Sample records for local temperature analysis

  1. Localization in covariance matrices of coupled heterogenous Ornstein-Uhlenbeck processes

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo

    2014-12-01

    We define a random-matrix ensemble given by the infinite-time covariance matrices of Ornstein-Uhlenbeck processes at different temperatures coupled by a Gaussian symmetric matrix. The spectral properties of this ensemble are shown to be in qualitative agreement with some stylized facts of financial markets. Through the presented model formulas are given for the analysis of heterogeneous time series. Furthermore evidence for a localization transition in eigenvectors related to small and large eigenvalues in cross-correlations analysis of this model is found, and a simple explanation of localization phenomena in financial time series is provided. Finally we identify both in our model and in real financial data an inverted-bell effect in correlation between localized components and their local temperature: high- and low-temperature components are the most localized ones.

  2. Reply to Stone Et Al.: Human-Made Role in Local Temperature Extremes

    NASA Technical Reports Server (NTRS)

    Hansen, James; Sato, Makiko; Ruedy, Reto A.

    2013-01-01

    Stone et al. find that their analysis is unable to show a causal relation of local temperature anomalies, such as in Texas in 2011, with global warming. It was because of limitations in such local analyses that we reframed the problem in our report, separating the task of attribution of the causes of global warming from the task of quantifying changes in the likelihood of extreme local temperature anomalies.

  3. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.

  4. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-01-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.

  5. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-03-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.

  6. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-01-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.

  7. Localized temperature and chemical reaction control in nanoscale space by nanowire array.

    PubMed

    Jin, C Yan; Li, Zhiyong; Williams, R Stanley; Lee, K-Cheol; Park, Inkyu

    2011-11-09

    We introduce a novel method for chemical reaction control with nanoscale spatial resolution based on localized heating by using a well-aligned nanowire array. Numerical and experimental analysis shows that each individual nanowire could be selectively and rapidly Joule heated for local and ultrafast temperature modulation in nanoscale space (e.g., maximum temperature gradient 2.2 K/nm at the nanowire edge; heating/cooling time < 2 μs). By taking advantage of this capability, several nanoscale chemical reactions such as polymer decomposition/cross-linking and direct and localized hydrothermal synthesis of metal oxide nanowires were demonstrated.

  8. Investigation of Localized States in GaAsSb Epilayers Grown by Molecular Beam Epitaxy

    PubMed Central

    Gao, Xian; Wei, Zhipeng; Zhao, Fenghuan; Yang, Yahui; Chen, Rui; Fang, Xuan; Tang, Jilong; Fang, Dan; Wang, Dengkui; Li, Ruixue; Ge, Xiaotian; Ma, Xiaohui; Wang, Xiaohua

    2016-01-01

    We report the carrier dynamics in GaAsSb ternary alloy grown by molecular beam epitaxy through comprehensive spectroscopic characterization over a wide temperature range. A detailed analysis of the experimental data reveals a complex carrier relaxation process involving both localized and delocalized states. At low temperature, the localized degree shows linear relationship with the increase of Sb component. The existence of localized states is also confirmed by the temperature dependence of peak position and band width of the emission. At temperature higher than 60 K, emissions related to localized states are quenched while the band to band transition dominates the whole spectrum. This study indicates that the localized states are related to the Sb component in the GaAsSb alloy, while it leads to the poor crystal quality of the material, and the application of GaAsSb alloy would be limited by this deterioration. PMID:27381641

  9. Note: Simultaneous determination of local temperature and thickness of heated cantilevers using two-wavelength thermoreflectance.

    PubMed

    Park, Heeseung; Lee, Bong Jae; Lee, Jungchul

    2014-03-01

    In this work, we have demonstrated that two-wavelength thermoreflectance technique can be used to characterize the local thickness and temperature of heated cantilevers at steady-state operation. By taking the ratio of reflectances for two lasers with different wavelengths, the geometrical factor causing the mismatch between experimentally measured and theoretically calculated reflectances was eliminated. Based on the fitting analysis of the reflectance ratio of two wavelengths at various input powers to the heated cantilevers, the local temperature and thickness could be unambiguously determined.

  10. PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices.

    PubMed

    Pullano, Salvatore A; Mahbub, Ifana; Islam, Syed K; Fiorillo, Antonino S

    2017-04-13

    This paper presents a ferroelectric polymer-based temperature sensor designed for microfluidic devices. The integration of the sensor into a system-on-a-chip platform facilitates quick monitoring of localized temperature of a biological fluid, avoiding errors in the evaluation of thermal evolution of the fluid during analysis. The contact temperature sensor is fabricated by combining a thin pyroelectric film together with an infrared source, which stimulates the active element located on the top of the microfluidic channel. An experimental setup was assembled to validate the analytical model and to characterize the response rate of the device. The evaluation procedure and the operating range of the temperature also make this device suitable for applications where the localized temperature monitoring of biological samples is necessary. Additionally, ease of integration with standard microfluidic devices makes the proposed sensor an attractive option for in situ analysis of biological fluids.

  11. Local Versus Remote Contributions of Soil Moisture to Near-Surface Temperature Variability

    NASA Technical Reports Server (NTRS)

    Koster, R.; Schubert, S.; Wang, H.; Chang, Y.

    2018-01-01

    Soil moisture variations have a straightforward impact on overlying air temperatures, wetter soils can induce higher evaporative cooling of the soil and thus, locally, cooler temperatures overall. Not known, however, is the degree to which soil moisture variations can affect remote air temperatures through their impact on the atmospheric circulation. In this talk we describe a two-pronged analysis that addresses this question. In the first segment, an extensive ensemble of NASA/GSFC GEOS-5 atmospheric model simulations is analyzed statistically to isolate and quantify the contributions of various soil moisture states, both local and remote, to the variability of air temperature at a given local site. In the second segment, the relevance of the derived statistical relationships is evaluated by applying them to observations-based data. Results from the second segment suggest that the GEOS-5-based relationships do, at least to first order, hold in nature and thus may provide some skill to forecasts of air temperature at subseasonal time scales, at least in certain regions.

  12. Localized Multi-Model Extremes Metrics for the Fourth National Climate Assessment

    NASA Astrophysics Data System (ADS)

    Thompson, T. R.; Kunkel, K.; Stevens, L. E.; Easterling, D. R.; Biard, J.; Sun, L.

    2017-12-01

    We have performed localized analysis of scenario-based datasets for the Fourth National Climate Assessment (NCA4). These datasets include CMIP5-based Localized Constructed Analogs (LOCA) downscaled simulations at daily temporal resolution and 1/16th-degree spatial resolution. Over 45 temperature and precipitation extremes metrics have been processed using LOCA data, including threshold, percentile, and degree-days calculations. The localized analysis calculates trends in the temperature and precipitation extremes metrics for relatively small regions such as counties, metropolitan areas, climate zones, administrative areas, or economic zones. For NCA4, we are currently addressing metropolitan areas as defined by U.S. Census Bureau Metropolitan Statistical Areas. Such localized analysis provides essential information for adaptation planning at scales relevant to local planning agencies and businesses. Nearly 30 such regions have been analyzed to date. Each locale is defined by a closed polygon that is used to extract LOCA-based extremes metrics specific to the area. For each metric, single-model data at each LOCA grid location are first averaged over several 30-year historical and future periods. Then, for each metric, the spatial average across the region is calculated using model weights based on both model independence and reproducibility of current climate conditions. The range of single-model results is also captured on the same localized basis, and then combined with the weighted ensemble average for each region and each metric. For example, Boston-area cooling degree days and maximum daily temperature is shown below for RCP8.5 (red) and RCP4.5 (blue) scenarios. We also discuss inter-regional comparison of these metrics, as well as their relevance to risk analysis for adaptation planning.

  13. Analysis of the change in peak corneal temperature during excimer laser ablation in porcine eyes

    NASA Astrophysics Data System (ADS)

    Mosquera, Samuel Arba; Verma, Shwetabh

    2015-07-01

    The objective is to characterize the impact of different ablation parameters on the thermal load during corneal refractive surgery by means of excimer laser ablation on porcine eyes. One hundred eleven ablations were performed in 105 porcine eyes. Each ablation was recorded using infrared thermography and analyzed mainly based on the two tested local frequencies (40 Hz, clinical local frequency; 1000 Hz, no local frequency). The change in peak corneal temperature was analyzed with respect to varying ablation parameters [local frequency, system repetition rate, pulse energy, optical zone (OZ) size, and refractive correction]. Transepithelial ablations were also compared to intrastromal ablations. The average of the baseline temperature across all eyes was 20.5°C±1.1 (17.7°C to 22.2°C). Average of the change in peak corneal temperature for all clinical local frequency ablations was 5.8°C±0.8 (p=3.3E-53 to baseline), whereas the average was 9.0°C±1.5 for all no local frequency ablations (p=1.8E-35 to baseline, 1.6E-16 to clinical local frequency ablations). A logarithmic relationship was observed between the changes in peak corneal temperature with increasing local frequency. For clinical local frequency, change in peak corneal temperature was comparatively flat (r2=0.68 with a range of 1.5°C) with increasing system repetition rate and increased linearly with increasing OZ size (r2=0.95 with a range of 2.4°C). Local frequency controls help maintain safe corneal temperature increase during excimer laser ablations. Transepithelial ablations induce higher thermal load compared to intrastromal ablations, indicating a need for stronger thermal controls in transepithelial refractive procedures.

  14. Quantitative magneto-optical analysis of the role of finite temperatures on the critical state in YBCO thin films

    NASA Astrophysics Data System (ADS)

    Albrecht, Joachim; Brück, Sebastian; Stahl, Claudia; Ruoß, Stephen

    2016-11-01

    We use quantitative magneto-optical microscopy to investigate the influence of finite temperatures on the critical state of thin YBCO films. In particular, temperature and time dependence of supercurrents in inhomogeneous and anisotropic films are analyzed to extract the role of temperature on the supercurrents themselves and the influence of thermally activated relaxation. We find that inhomogeneities and anisotropies of the current density distribution correspond to a different temperature dependence of local supercurrents. In addition, the thermally activated decay of supercurrents can be used to extract local vortex pinning energies. With these results the modification of vortex pinning introduced by substrate structures is studied. In summary the local investigation of supercurrent densities allows the full description of the vortex pinning landscape with respect to pinning forces and energies in superconducting films with complex properties under the influence of finite temperatures.

  15. Understanding Multiscale Surface Water-Groundwater Interactions on Scott River Watershed Temperatures with the use of Distributed Temperature Sensing (DTS) in Support of the Coldwater Salmonid Fishery Beneficial Use

    NASA Astrophysics Data System (ADS)

    Hines, R. J.; Harter, T.; Tyler, S. W.; McFadin, B.; Yokel, E.

    2008-12-01

    The Scott River is a major tributary to the Klamath River that provides cold water rearing habitat for wild salmonid populations, including coho salmon (Oncorhynchus kisutch), Chinook salmon (O. tshawytscha), and steelhead trout (O. mykiss). During the summer months (July through September), the main-stem Scott River becomes disconnected from its tributaries throughout much of Scott Valley and relies primarily on baseflow from the groundwater aquifer. Summer stream temperatures in the Scott River are currently at levels that are not considered sustainable for the native salmonid population, resulting in the enactment of a Total Maximum Daily Load (TMDL) for temperature. Two of the conditions affecting stream temperature have been identified as increases in solar radiation due to a reduction in riparian vegetation and decreased accretion of groundwater. In conjunction with a regional scale surface water-groundwater modeling effort to investigate the benefits of various conjunctive use management alternatives on mid- and late summer baseflow in the Scott River, we completed high-resolution field measurements of stream temperature over an approximately 1,050-meter reach. Temperatures were measured using Fiber-Optic Distributed Temperature Sensing (DTS) techniques. The DTS survey in combination with FLIR stream surface temperature data from 2003 indicate that groundwater discharge to the Scott River is highly localized throughout the valley. The results of the DTS survey depict highly localized areas of groundwater accretion, as well as prominent localized temperature effects from riparian vegetation and river geomorphology. While originally modeled as a well-mixed stream during FLIR analysis, the DTS data further suggest that locally strong, vertical thermal gradients are found near the bottom of the active stream channel. The high-resolution temperature measurements were paired with fish surveys in order to determine the correlation between areas of identified lower river temperatures, groundwater accretion and other beneficial salmonid habitat indicators. Our work suggests that understanding of local-scale groundwater-stream interaction and analysis of corresponding local-scale geologic and riparian vegetation controls are critical to understanding the basin-scale groundwater-stream interactions. Preliminary data reviews indicate that groundwater discharge leads to distinct cold temperature pools near the streambed, while the remainder of the stream column is thermally well mixed. This local-scale, three-dimensional understanding is necessary if strategies are to be developed that aim for effective water resource management practices and improved beneficial use habitat. A multi-scale field reconnaissance and modeling approach is suggested to develop water management practices that lead to better habitat protection throughout the watershed.

  16. THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De la Luz, Victor; Raulin, Jean-Pierre; Lara, Alejandro

    2013-01-10

    We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimetermore » wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMC shows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.« less

  17. Thermal sensation and comfort during exposure to local airflow to face or legs.

    PubMed

    Yamashita, Kazuaki; Matsuo, Juntaro; Tochihara, Yutaka; Kondo, Youichiro; Takayama, Shizuka; Nagayama, Hiroki

    2005-01-01

    The present study examined the contribution of local airflow temperature to thermal sensation and comfort in humans. Eight healthy male students were exposed to local airflow to their faces (summer condition) or legs (winter condition) for 30 minutes. Local airflow temperature (Tf) was maintained at 18 degrees C to 36 degrees C, and ambient temperature (Ta) was maintained at 17.4 degrees C to 31.4 degrees C. Each subject was exposed to 16 conditions chosen from the combination of Tf and Ta. Based on the results of multiple regression analysis, the standardized partial regression coefficient of Tf and Ta were determined to be 0.93 and 0.13 in the summer condition, and 0.71 and 0.36 in the winter condition at the end of the exposure. Also, thermal comfort was observed to depend closely on the interrelation between Tf and Ta. The present data suggested that local airflow temperature is an important thermal factor regarding thermal sensation and comfort.

