impaired α-actinin binding. Surface biotinylation and flow cytometry assays revealed that Ca V 1.2 channels composed of the corresponding α-actinin-binding-deficient mutants result in a 35-40% reduction in surface expression compared to that of wild-type channels. Moreover, the mutant Ca V 1.2 channels expressed in HEK293 cells exhibit a 60-75% decrease in current density. The larger decrease in current density as compared to surface expression imparted by these α 1 1.2 subunit mutations hints at the possibility that α-actinin not only stabilizes surface localization of Ca V 1.2 but also augments its ion conducting activity.

  4. Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Huttunen, Mikko J.; Rasekh, Payman; Boyd, Robert W.; Dolgaleva, Ksenia

    2018-05-01

    Collective responses of localized surface plasmon resonances, known as surface lattice resonances (SLRs) in metal nanoparticle arrays, can lead to high quality factors (˜100 ), large local-field enhancements, and strong light-matter interactions. SLRs have found many applications in linear optics, but little work of the influence of SLRs on nonlinear optics has been reported. Here we show how SLRs could be utilized to enhance nonlinear optical interactions. We devote special attention to the sum-frequency, difference-frequency, and third-harmonic generation processes because of their potential for the realization of novel sources of light. We also demonstrate how such arrays could be engineered to enhance higher-order nonlinear optical interactions through cascaded nonlinear processes. In particular, we demonstrate how the efficiency of third-harmonic generation could be engineered via cascaded second-order responses.

  5. Numerical solution of a multi-ion one-potential model for electroosmotic flow in two-dimensional rectangular microchannels.

    PubMed

    Van Theemsche, Achim; Deconinck, Johan; Van den Bossche, Bart; Bortels, Leslie

    2002-10-01

    A new more general numerical model for the simulation of electrokinetic flow in rectangular microchannels is presented. The model is based on the dilute solution model and the Navier-Stokes equations and has been implemented in a finite-element-based C++ code. The model includes the ion distribution in the Helmholtz double layer and considers only one single electrical' potential field variable throughout the domain. On a charged surface(s) the surface charge density, which is proportional to the local electrical field, is imposed. The zeta potential results, then, from this boundary condition and depends on concentrations, temperature, ion valence, molecular diffusion coefficients, and geometric conditions. Validation cases show that the model predicts accurately known analytical results, also for geometries having dimensions comparable to the Debye length. As a final study, the electro-osmotic flow in a controlled cross channel is investigated.

  6. Stair-Step Particle Flux Spectra on the Lunar Surface: Evidence for Nonmonotonic Potentials?

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Newheart, Anastasia; Poppe, Andrew R.; Hills, H. Kent; Farrell, William M.

    2016-01-01

    We present examples of unusual "stair-step" differential flux spectra observed by the Apollo 14 Suprathermal Ion Detector Experiment on the lunar dayside surface in Earth's magnetotail. These spectra exhibit a relatively constant differential flux below some cutoff energy and then drop off precipitously, by about an order of magnitude or more, at higher energies. We propose that these spectra result from photoions accelerated on the lunar dayside by nonmonotonic potentials (i.e.,potentials that do not decay to zero monotonically) and present a model for the expected differential flux. The energy of the cutoff and the magnitude of the differential flux are related to the properties of the local space environment and are consistent with the observed flux spectra. If this interpretation is correct, these surface-based ion observations provide a unique perspective that both complements and enhances the conclusions obtained by remote-sensing orbiter observations on the Moon's exospheric and electrostatic properties.

  7. Local control theory using trajectory surface hopping and linear-response time-dependent density functional theory.

    PubMed

    Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano

    2013-01-01

    The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approach can efficiently generate a pulse, on-the-fly, able to control the population transfer between two selected electronic states. Analysis of the computed control pulse yields insights into the photophysics of the process identifying the relevant frequencies associated to the curvature of the initial and final state potential energy curves and their energy differences. The limitations inherent to the use of the trajectory surface hopping approach are also discussed.

  8. Channel surface plasmons in a continuous and flat graphene sheet

    NASA Astrophysics Data System (ADS)

    Chaves, A. J.; Peres, N. M. R.; da Costa, D. R.; Farias, G. A.

    2018-05-01

    We derive an integral equation describing surface-plasmon polaritons in graphene deposited on a substrate with a planar surface and a dielectric protrusion in the opposite surface of the dielectric slab. We show that the problem is mathematically equivalent to the solution of a Fredholm equation, which we solve exactly. In addition, we show that the dispersion relation of the channel surface plasmons is determined by the geometric parameters of the protrusion alone. We also show that such a system supports both even and odd modes. We give the electrostatic potential and the intensity plot of the electrostatic field, which clearly show the transverse localized nature of the surface plasmons in a continuous and flat graphene sheet.

  9. Image-guided ex-vivo targeting accuracy using a laparoscopic tissue localization system

    NASA Astrophysics Data System (ADS)

    Bieszczad, Jerry; Friets, Eric; Knaus, Darin; Rauth, Thomas; Herline, Alan; Miga, Michael; Galloway, Robert; Kynor, David

    2007-03-01

    In image-guided surgery, discrete fiducials are used to determine a spatial registration between the location of surgical tools in the operating theater and the location of targeted subsurface lesions and critical anatomic features depicted in preoperative tomographic image data. However, the lack of readily localized anatomic landmarks has greatly hindered the use of image-guided surgery in minimally invasive abdominal procedures. To address these needs, we have previously described a laser-based system for localization of internal surface anatomy using conventional laparoscopes. During a procedure, this system generates a digitized, three-dimensional representation of visible anatomic surfaces in the abdominal cavity. This paper presents the results of an experiment utilizing an ex-vivo bovine liver to assess subsurface targeting accuracy achieved using our system. During the experiment, several radiopaque targets were inserted into the liver parenchyma. The location of each target was recorded using an optically-tracked insertion probe. The liver surface was digitized using our system, and registered with the liver surface extracted from post-procedure CT images. This surface-based registration was then used to transform the position of the inserted targets into the CT image volume. The target registration error (TRE) achieved using our surface-based registration (given a suitable registration algorithm initialization) was 2.4 mm +/- 1.0 mm. A comparable TRE (2.6 mm +/- 1.7 mm) was obtained using a registration based on traditional fiducial markers placed on the surface of the same liver. These results indicate the potential of fiducial-free, surface-to-surface registration for image-guided lesion targeting in minimally invasive abdominal surgery.

  10. Multiscale modeling of electroosmotic flow: Effects of discrete ion, enhanced viscosity, and surface friction

    NASA Astrophysics Data System (ADS)

    Bhadauria, Ravi; Aluru, N. R.

    2017-05-01

    We propose an isothermal, one-dimensional, electroosmotic flow model for slit-shaped nanochannels. Nanoscale confinement effects are embedded into the transport model by incorporating the spatially varying solvent and ion concentration profiles that correspond to the electrochemical potential of mean force. The local viscosity is dependent on the solvent local density and is modeled using the local average density method. Excess contributions to the local viscosity are included using the Onsager-Fuoss expression that is dependent on the local ionic strength. A Dirichlet-type boundary condition is provided in the form of the slip velocity that is dependent on the macroscopic interfacial friction. This solvent-surface specific interfacial friction is estimated using a dynamical generalized Langevin equation based framework. The electroosmotic flow of Na+ and Cl- as single counterions and NaCl salt solvated in Extended Simple Point Charge (SPC/E) water confined between graphene and silicon slit-shaped nanochannels are considered as examples. The proposed model yields a good quantitative agreement with the solvent velocity profiles obtained from the non-equilibrium molecular dynamics simulations.

  11. Nanoscale doping heterogeneity in few-layer WSe2 exfoliated onto noble metals revealed by correlated SPM and TERS imaging

    NASA Astrophysics Data System (ADS)

    Jariwala, Deep; Krayev, Andrey; Wong, Joeson; Robinson, A. Edward; Sherrott, Michelle C.; Wang, Shuo; Liu, Gang-Yu; Terrones, Mauricio; Atwater, Harry A.

    2018-07-01

    While extensive research effort has been devoted to the study of the 2D semiconductor–insulator interfaces in transition metal dichalcogenides (TMDCs), there is little knowledge about the electronic quality of the semiconductor–metal interface in the atomically thin limit. Here, we present the first correlated nanoscale mapping of the interface of atomically thin WSe2 with noble metals using co-localized scanning probe microscopy and tip-enhanced optical spectroscopy (TEOS), such as tip-enhanced Raman spectroscopy (TERS). Nanoscale maps of the topography, surface potential, Raman spectra, and the photocurrent amplitude of the WSe2/metal interfaces reveal striking results. Specifically, correlations between surface potential, resonant Raman signatures and photocurrents that indicate the presence of inhomogeneities within interfacial electronic properties, which we attribute to variations in the local doping of the WSe2 likely caused by intrinsic compositional fluctuations or defects. Our results suggest that local electrostatic variations at a lateral scale of 10–100 nm are present even in the highest quality of TMDC crystals and must be considered towards understanding of all interfacial phenomena, particularly in device applications that rely on the buried metal–semiconductor junction interface.

  12. An adjoint method for gradient-based optimization of stellarator coil shapes

    NASA Astrophysics Data System (ADS)

    Paul, E. J.; Landreman, M.; Bader, A.; Dorland, W.

    2018-07-01

    We present a method for stellarator coil design via gradient-based optimization of the coil-winding surface. The REGCOIL (Landreman 2017 Nucl. Fusion 57 046003) approach is used to obtain the coil shapes on the winding surface using a continuous current potential. We apply the adjoint method to calculate derivatives of the objective function, allowing for efficient computation of analytic gradients while eliminating the numerical noise of approximate derivatives. We are able to improve engineering properties of the coils by targeting the root-mean-squared current density in the objective function. We obtain winding surfaces for W7-X and HSX which simultaneously decrease the normal magnetic field on the plasma surface and increase the surface-averaged distance between the coils and the plasma in comparison with the actual winding surfaces. The coils computed on the optimized surfaces feature a smaller toroidal extent and curvature and increased inter-coil spacing. A technique for computation of the local sensitivity of figures of merit to normal displacements of the winding surface is presented, with potential applications for understanding engineering tolerances.

  13. Dispersed gold nanoparticles potentially ruin gold barley yellow dwarf virus and eliminate virus infectivity hazards

    NASA Astrophysics Data System (ADS)

    Alkubaisi, Noorah A.; Aref, Nagwa M. A.

    2017-02-01

    Gold nanoparticles (AuNPs) application melted barley yellow dwarf virus-PAV (BYDV-PAV) spherical nanoparticle capsids. Synergistic therapeutic effects for plant virus resistance were induced by interaction with binding units of prepared AuNPs in a water solution which was characterized and evaluated by zeta sizer, zeta potential and transmission electron microscopy (TEM). The yield of purified nanoparticles of BYDV-PAV was obtained from Hordeum vulgare (Barley) cultivars, local and Giza 121/Justo. It was 0.62 mg/ml from 27.30 g of infected leaves at an A260/A280 ratio. Virus nanoparticle has a spherical shape 30 nm in size by TEM. BYDV-PAV combined with AuNPs to challenge virus function in vivo and in vitro. Dual AuNPs existence in vivo and in vitro affected compacted configuration of viral capsid protein in the interior surface of capsomers, the outer surface, or between the interface of coat protein subunits for 24 and 48 h incubation period in vitro at room temperature. The sizes of AuNPs that had a potentially dramatic deteriorated effect are 3.151 and 31.67 nm with a different intensity of 75.3% for the former and 24.7% for the latter, which enhances optical sensing applications to eliminate virus infectivity. Damages of capsid protein due to AuNPs on the surface of virus subunits caused variable performance in four different types of TEM named puffed, deteriorated and decorated, ruined and vanished. Viral yield showed remarkably high-intensity degree of particle symmetry and uniformity in the local cultivar greater than in Giza 121/Justo cultivar. A high yield of ruined VLPs in the local cultivar than Justo cultivar was noticed. AuNPs indicated complete lysed VLPs and some deteriorated VLPs at 48 h.

  14. An ab initio study of the adsorption and dissociation of molecular oxygen on the (0 0 0 1) surface of double hexagonal close-packed americium

    NASA Astrophysics Data System (ADS)

    Dholabhai, Pratik P.; Atta-Fynn, Raymond; Ray, Asok K.

    2008-12-01

    In our continuing attempts to understand theoretically various surface properties such as corrosion and potential catalytic activity of actinide surfaces in the presence of environmental gases, we report here the first ab initio study of molecular adsorption on the double hexagonal close-packed (dhcp) americium (Am) (0 0 0 1) surface. Specifically, molecular oxygen adsorption on the (0 0 0 1) surface of dhcp Am has been studied in detail within the framework of density functional theory using a full-potential all-electron linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method. Dissociative adsorption is found to be energetically more favorable compared to molecular adsorption. Chemisorption energies were optimized with respect to the distance of adsorbates from the surface for three approach positions at three adsorption sites, namely t1 (one-fold top), b2 (two-fold bridge), and h3 (three-fold hollow) sites. Chemisorption energies were computed at the scalar-relativistic-no-spin-orbit-coupling (SR-NSOC) and at the fully relativistic-with-spin-orbit-coupling (FR-SOC) levels of theory. The most stable configuration corresponds to a horizontal approach molecular dissociation with the oxygen atoms occupying neighboring h3 sites, with chemisorption energies at the NSOC and SOC theoretical levels being 9.395 and 9.886 eV, respectively. The corresponding distances of the oxygen molecule from the surface and oxygen-oxygen distance were found to be 0.953 and 3.731 Å, respectively. Overall our calculations indicate that chemisorption energies in cases with SOC are slightly more stable than those with NSOC in the 0.089-0.493 eV range. The work functions and net magnetic moments, respectively, increased and decreased in all cases compared to corresponding quantities of the bare dhcp-Am (0 0 0 1) surface. Adsorbate-substrate interactions have been analyzed in detail using partial charges inside muffin-tin spheres, difference charge density distributions, and the local density of states. The effects, if any, of chemisorption on Am5f electron localization-delocalization characteristics in the vicinity of the Fermi level are also discussed.

  15. Photonics surface waves on metamaterials interfaces.

    PubMed

    Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V

    2017-09-12

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.

  16. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron

    NASA Astrophysics Data System (ADS)

    Dragoni, Daniele; Daff, Thomas D.; Csányi, Gábor; Marzari, Nicola

    2018-01-01

    We show that the Gaussian Approximation Potential (GAP) machine-learning framework can describe complex magnetic potential energy surfaces, taking ferromagnetic iron as a paradigmatic challenging case. The training database includes total energies, forces, and stresses obtained from density-functional theory in the generalized-gradient approximation, and comprises approximately 150,000 local atomic environments, ranging from pristine and defected bulk configurations to surfaces and generalized stacking faults with different crystallographic orientations. We find the structural, vibrational, and thermodynamic properties of the GAP model to be in excellent agreement with those obtained directly from first-principles electronic-structure calculations. There is good transferability to quantities, such as Peierls energy barriers, which are determined to a large extent by atomic configurations that were not part of the training set. We observe the benefit and the need of using highly converged electronic-structure calculations to sample a target potential energy surface. The end result is a systematically improvable potential that can achieve the same accuracy of density-functional theory calculations, but at a fraction of the computational cost.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    H.E. Mynick, P. Xanthopoulos and A.H. Boozer

    Using the nonlinear gyrokinetic code package GENE/GIST, we study the turbulent transport in a broad family of stellarator designs, to understand the geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux surface, we construct a picture of the 2D structure of the microturbulence over that surface, and relate this to relevant geometric quantities, such as the curvature, local shear, and effective potential in the Schrodinger-like equation governing linear drift modes.

  18. Remote sensing of ocean wave spectra by interferometric synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Marom, M.; Thornton, E. B.; Goldstein, R. M.; Shemer, L.

    1990-01-01

    Ocean surface waves can be clearly observed by SAR in the interferometric configuration (INSAR) due to the ability of INSAR to provide images of the local surface velocity field. It is shown here that INSAR can be used to obtain wavenumber spectra that are in agreement with power spectra measured in situ. This new method has considerable potential to provide instantaneous spatial information about the structure of ocean wave fields.

  19. Plasmon-enhanced photocatalytic activity of Na0.9Mg0.45Ti3.55O8 loaded with noble metals directly observed with scanning Kelvin probe microscopy.

    PubMed

    Wang, Jing-Zhou; Guo, Ze-Qing; Zhou, Jian-Ping; Lei, Yu-Xi

    2018-07-27

    The noble metals Au, Ag and Pt were loaded onto Na 0.9 Mg 0.45 Ti 3.55 O 8 (NMTO) using a chemical bath deposition method devised in our recent work for the first time. The composite photocatalysts exhibit more effective photodegradation of methylene blue, due to the Schottky barrier built between NMTO and noble metal. Hot electrons generated during localized surface plasmon processes in metal nanoparticles transfer to the semiconductor, manifesting as a depression of surface potential directly detectable by scanning Kelvin probe microscopy. The key factor responsible for the improved ability of semiconductor-based photocatalysts is charge separation. The most effective weight concentrations of Au, Ag and Pt loaded onto NMTO were found to be 5.00%, 12.6% and 5.55% respectively. NMTO loaded with noble metals shows good photostability and recyclability for the degradation of methylene blue. A possible mechanism for the photodegradation of methylene blue over NMTO loaded with noble metals is proposed. This work highlights the potential application of NMTO-based photocatalysts, and provides an effective method to detect localized surface plasmons.

  20. The evolution of a localized nonlinear wave of the Kelvin-Helmholtz instability with gravity

    NASA Astrophysics Data System (ADS)

    Orazzo, Annagrazia; Hoepffner, Jérôme

    2012-11-01

    At the interface between two fluids of different density and in the presence of gravity, there are well known periodic surface waves which can propagate for long distances with little attenuation, as it is for instance the case at the surface of the sea. If wind is present, these waves progressively accumulate energy as they propagate and grow to large sizes—this is the Kelvin-Helmholtz instability. On the other hand, we show in this paper that for a given wind strength, there is potential for the growth of a localized nonlinear wave. This wave can reach a size such that the hydrostatic pressure drop from top to bottom equals the stagnation pressure of the wind. This process for the disruption of the flat interface is localized and nonlinear. We study the properties of this wave using numerical simulations of the Navier-Stokes equations.

  1. Localization, correlation, and visualization of electroencephalographic surface electrodes and brain anatomy in epilepsy studies

    NASA Astrophysics Data System (ADS)

    Brinkmann, Benjamin H.; O'Brien, Terence J.; Robb, Richard A.; Sharbrough, Frank W.

    1997-05-01

    Advances in neuroimaging have enhanced the clinician's ability to localize the epileptogenic zone in focal epilepsy, but 20-50 percent of these cases still remain unlocalized. Many sophisticated modalities have been used to study epilepsy, but scalp electrode recorded electroencephalography is particularly useful due to its noninvasive nature and excellent temporal resolution. This study is aimed at specific locations of scalp electrode EEG information for correlation with anatomical structures in the brain. 3D position localizing devices commonly used in virtual reality systems are used to digitize the coordinates of scalp electrodes in a standard clinical configuration. The electrode coordinates are registered with a high- resolution MRI dataset using a robust surface matching algorithm. Volume rendering can then be used to visualize the electrodes and electrode potentials interpolated over the scalp. The accuracy of the coordinate registration is assessed quantitatively with a realistic head phantom.

  2. Validating a topographically driven model of peatland water table: Implications for understanding land cover controls on water table.

    NASA Astrophysics Data System (ADS)

    Evans, Martin; Allott, Tim; Worrall, Fred; Rowson, James; Maskill, Rachael

    2014-05-01

    Water table is arguably the dominant control on biogeochemical cycling in peatland systems. Local water tables are controlled by peat surface water balance and lateral transfer of water driven by slope can be a significant component of this balance. In particular, blanket peatlands typically have relatively high surface slope compared to other peatland types so that there is the potential for water table to be significantly contolled by topographic context. UK blanket peatlands are also significantly eroded so that there is the potential for additional topographic drainage of the peatland surface. This paper presents a topographically driven model of blanket peat water table. An initial model presented in Allott et al. (2009) has been refined and tested against further water table data collected across the Bleaklow and Kinderscout plateaux of the English Peak District. The water table model quantifies the impact of peat erosion on water table throughout this dramatically dissected landscape demonstrating that almost 50% of the landscape has suffered significant water table drawdown. The model calibrates the impact of slope and degree of dissection on local water tables but does not incorporate any effects of surface cover on water table conditions. Consequently significant outliers in the test data are potentially indicative of important impacts of surface cover on water table conditions. In the test data presented here sites associated with regular moorland burning are significant outliers. The data currently available do not allow us to draw conclusions around the impact of land cover but they indicate an important potential application of the validated model in controlling for topographic position in further testing of the impact of land cover on peatland water tables. Allott, T.E.H. & Evans, M.G., Lindsay, J.B., Agnew, C.T., Freer, J.E., Jones, A. & Parnell, M. Water tables in Peak District blanket peatlands. Moors for the Future Report No. 17. Moors for the Future Partnership, Edale, 47pp.

  3. SDVSRM - a new SSRM based technique featuring dynamically adjusted, scanner synchronized sample voltages for measurement of actively operated devices.

    PubMed

    Doering, Stefan; Wachowiak, Andre; Roetz, Hagen; Eckl, Stefan; Mikolajick, Thomas

    2018-06-01

    Scanning spreading resistance microscopy (SSRM) with its high spatial resolution and high dynamic signal range is a powerful tool for two-dimensional characterization of semiconductor dopant areas. However, the application of the method is limited to devices in equilibrium condition, as the investigation of actively operated devices would imply potential differences within the device, whereas SSRM relies on a constant voltage difference between sample surface and probe tip. Furthermore, the standard preparation includes short circuiting of all device components, limiting applications to devices in equilibrium condition. In this work scanning dynamic voltage spreading resistance microscopy (SDVSRM), a new SSRM based two pass atomic force microscopy (AFM) technique is introduced, overcoming these limitations. Instead of short circuiting the samples during preparation, wire bond devices are used allowing for active control of the individual device components. SDVSRM consists of two passes. In the first pass the local sample surface voltage dependent on the dc biases applied to the components of the actively driven device is measured as in scanning voltage microscopy (SVM). The local spreading resistance is measured within the second pass, in which the afore obtained local surface voltage is used to dynamically adjust the terminal voltages of the device under test. This is done in a way that the local potential difference across the nano-electrical contact matches the software set SSRM measurement voltage, and at the same time, the internal voltage differences within the device under test are maintained. In this work the proof of the concept could be demonstrated by obtaining spreading resistance data of an actively driven photodiode test device. SDVSRM adds a higher level of flexibility in general to SSRM, as occurring differences in cross section surface voltage are taken into account. These differences are immanent for actively driven devices, but can also be present at standard, short circuited samples. Therefore, SDVSRM could improve the characterization under equilibrium conditions as well. Copyright © 2018. Published by Elsevier B.V.

  4. Assessing the Potential to Derive Air-Sea Freshwater Fluxes from Aquarius-Like Observations of Surface Salinity

    NASA Technical Reports Server (NTRS)

    Zhen, Li; Adamec, David

    2009-01-01

    A state-of-the-art numerical model is used to investigate the possibility of determining freshwater flux fields from temporal changes io sea-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater flux estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater fluxes and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.

  5. Direct k-space mapping of the electronic structure in an oxide-oxide interface.

    PubMed

    Berner, G; Sing, M; Fujiwara, H; Yasui, A; Saitoh, Y; Yamasaki, A; Nishitani, Y; Sekiyama, A; Pavlenko, N; Kopp, T; Richter, C; Mannhart, J; Suga, S; Claessen, R

    2013-06-14

    The interface between LaAlO(3) and SrTiO(3) hosts a two-dimensional electron system of itinerant carriers, although both oxides are band insulators. Interface ferromagnetism coexisting with superconductivity has been found and attributed to local moments. Experimentally, it has been established that Ti 3d electrons are confined to the interface. Using soft x-ray angle-resolved resonant photoelectron spectroscopy we have directly mapped the interface states in k space. Our data demonstrate a charge dichotomy. A mobile fraction contributes to Fermi surface sheets, whereas a localized portion at higher binding energies is tentatively attributed to electrons trapped by O vacancies in the SrTiO(3). While photovoltage effects in the polar LaAlO(3) layers cannot be excluded, the apparent absence of surface-related Fermi surface sheets could also be fully reconciled in a recently proposed electronic reconstruction picture where the built-in potential in the LaAlO(3) is compensated by surface O vacancies serving also as a charge reservoir.

  6. Space-filling, multifractal, localized thermal spikes in Si, Ge and ZnO

    NASA Astrophysics Data System (ADS)

    Ahmad, Shoaib; Abbas, Muhammad Sabtain; Yousuf, Muhammad; Javeed, Sumera; Zeeshan, Sumaira; Yaqub, Kashif

    2018-04-01

    The mechanism responsible for the emission of clusters from heavy ion irradiated solids is proposed to be thermal spikes. Collision cascade-based theories describe atomic sputtering but cannot explain the consistently observed experimental evidence for significant cluster emission. Statistical thermodynamic arguments for thermal spikes are employed here for qualitative and quantitative estimation of the thermal spike-induced cluster emission from Si, Ge and ZnO. The evolving cascades and spikes in elemental and molecular semiconducting solids are shown to have fractal characteristics. Power law potential is used to calculate the fractal dimension. With the loss of recoiling particles' energy the successive branching ratios get smaller. The fractal dimension is shown to be dependent upon the exponent of the power law interatomic potential D = 1/2m. Each irradiating ion has the probability of initiating a space-filling, multifractal thermal spike that may sublime a localized region near the surface by emitting clusters in relative ratios that depend upon the energies of formation of respective surface vacancies.

  7. Local recharge processes in glacial and alluvial deposits of a temperate catchment

    NASA Astrophysics Data System (ADS)

    Fragalà, Federico A.; Parkin, Geoff

    2010-07-01

    SummaryThis study demonstrates that the composition and structure of Quaternary deposits and topography significantly influence rates of recharge and distribution of diffuse agricultural pollution at the hillslope scale. Analyses were made of vertical profiles of naturally-occurring chloride and nitrate, and artificially introduced bromide, in unsaturated and saturated sections of borehole cores of glacial till and alluvium under different land uses in the Upper Eden valley (UK). Estimates of local potential recharge were made based on chloride mass balance and nitrate peak methods. Persistent chloride bulges below the root zone were observed, and are interpreted to result from filtration processes at lithological boundaries. Changes in the shape of chloride profiles downslope, corroborated by nitrate profiles, indicate the roles of surface or near-surface runoff and runon, and the existence of lateral subsurface flows at depth. These findings have implications for estimation of recharge rates through unsaturated zones in Quaternary deposits, and the interpretation of potential 'hot-spots' of diffuse agrochemicals, particularly nitrates, moving through Quaternary deposits into groundwater.

  8. Graphene-on-silicon hybrid plasmonic-photonic integrated circuits.

    PubMed

    Xiao, Ting-Hui; Cheng, Zhenzhou; Goda, Keisuke

    2017-06-16

    Graphene surface plasmons (GSPs) have shown great potential in biochemical sensing, thermal imaging, and optoelectronics. To excite GSPs, several methods based on the near-field optical microscope and graphene nanostructures have been developed in the past few years. However, these methods suffer from their bulky setups and low GSP-excitation efficiency due to the short interaction length between free-space vertical excitation light and the atomic layer of graphene. Here we present a CMOS-compatible design of graphene-on-silicon hybrid plasmonic-photonic integrated circuits that achieve the in-plane excitation of GSP polaritons as well as localized surface plasmon (SP) resonance. By employing a suspended membrane slot waveguide, our design is able to excite GSP polaritons on a chip. Moreover, by utilizing a graphene nanoribbon array, we engineer the transmission spectrum of the waveguide by excitation of localized SP resonance. Our theoretical and computational study paves a new avenue to enable, modulate, and monitor GSPs on a chip, potentially applicable for the development of on-chip electro-optic devices.

  9. Linear-scaling generation of potential energy surfaces using a double incremental expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    König, Carolin, E-mail: carolink@kth.se; Christiansen, Ove, E-mail: ove@chem.au.dk

    We present a combination of the incremental expansion of potential energy surfaces (PESs), known as n-mode expansion, with the incremental evaluation of the electronic energy in a many-body approach. The application of semi-local coordinates in this context allows the generation of PESs in a very cost-efficient way. For this, we employ the recently introduced flexible adaptation of local coordinates of nuclei (FALCON) coordinates. By introducing an additional transformation step, concerning only a fraction of the vibrational degrees of freedom, we can achieve linear scaling of the accumulated cost of the single point calculations required in the PES generation. Numerical examplesmore » of these double incremental approaches for oligo-phenyl examples show fast convergence with respect to the maximum number of simultaneously treated fragments and only a modest error introduced by the additional transformation step. The approach, presented here, represents a major step towards the applicability of vibrational wave function methods to sizable, covalently bound systems.« less

  10. Plasmonic trapping potentials for cold atoms

    NASA Astrophysics Data System (ADS)

    Mildner, Matthias; Horrer, Andreas; Fleischer, Monika; Zimmermann, Claus; Slama, Sebastian

    2018-07-01

    This paper reports on conceptual and experimental work towards the realization of plasmonic surface traps for cold atoms. The trapping mechanism is based on the combination of a repulsive and an attractive potential generated by evanescent light waves that are plasmonically enhanced. The strength of enhancement can be locally manipulated via the thickness of a metal nanolayer deposited on top of a dielectric substrate. Thus, in principle the trapping geometry can be predefined by the metal layer design. We present simulations of a plasmonic lattice potential using a gold grating with sinusoidally modulated thickness. Experimentally, a first plasmonic test structure is presented and characterized. Furthermore, the surface potential landscape is detected by reflecting ultracold atom clouds from the test structure revealing the influence of both evanescent waves. A parameter range is identified where stable traps can be expected.

  11. The Potential of Silk and Silk-Like Proteins as Natural Mucoadhesive Biopolymers for Controlled Drug Delivery.

    PubMed

    Brooks, Amanda E

    2015-01-01

    Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug's local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.

  12. Estimates of RF-induced erosion at antenna-connected beryllium plasma-facing components in JET

    DOE PAGES

    Klepper, C. C.; Borodin, D.; Groth, M.; ...

    2016-01-18

    Radio-frequency (RF)-enhanced surface erosion of beryllium (Be) plasma-facing components is explored, for the first time, using the ERO code. We applied the code in order to measure the RF-enhanced edge Be line emission at JET Be outboard limiters, in the presence of high-power, ion cyclotronresonance heating (ICRH) in L-mode discharges. In this first modelling study, the RF sheath effect from an ICRH antenna on a magnetically connected, limiter region is simulated by adding a constant potential to the local sheath, in an attempt to match measured increases in local Be I and Be II emission of factors of 2 3.more » It was found that such increases are readily simulated with added potentials in the range of 100 200 V, which is compatible with expected values for potentials arising from rectification of sheath voltage oscillations from ICRH antennas in the scrape-off layer plasma. We also estimated absolute erosion values within the uncertainties in local plasma conditions.« less

  13. Ripple-modulated electronic structure of a 3D topological insulator.

    PubMed

    Okada, Yoshinori; Zhou, Wenwen; Walkup, D; Dhital, Chetan; Wilson, Stephen D; Madhavan, V

    2012-01-01

    Three-dimensional topological insulators host linearly dispersing states with unique properties and a strong potential for applications. An important ingredient in realizing some of the more exotic states in topological insulators is the ability to manipulate local electronic properties. Direct analogy to the Dirac material graphene suggests that a possible avenue for controlling local properties is via a controlled structural deformation such as the formation of ripples. However, the influence of such ripples on topological insulators is yet to be explored. Here we use scanning tunnelling microscopy to determine the effects of one-dimensional buckling on the electronic properties of Bi(2)Te(3.) By tracking spatial variations of the interference patterns generated by the Dirac electrons we show that buckling imposes a periodic potential, which locally modulates the surface-state dispersion. This suggests that forming one- and two-dimensional ripples is a viable method for creating nanoscale potential landscapes that can be used to control the properties of Dirac electrons in topological insulators.

  14. Verification of cleaning efficiency and its possible role in programmed hygiene inspections of food businesses undertaken by local authority officers.

    PubMed

    Tebbutt, G; Bell, V; Aislabie, J

    2007-04-01

    The aim of this study was to determine whether or not the assessment of surface cleanliness could make a contribution to visual inspections of food premises. Forty-five premises were studied with both rapid (ATP) and traditional microbiological swabbing being used to test surfaces that either come into direct contact with prepared foods or were likely to be touched by hands during food preparation. A significant link was found between aerobic colony counts and ATP measurements. In most cases, the visual appearance of surfaces could not be used to accurately predict either microbial or ATP results. This study suggests that ATP testing is a useful indicator of surface cleanliness and could be helpful to local authority officers as part of risk assessment inspections. This study provides further evidence that visual inspection alone may not always be adequate to assess surface cleanliness. In high-risk premises, ATP could, if appropriately targeted, help identify potential problem areas. The results are available at the time of the inspection and can be used as an on-the-spot teaching aid.

  15. Constructing diabatic states from adiabatic states: Extending generalized Mulliken-Hush to multiple charge centers with Boys localization

    NASA Astrophysics Data System (ADS)

    Subotnik, Joseph E.; Yeganeh, Sina; Cave, Robert J.; Ratner, Mark A.

    2008-12-01

    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.

  16. Constructing diabatic states from adiabatic states: extending generalized Mulliken-Hush to multiple charge centers with boys localization.

    PubMed

    Subotnik, Joseph E; Yeganeh, Sina; Cave, Robert J; Ratner, Mark A

    2008-12-28

    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.

  17. A local crack-tracking strategy to model three-dimensional crack propagation with embedded methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annavarapu, Chandrasekhar; Settgast, Randolph R.; Vitali, Efrem

    We develop a local, implicit crack tracking approach to propagate embedded failure surfaces in three-dimensions. We build on the global crack-tracking strategy of Oliver et al. (Int J. Numer. Anal. Meth. Geomech., 2004; 28:609–632) that tracks all potential failure surfaces in a problem at once by solving a Laplace equation with anisotropic conductivity. We discuss important modifications to this algorithm with a particular emphasis on the effect of the Dirichlet boundary conditions for the Laplace equation on the resultant crack path. Algorithmic and implementational details of the proposed method are provided. Finally, several three-dimensional benchmark problems are studied and resultsmore » are compared with available literature. Lastly, the results indicate that the proposed method addresses pathological cases, exhibits better behavior in the presence of closely interacting fractures, and provides a viable strategy to robustly evolve embedded failure surfaces in 3D.« less

  18. A local crack-tracking strategy to model three-dimensional crack propagation with embedded methods

    DOE PAGES

    Annavarapu, Chandrasekhar; Settgast, Randolph R.; Vitali, Efrem; ...

    2016-09-29

    We develop a local, implicit crack tracking approach to propagate embedded failure surfaces in three-dimensions. We build on the global crack-tracking strategy of Oliver et al. (Int J. Numer. Anal. Meth. Geomech., 2004; 28:609–632) that tracks all potential failure surfaces in a problem at once by solving a Laplace equation with anisotropic conductivity. We discuss important modifications to this algorithm with a particular emphasis on the effect of the Dirichlet boundary conditions for the Laplace equation on the resultant crack path. Algorithmic and implementational details of the proposed method are provided. Finally, several three-dimensional benchmark problems are studied and resultsmore » are compared with available literature. Lastly, the results indicate that the proposed method addresses pathological cases, exhibits better behavior in the presence of closely interacting fractures, and provides a viable strategy to robustly evolve embedded failure surfaces in 3D.« less

  19. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-01

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)—a chelating agent of copper II ions—was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  20. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance.

    PubMed

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-25

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)-a chelating agent of copper II ions-was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  1. Fission dynamics with microscopic level densities

    NASA Astrophysics Data System (ADS)

    Randrup, Jørgen; Ward, Daniel; Carlsson, Gillis; Døssing, Thomas; Möller, Peter; Åberg, Sven

    2018-03-01

    Working within the Langevin framework of nuclear shape dynamics, we study the dependence of the evolution on the degree of excitation. As the excitation energy of the fissioning system is increased, the pairing correlations and the shell effects diminish and the effective potential-energy surface becomes ever more liquid-drop like. This feature can be included in the treatment in a formally well-founded manner by using the local level densities as a basis for the shape evolution. This is particularly easy to understand and implement in the Metropolis treatment where the evolution is simulated by means of a random walk on the five-dimensional lattice of shapes for which the potential energy has been tabulated. Because the individual steps between two neighboring lattice sites are decided on the basis of the ratio of the statistical weights, what is needed is the ratio of the local level densities for those shapes, evaluated at the associated local excitation energies. For this purpose, we adapt a recently developed combinatorial method for calculating level densities which employs the same single-particle levels as those that were used for the calculation of the pairing and shell contributions to the macroscopic-microscopic deformation-energy surface. For each nucleus under consideration, the level density (for a fixed total angular momentum) is calculated microscopically for each of the over five million shapes given in the three-quadratic-surface parametrization. This novel treatment, which introduces no new parameters, is illustrated for the fission fragment mass distributions for selected uranium and plutonium cases.

  2. Boltzmann distribution in a nonequilibrium steady state: measuring local potential by granular Brownian particles.

    PubMed

    To, Kiwing

    2014-06-01

    We investigate experimentally the steady state motion of a millimeter-sized granular polyhedral object on vertically vibrating platforms of flat, conical, and parabolic surfaces. We find that the position distribution of the granular object is related to the shape of the platform, just like that of a Brownian particle trapped in a potential at equilibrium, even though the granular object is intrinsically not at equilibrium due to inelastic collisions with the platform. From the collision dynamics, we derive the Langevin equation which describes the motion of the object under an effective potential that equals the gravitational potential along the platform surface. The potential energy is found to agree with the equilibrium equipartition theorem while the kinetic energy does not. Furthermore, the granular temperature is found to be higher than the effective temperature associated with the average potential energy, suggesting the presence of heat transfer from the kinetic part to the potential part of the granular object.

  3. Boltzmann distribution in a nonequilibrium steady state: Measuring local potential by granular Brownian particles

    NASA Astrophysics Data System (ADS)

    To, Kiwing

    2014-06-01

    We investigate experimentally the steady state motion of a millimeter-sized granular polyhedral object on vertically vibrating platforms of flat, conical, and parabolic surfaces. We find that the position distribution of the granular object is related to the shape of the platform, just like that of a Brownian particle trapped in a potential at equilibrium, even though the granular object is intrinsically not at equilibrium due to inelastic collisions with the platform. From the collision dynamics, we derive the Langevin equation which describes the motion of the object under an effective potential that equals the gravitational potential along the platform surface. The potential energy is found to agree with the equilibrium equipartition theorem while the kinetic energy does not. Furthermore, the granular temperature is found to be higher than the effective temperature associated with the average potential energy, suggesting the presence of heat transfer from the kinetic part to the potential part of the granular object.

  4. Tailoring the charged particle fluxes across the target surface of Magnum-PSI

    NASA Astrophysics Data System (ADS)

    Costin, C.; Anita, V.; Popa, G.; Scholten, J.; De Temmerman, G.

    2016-04-01

    Linear plasma generators are plasma devices designed to study fusion-relevant plasma-surface interactions. The first requirement for such devices is to operate with adjustable and well characterized plasma parameters. In the linear plasma device Magnum-PSI, the distribution of the charged particle flux across the target surface can be tailored by the target bias. The process is based on the radial inhomogeneity of the plasma column and it is evidenced by electrical measurements via a 2D multi-probe system installed as target. Typical results are reported for a hydrogen discharge operated at 125 A and confined by a magnetic field strength of 0.95 T in the middle of the coils. The probes were biased in the range of  -80 to  -25 V, while the floating potential of the target was about  -35 V. The results were obtained in steady-state regime of Magnum-PSI, being time-averaged over any type of fluctuations. Depending on the relative value of the target bias voltage with respect to the local floating potential in the plasma column, the entire target surface can be exposed to ion or electron dominated flux, respectively, or it can be divided into two adjacent zones: one exposed to electron flux and the other to ion flux. As a consequence of this effect, a floating conductive surface that interacts with an inhomogeneous plasma is exposed to non-zero local currents despite its overall null current and it is subjected to internal current flows.

  5. Correction of localized shape errors on optical surfaces by altering the localized density of surface or near-surface layers

    DOEpatents

    Taylor, John S.; Folta, James A.; Montcalm, Claude

    2005-01-18

    Figure errors are corrected on optical or other precision surfaces by changing the local density of material in a zone at or near the surface. Optical surface height is correlated with the localized density of the material within the same region. A change in the height of the optical surface can then be caused by a change in the localized density of the material at or near the surface.

  6. Estimating relative sea-level rise and submergence potential at a coastal wetland

    USGS Publications Warehouse

    Cahoon, Donald R.

    2015-01-01

    A tide gauge records a combined signal of the vertical change (positive or negative) in the level of both the sea and the land to which the gauge is affixed; or relative sea-level change, which is typically referred to as relative sea-level rise (RSLR). Complicating this situation, coastal wetlands exhibit dynamic surface elevation change (both positive and negative), as revealed by surface elevation table (SET) measurements, that is not recorded at tide gauges. Because the usefulness of RSLR is in the ability to tie the change in sea level to the local topography, it is important that RSLR be calculated at a wetland that reflects these local dynamic surface elevation changes in order to better estimate wetland submergence potential. A rationale is described for calculating wetland RSLR (RSLRwet) by subtracting the SET wetland elevation change from the tide gauge RSLR. The calculation is possible because the SET and tide gauge independently measure vertical land motion in different portions of the substrate. For 89 wetlands where RSLRwet was evaluated, wetland elevation change differed significantly from zero for 80 % of them, indicating that RSLRwet at these wetlands differed from the local tide gauge RSLR. When compared to tide gauge RSLR, about 39 % of wetlands experienced an elevation rate surplus and 58 % an elevation rate deficit (i.e., sea level becoming lower and higher, respectively, relative to the wetland surface). These proportions were consistent across saltmarsh, mangrove, and freshwater wetland types. Comparison of wetland elevation change and RSLR is confounded by high levels of temporal and spatial variability, and would be improved by co-locating tide gauge and SET stations near each other and obtaining long-term records for both.

  7. Lysosomal Rerouting of Hsp70 Trafficking as a Potential Immune Activating Tool for Targeting Melanoma

    PubMed Central

    Juhász, Kata; Thuenauer, Roland; Spachinger, Andrea; Duda, Ernő; Horváth, Ibolya; Vígh, László; Sonnleitner, Alois; Balogi, Zsolt

    2013-01-01

    Tumor specific cell surface localization and release of the stress inducible heat shock protein 70 (Hsp70) stimulate the immune system against cancer cells. A key immune stimulatory function of tumor-derived Hsp70 has been exemplified with the murine melanoma cell model, B16 overexpressing exogenous Hsp70. Despite the therapeutic potential mechanism of Hsp70 transport to the surface and release remained poorly understood. We investigated principles of Hsp70 trafficking in B16 melanoma cells with low and high level of Hsp70. In cells with low level of Hsp70 apparent trafficking of Hsp70 was mediated by endosomes. Excess Hsp70 triggered a series of changes such as a switch of Hsp70 trafficking from endosomes to lysosomes and a concomitant accumulation of Hsp70 in lysosomes. Moreover, lysosomal rerouting resulted in an elevated concentration of surface Hsp70 and enabled active release of Hsp70. In fact, hyperthermia, a clinically applicable approach triggered immediate active lysosomal release of soluble Hsp70 from cells with excess Hsp70. Furthermore, excess Hsp70 enabled targeting of internalized surface Hsp70 to lysosomes, allowing in turn heat-induced secretion of surface Hsp70. Altogether, we show that excess Hsp70 expressed in B16 melanoma cells diverts Hsp70 trafficking from endosomes to lysosomes, thereby supporting its surface localization and lysosomal release. Controlled excess-induced lysosomal rerouting and secretion of Hsp70 is proposed as a promising tool to stimulate anti-tumor immunity targeting melanoma. PMID:22920897

  8. On the local relaxation of solid neon upon Rydberg excitation of a NO impurity: the role of the NO(A)-Ne interaction potential and zero-point quantum delocalization.

    PubMed

    Pajón-Suárez, Pedro; Rojas-Lorenzo, Germán A; Rubayo-Soneira, Jesús; Hernández-Lamoneda, Ramón; Larrégaray, Pascal

    2009-12-31

    The local relaxation of solid neon subsequent to the impulsive excitation of the NO chromophore to its A(3s sigma) Ryberg state is investigated using molecular dynamics simulations. This study makes use of empirical NO(X,A)-Ne isotropic pair potentials as well as a recently developed ab initio triatomic potential energy surface for the excited state. The role of these interaction potentials is analyzed, including many-body effects. In particular, empirical potentials, designed to reproduce correctly both the NO X-A steady-state absorption and emission bands, are shown to lead to a good description of the subpicosecond relaxation dynamics. The 600 fs expansion of the electronic bubble fairly agrees with experimental data. This relatively long time scale with respect to solid Argon, which was previously attributed to the range of the NO(A)-Ne interaction, is presumably related to the quantum nature of the medium. The time-resolved local relaxation of the Ne solid is understandably intermediate between that of classical solids (e.g., Ar) and that of quantum solids (e.g., H(2)).

  9. COLD WATER PATCHES IN WARM STREAMS: PHYSICOCHEMICAL CHARACTERISTICS AND THE INFLUENCE OF SHADING

    EPA Science Inventory

    Discrete coldwater patches within the surface waters of summer-warm streams afford potential thermal refuge for coldwater fishes during periods of heat stress. This analysis focused on reach-scale heterogeneity in water temperatures as influenced by local influx of cooler subsur...

  10. Effects of Structural Properties of Electrospun TiO2 Nano-fiber Meshes on their Osteogenic Potential

    PubMed Central

    Wang, Xiaokun; Gittens, Rolando A.; Song, Rosemary; Tannenbaum, Rina; Olivares-Navarrete, Rene; Schwartz, Zvi; Chen, Haifeng; Boyan, Barbara D.