  18. Quantitative analysis of the local phase transitions induced by the laser heating

    DOE PAGES

    Levlev, Anton V.; Susner, Michael A.; McGuire, Michael A.; ...

    2015-11-04

    Functional imaging enabled by scanning probe microscopy (SPM) allows investigations of nanoscale material properties under a wide range of external conditions, including temperature. However, a number of shortcomings preclude the use of the most common material heating techniques, thereby limiting precise temperature measurements. Here we discuss an approach to local laser heating on the micron scale and its applicability for SPM. We applied local heating coupled with piezoresponse force microscopy and confocal Raman spectroscopy for nanoscale investigations of a ferroelectric-paraelectric phase transition in the copper indium thiophosphate layered ferroelectric. Bayesian linear unmixing applied to experimental results allowed extraction of themore » Raman spectra of different material phases and enabled temperature calibration in the heated region. Lastly, the obtained results enable a systematic approach for studying temperature-dependent material functionalities in heretofore unavailable temperature regimes.« less

  19. Evidence for local adaptation and pleiotropic effects associated with melanization in a plant pathogenic fungus.

    PubMed

    Zhu, Wen; Zhan, Jiasui; McDonald, Bruce A

    2018-06-01

    We combined a common garden experimental design with digital image analysis to determine how melanization responds to temperature and fungicide stress in 126 strains of Rhynchosporium commune sampled from nine global field populations. We found that different temperatures and fungicide stress significantly affected the degree of melanization. The nine field populations showed similar patterns in response to the different temperatures. Significant correlations were found between the degree of melanization and the local environment, including mean annual temperature, latitude, and relative humidity, suggesting that melanization is a locally adaptive trait. We also found that melanization is positively correlated with both virulence and fungicide resistance. These findings suggest that melanization has pleiotropic effects in Rhynchosporium commune. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    NASA Astrophysics Data System (ADS)

    Mavridis, M.; Isliker, H.; Vlahos, L.; Görler, T.; Jenko, F.; Told, D.

    2014-10-01

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties of radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.

  1. A study of self organized criticality in ion temperature gradient mode driven gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavridis, M.; Isliker, H.; Vlahos, L.

    2014-10-15

    An investigation on the characteristics of self organized criticality (Soc) in ITG mode driven turbulence is made, with the use of various statistical tools (histograms, power spectra, Hurst exponents estimated with the rescaled range analysis, and the structure function method). For this purpose, local non-linear gyrokinetic simulations of the cyclone base case scenario are performed with the GENE software package. Although most authors concentrate on global simulations, which seem to be a better choice for such an investigation, we use local simulations in an attempt to study the locally underlying mechanisms of Soc. We also study the structural properties ofmore » radially extended structures, with several tools (fractal dimension estimate, cluster analysis, and two dimensional autocorrelation function), in order to explore whether they can be characterized as avalanches. We find that, for large enough driving temperature gradients, the local simulations exhibit most of the features of Soc, with the exception of the probability distribution of observables, which show a tail, yet they are not of power-law form. The radial structures have the same radial extent at all temperature gradients examined; radial motion (transport) though appears only at large temperature gradients, in which case the radial structures can be interpreted as avalanches.« less

  2. Analysis of Thermal Structure of Arctic Lakes at Local and Regional Scales Using in Situ and Multidate Landsat-8 Data

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping

    2017-11-01

    The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.

  3. Thermal Analysis of Unusual Local-scale Features on the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Capaccioni, F.; Palomba, E.; Zambon, F.; Ammannito, E.; Blewett, D. T.; Combe, J.-Ph.; Denevi, B. W.; hide

    2013-01-01

    At 525 km in mean diameter, Vesta is the second-most massive object in the main asteroid belt of our Solar System. At all scales, pyroxene absorptions are the most prominent spectral features on Vesta and overall, Vesta mineralogy indicates a complex magmatic evolution that led to a differentiated crust and mantle [1]. The thermal behavior of areas of unusual albedo seen on the surface at the local scale can be related to physical properties that can provide information about the origin of those materials. Dawn's Visible and Infrared Mapping Spectrometer (VIR) [2] hyperspectral images are routinely used, by means of temperature-retrieval algorithms, to compute surface temperatures along with spectral emissivities. Here we present temperature maps of several local-scale features of Vesta that were observed by Dawn under different illumination conditions and different local solar times.

  4. Temperature dependence of magneto-transport properties in Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5})/Cu lateral spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikhtiar,; Mitani, S.; Hono, K.

    2016-02-08

    The non-local spin signals of Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5})/Cu lateral spin valves with sub-micron size dimensions were measured with varying temperatures. The non-local spin signal reaches 54 mΩ at 4 K, while it degrades down to 13 mΩ at room temperature. Analysis based on the one-dimensional spin diffusion model clarifies the dominant source for degrading of the spin signal is suppression of the spin diffusion length in Cu, not the spin polarization, indicating Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5}) keeps half-metallic nature even at room temperature. The temperature dependence of non-local spin signal was found to exhibit a downturn at 36 K. The presence of magneticmore » impurities, detrimental effect of which becomes more pronounced for diffusive transport in long Cu wires, is suggested to cause the observed downturn in non-local spin signals.« less

  5. Resource specialists lead local insect community turnover associated with temperature - analysis of an 18-year full-seasonal record of moths and beetles.

    PubMed

    Thomsen, Philip Francis; Jørgensen, Peter Søgaard; Bruun, Hans Henrik; Pedersen, Jan; Riis-Nielsen, Torben; Jonko, Krzysztof; Słowińska, Iwona; Rahbek, Carsten; Karsholt, Ole

    2016-01-01

    Insect responses to recent climate change are well documented, but the role of resource specialization in determining species vulnerability remains poorly understood. Uncovering local ecological effects of temperature change with high-quality, standardized data provides an important first opportunity for predictions about responses of resource specialists, and long-term time series are essential in revealing these responses. Here, we investigate temperature-related changes in local insect communities, using a sampling site with more than a quarter-million records from two decades (1992-2009) of full-season, quantitative light trapping of 1543 species of moths and beetles. We investigated annual as well as long-term changes in fauna composition, abundance and phenology in a climate-related context using species temperature affinities and local temperature data. Finally, we explored these local changes in the context of dietary specialization. Across both moths and beetles, temperature affinity of specialists increased through net gain of hot-dwelling species and net loss of cold-dwelling species. The climate-related composition of generalists remained constant over time. We observed an increase in species richness of both groups. Furthermore, we observed divergent phenological responses between cold- and hot-dwelling species, advancing and delaying their relative abundance, respectively. Phenological advances were particularly pronounced in cold-adapted specialists. Our results suggest an important role of resource specialization in explaining the compositional and phenological responses of insect communities to local temperature increases. We propose that resource specialists in particular are affected by local temperature increase, leading to the distinct temperature-mediated turnover seen for this group. We suggest that the observed increase in species number could have been facilitated by dissimilar utilization of an expanded growing season by cold- and hot-adapted species, as indicated by their oppositely directed phenological responses. An especially pronounced advancement of cold-adapted specialists suggests that such phenological advances might help minimize further temperature-induced loss of resource specialists. Although limited to a single study site, our results suggest several local changes in the insect fauna in concordance with expected change of larger-scale temperature increases. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  6. Structural health monitoring of localized internal corrosion in high temperature piping for oil industry

    NASA Astrophysics Data System (ADS)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2015-03-01

    Crude oil is becoming more corrosive with higher sulfur concentration, chloride concentration, and acidity. The increasing presence of naphthenic acids in oils with various environmental conditions at temperatures between 150°C and 400°C can lead to different internal degradation morphologies in refineries that are uniform, non-uniform, or localized pitting. Improved corrosion measurement technology is needed to better quantify the integrity risk associated with refining crude oils of higher acid concentration. This paper first reports a consolidated review of corrosion inspection technology to establish the foundation for structural health monitoring of localized internal corrosion in high temperature piping. An approach under investigation is to employ flexible ultrasonic thin-film piezoelectric transducer arrays fabricated by the sol-gel manufacturing process for monitoring localized internal corrosion at temperatures up to 400°C. A statistical analysis of sol-gel transducer measurement accuracy using various time of flight thickness calculation algorithms on a flat calibration block is demonstrated.

  7. Ozone-Temperature Diurnal and Longer Term Correlations, in the Lower Thermosphere, Mesosphere and Stratosphere, Based on Measurements from SABER on TIMED

    NASA Technical Reports Server (NTRS)

    Huang, Frank T.; Mayr, Hans G.; Russell, James M., III; Mlynczak, Martin G.

    2012-01-01

    The analysis of mutual ozone-temperature variations can provide useful information on their interdependencies relative to the photochemistry and dynamics governing their behavior. Previous studies have mostly been based on satellite measurements taken at a fixed local time in the stratosphere and lower mesosphere. For these data, it is shown that the zonal mean ozone amounts and temperatures in the lower stratosphere are mostly positively correlated, while they are mostly negatively correlated in the upper stratosphere and in the lower mesosphere. The negative correlation, due to the dependence of photochemical reaction rates on temperature, indicates that ozone photochemistry is more important than dynamics in determining the ozone amounts. In this study, we provide new results by extending the analysis to include diurnal variations over 24 hrs of local time, and to larger spatial regimes, to include the upper mesosphere and lower thermosphere (MLT). The results are based on measurements by the SABER instrument on the TIMED satellite. For mean variations (i.e., averages over local time and longitude) in the MLT, our results show that there is a sharp reversal in the correlation near 80 km altitude, above which the ozone mixing ratio and temperature are mostly positively correlated, while they are mostly negatively correlated below 80 km. This is consistent with the view that above -80 km, effects due to dynamics are more important compared to photochemistry. For diurnal variations, both the ozone and temperature show phase progressions in local time, as a function of altitude and latitude. For temperature, the phase progression is as expected, as they represent migrating tides. For day time ozone, we also find regular phase progression in local time over the whole altitude range of our analysis, 25 to 105 km, at least for low latitudes. This was not previously known, although phase progressions had been noted by us and by others at lower altitudes. For diurnal variations, we find that between about 40 and 65 km, the ozone amounts and temperatures are mostly negatively correlated or neutral, while below approx. 40 km they are mostly positively correlated or neutral. The correlations are less systematic and less robust than for correlations of the mean. At altitudes above approx.65 km, the correlations are more complex, and depend on the tidal temperature variations. For the diurnal case, consideration needs to be given to transport by thermal tides and to the efficacy of response times of ozone concentrations and temperature to each other.

  8. Guess-Work and Reasonings on Centennial Evolution of Surface Air Temperature in Russia. Part III: Where is the Joint Between Norms and Hazards from a Bifurcation Analysis Viewpoint?

    NASA Astrophysics Data System (ADS)

    Kolokolov, Yury; Monovskaya, Anna

    2016-06-01

    The paper continues the application of the bifurcation analysis in the research on local climate dynamics based on processing the historically observed data on the daily average land surface air temperature. Since the analyzed data are from instrumental measurements, we are doing the experimental bifurcation analysis. In particular, we focus on the discussion where is the joint between the normal dynamics of local climate systems (norms) and situations with the potential to create damages (hazards)? We illustrate that, perhaps, the criteria for hazards (or violent and unfavorable weather factors) relate mainly to empirical considerations from human opinion, but not to the natural qualitative changes of climate dynamics. To build the bifurcation diagrams, we base on the unconventional conceptual model (HDS-model) which originates from the hysteresis regulator with double synchronization. The HDS-model is characterized by a variable structure with the competition between the amplitude quantization and the time quantization. Then the intermittency between three periodical processes is considered as the typical behavior of local climate systems instead of both chaos and quasi-periodicity in order to excuse the variety of local climate dynamics. From the known specific regularities of the HDS-model dynamics, we try to find a way to decompose the local behaviors into homogeneous units within the time sections with homogeneous dynamics. Here, we present the first results of such decomposition, where the quasi-homogeneous sections (QHS) are determined on the basis of the modified bifurcation diagrams, and the units are reconstructed within the limits connected with the problem of shape defects. Nevertheless, the proposed analysis of the local climate dynamics (QHS-analysis) allows to exhibit how the comparatively modest temperature differences between the mentioned units in an annual scale can step-by-step expand into the great temperature differences of the daily variability at a centennial scale. Then the norms and the hazards relate to the fundamentally different viewpoints, where the time sections of months and, especially, seasons distort the causal effects of natural dynamical processes. The specific circumstances to realize the qualitative changes of the local climate dynamics are summarized by the notion of a likely periodicity. That, in particular, allows to explain why 30-year averaging remains the most common rule so far, but the decadal averaging begins to substitute that rule. We believe that the QHS-analysis can be considered as the joint between the norms and the hazards from a bifurcation analysis viewpoint, where the causal effects of the local climate dynamics are projected into the customary timescale only at the last step. We believe that the results could be interesting to develop the fields connected with climatic change and risk assessment.

  9. Generalization of the slip line field theory for temperature sensitive visco-plastic materials

    NASA Astrophysics Data System (ADS)

    Paesold, Martin; Peters, Max; Regenauer-Lieb, Klaus; Veveakis, Manolis; Bassom, Andrew

    2015-04-01

    Geological processes can be a combination of various effects such as heat production or consumption, chemical reactions or fluid flow. These individual effects are coupled to each other via feedbacks and the mathematical analysis becomes challenging due to these interdependencies. Here, we concentrate solely on thermo-mechanical coupling and a main result of this work is that the coupling can depend on material parameters and boundary conditions and the coupling is more or less pronounced depending on theses parameters. The transitions from weak to strong coupling can be studied in the context of a bifurcation analysis. classically, Material instabilities in solids are approached as material bifurcations of a rate-independent, isothermal, elasto-plastic solid. However, previous research has shown that temperature and deformation rate are important factors and are fully coupled with the mechanical deformation. Early experiments in steel revealed a distinct pattern of localized heat dissipation and plastic deformation known as heat lines. Further, earth materials, soils, rocks and ceramics are known to be greatly influenced by temperature with strain localization being strongly affected by thermal loading. In this work, we provide a theoretical framework for the evolution of plastic deformation for such coupled systems, with a two-pronged approach to the prediction of localized failure. First, slip line field theory is employed to predict the geometry of the failure patterns and second, failure criteria are derived from an energy bifurcation analysis. The bifurcation analysis is concerned with the local energy balance of a material and compares the effects of heat diffusion terms and heat production terms where the heat production is due to mechanical processes. Commonly, the heat is produced locally along the slip lines and if the heat production outweighs diffusion the material is locally weakened which eventually leads to failure. The effect of diffusion and heat production is captured by a dimensionless quantity, the Gruntfest number, and only if the Gruntfest number is larger than a critical value localized failure occurs. This critical Gruntfest number depends on boundary conditions such as temperature or pressure and hence this critical value gives rise to localization criteria. We find that the results of this approach agree with earlier contributions to the theory of plasticity but gives the advantage of a unified framework which might prove useful in numerical schemes for visco-plasticity.

  10. Superposed epoch analysis of vertical ion velocity, electron temperature, field-aligned current, and thermospheric wind in the dayside auroral region as observed by DMSP and CHAMP

    NASA Astrophysics Data System (ADS)

    Kervalishvili, G.; Lühr, H.

    2016-12-01

    This study reports on the results obtained by a superposed epoch analysis (SEA) method applied to the electron temperature, vertical ion velocity, field-aligned current (FAC), and thermospheric zonal wind velocity at high-latitudes in the Northern Hemisphere. The SEA study is performed in a magnetic latitude versus magnetic local time (MLat-MLT) frame. The obtained results are based on observations collected during the years 2001-2005 by the CHAMP and DMSP (F13 and F15) satellites. The dependence on interplanetary magnetic field (IMF) orientations is also investigated using data from the NASA/GSFC's OMNI database. Further, the obtained results are subdivided into three Lloyd seasons of 130 days each, which are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32days), and local summer (1 July ± 65 days). A period of 130 days is needed by the CHAMP satellite to pass through all local times. The time and location of the electron temperature peaks from CHAMP measurements near the cusp region are used as the reference parameter for the SEA method to investigate the relationship between the electron temperature and other ionospheric quantities. The SEA derived MLat profiles of the electron temperature show a seasonal dependence, increasing from winter to summer, as expected. But, the temperature rise (difference between the reference temperature peak and the background electron temperature) strongly decreases towards local summer. The SEA derived MLat profiles of the ion vertical velocity at DMSP altitude show the same seasonal behaviour as the electron temperature rice. There exists a clear linear relation between these two variables with a quiet large correlation coefficient value, >0.9. The SEA derived MLat profiles of both, thermospheric zonal wind velocity and FAC, show a clear IMF By orientation dependence for all local seasons. The zonal wind velocity is prominently directed towards west in the MLat-MLT frame for both signs of IMF By, but speeds are larger for positive By. FAC shows a systematic imbalance between downward (upward) and upward (downward) peaks equatorward and poleward of the reference point for positive (negative) IMF By. The influence of upflow events depends strongly on the amplitude of IMF By, to a lesser extend on Bz.

  11. Analysis of uncertainties in turbine metal temperature predictions

    NASA Technical Reports Server (NTRS)

    Stepka, F. S.

    1980-01-01

    An analysis was conducted to examine the extent to which various factors influence the accuracy of analytically predicting turbine blade metal temperatures and to determine the uncertainties in these predictions for several accuracies of the influence factors. The advanced turbofan engine gas conditions of 1700 K and 40 atmospheres were considered along with those of a highly instrumented high temperature turbine test rig and a low temperature turbine rig that simulated the engine conditions. The analysis showed that the uncertainty in analytically predicting local blade temperature was as much as 98 K, or 7.6 percent of the metal absolute temperature, with current knowledge of the influence factors. The expected reductions in uncertainties in the influence factors with additional knowledge and tests should reduce the uncertainty in predicting blade metal temperature to 28 K, or 2.1 percent of the metal absolute temperature.

  12. Heat transfer about a vertical permeable membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaviany, M.

    1988-05-01

    The natural convection heat transfer about both sides of vertical walls without any seepage has been studied and the effects of the wall thickness and thermal conductivity on the local and average heat transfer rates have been determined. Viskanta and Lankford have concluded that in predicting the heat transfer rate through the wall, for low-thermal-conductivity walls the a priori unknown wall surface temperatures can be walls the a priori unknown wall surface temperatures can be estimated as the arithmetic average of the reservoir temperatures without loss of accuracy (for most practical situations). Sparrow and Prakash treated the surface temperature asmore » variable but used the local temperature along with the available isothermal boundary-layer analysis for determination of the local heat transfer rate and found this to be reasonable at relatively low Grashof numbers. In this study the heat trasnfer rate between two reservoirs of different temperature connected in part through a permeable membrane is analyzed. Rather than solving the complete problem numerically for the three domains (fluid-wall-fluid), the available results on the effects of suction and blowing on the natural convection boundary layer are used in an analysis of the membranes with low thermal conductivity and small seepage velocities, which are characteristic of membranes considered. This will lead to rather simple expressions for the determination of the heat transfer rate.« less

  13. Development of an effective and potentially scalable weather generator for temperature and growing degree days

    NASA Astrophysics Data System (ADS)

    Rahmani, Elham; Friederichs, Petra; Keller, Jan; Hense, Andreas

    2016-05-01

    The main purpose of this study is to develop an easy-to-use weather generator (WG) for the downscaling of gridded data to point measurements at regional scale. The WG is applied to daily averaged temperatures and annual growing degree days (GDD) of wheat. This particular choice of variables is motivated by future investigations on temperature impacts as the most important climate variable for wheat cultivation under irrigation in Iran. The proposed statistical downscaling relates large-scale ERA-40 reanalysis to local daily temperature and annual GDD. Long-term local observations in Iran are used at 16 synoptic stations from 1961 to 2001, which is the common period with ERA-40 data. We perform downscaling using two approaches: the first is a linear regression model that uses the ERA-40 fingerprints (FP) defined by the squared correlation with local variability, and the second employs a linear multiple regression (MR) analysis to relate the large-scale information at the neighboring grid points to the station data. Extending the usual downscaling, we implement a WG providing uncertainty information and realizations of the local temperatures and GDD by adding a Gaussian random noise. ERA-40 reanalysis well represents the local daily temperature as well as the annual GDD variability. For 2-m temperature, the FPs are more localized during the warm compared with the cold season. While MR is slightly superior for daily temperature time series, FP seems to perform best for annual GDD. We further assess the quality of the WGs applying probabilistic verification scores like the continuous ranked probability score (CRPS) and the respective skill score. They clearly demonstrate the superiority of WGs compared with a deterministic downscaling.

  14. Microwave-assisted ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtold, J.K.; Booty, M.R.; Kriegsmann, G.A.

    1996-12-31

    In recent years, microwave heating has been proposed as an alternative to ignite materials during the process of self-propagating high-temperature synthesis. The microwave heating and ignition of a combustible material is modeled and analyzed in the small Biot number and large activation energy regimes. Both the temporal and spatial evolution of the temperature within the material are described. The ignition characteristics are determined by a localized equation for the perturbation to the inert temperature, which is shown to exhibit thermal runaway behavior. Analysis of this local equation provides explicit ignition conditions in terms of the physical parameters in the problem.

  15. Heat, temperature and Clausius inequality in a model for active Brownian particles

    PubMed Central

    Marconi, Umberto Marini Bettolo; Puglisi, Andrea; Maggi, Claudio

    2017-01-01

    Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced model of active particles. The model consists of an overdamped particle subject to Gaussian coloured noise. Inspired by stochastic thermodynamics, we derive from the system’s Fokker-Planck equation the average exchanges of heat and work with the active bath and the associated entropy production. We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, by restricting the dynamical space to the first velocity moments of the local distribution function we derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes appear and are consistent with the previous thermodynamic analysis. The procedure also shows under which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy production. In the last part, by using multiple time-scale analysis, we provide a constructive method (alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed balance condition determining negative entropy production. PMID:28429787

  16. Heat, temperature and Clausius inequality in a model for active Brownian particles.

    PubMed

    Marconi, Umberto Marini Bettolo; Puglisi, Andrea; Maggi, Claudio

    2017-04-21

    Methods of stochastic thermodynamics and hydrodynamics are applied to a recently introduced model of active particles. The model consists of an overdamped particle subject to Gaussian coloured noise. Inspired by stochastic thermodynamics, we derive from the system's Fokker-Planck equation the average exchanges of heat and work with the active bath and the associated entropy production. We show that a Clausius inequality holds, with the local (non-uniform) temperature of the active bath replacing the uniform temperature usually encountered in equilibrium systems. Furthermore, by restricting the dynamical space to the first velocity moments of the local distribution function we derive a hydrodynamic description where local pressure, kinetic temperature and internal heat fluxes appear and are consistent with the previous thermodynamic analysis. The procedure also shows under which conditions one obtains the unified coloured noise approximation (UCNA): such an approximation neglects the fast relaxation to the active bath and therefore yields detailed balance and zero entropy production. In the last part, by using multiple time-scale analysis, we provide a constructive method (alternative to UCNA) to determine the solution of the Kramers equation and go beyond the detailed balance condition determining negative entropy production.

  17. Observations of climate change among subsistence-oriented communities around the world

    NASA Astrophysics Data System (ADS)

    Savo, V.; Lepofsky, D.; Benner, J. P.; Kohfeld, K. E.; Bailey, J.; Lertzman, K.

    2016-05-01

    The study of climate change has been based strongly on data collected from instruments, but how local people perceive such changes remains poorly quantified. We conducted a meta-analysis of climatic changes observed by subsistence-oriented communities. Our review of 10,660 observations from 2,230 localities in 137 countries shows that increases in temperature and changes in seasonality and rainfall patterns are widespread (~70% of localities across 122 countries). Observations of increased temperature show patterns consistent with simulated trends in surface air temperature taken from the ensemble average of CMIP5 models, for the period 1955-2005. Secondary impacts of climatic changes on both wild and domesticated plants and animals are extensive and threaten the food security of subsistence-oriented communities. Collectively, our results suggest that climate change is having profound disruptive effects at local levels and that local observations can make an important contribution to understanding the pervasiveness of climate change on ecosystems and societies.

  18. Detection of Local Temperature Change on HTS Cables via Time-Frequency Domain Reflectometry

    NASA Astrophysics Data System (ADS)

    Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Ji, Gyeong Hwan; Sohn, Songho; Park, Kijun; Shin, Yong-June

    2017-07-01

    High temperature superconducting (HTS) cables are drawing attention as transmission and distribution cables in future grid, and related researches on HTS cables have been conducted actively. As HTS cables have come to the demonstration stage, failures of cooling systems inducing quench phenomenon of the HTS cables have become significant. Several diagnosis of the HTS cables have been developed but there are still some limitations of the experimental setup. In this paper, a non-destructive diagnostic technique for the detection of the local temperature change point is proposed. Also, a simulation model of HTS cables with a local temperature change point is suggested to verify the proposed diagnosis. The performance of the diagnosis is checked by comparative analysis between the proposed simulation results and experiment results of a real-world HTS cable. It is expected that the suggested simulation model and diagnosis will contribute to the commercialization of HTS cables in the power grid.

  19. Local atomic and magnetic structure of dilute magnetic semiconductor (Ba ,K ) (Zn,Mn ) 2As2

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Gong, Zizhou; Terban, Maxwell W.; Banerjee, Soham; Chen, Bijuan; Jin, Changqing; Feygenson, Mikhail; Uemura, Yasutomo J.; Billinge, Simon J. L.

    2016-09-01

    We have studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system (Ba ,K )(Zn ,Mn )2As2 through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. We detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-defined local orthorhombic structure on a short length scale of ≲5 Å , resulting in a rather asymmetrical local environment of the Mn and As ions. Finally, the magnetic PDF revealed ferromagnetic alignment of Mn spins along the crystallographic c axis, with robust nearest-neighbor ferromagnetic correlations that exist even above the ferromagnetic ordering temperature. We discuss these results in the context of other experiments and theoretical studies on this system.

  20. Experimental Investigation on the Mechanical Instability of Superelastic NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Zeng, Pan; Lei, Liping

    2016-09-01

    In this paper, primary attention is paid to the mechanical instability of superelastic NiTi shape memory alloy (SMA) during localized forward transformation at different temperatures. By inhibiting the localized phase transformation, we can obtain the up-down-up mechanical response of NiTi SMA, which is closely related to the intrinsic material softening during localized martensitic transformation. Furthermore, the material parameters of the up-down-up stress-strain curve are extracted, in such a way that this database can be utilized for simulation and validation of the theoretical analysis. It is found that during forward transformation, the upper yield stress, lower yield stress, Maxwell stress, and nucleation stress of NiTi SMA exhibit linear dependence on temperature. The relation between nucleation stress and temperature can be explained by the famous Clausius-Clapeyron equation, while the relation between upper/lower yield stress and temperature lacks theoretical study, which needs further investigation.