    2011-01-01

    Ideal outcomes in the field of tissue engineering and regenerative medicine involve biomaterials that can enhance cell differentiation and production of local factors for natural tissue regeneration without the use of systemic drugs. Biomaterials typically used in tissue engineering applications include polymeric scaffolds that mimic the 3-D structural environment of the native tissue, but these are often functionalized with proteins or small peptides to improve their biological performance. For bone applications, titanium (Ti) implants, or more appropriately the titania (TiO2) passive oxide layer formed on their surface, have been shown to enhance osteoblast differentiation in vitro and to promote osseointegration in vivo. In this study we evaluated the effect on osteoblast differentiation of pure TiO2 nano-fiber meshes with different surface micro-roughness and nano-fiber diameters, prepared by the electrospinning method. MG63 cells were seeded on TiO2 meshes, and cell number, differentiation markers and local factor production were analyzed. The results showed that cells grew throughout the entire surfaces and with similar morphology in all groups. Cell number was sensitive to surface micro-roughness, whereas cell differentiation and local factor production was regulated by both surface roughness and nano-fiber diameter. These results indicate that scaffold structural cues alone can be used to drive cell differentiation and create an osteogenic environment without the use of exogenous factors. PMID:22075122

  11. Ultrafine and Smooth Full Metal Nanostructures for Plasmonics

    NASA Astrophysics Data System (ADS)

    Zhu, Xinli; Zhang, Jaseng; Xu, Jun; Liao, Zhimin; Wu, Xiaosong; Yu, Dapeng

    2013-03-01

    Surface plasmon polaritons (SPPs), which are coupled excitations of electrons bound to a metal-dielectric interface, show great potential for application in future nanoscale photonic systems due to the strong field confinement at the nanoscale, intensive local field enhancement, and interplay between strongly localized and propagating SPPs. The fabrication of sufficiently smooth metal surface with nanoscale feature size is crucial for SPPs to have practical applications. A template stripping (ST) method combined with PMMA as a template was successfully developed to create extraordinarily smooth metal nanostructures with a desirable feature size and morphology for plasmonics and metamaterials. The advantages of this method, including the high resolution, precipitous top-to bottom profile with a high aspect ratio, and three-dimensional characteristics, make it very suitable for the fabrication of plasmonic structures. By using this ST method, boxing ring-shaped nanocavities have been fabricated and the confined modes of surface plasmon polaritons in these nanocavities have been investigated and imaged by using cathodoluminescence spectroscopy. The mode of the out-of-plane field components of surface plasmon polaritons dominates the experimental mode patterns, indicating that the electron beam locally excites the out-of-plane field component of surface plasmon polaritons, and quality factors can be directly acquired. Numerous applications, such as plasmonic filter, nanolaser, and efficient light-emitting devices, can be expected to arise from these developments.

  12. Dynamics of confined water reconstructed from inelastic x-ray scattering measurements of bulk response functions

    NASA Astrophysics Data System (ADS)

    Coridan, Robert H.; Schmidt, Nathan W.; Lai, Ghee Hwee; Abbamonte, Peter; Wong, Gerard C. L.

    2012-03-01

    Nanoconfined water and surface-structured water impacts a broad range of fields. For water confined between hydrophilic surfaces, measurements and simulations have shown conflicting results ranging from “liquidlike” to “solidlike” behavior, from bulklike water viscosity to viscosity orders of magnitude higher. Here, we investigate how a homogeneous fluid behaves under nanoconfinement using its bulk response function: The Green's function of water extracted from a library of S(q,ω) inelastic x-ray scattering data is used to make femtosecond movies of nanoconfined water. Between two confining surfaces, the structure undergoes drastic changes as a function of surface separation. For surface separations of ≈9 Å, although the surface-associated hydration layers are highly deformed, they are separated by a layer of bulklike water. For separations of ≈6 Å, the two surface-associated hydration layers are forced to reconstruct into a single layer that modulates between localized “frozen’ and delocalized “melted” structures due to interference of density fields. These results potentially reconcile recent conflicting experiments. Importantly, we find a different delocalized wetting regime for nanoconfined water between surfaces with high spatial frequency charge densities, where water is organized into delocalized hydration layers instead of localized hydration shells, and are strongly resistant to `freezing' down to molecular distances (<6 Å).

  13. Using Digital Image Correlation to Characterize Local Strains on Vascular Tissue Specimens.

    PubMed

    Zhou, Boran; Ravindran, Suraj; Ferdous, Jahid; Kidane, Addis; Sutton, Michael A; Shazly, Tarek

    2016-01-24

    Characterization of the mechanical behavior of biological and engineered soft tissues is a central component of fundamental biomedical research and product development. Stress-strain relationships are typically obtained from mechanical testing data to enable comparative assessment among samples and in some cases identification of constitutive mechanical properties. However, errors may be introduced through the use of average strain measures, as significant heterogeneity in the strain field may result from geometrical non-uniformity of the sample and stress concentrations induced by mounting/gripping of soft tissues within the test system. When strain field heterogeneity is significant, accurate assessment of the sample mechanical response requires measurement of local strains. This study demonstrates a novel biomechanical testing protocol for calculating local surface strains using a mechanical testing device coupled with a high resolution camera and a digital image correlation technique. A series of sample surface images are acquired and then analyzed to quantify the local surface strain of a vascular tissue specimen subjected to ramped uniaxial loading. This approach can improve accuracy in experimental vascular biomechanics and has potential for broader use among other native soft tissues, engineered soft tissues, and soft hydrogel/polymeric materials. In the video, we demonstrate how to set up the system components and perform a complete experiment on native vascular tissue.

  14. Ultrashort laser pulse processing of wave guides for medical applications

    NASA Astrophysics Data System (ADS)

    Ashkenasi, David; Rosenfeld, Arkadi; Spaniol, Stefan B.; Terenji, Albert

    2003-06-01

    The availability of ultra short (ps and sub-ps) pulsed lasers has stimulated a growing interest in exploiting the enhanced flexibility of femtosecond and/or picosecond laser technology for micro-machining. The high peak powers available at relatively low single pulse energies potentially allow for a precise localization of photon energy, either on the surface or inside (transparent) materials. Three dimensional micro structuring of bulk transparent media without any sign of mechanical cracking has been demonstrated. In this study, the potential of ultra short laser processing was used to modify the cladding-core interface in normal fused silica wave guides. The idea behind this technique is to enforce a local mismatch for total reflection at the interface at minimal mechanic stress. The laser-induced modifications were studied in dependence of pulse width, focal alignment, single pulse energy and pulse overlap. Micro traces with a thickness between 3 and 8 μm were generated with a spacing of 10 μm in the sub-surface region using sub-ps and ps laser pulses at a wavelength of 800 nm. The optical leakage enforced by a micro spiral pattern is significant and can be utilized for medical applications or potentially also for telecommunications and fiber laser technology.

  15. Liquid metal embrittlement. [crack propagation in metals with liquid metal in crack space

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.

    1973-01-01

    Crack propagation is discussed for metals with liquid metal in the crack space. The change in electrochemical potential of an electron in a metal due to changes in stress level along the crack surface was investigated along with the change in local chemistry, and interfacial energy due to atomic redistribution in the liquid. Coupled elastic-elastrostatic equations, stress effects on electron energy states, and crack propagation via surface roughening are discussed.

  16. Application of conjugated heparin-albumin microparticles with laser-balloon angioplasty: a potential method for reducing adverse biologic reactivity after angioplasty

    NASA Astrophysics Data System (ADS)

    Kundu, Sourav K.; McMath, Linda P.; Zaidan, Jonathan T.; Spears, J. Richard

    1991-05-01

    Laser-balloon angioplasty (LBA) may potentially be used for local application of pharmacologically active agents which will reduce thrombogenic and proliferative responses after the angioplasty. In this study, the feasibility of applying covalently conjugated heparin- albumin microparticles onto arterial luminal surface was demonstrated. The covalent linkages were formed by reaction with 1-ethyl-3-dimethyl-aminopropyl-carbodiimide (EDC), and the resultant conjugates were used for preparation of microparticles by employing standard emulsification and heat-crosslinking techniques. The heparin release rate from the microparticles was found to be dependent upon the degree of crosslinking. When a thin coagulum of a suspension of microparticles was formed with heat on a glass surface, the treated surface demonstrated resistance to clot formation in contact with non-anticoagulated blood. A suspension of the microparticles applied during laser-balloon angioplasty onto the luminal surface of dog carotid and femoral arteries showed persistence for up to one week without thrombus formation or occlusion of the vessel. Since the rate of biodegradation is primarily dictated by the extent of crosslinking, an optimal degree of thermal denaturation will permit longer persistence of the carrier while allowing adequate release of the entrapped pharmacologic agent. A variety of antithrombotic and antiinflammatory agents are being considered as candidate bioprotective materials for local application after angioplasty.

  17. Dynamic in-plane potential gradients for actively controlling electrochemical reactions: Part I. Characterization of 1- and 2-component alkanethiol monolayer gradients on thin gold films. Part II. Applications of in-plane potential gradients

    NASA Astrophysics Data System (ADS)

    Balss, Karin Maria

    The research contained in this thesis is focused on the formation and characterization of surface composition gradients on thin gold films that are formed by applications of in-plane potential gradients. Injecting milliamp currents into thin Au films yields significant in-plane voltage drops so that, rather than assuming a single value of potential, an in-plane potential gradient is imposed on the film which depends on the resistivity of the film, the cross sectional area and the magnitude of the potential drop. Furthermore, the in-plane electric potential gradient means that, relative to a solution reference couple, electrochemical reactions occurs at defined spatial positions corresponding to the local potential, V(x) ˜ E0. The spatial gradient in electrochemical potential can then produce spatially dependent electrochemistry. Surface-chemical potential gradients can be prepared by arranging the spread of potentials to span an electrochemical wave mediating redox-associated adsorption or desorption. Examples of reactions that can be spatially patterned include the electrosorption of alkanethiols and over-potential metal deposition. The unique advantage of this method for patterning spatial compositions is the control of surface coverage in both space and time. The thesis is organized into two parts. In Part I, formation and characterization of 1- and 2-component alkanethiol monolayer gradients is investigated. Numerous surface science tools are employed to examine the distribution in coverage obtained by application of in-plane potential gradients. Macroscopic characterization was obtained by sessile water drop contact angle measurements and surface plasmon resonance imaging. Gradients were also imaged on micron length scales with pulsed-force mode atomic force microscopy. Direct chemical evidence of surface compositions in aromatic thiol surface coverage was obtained by surface-enhanced Raman spectroscopy. In Part II, the applications of in-plane potential gradients is discussed. Electrochemical reactions other than electrosorption of alkanethiols were demonstrated with over-potential deposition of copper onto gold films. One application of these patterns is to control the movement of supermolecular objects. As a first step towards this goal, biological cells were seeded onto gradient patterns containing adhesion promoters and inhibitors. The morphology and adhesion was investigated as a function of concentration along the gradient.

  18. Plasmonic nanoparticles for bioanalytics and therapy at the limit

    NASA Astrophysics Data System (ADS)

    Schneider, T.; Wirth, J.; Garwe, F.; Csáki, A.; Fritzsche, W.

    2011-12-01

    Noble metal nanoparticles interacting with electromagnetic waves exhibit the effect of localized surface plasmon resonance (LSPR) based on the collective oscillation of their conduction electrons. Local refractive index changes by a (bio) molecular layer surrounding the nanoparticle are important for a variety of research areas like optics and life sciences. In this work we demonstrate the potential of two applications in the field of molecular plasmonics, single nanoparticle sensors and nanoantennas, situated between plasmonics effects and the molecular world.

  19. Observed Local Impacts of Global Irrigation on Surface Temperature

    NASA Astrophysics Data System (ADS)

    Chen, L.; Dirmeyer, P.

    2017-12-01

    Agricultural irrigation has significant potential for altering local climate through reducing soil albedo, increasing evapotranspiration, and enabling greater leaf area. Numerous studies using regional or global climate models have demonstrated the cooling effects of irrigation on mean and extreme temperature, especially over regions where irrigation is extensive. However, these model-based results have not been validated due to the limitations of observational datasets. In this study, multiple satellite-based products, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Soil Moisture Active Passive (SMAP) data sets, are used to isolate and quantify the local impacts of irrigation on surface climate over the irrigated regions, which are derived from the Global Map of Irrigation Areas (GMIA). The relationships among soil moisture, albedo, evapotranspiration, and surface temperature are explored. Strong evaporative cooling of irrigation on daytime surface temperature is found over the arid and semi-arid regions, such as California's Central Valley, the Great Plains, and central Asia. However, the cooling effects are less evident in most areas of eastern China, India, and the Lower Mississippi River Basin in spite of extensive irrigation over these regions. Results are also compared with irrigation experiments using the Community Earth System Model (CESM) to assess the model's ability to represent land-atmosphere interactions in regards to irrigation.

  20. A strategy to find minimal energy nanocluster structures.

    PubMed

    Rogan, José; Varas, Alejandro; Valdivia, Juan Alejandro; Kiwi, Miguel

    2013-11-05

    An unbiased strategy to search for the global and local minimal energy structures of free standing nanoclusters is presented. Our objectives are twofold: to find a diverse set of low lying local minima, as well as the global minimum. To do so, we use massively the fast inertial relaxation engine algorithm as an efficient local minimizer. This procedure turns out to be quite efficient to reach the global minimum, and also most of the local minima. We test the method with the Lennard-Jones (LJ) potential, for which an abundant literature does exist, and obtain novel results, which include a new local minimum for LJ13 , 10 new local minima for LJ14 , and thousands of new local minima for 15≤N≤65. Insights on how to choose the initial configurations, analyzing the effectiveness of the method in reaching low-energy structures, including the global minimum, are developed as a function of the number of atoms of the cluster. Also, a novel characterization of the potential energy surface, analyzing properties of the local minima basins, is provided. The procedure constitutes a promising tool to generate a diverse set of cluster conformations, both two- and three-dimensional, that can be used as an input for refinement by means of ab initio methods. Copyright © 2013 Wiley Periodicals, Inc.

  1. Adsorptive properties of alluvial soil for arsenic(V) and its potential for protection of the shallow groundwater among Changsha, Zhuzhou, and Xiangtan cities, China.

    PubMed

    Chen, Hongwei; Mei, Jinhua; Luo, Yueping; Qiu, Anni; Wang, Huan

    2017-02-01

    The study area is among Changsha, Zhuzhou, and Xiangtan cities, which was under agricultural use and natural conditions about 10 years ago and now is becoming part of the metropolis because of the urban expansion. This study aims to investigate the mechanisms and capabilities of the local alluvial soil layer for protecting the local shallow groundwater from arsenic pollution by field surveys and batch experiments. The field surveys showed that there was an acidic tendency of the groundwater, and phosphate, nitrate, and arsenic in the groundwater significantly increased comparing to their reference values. It indicates that the disturbance of the former agricultural land due to the change of land use may be responsible for these changes. From the experimental results, the maximum adsorption capacity of the soil for As(V) was as low as 0.334 mg/g, and lower As(V) adsorption capacities were obtained at higher As(V) concentration, higher pH, and lower temperature. The presence of H 2 PO 4 - and SiO 3 2- posed negative, while HCO 3 - slight positive, and SO 4 2- , NO 3 - and Cl - negligible influences on the As(V) adsorption. The surface-derived organic matter played a negative role in the adsorption process, and low specific surface area influenced adsorption capacity of the soil. The study reveals that the local soil layer shows poor potential for protection of the local shallow groundwater from As(V) pollution, and the change trends of the groundwater environments due to more intensive anthropogenic activities will further weaken this potential and increase the risk of the groundwater contamination.

  2. Radical-Driven Silicon Surface Passivation for Organic-Inorganic Hybrid Photovoltaics

    NASA Astrophysics Data System (ADS)

    Chandra, Nitish

    The advent of metamaterials has increased the complexity of possible light-matter interactions, creating gaps in knowledge and violating various commonly used approximations and rendering some common mathematical frameworks incomplete. Our forward scattering experiments on metallic shells and cavities have created a need for a rigorous geometry-based analysis of scattering problems and more rigorous current distribution descriptions in the volume of the scattering object. In order to build an accurate understanding of these interactions, we have revisited the fundamentals of Maxwell's equations, electromagnetic potentials and boundary conditions to build a bottom-up geometry-based analysis of scattering. Individual structures or meta-atoms can be designed to localize the incident electromagnetic radiation in order to create a change in local constitutive parameters and possible nonlinear responses. Hence, in next generation engineered materials, an accurate determination of current distribution on the surface and in the structure's volume play an important role in describing and designing desired properties. Multipole expansions of the exact current distribution determined using principles of differential geometry provides an elegant way to study these local interactions of meta-atoms. The dynamics of the interactions can be studied using the behavior of the polarization and magnetization densities generated by localized current densities interacting with the electromagnetic potentials associated with the incident waves. The multipole method combined with propagation of electromagnetic potentials can be used to predict a large variety of linear and nonlinear physical phenomena. This has been demonstrated in experiments that enable the analog detection of sources placed at subwavelength separation by using time reversal of observed signals. Time reversal is accomplished by reversing the direction of the magnetic dipole in bianisotropic metasurfaces while simultaneously providing a method to reduce the losses often observed when light interacts with meta-structures.

  3. Measurement Of Crossflow Vortex Structure

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Agarwal, Navel K.

    1994-01-01

    Method developed for measuring wavelengths of crossflow vortices by using surface-mounted, microthin, multielement hot-film sensors. Provides direct and true value of wavelength of crossflow vortices at various spanwise locations without localized flow disturbances. Attainment of laminar airflow on aircraft wings has significant potential for reducing drag and increasing fuel efficiency.

  4. Energy transfers in internal tide generation, propagation and dissipation in the deep ocean

    NASA Astrophysics Data System (ADS)

    Floor, J. W.; Auclair, F.; Marsaleix, P.

    The energy transfers associated with internal tide (IT) generation by a semi-diurnal surface tidal wave impinging on a supercritical meridionally uniform deep ocean ridge on the f-plane, and subsequent IT-propagation are analysed using the Boussinesq, free-surface, terrain-following ocean model Symphonie. The energy diagnostics are explicitly based on the numerical formulation of the governing equations, permitting a globally conservative, high-precision analysis of all physical and numerical/artificial energy transfers in a sub-domain with open lateral boundaries. The net primary energy balances are quantified using a moving average of length two tidal periods in a simplified control simulation using a single time-step, minimal diffusion, and a no-slip sea floor. This provides the basis for analysis of enhanced vertical and horizontal diffusion and a free-slip bottom boundary condition. After a four tidal period spin-up, the tidally averaged (net) primary energy balance in the generation region, extending ±20 km from the ridge crest, shows that the surface tidal wave loses approximately C = 720 W/m or 0.3% of the mean surface tidal energy flux (2.506 × 10 5 W/m) in traversing the ridge. This corresponds mainly to the barotropic-to-baroclinic energy conversion due to stratified flow interaction with sloping topography. Combined with a normalised net advective flux of baroclinic potential energy of 0.9 × C this causes a net local baroclinic potential energy gain of 0.72 × C and a conversion into baroclinic kinetic energy through the baroclinic buoyancy term of 1.18 × C. Tidally averaged, about 1.14 × C is radiated into the abyssal ocean through the total baroclinic flux of internal pressure associated with the IT- and background density field. This total baroclinic pressure flux is therefore not only determined by the classic linear surface-to-internal tide conversion, but also by the net advection of baroclinic (background) potential energy, indicating the importance of local processes other than linear IT-motion. In the propagation region (PR), integrated over the areas between 20 and 40 km from the ridge crest, the barotropic and baroclinic tide are decoupled. The net incoming total baroclinic pressure flux is balanced by local potential energy gain and outward baroclinic flux of potential energy associated with the total baroclinic density. The primary net energy balances are robust to changes in the vertical diffusion coefficient, whereas relatively weak horizontal diffusion significantly reduces the outward IT energy flux. Diapycnal mixing due to vertical diffusion causes an available potential energy loss of about 1% of the total domain-averaged potential energy gain, which matches {km-1}/{km}ρ0KVN2 to within 0.5%, for km linearly distributed grid-levels and constant background density ρ0, vertical diffusivity ( KV) and buoyancy frequency ( N).

  5. Electron and positron states in HgBa2CuO4

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Jarlborg, T.

    1994-08-01

    Local-density-calculations of the electronic structure of HgBa2CuO4 have been performed with the self-consistent linear muffin-tin orbital method. The positron-density distribution and its sensitivity due to different potentials are calculated. The annihilation rates are computed in order to study the chemical bonding and to predict the Fermi-surface signal. Comparisons are made with previous calculations on other high-Tc copper oxides concerning the Fermi-surface properties and electron-positron overlap. We discuss the possibility of observing the Fermi surface associated with the Cu-O planes in positron-annihilation experiments.

  6. Droplet-surface Impingement Dynamics for Intelligent Spray Design

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Kizito, John P.; Tryggvason, Gretar; Berger, Gordon M.; Mozes, Steven D.

    2004-01-01

    Spray cooling has high potential in thermal management and life support systems by overcoming the deleterious effect of microgravity upon two-phase heat transfer. In particular spray cooling offers several advantages in heat flux removal that include the following: 1. By maintaining a wetted surface, spray droplets impinge upon a thin fluid film rather than a dry solid surface 2. Most heat transfer surfaces will not be smooth but rough. Roughness can enhance conductive cooling, aid liquid removal by flow channeling. 3. Spray momentum can be used to a) substitute for gravity delivering fluid to the surface, b) prevent local dryout and potential thermal runaway and c) facilitate liquid and vapor removal. Yet high momentum results in high We and Re numbers characterizing the individual spray droplets. Beyond an impingement threshold, droplets splash rather than spread. Heat flux declines and spray cooling efficiency can markedly decrease. Accordingly we are investigating droplet impingement upon a) dry solid surfaces, b) fluid films, c) rough surfaces and determining splashing thresholds and relationships for both dry surfaces and those covered by fluid films. We are presently developing engineering correlations delineating the boundary between splashing and non-splashing regions.

  7. Laser surface structuring of AZ31 Mg alloy for controlled wettability.

    PubMed

    Gökhan Demir, Ali; Furlan, Valentina; Lecis, Nora; Previtali, Barbara

    2014-06-01

    Structured surfaces exhibit functional properties that can enhance the performance of a bioimplant in terms of biocompatibility, adhesion, or corrosion behavior. In order to tailor the surface property, chemical and physical methods can be used in a sequence of many steps. On the other hand, laser surface processing can provide a single step solution to achieve the designated surface function with the use of simpler equipment and high repeatability. This work provides the details on the surface structuring of AZ31, a biocompatible and biodegradable Mg alloy, by a single-step laser surface structuring based on remelting. The surfaces are characterized in terms of topography, chemistry, and physical integrity, as well as the effective change in the surface wetting behavior is demonstrated. The results imply a great potential in local or complete surface structuring of medical implants for functionalization by the flexible positioning of the laser beam.

  8. Could artificial ocean alkalinization protect tropical coral ecosystems from ocean acidification?

    NASA Astrophysics Data System (ADS)

    Feng, Ellias Y.; Keller, David P.; Koeve, Wolfgang; Oschlies, Andreas

    2016-07-01

    Artificial ocean alkalinization (AOA) is investigated as a method to mitigate local ocean acidification and protect tropical coral ecosystems during a 21st century high CO2 emission scenario. Employing an Earth system model of intermediate complexity, our implementation of AOA in the Great Barrier Reef, Caribbean Sea and South China Sea regions, shows that alkalinization has the potential to counteract expected 21st century local acidification in regard to both oceanic surface aragonite saturation Ω and surface pCO2. Beyond preventing local acidification, regional AOA, however, results in locally elevated aragonite oversaturation and pCO2 decline. A notable consequence of stopping regional AOA is a rapid shift back to the acidified conditions of the target regions. We conclude that AOA may be a method that could help to keep regional coral ecosystems within saturation states and pCO2 values close to present-day values even in a high-emission scenario and thereby might ‘buy some time’ against the ocean acidification threat, even though regional AOA does not significantly mitigate the warming threat.

  9. Heterogeneous surface charge enhanced micromixing for electrokinetic flows.

    PubMed

    Biddiss, Elaine; Erickson, David; Li, Dongqing

    2004-06-01

    Enhancing the species mixing in microfluidic applications is key to reducing analysis time and increasing device portability. The mixing in electroosmotic flow is usually diffusion-dominated. Recent numerical studies have indicated that the introduction of electrically charged surface heterogeneities may augment mixing efficiencies by creating localized regions of flow circulation. In this study, we experimentally visualized the effects of surface charge patterning and developed an optimized electrokinetic micromixer applicable to the low Reynolds number regime. Using the optimized micromixer, mixing efficiencies were improved between 22 and 68% for the applied potentials ranging from 70 to 555 V/cm when compared with the negatively charged homogeneous case. For producing a 95% mixture, this equates to a potential decrease in the required mixing channel length of up to 88% for flows with Péclet numbers between 190 and 1500.

  10. Value of epicardial potential maps in localizing pre-excitation sites for radiofrequency ablation. A simulation study

    NASA Astrophysics Data System (ADS)

    Hren, Rok

    1998-06-01

    Using computer simulations, we systematically investigated the limitations of an inverse solution that employs the potential distribution on the epicardial surface as an equivalent source model in localizing pre-excitation sites in Wolff-Parkinson-White syndrome. A model of the human ventricular myocardium that features an anatomically accurate geometry, an intramural rotating anisotropy and a computational implementation of the excitation process based on electrotonic interactions among cells, was used to simulate body surface potential maps (BSPMs) for 35 pre-excitation sites positioned along the atrioventricular ring. Two individualized torso models were used to account for variations in torso boundaries. Epicardial potential maps (EPMs) were computed using the L-curve inverse solution. The measure for accuracy of the localization was the distance between a position of the minimum in the inverse EPMs and the actual site of pre-excitation in the ventricular model. When the volume conductor properties and lead positions of the torso were precisely known and the measurement noise was added to the simulated BSPMs, the minimum in the inverse EPMs was at 12 ms after the onset on average within cm of the pre-excitation site. When the standard torso model was used to localize the sites of onset of the pre-excitation sequence initiated in individualized male and female torso models, the mean distance between the minimum and the pre-excitation site was cm for the male torso and cm for the female torso. The findings of our study indicate that a location of the minimum in EPMs computed using the inverse solution can offer non-invasive means for pre-interventional planning of the ablative treatment.

  11. Development of high-sensitive, reproducible colloidal surface-enhanced Raman spectroscopy active substrate using silver nanocubes for potential biosensing applications

    NASA Astrophysics Data System (ADS)

    Hasna, Kudilatt; Lakshmi, Kiran; Ezhuthachan Jayaraj, Madambi Kunjukuttan; Kumar, Kumaran Rajeev; Matham, Murukeshan Vadakke

    2016-04-01

    Surface-enhanced Raman spectroscopy (SERS) has emerged as one of the thrust research areas that could find potential applications in bio and chemical sensing. We developed colloidal SERS active substrate with excellent sensitivity and high reproducibility using silver nanocube (AgNC) synthesized via the solvothermal method. Finite-difference time-domain simulation was carried out in detail to visualize dipole generation in the nanocube during localized surface plasmon resonance and to locate the respective hot spots in AgNC responsible for the huge Raman enhancement. The prediction is verified by the SERS analysis of the synthesized nanocubes using Rhodamine 6G molecule. An excellent sensitivity with a detection limit of 10-17 M and a very high enhancement factor of 1.2×108 confirms the "hot spots" in the nanocube. SERS activity is also carried out for crystal violet and for food adulterant Sudan I molecule. Finally, label-free DNA detection is performed to demonstrate the versatility of SERS as a potential biosensor.

  12. Modern Possibilities for Calculating Some Properties of Molecules and Crystals from the Experimental Electron Density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stash, A.I.; Tsirelson, V.G.

    2005-03-01

    Methods for calculating some properties of molecules and crystals from the electron density reconstructed from a precise X-ray diffraction experiment using the multipole model are considered. These properties include, on the one hand, the characteristics of the electron density and the inner-crystal electrostatic field and, on the other hand, the local electronic energies (kinetic, potential, total), the exchange energy density, the electron-pair localization function, the localized-orbital locator, the effective crystal potential, and others. It is shown that the integration of these characteristics over pseudoatomic volumes bounded by the surfaces of the zero flux of the electron density gradient makes itmore » possible to characterize directly from an experiment the properties of molecules and crystals in terms of the atomic contributions. The computer program WinXPRO2004, realizing these possibilities, is briefly described.« less

  13. The potential impact of scatterometry on oceanography - A wave forecasting case

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Cardone, V. J.

    1981-01-01

    A series of observing system simulation experiments have been performed in order to assess the potential impact of marine surface wind data on numerical weather prediction. In addition to conventional data, the experiments simulated the time-continuous assimilation of remotely sensed marine surface wind or temperature sounding data. The wind data were fabricated directly for model grid points intercepted by a Seasat-1 scatterometer swath and were assimilated into the lowest active level (945 mb) of the model using a localized successive correction method. It is shown that Seasat wind data can greatly improve numerical weather forecasts due to better definition of specific features. The case of the QE II storm is examined.

  14. No Association between Cortical Gyrification or Intrinsic Curvature and Attention-deficit/Hyperactivity Disorder in Adolescents and Young Adults.

    PubMed

    Forde, Natalie J; Ronan, Lisa; Zwiers, Marcel P; Alexander-Bloch, Aaron F; Faraone, Stephen V; Oosterlaan, Jaap; Heslenfeld, Dirk J; Hartman, Catharina A; Buitelaar, Jan K; Hoekstra, Pieter J

    2017-01-01

    Magnetic resonance imaging (MRI) studies have highlighted subcortical, cortical, and structural connectivity abnormalities associated with attention-deficit/hyperactivity disorder (ADHD). Gyrification investigations of the cortex have been inconsistent and largely negative, potentially due to a lack of sensitivity of the previously used morphological parameters. The innovative approach of applying intrinsic curvature analysis, which is predictive of gyrification pattern, to the cortical surface applied herein allowed us greater sensitivity to determine whether the structural connectivity abnormalities thus far identified at a centimeter scale also occur at a millimeter scale within the cortical surface. This could help identify neurodevelopmental processes that contribute to ADHD. Structural MRI datasets from the NeuroIMAGE project were used [ n = 306 ADHD, n = 164 controls, and n = 148 healthy siblings of individuals with ADHD (age in years, mean(sd); 17.2 (3.4), 16.8 (3.2), and 17.7 (3.8), respectively)]. Reconstructions of the cortical surfaces were computed with FreeSurfer. Intrinsic curvature (taken as a marker of millimeter-scale surface connectivity) and local gyrification index were calculated for each point on the surface (vertex) with Caret and FreeSurfer, respectively. Intrinsic curvature skew and mean local gyrification index were extracted per region; frontal, parietal, temporal, occipital, cingulate, and insula. A generalized additive model was used to compare the trajectory of these measures between groups over age, with sex, scanner site, total surface area of hemisphere, and familiality accounted for. After correcting for sex, scanner site, and total surface area no group differences were found in the developmental trajectory of intrinsic curvature or local gyrification index. Despite the increased sensitivity of intrinsic curvature, compared to gyrification measures, to subtle morphological abnormalities of the cortical surface we found no milimeter-scale connectivity abnormalities associated with ADHD.

  15. Impact of Extensive Urbanization on Summertime Rainfall in the Beijing Region and the Role of Local Precipitation Recycling

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Feng, Jinming; Yan, Zhongwei

    2018-04-01

    In this study, we conducted nested high-resolution simulations using the Weather Research and Forecasting model coupled with a single-layer urban canopy model to investigate the impact of extensive urbanization on regional precipitation over the Beijing-Tianjin-Hebei region in China. The results showed that extensive urbanization decreased precipitation considerably over and downwind of Beijing city. The prevalence of impermeable urban land inhibits local evaporation that feeds moisture into the overlying atmosphere, decreasing relative humidity and atmospheric instability. The dynamic precipitation recycling model was employed to estimate the precipitation that originates from local surface evaporation and large-scale advection of moisture. Results showed that about 11% of the urbanization-induced decrease in total precipitation over the Greater Beijing Region and its surroundings was contributed by the decrease in local recycled precipitation, while the other part (89%) was due to decreasing large-scale advected precipitation. Results suggest that the low evaporation from urban land surfaces not only reduces the supply of water vapor for local recycled precipitation directly but also decreases the convective available potential energy and hence the conversion efficiency of atmospheric moisture into rainfall. The urbanization-induced variations in local recycled precipitation were found to be correlated with the net atmospheric moisture flux on a monthly time scale.

  16. Linking Surface and Subsurface Processes: Implications for Seismic Hazards in Southern California

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Moon, S.; Yong, A.; Meng, L.; Martin, A. J.; Davis, P. M.

    2017-12-01

    Earth's surface and subsurface processes such as bedrock weathering, soil production, and river incision can influence and be influenced by spatial variations in the mechanical strength of surface material. Mechanically weakened rocks tend to have reduced seismic velocity, which can result in larger ground-motion amplification and greater potential for earthquake-induced damages. However, the influence and extent of surface and subsurface processes on the mechanical strength of surface material and seismic site conditions in southern California remain unclear. In this study, we examine whether physics-based models of surface and subsurface processes can explain the spatial variability and non-linearity of near-surface seismic velocity in southern California. We use geophysical measurements (Yong et al., 2013; Ancheta et al., 2014), consisting of shear-wave velocity (Vs) tomography data, Vs profiles, and the time-averaged Vs in the upper 30 m of the crust (Vs30) to infer lateral and vertical variations of surface material properties. Then, we compare Vs30 values with geologic and topographic attributes such as rock type, slope, elevation, and local relief, as well as metrics for surface processes such as soil production and bedrock weathering from topographic stress, frost cracking, chemical reactions, and vegetation presence. Results from this study will improve our understanding of physical processes that control subsurface material properties and their influences on local variability in seismic site conditions.

  17. Scanning tunneling microscopy current from localized basis orbital density functional theory

    NASA Astrophysics Data System (ADS)

    Gustafsson, Alexander; Paulsson, Magnus

    2016-03-01

    We present a method capable of calculating elastic scanning tunneling microscopy (STM) currents from localized atomic orbital density functional theory (DFT). To overcome the poor accuracy of the localized orbital description of the wave functions far away from the atoms, we propagate the wave functions, using the total DFT potential. From the propagated wave functions, the Bardeen's perturbative approach provides the tunneling current. To illustrate the method we investigate carbon monoxide adsorbed on a Cu(111) surface and recover the depression/protrusion observed experimentally with normal/CO-functionalized STM tips. The theory furthermore allows us to discuss the significance of s - and p -wave tips.

  18. Porous Hydroxyapatite Scaffold with Three-Dimensional Localized Drug Delivery System Using Biodegradable Microspheres

    DTIC Science & Technology

    2011-03-21

    produced were also labeled with FITC using a modification of a previously described technique [22]. PEI- coated microsphere (30 mg/mL) were mixed with...surface after 4 h of mixing (Fig. 5A), while PEI-coated microspheres were well- dispersed and immobilized onto the HAp surface (Fig. 5B). 3.3. Properties of...Erickson, L. Ren, D. Li, Zeta-potential measurement using the smoluchowski equation and the slope of the current-time relationship in electroosmotic flow

  19. Measuring ground movement in geothermal areas of Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Lofgren, B. E.

    1974-01-01

    Significant ground movement may accompany the extraction of large quantities of fluids from the subsurface. In Imperial Valley, California, one of the potential hazards of geothermal development is the threat of both subsidence and horizontal movement of the land surface. Regional and local survey nets are being monitored to detect and measure possible ground movement caused by future geothermal developments. Precise measurement of surface and subsurface changes will be required to differentiate man-induced changes from natural processes in this tectonically active region.

  20. Robust surface roughness indices and morphological interpretation

    NASA Astrophysics Data System (ADS)

    Trevisani, Sebastiano; Rocca, Michele

    2016-04-01

    Geostatistical-based image/surface texture indices based on variogram (Atkison and Lewis, 2000; Herzfeld and Higginson, 1996; Trevisani et al., 2012) and on its robust variant MAD (median absolute differences, Trevisani and Rocca, 2015) offer powerful tools for the analysis and interpretation of surface morphology (potentially not limited to solid earth). In particular, the proposed robust index (Trevisani and Rocca, 2015) with its implementation based on local kernels permits the derivation of a wide set of robust and customizable geomorphometric indices capable to outline specific aspects of surface texture. The stability of MAD in presence of signal noise and abrupt changes in spatial variability is well suited for the analysis of high-resolution digital terrain models. Moreover, the implementation of MAD by means of a pixel-centered perspective based on local kernels, with some analogies to the local binary pattern approach (Lucieer and Stein, 2005; Ojala et al., 2002), permits to create custom roughness indices capable to outline different aspects of surface roughness (Grohmann et al., 2011; Smith, 2015). In the proposed poster, some potentialities of the new indices in the context of geomorphometry and landscape analysis will be presented. At same time, challenges and future developments related to the proposed indices will be outlined. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Lucieer, A., Stein, A., 2005. Texture-based landform segmentation of LiDAR imagery. International Journal of Applied Earth Observation and Geoinformation 6, 261-270. Ojala, T., Pietikäinen, M. & Mäenpää, T. 2002. "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987. Smith, M.W. 2014. "Roughness in the Earth Sciences", Earth-Science Reviews, vol. 136, pp. 202-225. Trevisani, S., Cavalli, M. & Marchi, L. 2012. "Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin", Geomorphology, vol. 161-162, pp. 26-39. Trevisani, S., Rocca, M. 2015. MAD: robust image texture analysis for applications in high resolution geomorphometry. Comput. Geosci. 81, 78-92. doi:10.1016/j.cageo.2015.04.003.

  1. Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains

    DOE PAGES

    Phillips, Thomas J.; Klein, Stephen A.

    2014-01-28

    This study examines several observational aspects of land-atmosphere coupling on daily average time scales during warm seasons of the years 1997 to 2008 at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) Central Facility site near Lamont, Oklahoma. Characteristics of the local land-atmosphere coupling are inferred by analyzing the covariability of selected land and atmospheric variables that include precipitation and soil moisture, surface air temperature, relative humidity, radiant and turbulent fluxes, as well as low-level cloud base height and fractional coverage. For both the energetic and hydrological aspects of this coupling, it is found that large-scalemore » atmospheric forcings predominate, with local feedbacks of the land on the atmosphere being comparatively small much of the time. The weak land feedbacks are manifested by 1) the inability of soil moisture to comprehensively impact the coupled land-atmosphere energetics, and 2) the limited recycling of local surface moisture under conditions where most of the rainfall derives from convective cells that originate at remote locations. There is some evidence, nevertheless, of the local land feedback becoming stronger as the soil dries out in the aftermath of precipitation events, or on days when the local boundary-layer clouds are influenced by thermal updrafts known to be associated with convection originating at the surface. Finally, we also discuss potential implications of these results for climate-model representation of regional land-atmosphere coupling.« less

  2. The role of electrostatic charge in the adhesion of spherical particles onto planar surfaces in atmospheric systems

    DOE PAGES

    Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas

    2015-06-19

    In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorptionmore » on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.« less

  3. Quantum dynamics study on the binding of a positron to vibrationally excited states of hydrogen cyanide molecule

    NASA Astrophysics Data System (ADS)

    Takayanagi, Toshiyuki; Suzuki, Kento; Yoshida, Takahiko; Kita, Yukiumi; Tachikawa, Masanori

    2017-05-01

    We present computational results of vibrationally enhanced positron annihilation in the e+ + HCN/DCN collisions within a local complex potential model. Vibrationally elastic and inelastic cross sections and effective annihilation rates were calculated by solving a time-dependent complex-potential Schrödinger equation under the ab initio potential energy surface for the positron attached HCN molecule, [HCN; e+], with multi-component configuration interaction level (Kita and Tachikawa, 2014). We discuss the effect of vibrational excitation on the positron affinities from the obtained vibrational resonance features.

  4. Earthquake swarms and local crustal spreading along major strike-slip faults in California

    USGS Publications Warehouse

    Weaver, C.S.; Hill, D.P.

    1978-01-01

    Earthquake swarms in California are often localized to areas within dextral offsets in the linear trend in active fault strands, suggesting a relation between earthquake swarms and local crustal spreading. Local crustal spereading is required by the geometry of dextral offsets when, as in the San Andreas system, faults have dominantly strike-slip motion with right-lateral displacement. Three clear examples of this relation occur in the Imperial Valley, Coso Hot Springs, and the Danville region, all in California. The first two of these areas are known for their Holocene volcanism and geothermal potential, which is consistent with crustal spreading and magmatic intrusion. The third example, however, shows no evidence for volcanism or geothermal activity at the surface. ?? 1978 Birkha??user Verlag.

  5. Theoretical models for electrochemical impedance spectroscopy and local ζ-potential of unfolded proteins in nanopores

    NASA Astrophysics Data System (ADS)

    Vitarelli, Michael J.; Talaga, David S.

    2013-09-01

    Single solid-state nanopores find increasing use for electrical detection and/or manipulation of macromolecules. These applications exploit the changes in signals due to the geometry and electrical properties of the molecular species found within the nanopore. The sensitivity and resolution of such measurements are also influenced by the geometric and electrical properties of the nanopore. This paper continues the development of an analytical theory to predict the electrochemical impedance spectra of nanopores by including the influence of the presence of an unfolded protein using the variable topology finite Warburg impedance model previously published by the authors. The local excluded volume of, and charges present on, the segment of protein sampled by the nanopore are shown to influence the shape and peak frequency of the electrochemical impedance spectrum. An analytical theory is used to relate the capacitive response of the electrical double layer at the surface of the protein to both the charge density at the protein surface and the more commonly measured zeta potential. Illustrative examples show how the theory predicts that the varying sequential regions of surface charge density and excluded volume dictated by the protein primary structure may allow for an impedance-based approach to identifying unfolded proteins.

  6. Hierarchical laser-induced periodic surface structures induced by femtosecond laser on the surface of a ZnO film

    NASA Astrophysics Data System (ADS)

    Wang, Shaojun; Jiang, Lan; Han, Weina; Hu, Jie; Li, Xiaowei; Wang, Qingsong; Lu, Yongfeng

    2018-05-01

    We realize hierarchical laser-induced periodic surface structures (LIPSSs) on the surface of a ZnO thin film in a single step by the irradiation of femtosecond laser pulses. The structures are characterized by the high-spatial-frequency LIPSSs (HSFLs) formed on the abnormal bumped low-spatial-frequency LIPSSs (LSFLs). Localized electric-field enhancement based on the initially formed LSFLs is proposed as a potential mechanism for the formation of HSFLs. The simulation results through the finite-difference time-domain method show good agreement with experiments. Furthermore, the crucial role of the LSFLs in the formation of HSFLs is validated by an elaborate experimental design with preprocessed HSFLs.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders

    The activity and selectivity for CO 2/CO reduction over copper electrodes is strongly dependent on the local surface structure of the catalyst and the pH of the electrolyte. Here we investigate a unique, copper nanocube surface (CuCube) as a CO reduction electrode under neutral and basic pH, using online electrochemical mass spectroscopy (OLEMS) to determine the onset potentials and relative intensities of methane and ethylene production. To relate the unique selectivity to the surface structure, the CuCube surface reactivity is compared to polycrystalline copper and three single crystals under the same reaction conditions. Here, we find that the high selectivitymore » for ethylene over the CuCube surface is most comparable to the Cu(100) surface, which has the cubic unit cell. However, the suppression of methane production over CuCube is unique to that particular surface. Basic pH is also shown to enhance ethylene selectivity on all surfaces, again with the CuCube surface being unique.« less

  8. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate exogenous contrast agent for efficient Raman spectroscopy from molecules.

  9. Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging.

    PubMed

    Cang, Hu; Labno, Anna; Lu, Changgui; Yin, Xiaobo; Liu, Ming; Gladden, Christopher; Liu, Yongmin; Zhang, Xiang

    2011-01-20

    When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.

  10. Non-invasive localization of atrial ectopic beats by using simulated body surface P-wave integral maps

    PubMed Central

    Godoy, Eduardo J.; Lozano, Miguel; Martínez-Mateu, Laura; Atienza, Felipe; Saiz, Javier; Sebastian, Rafael

    2017-01-01

    Non-invasive localization of continuous atrial ectopic beats remains a cornerstone for the treatment of atrial arrhythmias. The lack of accurate tools to guide electrophysiologists leads to an increase in the recurrence rate of ablation procedures. Existing approaches are based on the analysis of the P-waves main characteristics and the forward body surface potential maps (BSPMs) or on the inverse estimation of the electric activity of the heart from those BSPMs. These methods have not provided an efficient and systematic tool to localize ectopic triggers. In this work, we propose the use of machine learning techniques to spatially cluster and classify ectopic atrial foci into clearly differentiated atrial regions by using the body surface P-wave integral map (BSPiM) as a biomarker. Our simulated results show that ectopic foci with similar BSPiM naturally cluster into differentiated non-intersected atrial regions and that new patterns could be correctly classified with an accuracy of 97% when considering 2 clusters and 96% for 4 clusters. Our results also suggest that an increase in the number of clusters is feasible at the cost of decreasing accuracy. PMID:28704537

  11. Evidence for exocellular Arsenic in Fronds of Pteris vittata

    DOE PAGES

    Datta, Rupali; Das, Padmini; Tappero, Ryan; ...

    2017-06-06

    The arsenic (As) hyperaccumulating fern species Pteris vittata (PV) is capable of accumulating large quantities of As in its aboveground tissues. Transformation to AsIII and vacuolar sequestration is believed to be the As detoxification mechanism in PV. Here we present evidence for a preponderance of exocellular As in fronds of Pteris vittata despite numerous reports of a tolerance mechanism involving intracellular compartmentalization. Results of an extraction experiment show that 43–71% of the As extruded out of the fronds of PV grown in 0.67, 3.3 and 6.7 mM AsV. SEM-EDX analysis showed that As was localized largely on the lower pinnamore » surface, with smaller amounts on the upper surface, as crystalline deposits. X-ray fluorescence imaging of pinna cross-sections revealed preferential localization of As on the pinna surface in the proximity of veins, with the majority localized near the midrib. Majority of the As in the pinnae is contained in the apoplast rather than vacuoles. Our results provide evidence that exocellular sequestration is potentially a mechanism of As detoxification in PV, particularly at higher As concentrations, raising concern about its use for phytoremediation.« less

  12. Evidence for exocellular Arsenic in Fronds of Pteris vittata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Rupali; Das, Padmini; Tappero, Ryan

    The arsenic (As) hyperaccumulating fern species Pteris vittata (PV) is capable of accumulating large quantities of As in its aboveground tissues. Transformation to AsIII and vacuolar sequestration is believed to be the As detoxification mechanism in PV. Here we present evidence for a preponderance of exocellular As in fronds of Pteris vittata despite numerous reports of a tolerance mechanism involving intracellular compartmentalization. Results of an extraction experiment show that 43–71% of the As extruded out of the fronds of PV grown in 0.67, 3.3 and 6.7 mM AsV. SEM-EDX analysis showed that As was localized largely on the lower pinnamore » surface, with smaller amounts on the upper surface, as crystalline deposits. X-ray fluorescence imaging of pinna cross-sections revealed preferential localization of As on the pinna surface in the proximity of veins, with the majority localized near the midrib. Majority of the As in the pinnae is contained in the apoplast rather than vacuoles. Our results provide evidence that exocellular sequestration is potentially a mechanism of As detoxification in PV, particularly at higher As concentrations, raising concern about its use for phytoremediation.« less

  13. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment.