  1. Analysis of Temperature Maps of Selected Dawn Data Over the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-Ph.; Sunshine, J. M.; McCord, T. B.; hide

    2012-01-01

    The thermal behavior of areas of unusual albedo at the surface of Vesta can be related to physical properties that may provide some information about the origin of those materials. Dawn s Visible and Infrared Mapping Spectrometer (VIR) [1] hyperspectral cubes can be used to retrieve surface temperatures. Due to instrumental constraints, high accuracy is obtained only if temperatures are greater than 180 K. Bright and dark surface materials on Vesta are currently investigated by the Dawn team [e.g., 2 and 3 respectively]. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times.

  2. Tissue oxidative metabolism can increase the difference between local temperature and arterial blood temperature by up to 1.3oC: Implications for brain, brown adipose tissue, and muscle physiology.

    PubMed

    Zaretsky, Dmitry V; Romanovsky, Andrej A; Zaretskaia, Maria V; Molkov, Yaroslav I

    2018-01-01

    Tissue temperature increases, when oxidative metabolism is boosted. The source of nutrients and oxygen for this metabolism is the blood. The blood also cools down the tissue, and this is the only cooling mechanism, when direct dissipation of heat from the tissue to the environment is insignificant, e.g. , in the brain. While this concept is relatively simple, it has not been described quantitatively. The purpose of the present work was to answer two questions: 1) to what extent can oxidative metabolism make the organ tissue warmer than the body core, and, 2) how quickly are changes in the local metabolism reflected in the temperature of the tissue? Our theoretical analysis demonstrates that, at equilibrium, given that heat exchange with the organ is provided by the blood, the temperature difference between the organ tissue and the arterial blood is proportional to the arteriovenous difference in oxygen content, does not depend on the blood flow, and cannot exceed 1.3 o C. Unlike the equilibrium temperature difference, the rate of change of the local temperature, with respect to time, does depend on the blood flow. In organs with high perfusion rates, such as the brain and muscles, temperature changes occur on a time scale of a few minutes. In organs with low perfusion rates, such changes may have characteristic time constants of tens or hundreds of minutes. Our analysis explains, why arterial blood temperature is the main determinant of the temperature of tissues with limited heat exchange, such as the brain.

  3. Rubber friction: role of the flash temperature

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.

    2006-08-01

    When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10-2 m s-1 the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s-1. This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.

  4. Changes In The Heating Degree-days In Norway Due Toglobal Warming

    NASA Astrophysics Data System (ADS)

    Skaugen, T. E.; Tveito, O. E.; Hanssen-Bauer, I.

    A continuous spatial representation of temperature improves the possibility topro- duce maps of temperature-dependent variables. A temperature scenario for the period 2021-2050 is obtained for Norway from the Max-Planck-Institute? AOGCM, GSDIO ECHAM4/OPEC 3. This is done by an ?empirical downscaling method? which in- volves the use of empirical links between large-scale fields and local variables to de- duce estimates of the local variables. The analysis is obtained at forty-six sites in Norway. Spatial representation of the anomalies of temperature in the scenario period compared to the normal period (1961-1990) is obtained with the use of spatial interpo- lation in a GIS. The temperature scenario indicates that we will have a warmer climate in Norway in the future, especially during the winter season. The heating degree-days (HDD) is defined as the accumulated Celsius degrees be- tween the daily mean temperature and a threshold temperature. For Scandinavian countries, this threshold temperature is 17 Celsius degrees. The HDD is found to be a good estimate of accumulated cold. It is therefore a useful index for heating energy consumption within the heating season, and thus to power production planning. As a consequence of the increasing temperatures, the length of the heating season and the HDD within this season will decrease in Norway in the future. The calculations of the heating season and the HDD is estimated at grid level with the use of a GIS. The spatial representation of the heating season and the HDD can then easily be plotted. Local information of the variables being analysed can be withdrawn from the spatial grid in a GIS. The variable is prepared for further spatial analysis. It may also be used as an input to decision making systems.

  5. A versatile phenomenological model for the S-shaped temperature dependence of photoluminescence energy for an accurate determination of the exciton localization energy in bulk and quantum well structures

    NASA Astrophysics Data System (ADS)

    Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.

    2014-02-01

    Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.

  6. Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations.

    PubMed

    Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D

    2012-10-01

    The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague-Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = -10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers.

  7. Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations

    PubMed Central

    Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D.

    2012-01-01

    The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using wavelet analysis of blood flow oscillations in rats. Twelve Sprague Dawley rats were randomly assigned into three protocols, including pressure with local cooling (Δt= −10°C), pressure with local heating (Δt= 10°C), and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 hours. Skin blood flow was measured using laser Doppler flowmetry. The 3-hour loading period was divided into non-overlapping 30 min epochs for analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased in the conditions of pressure with heating and of pressure without temperature changes, but maintained stable in the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers. PMID:23010955

  8. Revealing spatially heterogeneous relaxation in a model nanocomposite.

    PubMed

    Cheng, Shiwang; Mirigian, Stephen; Carrillo, Jan-Michael Y; Bocharova, Vera; Sumpter, Bobby G; Schweizer, Kenneth S; Sokolov, Alexei P

    2015-11-21

    The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no "glassy" layer, but the α-relaxation time near the nanoparticle grows with cooling faster than the α-relaxation time in the bulk and is ∼20 times longer at low temperatures. The interfacial layer thickness increases from ∼1.8 nm at higher temperatures to ∼3.5 nm upon cooling to near bulk Tg. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory. Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. The theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.

  9. Revealing spatially heterogeneous relaxation in a model nanocomposite

    DOE PAGES

    Cheng, Shiwang; Mirigian, Stephen; Carrillo, Jan-Michael Y.; ...

    2015-11-18

    The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no glassy layer, but the -relaxation time near the nanoparticle grows with cooling faster than the -relaxation time in the bulk and is ~20 times longer at low temperatures. The interfacial layer thickness increases from ~1.8 nm at higher temperatures to ~3.5 nm upon cooling to near bulk T g. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory.more » Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. As a result, the theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.« less

  10. Convection equation modeling: A non-iterative direct matrix solution algorithm for use with SINDA

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S.

    1993-01-01

    The determination of the boundary conditions for a component-level analysis, applying discrete finite element and finite difference modeling techniques often requires an analysis of complex coupled phenomenon that cannot be described algebraically. For example, an analysis of the temperature field of a coldplate surface with an integral fluid loop requires a solution to the parabolic heat equation and also requires the boundary conditions that describe the local fluid temperature. However, the local fluid temperature is described by a convection equation that can only be solved with the knowledge of the locally-coupled coldplate temperatures. Generally speaking, it is not computationally efficient, and sometimes, not even possible to perform a direct, coupled phenomenon analysis of the component-level and boundary condition models within a single analysis code. An alternative is to perform a disjoint analysis, but transmit the necessary information between models during the simulation to provide an indirect coupling. For this approach to be effective, the component-level model retains full detail while the boundary condition model is simplified to provide a fast, first-order prediction of the phenomenon in question. Specifically for the present study, the coldplate structure is analyzed with a discrete, numerical model (SINDA) while the fluid loop convection equation is analyzed with a discrete, analytical model (direct matrix solution). This indirect coupling allows a satisfactory prediction of the boundary condition, while not subjugating the overall computational efficiency of the component-level analysis. In the present study a discussion of the complete analysis of the derivation and direct matrix solution algorithm of the convection equation is presented. Discretization is analyzed and discussed to extend of solution accuracy, stability and computation speed. Case studies considering a pulsed and harmonic inlet disturbance to the fluid loop are analyzed to assist in the discussion of numerical dissipation and accuracy. In addition, the issues of code melding or integration with standard class solvers such as SINDA are discussed to advise the user of the potential problems to be encountered.

  11. Local observation of reverse-domain superconductivity in a superconductor-ferromagnet hybrid.

    PubMed

    Fritzsche, J; Moshchalkov, V V; Eitel, H; Koelle, D; Kleiner, R; Szymczak, R

    2006-06-23

    Nanoscale magnetic and superconducting properties of the superconductor-ferromagnet Nb/PbFe12O19 hybrid were studied as a function of applied magnetic fields. Low-temperature scanning laser microscopy (LTSLM) together with transport measurements were carried out in order to reveal local variations of superconductivity induced by the magnetic field template produced by the ferromagnetic substrate. Room temperature magnetic force microscopy (MFM) was performed and magnetization curves were taken at room and low temperature to investigate the magnetic properties of the hybrid. Comparative analysis of the LTSLM and the MFM images has convincingly demonstrated the presence of the reverse-domain superconductivity.

  12. Real-Time Two-Dimensional Mapping of Relative Local Surface Temperatures with a Thin-Film Sensor Array

    PubMed Central

    Li, Gang; Wang, Zhenhai; Mao, Xinyu; Zhang, Yinghuang; Huo, Xiaoye; Liu, Haixiao; Xu, Shengyong

    2016-01-01

    Dynamic mapping of an object’s local temperature distribution may offer valuable information for failure analysis, system control and improvement. In this letter we present a computerized measurement system which is equipped with a hybrid, low-noise mechanical-electrical multiplexer for real-time two-dimensional (2D) mapping of surface temperatures. We demonstrate the performance of the system on a device embedded with 32 pieces of built-in Cr-Pt thin-film thermocouples arranged in a 4 × 8 matrix. The system can display a continuous 2D mapping movie of relative temperatures with a time interval around 1 s. This technique may find applications in a variety of practical devices and systems. PMID:27347969

  13. Squids in the Study of Cerebral Magnetic Field

    NASA Astrophysics Data System (ADS)

    Romani, G. L.; Narici, L.

    The following sections are included: * INTRODUCTION * HISTORICAL OVERVIEW * NEUROMAGNETIC FIELDS AND AMBIENT NOISE * DETECTORS * Room temperature sensors * SQUIDs * DETECTION COILS * Magnetometers * Gradiometers * Balancing * Planar gradiometers * Choice of the gradiometer parameters * MODELING * Current pattern due to neural excitations * Action potentials and postsynaptic currents * The current dipole model * Neural population and detected fields * Spherically bounded medium * SPATIAL CONFIGURATION OF THE SENSORS * SOURCE LOCALIZATION * Localization procedure * Experimental accuracy and reproducibility * SIGNAL PROCESSING * Analog Filtering * Bandpass filters * Line rejection filters * DATA ANALYSIS * Analysis of evoked/event-related responses * Simple average * Selected average * Recursive techniques * Similarity analysis * Analysis of spontaneous activity * Mapping and localization * EXAMPLES OF NEUROMAGNETIC STUDIES * Neuromagnetic measurements * Studies on the normal brain * Clinical applications * Epilepsy * Tinnitus * CONCLUSIONS * ACKNOWLEDGEMENTS * REFERENCES

  14. Distribution of Localized States from Fine Analysis of Electron Spin Resonance Spectra in Organic Transistors

    NASA Astrophysics Data System (ADS)

    Matsui, Hiroyuki; Mishchenko, Andrei S.; Hasegawa, Tatsuo

    2010-02-01

    We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.

  15. Distribution of localized states from fine analysis of electron spin resonance spectra in organic transistors.

    PubMed

    Matsui, Hiroyuki; Mishchenko, Andrei S; Hasegawa, Tatsuo

    2010-02-05

    We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.

  16. An analysis of spatial representativeness of air temperature monitoring stations

    NASA Astrophysics Data System (ADS)

    Liu, Suhua; Su, Hongbo; Tian, Jing; Wang, Weizhen

    2018-05-01

    Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius ( r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.

  17. NCEP SST Analysis

    Science.gov Websites

    Branches Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact EMC , state and local government Web resources and services. Real-time, global, sea surface temperature (RTG_SST_HR) analysis For a regional map, click the desired area in the global SST analysis and anomaly maps

  18. Diagnosis of middle atmosphere chemistry-dynamics interactions

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Swartz, W. H.; Garcia, R. R.; Chartier, A.; Yee, J. H.; Yue, J.

    2017-12-01

    We apply the recently developed middle atmosphere climate feedback-response analysis method (MCFRAM) to diagnosing the temperature variations associated with chemistry-dynamics interactions in the middle atmosphere. By using output fields from the Whole Atmosphere Community Climate Model (WACCM) coupled with the measurements, we identify and isolate the distinctive characteristics of different components in the observed temperature variations. Both the temperature trends associated with the anthropogenic forcing and temperature changes associated with natural and internal feedback processes are quantified based on MCFRAM defined partial temperature changes corresponding to localized radiative heating, non-localized chemical heating, eddy transport, and transport by the mean meridional circulation of energy and chemical species. In addition, the temperature responses to variations of CO2, O3, and solar flux have distinctly different spatial structures that can be systematically categorized by the eigenmodes of the generalized damping matrix derived from MCFRAM.

  19. Global gene expression analysis provides insight into local adaptation to geothermal streams in tadpoles of the Andean toad Rhinella spinulosa.

    PubMed

    Pastenes, Luis; Valdivieso, Camilo; Di Genova, Alex; Travisany, Dante; Hart, Andrew; Montecino, Martín; Orellana, Ariel; Gonzalez, Mauricio; Gutiérrez, Rodrigo A; Allende, Miguel L; Maass, Alejandro; Méndez, Marco A

    2017-05-16

    The anuran Rhinella spinulosa is distributed along the Andes Range at altitudes that undergo wide daily and seasonal variation in temperature. One of the populations inhabits geothermal streams, a stable environment that influences life history traits such as the timing of metamorphosis. To investigate whether this population has undergone local adaptation to this unique habitat, we carried out transcriptome analyses in animals from two localities in two developmental stages (prometamorphic and metamorphic) and exposed them to two temperatures (20 and 25 °C). RNA-Seq, de novo assembly and annotation defined a transcriptome revealing 194,469 high quality SNPs, with 1,507 genes under positive selection. Comparisons among the experimental conditions yielded 1,593 differentially expressed genes. A bioinformatics search for candidates revealed a total of 70 genes that are highly likely to be implicated in the adaptive response of the population living in a stable environment, compared to those living in an environment with variable temperatures. Most importantly, the population inhabiting the geothermal environment showed decreased transcriptional plasticity and reduced genetic variation compared to its counterpart from the non-stable environment. This analysis will help to advance the understanding of the molecular mechanisms that account for the local adaptation to geothermal streams in anurans.

  20. Photoexcited energy transfer in a weakly coupled dimer

    DOE PAGES

    Hernandez, Laura Alfonso; Nelson, Tammie; Tretiak, Sergei; ...

    2015-01-08

    Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on themore » same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. As a result, our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.« less

  1. Photoexcited Energy Transfer in a Weakly Coupled Dimer.

    PubMed

    Alfonso Hernandez, Laura; Nelson, Tammie; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2015-06-18

    Nonadiabatic excited-state molecular dynamics (NA-ESMD) simulations have been performed in order to study the time-dependent exciton localization during energy transfer between two chromophore units of the weakly coupled anthracene dimer dithia-anthracenophane (DTA). Simulations are done at both low temperature (10 K) and room temperature (300 K). The initial photoexcitation creates an exciton which is primarily localized on a single monomer unit. Subsequently, the exciton experiences an ultrafast energy transfer becoming localized on either one monomer unit or the other, whereas delocalization between both monomers never occurs. In half of the trajectories, the electronic transition density becomes completely localized on the same monomer as the initial excitation, while in the other half, it becomes completely localized on the opposite monomer. In this article, we present an analysis of the energy transfer dynamics and the effect of thermally induced geometry distortions on the exciton localization. Finally, simulated fluorescence anisotropy decay curves for both DTA and the monomer unit dimethyl anthracene (DMA) are compared. Our analysis reveals that changes in the transition density localization caused by energy transfer between two monomers in DTA is not the only source of depolarization and exciton relaxation within a single DTA monomer unit can also cause reorientation of the transition dipole.

  2. Local- and landscape-scale land cover affects microclimate and water use in urban gardens.

    PubMed

    Lin, Brenda B; Egerer, Monika H; Liere, Heidi; Jha, Shalene; Bichier, Peter; Philpott, Stacy M

    2018-01-01

    Urban gardens in Central California are highly vulnerable to the effects of climate change, experiencing both extended high heat periods as well as water restrictions because of severe drought conditions. This puts these critical community-based food production systems at risk as California is expected to experience increasing weather extremes. In agricultural systems, increased vegetation complexity, such as greater structure or biodiversity, can increase the resilience of food production systems from climate fluctuations. We test this theory in 15 urban gardens across California's Central Coast. Local- and landscape-scale measures of ground, vegetation, and land cover were collected in and around each garden, while climate loggers recorded temperatures in each garden in 30min increments. Multivariate analyses, using county as a random factor, show that both local- and landscape-scale factors were important. All factors were significant predictors of mean temperature. Tallest vegetation, tree/shrub species richness, grass cover, mulch cover, and landscape level agricultural cover were cooling factors; in contrast, garden size, garden age, rock cover, herbaceous species richness, and landscape level urban cover were warming factors. Results were similar for the maximum temperature analysis except that agriculture land cover and herbaceous species richness were not significant predictors of maximum temperature. Analysis of gardener watering behavior to observed temperatures shows that garden microclimate was significantly related to the number of minutes watered as well as the number of liters of water used per watering event. Thus gardeners seem to respond to garden microclimate in their watering behavior even though this behavior is most probably motivated by a range of other factors such as water regulations and time availability. This research shows that local management of ground cover and vegetation can reduce mean and maximum temperatures in gardens, and the reduced temperatures may influence watering behavior of gardeners. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  3. The regular nocturnal course of temperature in the midlatitude mesopause region according to hydroxyl airglow measurements

    NASA Astrophysics Data System (ADS)

    Perminov, V. I.; Pertsev, N. N.

    2016-09-01

    Using ground-based spectral measurements in the near-infrared range at the Zvenigorod scientific station of the Institute of Atmospheric Physics (56° N, 37° E) for 2000-2013, we obtained average nighttime changes in rotational and vibrational temperatures of hydroxyl with its emission layer localized at mesopause heights. The rotational temperature reflects the kinetic temperature of the emission layer of the atmosphere. The analysis made it possible to determine the characteristics of the first three harmonics of diurnal temperature dynamics in the mesopause region both with and without altitudinal oscillations of the OH emission layer. In both cases, the second and third harmonics are statistically significant: their amplitudes are ˜1 K and the phases of their first maxima are near 0300 and 0130 local solar time.

  4. Analysis of heat-transfer tests of an impingement-convection- and film-cooled vane in a cascade

    NASA Technical Reports Server (NTRS)

    Gladden, H. J.; Gauntner, D. J.; Livingood, J. N. B.

    1971-01-01

    Experimental flow and heat transfer data obtained for an air-cooled turbine vane tested in a static cascade at gas temperatures and pressures to 1644 K (2500 F) and 31 N/cm2 (45 psia), respectively, are presented. Average and local vane temperatures were correlated in several ways. Calculated and measured coolant flows and vane temperatures are compared. Potential allowable increases in gas temperature are also discussed.

  5. Temperature distribution around thin electroconductive layers created on composite textile substrates

    NASA Astrophysics Data System (ADS)

    Korzeniewska, Ewa; Szczesny, Artur; Krawczyk, Andrzej; Murawski, Piotr; Mróz, Józef; Seme, Sebastian

    2018-03-01

    In this paper, the authors describe the distribution of temperatures around electroconductive pathways created by a physical vacuum deposition process on flexible textile substrates used in elastic electronics and textronics. Cordura material was chosen as the substrate. Silver with 99.99% purity was used as the deposited metal. This research was based on thermographic photographs of the produced samples. Analysis of the temperature field around the electroconductive layer was carried out using Image ThermaBase EU software. The analysis of the temperature distribution highlights the software's usefulness in determining the homogeneity of the created metal layer. Higher local temperatures and non-uniform distributions at the same time can negatively influence the work of the textronic system.

  6. Micromechanics of composites with shape memory alloy fibers in uniform thermal fields

    NASA Technical Reports Server (NTRS)

    Birman, Victor; Saravanos, Dimitris A.; Hopkins, Dale A.

    1995-01-01

    Analytical procedures are developed for a composite system consisting of shape memory alloy fibers within an elastic matrix subject to uniform temperature fluctuations. Micromechanics for the calculation of the equivalent properties of the composite are presented by extending the multi-cell model to incorporate shape memory alloy fibers. A three phase concentric cylinder model is developed for the analysis of local stresses which includes the fiber, the matrix, and the surrounding homogenized composite. The solution addresses the complexities induced by the nonlinear dependence of the in-situ martensite fraction of the fibers to the local stresses and temperature, and the local stresses developed from interactions between the fibers and matrix during the martensitic and reverse phase transformations. Results are presented for a nitinol/epoxy composite. The applications illustrate the response of the composite in isothermal longitudinal loading and unloading, and in temperature induced actuation. The local stresses developed in the composite under various stages of the martensitic and reverse phase transformation are also shown.

  7. External tank chill effect on the space transportation system launch pad environment

    NASA Technical Reports Server (NTRS)

    Ahmad, R. A.; Boraas, S.

    1991-01-01

    The external tank (ET) of the STS contains liquid oxygen and liquid hydrogen as oxidizer and fuel for the SSMEs. Once the cryogen have been loaded into the ET, the temperature of the air surrounding the STS is chilled by the cold outer surface of the ET. This paper describes a two-dimensional flow and thermal analysis to determine this chill effect on the STS launch pad environment subsequent to the ET loading operation. The analysis was done assuming winter conditions and a northwest wind direction. An existing CFD code, PHOENICS '81, was used in the study. The results are presented as local and average values of the heat transfer coefficient, the Nusselt number, and the surface temperature around the redesigned solid rocket motors (RSRMs) and the ET. The temperature depression caused by the ET chilling of the air in the vicinity of the RSRMs was calculated to be 3 F below the ambient. This compares with the observed 1-2 F RSRM surface temperature depression based upon measurements made prior to the winter flight of STS-29. Since the surface temperature would be expected to be slightly higher than the local air temperature, the predicted temperature depression of the air appears to be substantiated.

  8. Local atomic and magnetic structure of dilute magnetic semiconductor ( Ba , K ) ( Zn , Mn ) 2 As 2

    DOE PAGES

    Frandsen, Benjamin A.; Gong, Zizhou; Terban, Maxwell W.; ...

    2016-09-06

    We studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system (Ba,K)(Zn,Mn) 2As 2 through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. Furthermore, we detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-defined local orthorhombic structure on a short length scale of ≲5Å, resulting in a rather asymmetrical local environment of the Mn and As ions. Finally, the magnetic PDF revealed ferromagnetic alignment ofmore » Mn spins along the crystallographic c axis, with robust nearest-neighbor ferromagnetic correlations that exist even above the ferromagnetic ordering temperature. Finally, we discuss these results in the context of other experiments and theoretical studies on this system.« less

  9. Rubber friction: role of the flash temperature.

    PubMed

    Persson, B N J

    2006-08-16

    When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10(-2) m s(-1) the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s(-1). This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.

  10. Seeing is Believing? An Examination of Perceptions of Local Weather Conditions and Climate Change Among Residents in the U.S. Gulf Coast.

    PubMed

    Shao, Wanyun; Goidel, Kirby

    2016-11-01

    What role do objective weather conditions play in coastal residents' perceptions of local climate shifts and how do these perceptions affect attitudes toward climate change? While scholars have increasingly investigated the role of weather and climate conditions on climate-related attitudes and behaviors, they typically assume that residents accurately perceive shifts in local climate patterns. We directly test this assumption using the largest and most comprehensive survey of Gulf Coast residents conducted to date supplemented with monthly temperature data from the U.S. Historical Climatology Network and extreme weather events data from National Climatic Data Center. We find objective conditions have limited explanatory power in determining perceptions of local climate patterns. Only the 15- and 19-year hurricane trends and decadal summer temperature trend have some effects on perceptions of these weather conditions, while the decadal trend of total number of extreme weather events and 15- and 19-year winter temperature trends are correlated with belief in climate change. Partisan affiliation, in contrast, plays a powerful role affecting individual perceptions of changing patterns of air temperatures, flooding, droughts, and hurricanes, as well as belief in the existence of climate change and concern for future consequences. At least when it comes to changing local conditions, "seeing is not believing." Political orientations rather than local conditions drive perceptions of local weather conditions and these perceptions-rather than objectively measured weather conditions-influence climate-related attitudes. © 2016 Society for Risk Analysis.

  11. Olive flowering phenology variation between different cultivars in Spain and Italy: modeling analysis

    NASA Astrophysics Data System (ADS)

    Garcia-Mozo, H.; Orlandi, F.; Galan, C.; Fornaciari, M.; Romano, B.; Ruiz, L.; Diaz de La Guardia, C.; Trigo, M. M.; Chuine, I.

    2009-03-01

    Phenology data are sensitive data to identify how plants are adapted to local climate and how they respond to climatic changes. Modeling flowering phenology allows us to identify the meteorological variables determining the reproductive cycle. Phenology of temperate of woody plants is assumed to be locally adapted to climate. Nevertheless, recent research shows that local adaptation may not be an important constraint in predicting phenological responses. We analyzed variations in flowering dates of Olea europaea L. at different sites of Spain and Italy, testing for a genetic differentiation of flowering phenology among olive varieties to estimate whether local modeling is necessary for olive or not. We build models for the onset and peak dates flowering in different sites of Andalusia and Puglia. Process-based phenological models using temperature as input variable and photoperiod as the threshold date to start temperature accumulation were developed to predict both dates. Our results confirm and update previous results that indicated an advance in olive onset dates. The results indicate that both internal and external validity were higher in the models that used the photoperiod as an indicator to start to cumulate temperature. The use of the unified model for modeling the start and peak dates in the different localities provides standardized results for the comparative study. The use of regional models grouping localities by varieties and climate similarities indicate that local adaptation would not be an important factor in predicting olive phenological responses face to the global temperature increase.