    PubMed

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm(-1) is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  14. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    NASA Astrophysics Data System (ADS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H2O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0-4000 cm-1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  15. Enhanced optical transmission through double-overlapped annular aperture array

    NASA Astrophysics Data System (ADS)

    Wang, Chaonan; Bai, Ming; Jin, Ming

    2012-07-01

    In this paper, transmission properties through an array of concentric or eccentric double-overlapped annular apertures (CDOAAs or EDOAAs) are investigated. It is demonstrated that local surface plasmon-assisted TE11-like modes in CDOAAs exhibit a blue shift with the increasing overlapped factor. For EDOAAs with asymmetric annular apertures in both directions, a new resonant peak can be excited at a larger wavelength using linearly polarised light, which corresponds to extreme field localisation around the narrowest gap attributed to the gap plasmons' excitation and is quite sensitive to the offset of the eccentric centre island. These properties provide a possible method to achieve multiplexed and tunable wavelength selection using different local surface plasmon resonances and are of significant potential applicable value to the designing of tunable optical devices.

  16. Charge heterogeneity of surfaces: mapping and effects on surface forces.

    PubMed

    Drelich, Jaroslaw; Wang, Yu U

    2011-07-11

    The DLVO theory treats the total interaction force between two surfaces in a liquid medium as an arithmetic sum of two components: Lifshitz-van der Waals and electric double layer forces. Despite the success of the DLVO model developed for homogeneous surfaces, a vast majority of surfaces of particles and materials in technological systems are of a heterogeneous nature with a mosaic structure composed of microscopic and sub-microscopic domains of different surface characteristics. In such systems, the heterogeneity of the surface can be more important than the average surface character. Attractions can be stronger, by orders of magnitude, than would be expected from the classical mean-field DLVO model when area-averaged surface charge or potential is employed. Heterogeneity also introduces anisotropy of interactions into colloidal systems, vastly ignored in the past. To detect surface heterogeneities, analytical tools which provide accurate and spatially resolved information about material surface chemistry and potential - particularly at microscopic and sub-microscopic resolutions - are needed. Atomic force microscopy (AFM) offers the opportunity to locally probe not only changes in material surface characteristic but also charges of heterogeneous surfaces through measurements of force-distance curves in electrolyte solutions. Both diffuse-layer charge densities and potentials can be calculated by fitting the experimental data with a DLVO theoretical model. The surface charge characteristics of the heterogeneous substrate as recorded by AFM allow the charge variation to be mapped. Based on the obtained information, computer modeling and simulation can be performed to study the interactions among an ensemble of heterogeneous particles and their collective motions. In this paper, the diffuse-layer charge mapping by the AFM technique is briefly reviewed, and a new Diffuse Interface Field Approach to colloid modeling and simulation is briefly discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Response to 'Comment on 'Controllable local modification of fractured Nb-doped SrTiO{sub 3} surfaces' [Appl. Phys. Lett. 98, 256102 (2011)'.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, T. Y.; Santos, T. S.; Bode, M.

    2011-06-20

    In their comment, Chen et al. try to argue that the experimentally observed controllable voltage-induced surface modification, which was attributed to a local electric field-induced atom transfer from the surface to the tip, is rather caused by either an oxidation process and/or a resistance change. In this response, we will show that we can rule out these two effects in our experiment. The statements by Chen et al. are based on two arguments: (1) the tip modification after transferring an adatom should alter the dI/dV contrast, which was not seen in our experiments and (2) the vacuum conditions in ourmore » experiment are similar to earlier reports on resistance switching. First, Chen et al. discuss that the adsorption on the tip should alter the topographic contrast, as many papers have reported. In fact, in our experiments we frequently observed tip modifications at high bias voltage. These typically result in slight changes in scanning tunneling spectroscopy data [see, for example, the spectra in Fig. 3(b) in Ref. 4 and Fig. 2(d) of Ref. 5] but only weakly affected the topographic contrast. Second, Chen et al. claim that oxidation is another possible mechanism to explain our experimental observations. To support this claim, they compare our results to an earlier publication showing resistance switching. In fact, the resistance switching mechanism is related to oxygen vacancy migration or local surface oxidation. The mechanism of oxygen vacancy migration requires a 'forming' process with a threshold current in the order of microampere or even milliampere. In our experimental setup, however, we used tunneling currents in the order of 50 pA. Even during surface modification, which was performed at open feedback loop conditions with voltage pulse of up to 3 or -5 V, the maximum transient current did not exceed a few nanoampere. Therefore, we can safely exclude oxygen vacancy migration as a potential mechanism for the observed surface modification. As a second potential mechanism Chen et al. mention a local surface oxidation process. However, the total pressure at high-vacuum conditions used in experiments, where resistance switching was observed (10{sup -7} torr in Ref. 3) is three order magnitude higher than in our experiment performed under ultrahigh vacuum (UHV) conditions (below 10{sup -10} torr). Furthermore, mass spectra measured with a residual gas analyzer show that the main residue gas in our UHV system is hydrogen ({approx} 90%). Water, oxygen, and other oxygen-related gases are negligible with a partial pressure in the order of 10{sup -12} torr range or lower. Therefore, we can also exclude that local oxidation with reactants from the residual gas causes the observed modifications. In addition, in our experiment, the refilling of the modified areas at negative bias could not be observed with fresh tip, even for bias voltages as high as -10 V. In short, the mechanism for the modification on the UHV in situ fractured Nb:SrTiO{sub 3} (Nb-doped Strontium titanate) surfaces with scanning tunneling microscope (STM) tip is different from the mechanisms such as local surface oxidation or filament formation, used to explain the largecurrent induced resistance switching works.« less

  18. Using Transmural Regularization and Dynamic Modeling for Non-Invasive Cardiac Potential Imaging of Endocardial Pacing with Imprecise Thoracic Geometry

    PubMed Central

    Erem, Burak; Coll-Font, Jaume; Orellana, Ramon Martinez; Štóvíček, Petr; Brooks, Dana H.

    2014-01-01

    Cardiac electrical imaging from body surface potential measurements is increasingly being seen as a technology with the potential for use in the clinic, for example for pre-procedure planning or during-treatment guidance for ventricular arrhythmia ablation procedures. However several important impediments to widespread adoption of this technology remain to be effectively overcome. Here we address two of these impediments: the difficulty of reconstructing electric potentials on the inner (endocardial) as well as outer (epicardial) surfaces of the ventricles, and the need for full anatomical imaging of the subject’s thorax to build an accurate subject-specific geometry. We introduce two new features in our reconstruction algorithm: a non-linear low-order dynamic parameterization derived from the measured body surface signals, and a technique to jointly regularize both surfaces. With these methodological innovations in combination, it is possible to reconstruct endocardial activation from clinically acquired measurements with an imprecise thorax geometry. In particular we test the method using body surface potentials acquired from three subjects during clinical procedures where the subjects’ hearts were paced on their endocardia using a catheter device. Our geometric models were constructed using a set of CT scans limited in axial extent to the immediate region near the heart. The catheter system provides a reference location to which we compare our results. We compare our estimates of pacing site localization, in terms of both accuracy and stability, to those reported in a recent clinical publication [1], where a full set of CT scans were available and only epicardial potentials were reconstructed. PMID:24595345

  19. Human Impacts on the Hydrologic Cycle: Comparing Global Climate Change and Local Water Management

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; Maxwell, R. M.

    2010-12-01

    Anthropogenic climate change is significantly altering the hydrologic cycle at global and regional scales, with potentially devastating impacts on water resources. Recent studies demonstrate that hydrologic response to climate change will depend on local-scale feedbacks between groundwater, surface water, and land surface processes. These studies suggest that local water management practices that alter the quantity and distribution of water in the terrestrial system—e.g., groundwater pumping and irrigation—may also feed back across the hydrologic cycle, with impacts on land-atmosphere fluxes and thus weather and climate. Here we use an integrated hydrologic model to compare the impacts of large-scale climate change and local water management practices on water and energy budgets at local and watershed scales. We consider three climate scenarios (hot, hot+wet, and hot+dry) and three management scenarios (pumping only, irrigation only, and pumping+irrigation). Results demonstrate that impacts of local water management on basin-integrated groundwater storage, evapotranspiration, and stream discharge are comparable to those of changing climate conditions. However, impacts of climate change are shown to have a smaller magnitude and greater spatial extent, while impacts of pumping and irrigation are shown to have a greater magnitude but are local to areas where pumping and irrigation occur. These results have important implications regarding the scales of human impacts on both water resources and climate and the sustainability of water resources.

  20. Hydrogen storage in engineered carbon nanospaces.

    PubMed

    Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter

    2009-05-20

    It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.

  1. Effects of surface coal mining and reclamation on the geohydrology of six small watersheds in west-central Indiana

    USGS Publications Warehouse

    Martin, Jeffrey D.; Duwelius, Richard F.; Crawford, Charles G.

    1987-01-01

    The watersheds studied include mined and reclaimed; mined and unreclaimed; and unmined, agricultural land uses, and are each < 3 sq mi in area. Surface water, groundwater, and meteorologic data for the 1981 and 1982 water years were used to describe and compare hydrologic systems of the six watersheds and to identify hydrologic effects of mining and reclamation. Peak discharges were greater at the agricultural watersheds than at the unreclaimed watersheds, primarily because of large final-cut lakes in the unreclaimed watersheds. Annual runoff was greatest at the unreclaimed watersheds, intermediate at the agricultural watersheds, and least at the reclaimed watersheds. Hydrologic effects of mining were identified by comparing the hydrologic systems at mined and unreclaimed watersheds with those at unmined, agricultural watersheds. Comparisons of the hydrologic systems of these watersheds indicate that surface coal mining without reclamation has the potential to increase annual runoff, base flow, and groundwater recharge to the bedrock; reduce peak flow rates and variation in flow; lower the water table in upland areas; change the relation between surface water and groundwater divides; and create numerous, local flow systems in the shallow groundwater. Hydrologic effects of reclamation were identified by comparing the hydrologic systems at mined and reclaimed watersheds with those at mined and unreclaimed watersheds. Reclamation has the potential to decrease annual runoff, base flow, and recharge to the bedrock; increase peak flow rates, variation in flow, and response to thunderstorms; reestablish the premining relation between surface and groundwater divides; and create fewer local flow systems in the shallow groundwater. (Lantz-PTT)

  2. Composition of aeolian dust in natural traps on isolated surfaces of the central Mojave Desert - Insights to mixing, sources, and nutrient inputs

    USGS Publications Warehouse

    Reynolds, R.L.; Reheis, M.; Yount, J.; Lamothe, P.

    2006-01-01

    The recognition and characterization of aeolian dust in soil contribute to a better understanding of landscape and ecosystem dynamics of drylands. Results of this study show that recently deposited dust, sampled in isolated, mostly high-ground settings, is chemically and mineralogically similar on varied geologic substrates over a large area (15 000 km2) in the Mojave Desert. The silt-plus-clay fraction (fines) on these isolated surfaces is closely alike in magnetic-mineral composition, in contrast to greatly dissimilar magnetic compositions of rock surfaces of vastly different lithologies, on which the fines have accumulated. The fines, thus, are predominantly deposited dust. The amounts of potential nutrients in the sampled dust are much more uniform than might be provided by direct, local weathering of bedrock or by dust locally derived from nearby weathered products. The compositional similarity of the dust on these surfaces is interpreted to result from mixing of fines in the atmosphere as well as in fluvial, alluvial, and lacustrine depositional settings prior to dust emission.

  3. A quantum chemistry study on surface reactivity of pristine and carbon-substituted AlN nanotubes

    NASA Astrophysics Data System (ADS)

    Mahdaviani, Amir; Esrafili, Mehdi D.; Esrafili, Ali; Behzadi, Hadi

    2013-09-01

    A density functional theory investigation was performed to predict the surface reactivity of pristine and carbon-substituted (6,0) single-walled aluminum nitride nanotubes (AlNNTs). The properties determined include the electrostatic potentials VS(r) and average local ionization energies ĪS(r) on the surfaces of the investigated tubes. According to computed VS(r) results, the Al/N atoms in edge or cap regions show a different reactivity pattern than those at the middle portion of the tubes. Due to the carbon-substitution at the either Al or N sites of the tubes, the negative regions associated with nitrogen atoms are stronger than before. The prediction of surface reactivity and regioselectivity using average local ionization energies has been verified by atomic hydrogen chemisorption energies calculated for AlNNTs at the B3LYP/6-31 G* level. There is an acceptable correlation between the minima of ĪS(r) and the atomic hydrogen chemisorption energies, demonstrating that ĪS(r) provides an effective means for rapidly and economically assessing the relative reactivities of finite sized AlNNTs.

  4. Ice Sheet Change Detection by Satellite Image Differencing

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Scambos, Ted A.; Choi, Hyeungu; Haran, Terry M.

    2010-01-01

    Differencing of digital satellite image pairs highlights subtle changes in near-identical scenes of Earth surfaces. Using the mathematical relationships relevant to photoclinometry, we examine the effectiveness of this method for the study of localized ice sheet surface topography changes using numerical experiments. We then test these results by differencing images of several regions in West Antarctica, including some where changes have previously been identified in altimeter profiles. The technique works well with coregistered images having low noise, high radiometric sensitivity, and near-identical solar illumination geometry. Clouds and frosts detract from resolving surface features. The ETM(plus) sensor on Landsat-7, ALI sensor on EO-1, and MODIS sensor on the Aqua and Terra satellite platforms all have potential for detecting localized topographic changes such as shifting dunes, surface inflation and deflation features associated with sub-glacial lake fill-drain events, or grounding line changes. Availability and frequency of MODIS images favor this sensor for wide application, and using it, we demonstrate both qualitative identification of changes in topography and quantitative mapping of slope and elevation changes.

  5. An orthodontic bracket embedded in the medial pterygoid surface: a case report.

    PubMed

    Wilmott, Sheryl E; Ikeagwuani, Okechukwu; McLeod, Niall M H

    2016-01-08

    There is a potential risk that orthodontic brackets can become dislodged into the aerodigestive tract. This case illustrates the management of an orthodontic bracket, which became embedded in the deep tissues of the oropharynx. We aim to highlight the potential risk misplaced dental instruments and materials pose, including that they may become embedded in the soft tissues of the throat and suggest that that this possibility should be considered when they cannot be localized.

  6. An orthodontic bracket embedded in the medial pterygoid surface: a case report.

    PubMed

    Wilmott, Sheryl E; Ikeagwuani, Okechukwu; McLeod, Niall M H

    2016-03-01

    There is a potential risk that orthodontic brackets can become dislodged into the aerodigestive tract. This case illustrates the management of an orthodontic bracket, which became embedded in the deep tissues of the oropharynx. We aim to highlight the potential risk misplaced dental instruments and materials pose, including that they may become embedded in the soft tissues of the throat and suggest that that this possibility should be considered when they cannot be localized.

  7. Flutter of wings involving a locally distributed flexible control surface

    NASA Astrophysics Data System (ADS)

    Mozaffari-Jovin, S.; Firouz-Abadi, R. D.; Roshanian, J.

    2015-11-01

    This paper undertakes to facilitate appraisal of aeroelastic interaction of a locally distributed, flap-type control surface with aircraft wings operating in a subsonic potential flow field. The extended Hamilton's principle serves as a framework to ascertain the Euler-Lagrange equations for coupled bending-torsional-flap vibration. An analytical solution to this boundary-value problem is then accomplished by assumed modes and the extended Galerkin's method. The developed aeroelastic model considers both the inherent flexibility of the control surface displaced on the wing and the inertial coupling between these two flexible bodies. The structural deformations also obey the Euler-Bernoulli beam theory, along with the Kelvin-Voigt viscoelastic constitutive law. Meanwhile, the unsteady thin-airfoil and strip theories are the tools of producing the three-dimensional airloads. The origin of aerodynamic instability undergoes analysis in light of the oscillatory loads as well as the loads owing to arbitrary motions. After successful verification of the model, a systematic flutter survey was conducted on the theoretical effects of various control surface parameters. The results obtained demonstrate that the flapping modes and parameters of the control surface can significantly impact the flutter characteristics of the wings, which leads to a series of pertinent conclusions.

  8. Corrosion protection of reusable surgical instruments.

    PubMed

    Shah, Sadiq; Bernardo, Mildred

    2002-01-01

    To understand the corrosion properties of surgical scissors, 416 stainless steel disks and custom electrodes were used as simulated surfaces under various conditions. These simulated surfaces were exposed to tap water and 400-ppm synthetic hard water as Ca2CO3 under different conditions. The samples were evaluated by various techniques for corrosion potential and the impact of environmental conditions on the integrity of the passive film. The electrodes were used to monitor the corrosion behavior by potentiodynamic polarization technique in water both in the presence and absence of a cleaning product. The surface topography of the 416 stainless steel disks was characterized by visual observations and scanning electron microscopy (SEM), and the surface chemistry of the passive film on the surface of the scissors was characterized by x-ray photoelectron spectroscopy (XPS). The results suggest that surgical instruments made from 416 stainless steel are not susceptible to uniform corrosion; however, they do undergo localized corrosion. The use of suitable cleaning products can offer protection against localized corrosion during the cleaning step. More importantly, the use of potentiodynamic polarization techniques allowed for a quick and convenient approach to evaluate the corrosion properties of surgical instruments under a variety of simulated-use environmental conditions.

  9. Photoelectrochemical molecular comb

    DOEpatents

    Thundat, Thomas G.; Ferrell, Thomas L.; Brown, Gilbert M.

    2006-08-15

    A method and apparatus for separating molecules. The apparatus includes a substrate having a surface. A film in contact with the surface defines a substrate/film interface. An electrode electrically connected to the film applies a voltage potential between the electrode and the substrate to form a depletion region in the substrate at the substrate/film interface. A photon energy source having an energy level greater than the potential is directed at the depletion region to form electron-hole pairs in the depletion region. At least one of the electron-hole pairs is separated by the potential into an independent electron and an independent hole having opposite charges and move in opposing directions. One of the electron and hole reach the substrate/film interface to create a photopotential in the film causing charged molecules in the film to move in response to the localized photovoltage.

  10. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution

    NASA Astrophysics Data System (ADS)

    Shi, Yunzhu; Collins, Liam; Balke, Nina; Liaw, Peter K.; Yang, Bin

    2018-05-01

    In-situ electrochemical (EC)-AFM is employed to investigate the localized corrosion of the AlxCoCrFeNi high-entropy alloys (HEAs). Surface topography changes on the micro/sub-micro scale are monitored at different applied anodizing potentials in a 3.5 wt% NaCl solution. The microstructural evolutions with the increased Al content in the alloys are characterized by SEM, TEM, EDS and EBSD. The results show that by increasing the Al content, the microstructure changes from single solid-solution to multi-phases, leading to the segregations of elements. Due to the microstructural variations in the AlxCoCrFeNi HEAs, localized corrosion processes in different ways after the breakdown of the passive film, which changes from pitting to phase boundary corrosion. The XPS results indicate that an increased Al content in the alloys/phases corresponds to a decreased corrosion resistance of the surface passive film.

  11. Cohesive Relations for Surface Atoms in the Iron-Technetium Binary System

    DOE PAGES

    Taylor, Christopher D.

    2011-01-01

    Iron-technetium alloys are of relevance to the development of waste forms for disposition of radioactive technetium-99 obtained from spent nuclear fuel. Corrosion of candidate waste forms is a function of the local cohesive energy () of surface atoms. A theoretical model for calculating is developed. Density functional theory was used to construct a modified embedded atom (MEAM) potential for iron-technetium. Materials properties determined for the iron-technetium system were in good agreement with the literature. To explore the relationship between local structure and corrosion, MEAM simulations were performed on representative iron-technetium alloys and intermetallics. Technetium-rich phases have lower , suggesting thatmore » these phases will be more noble than iron-rich ones. Quantitative estimates of based on numbers of nearest neighbors alone can lead to errors up to 0.5 eV. Consequently, atomistic corrosion simulations for alloy systems should utilize physics-based models that consider not only neighbor counts, but also local compositions and atomic arrangements.« less

  12. Representing genetic variation as continuous surfaces: An approach for identifying spatial dependency in landscape genetic studies

    Treesearch

    Melanie A. Murphy; Jeffrey S. Evans; Samuel A. Cushman; Andrew Storfer

    2008-01-01

    Landscape genetics, an emerging field integrating landscape ecology and population genetics, has great potential to influence our understanding of habitat connectivity and distribution of organisms. Whereas typical population genetics studies summarize gene flow as pairwise measures between sampling localities, landscape characteristics that influence population...

  13. The potential for agricultural land use change to reduce flood risk in a large watershed

    USDA-ARS?s Scientific Manuscript database

    Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed-scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, ...

  14. Upstream vertical cavity surface-emitting lasers for fault monitoring and localization in WDM passive optical networks

    NASA Astrophysics Data System (ADS)

    Wong, Elaine; Zhao, Xiaoxue; Chang-Hasnain, Connie J.

    2008-04-01

    As wavelength division multiplexed passive optical networks (WDM-PONs) are expected to be first deployed to transport high capacity services to business customers, real-time knowledge of fiber/device faults and the location of such faults will be a necessity to guarantee reliability. Nonetheless, the added benefit of implementing fault monitoring capability should only incur minimal cost associated with upgrades to the network. In this work, we propose and experimentally demonstrate a fault monitoring and localization scheme based on a highly-sensitive and potentially low-cost monitor in conjunction with vertical cavity surface-emitting lasers (VCSELs). The VCSELs are used as upstream transmitters in the WDM-PON. The proposed scheme benefits from the high reflectivity of the top distributed Bragg reflector (DBR) mirror of optical injection-locked (OIL) VCSELs to reflect monitoring channels back to the central office for monitoring. Characterization of the fault monitor demonstrates high sensitivity, low bandwidth requirements, and potentially low output power. The added advantage of the proposed fault monitoring scheme incurs only a 0.5 dB penalty on the upstream transmissions on the existing infrastructure.

  15. Pitting corrosion of titanium. Interim report, June-December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casillas, N.; Charlebois, S.J.; Smyrl, W.H.

    1994-01-20

    The breakdown of native and anodically-grown oxide films on Ti electrodes is investigated by scanning electrochemical microscopy (SECM), video microscopy, transmission electron microscopy and voltammetry. SECM is used to demonstrate that the oxidation of Br- on Ti occurs at microscopic surface sites (10 - 50 micrometer diameter, 30 sites/sq cm) that are randomly positioned across the oxide surface. After determining the position of the active sites for Br- oxidation, breakdown of the oxide is initiated by increasing the electrode potential to more positive values. Direct correspondence is observed between the location of the electroactive sites and corrosion pits, indicating thatmore » oxide breakdown is associated with a localized site of high electrical conductivity. The potential at which pitting is observed in voltammetric experiments is found to be proportional to the average oxide thickness, for values ranging between 20 and 100 A, indicating that breakdown is determined either by the magnitude of the electric field within the oxide or by the interfacial potential at the oxide/Br- solution interface. Pitting occurs at significantly lower potentials in Br- solutions than in C 1- solutions, suggesting a strong chemical interaction between the TiO2 surface and Br-. A mechanism of oxide breakdown is proposed that is based on the potential-dependent chemical dissolution of the oxide at microscopic surface sites.« less

  16. The potential of silk and silk-like proteins as natural mucoadhesive biopolymers for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Brooks, Amanda

    2015-11-01

    Drug delivery across mucus membranes is a particularly effective route of administration due to the large surface area. However, the unique environment present at the mucosa necessitates altered drug formulations designed to (1) deliver sensitive biologic molecules, (2) promote intimate contact between the mucosa and the drug, and (3) prolong the drug’s local residence time. Thus, the pharmaceutical industry has an interest in drug delivery systems formulated around the use of mucoadhesive polymers. Mucoadhesive polymers, both synthetic and biological, have a history of use in local drug delivery. Prominently featured in the literature are chitosan, alginate, and cellulose derivatives. More recently, silk and silk-like derivatives have been explored for their potential as mucoadhesive polymers. Both silkworms and spiders produce sticky silk-like glue substances, sericin and aggregate silk respectively, that may prove an effective, natural matrix for drug delivery to the mucosa. This mini review will explore the potential of silk and silk-like derivatives as a biocompatible mucoadhesive polymer matrix for local controlled drug delivery.

  17. Investigation of dust transport on the lunar surface in laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Wang, X.; Horanyi, M.; Robertson, S. H.

    2009-12-01

    There has been much evidence indicating dust levitation and transport on or near the lunar surface. Dust mobilization is likely to be caused by electrostatic forces acting on small lunar dust particles that are charged by UV radiation and solar wind plasma. To learn about the basic physical process, we investigated the dynamics of dust grains on a conducting surface in laboratory plasmas. The first experiment was conducted with a dust pile (JSC-Mars-1) sitting on a negatively biased surface in plasma. The dust pile spread and formed a diffusing dust ring. Dust hopping was confirmed by noticing grains on protruding surfaces. The electrostatic potential distributions measured above the dust pile show an outward pointing electrostatic force and a non-monotonic sheath above the dust pile, indicating a localized upward electrostatic force responsible for lifting dust off the surface. The second experiment was conducted with a dust pile sitting on an electrically floating conducting surface in plasma with an electron beam. Potential measurements show a horizontal electric field at the dust/surface boundary and an enhanced vertical electric field in the sheath above the dust pile when the electron beam current is set to be comparable to the Bohm ion current. Secondary electrons emitted from the surfaces play an important role in this case.

  18. Relaxation of Actinide Surfaces: An All Electron Study

    NASA Astrophysics Data System (ADS)

    Atta-Fynn, Raymond; Dholabhai, Pratik; Ray, Asok

    2006-10-01

    Fully relativistic full potential density functional calculations with a linearized augmented plane wave plus local orbitals basis (LAPW + lo) have been performed to investigate the relaxations of heavy actinide surfaces, namely the (111) surface of fcc δ-Pu and the (0001) surface of dhcp Am using WIEN2k. This code uses the LAPW + lo method with the unit cell divided into non-overlapping atom-centered spheres and an interstitial region. The APW+lo basis is used to describe all s, p, d, and f states and LAPW basis to describe all higher angular momentum states. Each surface was modeled by a three-layer periodic slab separated by 60 Bohr vacuum with four atoms per surface unit cell. In general, we have found a contraction of the interlayer separations for both Pu and Am. We will report, in detail, the electronic and geometric structures of the relaxed surfaces and comparisons with the respective non-relaxed surfaces.

  19. Technical note: Influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies

    NASA Astrophysics Data System (ADS)

    Li, Guo; Su, Hang; Kuhn, Uwe; Meusel, Hannah; Ammann, Markus; Shao, Min; Pöschl, Ulrich; Cheng, Yafang

    2018-02-01

    Coated-wall flow tube reactors are frequently used to investigate gas uptake and heterogeneous or multiphase reaction kinetics under laminar flow conditions. Coating surface roughness may potentially distort the laminar flow pattern, induce turbulence and introduce uncertainties in the calculated uptake coefficient based on molecular diffusion assumptions (e.g., Brown/Cooney-Kim-Davis (CKD)/Knopf-Pöschl-Shiraiwa (KPS) methods), which has not been fully resolved in earlier studies. Here, we investigate the influence of surface roughness and local turbulence on coated-wall flow tube experiments for gas uptake and kinetic studies. According to laminar boundary theory and considering the specific flow conditions in a coated-wall flow tube, we derive and propose a critical height δc to evaluate turbulence effects in the design and analysis of coated-wall flow tube experiments. If a geometric coating thickness δg is larger than δc, the roughness elements of the coating may cause local turbulence and result in overestimation of the real uptake coefficient (γ). We further develop modified CKD/KPS methods (i.e., CKD-LT/KPS-LT) to account for roughness-induced local turbulence effects. By combination of the original methods and their modified versions, the maximum error range of γCKD (derived with the CKD method) or γKPS (derived with the KPS method) can be quantified and finally γ can be constrained. When turbulence is generated, γCKD or γKPS can bear large difference compared to γ. Their difference becomes smaller for gas reactants with lower uptake (i.e., smaller γ) and/or for a smaller ratio of the geometric coating thickness to the flow tube radius (δg / R0). On the other hand, the critical height δc can also be adjusted by optimizing flow tube configurations and operating conditions (i.e., tube diameter, length, and flow velocity), to ensure not only unaffected laminar flow patterns but also other specific requirements for an individual flow tube experiment. We use coating thickness values from previous coated-wall flow tube studies to assess potential roughness effects using the δc criterion. In most studies, the coating thickness was sufficiently small to avoid complications, but some may have been influenced by surface roughness and local turbulence effects.

  20. Laser-driven localization of collective CO vibrations in metal-carbonyl complexes

    NASA Astrophysics Data System (ADS)

    Lisaj, Mateusz; Kühn, Oliver

    2014-11-01

    Using the example of a cobalt dicarbonyl complex it is shown that two perpendicular linearly polarized IR laser pulses can be used to trigger an excitation of the delocalized CO stretching modes, which corresponds to an alternating localization of the vibration within one CO bond. The switching time for localization in either of the two bonds is determined by the energy gap between the symmetric and asymmetric fundamental transition frequencies. The phase of the oscillation between the two local bond excitations can be tuned by the relative phase of the two pulses. The extend of control of bond localization is limited by the anharmonicity of the potential energy surfaces leading to wave packet dispersion. This prevents such a simple pulse scheme from being used for laser-driven bond breaking in the considered example.

  1. Proton-decoupled, Overhauser-enhanced, spatially localized carbon-13 spectroscopy in humans.

    PubMed

    Bottomley, P A; Hardy, C J; Roemer, P B; Mueller, O M

    1989-12-01

    Spatially localized, natural abundance, carbon (13C) NMR spectroscopy has been combined with proton (1H) decoupling and nuclear Overhauser enhancement to improve 13C sensitivity up to five-fold in the human leg, liver, and heart. Broadhand-decoupled 13C spectra were acquired in 1 s to 17 min with a conventional 1.5-T imaging/spectroscopy system, an auxiliary 1H decoupler, an air-cooled dual-coil coplanar surface probe, and both depth-resolved surface coil spectroscopy (DRESS) and one-dimensional phase-encoding gradient NMR pulse sequences. The surface coil probe comprised circular and figure-eight-shaped coils to eliminate problems with mutual coupling of coils at high decoupling power levels applied during 13C reception. Peak decoupler RF power deposition in tissue was computed numerically from electromagnetic theory assuming a semi-infinite plane of uniform biological conductor. Peak values at the surface were calculated at 4 to 6 W/kg in any gram of tissue for each watt of decoupler power input excluding all coil and cable losses, warning of potential local RF heating problems in these and related experiments. The average power deposition was about 9 mW/kg per watt input, which should present no systemic hazard. At 3 W input, human 13C spectra were decoupled to a depth of about 5 cm while some Overhauser enhancement was sustained up to about 3 cm depth, without ill effect. The observation of glycogen in localized natural abundance 13C spectra of heart and muscle suggests that metabolites in the citric acid cycle should be observable noninvasively using 13C-labeled substrates.

  2. Microelectrode Array Microscopy: Investigation of Dynamic Behavior of Localized Corrosion at Type 304 Stainless Steel Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedd E. Lister; Patrick J. Pinhero

    2005-03-01

    Scanning electrochemical microscopy (SECM) and a recently developed microelectrode array microscope have been used to study localized corrosion and electron-transfer characteristics of native oxide layers of type 304 stainless steels. The I-/I3- redox couple was employed as a mediator and allowed sensitive detection of oxide breakdown events. In solutions containing I-, a signal at the microelectrode was observed on type 304 stainless steel surfaces at active pitting corrosion sites. Under conditions where pitting corrosion occurs, SECM was used to track the temporal characteristics of the reaction in a spatial manner. However, because of the time required to create an image,more » much of the temporal information was not obtained. To improve the temporal resolution of the measurement, microelectrode array microscopy (MEAM) was developed as a parallel method of performing SECM. The demonstration shown reveals the potential of MEAM for analysis of surface chemistry on temporal and spatial domains.« less

  3. High-intensity focused ultrasound for potential treatment of polycystic ovary syndrome: toward a noninvasive surgery.

    PubMed

    Shehata, Islam A; Ballard, John R; Casper, Andrew J; Hennings, Leah J; Cressman, Erik; Ebbini, Emad S

    2014-02-01

    To investigate the feasibility of using high-intensity focused ultrasound (HIFU), under dual-mode ultrasound arrays (DMUAs) guidance, to induce localized thermal damage inside ovaries without damage to the ovarian surface. Laboratory feasibility study. University-based laboratory. Ex vivo canine and bovine ovaries. DMUA-guided HIFU. Detection of ovarian damage by ultrasound imaging, gross pathology, and histology. It is feasible to induce localized thermal damage inside ovaries without damage to the ovarian surface. DMUA provided sensitive imaging feedback regarding the anatomy of the treated ovaries and the ablation process. Different ablation protocols were tested, and thermal damage within the treated ovaries was histologically characterized. The absence of damage to the ovarian surface may eliminate many of the complications linked to current laparoscopic ovarian drilling (LOD) techniques. HIFU may be used as a less traumatic tool to perform LOD. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Anomalous Symmetries Of The Rovibrational Levels of HO2: Consequences Of A Conical Intersection

    NASA Technical Reports Server (NTRS)

    Barclay, V. J.; Dateo, C. E.; Hamilton, I. P.; Kendrick, B.; Pack, R. T.; Schwenke, D. W.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    We show that the geometric phase arising from a conical intersection of the lowest potential energy surfaces of HO2 causes its bending vibrational wavefunctions to be double valued, which allows them to be locally symmetric on one side of the intersection and locally antisymmetric on the other. The material of the proposed publication was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.

  5. DFT description of the magnetic properties and electron localization in dinuclear di-mu-oxo-bridged manganese complexes.

    PubMed

    Barone, Vincenzo; Bencini, Alessandro; Gatteschi, Dante; Totti, Federico

    2002-11-04

    Density functional theory (DFT) was applied to describe the magnetic and electron-transfer properties of dinuclear systems containing the [MnO2Mn]n+ core, with n=0,1,2,3,4. The calculation of the potential energy surfaces (PESs) of the mixed-valence species (n=1,3) allowed the classification of these systems according to the extent of valence localization as Class II compounds, in the Robin-Day classification scheme. The fundamental frequencies corresponding to the asymmetric breathing vibration were also computed.

  6. Carbon monoxide as a metabolic energy source for extremely halophilic microbes: implications for microbial activity in Mars regolith.

    PubMed

    King, Gary M

    2015-04-07

    Carbon monoxide occurs at relatively high concentrations (≥800 parts per million) in Mars' atmosphere, where it represents a potentially significant energy source that could fuel metabolism by a localized putative surface or near-surface microbiota. However, the plausibility of CO oxidation under conditions relevant for Mars in its past or at present has not been evaluated. Results from diverse terrestrial brines and saline soils provide the first documentation, to our knowledge, of active CO uptake at water potentials (-41 MPa to -117 MPa) that might occur in putative brines at recurrent slope lineae (RSL) on Mars. Results from two extremely halophilic isolates complement the field observations. Halorubrum str. BV1, isolated from the Bonneville Salt Flats, Utah (to our knowledge, the first documented extremely halophilic CO-oxidizing member of the Euryarchaeota), consumed CO in a salt-saturated medium with a water potential of -39.6 MPa; activity was reduced by only 28% relative to activity at its optimum water potential of -11 MPa. A proteobacterial isolate from hypersaline Mono Lake, California, Alkalilimnicola ehrlichii MLHE-1, also oxidized CO at low water potentials (-19 MPa), at temperatures within ranges reported for RSL, and under oxic, suboxic (0.2% oxygen), and anoxic conditions (oxygen-free with nitrate). MLHE-1 was unaffected by magnesium perchlorate or low atmospheric pressure (10 mbar). These results collectively establish the potential for microbial CO oxidation under conditions that might obtain at local scales (e.g., RSL) on contemporary Mars and at larger spatial scales earlier in Mars' history.

  7. Carbon monoxide as a metabolic energy source for extremely halophilic microbes: Implications for microbial activity in Mars regolith

    PubMed Central

    King, Gary M.

    2015-01-01

    Carbon monoxide occurs at relatively high concentrations (≥800 parts per million) in Mars’ atmosphere, where it represents a potentially significant energy source that could fuel metabolism by a localized putative surface or near-surface microbiota. However, the plausibility of CO oxidation under conditions relevant for Mars in its past or at present has not been evaluated. Results from diverse terrestrial brines and saline soils provide the first documentation, to our knowledge, of active CO uptake at water potentials (−41 MPa to −117 MPa) that might occur in putative brines at recurrent slope lineae (RSL) on Mars. Results from two extremely halophilic isolates complement the field observations. Halorubrum str. BV1, isolated from the Bonneville Salt Flats, Utah (to our knowledge, the first documented extremely halophilic CO-oxidizing member of the Euryarchaeota), consumed CO in a salt-saturated medium with a water potential of −39.6 MPa; activity was reduced by only 28% relative to activity at its optimum water potential of −11 MPa. A proteobacterial isolate from hypersaline Mono Lake, California, Alkalilimnicola ehrlichii MLHE-1, also oxidized CO at low water potentials (−19 MPa), at temperatures within ranges reported for RSL, and under oxic, suboxic (0.2% oxygen), and anoxic conditions (oxygen-free with nitrate). MLHE-1 was unaffected by magnesium perchlorate or low atmospheric pressure (10 mbar). These results collectively establish the potential for microbial CO oxidation under conditions that might obtain at local scales (e.g., RSL) on contemporary Mars and at larger spatial scales earlier in Mars’ history. PMID:25831529

  8. A high figure of merit localized surface plasmon sensor based on a gold nanograting on the top of a gold planar film

    NASA Astrophysics Data System (ADS)

    Zhang, Zu-Yin; Wang, Li-Na; Hu, Hai-Feng; Li, Kang-Wen; Ma, Xun-Peng; Song, Guo-Feng

    2013-10-01

    We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.

  9. Weak localization effect in topological insulator micro flakes grown on insulating ferrimagnet BaFe12O19

    PubMed Central

    Zheng, Guolin; Wang, Ning; Yang, Jiyong; Wang, Weike; Du, Haifeng; Ning, Wei; Yang, Zhaorong; Lu, Hai-Zhou; Zhang, Yuheng; Tian, Mingliang

    2016-01-01

    Many exotic physics anticipated in topological insulators require a gap to be opened for their topological surface states by breaking time reversal symmetry. The gap opening has been achieved by doping magnetic impurities, which however inevitably create extra carriers and disorder that undermine the electronic transport. In contrast, the proximity to a ferromagnetic/ferrimagnetic insulator may improve the device quality, thus promises a better way to open the gap while minimizing the side-effects. Here, we grow thin single-crystal Sb1.9Bi0.1Te3 micro flakes on insulating ferrimagnet BaFe12O19 by using the van der Waals epitaxy technique. The micro flakes show a negative magnetoresistance in weak perpendicular fields below 50 K, which can be quenched by increasing temperature. The signature implies the weak localization effect as its origin, which is absent in intrinsic topological insulators, unless a surface state gap is opened. The surface state gap is estimated to be 10 meV by using the theory of the gap-induced weak localization effect. These results indicate that the magnetic proximity effect may open the gap for the topological surface attached to BaM insulating ferrimagnet. This heterostructure may pave the way for the realization of new physical effects as well as the potential applications of spintronics devices. PMID:26891682

  10. KPFM/AFM imaging on TiO2(110) surface in O2 gas

    NASA Astrophysics Data System (ADS)

    Arima, Eiji; Wen, Huan Fei; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2018-03-01

    We have carried out high-speed imaging of the topography and local contact potential difference (LCPD) on rutile TiO2(110) in O2 gas by atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We succeeded in KPFM/AFM imaging with atomic resolution at 1 frame min-1 and observed the adsorbate on a hydroxylated TiO2(110) surface. The observed adsorbate is considered to be oxygen adatoms (Oa), hydroperoxyls (HO2), or terminal hydroxyls (OHt). After adsorption, changes in the topography and the LCPD of the adsorbate were observed. This phenomenon is thought to be caused by the charge transfer of the adsorbate. This technique has the potential to observe catalytic behavior with atomic resolution.

  11. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR.

    PubMed

    Voinov, Maxim A; Smirnov, Alex I

    2015-01-01

    Electrostatic interactions are known to play a major role in the myriad of biochemical and biophysical processes. Here, we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that are based on an observation of reversible protonation of nitroxides by electron paramagnetic resonance (EPR). Two types of probes are described: (1) methanethiosulfonate derivatives of protonatable nitroxides for highly specific covalent modification of the cysteine's sulfhydryl groups and (2) spin-labeled phospholipids with a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and degree of rotational averaging, thus, allowing the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, the local electrostatic potential to be determined. Due to their small molecular volume, these probes cause a minimal perturbation to the protein or lipid system. Covalent attachment secures the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR, and also the methods to analyze the EPR spectra by simulations are outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide range of ca. 2.5-7.0 pH units, making them suitable to study a broad range of biophysical phenomena, especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for probe calibration, and examples of lipid bilayer surface potential studies, are also described. © 2015 Elsevier Inc. All rights reserved.

  12. An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function.

    PubMed

    Zabezhinsky, Dmitry; Slobodin, Boris; Rapaport, Doron; Gerst, Jeffrey E

    2016-04-19

    Nuclear-encoded mRNAs encoding mitochondrial proteins (mMPs) can localize directly to the mitochondrial surface, yet how mMPs target mitochondria and whether RNA targeting contributes to protein import into mitochondria and cellular metabolism are unknown. Here, we show that the COPI vesicle coat complex is necessary for mMP localization to mitochondria and mitochondrial function. COPI inactivation leads to reduced mMP binding to COPI itself, resulting in the dissociation of mMPs from mitochondria, a reduction in mitochondrial membrane potential, a decrease in protein import in vivo and in vitro, and severe deficiencies in mitochondrial respiration. Using a model mMP (OXA1), we observed that COPI inactivation (or mutation of the potential COPI-interaction site) led to altered mRNA localization and impaired cellular respiration. Overall, COPI-mediated mMP targeting is critical for mitochondrial protein import and function, and transcript delivery to the mitochondria or endoplasmic reticulum is regulated by cis-acting RNA sequences and trans-acting proteins. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Weak competing interactions control assembly of strongly bonded TCNQ ionic acceptor molecules on silver surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Changwon; Rojas, Geoffrey A.; Jeon, Seokmin

    2014-09-19

    The energy scales of interactions that control molecular adsorption and assembly on surfaces can vary by several orders of magnitude, yet the importance of each contributing interaction is not apparent a priori. Tetracyanoquinodimethane (TCNQ) is an archetypal electron acceptor molecule and it is a key component of organic metals. On metal surfaces, this molecule also acts as an electron acceptor, producing negatively charged adsorbates. It is therefore rather intriguing to observe attractive molecular interactions in this system that were reported previously for copper and silver surfaces. In this paper, our experiments compared TCNQ adsorption on noble metal surfaces of Ag(100)more » and Ag(111). In both cases we found net attractive interactions down to the lowest coverage. However, the morphology of the assemblies was strikingly different, with two-dimensional islands on Ag(100) and one-dimensional chains on Ag(111) surfaces. This observation suggests that the registry effect governed by the molecular interaction with the underlying lattice potential is critical in determining the dimensionality of the molecular assembly. Using first-principles density functional calculations with a van der Waals correction scheme, we revealed that the strengths of major interactions (i.e., lattice potential corrugation, intermolecular attraction, and charge-transfer-induced repulsion) are all similar in energy. The van der Waals interactions, in particular, almost double the strength of attractive interactions, making the intermolecular potential comparable in strength to the diffusion potential and promoting self-assembly. However, it is the anisotropy of local intermolecular interactions that is primarily responsible for the difference in the topology of the molecular islands on Ag(100) and Ag(111) surfaces. Finally, we anticipate that the intermolecular potential will become more attractive and dominant over the diffusion potential with increasing molecular size, providing new design strategies for the structure and charge transfer within molecular layers.« less

  14. Study on acoustic-electric-heat effect of coal and rock failure processes under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Hui; Lou, Quan; Wang, En-Yuan; Liu, Shuai-Jie; Niu, Yue

    2018-02-01

    In recent years, coal and rock dynamic disasters are becoming more and more severe, which seriously threatens the safety of coal mining. It is necessary to carry out an depth study on the various geophysical precursor information in the process of coal and rock failure. In this paper, with the established acoustic-electric-heat multi-parameter experimental system of coal and rock, the acoustic emission (AE), surface potential and thermal infrared radiation (TIR) signals were tested and analyzed in the failure processes of coal and rock under the uniaxial compression. The results show that: (1) AE, surface potential and TIR have different response characteristics to the failure process of the sample. AE and surface potential signals have the obvious responses to the occurrence, extension and coalescence of cracks. The abnormal TIR signals occur at the peak and valley points of the TIR temperature curve, and are coincident with the abnormities of AE and surface potential to a certain extent. (2) The damage precursor points and the critical precursor points were defined to analyze the precursor characteristics reflected by AE, surface potential and TIR signals, and the different signals have the different precursor characteristics. (3) The increment of the maximum TIR temperature after the main rupture of the sample is significantly higher than that of the average TIR temperature. Compared with the maximum TIR temperature, the average TIR temperature has significant hysteresis in reaching the first peak value after the main rapture. (4) The TIR temperature contour plots at different times well show the evolution process of the surface temperature field of the sample, and indicate that the sample failure originates from the local destruction.

  15. Sparse reconstruction localization of multiple acoustic emissions in large diameter pipelines

    NASA Astrophysics Data System (ADS)

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-04-01

    A sparse reconstruction localization method is proposed, which is capable of localizing multiple acoustic emission events occurring closely in time. The events may be due to a number of sources, such as the growth of corrosion patches or cracks. Such acoustic emissions may yield localization failure if a triangulation method is used. The proposed method is implemented both theoretically and experimentally on large diameter thin-walled pipes. Experimental examples are presented, which demonstrate the failure of a triangulation method when multiple sources are present in this structure, while highlighting the capabilities of the proposed method. The examples are generated from experimental data of simulated acoustic emission events. The data corresponds to helical guided ultrasonic waves generated in a 3 m long large diameter pipe by pencil lead breaks on its outer surface. Acoustic emission waveforms are recorded by six sparsely distributed low-profile piezoelectric transducers instrumented on the outer surface of the pipe. The same array of transducers is used for both the proposed and the triangulation method. It is demonstrated that the proposed method is able to localize multiple events occurring closely in time. Furthermore, the matching pursuit algorithm and the basis pursuit densoising approach are each evaluated as potential numerical tools in the proposed sparse reconstruction method.

  16. Conformal surface plasmons propagating on ultrathin and flexible films

    PubMed Central

    Shen, Xiaopeng; Cui, Tie Jun; Martin-Cano, Diego; Garcia-Vidal, Francisco J.

    2013-01-01

    Surface plasmon polaritons (SPPs) are localized surface electromagnetic waves that propagate along the interface between a metal and a dielectric. Owing to their inherent subwavelength confinement, SPPs have a strong potential to become building blocks of a type of photonic circuitry built up on 2D metal surfaces; however, SPPs are difficult to control on curved surfaces conformably and flexibly to produce advanced functional devices. Here we propose the concept of conformal surface plasmons (CSPs), surface plasmon waves that can propagate on ultrathin and flexible films to long distances in a wide broadband range from microwave to mid-infrared frequencies. We present the experimental realization of these CSPs in the microwave regime on paper-like dielectric films with a thickness 600-fold smaller than the operating wavelength. The flexible paper-like films can be bent, folded, and even twisted to mold the flow of CSPs. PMID:23248311

  17. Quantum size effects on the (0001) surface of double hexagonal close packed americium

    NASA Astrophysics Data System (ADS)

    Gao, D.; Ray, A. K.

    2007-01-01

    Electronic structures of double hexagonal close-packed americium and the (0001) surface have been studied via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and antiferromagnetic configurations with and without spin orbit coupling. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of dhcp Am with the 5f electrons primarily localized. Our results show that both magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Our calculated equilibrium lattice constant and bulk modulus at the ground state are in good agreement with the experimental values respectively. The work function of dhcp Am (0001) 7-layer surface at the ground state is predicted to be 2.90 eV. The surface energy for dhcp Am (0001) semi-infinite surface energy at the ground state is predicted to be 0.84 J/m2. Quantum size effects are found to be more pronounced in work functions than in surface energies.

  18. A Gaussian Approximation Potential for Silicon

    NASA Astrophysics Data System (ADS)

    Bernstein, Noam; Bartók, Albert; Kermode, James; Csányi, Gábor

    We present an interatomic potential for silicon using the Gaussian Approximation Potential (GAP) approach, which uses the Gaussian process regression method to approximate the reference potential energy surface as a sum of atomic energies. Each atomic energy is approximated as a function of the local environment around the atom, which is described with the smooth overlap of atomic environments (SOAP) descriptor. The potential is fit to a database of energies, forces, and stresses calculated using density functional theory (DFT) on a wide range of configurations from zero and finite temperature simulations. These include crystalline phases, liquid, amorphous, and low coordination structures, and diamond-structure point defects, dislocations, surfaces, and cracks. We compare the results of the potential to DFT calculations, as well as to previously published models including Stillinger-Weber, Tersoff, modified embedded atom method (MEAM), and ReaxFF. We show that it is very accurate as compared to the DFT reference results for a wide range of properties, including low energy bulk phases, liquid structure, as well as point, line, and plane defects in the diamond structure.

  19. Indium nanowires at the silicon surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V.

    2016-07-15

    Conductive indium nanowires up to 50 nm in width and up to 10 μm in length are fabricated on the surface of silicon by local resputtering from the probe of an atomic-force microscope. The transfer of indium from the probe of the atomic-force microscope onto the silicon surface is initiated by applying a potential between the probe and the surface as they approach each other to spacings, at which the mutual repulsive force is ~10{sup –7} N. The conductivity of the nanowires ranges from 7 × 10{sup –3} to 4 × 10{sup –2} Ω cm, which is several orders ofmore » magnitude lower than that in the case of the alternative technique of heat transfer.« less

  20. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance.

    PubMed

    Zhang, Changlei; Huang, Cheng; Pu, Mingbo; Song, Jiakun; Zhao, Zeyu; Wu, Xiaoyu; Luo, Xiangang

    2017-07-18

    In this article, a dual-band wide-angle metamaterial perfect absorber is proposed to achieve absorption at the wavelength where laser radar operates. It is composed of gold ring array and a Helmholtz resonance cavity spaced by a Si dielectric layer. Numerical simulation results reveal that the designed absorber displays two absorption peaks at the target wavelength of 10.6 μm and 1.064 μm with the large frequency ratio and near-unity absorptivity under the normal incidence. The wide-angle absorbing property and the polarization-insensitive feature are also demonstrated. Localized surface plasmons resonance and Helmholtz resonance are introduced to analyze and interpret the absorbing mechanism. The designed perfect absorber can be developed for potential applications in infrared stealth field.

  1. Recognition of the epicardial breakthrough on body surface isopotential maps: influence of the inter-electrode distance on the patterns reflecting the epicardial breakthrough.

    PubMed

    Toyama, J; Tabata, O

    1981-10-01

    The epicardial breakthrough can be recognized from the localized depression of the body surface potential, which is characterized by a localized bend of the equipotential lines or a send-minimum on isopotential maps. Recognition of epicardial breakthrough with isopotential maps enables us to diagnose location of the block site of the bundle branch blocks more precisely than by ECG or VCG. However, the optimum inter-electrode distance for detection of such a localized potential has not been determined. In the present study, influence of the inter-electrode distance on the characteristic patterns reflecting the epicardial breakthrough was studied on 16 healthy persons using 9 x 9 electrode arrays with inter-electrode distance of 1.25 cm, 5 x 5 with 2.5 cm, and 3 x 3 with 5 cm. Breakthrough was recognized in 15 out of 16 cases (94%) on maps recorded with electrode arrays with inter-electrode distance of 1.25 and 2.5 cm. However, detectability of the breakthrough was reduced to 10 out of 16 cases (63%) with electrode array having inter-electrode distance of 5 cm. In conclusion, it is preferable to use an electrode array with an inter-electrode distance of no more than 2.5 cm for the purpose of breakthrough recognition.

  2. Generator localization by current source density (CSD): Implications of volume conduction and field closure at intracranial and scalp resolutions

    PubMed Central

    Tenke, Craig E.; Kayser, Jürgen

    2012-01-01

    The topographic ambiguity and reference-dependency that has plagued EEG/ERP research throughout its history are largely attributable to volume conduction, which may be concisely described by a vector form of Ohm’s Law. This biophysical relationship is common to popular algorithms that infer neuronal generators via inverse solutions. It may be further simplified as Poisson’s source equation, which identifies underlying current generators from estimates of the second spatial derivative of the field potential (Laplacian transformation). Intracranial current source density (CSD) studies have dissected the “cortical dipole” into intracortical sources and sinks, corresponding to physiologically-meaningful patterns of neuronal activity at a sublaminar resolution, much of which is locally cancelled (i.e., closed field). By virtue of the macroscopic scale of the scalp-recorded EEG, a surface Laplacian reflects the radial projections of these underlying currents, representing a unique, unambiguous measure of neuronal activity at scalp. Although the surface Laplacian requires minimal assumptions compared to complex, model-sensitive inverses, the resulting waveform topographies faithfully summarize and simplify essential constraints that must be placed on putative generators of a scalp potential topography, even if they arise from deep or partially-closed fields. CSD methods thereby provide a global empirical and biophysical context for generator localization, spanning scales from intracortical to scalp recordings. PMID:22796039

  3. Improvement of Ion/Ioff for h-BN encapsulated bilayer graphene by graphite local back gate electrode

    NASA Astrophysics Data System (ADS)

    Uwanno, Teerayut; Taniguchi, Takashi; Watanabe, Kenji; Nagashio, Kosuke

    The critical issue for bilayer graphene (BLG) devices is low Ion/Ioff even at the band gap of 0.3eV. Band gap in BLG can be formed by creating potential difference between the two layers of BLG. This can be done by applying external electric field perpendicularly to BLG to induce different carrier densities in the two layers. Due to such origin, the spatial uniformity of band gap in the channel is quite sensitive to charge inhomogeneity in BLG. In order to apply electric field of 3V/nm to open the maximum band gap of 0.3eV, high- k gate stack has been utilized so far. However, oxide dielectrics usually have large charge inhomogeneity causing in-plane potential fluctuation in BLG channel. Due to surface flatness and small charge inhomogeneity, h-BN has been used as dielectrics to achieve high quality graphene devices, however, Ion/Iofffor BLG/ h-BN heterostuctures has not been reported yet. In this study, we used graphite as local back gate electrode to BLG encapsulated with h-BN. This resulted in much higher Ion/Ioff, indicating the importance of screening of charge inhomogeneity from SiO2 substrate surface by local graphite back gate electrode. This research was partly supported by JSPS Core-to-Core Program, A. Advanced Research Networks.

  4. Wavelet-promoted sparsity for non-invasive reconstruction of electrical activity of the heart.

    PubMed

    Cluitmans, Matthijs; Karel, Joël; Bonizzi, Pietro; Volders, Paul; Westra, Ronald; Peeters, Ralf

    2018-05-12

    We investigated a novel sparsity-based regularization method in the wavelet domain of the inverse problem of electrocardiography that aims at preserving the spatiotemporal characteristics of heart-surface potentials. In three normal, anesthetized dogs, electrodes were implanted around the epicardium and body-surface electrodes were attached to the torso. Potential recordings were obtained simultaneously on the body surface and on the epicardium. A CT scan was used to digitize a homogeneous geometry which consisted of the body-surface electrodes and the epicardial surface. A novel multitask elastic-net-based method was introduced to regularize the ill-posed inverse problem. The method simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Performance was assessed in terms of quality of reconstructed epicardial potentials, estimated activation and recovery time, and estimated locations of pacing, and compared with performance of Tikhonov zeroth-order regularization. Results in the wavelet domain obtained higher sparsity than those in the time domain. Epicardial potentials were non-invasively reconstructed with higher accuracy than with Tikhonov zeroth-order regularization (p < 0.05), and recovery times were improved (p < 0.05). No significant improvement was found in terms of activation times and localization of origin of pacing. Next to improved estimation of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias, this novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions. Graphical Abstract The inverse problem of electrocardiography is to reconstruct heart-surface potentials from recorded bodysurface electrocardiograms (ECGs) and a torso-heart geometry. However, it is ill-posed and solving it requires additional constraints for regularization. We introduce a regularization method that simultaneously pursues a sparse wavelet representation in time-frequency and exploits correlations in space. Our approach reconstructs epicardial (heart-surface) potentials with higher accuracy than common methods. It also improves the reconstruction of recovery isochrones, which is important when assessing substrate for cardiac arrhythmias. This novel technique opens potentially powerful opportunities for clinical application, by allowing to choose wavelet bases that are optimized for specific clinical questions.

  5. A global index for mapping the exposure of water resources to wildfire

    Treesearch

    Francois-Nicolas Robinne; Carol Miller; Marc-Andre Parisien; Monica B. Emelko; Kevin D. Bladon; Uldis Silins; Mike Flannigan

    2016-01-01

    Wildfires are keystone components of natural disturbance regimes that maintain ecosystem structure and functions, such as the hydrological cycle, in many parts of the world. Consequently, critical surface freshwater resources can be exposed to post-fire effects disrupting their quantity, quality and regularity. Although well studied at the local scale, the potential...

  6. Remote sensing of potential lunar resources. I - Near-side compositional properties

    NASA Technical Reports Server (NTRS)

    Johnson, Jeffrey R.; Larson, Stephen M.; Singer, Robert B.

    1991-01-01

    Using telescopic CCD multispectral images of the lunar near side and the results of 330-870 nm spectroscopy of selected regions, the compositional differences relevant to the locations of potential lunar resources (such as ilmenite, FeTiO3, and solar-wind-implanted He-3 and H) are estimated. The 400/560 nm CCD ratio images were converted to weight percent TiO2, and the values were used to construct a new TiO2 abundance map which can be used to estimate the areas potentially rich in ilmenite. A 950/560 nm CCD ratio mosaic of the full moon provides estimates of relative surface maturity. Since high He-3 concentrations correlate with mature ilmenite-rich soils, a combination of relative surface maturity maps and the TiO2 abundance maps can be used to estimate distributions of He-3 (and possibly H) on local scales.

  7. Tomography of a Probe Potential Using Atomic Sensors on Graphene.

    PubMed

    Wyrick, Jonathan; Natterer, Fabian D; Zhao, Yue; Watanabe, Kenji; Taniguchi, Takashi; Cullen, William G; Zhitenev, Nikolai B; Stroscio, Joseph A

    2016-12-27

    Our ability to access and explore the quantum world has been greatly advanced by the power of atomic manipulation and local spectroscopy with scanning tunneling and atomic force microscopes, where the key technique is the use of atomically sharp probe tips to interact with an underlying substrate. Here we employ atomic manipulation to modify and quantify the interaction between the probe and the system under study that can strongly affect any measurement in low charge density systems, such as graphene. We transfer Co atoms from a graphene surface onto a probe tip to change and control the probe's physical structure, enabling us to modify the induced potential at a graphene surface. We utilize single Co atoms on a graphene field-effect device as atomic scale sensors to quantitatively map the modified potential exerted by the scanning probe over the whole relevant spatial and energy range.

  8. Close packing in curved space by simulated annealing

    NASA Astrophysics Data System (ADS)

    Wille, L. T.

    1987-12-01

    The problem of packing spheres of a maximum radius on the surface of a four-dimensional hypersphere is considered. It is shown how near-optimal solutions can be obtained by packing soft spheres, modelled as classical particles interacting under an inverse power potential, followed by a subsequent hardening of the interaction. In order to avoid trapping in high-lying local minima, the simulated annealing method is used to optimise the soft-sphere packing. Several improvements over other work (based on local optimisation of random initial configurations of hard spheres) have been found. The freezing behaviour of this system is discussed as a function of particle number, softness of the potential and cooling rate. Apart from their geometric interest, these results are useful in the study of topological frustration, metallic glasses and quasicrystals.

  9. Microscopic studies of the fate of charges in organic semiconductors: Scanning Kelvin probe measurements of charge trapping, transport, and electric fields in p- and n-type devices

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa Marion

    Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field noise in both methods is examined.

  10. Locally distributed ground deformation in an area of potential phreatic eruption, Midagahara volcano, Japan, detected by single-look-based InSAR time series analysis

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tomokazu

    2018-05-01

    Although it is difficult to monitor the spatial extent and temporal evolution of local and small-magnitude ground inflation, this information is vital to assess the potential for phreatic eruption. Herein, we demonstrate the detection of locally distributed ground deformation preceding the enhancement of geothermal activity in the Midagahara volcano, Japan, through the application of single-look-based interferometric synthetic aperture radar analysis. In the Jigoku-dani geothermal area, the ground deformation proceeded at a low speed of 4 cm/year at most with a spatial extent of 500 m in the east-west direction and 250 m in the north-south direction. The deformation can be recognized to progress from 2007, at the latest, to 2010, after which the geothermal activity increased, with the collapse of sulfur towers and the appearance of active fumaroles and boiling water on the ground surface. The most deformed area corresponds to the geothermal area with the highest activity observed on the ground surface. Assuming a sill opening model, the deformation source is estimated to be located at a depth of 50 m from the surface with a speed of 7 cm/year at most, which is consistent with the depth of the highly conductive medium inferred from magnetotelluric analyses. This may suggest that volcanic fluid and/or heat was injected into the fluid-rich medium from depth and caused the ground inflation. Our results demonstrate that high-spatial-resolution deformation data can be an effective tool to monitor subsurface pressure conditions with pinpoint spatial accuracy during the build-up to phreatic eruptions.

  11. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  12. The biogeophysical effects of extreme afforestation in modeling future climate

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Yan, Xiaodong; Wang, Zhaomin

    2014-11-01

    Afforestation has been deployed as a mitigation strategy for global warming due to its substantial carbon sequestration, which is partly counterbalanced with its biogeophysical effects through modifying the fluxes of energy, water, and momentum at the land surface. To assess the potential biophysical effects of afforestation, a set of extreme experiments in an Earth system model of intermediate complexity, the McGill Paleoclimate Model-2 (MPM-2), is designed. Model results show that latitudinal afforestation not only has a local warming effect but also induces global and remote warming over regions beyond the forcing originating areas. Precipitation increases in the northern hemisphere and decreases in southern hemisphere in response to afforestation. The local surface warming over the forcing originating areas in northern hemisphere is driven by decreases in surface albedo and increases in precipitation. The remote surface warming in southern hemisphere is induced by decreases in surface albedo and precipitation. The results suggest that the potential impact of afforestation on regional and global climate depended critically on the location of the forest expansion. That is, afforestation in 0°-15°N leaves a relatively minor impact on global and regional temperature; afforestation in 45°-60°N results in a significant global warming, while afforestation in 30°-45°N results in a prominent regional warming. In addition, the afforestation leads to a decrease in annual mean meridional oceanic heat transport with a maximum decrease in forest expansion of 30°-45°N. These results can help to compare afforestation effects and find areas where afforestation mitigates climate change most effectively combined with its carbon drawdown effects.

  13. Development and use of culture systems to modulate specific cell responses

    NASA Astrophysics Data System (ADS)

    Martin, Yves

    Culture surfaces that induce specific localized cell responses are required to achieve tissue-like cell growth in three-dimensional (3D) environments, as well as to develop more efficient cell-based diagnostic techniques, noticeably when working with fragile cells such as stem cells or platelets. As such, Chapter 1 of this thesis work is devoted to the review of 3D cell-material interactions in vitro and the corresponding existing culture systems available to achieve in vivo-like cell responses. More adequate 3D culture systems will need to be developed to mimic several characteristics of in vivo environments, including lowered non-specific cell-material interactions and localized biochemical signaling. The experimental work in this thesis is based on the hypothesis that well-studied and optimized surface treatments will be able to lower non-specific cell-material interactions and allow local chemical modification in order to achieve specific localized cell-material interactions for different applications. As such, in Chapter 2 and Chapter 3 of this thesis, surface treatments were developed using plasma polymerization and covalent immobilization of a low-fouling polymer (i.e., poly(ethylene glycol)) and characterized and optimized using a large number of techniques including atomic force microscopy, quartz crystal microbalance, surface plasmon resonance, x-ray photoelectron spectroscopy and fluorescence-based techniques. The main plasma polymerization parameter important for surface chemical content, specifically nitrogen to carbon content, was identified as being glow discharge power, while reaction time and power determined plasma film thickness. Moreover, plasma films were shown to be stable in aqueous environments. Covalently-bound poly(ethylene glycol) (PEG) layers physicochemical and mechanical properties are dependent on fabrication methods. Polymer concentration in solution is an important indicator of final layer properties, and use of a theta solvent induces complex aggregation phenomena in solution yielding layers with widely different properties. Chemically available primary amine groups are also shown to be present, paving the way for the immobilization of bio-active molecules. An application of low-fouling locally modified surfaces is given in Chapter 4 by the development of a novel diagnostic surface to evaluate platelet activation which is until now very difficult as platelets are readily activated by in vitro manipulations. Significant results from volunteer donors indicate that this diagnostic instrument has the potential to allow the rapid estimation of platelet activation levels in whole blood.

  14. Adsorption and dissociation of molecular hydrogen on the (0001) surface of double hexagonal close packed americium

    NASA Astrophysics Data System (ADS)

    Dholabhai, P. P.; Ray, A. K.

    2009-01-01

    Hydrogen molecule adsorption on the (0001) surface of double hexagonal packed americium has been studied in detail within the framework of density functional theory using a full-potential all-electron linearized augmented plane wave plus local orbitals method (FP-L/APW+lo). Weak molecular hydrogen adsorptions were observed. Adsorption energies were optimized with respect to the distance of the adsorbates from the surface for three approach positions at three adsorption sites, namely t1 (one-fold top), b2 (two-fold bridge), and h3 (three-fold hollow) sites. Adsorption energies were computed at the scalar-relativistic level (no spin-orbit coupling NSOC) and at the fully relativistic level (with spin-orbit coupling SOC). The most stable configuration corresponds to a horizontal adsorption with the molecular approach being perpendicular to a lattice vector. The surface coverage is equivalent to one-fourth of a monolayer (ML), with the adsorption energies at the NSOC and SOC theoretical levels being 0.0997 eV and 0.1022 eV, respectively. The respective distance of the hydrogen molecule from the surface and hydrogen-hydrogen distance was found to be 2.645 Å and 0.789 Å, respectively. The work functions decreased and the net magnetic moments remained almost unchanged in all cases compared with the corresponding quantities of bare dhcp Am (0001) surface. The adsorbate-substrate interactions have been analyzed in detail using the partial charges inside the muffin-tin spheres, difference charge density distributions, and the local density of states. The effects of adsorption on the Am 5f electron localization-delocalization characteristics have been discussed. Reaction barrier for the dissociation of hydrogen molecule has been presented.

  15. Wheat germ agglutinin-conjugated chitosan-Ca-alginate microparticles for local colon delivery of 5-FU: development and in vitro characterization.

    PubMed

    Glavas Dodov, M; Calis, S; Crcarevska, M S; Geskovski, N; Petrovska, V; Goracinova, K

    2009-11-03

    The aim of this work was to prepare lectin-conjugated chitosan-Ca-alginate microparticles (MPs) loaded with acid-resistant particles of 5-fluorouracil (5-FU) for efficient local treatment of colon cancer. MPs were prepared by a novel one-step spray-drying technique and after wheat germ agglutinin (WGA) conjugation, they were characterized for size, swelling behavior, surface charge, entrapment efficiency and in vitro drug release. Prepared particles were spherical, with 6.73 microg/mg of WGA conjugated onto their surface. The size and zeta potential increased after conjugation, from 6.6 to 14.7 microm and from 9.6 to 15.3 mV, while drug encapsulation was 75.6 and 72.8%, respectively after conjugation. The swelling behavior of beads was mainly determined by properties of the cross-linked chitosan-alginate network. In vitro drug release studies carried out in simulated in vivo conditions with respect to pH, confirmed the potential of the particles to release the drug in a controlled manner. Also, the drug release was not significantly affected by WGA conjugation. The retention of biorecognitive activity of WGA after covalent coupling to MPs was confirmed by haemagglutination test. Functionalized MPs showed excessive mucoadhesiveness in vitro, due to the positive surface charge, pH-dependent swelling of the matrix and lectin-sugar recognition.

  16. Evolutionary Optimization of a Charge Transfer Ionic Potential Model for Ta/Ta-Oxide Heterointerfaces

    DOE PAGES

    Sasikumar, Kiran; Narayanan, Badri; Cherukara, Mathew; ...

    2017-03-19

    Heterostructures of tantalum and its oxide are of tremendous technological interest for a myriad of technological applications, including electronics, thermal management, catalysis and biochemistry. In particular, local oxygen stoichiometry variation in TaO x memristors comprising of thermodynamically stable metallic (Ta) and insulating oxide (Ta 2O 5) have been shown to result in fast switching on the subnanosecond timescale over a billion cycles. This rapid switching opens up the potential for advanced functional platforms such as stateful logic operations and neuromorphic computation. Despite its broad importance, an atomistic scale understanding of oxygen stoichiometry variation across Ta/TaO x heterointerfaces, such as duringmore » early stages of oxidation and oxide growth, is not well understood. This is mainly due to the lack of a unified interatomic potential model for tantalum oxides that can accurately describe metallic (Ta), ionic (TaO x) as well as mixed (Ta/TaO x interfaces) bonding environments simultaneously. To address this challenge, we introduce a Charge Transfer Ionic Potential (CTIP) model for Ta/Ta-oxide system by training against lattice parameters, cohesive energies, equations of state (EOS), elastic properties, and surface energies of the various experimentally observed Ta 2O 5 polymorphs (hexagonal, orthorhombic and monoclinic) obtained from density functional theory (DFT) calculations. The best CTIP parameters are determined by employing a global optimization scheme driven by genetic algorithms followed by local Simplex optimization. Our newly developed CTIP potential accurately predicts structure, thermodynamics, energetic ordering of polymorphs, as well as elastic and surface properties of both Ta and Ta 2O 5, in excellent agreement with DFT calculations and experiments. We employ our newly parameterized CTIP potential to investigate the early stages of oxidation and atomic scale mechanisms associated with oxide growth on Ta surface at various temperatures. Furthermore, the CTIP potential developed in this work is an invaluable tool to investigate atomic-scale mechanisms and transport phenomena underlying the response of Ta/TaO x interfaces to external stimuli (e.g, temperature, pressure, strain, electric field etc.), as well as other interesting dynamical phenomena including the physics of switching dynamics in TaO x based memristors and neuromorphic devices.« less

  17. Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation

    PubMed Central

    Mock, Jack J.; Hill, Ryan T.; Tsai, Yu-Ju; Chilkoti, Ashutosh; Smith, David R.

    2012-01-01

    The localized surface plasmon resonance (LSPR) spectrum associated with a gold nanoparticle (NP) coupled to a gold film exhibits extreme sensitivity to the nano-gap region where the fields are tightly localized. The LSPR of an ensemble of film-coupled NPs can be observed using an illumination scheme similar to that used to excite the surface plasmon resonance (SPR) of a thin metallic film; however, in the present system, the light is used to probe the highly sensitive distance-dependent LSPR of the gaps between NPs and film rather than the delocalized SPR of the film. We show that the SPR and LSPR spectral contributions can be readily distinguished, and we compare the sensitivities of both modes to displacements in the average gap between a collection of NPs and the gold film. The distance by which the NPs are suspended in solution above the gold film is fixed via a thin molecular spacer layer, and can be further modulated by subjecting the NPs to a quasistatic electric field. The observed LSPR spectral shifts triggered by the applied voltage can be correlated with Angstrom scale displacements of the NPs, suggesting the potential for chip-scale or flow-cell plasmonic nanoruler devices with extreme sensitivity. PMID:22429053

  18. Near-Surface Refractory Black Carbon Observations in the Atmosphere and Snow in the McMurdo Dry Valleys, Antarctica, and Potential Impacts of Foehn Winds

    NASA Astrophysics Data System (ADS)

    Khan, Alia L.; McMeeking, Gavin R.; Schwarz, Joshua P.; Xian, Peng; Welch, Kathleen A.; Berry Lyons, W.; McKnight, Diane M.

    2018-03-01

    Measurements of light-absorbing particles in the boundary layer of the high southern latitudes are scarce, particularly in the McMurdo Dry Valleys (MDV), Antarctica. During the 2013-2014 austral summer near-surface boundary layer refractory black carbon (rBC) aerosols were measured in air by a single-particle soot photometer (SP2) at multiple locations in the MDV. Near-continuous rBC atmospheric measurements were collected at Lake Hoare Camp (LH) over 2 months and for several hours at more remote locations away from established field camps. We investigated periods dominated by both upvalley and downvalley winds to explore the causes of differences in rBC concentrations and size distributions. Snow samples were also collected in a 1 m pit on a glacier near the camp. The range of concentrations rBC in snow was 0.3-1.2 ± 0.3 μg-rBC/L-H2O, and total organic carbon was 0.3-1.4 ± 0.3 mg/L. The rBC concentrations measured in this snow pit are not sufficient to reduce surface albedo; however, there is potential for accumulation of rBC on snow and ice surfaces at low elevation throughout the MDV, which were not measured as part of this study. At LH, the average background rBC mass aerosol concentrations were 1.3 ng/m3. rBC aerosol mass concentrations were slightly lower, 0.09-1.3 ng/m3, at the most remote sites in the MDV. Concentration spikes as high as 200 ng/m3 were observed at LH, associated with local activities. During a foehn wind event, the average rBC mass concentration increased to 30-50 ng/m3. Here we show that the rBC increase could be due to resuspension of locally produced BC from generators, rocket toilets, and helicopters, which may remain on the soil surface until redistributed during high wind events. Quantification of local production and long-range atmospheric transport of rBC to the MDV is necessary for understanding the impacts of this species on regional climate.

  19. Potential toxicity of nonregulated asbestiform minerals: balangeroite from the western Alps. Part 2: Oxidant activity of the fibers.

    PubMed

    Turci, Francesco; Tomatis, Maura; Gazzano, Elena; Riganti, Chiara; Martra, Gianmario; Bosia, Amalia; Ghigo, Dario; Fubini, Bice

    2005-01-08

    The asbestiform mineral balangeroite [(Mg,Fe2+,Fe3+,Mn2+)42Si16O54(OH)36], whose toxic potential is unknown, is associated with chrysotile asbestos in the western Alps (Balangero mine, Piedmont, Italy). In order to examine whether such fibers may contribute to the oxidative damage produced by local asbestos dusts when inhaled, balangeroite was studied by means of both cell-free and cellular tests, comparing the results with those concerning the most pathogenic asbestos form, crocidolite. Similarly to the crocidolite surface, iron was mobilized from balangeroite by chelators, to a different extent: deferoxamine > ascorbic acid > ferrozine. Poorly coordinated surface ions, as evaluated from the adsorption of NO as a probe molecule (by both calorimetry and infrared spectroscopy), are even more abundant on balangeroite than on crocidolite. The spin trapping technique shows that surface iron-derived Fenton activity (HO* from H2O2) is similar for the two fiber types, while a pretreatment in ascorbic acid, by reducing previously oxidized surface iron, activates the potential to cleave a C-H bond (yielding *CO2- from formate anion). Balangeroite, like crocidolite, produces nitrite accumulation, lipid peroxidation, and NO synthase activation in a human lung epithelial cell line (A549). All these findings, regarded as features related to the toxic potential of asbestos, suggest that balangeroite may be a potentially hazardous fiber per se and could be partly responsible for lung diseases reported in epidemiological studies in exposed miners.

  20. Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity

    PubMed Central

    Richner, Thomas J.; Thongpang, Sanitta; Brodnick, Sarah K.; Schendel, Amelia A.; Falk, Ryan W.; Krugner-Higby, Lisa A.; Pashaie, Ramin; Williams, Justin C.

    2014-01-01

    Objective Spatial localization of neural activity from within the brain with electrocorticography (ECoG) and electroencephalography (EEG) remains a challenge in clinical and research settings, and while microfabricated ECoG (micro-ECoG) array technology continues to improve, complimentary methods to simultaneously modulate cortical activity while recording are needed. Approach We developed a neural interface utilizing optogenetics, cranial windowing, and micro-ECoG arrays fabricated on a transparent polymer. This approach enabled us to directly modulate neural activity at known locations around micro-ECoG arrays in mice expressing Channelrhodopsin-2 (ChR2). We applied photostimuli varying in time, space and frequency to the cortical surface, and we targeted multiple depths within the cortex using an optical fiber while recording micro-ECoG signals. Main Results Negative potentials of up to 1.5 mV were evoked by photostimuli applied to the entire cortical window, while focally applied photostimuli evoked spatially localized micro-ECoG potentials. Two simultaneously applied focal stimuli could be separated, depending on the distance between them. Photostimuli applied within the cortex with an optical fiber evoked more complex micro-ECoG potentials with multiple positive and negative peaks whose relative amplitudes depended on the depth of the fiber. Significance Optogenetic ECoG has potential applications in the study of epilepsy, cortical dynamics, and neuroprostheses. PMID:24445482

  1. The role of microbial flora on the ocular surface.

    PubMed

    Miller, Darlene; Iovieno, Alfonso

    2009-10-01

    Presence and interplay of microbial flora at the ocular surface reveal dynamic and evolving interactions with implications for both ocular surface health and disease. Data in this area are scarce or non-existent. The purpose of this review is to provide a snapshot of new and emerging developments in this area over the last 12 months. Recent findings signal potential roles for ocular surface microbial flora in both the preservation and extension of ocular surface health and in the initiation of new or escalation of common surface disorders. Contributions range from priming surface epithelial immune cells to regulating mucin composition and production. Other findings explore the emergent role of ocular microbial flora cross talk with pattern recognition receptors to protect and strengthen local and adaptive mucosal immunity while preserving vision. Deciphering the functional role of microbial communities at the ocular surface could bring new insights into and clarify the epidemiology and pathology of ocular surface dynamics in health and disease.

  2. Sub-diffraction Imaging via Surface Plasmon Decompression

    DTIC Science & Technology

    2014-06-08

    of the local wavelength of a surface plasmon polariton supported by two adjoining curved metal surfaces. The views, opinions and/or findings...adiabatic decompression of the local wavelength of a surface plasmon polariton supported by two adjoining curved metal surfaces. Conference Name...diffraction imaging based on a process of adiabatic decompression of the local wavelength of a surface plasmon polariton supported by two adjoining curved

  3. The local pathology of interstitial edema: surface tension increases hydration potential in heat-damaged skin.

    PubMed

    McGee, Maria P; Morykwas, Michael J; Argenta, Louis C

    2011-01-01

    The local pathogenesis of interstitial edema in burns is incompletely understood. This ex vivo study investigates the forces mediating water-transfer in and out of heat-denatured interstitial matrix. Experimentally, full-thickness dermal samples are heated progressively to disrupt glycosaminoglycans, kill cells, and denature collagen under conditions that prevent water loss/gain; subsequently, a battery of complementary techniques including among others, high-resolution magnetic resonance imaging, equilibrium vapor pressure and osmotic stress are used to compare water-potential parameters of nonheated and heated dermis. The hydration potential (HP) determined by osmotic stress is a measure of the total water-potential defined empirically as the pressure at which no net water influx/efflux into/from the dermis is detected. Results show that after heat denaturation, the HP, the intensity of T2-weighed magnetic resonance images, and the vapor pressure increase indicating higher water activity and necessarily, smaller contributions from colloidosmotic forces to fluid influx in burned relative to healthy dermis. Concomitant increases in HP and in water activity implicate local changes in interfacial and metabolic energy as the source of excess fluid-transfer potential. These ex vivo findings also show that these additional forces contributing to abnormal fluid-transfer in burned skin develop independently of inflammatory and systemic hydrodynamic responses. © 2011 by the Wound Healing Society.

  4. Solar Wind Access to Lunar Polar Craters: Feedback Between Surface Charging and Plasma Expansion

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Jackson, T. L.

    2011-01-01

    Determining the plasma environment within permanently shadowed lunar craters is critical to understanding local processes such as surface charging, electrostatic dust transport, volatile sequestration, and space weathering. In order to investigate the nature of this plasma environment, the first two-dimensional kinetic simulations of solar wind expansion into a lunar crater with a self-consistent plasma-surface interaction have been undertaken. The present results reveal how the plasma expansion into a crater couples with the electrically-charged lunar surface to produce a quasi-steady wake structure. In particular, there is a negative feedback between surface charging and ambipolar wake potential that allows an equilibrium to be achieved, with secondary electron emission strongly moderating the process. A range of secondary electron yields is explored, and two distinct limits are highlighted in which either surface charging or ambipoiar expansion is responsible for determining the overall wake structure.

  5. Surface electrical properties of stainless steel fibres: An AFM-based study

    NASA Astrophysics Data System (ADS)

    Yin, Jun; D'Haese, Cécile; Nysten, Bernard

    2015-03-01

    Atomic force microscopy (AFM) electrical modes were used to study the surface electrical properties of stainless steel fibres. The surface electrical conductivity was studied by current sensing AFM and I-V spectroscopy. Kelvin probe force microscopy was used to measure the surface contact potential. The oxide film, known as passivation layer, covering the fibre surface gives rise to the observation of an apparently semiconducting behaviour. The passivation layer generally exhibits a p-type semiconducting behaviour, which is attributed to the predominant formation of chromium oxide on the surface of the stainless steel fibres. At the nanoscale, different behaviours are observed from points to points, which may be attributed to local variations of the chemical composition and/or thickness of the passivation layer. I-V curves are well fitted with an electron tunnelling model, indicating that electron tunnelling may be the predominant mechanism for electron transport.

  6. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR

    PubMed Central

    Voinov, Maxim A.; Smirnov, Alex I.

    2016-01-01

    Electrostatic interactions are known to play one of the major roles in the myriad of biochemical and biophysical processes. In this Chapter we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that is based on an observation of reversible protonation of nitroxides by EPR. Two types of the electrostatic probes are discussed. The first one includes methanethiosulfonate derivatives of protonatable nitroxides that could be used for highly specific covalent modification of the cysteine’s sulfhydryl groups. Such spin labels are very similar in magnetic parameters and chemical properties to conventional MTSL making them suitable for studying local electrostatic properties of protein-lipid interfaces. The second type of EPR probes is designed as spin-labeled phospholipids having a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and a degree of rotational averaging, thus, allowing one to determine the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, determining the local electrostatic potential. Due to their small molecular volume these probes cause a minimal perturbation to the protein or lipid system while covalent attachment secure the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR and also the methods to analyze the EPR spectra by least-squares simulations are also outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide pH range from ca. 2.5 to 7.0 pH units making them suitable to study a broad range of biophysical phenomena especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for calibrating such probes and example of studying surface potential of lipid bilayer is also described. PMID:26477252

  7. Lateral ventricle morphology analysis via mean latitude axis.

    PubMed

    Paniagua, Beatriz; Lyall, Amanda; Berger, Jean-Baptiste; Vachet, Clement; Hamer, Robert M; Woolson, Sandra; Lin, Weili; Gilmore, John; Styner, Martin

    2013-03-29

    Statistical shape analysis has emerged as an insightful method for evaluating brain structures in neuroimaging studies, however most shape frameworks are surface based and thus directly depend on the quality of surface alignment. In contrast, medial descriptions employ thickness information as alignment-independent shape metric. We propose a joint framework that computes local medial thickness information via a mean latitude axis from the well-known spherical harmonic (SPHARM-PDM) shape framework. In this work, we applied SPHARM derived medial representations to the morphological analysis of lateral ventricles in neonates. Mild ventriculomegaly (MVM) subjects are compared to healthy controls to highlight the potential of the methodology. Lateral ventricles were obtained from MRI scans of neonates (9-144 days of age) from 30 MVM subjects as well as age- and sex-matched normal controls (60 total). SPHARM-PDM shape analysis was extended to compute a mean latitude axis directly from the spherical parameterization. Local thickness and area was straightforwardly determined. MVM and healthy controls were compared using local MANOVA and compared with the traditional SPHARM-PDM analysis. Both surface and mean latitude axis findings differentiate successfully MVM and healthy lateral ventricle morphology. Lateral ventricles in MVM neonates show enlarged shapes in tail and head. Mean latitude axis is able to find significant differences all along the lateral ventricle shape, demonstrating that local thickness analysis provides significant insight over traditional SPHARM-PDM. This study is the first to precisely quantify 3D lateral ventricle morphology in MVM neonates using shape analysis.

  8. Plasmodium vivax Tryptophan Rich Antigen PvTRAg36.6 Interacts with PvETRAMP and PvTRAg56.6 Interacts with PvMSP7 during Erythrocytic Stages of the Parasite

    PubMed Central

    Tyagi, Kriti; Hossain, Mohammad Enayet; Thakur, Vandana; Aggarwal, Praveen; Malhotra, Pawan; Mohmmed, Asif; Sharma, Yagya Dutta

    2016-01-01

    Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to ‘Pv-fam-a’ family and some of them are potential drug/vaccine targets but their functional role(s) largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP) of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM) development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7) and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle. PMID:26954579

  9. GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands

    PubMed Central

    Marino, Michael; Banerjee, Manidipa; Jonquières, Renaud; Cossart, Pascale; Ghosh, Partho

    2002-01-01

    InlB, a surface-localized protein of Listeria monocytogenes, induces phagocytosis in non-phagocytic mammalian cells by activating Met, a receptor tyrosine kinase. InlB also binds glycosaminoglycans and the protein gC1q-R, two additional host ligands implicated in invasion. We present the structure of InlB, revealing a highly elongated molecule with leucine-rich repeats that bind Met at one end, and GW domains that dissociably bind the bacterial surface at the other. Surprisingly, the GW domains are seen to resemble SH3 domains. Despite this, GW domains are unlikely to act as functional mimics of SH3 domains since their potential proline-binding sites are blocked or destroyed. However, we do show that the GW domains, in addition to binding glycosaminoglycans, bind gC1q-R specifically, and that this binding requires release of InlB from the bacterial surface. Dissociable attachment to the bacterial surface via the GW domains may be responsible for restricting Met activation to a small, localized area of the host cell and for coupling InlB-induced host membrane dynamics with bacterial proximity during invasion. PMID:12411480

  10. Stereoplotting Hominid Brain Endocasts : Some Preliminary Results

    NASA Astrophysics Data System (ADS)

    Holloway, Ralph L.

    1980-07-01

    To objectively and quantitatively demonstrate regional differences in brain endocast morphology, traditional anthropometric caliper measurements must be replaced by a system providing not only localness, but homology and reasonable freedom from allometric distortion. Stereoplotting the radial distances from endocast surface (the closest point to the once underlying brain cortex) to a homologous center every ten degrees provides some 300+ data points for each dorsal endocast surface, thus giving the requisite localness. These measurements provide a large matrix of data suitable for a number of multivariate statistical techniques, and the translation of such data and analyses to readily visualized maps, which can then be compared in relation to both taxonomic and functional knowledge about the cerebral surface. This paper descri-bes some preliminary results from using such methods on a sample of 64 undistorted endocasts composed of both pongids and fossil hominids. While sample sizes within taxonomic groups need to be augmented, the preliminary and tentative pilot studies conducted so far suggest that the method has excellent potential, and that two major areas of the brain endocast surface show the greatest shape changes : 1) the posterior association areas (inferior parietal lobule); 2) the anterior prefrontal areas.

  11. Investigation of transient melting of tungsten by ELMs in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Krieger, K.; Sieglin, B.; Balden, M.; Coenen, J. W.; Göths, B.; Laggner, F.; de Marne, P.; Matthews, G. F.; Nille, D.; Rohde, V.; Dejarnac, R.; Faitsch, M.; Giannone, L.; Herrmann, A.; Horacek, J.; Komm, M.; Pitts, R. A.; Ratynskaia, S.; Thoren, E.; Tolias, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team

    2017-12-01

    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in the tokamak experiment ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the Divertor Manipulator II system. The exposed sample was designed with an elevated sloped surface inclined against the incident magnetic field to increase the projected parallel power flux to a level were transient melting by ELMs would occur. Sample exposure was controlled by moving the outer strike point to the sample location. As extension to previous melt studies in the new experiment both the current flow from the sample to vessel potential and the local surface temperature were measured with sufficient time resolution to resolve individual ELMs. The experiment provided for the first time a direct link of current flow and surface temperature during transient ELM events. This allows to further constrain the MEMOS melt motion code predictions and to improve the validation of its underlying model assumptions. Post exposure ex situ analysis of the retrieved samples confirms the decreased melt motion observed at shallower magnetic field line to surface angles compared to that at leading edges exposed to the parallel power flux.

  12. Spatial and temporal connections in groundwater contribution to evaporation

    NASA Astrophysics Data System (ADS)

    Lam, A.; Karssenberg, D.; van den Hurk, B. J. J. M.; Bierkens, M. F. P.

    2011-08-01

    In climate models, lateral terrestrial water fluxes are usually neglected. We estimated the contribution of vertical and lateral groundwater fluxes to the land surface water budget at a subcontinental scale, by modeling convergence of groundwater and surfacewater fluxes. We present a hydrological model of the entire Danube Basin at 5 km resolution, and use it to show the importance of groundwater for the surface climate. Results show that the contribution of groundwater to evaporation is significant, and can locally be higher than 30 % in summer. We demonstrate through the same model that this contribution also has important temporal characteristics. A wet episode can influence groundwater contribution to summer evaporation for several years afterwards. This indicates that modeling groundwater flow has the potential to augment the multi-year memory of climate models. We also show that the groundwater contribution to evaporation is local by presenting the groundwater travel times and the magnitude of groundwater convergence. Throughout the Danube Basin the lateral fluxes of groundwater are negligible when modeling at this scale and resolution. This suggests that groundwater can be adequately added in land surface models by including a lower closed groundwater reservoir of sufficient size with two-way interaction with surface water and the overlying soil layers.

  13. Measurement of the surface charge accumulation using anodic aluminum oxide(AAO) structure in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Park, Ji-Hwan; Oh, Seung-Ju; Lee, Hyo-Chang; Kim, Yu-Sin; Kim, Young-Cheol; Kim, June Young; Ha, Chang-Seoung; Kwon, Soon-Ho; Lee, Jung-Joong; Chung, Chin-Wook

    2014-10-01

    As the critical dimension of the nano-device shrinks, an undesired etch profile occurs during plasma etch process. One of the reasons is the local electric field due to the surface charge accumulation. To demonstrate the surface charge accumulation, an anodic aluminum oxide (AAO) membrane which has high aspect ratio is used. The potential difference between top electrode and bottom electrode in an anodic aluminum oxide contact structure is measured during inductively coupled plasma exposure. The voltage difference is changed with external discharge conditions, such as gas pressure, input power, and gas species and the result is analyzed with the measured plasma parameters.

  14. Mechanical writing of n-type conductive layers on the SrTiO3 surface in nanoscale

    PubMed Central

    Wang, Yuhang; Zhao, Kehan; Shi, Xiaolan; Li, Geng; Xie, Guanlin; Lai, Xubo; Ni, Jun; Zhang, Liuwan

    2015-01-01

    The fabrication and control of the conductive surface and interface on insulating SrTiO3 bulk provide a pathway for oxide electronics. The controllable manipulation of local doping concentration in semiconductors is an important step for nano-electronics. Here we show that conductive patterns can be written on bare SrTiO3 surface by controllable doping in nanoscale using the mechanical interactions of atomic force microscopy tip without applying external electric field. The conductivity of the layer is n-type, oxygen sensitive, and can be effectively tuned by the gate voltage. Hence, our findings have potential applications in oxide nano-circuits and oxygen sensors. PMID:26042679

  15. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previousmore » spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.« less

  16. SNF Interim Storage Canister Corrosion and Surface Environment Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Enos, David G.