  12. Optical studies of the charge localization and delocalization in conducting polymers

    NASA Astrophysics Data System (ADS)

    Kim, Youngmin

    A systematic charge transport study on the thermochromism of polyaniline (PAN) doped with a plasticizing dopant, and on a field effect device using conducting poly (3,4-ethylenedioxythiophene) (PEDOT) as its active material, was made at optical (20--45,000 cm-1) frequencies to probe the charge localization and delocalization phenomena and the insulator to metal transition (IMT) in the inhomogeneous conducting polymer system. Temperature dependent reflectance [20--8000 cm -1 (2.5 meV--1eV)] of the PAN sample, together with absorbance and do transport study done by Dr. Pron at the Laboratoire de Physique des Metaux Synthetiques in Grenoble, France, shows spectral weight loss in the infrared region but the reflectance in the very low frequency (below 100 cm-1) remains unaffected. There are two localization transitions. The origin of the 200 K localization transition that affect >˜15% of the electrons is the glass transition emanating from the dopants. The transition principally affects the IR response in the range of 200--8000 cm -1. The low temperature (<75K) localization transition affects the few electrons that provide the high conductivity. It is suggested that these electrons are localized by disorder at the lowest temperature and become delocalized through phonon induced delocalization as the temperature increases to 75K. It is noted that this temperature is typical of a Debye temperature in many organic materials. The thermocromism is attributed to the weak localization to strong localization transition through the glass transition temperature. Below the glass transition temperature (Tg), the lattice is "frozen" in configuration that reduces the charge delocalization and lead to cause increase of strongly localized polarons. Time variation of source-drain current, real-time IR reflectance [20--8000 cm-1 (2.5 meV--1eV)] modulation, and real-time UV/VIS/NIR absorbance [380--2400 nm (0.5--3.3 eV)] modulation were measured to investigate the field induced charge localization of PEDOT field effect device. Layer by layer thin film analysis showed strong localization of free carriers. The temperature dependence of the do conductivity changes with application of the gate voltage demonstrating that the electric field effect has changed bulk charge transport in the active channel despite the expected screening due to mobile charge carriers. Mid IR (500--8000 cm-1) reflectance showed little change in the vibrational modes, which distinguish this phenomenon from the doping-dedoping induced electrochemical MIT. UV/Vis/NIR absorbance modulation clearly showed that the increase of the strong localization of charges with the pi-pi* bandgap transition unchanged. It is proposed that conducting polymer is near the metal to insulator transition and that the applied gate voltage leads to this transition through field induced ion motion.

  13. Guess-Work and Reasonings on Centennial Evolution of Surface Air Temperature in Russia. Part IV: Towards Economic Estimations of Climate-Related Damages from the Bifurcation Analysis Viewpoint

    NASA Astrophysics Data System (ADS)

    Kolokolov, Yury; Monovskaya, Anna

    The paper completes the cycle of the research devoted to the development of the experimental bifurcation analysis (not computer simulations) in order to answer the following questions: whether qualitative changes occur in the dynamics of local climate systems in a centennial timescale?; how to analyze such qualitative changes with daily resolution for local and regional space-scales?; how to establish one-to-one daily correspondence between the dynamics evolution and economic consequences for productions? To answer the questions, the unconventional conceptual model to describe the local climate dynamics was proposed and verified in the previous parts. That model (HDS-model) originates from the hysteresis regulator with double synchronization and has a variable structure due to competition between the amplitude quantization and the time quantization. The main advantage of the HDS-model is connected with the possibility to describe “internally” (on the basis of the self-regulation) the specific causal effects observed in the dynamics of local climate systems instead of “external” description of three states of the hysteresis behavior of climate systems (upper, lower and transient states). As a result, the evolution of the local climate dynamics is based on the bifurcation diagrams built by processing the data of meteorological observations, where the strange effects of the essential interannual daily variability of annual temperature variation are taken into account and explained. It opens the novel possibilities to analyze the local climate dynamics taking into account the observed resultant of all internal and external influences on each local climate system. In particular, the paper presents the viewpoint on how to estimate economic damages caused by climate-related hazards through the bifurcation analysis. That viewpoint includes the following ideas: practically each local climate system is characterized by its own time pattern of the natural qualitative changes in temperature dynamics over a century, so, any unified time window to determine the local climatic norms seems to be questionable; the temperature limits determined for climate-related technological hazards should be reasoned by the conditions of artificial human activity, but not by the climatic norms; the damages caused by such hazards can be approximately estimated in relation to the average annual profit of each production. Now, it becomes possible to estimate the minimal and maximal numbers of the specified hazards per year in order, first of all, to avoid unforeseen latent damages. Also, it becomes possible to make some useful relative estimation concerning damage and profit. We believe that the results presented in the cycle illustrate great practical competence of the current advances in the experimental bifurcation analysis. In particular, the developed QHS-analysis provides the novel prospects towards both how to adapt production to climatic changes and how to compensate negative technological impacts on environment.

  14. The effects of temperature and magnetic flux on electron transport through a four-channel DNA model

    NASA Astrophysics Data System (ADS)

    Lee, Sunhee; Hedin, Eric; Joe, Yong

    2010-03-01

    The temperature dependence of the conductivity of lambda phage DNA has been measured by Tran et al [1] experimentally, where the conductivity displayed strong (weak) temperature dependence above (below) a threshold temperature. In order to understand the temperature effects of electron transport theoretically, we study a two-dimensional and four-channel DNA model using a tight-binding (TB) Hamiltonian. The thermal effects within a TB model are incorporated into the hopping integral and the relative twist angle from its equilibrium value between base-pairs. Since these thermal structural fluctuations localize the electronic wave functions in DNA, we examine a temperature-dependent localization length, a temperature-driven transmission, and current-voltage characteristics in this system. In addition, we incorporate magnetic field effects into the analysis of the transmission through DNA in order to modulate the quantum interference between the electron paths that comprise the 4-channel structure. [1] P. Tran, B. Alavi, and G. Gruner, PRL 85, 1564 (2000).

  15. A pantropical analysis of the impacts of forest degradation and conversion on local temperature.

    PubMed

    Senior, Rebecca A; Hill, Jane K; González Del Pliego, Pamela; Goode, Laurel K; Edwards, David P

    2017-10-01

    Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site-level (<1 ha) temperature data from the literature to quantify impacts of land-use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human-impacted land-use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest-dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.

  16. Cold perception and cutaneous microvascular response to local cooling at different cooling temperatures.

    PubMed

    Music, Mark; Finderle, Zarko; Cankar, Ksenija

    2011-05-01

    The aim of the present study was to investigate the effect of quantitatively measured cold perception (CP) thresholds on microcirculatory response to local cooling as measured by direct and indirect response of laser-Doppler (LD) flux during local cooling at different temperatures. The CP thresholds were measured in 18 healthy males using the Marstock method (thermode placed on the thenar). The direct (at the cooling site) and indirect (on contralateral hand) LD flux responses were recorded during immersion of the hand in a water bath at 20°C, 15°C, and 10°C. The cold perception threshold correlated (linear regression analysis, Pearson correlation) with the indirect LD flux response at cooling temperatures 20°C (r=0.782, p<0.01) and 15°C (r=0.605, p<0.01). In contrast, there was no correlation between the CP threshold and the indirect LD flux response during cooling in water at 10°C. The results demonstrate that during local cooling, depending on the cooling temperature used, cold perception threshold influences indirect LD flux response. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Recent trends of groundwater temperatures in Austria

    NASA Astrophysics Data System (ADS)

    Benz, Susanne A.; Bayer, Peter; Winkler, Gerfried; Blum, Philipp

    2018-06-01

    Climate change is one of if not the most pressing challenge modern society faces. Increasing temperatures are observed all over the planet and the impact of climate change on the hydrogeological cycle has long been shown. However, so far we have insufficient knowledge on the influence of atmospheric warming on shallow groundwater temperatures. While some studies analyse the implication climate change has for selected wells, large-scale studies are so far lacking. Here we focus on the combined impact of climate change in the atmosphere and local hydrogeological conditions on groundwater temperatures in 227 wells in Austria, which have in part been observed since 1964. A linear analysis finds a temperature change of +0.7 ± 0.8 K in the years from 1994 to 2013. In the same timeframe surface air temperatures in Austria increased by 0.5 ± 0.3 K, displaying a much smaller variety. However, most of the extreme changes in groundwater temperatures can be linked to local hydrogeological conditions. Correlation between groundwater temperatures and nearby surface air temperatures was additionally analysed. They vary greatly, with correlation coefficients of -0.3 in central Linz to 0.8 outside of Graz. In contrast, the correlation of nationwide groundwater temperatures and surface air temperatures is high, with a correlation coefficient of 0.83. All of these findings indicate that while atmospheric climate change can be observed in nationwide groundwater temperatures, individual wells are often primarily dominated by local hydrogeological conditions. In addition to the linear temperature trend, a step-wise model was also applied that identifies climate regime shifts, which were observed globally in the late 70s, 80s, and 90s. Hinting again at the influence of local conditions, at most 22 % of all wells show these climate regime shifts. However, we were able to identify an additional shift in 2007, which was observed by 37 % of all wells. Overall, the step-wise representation provides a slightly more accurate picture of observed temperatures than the linear trend.

  18. Temperature dependent photoreflectance and photoluminescence characterization of GaInNAs /GaAs single quantum well structures

    NASA Astrophysics Data System (ADS)

    Chen, T. H.; Huang, Y. S.; Lin, D. Y.; Tiong, K. K.

    2004-12-01

    Ga0.69In0.31NxAs1-x/GaAs single quantum well (SQW) structures with three different nitrogen compositions ( x =0%, 0.6%, and 0.9%) have been characterized, as functions of temperature in the range 10-300K, by the techniques of photoreflectance (PR) and photoluminescence (PL). In PR spectra, clear Franz-Keldysh oscillations (FKOs) above the GaAs band edge and the various excitonic transitions originating from the QW region have been observed. The built-in electric field in the SQW has been determined from FKOs and found to increase with N concentration. The PR signal has been found to decrease for nitrogen incorporated samples when the temperature was lowered due to a weakening of the modulation efficiency induced by carrier localization. A careful analysis of PR and PL spectra has led to the identification of various excitonic transitions, mnH(L), between the mth conduction band state and the nth heavy (light)-hole band state. The anomalous temperature dependent 11H transition energy and linewidth observed in the PL spectra have been explained as originating from the localized states as a result of nitrogen incorporation. The temperature dependence analysis yields information on the parameters that describe the temperature variations of the interband transitions.

  19. Analysis of the X-ray emission spectra of copper, germanium and rubidium plasmas produced at the Phelix laser facility

    NASA Astrophysics Data System (ADS)

    Comet, M.; Pain, J.-C.; Gilleron, F.; Piron, R.; Denis-Petit, D.; Méot, V.; Gosselin, G.; Morel, P.; Hannachi, F.; Gobet, F.; Tarisien, M.; Versteegen, M.

    2017-03-01

    We present the analysis of X-ray emission spectra of copper, germanium and rubidium plasmas measured at the Phelix laser facility. The laser intensity was around 6×1014 W.cm-2. The analysis is based on the hypothesis of an homogeneous plasma in local thermodynamic equilibrium using an effective temperature. This temperature is deduced from hydrodynamic simulations and collisional-radiative computations. Spectra are then calculated using the LTE opacity codes OPAMCDF and SCO-RCG and compared to experimental data.

  20. Regional Climate Change across North America in 2030 Projected from RCP6.0

    NASA Astrophysics Data System (ADS)

    Otte, T.; Nolte, C. G.; Faluvegi, G.; Shindell, D. T.

    2012-12-01

    Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. In this research, downscaling techniques that we developed with historical data are now applied to GCM fields. Results from downscaling NASA/GISS ModelE2 simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model has been used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 over North America and illustrate potential changes in regional climate that are projected by ModelE2 and WRF under RCP6.0. The analysis focuses on regional climate fields that most strongly influence the interactions between climate change and air quality. In particular, an analysis of extreme temperature and precipitation events will be presented.

  1. People as sensors: mass media and local temperature influence climate change discussion on Twitter

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Molodtsova, T.; Stepchenkova, S.

    2014-12-01

    We examined whether people living under significant temperature anomalies connect their sensory experiences to climate change and the role that media plays in this process. We used Twitter messages containing words "climate change" and "global warming" as the indicator of attention that public pays to the issue. Specifically, the goals were: (1) to investigate whether people immediately notice significant local weather anomalies and connect them to climate change and (2) to examine the role of mass media in this process. Over 2 million tweets were collected for a two-year period (2012 - 2013) and were assigned to 157 urban areas in the continental USA (Figure 1). Geographical locations of the tweets were identified with a geolocation resolving algorithm based the profile of the users. Daily number of tweets (tweeting rate) was computed for 157 conterminous USA urban areas and adjusted for data acquisition errors. The USHCN daily minimum and maximum temperatures were obtained for the station locations closest to the centers of the urban areas and the 1981-2010 30-year temperature mean and standard deviation were used as the climate normals. For the analysis, we computed the following indices for each day of 2012 - 2013 period: standardized temperature anomaly, absolute standardized temperature anomaly, and extreme cold and hot temperature anomalies for each urban zone. The extreme cold and hot temperature anomalies were then transformed into country-level values that represent the number of people living in extreme temperature conditions. The rate of tweeting on climate change was regressed on the time variables, number of climate change publications in the mass media, and temperature. In the majority of regression models, the mass media and temperature variables were significant at the p<0.001 level. Additionally, we did not find convincing evidence that the media acts as a mediator in the relationship between local weather and climate change discourse intensity. Our analysis of Twitter data confirmed that the public is able to recognize extreme temperature anomalies and connects these anomalies to climate change. Finally, we demonstrated the utility of social network data for research on public climate change perception.

  2. Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate.

    PubMed

    Omumbo, Judith A; Lyon, Bradfield; Waweru, Samuel M; Connor, Stephen J; Thomson, Madeleine C

    2011-01-17

    Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region. Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed. An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations. This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard.

  3. Experimental Study of Combined Forced and Free Laminar Convection in a Vertical Tube

    NASA Technical Reports Server (NTRS)

    Hallman, Theodore M.