    2015-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In order for SCC to occur, three criteria must be met. A corrosive environment must be present on the canister surface, the metal must susceptible to SCC, and sufficient tensile stress to support SCC must be presentmore » through the entire thickness of the canister wall. SNL is currently evaluating the potential for each of these criteria to be met.« less

  17. Modeling of nanoscale liquid mixture transport by density functional hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dinariev, Oleg Yu.; Evseev, Nikolay V.

    2017-06-01

    Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum mechanics. This method has been developed by the authors over 20 years and used for modeling in various multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis, is presented to demonstrate modeling capabilities.

  18. Local surface curvature analysis based on reflection estimation

    NASA Astrophysics Data System (ADS)

    Lu, Qinglin; Laligant, Olivier; Fauvet, Eric; Zakharova, Anastasia

    2015-07-01

    In this paper, we propose a novel reflection based method to estimate the local orientation of a specular surface. For a calibrated scene with a fixed light band, the band is reflected by the surface to the image plane of a camera. Then the local geometry between the surface and reflected band is estimated. Firstly, in order to find the relationship relying the object position, the object surface orientation and the band reflection, we study the fundamental theory of the geometry between a specular mirror surface and a band source. Then we extend our approach to the spherical surface with arbitrary curvature. Experiments are conducted with mirror surface and spherical surface. Results show that our method is able to obtain the local surface orientation merely by measuring the displacement and the form of the reflection.

  19. Dynamic monitoring of compliant bodies impacting the water surface through local strain measurements

    NASA Astrophysics Data System (ADS)

    Panciroli, Riccardo; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano

    2016-04-01

    The understanding and the experimental characterization of the evolution of impulsive loading is crucial in several fields in structural, mechanical and ocean engineering, naval architecture and aerospace. In this regards, we developed an experimental methodology to reconstruct the deformed shape of compliant bodies subjected to impulsive loadings, as those encountered in water entry events, starting from a finite number of local strain measurements performed through Fiber Bragg Gratings. The paper discusses the potential applications of the proposed methodology for: i) real-time damage detection and structural health monitoring, ii) fatigue assessment and iii) impulsive load estimation.

  20. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head.

    PubMed

    Haueisen, J; Ramon, C; Eiselt, M; Brauer, H; Nowak, H

    1997-08-01

    Modeling in magnetoencephalography (MEG) and electroencephalography (EEG) requires knowledge of the in vivo tissue resistivities of the head. The aim of this paper is to examine the influence of tissue resistivity changes on the neuromagnetic field and the electric scalp potential. A high-resolution finite element method (FEM) model (452,162 elements, 2-mm resolution) of the human head with 13 different tissue types is employed for this purpose. Our main finding was that the magnetic fields are sensitive to changes in the tissue resistivity in the vicinity of the source. In comparison, the electric surface potentials are sensitive to changes in the tissue resistivity in the vicinity of the source and in the vicinity of the position of the electrodes. The magnitude (strength) of magnetic fields and electric surface potentials is strongly influenced by tissue resistivity changes, while the topography is not as strongly influenced. Therefore, an accurate modeling of magnetic field and electric potential strength requires accurate knowledge of tissue resistivities, while for source localization procedures this knowledge might not be a necessity.

  1. Live Imaging of Kv7.2/7.3 Cell Surface Dynamics at the Axon Initial Segment: High Steady-State Stability and Calpain-Dependent Excitotoxic Downregulation Revealed.

    PubMed

    Benned-Jensen, Tau; Christensen, Rasmus Kordt; Denti, Federico; Perrier, Jean-Francois; Rasmussen, Hanne Borger; Olesen, Søren-Peter

    2016-02-17

    The voltage-gated K(+) channels Kv7.2 and Kv7.3 are located at the axon initial segment (AIS) and exert strong control over action potential generation. Therefore, changes in their localization or cell surface numbers are likely to influence neuronal signaling. However, nothing is known about the cell surface dynamics of Kv7.2/7.3 at steady state or during short-term neuronal stimulation. This is primarily attributable to their membrane topology, which hampers extracellular epitope tagging. Here we circumvent this limitation by fusing an extra phluorin-tagged helix to the N terminus of human Kv7.3. This seven transmembrane chimera, named super ecliptic phluorin (SEP)-TAC-7.3, functions and traffics as a wild-type (WT) channel. We expressed SEP-TAC-7.3 in dissociated rat hippocampal neurons to examine the lateral mobility, surface numbers, and localization of AIS Kv7.2/7.3 heteromers using live imaging. We discovered that they are extraordinarily stable and exhibit a very low surface mobility both during steady state and neuronal stimulation. In the latter case, we also found that neither localization nor cell surface numbers were changed. However, at high glutamate loads, we observed a rapid irreversible endocytosis of Kv7.2/7.3, which required the activation of NR2B-containing NMDA receptors, Ca(2+) influx, and calpain activation. This excitotoxic mechanism may be specific to ankyrin G-bound AIS proteins because Nav1.2 channels, but not AIS GABAA receptors, were also endocytosed. In conclusion, we have, for the first time, characterized the cell surface dynamics of a full-length Kv7 channel using a novel chimeric strategy. This approach is likely also applicable to other Kv channels and thus of value for the additional characterization of this ion channel subfamily. The voltage-gated K(+) channels Kv7.2 and Kv7.3 exert strong control over action potential generation, but little is known about their cell surface dynamics. Using a novel phluorin-based approach, we here show that these channels are highly stable at steady state and different types of neuronal stimulation. However, at high glutamate loads, they undergo a rapid calpain-dependent endocytosis that likely represents an early response during excitotoxic states. Copyright © 2016 the authors 0270-6474/16/362261-06$15.00/0.

  2. Modulation of human extrastriate visual processing by selective attention to colours and words.

    PubMed

    Nobre, A C; Allison, T; McCarthy, G

    1998-07-01

    The present study investigated the effect of visual selective attention upon neural processing within functionally specialized regions of the human extrastriate visual cortex. Field potentials were recorded directly from the inferior surface of the temporal lobes in subjects with epilepsy. The experimental task required subjects to focus attention on words from one of two competing texts. Words were presented individually and foveally. Texts were interleaved randomly and were distinguishable on the basis of word colour. Focal field potentials were evoked by words in the posterior part of the fusiform gyrus. Selective attention strongly modulated long-latency potentials evoked by words. The attention effect co-localized with word-related potentials in the posterior fusiform gyrus, and was independent of stimulus colour. The results demonstrated that stimuli receive differential processing within specialized regions of the extrastriate cortex as a function of attention. The late onset of the attention effect and its co-localization with letter string-related potentials but not with colour-related potentials recorded from nearby regions of the fusiform gyrus suggest that the attention effect is due to top-down influences from downstream regions involved in word processing.

  3. Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Zaitchik, Benjamin F.; Rodell, Matthew

    2008-01-01

    Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.

  4. One-step nanoimprinted hybrid micro-/nano-structure for in situ protein detection of isolated cell array via localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ali, Riyaz Ahmad Mohamed; Villariza Espulgar, Wilfred; Aoki, Wataru; Jiang, Shu; Saito, Masato; Ueda, Mitsuyoshi; Tamiya, Eiichi

    2018-03-01

    Nanoplasmonic biosensors show high potentials as label-free devices for continuous monitoring in biomolecular analyses. However, most current sensors comprise multiple-dedicated layers with complicated fabrication procedures, which increases production time and manufacturing costs. In this work, we report the synergistic integration of cell-trapping microwell structures with plasmonic sensing nanopillar structures in a single-layered substrate by one-step thermal nanoimprinting. Here, microwell arrays are used for isolating cells, wherein gold-capped nanostructures sense changes in local refractive index via localized surface plasmon resonance (LSPR). Hence, proteins secreted from trapped cells can be label-freely detected as peak shifts in absorbance spectra. The fabricated device showed a detection limit of 10 ng/µL anti-IgA. In Pichia pastoris cells trial analysis, a red shift of 6.9 nm was observed over 12 h, which is likely due to the protein secretion from the cells. This approach provides an inexpensive, rapid, and reproducible alternative for mass production of biosensors for continuous biomolecular analyses.

  5. Local control on precipitation in a fully coupled climate-hydrology model.

    PubMed

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  6. Solutions to Kuessner's integral equation in unsteady flow using local basis functions

    NASA Technical Reports Server (NTRS)

    Fromme, J. A.; Halstead, D. W.

    1975-01-01

    The computational procedure and numerical results are presented for a new method to solve Kuessner's integral equation in the case of subsonic compressible flow about harmonically oscillating planar surfaces with controls. Kuessner's equation is a linear transformation from pressure to normalwash. The unknown pressure is expanded in terms of prescribed basis functions and the unknown basis function coefficients are determined in the usual manner by satisfying the given normalwash distribution either collocationally or in the complex least squares sense. The present method of solution differs from previous ones in that the basis functions are defined in a continuous fashion over a relatively small portion of the aerodynamic surface and are zero elsewhere. This method, termed the local basis function method, combines the smoothness and accuracy of distribution methods with the simplicity and versatility of panel methods. Predictions by the local basis function method for unsteady flow are shown to be in excellent agreement with other methods. Also, potential improvements to the present method and extensions to more general classes of solutions are discussed.

  7. Extracting valley-ridge lines from point-cloud-based 3D fingerprint models.

    PubMed

    Pang, Xufang; Song, Zhan; Xie, Wuyuan

    2013-01-01

    3D fingerprinting is an emerging technology with the distinct advantage of touchless operation. More important, 3D fingerprint models contain more biometric information than traditional 2D fingerprint images. However, current approaches to fingerprint feature detection usually must transform the 3D models to a 2D space through unwrapping or other methods, which might introduce distortions. A new approach directly extracts valley-ridge features from point-cloud-based 3D fingerprint models. It first applies the moving least-squares method to fit a local paraboloid surface and represent the local point cloud area. It then computes the local surface's curvatures and curvature tensors to facilitate detection of the potential valley and ridge points. The approach projects those points to the most likely valley-ridge lines, using statistical means such as covariance analysis and cross correlation. To finally extract the valley-ridge lines, it grows the polylines that approximate the projected feature points and removes the perturbations between the sampled points. Experiments with different 3D fingerprint models demonstrate this approach's feasibility and performance.

  8. Local control on precipitation in a fully coupled climate-hydrology model

    PubMed Central

    Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin; Butts, Michael B.; Refsgaard, Jens C.

    2016-01-01

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies. PMID:26960564

  9. An intelligent stand-alone ultrasonic device for monitoring local structural damage: implementation and preliminary experiments

    NASA Astrophysics Data System (ADS)

    Pertsch, Alexander; Kim, Jin-Yeon; Wang, Yang; Jacobs, Laurence J.

    2011-01-01

    Continuous structural health monitoring has the potential to significantly improve the safety management of aged, in-service civil structures. In particular, monitoring of local damage growth at hot-spot areas can help to prevent disastrous structural failures. Although ultrasonic nondestructive evaluation (NDE) has proved to be effective in monitoring local damage growth, conventional equipment and devices are usually bulky and only suitable for scheduled human inspections. The objective of this research is to harness the latest developments in embedded hardware and wireless communication for developing a stand-alone, compact ultrasonic device. The device is directed at the continuous structural health monitoring of civil structures. Relying on battery power, the device possesses the functionalities of high-speed actuation, sensing, signal processing, and wireless communication. Integrated with contact ultrasonic transducers, the device can generate 1 MHz Rayleigh surface waves in a steel specimen and measure response waves. An envelope detection algorithm based on the Hilbert transform is presented for efficiently determining the peak values of the response signals, from which small surface cracks are successfully identified.

  10. Modeling of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Whipple, E. C., Jr.

    1977-01-01

    Three types of modeling of spacecraft charging are discussed: statistical models, parametric models, and physical models. Local time dependence of circuit upset for DoD and communication satellites, and electron current to a sphere with an assumed Debye potential distribution are presented. Four regions were involved in spacecraft charging: (1) undisturbed plasma, (2) plasma sheath region, (3) spacecraft surface, and (4) spacecraft equivalent circuit.

  11. Shells, orbit bifurcations, and symmetry restorations in Fermi systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magner, A. G., E-mail: magner@kinr.kiev.ua; Koliesnik, M. V.; Arita, K.

    The periodic-orbit theory based on the improved stationary-phase method within the phase-space path integral approach is presented for the semiclassical description of the nuclear shell structure, concerning themain topics of the fruitful activity ofV.G. Soloviev. We apply this theory to study bifurcations and symmetry breaking phenomena in a radial power-law potential which is close to the realistic Woods–Saxon one up to about the Fermi energy. Using the realistic parametrization of nuclear shapes we explain the origin of the double-humped fission barrier and the asymmetry in the fission isomer shapes by the bifurcations of periodic orbits. The semiclassical origin of themore » oblate–prolate shape asymmetry and tetrahedral shapes is also suggested within the improved periodic-orbit approach. The enhancement of shell structures at some surface diffuseness and deformation parameters of such shapes are explained by existence of the simple local bifurcations and new non-local bridge-orbit bifurcations in integrable and partially integrable Fermi-systems. We obtained good agreement between the semiclassical and quantum shell-structure components of the level density and energy for several surface diffuseness and deformation parameters of the potentials, including their symmetry breaking and bifurcation values.« less

  12. Medical geochemistry research in Spissko-Gemerské rudohorie Mts., Slovakia.

    PubMed

    Rapant, S; Cvecková, V; Dietzová, Z; Khun, M; Letkovicová, M

    2009-02-01

    This study presents an assessment of the potential impact of geological contamination of the environment on the health of the population in Spissko-Gemerské rudohorie Mts. (SGR Mts.). The concentration levels of potentially toxic elements (mainly As, Cd, Cu, Hg, Pb, Sb, and Zn) were determined in soils, groundwater, surface water, and stream sediments as well as in the food chain (locally grown vegetables). A medical study included some 30 health indicators for all 98 municipalities of the study area. The As and Sb contents in human fluids and tissues were analyzed in one municipality identified to be at the highest risk. Based on element content, environmental and health risks were calculated for respective municipalities. Out of 98 municipalities 14 were characterized with extremely high environmental risk and 10 were characterized with very high carcinogenic risk from arsenic (groundwater). Extensive statistical analysis of geochemical data (element contents in soils, groundwater, surface water, and stream sediments) and health indicators was performed. Significant correlations between element contents in the geological environment and health indicators, mainly cancer and cardiovascular diseases, were identified. Biological monitoring has confirmed the transfer of elements from the geological environment to human fluids and tissues as well as to the local food chain.

  13. Correlation between optical properties surface morphology of porous silicon electrodeposited by Fe3+ ion

    NASA Astrophysics Data System (ADS)

    Mabrouk, Asma; Lorrain, N.; Haji, M. L.; Oueslati, Meherzi

    2015-01-01

    In this paper, we analyze the photoluminescence spectra (PL) of porous silicon (PS) layer which is elaborated by electrochemical etching and passivated by Fe3+ ions (PSF) via current density, electro-deposition and temperature measurements. We observe unusual surface morphology of PSF surface and anomalous emission behavior. The PSF surface shows regular distribution of cracks, leaving isolated regions or ;platelets; of nearly uniform thickness. These cracks become more pronounced for high current densities. The temperature dependence of the PL peak energy (EPL) presents anomalous behaviors, i.e., the PL peak energy shows a successive red/blue/redshift (S-shaped behavior) with increasing temperature that we attribute to the existence of strong potential fluctuations induced by the electrochemical etching of PS layers. A competition process between localized and delocalized excitons is used to discuss these PL properties. In this case, the potential confinement plays a key role on the enhancement of PL intensity in PSF. To explain the temperature dependence of the PL intensity, we have proposed a recombination model based on the tunneling and dissociation of excitons.

  14. Groundwater recharge to the Gulf Coast aquifer system in Montgomery and Adjacent Counties, Texas

    USGS Publications Warehouse

    Oden, Timothy D.; Delin, Geoffrey N.

    2013-01-01

    Simply stated, groundwater recharge is the addition of water to the groundwater system. Most of the water that is potentially available for recharging the groundwater system in Montgomery and adjacent counties in southeast Texas moves relatively rapidly from land surface to surface-water bodies and sustains streamflow, lake levels, and wetlands. Recharge in southeast Texas is generally balanced by evapotranspiration, discharge to surface waters, and the downward movement of water into deeper parts of the groundwater system; however, this balance can be altered locally by groundwater withdrawals, impervious surfaces, land use, precipitation variability, or climate, resulting in increased or decreased rates of recharge. Recharge rates were compared to the 1971–2000 normal annual precipitation measured Cooperative Weather Station 411956, Conroe, Tex.

  15. A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect

    NASA Astrophysics Data System (ADS)

    Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai

    2016-06-01

    In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.

  16. Adsorption and Dissociation of Molecular Oxygen on the (0001) Surface of Double Hexagonal Close Packed Americium

    NASA Astrophysics Data System (ADS)

    Dholabhai, Pratik; Atta-Fynn, Raymond; Ray, Asok

    2008-03-01

    Oxygen molecule adsorption on (0001) surface of double hexagonal packed americium has been studied in detail within the framework of density functional theory using a full-potential all-electron linearized augmented plane wave plus local orbitals method. The most stable configuration corresponded to molecular dissociation with the oxygen atoms occupying neighboring three-fold hollow h3 sites. Chemisorption energies and adsorption geometries for the adsorbed species, and change in work functions, magnetic moments, partial charges inside muffin-tins, difference charge density distributions and density of states for the bare Am slab and the Am slab after adsorption of the oxygen molecule will be discussed. The effects of chemisorption on Am 5f electron localization-delocalization in the vicinity of the Fermi level and the reaction barrier calculation for the dissociation of oxygen molecule to the most stable h3 sites will be discussed.

  17. A Density Functional Study of Atomic Hydrogen and Oxygen Chemisorptions on the (0001) Surface of Double Hexagonal Close Packed Americium

    NASA Astrophysics Data System (ADS)

    Dholabhai, Pratik; Atta-Fynn, Raymond; Ray, Asok

    2008-03-01

    Ab initio total energy calculations within the framework of density functional theory have been performed for atomic hydrogen and oxygen chemisorptions on the (0001) surface of double hexagonal packed americium using a full-potential all-electron linearized augmented plane wave plus local orbitals (FLAPW+lo) method. The three-fold hollow hcp site was found to be the most stable site for H adsorption, while the two-fold bridge adsorption site was found to be the most stable site for O adsorption. Chemisorption energies and adsorption geometries for different adsorption sites will be discussed. The change in work functions, magnetic moments, partial charges inside muffin-tins, difference charge density distributions and density of states for the bare Am slab and the Am slab after adsorption of the adatom will be discussed. The implications of chemisorption on Am 5f electron localization-delocalization will also be discussed.

  18. Localized surface plasmon resonance properties of Ag nanorod arrays on graphene-coated Au substrate

    NASA Astrophysics Data System (ADS)

    Mu, Haiwei; Lv, Jingwei; Liu, Chao; Sun, Tao; Chu, Paul K.; Zhang, Jingping

    2017-11-01

    Localized surface plasmon resonance (LSPR) on silver nanorod (SNR) arrays deposited on a graphene-coated Au substrate is investigated by the discrete dipole approximation (DDA) method. The resonance peaks in the extinction spectra of the SNR/graphene/Au structure show significantly different profiles as SNR height, and refractive index of the surrounding medium are varied gradually. Numerical simulation reveals that the shifts in the resonance peaks arise from hybridization of multiple plasmon modes as a result of coupling between the SNR arrays and graphene-coated Au substrate. Moreover, the LSPR modes blue-shifts from 800 nm to 700 nm when the thickness of the graphene layer in the metal nanoparticle (NP) - graphene hybrid nanostructure increases from 1 nm to 5 nm, which attribute to charge transfer between the graphene layer and SNR arrays. The results provide insights into metal NP-graphene hybrid nanostructures which have potential applications in plasmonics.

  19. Potential scattering on a spherical surface

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Ho, Tin-Lun

    2018-06-01

    The advances in cold atom experiments have allowed construction of confining traps in the form of curved surfaces. This opens up the possibility of studying quantum gases in curved manifolds. On closed surfaces, many fundamental processes are affected by the local and global properties, i.e. the curvature and the topology of the surface. In this paper, we study the problem of potential scattering on a spherical surface and discuss its difference with that on a 2D plane. For bound states with angular momentum m, their energies (E m ) on a sphere are related to those on a 2D plane (-| {E}m,o| ) as {E}m=-| {E}m,o| +{E}R≤ft[\\tfrac{{m}2-1}{3}+O≤ft(\\tfrac{{r}o2}{{R}2}\\right)\\right], where {E}R={{{\\hslash }}}2/(2{{MR}}2), and R is the radius of the sphere. Due to the finite extent of the manifold, the phase shifts on a sphere at energies E∼ {E}R differ significantly from those on a 2D plane. As energy E approaches zero, the phase shift in the planar case approaches 0, whereas in the spherical case it reaches a constant that connects the microscopic length scale to the largest length scale R.

  20. Lunar Prospector: a Preliminary Surface Remote Sensing Resource Assessment for the Moon

    NASA Technical Reports Server (NTRS)

    Mardon, A. A.

    1992-01-01

    The potential existence of lunar volatiles is a scientific discovery that could distinctly change the direction of pathways of inner solar system human expansion. With a dedicated germanium gamma ray spectrometer launched in the early 1990's, surface water concentrations of 0.7 percent could be detected immediately upon full lunar polar orbit operations. The expense of lunar base construction and operation would be dramatically reduced over a scenario with no lunar volatile resources. Global surface mineral distribution could be mapped out and integrated into a GIS database for lunar base site selection. Extensive surface lunar mapping would also result in the utilization of archived Apollo images. A variety of remote sensing systems and their parameters have been proposed for use in the detection of these lunar ice masses. The detection or nondetection of subsurface and surface ice masses in lunar polar crater floors could dramatically direct the development pathways that the human race might follow in its radiation from the Earth to habitable locales in the inner terran solar system. Potential sources of lunar volatiles are described. The use of remote sensing to detect lunar volatiles is addressed.

  1. Numerical modelling of the Luna-Glob lander electric charging on the lunar surface with SPIS-DUST

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. A.; Hess, S. L. G.; Zakharov, A. V.; Cipriani, F.; Seran, E.; Popel, S. I.; Lisin, E. A.; Petrov, O. F.; Dolnikov, G. G.; Lyash, A. N.; Kopnin, S. I.

    2018-07-01

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. The upper insulating regolith layer is electrically charged by the solar ultraviolet radiation and the flow of solar wind particles. Resulted electric charge and thus surface potential depend on the lunar local time, latitude and the electrical properties of the regolith. Understanding of mechanisms of the dust electric charging, dust levitation and electric charging of a lander on the lunar surface is essential for interpretation of measurements of the instruments of the Luna-Glob lander payload, e.g. the Dust Impact sensor and the Langmuir Probe. One of the tools, which allows simulating the electric charging of the regolith and lander and also the transport and deposition of the dust particles on the lander surface, is the recently developed Spacecraft Plasma Interaction Software toolkit, called the SPIS-DUST. This paper describes the SPIS-DUST numerical simulation of the interaction between the solar wind plasma, ultraviolet radiation, regolith and a lander and presents as result qualitative and quantitative data of charging the surfaces, plasma sheath and its influence on spacecraft sensors, dust dynamics. The model takes into account the geometry of the Luna-Glob lander, the electric properties of materials used on the lander surface, as well as Luna-Glob landing place. Initial conditions are chosen using current theoretical models of formation of dusty plasma exosphere and levitating charged dust particles. Simulation for the three cases (local lunar noon, evening and sunset) showed us the surrounding plasma sheath around the spacecraft which gives a significant potential bias in the spacecraft vicinity. This bias influences on the spacecraft sensors but with SPIS software we can estimate the potential of uninfluenced plasma with the data from the plasma sensors (Langmuir probes). SPIS-DUST modification allows us to get the dust dynamics properties. For our three cases we've obtained the dust densities around the spacecraft and near the surface of the Moon. As another practical result of this work we can count a suggestion of improving of dusty plasma instrument for the next mission: it must be valuable to relocate the plasma sensors to a distant boom at some distance from the spacecraft.

  2. Atmospheric sensitivity to land surface changes: comparing the impact of albedo, roughness, and evaporative resistance on near-surface air temperature using an idealized land model.

    NASA Astrophysics Data System (ADS)

    Lague, M. M.; Swann, A. L. S.; Bonan, G. B.

    2017-12-01

    Past studies have demonstrated how changes in vegetation can impact the atmosphere; however, it is often difficult to identify the exact physical pathway through which vegetation changes drive an atmospheric response. Surface properties (such as vegetation color, or height) control surface energy fluxes, which feed back on the atmosphere on both local and global scales by modifying temperatures, cloud cover, and energy gradients. Understanding how land surface properties influence energy fluxes is crucial for improving our understanding of how vegetation change - past, present, and future - impacts the atmosphere, global climate, and people. We explore the sensitivity of the atmosphere to perturbations of three land surface properties - albedo, roughness, and evaporative resistance - using an idealized land model coupled to an Earth System Model. We derive a relationship telling us how large a change in each surface property is required to drive a local 0.1 K change in 2m air temperature. Using this idealized framework, we are able to separate the influence on the atmosphere of each individual surface property. We demonstrate that the impact of each surface property on the atmosphere is spatially variable - that is, a similar change in vegetation can have different climate impacts if made in different locations. This analysis not only improves our understanding of how the land system can influence climate, but also provides us with a set of theoretical limits on the potential climate impact of arbitrary vegetation change (natural or anthropogenic).

  3. Potential effects of surface coal mining on the hydrology of the Corral Creek area, Hanging Woman Creek coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1984-01-01

    The Corral Creek area of the Hanging Woman Creek coal field, 9 miles east of the Decker coal mines near the Tongue River, contains large reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and to study assess potential impacts of surface coal mining on local water resources. Hydrogeologic data collected indicate that aquifers are coal and sandstone beds within the Tongue River Member of the Fort Union Formation (Paleocene age) and sand and gravel in valley alluvium (Pleistocene and Holocene age). Surface-water resources are limited to a few spring-fed stock ponds in the higher parts of the area and the intermittent flow of Corral Creek near the mouth. Most of the stock ponds in the area become dry by midsummer. Mining of the Anderson coal bed would remove three stock wells and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Corral Creek and South Fork would be removed. Although mining would alter the existing hydrologic systems and remove several shallow wells, alternative ground-water supplies are available that could be developed to replace those lost by mining. (USGS)

  4. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses

    PubMed Central

    Montanuy, Imma; Alejo, Ali; Alcami, Antonio

    2011-01-01

    Eradication of smallpox was accomplished 30 yr ago, but poxviral infections still represent a public health concern due to the potential release of variola virus or the emergence of zoonotic poxviruses, such as monkeypox virus. A critical determinant of poxvirus virulence is the inhibition of interferons (IFNs) by the virus-encoded type I IFN-binding protein (IFNα/βBP). This immunomodulatory protein is secreted and has the unique property of interacting with the cell surface in order to prevent IFN-mediated antiviral responses. However, the mechanism of its attachment to the cell surface remains unknown. Using surface plasmon resonance and cell-binding assays, we report that the IFNα/βBP from vaccinia virus, the smallpox vaccine, interacts with cell surface glycosaminoglycans (GAGs). Analysis of the contribution of different regions of the protein to cell surface binding demonstrated that clusters of basic residues in the first immunoglobulin domain mediate GAG interactions. Furthermore, mutation of the GAG-interaction motifs does not affect its IFN-binding and -blocking capacity. Functional conservation of GAG-binding sites is demonstrated for the IFNα/βBP from variola and monkeypox viruses, extending our understanding of immune modulation by the most virulent human poxviruses. These results are relevant for the design of improved vaccines and intervention strategies.—Montanuy, I., Alejo, A., Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. PMID:21372110

  5. Reappraisal of the sequence boundary in time and space: Case and considerations for an SU (subaerial unconformity) that is not a sediment bypass surface, a time barrier, or an unconformity

    NASA Astrophysics Data System (ADS)

    Holbrook, John M.; Bhattacharya, Janok P.

    2012-07-01

    The sequence-bounding unconformity bears the key defining traits of being "a surface separating younger from older strata, along which there is evidence of subaerial erosional truncation … or subaerial exposure, with a significant hiatus indicated (Van Wagoner et al., 1988)." This subaerial component of sequence boundaries (subaerial unconformity—SU) is also broadly considered to form as a topographic surface of sediment bypass, carved during relative sea level fall and buried by backfilling during relative sea level rise. Accordingly, the SU is commonly presumed to record an approximate time barrier, which separates older from younger strata along its full length. In this paper we show that regional composite scour (RCS) surfaces that are traditionally mapped as an integral component of the SU were never a single subaerial topographic surface characterized by sediment bypass, are not unconformities, do not record an effective time barrier, and form diachronously at the channel-belt scale over the entire fall to rise of a base-level cycle. These RCS surfaces, and by inference the SU surfaces they comprise, thus do not fully fit key defining characteristics embodied in the conceptual sequence boundary. Flume observations and field data show that the RCS is buried by fluvial sediment simultaneously as it is scoured. Accordingly, the RCS is perennially covered with stored sediment during formation, is only exposed as a subaerial topographic surface at the local place and time where it is undergoing active growth, and forms over the duration of local marine drainage during a relative sea-level cycle. This "cut-and-cover" model differs greatly from more established "bypass" models, which assume that the RCS was roughly sediment free and subaerially exposed for long durations of incision during regression and thus preserves a significant depositional hiatus upon later burial. Instead, the RCS may commonly and locally record a hiatus more typical of a facies-bounding diastem without a lacuna significantly greater than that of surfaces within the strata it binds. Fragments of fluvial strata may commonly and sporadically be preserved above the RCS that are older than underlying marine units overrun by this surface. Consequently, the RCS is not an effective time barrier. Lateral planation by migrating and avulsing channels as the RCS expands laterally after nucleation can place younger fluvial strata over much older units, which means that this surface is also composite and highly diachronous laterally at the scale of channel belts. The cut-and-cover model has additional implications not captured by the bypass model. First, significant sediments may be stored within fluvial strata above the RCS during regression that are not available for contemporary falling stage and lowstand marine shorelines. This can result in marine sediment starvation, particularly of the sand fraction, and in extreme cases can result in sand autodetachment and an absence of regressive marine reservoir sandstones. Second, cutting of the RCS co-generates a suprafluvial surface above the covering fluvial strata during regression that may be used as a mappable proxy for the conceptual maximum regressive surface (MRS). The MRS may be raised above this surface locally by low-accommodation aggradation during lowstand normal regression, but in either case preserves an approximate time line where not reworked during later transgression. Third, valley development across the RCS does not exclusively form by landward knickpoint growth, and may include complexly formed and potentially cross-cutting buffer valleys. SU valley incision can be divided into four modes, which include denudation, structural, buttress, and buffer valley components, which may work together locally and tend to have variable importance along the shore-to-hinterland profile. Although the RCS is not a good rock proxy for the conceptual sequence boundary it remains a very mappable surface which may separate facies of potentially very different origin and reservoir quality. The RCS is also inseparable from the SU and typically the only terrestrial erosional surface of extent in most short-duration sequences. Its nullification as a sequence boundary would mean abandonment of depositional sequence stratigraphy as a correlation and interpretive tool within these sections. An alternative to abandonment of the SU as a sequence boundary is to loosen the definition of a sequence boundary to 'a discrete surface of erosional truncation carved landward of contemporary shorelines that is traceable beyond the scale of a single valley or comparable local system, and its correlative surfaces of conformity and/or non-deposition', and continue its use as before.

  6. Sampling the energy landscape of Pt13 with metadynamics

    NASA Astrophysics Data System (ADS)

    Pavan, Luca; Di Paola, Cono; Baletto, Francesca

    2013-02-01

    The potential energy surface of a metallic nanoparticle formed by 13 atoms of platinum is efficiently explored using metadynamics in combination with empirical potential molecular dynamics. The scenario obtained is wider and more complex of what was previously reported: more than thirty independent energy basins are found, corresponding to different local minima of Pt. It is demonstrated that in almost all the cases these motifs are local minima even at ab-initio level, hence proving the effectiveness of the method to sample the energy landscape. A classification of the minima in structural families is proposed, and a discussion regarding the shape and the connections between energy basins is reported. ISSPIC 16 - 16th International Symposium on Small Particles and Inorganic Clusters, edited by Kristiaan Temst, Margriet J. Van Bael, Ewald Janssens, H.-G. Boyen and Françoise Remacle.

  7. Simulated annealing in orbital flight planning

    NASA Technical Reports Server (NTRS)

    Soller, Jeffrey

    1990-01-01

    Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment. The environment is unique because the space station will define the first true multivehicle environment in space. The optimization yields surfaces which are potentially complex, with multiple local minima. Because of the likelihood of these local minima, descent techniques are unable to offer robust solutions. Other deterministic optimization techniques were explored without success. The simulated annealing optimization is capable of identifying a minimum-fuel, two-burn trajectory subject to four constraints. Furthermore, the computational efforts involved in the optimization are such that missions could be planned on board the space station. Potential applications could include the on-site planning of rendezvous with a target craft of the emergency rescue of an astronaut. Future research will include multiwaypoint maneuvers, using a knowledge base to guide the optimization.

  8. Electric Double-Layer Structure in Primitive Model Electrolytes. Comparing Molecular Dynamics with Local-Density Approximations

    DOE PAGES

    Giera, Brian; Lawrence Livermore National Lab.; Henson, Neil; ...

    2015-02-27

    We evaluate the accuracy of local-density approximations (LDAs) using explicit molecular dynamics simulations of binary electrolytes comprised of equisized ions in an implicit solvent. The Bikerman LDA, which considers ions to occupy a lattice, poorly captures excluded volume interactions between primitive model ions. Instead, LDAs based on the Carnahan–Starling (CS) hard-sphere equation of state capture simulated values of ideal and excess chemical potential profiles extremely well, as is the relationship between surface charge density and electrostatic potential. Excellent agreement between the EDL capacitances predicted by CS-LDAs and computed in molecular simulations is found even in systems where ion correlations drivemore » strong density and free charge oscillations within the EDL, despite the inability of LDAs to capture the oscillations in the detailed EDL profiles.« less

  9. MOUNT EDDY AND CASTLE CRAGS ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Peterson, Jocelyn A.; Denton, David K.

    1984-01-01

    A mineral survey of the Mount Eddy and Castle Crags Roadless Areas, California, shows probable mineral-resource potential for chromite and gold on the basis of local occurrences of these minerals and favorable geologic environment within the roadless areas. There is also geochemical evidence for mineralization, but surface evidence is scant. Although asbestos and copper minerals are present in the areas and the geologic environment is favorable for nickel and platinum-group metals, no resource potential for these was identified. No energy resources were identified in the study of the roadless areas.

  10. Corrosion study of AA2024-T3 by scanning Kelvin probe force microscopy and in situ atomic force microscopy scratching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmutz, P.; Frankel, G.S.

    1998-07-01

    The localized corrosion of AA2024-T3, and the behavior of intermetallic particles in particular, were studied using different capabilities of the atomic force microscope (AFM). The role of intermetallic particles in determining the locations and rates of localized corrosion was determined using scanning Kelvin probe force microscopy in air after exposure to chloride solutions. Al-Cu-Mg particles, which have a noble Volta potential in air because of an altered surface film, are actively dissolved in chloride solution after a certain induction time. Al-Cu(Fe, Mn) particles are heterogeneous in nature and exhibit nonuniform dissolution in chloride solution as well as trenching of themore » matrix around the particles. Light scratching of the surface by rastering with the AFM tip in contact mode in chloride solution results in accelerated dissolution of both pure Al and alloy 2024-T3. The abrasion associated with contact AFM in situ resulted in the immediate dissolution of the Al-Cu-Mg particles because of a destabilization of the surface film.« less

  11. Surface drift prediction in the Adriatic Sea using hyper-ensemble statistics on atmospheric, ocean and wave models: Uncertainties and probability distribution areas

    USGS Publications Warehouse

    Rixen, M.; Ferreira-Coelho, E.; Signell, R.

    2008-01-01

    Despite numerous and regular improvements in underlying models, surface drift prediction in the ocean remains a challenging task because of our yet limited understanding of all processes involved. Hence, deterministic approaches to the problem are often limited by empirical assumptions on underlying physics. Multi-model hyper-ensemble forecasts, which exploit the power of an optimal local combination of available information including ocean, atmospheric and wave models, may show superior forecasting skills when compared to individual models because they allow for local correction and/or bias removal. In this work, we explore in greater detail the potential and limitations of the hyper-ensemble method in the Adriatic Sea, using a comprehensive surface drifter database. The performance of the hyper-ensembles and the individual models are discussed by analyzing associated uncertainties and probability distribution maps. Results suggest that the stochastic method may reduce position errors significantly for 12 to 72??h forecasts and hence compete with pure deterministic approaches. ?? 2007 NATO Undersea Research Centre (NURC).

  12. The way we view cellular (glyco)sphingolipids.

    PubMed

    Hoetzl, Sandra; Sprong, Hein; van Meer, Gerrit

    2007-11-01

    Mammalian cells synthesize ceramide in the endoplasmic reticulum (ER) and convert this to sphingomyelin and complex glycosphingolipids on the inner, non-cytosolic surface of Golgi cisternae. From there, these lipids travel towards the outer, non-cytosolic surface of the plasma membrane and all membranes of the endocytic system, where they are eventually degraded. At the basis of the selective, anterograde traffic out of the Golgi lies the propensity of the sphingolipids to self-aggregate with cholesterol into microdomains termed 'lipid rafts'. At the plasma membrane surface these rafts are thought to function as the scaffold for various types of (glyco) signaling domains of different protein and lipid composition that can co-exist on one and the same cell. In the past decade, various unexpected findings on the sites where sphingolipid-mediated events occur have thrown a new light on the localization and transport mechanisms of sphingolipids. These findings are largely based on biochemical experiments. Further progress in the field is hampered by a lack of morphological techniques to localize lipids with nanometer resolution. In the present paper, we critically evaluate the published data and discuss techniques and potential improvements.

  13. Determination of mean camber surfaces for wings having uniform chordwise loading and arbitrary spanwise loading in subsonic flow

    NASA Technical Reports Server (NTRS)

    Katzoff, S; Faison, M Frances; Dubose, Hugh C

    1954-01-01

    The field of a uniformly loaded wing in subsonic flow is discussed in terms of the acceleration potential. It is shown that, for the design of such wings, the slope of the mean camber surface at any point can be determined by a line integration around the wing boundary. By an additional line integration around the wing boundary, this method is extended to include the case where the local section lift coefficient varies with spanwise location (the chordwise loading at every section still remaining uniform). For the uniformly loaded wing of polygonal plan form, the integrations necessary to determine the local slope of the surface and the further integration of the slopes to determine the ordinate can be done analytically. An outline of these integrations and the resulting formulas are included. Calculated results are given for a sweptback wing with uniform chordwise loading and a highly tapered spanwise loading, a uniformly loaded delta wing, a uniformly loaded sweptback wing, and the same sweptback wing with uniform chordwise loading but elliptical span load distribution.

  14. Differential response of surface temperature and atmospheric temperature to the biogeophysical effects of deforestation

    NASA Astrophysics Data System (ADS)

    Winckler, J.; Reick, C. H.; Lejeune, Q.; Pongratz, J.

    2017-12-01

    Deforestation influences temperature locally by changing the water, energy and momentum balance. While most observation-based studies and some modeling studies focused on the effects on surface temperature, other studies focused on the effects on near-surface air temperature. However, these two variables may respond differently to deforestation because changes in albedo and surface roughness may alter the land-atmosphere coupling and thus the vertical temperature distribution. Thus it is unclear whether it is possible to compare studies that assess the impacts of deforestation on these two different variables. Here, we analyze the biogeophysical effects of global-scale deforestation in the climate model MPI-ESM separately for surface temperature, 2m-air temperature and temperature the lowest atmospheric model layer. We investigate why the response of these variables differs by isolating the effects of only changing surface albedo and only changing surface roughness and by separating effects that are induced at the location of deforestation (local effects) from effects that are induced by advection and changes in circulation (nonlocal effects). Concerning surface temperature, we find that the local effects of deforestation lead to a global mean warming which is overcompensated by the nonlocal effects (up to 0.1K local warming versus -0.3K nonlocal cooling). The surface warming in the local effects is largely driven by the change in surface roughness while the cooling in the nonlocal effects is largely driven by the change in surface albedo. The nonlocal effects are largely consistent across surface temperature, 2m-air temperature, and the temperature of the lowest atmospheric layer. However, the local effects strongly differ across the three considered variables. The local effects are strong for surface temperature, but substantially weaker in the 2m-air temperature and largely absent in the lowest atmospheric layer. We conclude that studies focusing on the deforestation effects on surface temperature should not be compared to studies focusing on the effects on air temperature. While the local effects on surface temperature are useful for model evaluation, they might be less relevant for local adaptation and mitigation than previously thought because they might largely be absent in the atmosphere.

  15. Computing the Free Energy Barriers for Less by Sampling with a Coarse Reference Potential while Retaining Accuracy of the Target Fine Model.

    PubMed

    Plotnikov, Nikolay V

    2014-08-12

    Proposed in this contribution is a protocol for calculating fine-physics (e.g., ab initio QM/MM) free-energy surfaces at a high level of accuracy locally (e.g., only at reactants and at the transition state for computing the activation barrier) from targeted fine-physics sampling and extensive exploratory coarse-physics sampling. The full free-energy surface is still computed but at a lower level of accuracy from coarse-physics sampling. The method is analytically derived in terms of the umbrella sampling and the free-energy perturbation methods which are combined with the thermodynamic cycle and the targeted sampling strategy of the paradynamics approach. The algorithm starts by computing low-accuracy fine-physics free-energy surfaces from the coarse-physics sampling in order to identify the reaction path and to select regions for targeted sampling. Thus, the algorithm does not rely on the coarse-physics minimum free-energy reaction path. Next, segments of high-accuracy free-energy surface are computed locally at selected regions from the targeted fine-physics sampling and are positioned relative to the coarse-physics free-energy shifts. The positioning is done by averaging the free-energy perturbations computed with multistep linear response approximation method. This method is analytically shown to provide results of the thermodynamic integration and the free-energy interpolation methods, while being extremely simple in implementation. Incorporating the metadynamics sampling to the algorithm is also briefly outlined. The application is demonstrated by calculating the B3LYP//6-31G*/MM free-energy barrier for an enzymatic reaction using a semiempirical PM6/MM reference potential. These modifications allow computing the activation free energies at a significantly reduced computational cost but at the same level of accuracy compared to computing full potential of mean force.

  16. Computing the Free Energy Barriers for Less by Sampling with a Coarse Reference Potential while Retaining Accuracy of the Target Fine Model

    PubMed Central

    2015-01-01

    Proposed in this contribution is a protocol for calculating fine-physics (e.g., ab initio QM/MM) free-energy surfaces at a high level of accuracy locally (e.g., only at reactants and at the transition state for computing the activation barrier) from targeted fine-physics sampling and extensive exploratory coarse-physics sampling. The full free-energy surface is still computed but at a lower level of accuracy from coarse-physics sampling. The method is analytically derived in terms of the umbrella sampling and the free-energy perturbation methods which are combined with the thermodynamic cycle and the targeted sampling strategy of the paradynamics approach. The algorithm starts by computing low-accuracy fine-physics free-energy surfaces from the coarse-physics sampling in order to identify the reaction path and to select regions for targeted sampling. Thus, the algorithm does not rely on the coarse-physics minimum free-energy reaction path. Next, segments of high-accuracy free-energy surface are computed locally at selected regions from the targeted fine-physics sampling and are positioned relative to the coarse-physics free-energy shifts. The positioning is done by averaging the free-energy perturbations computed with multistep linear response approximation method. This method is analytically shown to provide results of the thermodynamic integration and the free-energy interpolation methods, while being extremely simple in implementation. Incorporating the metadynamics sampling to the algorithm is also briefly outlined. The application is demonstrated by calculating the B3LYP//6-31G*/MM free-energy barrier for an enzymatic reaction using a semiempirical PM6/MM reference potential. These modifications allow computing the activation free energies at a significantly reduced computational cost but at the same level of accuracy compared to computing full potential of mean force. PMID:25136268

  17. Influence of the number of elongated fiducial markers on the localization accuracy of the prostate

    NASA Astrophysics Data System (ADS)

    de Boer, Johan; de Bois, Josien; van Herk, Marcel; Sonke, Jan-Jakob

    2012-10-01

    Implanting fiducial markers for localization purposes has become an accepted practice in radiotherapy for prostate cancer. While many correction strategies correct for translations only, advanced correction protocols also require knowledge of the rotation of the prostate. For this purpose, typically, three or more markers are implanted. Elongated fiducial markers provide more information about their orientation than traditional round or cylindrical markers. Potentially, fewer markers are required. In this study, we evaluate the effect of the number of elongated markers on the localization accuracy of the prostate. To quantify the localization error, we developed a model that estimates, at arbitrary locations in the prostate, the registration error caused by translational and rotational uncertainties of the marker registration. Every combination of one, two and three markers was analysed for a group of 24 patients. The average registration errors at the prostate surface were 0.3-0.8 mm and 0.4-1 mm for registrations on, respectively, three markers and two markers located on different sides of the prostate. Substantial registration errors (2.0-2.2 mm) occurred at the prostate surface contralateral to the markers when two markers were implanted on the same side of the prostate or only one marker was used. In conclusion, there is no benefit in using three elongated markers: two markers accurately localize the prostate if they are implanted at some distance from each other.

  18. Surface optical properties calculated from first principles: The influence of defects, self-energy and excitonic effects

    NASA Astrophysics Data System (ADS)

    Gero Schmidt, Wolf

    2002-03-01

    Optical spectroscopies are emerging as powerful tools to probe surfaces, since they allow for the real-time monitoring under challenging conditions as may be encountered, e.g., during material growth. However, their full potential can only be realised if it becomes possible to calculate surface optical spectra accurately and with true predictive power. Such calculations have been difficult, however, due to the large numerical expense involved. Based on a massively parallel, real-space multigrid implementation of DFT-LDA we have calculated reflectance anisotropy spectra for a wide range of group-IV materials and III-V compounds. Transitions between surface states give rise to specific, fingerprint-like spectral features. In addition, the anisotropic surface potential, the electric field at the surface of the sample and, to some extent, surface induced strain and relaxation may cause optical anisotropies in the layers underneath the surface. Surface defects have to be taken into account in order to explain some experimental results. Our DFT-LDA results explain very well the stoichiometric trends and qualitative features of the measured spectra. Quantitative agreement with the measured data is achieved by taking many-body effects into account. We include electronic self-energy corrections in the GW approximation using a model dielectric function to describe the screening. An efficient algorithm for solving the Bethe-Salpeter equation allows us to study the influence of electron-hole attraction and local-field effects on the surface optical properties.

  19. AdS5 solutions from M5-branes on Riemann surface and D6-branes sources

    DOE PAGES

    Bah, Ibrahima

    2015-09-24

    Here, we describe the gravity duals of four-dimensional N = 1 superconformal field theories obtained by wrapping M5-branes on a punctured Riemann surface. The internal geometry, normal to the AdS 5 factor, generically preserves two U(1)s, with generators (J +, J –), that are fibered over the Riemann surface. The metric is governed by a single potential that satisfies a version of the Monge-Ampère equation. The spectrum of N = 1 punctures is given by the set of supersymmetric sources of the potential that are localized on the Riemann surface and lead to regular metrics near a puncture. We usemore » this system to study a class of punctures where the geometry near the sources corresponds to M-theory description of D6-branes. These carry a natural (p, q) label associated to the circle dual to the killing vector pJ + + qJ – which shrinks near the source. In the generic case the world volume of the D6-branes is AdS 5 × S 2 and they locally preserve N = 2 supersymmetry. When p = –q, the shrinking circle is dual to a flavor U(1). The metric in this case is non-degenerate only when there are co-dimension one sources obtained by smearing M5-branes that wrap the AdS 5 factor and the circle dual the superconformal R-symmetry. The D6-branes are extended along the AdS 5 and on cups that end on the co-dimension one branes. In the special case when the shrinking circle is dual to the R-symmetry, the D6-branes are extended along the AdS 5 and wrap an auxiliary Riemann surface with an arbitrary genus. When the Riemann surface is compact with constant curvature, the system is governed by a Monge-Ampère equation.« less

  20. Surface thermodynamics, surface stress, equations at surfaces and triple lines for deformable bodies.

    PubMed

    Olives, Juan

    2010-03-03

    The thermodynamics and mechanics of the surface of a deformable body are studied here, following and refining the general approach of Gibbs. It is first shown that the 'local' thermodynamic variables of the state of the surface are only the temperature, the chemical potentials and the surface strain tensor (true thermodynamic variables, for a viscoelastic solid or a viscous fluid). A new definition of the surface stress is given and the corresponding surface thermodynamics equations are presented. The mechanical equilibrium equation at the surface is then obtained. It involves the surface stress and is similar to the Cauchy equation for the volume. Its normal component is a generalization of the Laplace equation. At a (body-fluid-fluid) triple contact line, two equations are obtained, which represent: (i) the equilibrium of the forces (surface stresses) for a triple line fixed on the body; (ii) the equilibrium relative to the motion of the line with respect to the body. This last equation leads to a strong modification of Young's classical capillary equation.

  1. Probing Atom-Surface Interactions by Diffraction of Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Bender, Helmar; Stehle, Christian; Zimmermann, Claus; Slama, Sebastian; Fiedler, Johannes; Scheel, Stefan; Buhmann, Stefan Yoshi; Marachevsky, Valery N.

    2014-01-01

    In this article, we analyze the Casimir-Polder interaction of atoms with a solid grating and the repulsive interaction between the atoms and the grating in the presence of an external laser source. The Casimir-Polder potential is evaluated exactly in terms of Rayleigh reflection coefficients and via an approximate Hamaker approach. The laser-tuned repulsive interaction is given in terms of Rayleigh transmission coefficients. The combined potential landscape above the solid grating is probed locally by diffraction of Bose-Einstein condensates. Measured diffraction efficiencies reveal information about the shape of the potential landscape in agreement with the theory based on Rayleigh decompositions.

  2. Synoptic Sampling to Determine Distributed Groundwater-Surface Water Nitrate Loading and Removal Potential Along a Lowland River

    NASA Astrophysics Data System (ADS)

    Pai, Henry; Villamizar, Sandra R.; Harmon, Thomas C.

    2017-11-01

    Delineating pollutant reactive transport pathways that connect local land use patterns to surface water is an important goal. This work illustrates high-resolution river mapping of salinity or specific conductance (SC) and nitrate (NO3-) as a potential part of achieving this goal. We observed longitudinal river SC and nitrate distributions using high-resolution synoptic in situ sensing along the lower Merced River (38 river km) in Central California (USA) from 2010 to 2012. We calibrated a distributed groundwater-surface water (GW-SW) discharge model for a conservative solute using 13 synoptic SC sampling events at flows ranging from 1.3 to 31.6 m3 s-1. Nitrogen loads ranged from 0.3 to 1.6 kg N d-1 and were greater following an extended high flow period during a wet winter. Applying the distributed GW-SW discharge estimates to a simplistic reactive nitrate transport model, the model reproduced observed river nitrate distribution well (RRMSE = 5-21%), with dimensionless watershed-averaged nitrate removal (kt) ranging from 0 to 0.43. Estimates were uncertain due to GW nitrate data variability, but the resulting range was consistent with prior removal estimates. At the segment scale, estimated GW-SW nitrate loading ranged from 0 to 17 g NO3- s-1 km-1. Local loading peaked near the middle of the study reach, a location that coincides with a shallow clay lens and with confined animal feed operations in close proximity to the river. Overall, the results demonstrate the potential for high-resolution synoptic monitoring to support GW-SW modeling efforts aimed at understanding and managing nonpoint source pollution.

  3. A submerged singularity method for calculating potential flow velocities at arbitrary near-field points

    NASA Technical Reports Server (NTRS)

    Maskew, B.

    1976-01-01

    A discrete singularity method has been developed for calculating the potential flow around two-dimensional airfoils. The objective was to calculate velocities at any arbitrary point in the flow field, including points that approach the airfoil surface. That objective was achieved and is demonstrated here on a Joukowski airfoil. The method used combined vortices and sources ''submerged'' a small distance below the airfoil surface and incorporated a near-field subvortex technique developed earlier. When a velocity calculation point approached the airfoil surface, the number of discrete singularities effectively increased (but only locally) to keep the point just outside the error region of the submerged singularity discretization. The method could be extended to three dimensions, and should improve nonlinear methods, which calculate interference effects between multiple wings, and which include the effects of force-free trailing vortex sheets. The capability demonstrated here would extend the scope of such calculations to allow the close approach of wings and vortex sheets (or vortices).

  4. Unveiling the Low Surface Brightness Stellar Peripheries of Galaxies

    NASA Astrophysics Data System (ADS)

    Ferguson, Annette M. N.

    2018-01-01

    The low surface brightness peripheral regions of galaxies contain a gold mine of information about how minor mergers and accretions have influenced their evolution over cosmic time. Enormous stellar envelopes and copious amounts of faint tidal debris are natural outcomes of the hierarchical assembly process and the search for and study of these features, albeit highly challenging, offers the potential for unrivalled insight into the mechanisms of galaxy growth. Over the last two decades, there has been burgeoning interest in probing galaxy outskirts using resolved stellar populations. Wide-field surveys have uncovered vast tidal debris features and new populations of very remote globular clusters, while deep Hubble Space Telescope photometry has provided exquisite star formation histories back to the earliest epochs. I will highlight some recent results from studies within and beyond the Local Group and conclude by briefly discussing the great potential of future facilities, such as JWST, Euclid, LSST and WFIRST, for major breakthroughs in low surface brightness galaxy periphery science.

  5. Electronic structures of of PuX (X=S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Maehira, Takahiro; Sakai, Eijiro; Tatetsu, Yasutomi

    2013-08-01

    We have calculated the energy band structures and the Fermi surfaces of PuS, PuSe, and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in the local density approximation. In general, the energy bands near the Fermi level are mainly caused by the hybridization between the Pu 5 f and the monochalcogenide p electrons. The obtained main Fermi surfaces consisted of two hole sheets and one electron sheet, which were constructed from the band having both the Pu 5 f state and the monochalcogenide p state.

  6. Nonlocal screening in metal surfaces

    NASA Technical Reports Server (NTRS)

    Krotscheck, E.; Kohn, W.

    1986-01-01

    Due to the effect of the nonuniform environment on the static screening of the Coulomb potential, the local-density approximation for the particle-hole interaction is found to be inadequate to determine the surface energy of simple metals. Use of the same set of single-particle states, and thus the same one-body density and the same work function, has eliminated the single-electron states in favor of the structure of the short-ranged correlations as the basis of this effect. A posteriori simplifications of the Fermi hypernetted-chain theory may be found to allow the same calculational accuracy with simpler computational tools.

  7. Tracking near-surface atmospheric conditions using an infrasound network.

    PubMed

    Marcillo, O; Johnson, J B

    2010-07-01

    Continuous volcanic infrasound signal was recorded on a three-microphone network at Kilauea in July 2008 and inverted for near-surface horizontal winds. Inter-station phase delays, determined by signal cross-correlation, vary by up to 4% and are attributable to variable atmospheric conditions. The results suggest two predominant weather regimes during the study period: (1) 6-9 m/s easterly trade winds and (2) lower-intensity 2-5 m/s mountain breezes from Mauna Loa. The results demonstrate the potential of using infrasound for tracking local averaged meteorological conditions, which has implications for modeling plume dispersal and quantifying gas flux.

  8. Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought study

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok K.; Ines, Amor V. M.; Das, Narendra N.; Prakash Khedun, C.; Singh, Vijay P.; Sivakumar, Bellie; Hansen, James W.

    2015-07-01

    Drought is of global concern for society but it originates as a local problem. It has a significant impact on water quantity and quality and influences food, water, and energy security. The consequences of drought vary in space and time, from the local scale (e.g. county level) to regional scale (e.g. state or country level) to global scale. Within the regional scale, there are multiple socio-economic impacts (i.e., agriculture, drinking water supply, and stream health) occurring individually or in combination at local scales, either in clusters or scattered. Even though the application of aggregated drought information at the regional level has been useful in drought management, the latter can be further improved by evaluating the structure and evolution of a drought at the local scale. This study addresses a local-scale agricultural drought anatomy in Story County in Iowa, USA. This complex problem was evaluated using assimilated AMSR-E soil moisture and MODIS-LAI data into a crop model to generate surface and sub-surface drought indices to explore the anatomy of an agricultural drought. Quantification of moisture supply in the root zone remains a gray area in research community, this challenge can be partly overcome by incorporating assimilation of soil moisture and leaf area index into crop modeling framework for agricultural drought quantification, as it performs better in simulating crop yield. It was noted that the persistence of subsurface droughts is in general higher than surface droughts, which can potentially improve forecast accuracy. It was found that both surface and subsurface droughts have an impact on crop yields, albeit with different magnitudes, however, the total water available in the soil profile seemed to have a greater impact on the yield. Further, agricultural drought should not be treated equal for all crops, and it should be calculated based on the root zone depth rather than a fixed soil layer depth. We envisaged that the results of this study will enhance our understanding of agricultural droughts in different parts of the world.

  9. Mechanical characterization of soft materials using transparent indenter testing system and finite element simulation

    NASA Astrophysics Data System (ADS)

    Xuan, Yue

    Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of silicone rubber and porcine pericardial tissue and results were analyzed using the same method. Conclusions. The transparent indenter testing system can effectively reduce the material properties measurement error by directly measuring the contact radii. The contact shape can provide valuable information for the anisotropic property of the material. Local surface deformation including contact surface, inner layer and vertical plane can be accurately tracked and mapped to study the strain distribution. The potential usage of the transparent indenter measurement system to investigate biological and biomaterials was verified. The experimental data including the real-time contact area combined with the finite element simulation would be powerful tool to study mechanical properties of soft materials and their relation to microstructure, which has potential in pathologies study such as tissue repair and surgery plan. Key words: transparent indenter, large deformation, soft material, anisotropic.

  10. Human impacts on terrestrial hydrology: climate change versus pumping and irrigation

    NASA Astrophysics Data System (ADS)

    Ferguson, Ian M.; Maxwell, Reed M.

    2012-12-01

    Global climate change is altering terrestrial water and energy budgets, with subsequent impacts on surface and groundwater resources; recent studies have shown that local water management practices such as groundwater pumping and irrigation similarly alter terrestrial water and energy budgets over many agricultural regions, with potential feedbacks on weather and climate. Here we use a fully-integrated hydrologic model to directly compare effects of climate change and water management on terrestrial water and energy budgets of a representative agricultural watershed in the semi-arid Southern Great Plains, USA. At local scales, we find that the impacts of pumping and irrigation on latent heat flux, potential recharge and water table depth are similar in magnitude to the impacts of changing temperature and precipitation; however, the spatial distributions of climate and management impacts are substantially different. At the basin scale, the impacts on stream discharge and groundwater storage are remarkably similar. Notably, for the watershed and scenarios studied here, the changes in groundwater storage and stream discharge in response to a 2.5 °C temperature increase are nearly equivalent to those from groundwater-fed irrigation. Our results imply that many semi-arid basins worldwide that practice groundwater pumping and irrigation may already be experiencing similar impacts on surface water and groundwater resources to a warming climate. These results demonstrate that accurate assessment of climate change impacts and development of effective adaptation and mitigation strategies must account for local water management practices.

  11. On the theory of electric double layer with explicit account of a polarizable co-solvent.

    PubMed

    Budkov, Yu A; Kolesnikov, A L; Kiselev, M G

    2016-05-14

    We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On the contrary, a sufficiently large additive of co-solvent shifts the saturation potential to lower surface potentials. We obtain that an increase in the co-solvent polarizability makes the electrostatic potential profile longer-ranged. However, increase in the co-solvent concentration in the bulk leads to non-monotonic behavior of the electrostatic potential profile. An increase in the co-solvent concentration in the bulk at its sufficiently small values makes the electrostatic potential profile longer-ranged. Oppositely, when the co-solvent concentration in the bulk exceeds some threshold value, its further increase leads to decrease in electrostatic potential at all distances from the electrode.

  12. 'Long-Cell Action' Corrosion: A Basic Mechanism Hidden Behind Components Degradation Issues in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genn Saji

    2006-07-01

    In spite of industries' effort over the last 40 years, corrosion-related issues continue to be one of the largest unresolved problems for nuclear power plants worldwide. There are several types of strange corrosion phenomena from the point of view of our current understanding of corrosion science established in other fields. Some of these are IGSCC, PWSCC, AOA, and FAC (Erosion-Corrosion). Through studying and coping with diverse corrosion phenomena, the author believes that they share a common basis with respect to the assumed corrosion mechanism (e.g., 'local cell action' hypothesis). In general, local cell action is rarely severe since it producesmore » a fairly uniform corrosion. The 'long cell action' that transports electrons through structures far beyond the region of local cell corrosion activities has been identified as a basic mechanism in soil corrosion. If this mechanism is assumed in nuclear power plants, the structure becomes anodic in the area where the potential is less positive and cathodic where this potential is more positive. Metallic ions generated at anodic corrosion sites are transported to remote cathodic sites through the circulation of water and deposits as corrosion products. The SCC, FAC (E-C) and PWSCC occur in the anodic sites as the structure itself acts as a short-circuiting conductor between the two sites, the action is similar to a galvanic cell but in a very large scale. This situation is the same as a battery that has been short-circuited at the terminals. No apparent external potential difference exists between the two electrodes, but an electrochemical reaction is still taking place inside the battery cell with a large internal short current. In this example what is important is the potential difference between the local coolant and the surface of the structural material. Long cell action corrosion is likely enhancing the local cell action's anodic corrosion activities, such as SCC, FAC/E-C, and PWSCC. It tends to be more hazardous because of its localized nature compared with the local cell action corrosion. There exist various mechanisms (electrochemical cell configurations) that induce such potential differences, including: ionic concentration, aeration, temperature, flow velocity, radiation and corrosion potentials. In this paper, the author will discuss these potential differences and their relevance to the un-resolved corrosion issues in nuclear power plants. Due to the importance of this potential mechanism the author is calling for further verification experiments as a joint international project. (author)« less

  13. Surface nanobubbles studied by atomic force microscopy techniques: Facts, fiction, and open questions

    NASA Astrophysics Data System (ADS)

    Schönherr, Holger; Hain, Nicole; Walczyk, Wiktoria; Wesner, Daniel; Druzhinin, Sergey I.

    2016-08-01

    In this review surface nanobubbles, which are presumably gas-filled enclosures found at the solid-liquid interface, are introduced and discussed together with key experimental findings that suggest that these nanoscale features indeed exist and are filled with gas. The most prominent technique used thus far has been atomic force microscopy (AFM). However, due to its potentially invasive nature, AFM data must be interpreted with great care. Owing to their curved interface, the Laplace internal pressure of surface nanobubbles exceeds substantially the outside ambient pressure, and the experimentally observed long term stability is in conflict with estimates of gas transport rates and predicted surface nanobubble lifetimes. Despite recent explanations of both the stability and the unusual nanoscopic contact angles, the development of new co-localization approaches and the adequate analysis of AFM data of surface nanobubbles are important as a means to confirm the gaseous nature and correctly estimate the interfacial curvature.

  14. Evolutionary branching under multi-dimensional evolutionary constraints.

    PubMed

    Ito, Hiroshi; Sasaki, Akira

    2016-10-21

    The fitness of an existing phenotype and of a potential mutant should generally depend on the frequencies of other existing phenotypes. Adaptive evolution driven by such frequency-dependent fitness functions can be analyzed effectively using adaptive dynamics theory, assuming rare mutation and asexual reproduction. When possible mutations are restricted to certain directions due to developmental, physiological, or physical constraints, the resulting adaptive evolution may be restricted to subspaces (constraint surfaces) with fewer dimensionalities than the original trait spaces. To analyze such dynamics along constraint surfaces efficiently, we develop a Lagrange multiplier method in the framework of adaptive dynamics theory. On constraint surfaces of arbitrary dimensionalities described with equality constraints, our method efficiently finds local evolutionarily stable strategies, convergence stable points, and evolutionary branching points. We also derive the conditions for the existence of evolutionary branching points on constraint surfaces when the shapes of the surfaces can be chosen freely. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Characterization of the surface wave variability in the California Current region from satellite altimetry.

    NASA Astrophysics Data System (ADS)

    Villas Boas, A. B.; Gille, S. T.; Mazloff, M. R.

    2016-02-01

    Surface gravity waves play a crucial role in upper-ocean dynamics, and they are an important mechanism by which the ocean exchanges energy with the overlying atmosphere. Surface waves are largely wind forced and can also be modulated by ocean currents via nonlinear wave-current interactions, leading to either an amplification or attenuation of the wave amplitude. Even though individual waves cannot be detected by present satellite altimeters, surface waves have the potential to produce a sea-state bias in altimeter measurements and can impact the sea-surface-height spectrum at high wavenumbers or frequencies. Knowing the wave climatology is relevant for the success of future altimeter missions, such as the Surface Water and Ocean Topography (SWOT). We analyse the seasonal, intra-annual and interannual variability of significant wave heights retrieved from over two decades of satellite altimeter data and assess the extent to which the variability of the surface wave field in the California Current region is modulated by the local wind and current fields.

  16. Surface structure and structural point defects of liquid and amorphous aluminosilicate nanoparticles.

    PubMed

    Linh, Nguyen Ngoc; Hoang, Vo Van

    2008-07-02

    The surface structure of liquid and amorphous aluminosilicate nanoparticles of composition Al(2)O(3)·2SiO(2) has been investigated in a model of different sizes ranging from 2.0 to 5.0 nm with the Born-Mayer type pair potential under non-periodic boundary conditions. Models have been obtained by cooling from the melts at a constant density of 2.6 g cm(-3) via molecular dynamics (MD) simulation. The surface structure has been investigated via the coordination number, bond-angle distributions and structural point defects. Calculations show that surface effects on surface static and thermodynamic properties of models are significant according to the change in the number of Al atoms in the surface layers. Evolution of the local environment of oxygen in the surface shell of nanoparticles upon cooling from the melt toward the glassy state was also found and discussed. In addition, the nanosize dependence of the glass transition temperature was presented.

  17. Surface structure and structural point defects of liquid and amorphous aluminosilicate nanoparticles

    NASA Astrophysics Data System (ADS)

    Linh, Nguyen Ngoc; Van Hoang, Vo

    2008-07-01

    The surface structure of liquid and amorphous aluminosilicate nanoparticles of composition Al2O3·2SiO2 has been investigated in a model of different sizes ranging from 2.0 to 5.0 nm with the Born-Mayer type pair potential under non-periodic boundary conditions. Models have been obtained by cooling from the melts at a constant density of 2.6 g cm-3 via molecular dynamics (MD) simulation. The surface structure has been investigated via the coordination number, bond-angle distributions and structural point defects. Calculations show that surface effects on surface static and thermodynamic properties of models are significant according to the change in the number of Al atoms in the surface layers. Evolution of the local environment of oxygen in the surface shell of nanoparticles upon cooling from the melt toward the glassy state was also found and discussed. In addition, the nanosize dependence of the glass transition temperature was presented.

  18. Electroreduction of carbon monoxide over a copper nanocube catalyst: Surface structure and pH dependence on selectivity

    DOE PAGES

    Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders

    2016-02-16

    The activity and selectivity for CO 2/CO reduction over copper electrodes is strongly dependent on the local surface structure of the catalyst and the pH of the electrolyte. Here we investigate a unique, copper nanocube surface (CuCube) as a CO reduction electrode under neutral and basic pH, using online electrochemical mass spectroscopy (OLEMS) to determine the onset potentials and relative intensities of methane and ethylene production. To relate the unique selectivity to the surface structure, the CuCube surface reactivity is compared to polycrystalline copper and three single crystals under the same reaction conditions. Here, we find that the high selectivitymore » for ethylene over the CuCube surface is most comparable to the Cu(100) surface, which has the cubic unit cell. However, the suppression of methane production over CuCube is unique to that particular surface. Basic pH is also shown to enhance ethylene selectivity on all surfaces, again with the CuCube surface being unique.« less

  19. Correlation between the Knight shift of chemisorbed CO and the Fermi level local density of states at clean platinum catalyst surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Y.Y.; Rice, C.; Godbout, N.

    1999-04-07

    Due to its fundamental importance in heterogeneous catalysis, as well as in electrocatalysis, the chemisorption and reaction of CO on transition metal surfaces has been an important focus of modern surface science. Here, the NMR spectroscopy of {sup 13}CO adsorbed onto transition metal surfaces has been shown to be a very powerful probe of molecular structure and dynamics of CO itself, as well as a probe of the electronic properties of the transition metal surfaces onto which it is adsorbed. The authors have investigated the {sup 195}Pt and {sup 13}C nuclear magnetic resonance (NMR) spectroscopy of clean-surface platinum catalysts andmore » of CO chemisorbed onto Pt catalysts surfaces. They use Knight shift, relaxation, and J-coupling data to deduce information about the Fermi level local density of states (E{sub f}-LDOS) at catalyst surfaces. There is a linear correlation between the Knight shifts of chemisorbed CO and the clean surface E{sub f}-LDOS of platinum onto which the CO is bound, as determined by {sup 13}C and {sup 195}Pt NMR. The correlation amounts to {approximately} 12 ppm/Ry{sup {minus}1} {center_dot} atom{sup {minus}1}, the same as that which can be deduced for CO on palladium, as well as from the electrode potential dependence of {sup 13}C Knight shifts and infrared vibrational frequencies, {nu}{sub CO}, and the relationship between {nu}{sub CO} and the E{sub f}-LDOS at clean platinum surfaces. The ability to now directly relate meal and adsorbate electronic properties opens up new avenues for investigating metal-ligand interactions in heterogeneous catalysis and electrocatalysis.« less

  20. Effect of Minor Alloying Elements on Localized Corrosion Behavior of Aluminum-Copper-Magnesium based Solid Solution Alloys

    NASA Astrophysics Data System (ADS)

    Aburada, Tomohiro

    2011-12-01

    The effects and mechanistic roles of a minor alloying element, Ni, on the localized corrosion behavior were explored by studying (Al75Cu 17Mg8)97Ni3 and Al70Cu 18Mg12 amorphous alloys. To explore the minor alloying element limited to the outer surface layers, the corrosion behavior of Al70Cu 18Mg12 amorphous alloy in solutions with and without Ni 2+ was also studied. Both Ni alloying and Ni2+ in solution improved the localized corrosion resistance of the alloys by ennobling the pitting and repassivation potentials. Pit growth by the selective dissolution of Al and Mg was also suppressed by Ni alloying. Remaining Cu and Ni reorganized into a Cu-rich polycrystalline nanoporous structure with continuous ligaments in pits. The minor Ni alloying and Ni2+ in solution suppressed the coarsening of the ligaments in the dealloyed nanoporous structure. The presence of relatively immobile Ni atoms at the surface suppressed the surface diffusion of Cu, which reduced the coarsening of the nanoporous structure, resulting in the formation of 10 to 30 nm wide Cu ligaments. Two mechanistic roles of minor alloying elements in the improvement of the pitting corrosion resistance of the solid solution alloys are elucidated. The first role is the suppression of active dissolution by altering the atomic structure. Ni in solid solution formed stronger bonds with Al, and reduces the probability of weaker Al-Al bonds. The second role is to hinder dissolution by producing a greater negative shift of the true interfacial potential at the dissolution front under the dealloyed layer due to the greater Ohmic resistance through the finer porous structure. These effects contributed to the elevation of pitting potentials by ennobling the applied potential required to produce enough dissolution for the stabilization of pits. Scientifically, this thesis advances the state of understanding of alloy dissolution, particularly the role of minor alloying elements on preferential oxidation at the atomic, nanometer, and micrometer scales. Technological implementations of the findings of the research are also discussed, including a new route to synthesize nanoporous materials with tunable porosity and new corrosion mitigation strategies for commercial Al-based alloys containing the detrimental Al2CuMg phase.

  1. Altering textural properties of fermented milk by using surface-engineered Lactococcus lactis.

    PubMed

    Tarazanova, Mariya; Huppertz, Thom; Kok, Jan; Bachmann, Herwig

    2018-05-09

    Lactic acid bacteria are widely used for the fermentation of dairy products. While bacterial acidification rates, proteolytic activity and the production of exopolysaccharides are known to influence textural properties of fermented milk products, little is known about the role of the microbial surface on microbe-matrix interactions in dairy products. To investigate how alterations of the bacterial cell surface affect fermented milk properties, 25 isogenic Lactococcus lactis strains that differed with respect to surface charge, hydrophobicity, cell chaining, cell-clumping, attachment to milk proteins, pili expression and EPS production were used to produce fermented milk. We show that overexpression of pili increases surface hydrophobicity of various strains from 3-19% to 94-99%. A profound effect of different cell surface properties was an altered spatial distribution of the cells in the fermented product. Aggregated cells tightly fill the cavities of the protein matrix, while chaining cells seem to be localized randomly. A positive correlation was found between pili overexpression and viscosity and gel hardness of fermented milk. Gel hardness also positively correlated with clumping of cells in the fermented milk. Viscosity of fermented milk was also higher when it was produced with cells with a chaining phenotype or with cells that overexpress exopolysaccharides. Our results show that alteration of cell surface morphology affects textural parameters of fermented milk and cell localization in the product. This is indicative of a cell surface-dependent potential of bacterial cells as structure elements in fermented foods. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis.

    PubMed

    Ferhan, Abdul Rahim; Jackman, Joshua A; Cho, Nam-Joon

    2016-12-20

    The combination of label-free, surface-sensitive measurement techniques based on different physical principles enables detailed characterization of biomacromolecular interactions at solid-liquid interfaces. To date, most combined measurement systems have involved experimental techniques with similar probing volumes, whereas the potential of utilizing techniques with different surface sensitivities remains largely unexplored, especially for data interpretation. Herein, we report a combined measurement approach that integrates a conventional quartz crystal microbalance-dissipation (QCM-D) setup with a reflection-mode localized surface plasmon (LSPR) sensor. Using this platform, we investigate vesicle adsorption on a titanium oxide-coated sensing substrate along with the amphipathic, α-helical (AH) peptide-induced structural transformation of surface-adsorbed lipid vesicles into a supported lipid bilayer (SLB) as a model biomacromolecular interaction. While the QCM-D and LSPR signals both detected mass uptake arising from vesicle adsorption, tracking the AH peptide-induced structural transformation revealed more complex measurement responses based on the different surface sensitivities of the two techniques. In particular, the LSPR signal recorded an increase in optical mass near the sensor surface which indicated SLB formation, whereas the QCM-D signals detected a significant loss in net acoustic mass due to excess lipid and coupled solvent leaving the probing volume. Importantly, these measurement capabilities allowed us to temporally distinguish the process of SLB formation at the sensor surface from the overall structural transformation process. Looking forward, these label-free measurement capabilities to simultaneously probe adsorbates at multiple length scales will provide new insights into complex biomacromolecular interactions.

  3. Adsorption and dissociation of molecular oxygen on α-Pu (0 2 0) surface: A density functional study

    NASA Astrophysics Data System (ADS)

    Wang, Jianguang; Ray, Asok K.

    2011-09-01

    Molecular and dissociative oxygen adsorptions on the α-Pu (0 2 0) surface have been systematically studied using the full-potential linearized augmented-plane-wave plus local orbitals (FP-LAPW+lo) basis method and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. Chemisorption energies have been optimized for the distance of the admolecule from the Pu surface and the bond length of O-O atoms for four adsorption sites and three approaches of O 2 admolecule to the (0 2 0) surface. Chemisorption energies have been calculated at the scalar relativistic level with no spin-orbit coupling (NSOC) and at the fully relativistic level with spin-orbit coupling (SOC). Dissociative adsorptions are found at the two horizontal approaches (O 2 is parallel to the surface and perpendicular/parallel to a lattice vector). Hor2 (O 2 is parallel to the surface and perpendicular to a lattice vector) approach at the one-fold top site is the most stable adsorption site, with chemisorption energies of 8.048 and 8.415 eV for the NSOC and SOC cases, respectively, and an OO separation of 3.70 Å. Molecular adsorption occurs at the Vert (O 2 is vertical to the surface) approach of each adsorption site. The calculated work functions and net spin magnetic moments, respectively, increase and decrease in all cases upon chemisorption compared to the clean surface. The partial charges inside the muffin-tins, the difference charge density distributions, and the local density of states have been used to investigate the Pu-admolecule electronic structures and bonding mechanisms.

  4. Sci—Thur AM: YIS - 10: Use of the Microsoft Kinect for applications of patient surface data to radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillet, Dominique; Syme, Alasdair; DeBlois, François

    Current techniques to acquire patient surface data are often very expensive and lack flexibility. In this study, the use of the Microsoft Kinect to reliably acquire 3D scans of patient surface is investigated. A design is presented to make the system easily applicable to the clinic. Potential applications of the device to radiotherapy are also presented. Scan reproducibility was tested by repeatedly scanning an anthropomorphic phantom. Scan accuracy was tested by comparing Kinect scans to the surface extracted from a CT dataset of a Rando® anthropomorphic phantom, which was considered as the true reference surface. Average signed distances of 0.12more » ± 2.34 mm and 0.13 ± 2.04 mm were obtained between the compared surfaces for reproducibility and accuracy respectively. This is conclusive, since it indicates that the variations observed come largely from noise distributed around an average distance close to 0 mm. Moreover, the range of the noise is small enough for the system to reliably capture a patient's surface. A system was also designed using two Kinects used together to acquire 3D surfaces in a quick and stable way that is applicable to the clinic. Finally, applications of the device to radiotherapy are demonstrated. Its use to detect local positioning errors is presented, where small local variations difficult to see with the naked eye are clearly visible. The system was also used to predict collisions using gantry and patient scans and thus ensure the safety of unconventional trajectories.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournadre, Grégoire de, E-mail: gregoire.de-tournadre@univ-reims.fr; Reisdorffer, Frédéric; Simonetti, Olivier

    A scanning surface potential measurement technique suited for thin-film devices operating under high voltages is reported. A commercial atomic force microscope has been customized to enable a feedback-controlled and secure surface potential measurement based on phase-shift detection under ambient conditions. Measurements of the local potential profile along the channel of bottom-gate organic thin-film transistors (TFTs) are shown to be useful to disentangle the contributions from the channel and contacts to the device performance. Intrinsic contact current-voltage characteristics have been measured on bottom-gate, top-contact (staggered) TFTs based on the small-molecule semiconductor dinaphtho[2,3-b:2′,3-f]thieno[3,2-b]thiophene (DNTT) and on bottom-gate, bottom-contact (coplanar) TFTs based onmore » the semiconducting polymer polytriarylamine (PTAA). Injection has been found to be linear in the staggered DNTT TFTs and nonlinear in the coplanar PTAA TFTs. In both types of TFT, the injection efficiency has been found to improve with increasing gate bias in the accumulation regime. Contact resistances as low as 130 Ω cm have been measured in the DNTT TFTs. A method that eliminates the influence of bias-stress-induced threshold-voltage shifts when measuring the local charge-carrier mobility in the channel is also introduced, and intrinsic channel mobilities of 1.5 cm{sup 2} V{sup −1} s{sup −1} and 1.1 × 10{sup −3} cm{sup 2} V{sup −1} s{sup −1} have been determined for DNTT and PTAA. In both semiconductors, the mobility has been found to be constant with respect to the gate bias. Despite its simplicity, the Kelvin probe force microscopy method reported here provides robust and accurate surface potential measurements on thin-film devices under operation and thus paves the way towards more extensive studies of particular interest in emerging fields of solid-state electronics.« less

  6. GEOCHEMICAL EVOLUTION OF GROUND WATER AND TRANSPORT OF MERCURY AT THE SULPHUR BANK MERCURY MINE SUPERFUND SITE IN NORTHERN CALIFORNIA, USA

    EPA Science Inventory

    The Sulphur Bank Mercury Mine, located on the shore of Clear Lake, Lake County, California, is a potential source for a modern-day mercury flux into the local aquatic ecosystem. Surface mining created the Herman Pit, a 9.3 ha open pit with a depth > 30 m, while overburden and pr...

  7. Robust feature detection and local classification for surfaces based on moment analysis.

    PubMed

    Clarenz, Ulrich; Rumpf, Martin; Telea, Alexandru

    2004-01-01

    The stable local classification of discrete surfaces with respect to features such as edges and corners or concave and convex regions, respectively, is as quite difficult as well as indispensable for many surface processing applications. Usually, the feature detection is done via a local curvature analysis. If concerned with large triangular and irregular grids, e.g., generated via a marching cube algorithm, the detectors are tedious to treat and a robust classification is hard to achieve. Here, a local classification method on surfaces is presented which avoids the evaluation of discretized curvature quantities. Moreover, it provides an indicator for smoothness of a given discrete surface and comes together with a built-in multiscale. The proposed classification tool is based on local zero and first moments on the discrete surface. The corresponding integral quantities are stable to compute and they give less noisy results compared to discrete curvature quantities. The stencil width for the integration of the moments turns out to be the scale parameter. Prospective surface processing applications are the segmentation on surfaces, surface comparison, and matching and surface modeling. Here, a method for feature preserving fairing of surfaces is discussed to underline the applicability of the presented approach.

  8. Raman and photothermal spectroscopies for explosive detection

    NASA Astrophysics Data System (ADS)

    Finot, Eric; Brulé, Thibault; Rai, Padmnabh; Griffart, Aurélien; Bouhélier, Alexandre; Thundat, Thomas

    2013-06-01

    Detection of explosive residues using portable devices for locating landmine and terrorist weapons must sat- isfy the application criteria of high reproducibility, specificity, sensitivity and fast response time. Vibrational spectroscopies such as Raman and infrared spectroscopies have demonstrated their potential to distinguish the members of the chemical family of more than 30 explosive materials. The characteristic chemical fingerprints in the spectra of these explosives stem from the unique bond structure of each compound. However, these spectroscopies, developed in the early sixties, suffer from a poor sensitivity. On the contrary, MEMS-based chemical sensors have shown to have very high sensitivity lowering the detection limit down to less than 1 picogram, (namely 10 part per trillion) using sensor platforms based on microcantilevers, plasmonics, or surface acoustic waves. The minimum amount of molecules that can be detected depends actually on the transducer size. The selectivity in MEMS sensors is usually realized using chemical modification of the active surface. However, the lack of sufficiently selective receptors that can be immobilized on MEMS sensors remains one of the most critical issues. Microcantilever based sensors offer an excellent opportunity to combine both the infrared photothermal spectroscopy in their static mode and the unique mass sensitivity in their dynamic mode. Optical sensors based on localized plasmon resonance can also take up the challenge of addressing the selectivity by monitoring the Surface Enhanced Raman spectrum down to few molecules. The operating conditions of these promising localized spectroscopies will be discussed in terms of reliability, compactness, data analysis and potential for mass deployment.

  9. Exhaustive comparison and classification of ligand-binding surfaces in proteins

    PubMed Central

    Murakami, Yoichi; Kinoshita, Kengo; Kinjo, Akira R; Nakamura, Haruki

    2013-01-01

    Many proteins function by interacting with other small molecules (ligands). Identification of ligand-binding sites (LBS) in proteins can therefore help to infer their molecular functions. A comprehensive comparison among local structures of LBSs was previously performed, in order to understand their relationships and to classify their structural motifs. However, similar exhaustive comparison among local surfaces of LBSs (patches) has never been performed, due to computational complexity. To enhance our understanding of LBSs, it is worth performing such comparisons among patches and classifying them based on similarities of their surface configurations and electrostatic potentials. In this study, we first developed a rapid method to compare two patches. We then clustered patches corresponding to the same PDB chemical component identifier for a ligand, and selected a representative patch from each cluster. We subsequently exhaustively as compared the representative patches and clustered them using similarity score, PatSim. Finally, the resultant PatSim scores were compared with similarities of atomic structures of the LBSs and those of the ligand-binding protein sequences and functions. Consequently, we classified the patches into ∼2000 well-characterized clusters. We found that about 63% of these clusters are used in identical protein folds, although about 25% of the clusters are conserved in distantly related proteins and even in proteins with cross-fold similarity. Furthermore, we showed that patches with higher PatSim score have potential to be involved in similar biological processes. PMID:23934772

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Cappa, Frédéric; Rinaldi, Antonio P.

    In this paper, we present model simulations of ground motions caused by CO 2 -injection-induced fault reactivation and analyze the results in terms of the potential for damage to ground surface structures and nuisance to the local human population. It is an integrated analysis from cause to consequence, including the whole chain of processes starting from earthquake inception in the subsurface, wave propagation toward the ground surface, and assessment of the consequences of ground vibration. For a small magnitude (M w =3) event at a hypocenter depth of about 1000m, we first used the simulated ground-motion wave train in anmore » inverse analysis to estimate source parameters (moment magnitude, rupture dimensions and stress drop), achieving good agreement and thereby verifying the modeling of the chain of processes from earthquake inception to ground vibration. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and frequency content, with comparison to U.S. Geological Survey's instrumental intensity scales for earthquakes and the U.S. Bureau of Mines' vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. Our results confirm the appropriateness of using PGV (rather than PGA) and frequency for the evaluation of potential ground-vibration effects on structures and humans from shallow injection-induced seismic events. For the considered synthetic M w =3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, but would certainly be felt by the local population.« less

  11. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.

    PubMed

    Greenberg, Benjamin L; Ganguly, Shreyashi; Held, Jacob T; Kramer, Nicolaas J; Mkhoyan, K Andre; Aydil, Eray S; Kortshagen, Uwe R

    2015-12-09

    Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation.

  12. Nonmagnetic impurity resonances as a signature of sign-reversal pairing in FeAs-based superconductors.

    PubMed

    Zhang, Degang

    2009-10-30

    The energy band structure of FeAs-based superconductors is fitted by a tight-binding model with two Fe ions per unit cell and two degenerate orbitals per Fe ion. Based on this, superconductivity with extended s-wave pairing symmetry of the form cosk(x)+cosk(y) is examined. The local density of states near an impurity is also investigated by using the T-matrix approach. For the nonmagnetic scattering potential, we found that there exist two major resonances inside the gap. The height of the resonance peaks depends on the strength of the impurity potential. These in-gap resonances are originated in the Andreev's bound states due to the quasiparticle scattering between the hole Fermi surfaces around Gamma point with positive order parameter and the electron Fermi surfaces around M point with negative order parameter.

  13. The gas-phase metallicities of star-forming galaxies in aperture-matched SDSS samples follow potential rather than mass or average surface density

    NASA Astrophysics Data System (ADS)

    D'Eugenio, Francesco; Colless, Matthew; Groves, Brent; Bian, Fuyan; Barone, Tania M.

    2018-05-01

    We present a comparative study of the relation between the aperture-based gas-phase metallicity and three structural parameters of star-forming galaxies: mass (M ≡ M*), average potential (Φ ≡ M*/Re) and average surface mass density (Σ ≡ M_*/R_e^2; where Re is the effective radius). We use a volume-limited sample drawn from the publicly available SDSS DR7, and base our analysis on aperture-matched sampling by selecting sets of galaxies where the SDSS fibre probes a fixed fraction of Re. We find that between 0.5 and 1.5 Re, the gas-phase metallicity correlates more tightly with Φ than with either {M} or Σ, in that for all aperture-matched samples, the potential-metallicity relation has (i) less scatter, (ii) higher Spearman rank correlation coefficient and (iii) less residual trend with Re than either the mass-metallicity relation and the average surface density-metallicity relation. Our result is broadly consistent with the current models of gas enrichment and metal loss. However, a more natural explanation for our findings is a local relation between the gas-phase metallicity and escape velocity.

  14. Real-time observation of intramolecular proton transfer in the electronic ground state of chloromalonaldehyde: an ab initio study of time-resolved photoelectron spectra.

    PubMed

    do N Varella, Márcio T; Arasaki, Yasuki; Ushiyama, Hiroshi; Takatsuka, Kazuo; Wang, Kwanghsi; McKoy, Vincent

    2007-02-07

    The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.

  15. The structure of the NO(X (2)Pi)-N(2) complex: A joint experimental-theoretical study.

    PubMed

    Wen, B; Meyer, H; Kłos, J

    2010-04-21

    We report the first measurement of the spectrum of the NO-N(2) complex in the region of the first vibrational NO overtone transition. The origin band of the complex is blueshifted by 0.30 cm(-1) from the corresponding NO monomer frequency. The observed spectrum consists of three bands assigned to the origin band, the excitation of one quantum of z-axis rotation and one associated hot band. The spacing of the bands and the rotational structure indicate a T-shaped vibrationally averaged structure with the NO molecule forming the top of the T. These findings are confirmed by high level ab initio calculations of the potential energy surfaces in planar symmetry. The deepest minimum is found for a T-shaped geometry on the A(")-surface. As a result the sum potential also has the global minimum for this structure. The different potential surfaces show several additional local minima at slightly higher energies indicating that the complex most likely will perform large amplitude motion even in its ground vibrational state. Nevertheless, as suggested by the measured spectra, the complex must, on average, spend a substantial amount of time near the T-shaped configuration.

  16. Theoretical investigation on the potential energy surface for the reactions of B, Al and Ga with NO

    NASA Astrophysics Data System (ADS)

    Zhang, Luning; Zhou, Mingfei

    2000-06-01

    The structures, binding energies and vibrational frequencies of various MNO structural isomers (M=B, Al and Ga) in their ground triplet states have been determined using the density functional (B3LYP, BP86 and B3PW91) and MP2 methods. The potential energy surfaces of the M+NO reactions have been developed at the B3LYP/6-311+G(d) level of theory, and transition states on the isomerization potential energy surfaces have been characterized. Our calculation results show that four BNO isomers, namely, nitrosyl BNO, isonitrosyl BON, side-bonded B- η2-NO and the inserted NBO molecules are stationary points, while for Al and Ga, only the MNO (nitrosyl), MON (isonitrosyl) and the OMN (insertion) molecules are local minimum. The B+NO reaction products are more strongly bonded compared to the Al and Ga+NO systems due to strong covalent bonding. The interactions of B, Al and Ga atoms with NO to generate nitrosyl and isonitrosyl addition molecules are barrierless, but subsequent isomerization reactions to form the side-bonded molecules and the inserted products require activation energy.

  17. Phobos Mobility Simulation

    NASA Technical Reports Server (NTRS)

    Bielski, Paul

    2015-01-01

    Phobos, the larger of Mars' moons, provides a potential staging location for human exploration of the Martian surface. Its low gravity (about 1/200th of Earth) and lack of atmosphere makes it an attractive destination before a more complex human landing on Mars is attempted. While easier to approach and depart than Mars itself, Phobos provides unique challenges to visiting crews. It is irregularly shaped, so its local gravitational field does not always point straight down with respect to the visible horizon. It is very close to Mars and tidally locked, so the Martian gravity gradient and applied acceleration greatly affect the perceived surface gravity direction and magnitude. This simulation allows the assessment of unique mobility approaches on the surface of Phobos, including hopping in particular.

  18. The geomorphology of Ceres

    USGS Publications Warehouse

    Buczkowski, D.L.; Schmidt, B.E.; Williams, D.A.; Mest, S.C.; Scully, J.E.C.; Ermakov, A.; Preusker, F.; Schenk, P.; Otto, K. A.; Hiesinger, H.; O'Brien, D.; Marchi, S.; Sizemore, H.G.; Hughson, K.; Chilton, H.; Bland, M.; Byrne, S.; Schorghofer, N.; Platz, T.; Jaumann, R.; Roatsch, T.; Sykes, M. V.; Nathues, A.; De Sanctis, M.C.; Raymond, C.A.; Russell, C.T.

    2016-01-01

    Analysis of Dawn spacecraft Framing Camera image data allows evaluation of the topography and geomorphology of features on the surface of Ceres. The dwarf planet is dominated by numerous craters, but other features are also common. Linear structures include both those associated with impact craters and those that do not appear to have any correlation to an impact event. Abundant lobate flows are identified, and numerous domical features are found at a range of scales. Features suggestive of near-surface ice, cryomagmatism, and cryovolcanism have been identified. Although spectroscopic analysis has currently detected surface water ice at only one location on Ceres, the identification of these potentially ice-related features suggests that there may be at least some ice in localized regions in the crust.

  19. Massive hydraulic fracture mapping and characterization program. Surface potential data for Wattenberg 1975--1976 experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.P.; Bartel, L.C.; Keck, L.J.