    1961-01-01

    An apparatus was built to verify an analysis of combined forced and free convection in a vertical tube with uniform wall heat flux and to determine the limits of the analysis. The test section was electrically heated by resistance heating of the tube wall and was instrumented with thermocouples in such a way that detailed thermal entrance heat-transfer coefficients could be obtained for both upflow and downflow and any asymmetry in wall temperature could be detected. The experiments showed that fully developed heat-transfer results, predicted by a previous analysis, were confirmed over the range of Rayleigh numbers investigated. The concept of "locally fully developed" heat transfer was established. This concept involves the assumption that the fully developed heat-transfer analysis can be applied locally even though the Rayleigh number is varying along the tube because of physical-property variations with temperature. Thermal entrance region data were obtained for pure forced convection and for combined forced and free convection. The analysis of laminar pure forced convection in the thermal entrance region conducted by Siegel, Sparrow, and Hallman was experimentally confirmed. A transition to an eddy motion, indicated by a fluctuation in wall temperature was found in many of the upflow runs. A stability correlation was found. The fully developed Nusselt numbers in downflow were below those for pure forced convection but fell about 10 percent above the analytical curve. Quite large circumferential variations in wall temperature were observed in downflow as compaired with those encountered in upflow, and the fully developed Nussalt numbers reported are based on average wall temperatures determined by averaging the readings of two diametrically opposite wall thermocouples at each axial position. With larger heating rates in downflow the wall temperature distributions strongly suggested a cell flow near the bottom. At still larger heating rates the wall temperatures varied in a periodic way.

  4. Correlations between quasi-coherent fluctuations and the pedestal evolution during the inter-edge localized modes phase on DIII-D

    DOE PAGES

    Diallo, A.; Groebner, R. J.; Rhodes, T. L.; ...

    2015-05-15

    Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. When using fast Thomson scattering measurements, we found that the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution includingmore » its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. Moreover, the saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Finally, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant.« less

  5. Analysis of Knock Phenomenon Induced in a Constant Volume Chamber by Local Gas Temperature Measurement and Visualization

    NASA Astrophysics Data System (ADS)

    Moriyoshi, Yasuo; Kobayashi, Shigemi; Enomoto, Yoshiteru

    Knock phenomenon in SI engines is regarded as an auto-ignition of unburned end-gas, and it has been widely examined by using rapid compression machines (RCM), shock-tubes or test engines. Recent researches point out the importance of the low temperature chemical reaction and the negative temperature coefficient (NTC). To investigate the effects, analyses of instantaneous local gas temperature, flow visualization and gaseous pressure were conducted in this study. As measurements using real engines are too difficult to analyze, the authors aimed to make measurements using a constant volume vessel under knock conditions where propagating flame exists during the induction time of auto-ignition. Adopting the two-wire thermocouple method enabled us to measure the instantaneous local gas temperature until the moment when the flame front passes by. High-speed images inside the unburned region were also recorded simultaneously using an endoscope. As a result, it was found that when knock occurs, the auto-ignition initiation time seems slightly early compared to the results without knock. This causes a higher volume ratio of unburned mixture and existence of many hot spots and stochastically leads to an initiation of knock.

  6. Exospheric hydrogen above St-Santin /France/

    NASA Technical Reports Server (NTRS)

    Derieux, A.; Lejeune, G.; Bauer, P.

    1975-01-01

    The temperature and hydrogen concentration of the exosphere was determined using incoherent scatter measurements performed above St. Santin from 1969 to 1972. The hydrogen concentration was deduced from measurements of the number density of positive hydrogen and oxygen ions. A statistical analysis is given of the hydrogen concentration as a function of the exospheric temperature and the diurnal variation of the hydrogen concentration is investigated for a few selected days of good quality observation. The data averaged with respect to the exospheric temperature without consideration of the local time exhibits a distribution consistent with a constant effective Jeans escape flux of about 9 x 10 to the 7 cu cm/s. The local time variation exhibits a maximum to minimum concentration ratio of at least 3.5.

  7. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase.

    PubMed

    Bakker, J F; Paulides, M M; Neufeld, E; Christ, A; Kuster, N; van Rhoon, G C

    2011-08-07

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SAR(wb)) are provided to keep the whole-body temperature increase (T(body, incr)) under 1 °C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR(10g)) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (T(incr, max)) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate T(incr, max) in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 °C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used T(incr, max) as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on T(incr, max) for specified durations of exposure.

  8. The 60 GHz radiometric local vertical sensor experiment

    NASA Technical Reports Server (NTRS)

    Grauling, C. H., Jr.

    1973-01-01

    The experiment concept involves the use of millimeter wave radiation the atmospheric oxygen to provide vertical sensing information to a satellite-borne radiometer. The radiance profile studies require the calculation of ray brightness temperature as a function of tangential altitude and atmosphere model, and the computer program developed for this purpose is discussed. Detailed calculations have been made for a total of 12 atmosphere models, including some showing severe warning conditions. The experiment system analysis investigates the effect of various design choices on system behavior. Calculated temperature profiles are presented for a wide variety of frequencies, bandwidths, and atmosphere models. System performance is determined by the convolution of the brightness temperature and an assumed antenna pattern. A compensation scheme to account for different plateau temperatures is developed and demonstrated. The millimeter wave components developed for the local vertical sensor are discussed, with emphasis on the antenna, low noise mixer, and solid state local oscillator. It was concluded that a viable sensing technique exists, useful over a wide range of altitude with an accuracy generally on the order of 0.01 degree or better.

  9. Excitons emissions and Raman scattering of ZnO nanoparticles embedded in BaF2 matrices by reactive magnetron sputtering.

    PubMed

    Zang, C H; Su, J F; Liu, Y C; Tang, C J; Fang, S J; Zhang, D M; Zhang, Y S

    2011-11-01

    ZnO nanoparticles embedded in BaF2 matrix were fabricated by rf magnetic sputtering technology. The optical properties of high quality ZnO nanoparticles, thermally post treated in a N2 atmosphere, were investigated by temperature-dependence photoluminescence measurement. Free exciton and localized exciton were observed at the low temperature. Free exciton peak was at 3.374 eV and localized exciton peak was at 3.420 eV, dominating the PL spectrum at 77 K. Free exciton transition was observed at 3.310 eV at room temperature, whereas the localized exciton transition was at 3.378 eV. The multiple-phonon Raman scattering spectrum showed that ZnO nanoparticles embedded in BaF2 matrix had a large deformation energy originated from lattice mismatch between ZnO and BaF2 matrix. Analysis of the fitting results from the temperature dependence of FWHM of ZnO exciton illustrated that the large value of gamma(ph) was good qualitative agreement with the large deformation potential.

  10. A Digital Map From External Forcing to the Final Surface Warming Pattern and its Seasonal Cycle

    NASA Astrophysics Data System (ADS)

    Cai, M.

    2015-12-01

    Historically, only the thermodynamic processes (e.g., water vapor, cloud, surface albedo, and atmospheric lapse rate) that directly influence the top of the atmosphere (TOA) radiative energy flux balance are considered in climate feedback analysis. One of my recent research areas is to develop a new framework for climate feedback analysis that explicitly takes into consideration not only the thermodynamic processes that the directly influence the TOA radiative energy flux balance but also the local dynamical (e.g., evaporation, surface sensible heat flux, vertical convections etc) and non-local dynamical (large-scale horizontal energy transport) processes in aiming to explain the warming asymmetry between high and low latitudes, between ocean and land, and between the surface and atmosphere. In the last 5-6 years, we have developed a coupled atmosphere-surface climate feedback-response analysis method (CFRAM) as a new framework for estimating climate feedback and sensitivity in coupled general circulation models with a full physical parameterization package. In the CFRAM, the isolation of partial temperature changes due to an external forcing alone or an individual feedback is achieved by solving the linearized infrared radiation transfer model subject to individual energy flux perturbations (external or due to feedbacks). The partial temperature changes are addable and their sum is equal to the (total) temperature change (in the linear sense). The CFRAM is used to isolate the partial temperature changes due to the external forcing, due to water vapor feedback, clouds, surface albedo, local vertical convection, and non-local atmospheric dynamical feedbacks, as well as oceanic heat storage. It has been shown that seasonal variations in the cloud feedback, surface albedo feedback, and ocean heat storage/dynamics feedback, directly caused by the strong annual cycle of insolation, contribute primarily to the large seasonal variation of polar warming. Furthermore, the CO2 forcing, and water vapor and atmospheric dynamics feedbacks add to the maximum polar warming in fall/winter.

  11. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  12. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.

  13. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.

  14. A numerical analysis for non-linear radiation in MHD flow around a cylindrical surface with chemically reactive species

    NASA Astrophysics Data System (ADS)

    Khan, Junaid Ahmad; Mustafa, M.

    2018-03-01

    Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail.

  15. Large-scale drivers of local precipitation extremes in convection-permitting climate simulations

    NASA Astrophysics Data System (ADS)

    Chan, Steven C.; Kendon, Elizabeth J.; Roberts, Nigel M.; Fowler, Hayley J.; Blenkinsop, Stephen

    2016-04-01

    The Met Office 1.5-km UKV convective-permitting models (CPM) is used to downscale present-climate and RCP8.5 60-km HadGEM3 GCM simulations. Extreme UK hourly precipitation intensities increase with local near-surface temperatures and humidity; for temperature, the simulated increase rate for the present-climate simulation is about 6.5% K**-1, which is consistent with observations and theoretical expectations. While extreme intensities are higher in the RCP8.5 simulation as higher temperatures are sampled, there is a decline at the highest temperatures due to circulation and relative humidity changes. Extending the analysis to the broader synoptic scale, it is found that circulation patterns, as diagnosed by MSLP or circulation type, play an increased role in the probability of extreme precipitation in the RCP8.5 simulation. Nevertheless for both CPM simulations, vertical instability is the principal driver for extreme precipitation.

  16. The seasonal response of the Held-Suarez climate model to prescribed ocean temperature anomalies. II - Dynamical analysis

    NASA Technical Reports Server (NTRS)

    Phillips, T. J.

    1984-01-01

    The heating associated with equatorial, subtropical, and midlatitude ocean temperature anamolies in the Held-Suarez climate model is analyzed. The local and downstream response to the anomalies is analyzed, first by examining the seasonal variation in heating associated with each ocean temperature anomaly, and then by combining knowledge of the heating with linear dynamical theory in order to develop a more comprehensive explanation of the seasonal variation in local and downstream atmospheric response to each anomaly. The extent to which the linear theory of propagating waves can assist the interpretation of the remote cross-latitudinal response of the model to the ocean temperature anomalies is considered. Alternative hypotheses that attempt to avoid the contradictions inherent in a strict application of linear theory are investigated, and the impact of sampling errors on the assessment of statistical significance is also examined.

  17. Oxygen-hydrogen torch is a small-scale steam generator

    NASA Technical Reports Server (NTRS)

    Maskell, C. E.

    1966-01-01

    Standard oxygen-hydrogen torch generates steam for corrosion-rate analysis of various metals. The steam is generated through local combustion inside a test chamber under constant temperature and pressure control.

  18. Thermal Stress FE Analysis of Large-scale Gas Holder Under Sunshine Temperature Field

    NASA Astrophysics Data System (ADS)

    Li, Jingyu; Yang, Ranxia; Wang, Hehui

    2018-03-01

    The temperature field and thermal stress of Man type gas holder is simulated by using the theory of sunshine temperature field based on ASHRAE clear-sky model and the finite element method. The distribution of surface temperature and thermal stress of gas holder under the given sunshine condition is obtained. The results show that the thermal stress caused by sunshine can be identified as one of the important factors for the failure of local cracked oil leakage which happens on the sunny side before on the shady side. Therefore, it is of great importance to consider the sunshine thermal load in the stress analysis, design and operation of large-scale steel structures such as the gas holder.

  19. Topological framework for local structure analysis in condensed matter

    PubMed Central

    Lazar, Emanuel A.; Han, Jian; Srolovitz, David J.

    2015-01-01

    Physical systems are frequently modeled as sets of points in space, each representing the position of an atom, molecule, or mesoscale particle. As many properties of such systems depend on the underlying ordering of their constituent particles, understanding that structure is a primary objective of condensed matter research. Although perfect crystals are fully described by a set of translation and basis vectors, real-world materials are never perfect, as thermal vibrations and defects introduce significant deviation from ideal order. Meanwhile, liquids and glasses present yet more complexity. A complete understanding of structure thus remains a central, open problem. Here we propose a unified mathematical framework, based on the topology of the Voronoi cell of a particle, for classifying local structure in ordered and disordered systems that is powerful and practical. We explain the underlying reason why this topological description of local structure is better suited for structural analysis than continuous descriptions. We demonstrate the connection of this approach to the behavior of physical systems and explore how crystalline structure is compromised at elevated temperatures. We also illustrate potential applications to identifying defects in plastically deformed polycrystals at high temperatures, automating analysis of complex structures, and characterizing general disordered systems. PMID:26460045

  20. Evolutionary rescue and local adaptation under different rates of temperature increase: a combined analysis of changes in phenotype expression and genotype frequency in Paramecium microcosms.

    PubMed

    Killeen, Joshua; Gougat-Barbera, Claire; Krenek, Sascha; Kaltz, Oliver

    2017-04-01

    Evolutionary rescue (ER) occurs when populations, which have declined due to rapid environmental change, recover through genetic adaptation. The success of this process and the evolutionary trajectory of the population strongly depend on the rate of environmental change. Here we investigated how different rates of temperature increase (from 23 to 32 °C) affect population persistence and evolutionary change in experimental microcosms of the protozoan Paramecium caudatum. Consistent with theory on ER, we found that those populations experiencing the slowest rate of temperature increase were the least likely to become extinct and tended to be the best adapted to the new temperature environment. All high-temperature populations were more tolerant to severe heat stress (35, 37 °C), indicating a common mechanism of heat protection. High-temperature populations also had superior growth rates at optimum temperatures, leading to the absence of a pattern of local adaptation to control (23 °C) and high-temperature (32 °C) environments. However, high-temperature populations had reduced growth at low temperatures (5-9 °C), causing a shift in the temperature niche. In part, the observed evolutionary change can be explained by selection from standing variation. Using mitochondrial markers, we found complete divergence between control and high-temperature populations in the frequencies of six initial founder genotypes. Our results confirm basic predictions of ER and illustrate how adaptation to an extreme local environment can produce positive as well as negative correlated responses to selection over the entire range of the ecological niche. © 2017 John Wiley & Sons Ltd.