    1977-08-01

    Three massive hydraulic fracture experiments for natural gas stimulation were conducted by Halliburton for AMOCO in the Wattenberg field northeast of Denver, Colorado. The experiments were conducted on three wells--Martin Hart ''E'' No. 1, Salazar G.U. No. 1, and UPRR-22P. All three wells were open hole and the fracture zone was located at a depth of approximately 8000 ft. All were treated with approximately 300,000 gal of fluid and 600,000 lb of proppant. The surface electrical potential technique was used to attempt characterization and mapping of the fracture. The noise perturbating the system consists of telluric currents, currents from industrialmore » sources, and natural local currents. It is difficult to determine the exact signal-to-noise ratio or the exact origin of the noise without exhaustive field measurements and data analysis. However, improvements have been made in the surface potential gradient technique since the early developmental stage of the diagnostic program. To aid in the interpretation of the field data, mathematical modeling efforts have been undertaken. The model utilizes the Green's function integral equation approach where the so-called half-space Green's function is used. The model calculates the potential difference that exists at the surface as a function of fracturing conditions. Data analysis indicates that the fracture orientation for all three wells lies in a SE to NW direction and that the fractures are asymmetric.« less

  20. Potential effects of surface coal mining on the hydrology of the Greenleaf-Miller area, Ashland coal field, southeastern Montana

    USGS Publications Warehouse

    Levings, G.W.

    1982-01-01

    The Greenleaf-Miller area of the Ashland coal field contains reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the potential lease area in 1981 to describe the existing hydrologic system and to assess potential impacts of surface coal mining on local water resources. The hydrologic data collected from wells, test holes, and springs were used to identify aquifers in the alluvium (Pleistocene and Holocene age) and the Tongue River member of the Fort Union Formation (Paleocene age). Coal, clinker, and sandstone beds comprise the aquifers in the Tongue River Member. Most streams are ephemeral and flow only as a result of precipitation. The only perennial surface-water flow in the study area is along short reaches downstream from springs. A mine plan for the area is not available; thus, the location of mine cuts, direction and rate of the mine expansion, and duration of mining are unknown. The mining of the Sawyer and Knoblock coal beds in the Tonge River Member would effect ground-water flow in the area. Declines in the potentiometric surface would be caused by dewatering where the mine pits intersect the water table. Wells and springs would be removed in the mine area; however, deeper aquifers are available as replacement sources of water. The chemical quality of the ground water would change after moving through the spoils. The change would be an increase in the concentration of dissolved solids. (USGS)

  1. Passive electrical monitoring and localization of fluid leakages from wells

    NASA Astrophysics Data System (ADS)

    Revil, A.; Mao, D.; Haas, A. K.; Karaoulis, M.; Frash, L.

    2015-02-01

    Electrokinetic phenomena are a class of cross-coupling phenomena involving the relative displacement between the pore water (together with the electrical diffuse layer) with respect to the solid phase of a porous material. We demonstrate that electrical fields of electrokinetic nature can be associated with fluid leakages from wells. These leakages can be remotely monitored and the resulting signals used to localize their causative source distribution both in the laboratory and in field conditions. The first laboratory experiment (Experiment #1) shows how these electrical fields can be recorded at the surface of a cement block during the leakage of a brine from a well. The measurements were performed with a research-grade medical electroencephalograph and were inverted using a genetic algorithm to localize the causative source of electrical current and therefore, localize the leak in the block. Two snapshots of electrical signals were used to show how the leak evolved over time. The second experiment (Experiment #2) was performed to see if we could localize a pulse water injection from a shallow well in field conditions in the case of a heterogeneous subsurface. We used the same equipment as in Experiment #1 and processed the data with a trend removal algorithm, picking the amplitude from 24 receiver channels just after the water injection. The amplitude of the electric signals changed from the background level indicating that a volume of water was indeed flowing inside the well into the surrounding soil and then along the well. We used a least-square inversion algorithm to invert a snapshot of the electrical potential data at the injection time to localize the source of the self-potential signals. The inversion results show positive potential anomalies in the vicinity of the well. For both experiments, forward numerical simulations of the problem using a finite element package were performed in order to assess the underlying physics of the causative source of the observed electrical potential anomalies and how they are related to the flow of the water phase.

  2. Engineering Localized Surface Plasmon Interactions in Gold by Silicon Nanowire for Enhanced Heating and Photocatalysis.

    PubMed

    Agarwal, Daksh; Aspetti, Carlos O; Cargnello, Matteo; Ren, MingLiang; Yoo, Jinkyoung; Murray, Christopher B; Agarwal, Ritesh

    2017-03-08

    The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. We report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confine light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si-Au cavity with enhanced plasmonic activity when coupled with TiO 2 nanorods increases the hydrogen production rate by ∼40% compared to similar Au-TiO 2 system without Si core, in ethanol photoreforming reactions. These highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.

  3. Long-time relaxation of photo-induced influence on BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Gu, Jun-xing; Jin, Kui-juan; Wang, Le; He, Xu; Guo, Hai-zhong; Wang, Can; He, Meng; Yang, Guo-zhen

    2015-11-01

    An intuitively persistent enhancement of the local surface potential of BiFeO3 layers in both heterostructures of BiFeO3/SrRuO3/SrTiO3 and BiFeO3/Sr0.09Nb0.01TiO3 was observed by the Kelvin probe force microscopy technique after the illumination of 375 nm laser. This photo-induced enhanced surface potential can maintain as long as 15 h after the illumination. We attributed this super-long-time relaxation of photo-induced influence to a photo-induced depolarization in the BiFeO3 thin films, and our first-principles calculation of double-potential well further provides an instinct understanding on this depolarization process. Our findings provide a peculiar understanding into the photo-induced phenomena on the widely researched ferroelectric systems and offer an approach to tune their multifunctionality of the magnetization and polarization not only by applied magnetic and electric fields but also by optical filed.

  4. Identification of potential local isolated for biosurfactant production

    NASA Astrophysics Data System (ADS)

    Shafiei, Zahra; Yusoff, Wan Mohtar Wan; Hamid, Aidil Abdul; Moazami, Nasrin; Hamzah, Ainon; Fooladi, Taybeh

    2013-11-01

    Biosurfactant are amphiphilic molecule that have received increasing attention in recent years because of their role in the growth of microorganisms on water-insoluble hydrophobic materials such as hydrocarbons as well as their commercial potential in the cosmetics, food, oil recovery and agricultural industries. In this study a potential biosurfactant producing strain was isolated from several soil samples of Terengganu oil refinery, Malaysia and selected during preliminary screening using hemolytic activity, oil spreading and drop collapsed technique. Isolates with at least more than one positive response to these three methods were subjected to complementary screening by measuring surface tension reduction as well as emulsification capacity. The biosurfactant produced by isolated 5M was able to reduced surface tension of culture medium from 60 mN/m to30mN/m. The biochemical and morphological characterization, 16SrRNA gene sequencing showed that the isolated 5M belongs to bacillus groups. The maximum production of biosurfactant by Bacillus 5M was observed after 48 h of incubation.

  5. Energy landscapes and properties of biomolecules.

    PubMed

    Wales, David J

    2005-11-09

    Thermodynamic and dynamic properties of biomolecules can be calculated using a coarse-grained approach based upon sampling stationary points of the underlying potential energy surface. The superposition approximation provides an overall partition function as a sum of contributions from the local minima, and hence functions such as internal energy, entropy, free energy and the heat capacity. To obtain rates we must also sample transition states that link the local minima, and the discrete path sampling method provides a systematic means to achieve this goal. A coarse-grained picture is also helpful in locating the global minimum using the basin-hopping approach. Here we can exploit a fictitious dynamics between the basins of attraction of local minima, since the objective is to find the lowest minimum, rather than to reproduce the thermodynamics or dynamics.

  6. Is Mars Sample Return Required Prior to Sending Humans to Mars?

    NASA Technical Reports Server (NTRS)

    Carr, Michael; Abell, Paul; Allwood, Abigail; Baker, John; Barnes, Jeff; Bass, Deborah; Beaty, David; Boston, Penny; Brinkerhoff, Will; Budney, Charles; hide

    2012-01-01

    Prior to potentially sending humans to the surface of Mars, it is fundamentally important to return samples from Mars. Analysis in Earth's extensive scientific laboratories would significantly reduce the risk of human Mars exploration and would also support the science and engineering decisions relating to the Mars human flight architecture. The importance of measurements of any returned Mars samples range from critical to desirable, and in all cases these samples will would enhance our understanding of the Martian environment before potentially sending humans to that alien locale. For example, Mars sample return (MSR) could yield information that would enable human exploration related to 1) enabling forward and back planetary protection, 2) characterizing properties of Martian materials relevant for in situ resource utilization (ISRU), 3) assessing any toxicity of Martian materials with respect to human health and performance, and 4) identifying information related to engineering surface hazards such as the corrosive effect of the Martian environment. In addition, MSR would be engineering 'proof of concept' for a potential round trip human mission to the planet, and a potential model for international Mars exploration.

  7. Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth.

    PubMed

    Pasek, Matthew; Lauretta, Dante

    2008-02-01

    With growing evidence for a heavy bombardment period ending 4-3.8 billion years ago, meteorites and comets may have been an important source of prebiotic carbon, nitrogen, and phosphorus on the early Earth. Life may have originated shortly after the late-heavy bombardment, when concentrations of organic compounds and reactive phosphorus were enough to "kick life into gear". This work quantifies the sources of potentially prebiotic, extraterrestrial C, N, and P and correlates these fluxes with a comparison to total Ir fluxes, and estimates the effect of atmosphere on the survival of material. We find (1) that carbonaceous chondrites were not a good source of organic compounds, but interplanetary dust particles provided a constant, steady flux of organic compounds to the surface of the Earth, (2) extraterrestrial metallic material was much more abundant on the early Earth, and delivered reactive P in the form of phosphide minerals to the Earth's surface, and (3) large impacts provided substantial local enrichments of potentially prebiotic reagents. These results help elucidate the potential role of extraterrestrial matter in the origin of life.

  8. Electric-field induced surface instabilities of soft dielectrics and their effects on optical transmittance and scattering

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Kjeer, Peter; Clarke, David R.

    2018-03-01

    When a voltage is applied to a percolative, mechanically compliant mat of carbon nanotubes (CNTs) on a smooth elastomer bilayer attached to an ITO coated glass substrate, the in-line optical transmittance decreases with increasing voltage. Two regimes of behavior have been identified based on optical scattering, bright field optical microscopy, and confocal optical microscopy. In the low field regime, the electric field produces a spatially inhomogeneous surface deformation of the elastomer that causes local variations in optical refraction and modulates the light transmittance. The spatial variation is associated with the distribution of the CNTs over the surface. At higher fields, above a threshold voltage, an array of pits in the surface form by a nucleation and growth mechanism and these also scatter light. The formation of pits, and creases, in the thickness of the elastomer, is due to a previously identified electro-mechanical surface instability. When the applied voltage is decreased from its maximum, the transmittance returns to its original value although there is a transmittance hysteresis and a complicated time response. When the applied voltage exceeds the threshold voltage, there can be remnant optical contrast associated with creasing of the elastomer and the recovery time appears to be dependent on local jamming of CNTs in areas where the pits formed. A potential application of this work as an electrically tunable privacy window or camouflaging devices is demonstrated.

  9. The Plasma Wake Downstream of Lunar Topographic Obstacles: Preliminary Results from 2D Particle Simulations

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Farrell, W. M.; Snubbs, T. J.; Halekas, J. S.

    2011-01-01

    Anticipating the plasma and electrical environments in permanently shadowed regions (PSRs) of the moon is critical in understanding local processes of space weathering, surface charging, surface chemistry, volatile production and trapping, exo-ion sputtering, and charged dust transport. In the present study, we have employed the open-source XOOPIC code [I] to investigate the effects of solar wind conditions and plasma-surface interactions on the electrical environment in PSRs through fully two-dimensional pattic1e-in-cell simulations. By direct analogy with current understanding of the global lunar wake (e.g., references) deep, near-terminator, shadowed craters are expected to produce plasma "mini-wakes" just leeward of the crater wall. The present results (e.g., Figure I) are in agreement with previous claims that hot electrons rush into the crater void ahead of the heavier ions, fanning a negative cloud of charge. Charge separation along the initial plasma-vacuum interface gives rise to an ambipolar electric field that subsequently accelerates ions into the void. However, the situation is complicated by the presence of the dynamic lunar surface, which develops an electric potential in response to local plasma currents (e.g., Figure Ia). In some regimes, wake structure is clearly affected by the presence of the charged crater floor as it seeks to achieve current balance (i.e. zero net current to the surface).

  10. Modeling of induced seismicity and ground vibrations associated with geologic CO 2 storage, and assessing their effects on surface structures and human perception

    DOE PAGES

    Rutqvist, Jonny; Cappa, Frédéric; Rinaldi, Antonio P.; ...

    2014-05-01

    In this paper, we present model simulations of ground motions caused by CO 2 -injection-induced fault reactivation and analyze the results in terms of the potential for damage to ground surface structures and nuisance to the local human population. It is an integrated analysis from cause to consequence, including the whole chain of processes starting from earthquake inception in the subsurface, wave propagation toward the ground surface, and assessment of the consequences of ground vibration. For a small magnitude (M w =3) event at a hypocenter depth of about 1000m, we first used the simulated ground-motion wave train in anmore » inverse analysis to estimate source parameters (moment magnitude, rupture dimensions and stress drop), achieving good agreement and thereby verifying the modeling of the chain of processes from earthquake inception to ground vibration. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and frequency content, with comparison to U.S. Geological Survey's instrumental intensity scales for earthquakes and the U.S. Bureau of Mines' vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. Our results confirm the appropriateness of using PGV (rather than PGA) and frequency for the evaluation of potential ground-vibration effects on structures and humans from shallow injection-induced seismic events. For the considered synthetic M w =3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, but would certainly be felt by the local population.« less

  11. Directed motion of vortices and annihilation of vortex-antivortex pairs in finite-gap superconductors via hot-lattice routes

    NASA Astrophysics Data System (ADS)

    Gulian, Ellen D.; Melkonyan, Gurgen G.; Gulian, Armen M.

    2017-07-01

    Using finite gap, time-dependent Ginzburg-Landau equations, generalized to include non-thermal phonons, we report numerical simulations of vortex nucleation, propagation, and annihilation in thin, finite strips of magnetic-impurity free, perfectly homogeneous superconductors. When a steady electric current passes through the strip with either surface defects or nonequilibrium phonon sources (e.g., local ;hotspots;), periodic vortex generation and annihilation is observed even in the absence of external magnetic fields. Local pulses of electric field are produced upon annihilation. The injected phonon lines steer the vortices during their motion within the strip, potentially allowing control of the annihilation site.

  12. Mineral Surface Rearrangement at High Temperatures: Implications for Extraterrestrial Mineral Grain Reactivity.

    PubMed

    King, Helen E; Plümper, Oliver; Putnis, Christine V; O'Neill, Hugh St C; Klemme, Stephan; Putnis, Andrew

    2017-04-20

    Mineral surfaces play a critical role in the solar nebula as a catalytic surface for chemical reactions and potentially acted as a source of water during Earth's accretion by the adsorption of water molecules to the surface of interplanetary dust particles. However, nothing is known about how mineral surfaces respond to short-lived thermal fluctuations that are below the melting temperature of the mineral. Here we show that mineral surfaces react and rearrange within minutes to changes in their local environment despite being far below their melting temperature. Polished surfaces of the rock and planetary dust-forming silicate mineral olivine ((Mg,Fe) 2 SiO 4 ) show significant surface reorganization textures upon rapid heating resulting in surface features up to 40 nm in height observed after annealing at 1200 °C. Thus, high-temperature fluctuations should provide new and highly reactive sites for chemical reactions on nebula mineral particles. Our results also may help to explain discrepancies between short and long diffusion profiles in experiments where diffusion length scales are of the order of 100 nm or less.

  13. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis.

    PubMed

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-13

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. © 2014 The Authors.

  14. Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis

    PubMed Central

    Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A

    2015-01-01

    The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. PMID:25476450

  15. Maskless localized patterning of biomolecules on carbon nanotube microarray functionalized by ultrafine atmospheric pressure plasma jet using biotin-avidin system

    NASA Astrophysics Data System (ADS)

    Abuzairi, Tomy; Okada, Mitsuru; Purnamaningsih, Retno Wigajatri; Poespawati, Nji Raden; Iwata, Futoshi; Nagatsu, Masaaki

    2016-07-01

    Ultrafine plasma jet is a promising technology with great potential for nano- or micro-scale surface modification. In this letter, we demonstrated the use of ultrafine atmospheric pressure plasma jet (APPJ) for patterning bio-immobilization on vertically aligned carbon nanotube (CNT) microarray platform without a physical mask. The biotin-avidin system was utilized to demonstrate localized biomolecule patterning on the biosensor devices. Using ±7.5 kV square-wave pulses, the optimum condition of plasma jet with He/NH3 gas mixture and 2.5 s treatment period has been obtained to functionalize CNTs. The functionalized CNTs were covalently linked to biotin, bovine serum albumin (BSA), and avidin-(fluorescein isothiocyanate) FITC, sequentially. BSA was necessary as a blocking agent to protect the untreated CNTs from avidin adsorption. The localized patterning results have been evaluated from avidin-FITC fluorescence signals analyzed using a fluorescence microscope. The patterning of biomolecules on the CNT microarray platform using ultrafine APPJ provides a means for potential application of microarray biosensors based on CNTs.

  16. Direct Observation of Photoexcited Hole Localization in CdSe Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ye; Wu, Kaifeng; Shabaev, Andrew

    Quantum-confined 1D semiconductor nanostructures are being investigated for hydrogen generation photocatalysts. In the photoreaction, after fast electron transfer, holes that remain in the nanostructure play an important role in the total quantum yield of hydrogen production. Unfortunately, knowledge of hole dynamics is limited due to lack of convenient spectroscopic signatures. Here, we directly probe hole localization dynamics within CdSe nanorods (NRs) by combining transient absorption (TA) and time-resolved terahertz (TRTS) spectroscopy. We show that when methylene blue is used as an electron acceptor, the resulting electron transfer occurs with a time constant of 3.5 +/- 0.1 ps and leaves behindmore » a delocalized hole. However, the hole quickly localizes in the Coulomb potential well generated by the reduced electron acceptor near the NR surface with time constant of 11.7 +/- 0.2 ps. Our theoretical investigation suggests that the hole becomes confined to a ~ +/-0.8 nm region near the reduced electron acceptor and the activation energy to detrap the hole from the potential well can be as large as 235 meV.« less

  17. On the unsteady gravity-capillary wave pattern found behind a slow moving localized pressure distribution

    NASA Astrophysics Data System (ADS)

    Masnadi, N.; Duncan, J. H.

    2013-11-01

    The non-linear response of a water surface to a slow-moving pressure distribution is studied experimentally using a vertically oriented carriage-mounted air-jet tube that is set to translate over the water surface in a long tank. The free surface deformation pattern is measured with a full-field refraction-based method that utilizes a vertically oriented digital movie camera (under the tank) and a random dot pattern (above the water surface). At towing speeds just below the minimum phase speed of gravity-capillary waves (cmin ~ 23 cm/s), an unsteady V-shaped pattern is formed behind the pressure source. Localized depressions are generated near the source and propagate in pairs along the two arms of the V-shaped pattern. These depressions are eventually shed from the tips of the pattern at a frequency of about 1 Hz. It is found that the shape and phase speeds of the first depressions shed in each run are quantitatively similar to the freely-propagating gravity-capillary lumps from potential flow calculations. In the experiments, the amplitudes of the depressions decrease by approximately 60 percent while travelling 12 wavelengths. The depressions shed later in each run behave in a less consistent manner, probably due to their interaction with neighboring depressions.

  18. Conductive scanning probe microscopy of the semicontinuous gold film and its SERS enhancement toward two-step photo-induced charge transfer and effect of the supportive layer

    NASA Astrophysics Data System (ADS)

    Sinthiptharakoon, K.; Sapcharoenkun, C.; Nuntawong, N.; Duong, B.; Wutikhun, T.; Treetong, A.; Meemuk, B.; Kasamechonchung, P.; Klamchuen, A.

    2018-05-01

    The semicontinuous gold film, enabling various electronic applications including development of surface-enhanced Raman scattering (SERS) substrate, is investigated using conductive atomic force microscopy (CAFM) and Kelvin probe force microscopy (KPFM) to reveal and investigate local electronic characteristics potentially associated with SERS generation of the film material. Although the gold film fully covers the underlying silicon surface, CAFM results reveal that local conductivity of the film is not continuous with insulating nanoislands appearing throughout the surface due to incomplete film percolation. Our analysis also suggests the two-step photo-induced charge transfer (CT) play the dominant role in the enhancement of SERS intensity with strong contribution from free electrons of the silicon support. Silicon-to-gold charge transport is illustrated by KPFM results showing that Fermi level of the gold film is slightly inhomogeneous and far below the silicon conduction band. We propose that inhomogeneity of the film workfunction affecting chemical charge transfer between gold and Raman probe molecule is associated with the SERS intensity varying across the surface. These findings provide deeper understanding of charge transfer mechanism for SERS which can help in design and development of the semicontinuous gold film-based SERS substrate and other electronic applications.

  19. Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: from protein structure to nanodisk assemblies.

    PubMed

    Horejs, Christine; Pum, Dietmar; Sleytr, Uwe B; Peterlik, Herwig; Jungbauer, Alois; Tscheliessnig, Rupert

    2010-11-07

    Surface layers (S-layers) are the most commonly observed cell surface structure of prokaryotic organisms. They are made up of proteins that spontaneously self-assemble into functional crystalline lattices in solution, on various solid surfaces, and interfaces. While classical experimental techniques failed to recover a complete structural model of an unmodified S-layer protein, small angle x-ray scattering (SAXS) provides an opportunity to study the structure of S-layer monomers in solution and of self-assembled two-dimensional sheets. For the protein under investigation we recently suggested an atomistic structural model by the use of molecular dynamics simulations. This structural model is now refined on the basis of SAXS data together with a fractal assembly approach. Here we show that a nondiluted critical system of proteins, which crystallize into monomolecular structures, might be analyzed by SAXS if protein-protein interactions are taken into account by relating a fractal local density distribution to a fractal local mean potential, which has to fulfill the Poisson equation. The present work demonstrates an important step into the elucidation of the structure of S-layers and offers a tool to analyze the structure of self-assembling systems in solution by means of SAXS and computer simulations.

  20. Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: From protein structure to nanodisk assemblies

    NASA Astrophysics Data System (ADS)

    Horejs, Christine; Pum, Dietmar; Sleytr, Uwe B.; Peterlik, Herwig; Jungbauer, Alois; Tscheliessnig, Rupert

    2010-11-01

    Surface layers (S-layers) are the most commonly observed cell surface structure of prokaryotic organisms. They are made up of proteins that spontaneously self-assemble into functional crystalline lattices in solution, on various solid surfaces, and interfaces. While classical experimental techniques failed to recover a complete structural model of an unmodified S-layer protein, small angle x-ray scattering (SAXS) provides an opportunity to study the structure of S-layer monomers in solution and of self-assembled two-dimensional sheets. For the protein under investigation we recently suggested an atomistic structural model by the use of molecular dynamics simulations. This structural model is now refined on the basis of SAXS data together with a fractal assembly approach. Here we show that a nondiluted critical system of proteins, which crystallize into monomolecular structures, might be analyzed by SAXS if protein-protein interactions are taken into account by relating a fractal local density distribution to a fractal local mean potential, which has to fulfill the Poisson equation. The present work demonstrates an important step into the elucidation of the structure of S-layers and offers a tool to analyze the structure of self-assembling systems in solution by means of SAXS and computer simulations.

  1. Surface layer protein characterization by small angle x-ray scattering and a fractal mean force concept: From protein structure to nanodisk assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horejs, Christine; Pum, Dietmar; Sleytr, Uwe B.

    2010-11-07

    Surface layers (S-layers) are the most commonly observed cell surface structure of prokaryotic organisms. They are made up of proteins that spontaneously self-assemble into functional crystalline lattices in solution, on various solid surfaces, and interfaces. While classical experimental techniques failed to recover a complete structural model of an unmodified S-layer protein, small angle x-ray scattering (SAXS) provides an opportunity to study the structure of S-layer monomers in solution and of self-assembled two-dimensional sheets. For the protein under investigation we recently suggested an atomistic structural model by the use of molecular dynamics simulations. This structural model is now refined on themore » basis of SAXS data together with a fractal assembly approach. Here we show that a nondiluted critical system of proteins, which crystallize into monomolecular structures, might be analyzed by SAXS if protein-protein interactions are taken into account by relating a fractal local density distribution to a fractal local mean potential, which has to fulfill the Poisson equation. The present work demonstrates an important step into the elucidation of the structure of S-layers and offers a tool to analyze the structure of self-assembling systems in solution by means of SAXS and computer simulations.« less

  2. Dynamic modulation of electronic properties of graphene by localized carbon doping using focused electron beam induced deposition

    NASA Astrophysics Data System (ADS)

    Kim, S.; Russell, M.; Henry, M.; Kim, S. S.; Naik, R. R.; Voevodin, A. A.; Jang, S. S.; Tsukruk, V. V.; Fedorov, A. G.

    2015-09-01

    We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an ``n-p-n'' junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated from a low dose of high energy (25 keV) electron beam (1 × 1018 e- per cm2). Detailed AFM imaging provides direct evidence of the new mechanism responsible for dynamic evolution of the locally varying graphene doping. The FEBID carbon atoms, which are physisorbed and weakly bound to graphene, diffuse towards the middle of graphene conduction channel due to their surface chemical potential gradient, resulting in negative shift of Dirac voltage. Increasing a primary electron dose to 1 × 1019 e- per cm2 results in a significant increase of carbon deposition, such that it covers the entire graphene conduction channel at high surface density, leading to n-doping of graphene channel. Collectively, these findings establish a unique capability of FEBID technique to dynamically modulate the doping state of graphene, thus enabling a new route to resist-free, ``direct-write'' functional patterning of graphene-based electronic devices with potential for on-demand re-configurability.We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an ``n-p-n'' junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated from a low dose of high energy (25 keV) electron beam (1 × 1018 e- per cm2). Detailed AFM imaging provides direct evidence of the new mechanism responsible for dynamic evolution of the locally varying graphene doping. The FEBID carbon atoms, which are physisorbed and weakly bound to graphene, diffuse towards the middle of graphene conduction channel due to their surface chemical potential gradient, resulting in negative shift of Dirac voltage. Increasing a primary electron dose to 1 × 1019 e- per cm2 results in a significant increase of carbon deposition, such that it covers the entire graphene conduction channel at high surface density, leading to n-doping of graphene channel. Collectively, these findings establish a unique capability of FEBID technique to dynamically modulate the doping state of graphene, thus enabling a new route to resist-free, ``direct-write'' functional patterning of graphene-based electronic devices with potential for on-demand re-configurability. Electronic supplementary information (ESI) available: Optimization of a PMMA-mediated wet transfer method of graphene, transfer characteristics of all the channels, raw data of drain-source current measured by sweeping a backgate voltage and an AFM topography image and cross-sectional profiles of Fig. 4 and the corresponding electrical measurement along with an estimation of carbon diffusion coefficient. See DOI: 10.1039/c5nr04063a

  3. Pinning of the Contact Line during Evaporation on Heterogeneous Surfaces: Slowdown or Temporary Immobilization? Insights from a Nanoscale Study.

    PubMed

    Zhang, Jianguo; Müller-Plathe, Florian; Leroy, Frédéric

    2015-07-14

    The question of the effect of surface heterogeneities on the evaporation of liquid droplets from solid surfaces is addressed through nonequilibrium molecular dynamics simulations. The mechanism behind contact line pinning which is still unclear is discussed in detail on the nanoscale. Model systems with the Lennard-Jones interaction potential were employed to study the evaporation of nanometer-sized cylindrical droplets from a flat surface. The heterogeneity of the surface was modeled through alternating stripes of equal width but two chemical types. The first type leads to a contact angle of 67°, and the other leads to a contact angle of 115°. The stripe width was varied between 2 and 20 liquid-particle diameters. On the surface with the narrowest stripes, evaporation occurred at constant contact angle as if the surface was homogeneous, with a value of the contact angle as predicted by the regular Cassie-Baxter equation. When the width was increased, the contact angle oscillated during evaporation between two boundaries whose values depend on the stripe width. The evaporation behavior was thus found to be a direct signature of the typical size of the surface heterogeneity domains. The contact angle both at equilibrium and during evaporation could be predicted from a local Cassie-Baxter equation in which the surface composition within a distance of seven fluid-particle diameters around the contact line was considered, confirming the local nature of the interactions that drive the wetting behavior of droplets. More importantly, we propose a nanoscale explanation of pinning during evaporation. Pinning should be interpreted as a drastic slowdown of the contact line dynamics rather than a complete immobilization of it during a transition between two contact angle boundaries.

  4. Activation of Phospholipase C Increases Intramembrane Electric Fields in N1E-115 Neuroblastoma Cells

    PubMed Central

    Xu, Chang; Loew, Leslie M.

    2003-01-01

    We imaged the intramembrane potential (a combination of transmembrane, surface, and dipole potential) on N1E-115 neuroblastoma cells with a voltage-sensitive dye. After activation of the B2 bradykinin receptor, the electric field sensed by the dye increased by an amount equivalent to a depolarization of 83 mV. The increase in intramembrane potential was blocked by the phospholipase C (PLC) inhibitors U-73122 and neomycin, and was invariably accompanied by a transient rise of [Ca2+]i. A depolarized inner surface potential, as the membrane loses negative charges via phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis, and an increase in the dipole potential, as PIP2 is hydrolyzed to 1,2-diacylglycerol (DAG), can each account for a small portion of the change in intramembrane potential. The primary contribution to the measured change in intramembrane potential may arise from an increased dipole potential, as DAG molecules are generated from hydrolysis of other phospholipids. We found bradykinin produced an inhibition of a M-type voltage-dependent K+ current (IK(M)). This inhibition was also blocked by the PLC inhibitors and had similar kinetics as the bradykinin-induced modulation of intramembrane potential. Our results suggest that the change in the local intramembrane potential induced by bradykinin may play a role in mediating the IK(M) inhibition. PMID:12770917

  5. Brain segmentation and the generation of cortical surfaces

    NASA Technical Reports Server (NTRS)

    Joshi, M.; Cui, J.; Doolittle, K.; Joshi, S.; Van Essen, D.; Wang, L.; Miller, M. I.

    1999-01-01

    This paper describes methods for white matter segmentation in brain images and the generation of cortical surfaces from the segmentations. We have developed a system that allows a user to start with a brain volume, obtained by modalities such as MRI or cryosection, and constructs a complete digital representation of the cortical surface. The methodology consists of three basic components: local parametric modeling and Bayesian segmentation; surface generation and local quadratic coordinate fitting; and surface editing. Segmentations are computed by parametrically fitting known density functions to the histogram of the image using the expectation maximization algorithm [DLR77]. The parametric fits are obtained locally rather than globally over the whole volume to overcome local variations in gray levels. To represent the boundary of the gray and white matter we use triangulated meshes generated using isosurface generation algorithms [GH95]. A complete system of local parametric quadratic charts [JWM+95] is superimposed on the triangulated graph to facilitate smoothing and geodesic curve tracking. Algorithms for surface editing include extraction of the largest closed surface. Results for several macaque brains are presented comparing automated and hand surface generation. Copyright 1999 Academic Press.

  6. Assessment of swine-specific bacteriophages of Bacteroides fragilis in swine farms with different antibiotic practices.

    PubMed

    Leknoi, Yuranan; Mongkolsuk, Skorn; Sirikanchana, Kwanrawee

    2017-04-01

    We assessed the occurrence and specificity of bacteriophages of Bacteroides fragilis in swine farms for their potential application in microbial source tracking. A local B. fragilis host strain, SP25 (DSM29413), was isolated from a pooled swine feces sample taken from a non-antibiotic farm. This strain was highly specific to swine fecal materials because it did not detect bacteriophages in any samples from human sewage, sheep, goats, cattle, dogs, and cats. The reference B. fragilis strain, RYC2056, could detect phages in swine samples but also detected phages in most human sewage and polluted urban canal samples. Phages of SP25 exist in the proximity of certain swine farms, regardless of their antibiotic use (p > 0.05). B. fragilis strain SP25 exhibited relatively high resistance to most of the veterinary antimicrobial agents tested. Interestingly, most farms that were positive for SP25 phages were also positive for RYC2056 phages. In conclusion, the swine-specific SP25 strain has the potential to indicate swine fecal contamination in certain bodies of water. Bacterial isolates with larger distributions are being studied and validated. This study highlights the importance of assessing the abundance of phages in local swine populations before determining their potential applicability for source tracking in local surface waters.

  7. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals.

    PubMed

    Theocharis, G; Boechler, N; Kevrekidis, P G; Job, S; Porter, Mason A; Daraio, C

    2010-11-01

    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic Fermi-Pasta-Ulam (FPU)-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and note that the asymmetric nature of the tensionless interaction potential can lead to hybrid bulk-surface localized solutions.

  8. Intrinsic energy localization through discrete gap breathers in one-dimensional diatomic granular crystals

    NASA Astrophysics Data System (ADS)

    Theocharis, G.; Boechler, N.; Kevrekidis, P. G.; Job, S.; Porter, Mason A.; Daraio, C.

    2010-11-01

    We present a systematic study of the existence and stability of discrete breathers that are spatially localized in the bulk of a one-dimensional chain of compressed elastic beads that interact via Hertzian contact. The chain is diatomic, consisting of a periodic arrangement of heavy and light spherical particles. We examine two families of discrete gap breathers: (1) an unstable discrete gap breather that is centered on a heavy particle and characterized by a symmetric spatial energy profile and (2) a potentially stable discrete gap breather that is centered on a light particle and is characterized by an asymmetric spatial energy profile. We investigate their existence, structure, and stability throughout the band gap of the linear spectrum and classify them into four regimes: a regime near the lower optical band edge of the linear spectrum, a moderately discrete regime, a strongly discrete regime that lies deep within the band gap of the linearized version of the system, and a regime near the upper acoustic band edge. We contrast discrete breathers in anharmonic Fermi-Pasta-Ulam (FPU)-type diatomic chains with those in diatomic granular crystals, which have a tensionless interaction potential between adjacent particles, and note that the asymmetric nature of the tensionless interaction potential can lead to hybrid bulk-surface localized solutions.

  9. Spacecraft charging and ion wake formation in the near-Sun environment

    NASA Astrophysics Data System (ADS)

    Ergun, R. E.; Malaspina, D. M.; Bale, S. D.; McFadden, J. P.; Larson, D. E.; Mozer, F. S.; Meyer-Vernet, N.; Maksimovic, M.; Kellogg, P. J.; Wygant, J. R.

    2010-07-01

    A three-dimensional, self-consistent code is employed to solve for the static potential structure surrounding a spacecraft in a high photoelectron environment. The numerical solutions show that, under certain conditions, a spacecraft can take on a negative potential in spite of strong photoelectron currents. The negative potential is due to an electrostatic barrier near the surface of the spacecraft that can reflect a large fraction of the photoelectron flux back to the spacecraft. This electrostatic barrier forms if (1) the photoelectron density at the surface of the spacecraft greatly exceeds the ambient plasma density, (2) the spacecraft size is significantly larger than local Debye length of the photoelectrons, and (3) the thermal electron energy is much larger than the characteristic energy of the escaping photoelectrons. All of these conditions are present near the Sun. The numerical solutions also show that the spacecraft's negative potential can be amplified by an ion wake. The negative potential of the ion wake prevents secondary electrons from escaping the part of spacecraft in contact with the wake. These findings may be important for future spacecraft missions that go nearer to the Sun, such as Solar Orbiter and Solar Probe Plus.

  10. Comparisons of predicted steady-state levels in rooms with extended- and local-reaction bounding surfaces

    NASA Astrophysics Data System (ADS)

    Hodgson, Murray; Wareing, Andrew

    2008-01-01

    A combined beam-tracing and transfer-matrix model for predicting steady-state sound-pressure levels in rooms with multilayer bounding surfaces was used to compare the effect of extended- and local-reaction surfaces, and the accuracy of the local-reaction approximation. Three rooms—an office, a corridor and a workshop—with one or more multilayer test surfaces were considered. The test surfaces were a single-glass panel, a double-drywall panel, a carpeted floor, a suspended-acoustical ceiling, a double-steel panel, and glass fibre on a hard backing. Each test surface was modeled as of extended or of local reaction. Sound-pressure levels were predicted and compared to determine the significance of the surface-reaction assumption. The main conclusions were that the difference between modeling a room surface as of extended or of local reaction is not significant when the surface is a single plate or a single layer of material (solid or porous) with a hard backing. The difference is significant when the surface consists of multilayers of solid or porous material and includes a layer of fluid with a large thickness relative to the other layers. The results are partially explained by considering the surface-reflection coefficients at the first-reflection angles.

  11. [Spatial Distribution and Potential Ecological Risk Assessment of Heavy Metals in Soils and Sediments in Shunde Waterway, Southern China].

    PubMed

    Cai, Yi-min; Chen, Wei-ping; Peng, Chi; Wang, Tie-yu; Xiao, Rong-bo

    2016-05-15

    Environmental quality of soils and sediments around water source area can influence the safety of potable water of rivers. In order to study the pollution characteristics, the sources and ecological risks of heavy metals Zn, Cr, Pb, Cu, Ni and Cd in water source area, surface soils around the waterway and sediments in the estuary of main tributaries were collected in Shunde, and ecological risks of heavy metals were assessed by two methods of potential ecological risk assessment. The mean contents of Zn, Cr, Pb, Cu, Ni and Cd in the surface soils were 186.80, 65.88, 54.56, 32.47, 22.65 and 0.86 mg · kg⁻¹ respectively, and they were higher than their soil background values except those of Cu and Ni. The mean concentrations of Zn, Cr, Pb, Cu, Ni and Cd in the sediments were 312.11, 111.41, 97.87, 92.32, 29.89 and 1.72 mg · kg⁻¹ respectively, and they were higher than their soil background values except that of Ni. The results of principal component analysis illustrated that the main source of Cr and Ni in soils was soil parent materials, and Zn, Pb, Cu and Cd in soils mainly came from wastewater discharge of local manufacturing industry. The six heavy metals in sediments mainly originated from industry emissions around the Shunde waterway. The results of potential ecological risk assessment integrating environmental bioavailability of heavy metals showed that Zn, Cu, Pb and Ni had a slight potential ecological risk. Cd had a slight potential ecological risk in surface soils, but a moderate potential ecological risk in surfaces sediments. Because the potential ecological risk assessment integrating environmental bioavailability of heavy metals took the soil properties and heavy metal forms into account, its results of risks were lower than those of Hakanson methods, and it could avoid overestimating the potential risks of heavy metals.

  12. The application of cold-plasma coagulation on the visceral pleura results in a predictable depth of necrosis without fistula generation

    PubMed Central

    Hoffmann, Martin; Ulrich, Anita; Schloericke, Erik; Limmer, Stefan; Habermann, Jens Karsten; Wolken, Heike; Bruch, Hans-Peter; Kujath, Peter

    2012-01-01

    A technique for the safe transfer of electric energy to the pulmonary surface for the potential evaporation of malignant tumours is non-existent to date. By conducting the current study, we wanted to generate data on the potential beneficiary effects and complications of using cold-plasma coagulation on the pulmonary surface. Cold-plasma coagulation was applied to the pulmonary surface in eight female mini-pigs via a thoracoscopic access. After 12 days, we performed a re-thoracoscopy on the contralateral side. After a further 12 days, we performed a median sternotomy and did cold-plasma coagulation on previously untreated areas of either lung. No pulmonary fistulas were detected. In two of the eight pigs, we found a localized chronic pneumonia. None of the pigs died during the course of the study. Morbidity was also low with two pigs refusing food intake, one pig with dyspnoea after difficult intubation and one pig coughing. All events were self-limited and occurred only on post-operative Day 1. The treatment effect was almost linear and correlated to the generator energy applied. The differences between the effects reached statistical significance (P < 0.05). The application of cold-plasma coagulation to the pulmonary surface is safe in pigs. A potential clinical application of this technique is treatment of malignant pleural mesothelioma. PMID:22194274

  13. FROM THE HISTORY OF PHYSICS: Electrolysis and surface phenomena. To the bicentenary of Volta's publication on the first direct-current source

    NASA Astrophysics Data System (ADS)

    Gokhshtein, Aleksandr Ya

    2000-07-01

    The development of knowledge about electric current, potential, and the conversion of energy at the interface between electronic- and ionic-conductivity phases is briefly reviewed. Although soon after its discovery it was realized that electric current is the motion of charged particles, the double-layer field promoting charge transfer through the interface was considered for a long time to be as uniform as in a capacitor. One-dimensional ion discharge theory failed to explain the observed dependence of the current on the potential jump across the interface. The spatial segmentation of energy in the double layer due to the quantum evolution of the layer's periphery puts a limit on the charge transfer work the field may perform locally, and creates conditions for the ionic atmosphere being spontaneously compressed after the critical potential jump has been reached. A discrete interchange of states also occurs due to the adsorption of discharged particles and corresponds to the consecutive exclusion of the d-wave function nodes of metal surface atoms, the exclusion manifesting itself in the larger longitudinal and smaller lateral sizes of the atomic orbital. The elastic extension of the metal surface reduces the d-function overlap thus intensifying adsorption. Advances in experimentation, in particular new techniques capable of detecting alternating surface tension of solids, enabled these and some other phenomena to be observed.

  14. Potential effects of surface coal mining on the hydrology of the Little Bear Creek area, Moorhead coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1986-01-01

    The Little Bear Creek area of the Moorhead Coal Field, 27 miles south of Ashland, Montana, contains large reserves of Federally owned coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic system and to assess potential effects of surface mining on local water resources. Hydrologic data collected from private wells, observation wells, test holes and springs indicate that the aquifers are coal and sandstone beds in the upper part of the Tongue River Member, Fort Union Formation (Paleocene age), and sand and gravel layers of valley alluvium (Pleistocene and Holocene age). Surface water is available from ephemeral flow along stretches of the main streams, and from stock ponds throughout the area. Mining the Anderson and Dietz coal beds would destroy one stock well and several stock ponds, would possibly interfere with the flow of one spring, and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Little Bear Creek and Davidson Draw would be removed at the mine site, as would sandstone and coal aquifers above the mine floor. Although mining would alter existing hydrologic systems, alternative water supplies are available. Planned structuring of the spoils and reconstruction of the alluvial aquifers could minimize downstream water-quality degradation. (USGS)

  15. Phoretic Self-Propulsion

    NASA Astrophysics Data System (ADS)

    Moran, Jeffrey L.; Posner, Jonathan D.

    2017-01-01

    It is well-known that micro- and nanoparticles can move by phoretic effects in response to externally imposed gradients of scalar quantities such as chemical concentration or electric potential. A class of active colloids can propel themselves through aqueous media by generating local gradients of concentration and electrical potential via surface reactions. Phoretic active colloids can be controlled using external stimuli and can mimic collective behaviors exhibited by many biological swimmers. Low-Reynolds number physicochemical hydrodynamics imposes unique challenges and constraints that must be understood for the practical potential of active colloids to be realized. Here, we review the rich physics underlying the operation of phoretic active colloids, describe their interactions and collective behaviors, and discuss promising directions for future research.

  16. Nonenzymatic Wearable Sensor for Electrochemical Analysis of Perspiration Glucose.

    PubMed

    Zhu, Xiaofei; Ju, Yinhui; Chen, Jian; Liu, Deye; Liu, Hong

    2018-05-25

    We report a nonenzymatic wearable sensor for electrochemical analysis of perspiration glucose. Multipotential steps are applied on a Au electrode, including a high negative pretreatment potential step for proton reduction which produces a localized alkaline condition, a moderate potential step for electrocatalytic oxidation of glucose under the alkaline condition, and a positive potential step to clean and reactivate the electrode surface for the next detection. Fluorocarbon-based materials were coated on the Au electrode for improving the selectivity and robustness of the sensor. A fully integrated wristband is developed for continuous real-time monitoring of perspiration glucose during physical activities, and uploading the test result to a smartphone app via Bluetooth.

  17. An alternative to the TEM (Transformed Eulerian Mean) equations

    NASA Astrophysics Data System (ADS)

    Gaßmann, Almut

    2013-04-01

    The TEM equations constitute a powerful means to get access to the residual circulation. However, due to their foundation on the wave perspective, they deliver only a zonally averaged picture without access to the three-dimensional structure or the local origins of the residual circulation. Therefore it is worth to investigate whether there are alternatives. The pathway followed here is to perform a transformation of the momentum and the potential temperature equation before taking the zonal mean. This is done by removing the steady state ideal wind solution vid = ?×?B-(?±P) from the equations (? - potential temperature, B - Bernoulli function, P - Ertel's potential vorticity EPV, ?± - density). The advantage of that approach is that the total EPV-flux does no longer contain an explicitly visible 'do-nothing-flux'. This flux, ?? ×?B, does only vanish when averaging on isentropic surfaces, but not on other isosurfaces. Here we find the reason why the conventional zonal mean on isentropes delivers a direct overturning cell on each hemisphere, whereas on other isosurfaces we obtain the typical three-cell structure with Headley, Ferrel, and polar cells. It will be demonstrated and made visible through idealized climate experiments with the ICON-IAP model that the zonal averages of the nonideal wind components vnid = v - vid and wnid = w - wid constitute similar direct overturning cells on non-isentropic surfaces as obtained with the TEM-generated v* and w*. It is also interesting to inspect fields of local nonideal wind components, the very origin of the residual circulation.

  18. Monitoring Tensile Fatigue of Superelastic NiTi Wire in Liquids by Electrochemical Potential

    NASA Astrophysics Data System (ADS)

    Racek, Jan; Stora, Marc; Šittner, Petr; Heller, Luděk; Kopeček, Jaromir; Petrenec, Martin

    2015-06-01

    Fatigue of superelastic NiTi wires was investigated by cyclic tension in simulated biofluid. The state of the surface of the fatigued NiTi wire was monitored by following the evolution of the electrochemical open circuit potential (OCP) together with macroscopic stresses and strains. The ceramic TiO2 oxide layer on the NiTi wire surface cannot withstand the large transformation strain and fractures in the first cycle. Based on the analysis of the results of in situ OCP experiments and SEM observation of cracks, it is claimed that the cycled wire surface develops mechanochemical reactions at the NiTi/liquid interface leading to cumulative generation of hydrogen, uptake of the hydrogen by the NiTi matrix, local loss of the matrix strength, crack transfer into the NiTi matrix, accelerated crack growth, and ultimately to the brittle fracture of the wire. Fatigue degradation is thus claimed to originate from the mechanochemical processes occurring at the excessively deforming surface not from the accumulation of defects due to energy dissipative bulk deformation processes. Ironically, combination of the two exciting properties of NiTi—superelasticity due to martensitic transformation and biocompatibility due to the protective TiO2 surface oxide layer—leads to excessive fatigue damage during cyclic mechanical loading in biofluids.

  19. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface- and shallow ground-water hydrology - A literature review

    USGS Publications Warehouse

    Andersen, Douglas C.

    2007-01-01

    A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife Refuge, Colorado, in understanding factors potentially influencing refuge ecology. Few studies were found that addressed hydrological effects of roads on a comparable area of shallow slope in a semiarid region. No study dealt with road effects on surface- and ground-water supplies to ephemeral wetlands, which on the refuge are sustained by seasonal snowmelt in neighboring mountains. Road surfaces increase runoff, reduce infiltration, and serve as a sediment source. Roadbeds can interfere with normal surface- and ground-water flows and thereby influence the quantity, timing, and duration of water movement both across landscapes and through the soil. Hydrologic effects can be localized near the road as well as widespread and distant. The number, arrangement, and effectiveness of road-drainage structures (culverts and other devices) largely determine the level of hydrologic alteration produced by a road. Undesirable changes to natural hydrologic patterns can be minimized by considering potential impacts during road design, construction, and maintenance. Road removal as a means to restore desirable hydrologic conditions to landscapes adversely affected by roads has yet to be rigorously evaluated.

  20. Shale gas development impacts on surface water quality in Pennsylvania.

    PubMed

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.

  1. A trajectory planning scheme for spacecraft in the space station environment. M.S. Thesis - University of California

    NASA Technical Reports Server (NTRS)

    Soller, Jeffrey Alan; Grunwald, Arthur J.; Ellis, Stephen R.

    1991-01-01

    Simulated annealing is used to solve a minimum fuel trajectory problem in the space station environment. The environment is special because the space station will define a multivehicle environment in space. The optimization surface is a complex nonlinear function of the initial conditions of the chase and target crafts. Small permutations in the input conditions can result in abrupt changes to the optimization surface. Since no prior knowledge about the number or location of local minima on the surface is available, the optimization must be capable of functioning on a multimodal surface. It was reported in the literature that the simulated annealing algorithm is more effective on such surfaces than descent techniques using random starting points. The simulated annealing optimization was found to be capable of identifying a minimum fuel, two-burn trajectory subject to four constraints which are integrated into the optimization using a barrier method. The computations required to solve the optimization are fast enough that missions could be planned on board the space station. Potential applications for on board planning of missions are numerous. Future research topics may include optimal planning of multi-waypoint maneuvers using a knowledge base to guide the optimization, and a study aimed at developing robust annealing schedules for potential on board missions.

  2. Brain surface temperature under a craniotomy

    PubMed Central

    Kalmbach, Abigail S.

    2012-01-01

    Many neuroscientists access surface brain structures via a small cranial window, opened in the bone above the brain region of interest. Unfortunately this methodology has the potential to perturb the structure and function of the underlying brain tissue. One potential perturbation is heat loss from the brain surface, which may result in local dysregulation of brain temperature. Here, we demonstrate that heat loss is a significant problem in a cranial window preparation in common use for electrical recording and imaging studies in mice. In the absence of corrective measures, the exposed surface of the neocortex was at ∼28°C, ∼10°C below core body temperature, and a standing temperature gradient existed, with tissue below the core temperature even several millimeters into the brain. Cooling affected cellular and network function in neocortex and resulted principally from increased heat loss due to convection and radiation through the skull and cranial window. We demonstrate that constant perfusion of solution, warmed to 37°C, over the brain surface readily corrects the brain temperature, resulting in a stable temperature of 36–38°C at all depths. Our results indicate that temperature dysregulation may be common in cranial window preparations that are in widespread use in neuroscience, underlining the need to take measures to maintain the brain temperature in many physiology experiments. PMID:22972953

  3. Recently active contractile deformation in the forearc of southern Peru

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Farber, D.; Audin, L.; Finkel, R. C.

    2010-12-01

    In the Precordillera and Western Cordillera of southern Peru (14°-18°S), vast pediment surfaces have been abandoned through drainage diversion and river incision, with the major drainages carving deep canyons. Within this region, we have identified range-sub-parallel contractile structures that accommodate significant distributed crustal deformation. Young geomorphic features document both the presence and youthfulness of these contractile structures. Here, we determine exposure ages on geomorphic features such as pediment surfaces and fluvial terraces using in situ produced cosmogenic radionuclides, in conjunction with field and remote mapping. This chronologic data reveals that ancient surfaces have been preserved as a result of very low erosion rates. We measure this rate to be <0.5m/Ma on genetically similar surfaces spanning over 4 degrees of latitude throughout this region. While many ancient surfaces are preserved in forearc localities, we also observe young (30ka-1Ma) low-relief pediment surfaces modified by recent processes. Specifically, active structures accommodating compressional stresses locally displace active drainages and offset river terraces leading to their abandonment. Based on our chronology and geomorphic mapping, we calculate a Pleistocene river incision rate of ~0.3mm/yr determined from data collected along exoreic rivers. This rate is consistent with longer-term incision rates measured in other localities along this margin. We suggest that, in this region of southern Peru, the steep western wedge of the Andean margin supports the high topography of the Altiplano through a combination of uplift along steeply dipping contractile west-vergent structures and isostatic responses to the focused removal of large amounts of crustal material through canyon incision. Further, that these range sub-parallel structures are related at depth to a thrust system that plays a role in not only the maintenance of the Andean margin, but potentially in its formation as well.

  4. Dedicated Low Latitude Diurnal CO2 Frost Observation Campaigns by the Mars Climate Sounder

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Kass, D. M.; Kleinboehl, A.; Hayne, P. O.; Heavens, N. G.; McCleese, D. J.; Schofield, J. T.; Shirley, J. H.

    2017-12-01

    In December 2016 (Ls≈280, MY33) and July 2017 (Ls≈30, MY34), the Mars Climate Sounder (MCS) onboard the Mars Reconnaissance Orbiter (MRO) conducted two distinct observation campaigns. The first one aimed at 1) confirming the presence of low latitude diurnal CO2 frost on Mars, and 2) refining the estimated mass of carbon dioxide condensed at the surface, whereas the second campaign was designed to 3) search for temporally and spatially varying spectral characteristics indicative of frost properties (i.e., crystal size, contamination, etc.) and relationship to the regolith. To meet these goals, MCS acquired thermal infrared observations of the surface and atmosphere at variable local times (≈1.70-3.80 h Local True Solar Time) and in the 10°-50°N latitude band where very low thermal inertia material (<< 100 Jm-2K-1s-0.5) is present. Atmospherically corrected surface brightness temperatures were retrieved in a wavelength region around 32 μm (MCS channel B1) as well as at 12 μm, 16 μm and 22 μm (MCS channels A4, A1, A5) where possible. A preliminary analysis of the data suggests a good general agreement between these new observations and earlier predictions in terms of frost distribution and spectral properties. In addition, pre-frost deposition surface cooling rates are found to be consistent with those predicted by numerical models (i.e., 1-2K per hour). Finally, we observe buffered surface temperatures near the local frost point, indicating a surface emissivity ≈1. (i.e., optically thin frost layers, or dust contaminated frost, or slab-like ice) and no discernable frost metamorphism. We will present a detailed analysis of these new and unique observations, and elaborate on the potential relationship between the regolith and this recurring frost cycle.

  5. Multibeam 3D Underwater SLAM with Probabilistic Registration.

    PubMed

    Palomer, Albert; Ridao, Pere; Ribas, David

    2016-04-20

    This paper describes a pose-based underwater 3D Simultaneous Localization and Mapping (SLAM) using a multibeam echosounder to produce high consistency underwater maps. The proposed algorithm compounds swath profiles of the seafloor with dead reckoning localization to build surface patches (i.e., point clouds). An Iterative Closest Point (ICP) with a probabilistic implementation is then used to register the point clouds, taking into account their uncertainties. The registration process is divided in two steps: (1) point-to-point association for coarse registration and (2) point-to-plane association for fine registration. The point clouds of the surfaces to be registered are sub-sampled in order to decrease both the computation time and also the potential of falling into local minima during the registration. In addition, a heuristic is used to decrease the complexity of the association step of the ICP from O(n2) to O(n) . The performance of the SLAM framework is tested using two real world datasets: First, a 2.5D bathymetric dataset obtained with the usual down-looking multibeam sonar configuration, and second, a full 3D underwater dataset acquired with a multibeam sonar mounted on a pan and tilt unit.

  6. Comparative investigation of pure and mixed rare gas atoms on coronene molecules.

    PubMed

    Rodríguez-Cantano, Rocío; Bartolomei, Massimiliano; Hernández, Marta I; Campos-Martínez, José; González-Lezana, Tomás; Villarreal, Pablo; Pérez de Tudela, Ricardo; Pirani, Fernando; Hernández-Rojas, Javier; Bretón, José

    2017-01-21

    Clusters formed by the combination of rare gas (RG) atoms of He, Ne, Ar, and Kr on coronene have been investigated by means of a basin-hopping algorithm and path integral Monte Carlo calculations at T = 2 K. Energies and geometries have been obtained and the role played by the specific RG-RG and RG-coronene interactions on the final results is analysed in detail. Signatures of diffuse behavior of the He atoms on the surface of the coronene are in contrast with the localization of the heavier species, Ar and Kr. The observed coexistence of various geometries for Ne suggests the motion of the RG atoms on the multi-well potential energy surface landscape offered by the coronene. Therefore, the investigation of different clusters enables a comparative analysis of localized versus non-localized features. Mixed Ar-He-coronene clusters have also been considered and the competition of the RG atoms to occupy the docking sites on the molecule is discussed. All the obtained information is crucial to assess the behavior of coronene, a prototypical polycyclic aromatic hydrocarbon clustering with RG atoms at a temperature close to that of interstellar medium, which arises from the critical balance of the interactions involved.

  7. A PI4P-driven electrostatic field controls cell membrane identity and signaling in plants

    PubMed Central

    Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon

    2016-01-01

    Many signaling proteins permanently or transiently localize to specific organelles for function. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PI4P). Our results further reveal that, contrarily to other eukaryotes, PI4P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID, as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATORs (MAKRs) family, which are involved in brassinosteroid and receptor-like kinase signaling. We anticipate that this PI4P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition. PMID:27322096

  8. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants.

    PubMed

    Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon

    2016-06-20

    Many signalling proteins permanently or transiently localize to specific organelles. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PtdIns(4)P). Our results further reveal that, contrarily to other eukaryotes, PtdIns(4)P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATOR (MAKR) family, which are involved in brassinosteroid and receptor-like kinase signalling. We anticipate that this PtdIns(4)P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition.

  9. Modulation of release kinetics by plasma polymerization of ampicillin-loaded β-TCP ceramics

    NASA Astrophysics Data System (ADS)

    Labay, C.; Buxadera-Palomero, J.; Avilés, M.; Canal, C.; Ginebra, M. P.

    2016-08-01

    Beta-tricalcium phosphate (β-TCP) bioceramics are employed in bone repair surgery. Their local implantation in bone defects puts them in the limelight as potential materials for local drug delivery. However, obtaining suitable release patterns fitting the required therapeutics is a challenge. Here, plasma polymerization of ampicillin-loaded β-TCP is studied for the design of a novel antibiotic delivery system. Polyethylene glycol-like (PEG-like) coating of β-TCP by low pressure plasma polymerization was performed using diglyme as precursor, and nanometric PEG-like layers were obtained by simple and double plasma polymerization processes. A significant increase in hydrophobicity, and the presence of plasma polymer was visible on the surface by SEM and quantified by XPS. As a main consequence of the plasma polymerisation, the release kinetics were successfully modified, avoiding burst release, and slowing down the initial rate of release leading to a 4.5 h delay in reaching the same antibiotic release percentage, whilst conservation of the activity of the antibiotic was simultaneously maintained. Thus, plasma polymerisation on the surface of bioceramics may be a good strategy to design controlled drug delivery matrices for local bone therapies.

  10. Synthesis, characterization and computational study of the newly synthetized sulfonamide molecule

    NASA Astrophysics Data System (ADS)

    Murthy, P. Krishna; Suneetha, V.; Armaković, Stevan; Armaković, Sanja J.; Suchetan, P. A.; Giri, L.; Rao, R. Sreenivasa

    2018-02-01

    A new compound N-(2,5-dimethyl-4-nitrophenyl)-4-methylbenzenesulfonamide (NDMPMBS) has been derived from 2,5-dimethyl-4-nitroaniline and 4-methylbenzene-1-sulfonyl chloride. Structure was characterized by SCXRD studies and spectroscopic tools. Compound crystallized in the monoclinic crystal system with P21/c space group a = 10.0549, b = 18.967, c = 8.3087, β = 103.18 and Z = 4. Type and nature of intermolecular interaction in crystal state investigated by 3D-Hirshfeld surface and 2D-finger print plots revealed that title compound stabilized by several interactions. The structural and electronic properties of title compound have been calculated at DFT/B3LYP/6-311G++(d,p) level of theory. Computationally obtained spectral data was compared with experimental results, showing excellent mutual agreement. Assignment of each vibrational wave number was done on the basis of potential energy distribution (PED). Investigation of local reactivity descriptors encompassed visualization of molecular electrostatic potential (MEP) and average local ionization energy (ALIE) surfaces, visualization of Fukui functions, natural bond order (NBO) analysis, bond dissociation energies for hydrogen abstraction (H-BDE) and radial distribution functions (RDF) after molecular dynamics (MD) simulations. MD simulations were also used in order to investigate interaction of NDMPMBS molecule with 1WKR and 3ETT proteins protein.

  11. Geographical limits to species-range shifts are suggested by climate velocity.

    PubMed

    Burrows, Michael T; Schoeman, David S; Richardson, Anthony J; Molinos, Jorge García; Hoffmann, Ary; Buckley, Lauren B; Moore, Pippa J; Brown, Christopher J; Bruno, John F; Duarte, Carlos M; Halpern, Benjamin S; Hoegh-Guldberg, Ove; Kappel, Carrie V; Kiessling, Wolfgang; O'Connor, Mary I; Pandolfi, John M; Parmesan, Camille; Sydeman, William J; Ferrier, Simon; Williams, Kristen J; Poloczanska, Elvira S

    2014-03-27

    The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the 'business as usual' climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.

  12. Effects of Offshore Wind Turbines on Ocean Waves

    NASA Astrophysics Data System (ADS)

    Wimer, Nicholas; Churchfield, Matthew; Hamlington, Peter

    2014-11-01

    Wakes from horizontal axis wind turbines create large downstream velocity deficits, thus reducing the available energy for downstream turbines while simultaneously increasing turbulent loading. Along with this deficit, however, comes a local increase in the velocity around the turbine rotor, resulting in increased surface wind speeds. For offshore turbines, these increased speeds can result in changes to the properties of wind-induced waves at the ocean surface. In this study, the characteristics and implications of such waves are explored by coupling a wave simulation code to the Simulator for Offshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. The wave simulator and SOWFA are bi-directionally coupled using the surface wind field produced by an offshore wind farm to drive an ocean wave field, which is used to calculate a wave-dependent surface roughness that is fed back into SOWFA. The details of this combined framework are outlined. The potential for using the wave field created at offshore wind farms as an additional energy resource through the installation of on-site wave converters is discussed. Potential negative impacts of the turbine-induced wave field are also discussed, including increased oscillation of floating turbines.

  13. Pulse electrochemical meso/micro/nano ultraprecision machining technology.

    PubMed

    Lee, Jeong Min; Kim, Young Bin; Park, Jeong Woo

    2013-11-01

    This study demonstrated meso/micro/nano-ultraprecision machining through electrochemical reactions using intermittent DC pulses. The experiment focused on two machining methods: (1) pulse electrochemical polishing (PECP) of stainless steel, and (2) pulse electrochemical nano-patterning (PECNP) on a silicon (Si) surface, using atomic force microscopy (AFM) for fabrication. The dissolution reaction at the stainless steel surface following PECP produced a very clean, smooth workpiece. The advantages of the PECP process included improvements in corrosion resistance, deburring of the sample surface, and removal of hydrogen from the stainless steel surface as verified by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). In PECNP, the electrochemical reaction generated within water molecules produced nanoscale oxide textures on a Si surface. Scanning probe microscopy (SPM) was used to evaluate nanoscale-pattern processing on a Si wafer surface produced by AFM-PECNP For both processes using pulse electrochemical reactions, three-dimensional (3-D) measurements and AFM were used to investigate the changes on the machined surfaces. Preliminary results indicated the potential for advancing surface polishing techniques and localized micro/nano-texturing technology using PECP and PECNP processes.

  14. Cytosolic proteins can exploit membrane localization to trigger functional assembly

    PubMed Central

    2018-01-01

    Cell division, endocytosis, and viral budding would not function without the localization and assembly of protein complexes on membranes. What is poorly appreciated, however, is that by localizing to membranes, proteins search in a reduced space that effectively drives up concentration. Here we derive an accurate and practical analytical theory to quantify the significance of this dimensionality reduction in regulating protein assembly on membranes. We define a simple metric, an effective equilibrium constant, that allows for quantitative comparison of protein-protein interactions with and without membrane present. To test the importance of membrane localization for driving protein assembly, we collected the protein-protein and protein-lipid affinities, protein and lipid concentrations, and volume-to-surface-area ratios for 46 interactions between 37 membrane-targeting proteins in human and yeast cells. We find that many of the protein-protein interactions between pairs of proteins involved in clathrin-mediated endocytosis in human and yeast cells can experience enormous increases in effective protein-protein affinity (10–1000 fold) due to membrane localization. Localization of binding partners thus triggers robust protein complexation, suggesting that it can play an important role in controlling the timing of endocytic protein coat formation. Our analysis shows that several other proteins involved in membrane remodeling at various organelles have similar potential to exploit localization. The theory highlights the master role of phosphoinositide lipid concentration, the volume-to-surface-area ratio, and the ratio of 3D to 2D equilibrium constants in triggering (or preventing) constitutive assembly on membranes. Our simple model provides a novel quantitative framework for interpreting or designing in vitro experiments of protein complexation influenced by membrane binding. PMID:29505559

  15. Electronic structures of Plutonium compounds with the NaCl-type monochalcogenides structure

    NASA Astrophysics Data System (ADS)

    Maehira, Takahiro; Tatetsu, Yasutomi

    2012-12-01

    We calculate the energy band structure and the Fermi surface of PuS, PuSe and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in a local density approximation. It is found in common that the energy bands in the vicinity of the Fermi level are mainly due to the hybridization between Pu 5/ and monochalcogenide p electrons. The obtained main Fermi surfaces are composed of two hole sheets and one electron sheet, all of which are constructed from the band having the Pu 5/ state and the monochalcogenide p state.

  16. Regional Geoid Modeling Compared to Ocean Surface Observations

    NASA Astrophysics Data System (ADS)

    Roman, D. R.; Saleh, J.; Wang, Y. M.

    2007-05-01

    Aerogravity over a limited coastal region of the northern Gulf of Mexico enhanced and rectified the local gravity field signal. In turn, these data improved the derived geoid height model based on comparison with dynamic ocean topography (DOT) and tide gage information at eleven stations. Additionally, lidar observations were analyzed along nearly 50 profiles to estimate the reliability of these models into the offshore region. The overall comparison shows dm-level agreement between the various geoid and DOT models and ocean surface observations. An approximate 30 cm bias must still be explained; however, the results of this study point to the potential for further cooperative studies between oceanographers and geodesists.

  17. SdrF, a Staphylococcus epidermidis Surface Protein, Contributes to the Initiation of Ventricular Assist Device Driveline–Related Infections

    PubMed Central

    Arrecubieta, Carlos; Toba, Faustino A.; von Bayern, Manuel; Akashi, Hirokazu; Deng, Mario C.; Naka, Yoshifumi; Lowy, Franklin D.

    2009-01-01

    Staphylococcus epidermidis remains the predominant pathogen in prosthetic-device infections. Ventricular assist devices, a recently developed form of therapy for end-stage congestive heart failure, have had considerable success. However, infections, most often caused by Staphylococcus epidermidis, have limited their long-term use. The transcutaneous driveline entry site acts as a potential portal of entry for bacteria, allowing development of either localized or systemic infections. A novel in vitro binding assay using explanted drivelines obtained from patients undergoing transplantation and a heterologous lactococcal system of surface protein expression were used to identify S. epidermidis surface components involved in the pathogenesis of driveline infections. Of the four components tested, SdrF, SdrG, PIA, and GehD, SdrF was identified as the primary ligand. SdrF adherence was mediated via its B domain attaching to host collagen deposited on the surface of the driveline. Antibodies directed against SdrF reduced adherence of S. epidermidis to the drivelines. SdrF was also found to adhere with high affinity to Dacron, the hydrophobic polymeric outer surface of drivelines. Solid phase binding assays showed that SdrF was also able to adhere to other hydrophobic artificial materials such as polystyrene. A murine model of infection was developed and used to test the role of SdrF during in vivo driveline infection. SdrF alone was able to mediate bacterial adherence to implanted drivelines. Anti-SdrF antibodies reduced S. epidermidis colonization of implanted drivelines. SdrF appears to play a key role in the initiation of ventricular assist device driveline infections caused by S. epidermidis. This pluripotential adherence capacity provides a potential pathway to infection with SdrF-positive commensal staphylococci first adhering to the external Dacron-coated driveline at the transcutaneous entry site, then spreading along the collagen-coated internal portion of the driveline to establish a localized infection. This capacity may also have relevance for other prosthetic device–related infections. PMID:19412528

  18. Risk of the residents, infrastructure and water bodies by flash floods and sediment transport - assessment for scale of the Czech Republic

    NASA Astrophysics Data System (ADS)

    Dostál, Tomáš; Krása, Josef; Bauer, Miroslav; Strouhal, Luděk; Jáchymová, Barbora; Devátý, Jan; David, Václav; Koudelka, Petr; Dočkal, Martin

    2015-04-01

    Pluvial and flash floods, related to massive sediment transport become phenomenon nowadays, under conditions of climate changes. Storm events, related to material damages appear at unexpected places and their effective control is only possible in form of prevention. To apply preventive measures, there have to be defined localities with reasonable reliability, which are endangered by surface runoff and sediment transport produced in the subcatchments, often at agriculturally used landscape. Classification of such localities, concerning of potential damages and magnitude of sediment transport shall be also included within the analyses, to design control measures effectively. Large scale project for whole territory of the Czech Republic (ca 80.000 km2) has therefore been granted b the Ministry of Interior of the Czech Republic, with the aim to define critical points, where interaction between surface runoff connected to massive sediment transport and infrastructure or vulnerable water bodies can occur and to classify them according to potential risk. Advanced GIS routines, based on analyses of land use, soil conditions and morphology had been used to determine the critical points - points, where significant surface runoff occurs and interacts with infrastructure and vulnerable water bodies, based exclusively on the contributing area - flow accumulation. In total, ca 150.000 critical points were determined within the Czech Republic. For each of critical points, its subcatchment had then been analyzed in detail, concerning of soil loss and sediment transport, using simulation model WATEM/SEDEM. The results were used for classification of potential risk of individual critical points, based on mean soil loss within subcatchment, total sediment transport trough the outlet point and subcatchment area. The classification has been done into 5 classes. The boundaries were determined by calibration survey and statistical analysis, performed at three experimental catchments area of 100 km2 each. Concentrated flow trajectory had then been analyzed trough urban areas and potential vulnerability of incident structures has been determined. Total hazard of infrastructure has been classified again into 5 categories for each individual critical point using risk matrix, combining threat and vulnerability features. Generalized control measures (changes in land-use, changes in agrotechnology, diverting linear measures or retention structures) were then introduced into mathematical model WATEM/SEDEM in number of scenarios, to allow effective design of control measures against surface runoff and sediment transport for each individual critical point. Result of the project will be public available by WEB application and shall be useful for government, local decision makers, for planning of development of communities and also optimization of effective design of flash floods control measures. The research has been supported by the research project VG20122015092.

  19. Local pH at the surface of hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Otosu, Takuhiro; Kobayashi, Kaito; Yamaguchi, Shoichi

    2018-02-01

    The microenvironment at the surface of hen-egg-white lysozyme (HEWL) was examined by analyzing the change in pKa of fluorescein isothiocyanate (FITC) upon binding to the N-terminus of HEWL. The result showed that the local pH at the HEWL surface is higher than the bulk pH. Furthermore, the data showed that the difference between the local and bulk pH becomes larger with decreasing pH, suggesting HEWL repels more protons at lower pH. Because the local pH affects the protonation states of functional amino-acids at the protein surface, the results provide the fundamental insight into the microenvironment at the protein surface.

  20. Sea Surface Temperature Influence on Terrestrial Gross Primary Production along the Southern California Current.

    PubMed

    Reimer, Janet J; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J Martin; Lara-Lara, Ruben

    2015-01-01

    Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could influence coastal ecosystem productivity.

  1. Sea Surface Temperature Influence on Terrestrial Gross Primary Production along the Southern California Current

    PubMed Central

    Reimer, Janet J.; Vargas, Rodrigo; Rivas, David; Gaxiola-Castro, Gilberto; Hernandez-Ayon, J. Martin; Lara-Lara, Ruben

    2015-01-01

    Some land and ocean processes are related through connections (and synoptic-scale teleconnections) to the atmosphere. Synoptic-scale atmospheric (El Niño/Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], and North Atlantic Oscillation [NAO]) decadal cycles are known to influence the global terrestrial carbon cycle. Potentially, smaller scale land-ocean connections influenced by coastal upwelling (changes in sea surface temperature) may be important for local-to-regional water-limited ecosystems where plants may benefit from air moisture transported from the ocean to terrestrial ecosystems. Here we use satellite-derived observations to test potential connections between changes in sea surface temperature (SST) in regions with strong coastal upwelling and terrestrial gross primary production (GPP) across the Baja California Peninsula. This region is characterized by an arid/semiarid climate along the southern California Current. We found that SST was correlated with the fraction of photosynthetic active radiation (fPAR; as a proxy for GPP) with lags ranging from 0 to 5 months. In contrast ENSO was not as strongly related with fPAR as SST in these coastal ecosystems. Our results show the importance of local-scale changes in SST during upwelling events, to explain the variability in GPP in coastal, water-limited ecosystems. The response of GPP to SST was spatially-dependent: colder SST in the northern areas increased GPP (likely by influencing fog formation), while warmer SST at the southern areas was associated to higher GPP (as SST is in phase with precipitation patterns). Interannual trends in fPAR are also spatially variable along the Baja California Peninsula with increasing secular trends in subtropical regions, decreasing trends in the most arid region, and no trend in the semi-arid regions. These findings suggest that studies and ecosystem process based models should consider the lateral influence of local-scale ocean processes that could influence coastal ecosystem productivity. PMID:25923109

  2. Potential of EnMAP spaceborne imaging spectroscopy for the prediction of common surface soil properties and expected accuracy

    NASA Astrophysics Data System (ADS)

    Chabrillat, Sabine; Foerster, Saskia; Steinberg, Andreas; Stevens, Antoine; Segl, Karl

    2016-04-01

    There is a renewed awareness of the finite nature of the world's soil resources, growing concern about soil security, and significant uncertainties about the carrying capacity of the planet. As a consequence, soil scientists are being challenged to provide regular assessments of soil conditions from local through to global scales. However, only a few countries have the necessary survey and monitoring programs to meet these new needs and existing global data sets are out-of-date. A particular issue is the clear demand for a new area-wide regional to global coverage with accurate, up-to-date, and spatially referenced soil information as expressed by the modeling scientific community, farmers and land users, and policy and decision makers. Soil spectroscopy from remote sensing observations based on studies from the laboratory scale to the airborne scale has been shown to be a proven method for the quantitative prediction of key soil surface properties in local areas for exposed soils in appropriate surface conditions such as low vegetation cover and low water content. With the upcoming launch of the next generation of hyperspectral satellite sensors in the next 3 to 5 years (EnMAP, HISUI, PRISMA, SHALOM), a great potential for the global mapping and monitoring of soil properties is appearing. Nevertheless, the capabilities to extend the soil properties current spectral modeling from local to regional scales are still to be demonstrated using robust methods. In particular, three central questions are at the forefront of research nowadays: a) methodological developments toward improved algorithms and operational tools for the extraction of soil properties, b) up scaling from the laboratory into space domain, and c) demonstration of the potential of upcoming satellite systems and expected accuracy of soil maps. In this study, airborne imaging spectroscopy data from several test sites are used to simulate EnMAP satellite images at 30 m scale. Then, different soil algorithms are examined based on the analyses of chemical-physical features from the soil spectral reflectance and/or multivariate established techniques such as Partial-Least Squares PLS, Support-Vector Machine SVM, to determine common surface soil properties, in particular soil organic carbon (SOC), clay and iron oxide content. Results show that EnMAP is able to predict clay, free iron oxide, and SOC with an RV2 between 0.53 and 0.67 compared to airborne imagery with RV2 between 0.64 and 0.74. The correlation between EnMAP and airborne imagery prediction results is high (Pearson coefficients between 0.84 and 0.91). Furthermore, spatial distribution is coherent between the airborne mapping and simulated EnMAP mapping as shown with a spatial structure analysis. In general, this paper demonstrates the high potential of upcoming spaceborne hyperspectral missions for soil science studies but also shows the need for future adapted strategies to fulfill the entire potential of soil spectroscopy for orbital utilization.

  3. Detecting and characterizing coal mine related seismicity in the Western U.S. using subspace methods

    NASA Astrophysics Data System (ADS)

    Chambers, Derrick J. A.; Koper, Keith D.; Pankow, Kristine L.; McCarter, Michael K.

    2015-11-01

    We present an approach for subspace detection of small seismic events that includes methods for estimating magnitudes and associating detections from multiple stations into unique events. The process is used to identify mining related seismicity from a surface coal mine and an underground coal mining district, both located in the Western U.S. Using a blasting log and a locally derived seismic catalogue as ground truth, we assess detector performance in terms of verified detections, false positives and failed detections. We are able to correctly identify over 95 per cent of the surface coal mine blasts and about 33 per cent of the events from the underground mining district, while keeping the number of potential false positives relatively low by requiring all detections to occur on two stations. We find that most of the potential false detections for the underground coal district are genuine events missed by the local seismic network, demonstrating the usefulness of regional subspace detectors in augmenting local catalogues. We note a trade-off in detection performance between stations at smaller source-receiver distances, which have increased signal-to-noise ratio, and stations at larger distances, which have greater waveform similarity. We also explore the increased detection capabilities of a single higher dimension subspace detector, compared to multiple lower dimension detectors, in identifying events that can be described as linear combinations of training events. We find, in our data set, that such an advantage can be significant, justifying the use of a subspace detection scheme over conventional correlation methods.

  4. Tailoring Dirac Fermions in Molecular Graphene

    NASA Astrophysics Data System (ADS)

    Gomes, Kenjiro K.; Mar, Warren; Ko, Wonhee; Camp, Charlie D.; Rastawicki, Dominik K.; Guinea, Francisco; Manoharan, Hari C.

    2012-02-01

    The dynamics of electrons in solids is tied to the band structure created by a periodic atomic potential. The design of artificial lattices, assembled through atomic manipulation, opens the door to engineer electronic band structure and to create novel quantum states. We present scanning tunneling spectroscopic measurements of a nanoassembled honeycomb lattice displaying a Dirac fermion band structure. The artificial lattice is created by atomic manipulation of single CO molecules with the scanning tunneling microscope on the surface of Cu(111). The periodic potential generated by the assembled CO molecules reshapes the band structure of the two-dimensional electron gas, present as a surface state of Cu(111), into a ``molecular graphene'' system. We create local defects in the lattice to observe the quasiparticle interference patterns that unveil the underlying band structure. We present direct comparison between the tunneling data, first-principles calculations of the band structure, and tight-binding models.

  5. A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology

    PubMed Central

    Márton, Gergely; Orbán, Gábor; Kiss, Marcell; Fiáth, Richárd; Pongrácz, Anita; Ulbert, István

    2015-01-01

    Utilization of polymers as insulator and bulk materials of microelectrode arrays (MEAs) makes the realization of flexible, biocompatible sensors possible, which are suitable for various neurophysiological experiments such as in vivo detection of local field potential changes on the surface of the neocortex or unit activities within the brain tissue. In this paper the microfabrication of a novel, all-flexible, polymer-based MEA is presented. The device consists of a three dimensional sensor configuration with an implantable depth electrode array and brain surface electrodes, allowing the recording of electrocorticographic (ECoG) signals with laminar ones, simultaneously. In vivo recordings were performed in anesthetized rat brain to test the functionality of the device under both acute and chronic conditions. The ECoG electrodes recorded slow-wave thalamocortical oscillations, while the implanted component provided high quality depth recordings. The implants remained viable for detecting action potentials of individual neurons for at least 15 weeks. PMID:26683306

  6. Variational nonadiabatic dynamics in the moving crude adiabatic representation: Further merging of nuclear dynamics and electronic structure

    NASA Astrophysics Data System (ADS)

    Joubert-Doriol, Loïc; Izmaylov, Artur F.

    2018-03-01

    A new methodology of simulating nonadiabatic dynamics using frozen-width Gaussian wavepackets within the moving crude adiabatic representation with the on-the-fly evaluation of electronic structure is presented. The main feature of the new approach is the elimination of any global or local model representation of electronic potential energy surfaces; instead, the electron-nuclear interaction is treated explicitly using the Gaussian integration. As a result, the new scheme does not introduce any uncontrolled approximations. The employed variational principle ensures the energy conservation and leaves the number of electronic and nuclear basis functions as the only parameter determining the accuracy. To assess performance of the approach, a model with two electronic and two nuclear spacial degrees of freedom containing conical intersections between potential energy surfaces has been considered. Dynamical features associated with nonadiabatic transitions and nontrivial geometric (or Berry) phases were successfully reproduced within a limited basis expansion.

  7. Imaging quasiperiodic electronic states in a synthetic Penrose tiling

    NASA Astrophysics Data System (ADS)

    Collins, Laura C.; Witte, Thomas G.; Silverman, Rochelle; Green, David B.; Gomes, Kenjiro K.

    2017-06-01

    Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega-Arroyo, M.; LeBreton, P. R.; Zapol, P.

    Photoinduced charge separation in triads of DNA covalently linked to an anatase nanoparticle via a dopamine bridge was studied by ab initio calculations of the oxidation potentials of carboxyl-DNA trimers and the TiO2/dopamine complex. Conjugation of dopamine to the TiO2 surface results in a lower oxidation potential of the complex relative to the surface and in localization of photogenerated holes on dopamine, while photogenerated electrons are excited into the conduction band of TiO2. Linking dopamine to the DNA trimers at the 5? end of the oligonucleotide may lead to further hole migration to the DNA. Calculations show that for severalmore » different sequences hole migration is favorable in double stranded DNA and unfavorable in single-stranded DNA. This extended charge separation was shown to follow from the redox properties of DNA sequence rather than from the modification of DNA's electron donating properties by the dopamine linker, which explains experimental observations.« less

  9. A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology.

    PubMed

    Márton, Gergely; Orbán, Gábor; Kiss, Marcell; Fiáth, Richárd; Pongrácz, Anita; Ulbert, István

    2015-01-01

    Utilization of polymers as insulator and bulk materials of microelectrode arrays (MEAs) makes the realization of flexible, biocompatible sensors possible, which are suitable for various neurophysiological experiments such as in vivo detection of local field potential changes on the surface of the neocortex or unit activities within the brain tissue. In this paper the microfabrication of a novel, all-flexible, polymer-based MEA is presented. The device consists of a three dimensional sensor configuration with an implantable depth electrode array and brain surface electrodes, allowing the recording of electrocorticographic (ECoG) signals with laminar ones, simultaneously. In vivo recordings were performed in anesthetized rat brain to test the functionality of the device under both acute and chronic conditions. The ECoG electrodes recorded slow-wave thalamocortical oscillations, while the implanted component provided high quality depth recordings. The implants remained viable for detecting action potentials of individual neurons for at least 15 weeks.

  10. Application of laminar flow control to high-bypass-ratio turbofan engine nacelles

    NASA Technical Reports Server (NTRS)

    Wie, Y. S.; Collier, F. S., Jr.; Wagner, R. D.

    1991-01-01

    Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-flow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.

  11. Imaging quasiperiodic electronic states in a synthetic Penrose tiling.

    PubMed

    Collins, Laura C; Witte, Thomas G; Silverman, Rochelle; Green, David B; Gomes, Kenjiro K

    2017-06-22

    Quasicrystals possess long-range order but lack the translational symmetry of crystalline solids. In solid state physics, periodicity is one of the fundamental properties that prescribes the electronic band structure in crystals. In the absence of periodicity and the presence of quasicrystalline order, the ways that electronic states change remain a mystery. Scanning tunnelling microscopy and atomic manipulation can be used to assemble a two-dimensional quasicrystalline structure mapped upon the Penrose tiling. Here, carbon monoxide molecules are arranged on the surface of Cu(111) one at a time to form the potential landscape that mimics the ionic potential of atoms in natural materials by constraining the electrons in the two-dimensional surface state of Cu(111). The real-space images reveal the presence of the quasiperiodic order in the electronic wave functions and the Fourier analysis of our results links the energy of the resonant states to the local vertex structure of the quasicrystal.

  12. Biological soil crusts: Diminutive communities of potential global importance

    USGS Publications Warehouse

    Ferrenberg, Scott; Tucker, Colin; Reed, Sasha C.

    2017-01-01

    Biological soil crusts (biocrusts) are widespread, diverse communities of cyanobacteria, fungi, lichens, and mosses living on soil surfaces, primarily in drylands. Biocrusts can locally govern primary production, soil fertility, hydrology, and surface energy balance, with considerable variation in these functions across alternate community states. Further, these communities have been implicated in Earth system functioning via potential influences on global biogeochemistry and climate. Biocrusts are easily destroyed by disturbances and appear to be exceptionally vulnerable to warming temperatures and altered precipitation inputs, signaling possible losses of dryland functions with global change. Despite these concerns, we lack sufficient spatiotemporal data on biocrust function, cover, and community structure to confidently assess their ecological roles across the extensive dryland biome. Here, we present the case for cross-scale research and restoration efforts coupled with remote-sensing and modeling approaches that improve our collective understanding of biocrust responses to global change and the ecological roles of these diminutive communities at global scales.

  13. Localized sources of water vapour on the dwarf planet (1) Ceres.

    PubMed

    Küppers, Michael; O'Rourke, Laurence; Bockelée-Morvan, Dominique; Zakharov, Vladimir; Lee, Seungwon; von Allmen, Paul; Carry, Benoît; Teyssier, David; Marston, Anthony; Müller, Thomas; Crovisier, Jacques; Barucci, M Antonietta; Moreno, Raphael

    2014-01-23

    The 'snowline' conventionally divides Solar System objects into dry bodies, ranging out to the main asteroid belt, and icy bodies beyond the belt. Models suggest that some of the icy bodies may have migrated into the asteroid belt. Recent observations indicate the presence of water ice on the surface of some asteroids, with sublimation a potential reason for the dust activity observed on others. Hydrated minerals have been found on the surface of the largest object in the asteroid belt, the dwarf planet (1) Ceres, which is thought to be differentiated into a silicate core with an icy mantle. The presence of water vapour around Ceres was suggested by a marginal detection of the photodissociation product of water, hydroxyl (ref. 12), but could not be confirmed by later, more sensitive observations. Here we report the detection of water vapour around Ceres, with at least 10(26) molecules being produced per second, originating from localized sources that seem to be linked to mid-latitude regions on the surface. The water evaporation could be due to comet-like sublimation or to cryo-volcanism, in which volcanoes erupt volatiles such as water instead of molten rocks.

  14. Intraseasonal variability of sea level and circulation in the Gulf of Thailand: the role of the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Oliver, Eric C. J.

    2014-01-01

    Intraseasonal variability of the tropical Indo-Pacific ocean is strongly related to the Madden-Julian Oscillation (MJO). Shallow seas in this region, such as the Gulf of Thailand, act as amplifiers of the direct ocean response to surface wind forcing by efficient setup of sea level. Intraseasonal ocean variability in the Gulf of Thailand region is examined using statistical analysis of local tide gauge observations and surface winds. The tide gauges detect variability on intraseasonal time scales that is related to the MJO through its effect on local wind. The relationship between the MJO and the surface wind is strongly seasonal, being most vigorous during the monsoon, and direction-dependent. The observations are then supplemented with simulations of sea level and circulation from a fully nonlinear barotropic numerical ocean model (Princeton Ocean Model). The numerical model reproduces well the intraseasonal sea level variability in the Gulf of Thailand and its seasonal modulations. The model is then used to map the wind-driven response of sea level and circulation in the entire Gulf of Thailand. Finally, the predictability of the setup and setdown signal is discussed by relating it to the, potentially predictable, MJO index.

  15. The Joule heating problem in silver nanowire transparent electrodes

    NASA Astrophysics Data System (ADS)

    Khaligh, H. H.; Xu, L.; Khosropour, A.; Madeira, A.; Romano, M.; Pradére, C.; Tréguer-Delapierre, M.; Servant, L.; Pope, M. A.; Goldthorpe, I. A.

    2017-10-01

    Silver nanowire transparent electrodes have shown considerable potential to replace conventional transparent conductive materials. However, in this report we show that Joule heating is a unique and serious problem with these electrodes. When conducting current densities encountered in organic solar cells, the average surface temperature of indium tin oxide (ITO) and silver nanowire electrodes, both with sheet resistances of 60 ohms/square, remains below 35 °C. However, in contrast to ITO, the temperature in the nanowire electrode is very non-uniform, with some localized points reaching temperatures above 250 °C. These hotspots accelerate nanowire degradation, leading to electrode failure after 5 days of continuous current flow. We show that graphene, a commonly used passivation layer for these electrodes, slows nanowire degradation and creates a more uniform surface temperature under current flow. However, the graphene does not prevent Joule heating in the nanowires and local points of high temperature ultimately shift the failure mechanism from nanowire degradation to melting of the underlying plastic substrate. In this paper, surface temperature mapping, lifetime testing under current flow, post-mortem analysis, and modelling illuminate the behaviour and failure mechanisms of nanowires under extended current flow and provide guidelines for managing Joule heating.

  16. Refined boundary conditions on the free surface of an elastic half-space taking into account non-local effects.

    PubMed

    Chebakov, R; Kaplunov, J; Rogerson, G A

    2016-02-01

    The dynamic response of a homogeneous half-space, with a traction-free surface, is considered within the framework of non-local elasticity. The focus is on the dominant effect of the boundary layer on overall behaviour. A typical wavelength is assumed to considerably exceed the associated internal lengthscale. The leading-order long-wave approximation is shown to coincide formally with the 'local' problem for a half-space with a vertical inhomogeneity localized near the surface. Subsequent asymptotic analysis of the inhomogeneity results in an explicit correction to the classical boundary conditions on the surface. The order of the correction is greater than the order of the better-known correction to the governing differential equations. The refined boundary conditions enable us to evaluate the interior solution outside a narrow boundary layer localized near the surface. As an illustration, the effect of non-local elastic phenomena on the Rayleigh wave speed is investigated.

  17. The geomorphology of Ceres.

    PubMed

    Buczkowski, D L; Schmidt, B E; Williams, D A; Mest, S C; Scully, J E C; Ermakov, A I; Preusker, F; Schenk, P; Otto, K A; Hiesinger, H; O'Brien, D; Marchi, S; Sizemore, H; Hughson, K; Chilton, H; Bland, M; Byrne, S; Schorghofer, N; Platz, T; Jaumann, R; Roatsch, T; Sykes, M V; Nathues, A; De Sanctis, M C; Raymond, C A; Russell, C T

    2016-09-02

    Analysis of Dawn spacecraft Framing Camera image data allows evaluation of the topography and geomorphology of features on the surface of Ceres. The dwarf planet is dominated by numerous craters, but other features are also common. Linear structures include both those associated with impact craters and those that do not appear to have any correlation to an impact event. Abundant lobate flows are identified, and numerous domical features are found at a range of scales. Features suggestive of near-surface ice, cryomagmatism, and cryovolcanism have been identified. Although spectroscopic analysis has currently detected surface water ice at only one location on Ceres, the identification of these potentially ice-related features suggests that there may be at least some ice in localized regions in the crust. Copyright © 2016, American Association for the Advancement of Science.

  18. Root gravitropism in maize and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1993-01-01

    Research during the period 1 March 1992 to 30 November 1993 focused on improvements in a video digitizer system designed to automate the recording of surface extension in plants responding to gravistimulation. The improvements included modification of software to allow detailed analysis of localized extension patterns in roots of Arabidopsis. We used the system to analyze the role of the postmitotic isodiametric growth zone (a region between the meristem and the elongation zone) in the response of maize roots to auxin, calcium, touch and gravity. We also used the system to analyze short-term auxin and gravitropic responses in mutants of Arabidopsis with reduced auxin sensitivity. In a related project, we studied the relationship between growth rate and surface electrical currents in roots by examining the effects of gravity and thigmostimulation on surface potentials in maize roots.

  19. Kinetic mechanism for modeling of electrochemical reactions.

    PubMed

    Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil

    2012-04-01

    We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.

  20. Passive Seismic Monitoring for Rockfall at Yucca Mountain: Concept Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, J; Twilley, K; Murvosh, H

    2003-03-03

    For the purpose of proof-testing a system intended to remotely monitor rockfall inside a potential radioactive waste repository at Yucca Mountain, a system of seismic sub-arrays will be deployed and tested on the surface of the mountain. The goal is to identify and locate rockfall events remotely using automated data collecting and processing techniques. We install seismometers on the ground surface, generate seismic energy to simulate rockfall in underground space beneath the array, and interpret the surface response to discriminate and locate the event. Data will be analyzed using matched-field processing, a generalized beam forming method for localizing discrete signals.more » Software is being developed to facilitate the processing. To date, a three-component sub-array has been installed and successfully tested.« less

Top