  1. Three-Dimensional Mixed Convection Flow of Viscoelastic Fluid with Thermal Radiation and Convective Conditions

    PubMed Central

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H.; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter. PMID:24608594

  2. Three-dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions.

    PubMed

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter.

  3. Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization.

    PubMed

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.

  4. Soil Moisture Estimation by Assimilating L-Band Microwave Brightness Temperature with Geostatistics and Observation Localization

    PubMed Central

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects. PMID:25635771

  5. Experimental Analysis of Steel Beams Subjected to Fire Enhanced by Brillouin Scattering-Based Fiber Optic Sensor Data.

    PubMed

    Bao, Yi; Chen, Yizheng; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda

    2017-01-01

    This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C.

  6. Feynman graphs and the large dimensional limit of multipartite entanglement

    NASA Astrophysics Data System (ADS)

    Di Martino, Sara; Facchi, Paolo; Florio, Giuseppe

    2018-01-01

    In this paper, we extend the analysis of multipartite entanglement, based on techniques from classical statistical mechanics, to a system composed of n d-level parties (qudits). We introduce a suitable partition function at a fictitious temperature with the average local purity of the system as Hamiltonian. In particular, we analyze the high-temperature expansion of this partition function, prove the convergence of the series, and study its asymptotic behavior as d → ∞. We make use of a diagrammatic technique, classify the graphs, and study their degeneracy. We are thus able to evaluate their contributions and estimate the moments of the distribution of the local purity.

  7. Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate

    PubMed Central

    2011-01-01

    Background Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region. Methods Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed. Results An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations. Conclusion This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard. PMID:21241505

  8. Geographic variation in the black bear (Ursus americanus) in the eastern United States and Canada

    USGS Publications Warehouse

    Kennedy, M.L.; Kennedy, P.K.; Bogan, M.A.; Waits, J.L.

    2002-01-01

    The pattern of geographic variation in morphologic characters of the black bear (Ursus americanus) was assessed at 13 sites in the eastern United States and Canada. Thirty measurements from 206 males and 207 females were recorded to the nearest 0.01 mm using digital calipers and subjected to principal components analysis. A matrix of correlations among skull characters was computed, and the first 3 principal components were extracted. These accounted for 90.5% of the variation in the character set for males and 87.1% for females. Three-dimensional projection of localities onto principal components showed that, for males and females, largest individuals occurred in the more southern localities (e.g., males--Louisiana-Mississippi, eastern Texas; females--Louisiana-eastern Texas) and the smallest animals occurred in the northernmost locality (Quebec). Generally, bears were similar morphologically to those in nearby geographic areas. For males, correlations between morphologic variation and environmental factors indicated a significant relationship between size variation and mean January temperature, mean July temperature, mean annual precipitation, latitude, and actual evapotranspiration; for females, a significant relationship was observed between morphologic variation and mean annual temperature, mean January temperature, mean July temperature, latitude, and actual evapotranspiration. There was no significant correlation for either sex between environmental factors and projections onto components II and III.

  9. Experimental study on physiological responses and thermal comfort under various ambient temperatures.

    PubMed

    Yao, Ye; Lian, Zhiwei; Liu, Weiwei; Shen, Qi

    2008-01-28

    This study mainly explored the thermal comfort from the perspective of physiology. Three physiological parameters, including skin temperature (local and mean), electrocardiograph (ECG) and electroencephalogram (EEG), were investigated to see how they responded to the ambient temperature and how they were related to the thermal comfort sensation. A total of four ambient temperatures (21 degrees C, 24 degrees C, 26 degrees C and 29 degrees C) were created, while the other thermal conditions including the air velocity (about 0.05+/-0.01 m/s) and the air humidity (about 60+/-5 m/s) were kept as stable as possible throughout the experiments. Twenty healthy students were tested with questionnaire investigation under those thermal environments. The statistical analysis shows that the skin temperature (local and mean), the ratio of LF(norm) to HF(norm) of ECG and the global relative power of the different EEG frequency bands will be sensitive to the ambient temperatures and the thermal sensations of the subjects. It is suggested that the three physiological parameters should be considered all together in the future study of thermal comfort.

  10. Interactive effects of water temperature and salinity on growth and mortality of eastern oysters, Crassostrea virginica: A meta-analysis using 40 years of monitoring data

    USGS Publications Warehouse

    Lowe, Michael R.; Sehlinger, Troy; Soniat, Thomas M.; LaPeyre, Megan K.

    2017-01-01

    Despite nearly a century of exploitation and scientific study, predicting growth and mortality rates of the eastern oyster (Crassostrea virginica) as a means to inform local harvest and management activities remains difficult. Ensuring that models reflect local population responses to varying salinity and temperature combinations requires locally appropriate models. Using long-term (1988 to 2015) monitoring data from Louisiana's public oyster reefs, we develop regionally specific models of temperature- and salinity-driven mortality (sack oysters only) and growth for spat (<25 mm), seed (25–75 mm), and sack (>75 mm) oyster size classes. The results demonstrate that the optimal combination of temperature and salinity where Louisiana oysters experience reduced mortality and fast growth rates is skewed toward lower salinities and higher water temperatures than previous models have suggested. Outside of that optimal range, oysters are commonly exposed to combinations of temperature and salinity that are correlated with high mortality and reduced growth. How these combinations affect growth, and to a lesser degree mortality, appears to be size class dependent. Given current climate predictions for the region and ongoing large-scale restoration activities in coastal Louisiana, the growth and mortality models are a critical step toward ensuring sustainable oyster reefs for long-term harvest and continued delivery of the ecological services in a changing environment.

  11. Temperature dependence of local structural changes around transition metal centers Cr3+ and Mn2+ in RAl3(BO3)4 crystals studied by EMR

    NASA Astrophysics Data System (ADS)

    Açıkgöz, Muhammed; Rudowicz, Czesław; Gnutek, Paweł

    2017-11-01

    Theoretical investigations are carried out to determine the temperature dependence of the local structural parameters of Cr3+ and Mn2+ ions doped into RAl3(BO3)4 (RAB, R = Y, Eu, Tm) crystals. The zero-field splitting (ZFS) parameters (ZFSPs) obtained from the spin Hamiltonian (SH) analysis of EMR (EPR) spectra serve for fine-tuning the theoretically predicted ZFSPs obtained using the semi-empirical superposition model (SPM). The SPM analysis enables to determine the local structure changes around Cr3+ and Mn2+ centers in RAB crystals and explain the observed temperature dependence of the ZFSPs. The local monoclinic C2 site symmetry of all Al sites in YAB necessitates consideration of one non-zero monoclinic ZFSP (in the Stevens notation, b21) for Cr3+ ions. However, the experimental second-rank ZFSPs (D =b20 , E = 1 / 3b22) were expressed in a nominal principal axis system. To provide additional insight into low symmetry aspects, the distortions (ligand's distances ΔRi and angular distortions Δθi) have been varied while preserving monoclinic site symmetry, in such way as to obtain the calculated values (D, E) close to the experimental ones, while keeping b21 close to zero. This procedure yields good matching of the calculated ZFSPs and the experimental ones, and enables determination of the corresponding local distortions. The present results may be useful in future studies aimed at technological applications of the Huntite-type borates with the formula RM3(BO3)4. The model parameters determined here may be utilized for ZFSP calculations for Cr3+ and Mn2+ ions at octahedral sites in single-molecule magnets and single-chain magnets.

  12. Characteristics of the local cutaneous sensory thermoneutral zone

    PubMed Central

    Zhang, Hui; Arens, Edward A.

    2017-01-01

    Skin temperature detection thresholds have been used to measure human cold and warm sensitivity across the temperature continuum. They exhibit a sensory zone within which neither warm nor cold sensations prevail. This zone has been widely assumed to coincide with steady-state local skin temperatures between 32 and 34°C, but its underlying neurophysiology has been rarely investigated. In this study we employ two approaches to characterize the properties of sensory thermoneutrality, testing for each whether neutrality shifts along the temperature continuum depending on adaptation to a preceding thermal state. The focus is on local spots of skin on the palm. Ten participants (age: 30.3 ± 4.8 yr) underwent two experiments. Experiment 1 established the cold-to-warm inter-detection threshold range for the palm’s glabrous skin and its shift as a function of 3 starting skin temperatures (26, 31, or 36°C). For the same conditions, experiment 2 determined a thermally neutral zone centered around a thermally neutral point in which thermoreceptors’ activity is balanced. The zone was found to be narrow (~0.98 to ~1.33°C), moving with the starting skin temperature over the temperature span 27.5–34.9°C (Pearson r = 0.94; P < 0.001). It falls within the cold-to-warm inter-threshold range (~2.25 to ~2.47°C) but is only half as wide. These findings provide the first quantitative analysis of the local sensory thermoneutral zone in humans, indicating that it does not occur only within a specific range of steady-state skin temperatures (i.e., it shifts across the temperature continuum) and that it differs from the inter-detection threshold range both quantitatively and qualitatively. These findings provide insight into thermoreception neurophysiology. NEW & NOTEWORTHY Contrary to a widespread concept in human thermoreception, we show that local sensory thermoneutrality is achievable outside the 32–34°C skin temperature range. We propose that sensory adaption underlies a new mechanism of temperature integration. Also, we have developed from vision research a new quantitative test addressing the balance in activity of cutaneous cold and warm thermoreceptors. This could have important clinical (assessment of somatosensory abnormalities in neurological disease) and applied (design of personal comfort systems) implications. PMID:28148644

  13. Similarities in butterfly emergence dates among populations suggest local adaptation to climate.

    PubMed

    Roy, David B; Oliver, Tom H; Botham, Marc S; Beckmann, Bjorn; Brereton, Tom; Dennis, Roger L H; Harrower, Colin; Phillimore, Albert B; Thomas, Jeremy A

    2015-09-01

    Phenology shifts are the most widely cited examples of the biological impact of climate change, yet there are few assessments of potential effects on the fitness of individual organisms or the persistence of populations. Despite extensive evidence of climate-driven advances in phenological events over recent decades, comparable patterns across species' geographic ranges have seldom been described. Even fewer studies have quantified concurrent spatial gradients and temporal trends between phenology and climate. Here we analyse a large data set (~129 000 phenology measures) over 37 years across the UK to provide the first phylogenetic comparative analysis of the relative roles of plasticity and local adaptation in generating spatial and temporal patterns in butterfly mean flight dates. Although populations of all species exhibit a plastic response to temperature, with adult emergence dates earlier in warmer years by an average of 6.4 days per °C, among-population differences are significantly lower on average, at 4.3 days per °C. Emergence dates of most species are more synchronised over their geographic range than is predicted by their relationship between mean flight date and temperature over time, suggesting local adaptation. Biological traits of species only weakly explained the variation in differences between space-temperature and time-temperature phenological responses, suggesting that multiple mechanisms may operate to maintain local adaptation. As niche models assume constant relationships between occurrence and environmental conditions across a species' entire range, an important implication of the temperature-mediated local adaptation detected here is that populations of insects are much more sensitive to future climate changes than current projections suggest. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  14. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating.

    PubMed

    Sanz, Beatriz; Calatayud, M Pilar; Torres, Teobaldo E; Fanarraga, Mónica L; Ibarra, M Ricardo; Goya, Gerardo F

    2017-01-01

    Magnetic hyperthermia is a new type of cancer treatment designed for overcoming resistance to chemotherapy during the treatment of solid, inaccessible human tumors. The main challenge of this technology is increasing the local tumoral temperature with minimal side effects on the surrounding healthy tissue. This work consists of an in vitro study that compared the effect of hyperthermia in response to the application of exogenous heating (EHT) sources with the corresponding effect produced by magnetic hyperthermia (MHT) at the same target temperatures. Human neuroblastoma SH-SY5Y cells were loaded with magnetic nanoparticles (MNPs) and packed into dense pellets to generate an environment that is crudely similar to that expected in solid micro-tumors, and the above-mentioned protocols were applied to these cells. These experiments showed that for the same target temperatures, MHT induces a decrease in cell viability that is larger than the corresponding EHT, up to a maximum difference of approximately 45% at T = 46 °C. An analysis of the data in terms of temperature efficiency demonstrated that MHT requires an average temperature that is 6 °C lower than that required with EHT to produce a similar cytotoxic effect. An analysis of electron microscopy images of the cells after the EHT and MHT treatments indicated that the enhanced effectiveness observed with MHT is associated with local cell destruction triggered by the magnetic nano-heaters. The present study is an essential step toward the development of innovative adjuvant anti-cancer therapies based on local hyperthermia treatments using magnetic particles as nano-heaters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Benchmark Data Set for Wheat Growth Models: Field Experiments and AgMIP Multi-Model Simulations.

    NASA Technical Reports Server (NTRS)

    Asseng, S.; Ewert, F.; Martre, P.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.J.; Rotter, R. P.

    2015-01-01

    The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, maximum and minimum temperature, precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure), soil characteristics, frequent growth, nitrogen in crop and soil, crop and soil water and yield components. Simulations include results from 27 wheat models and a sensitivity analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario.

  16. Analysis of nonlocal phonon thermal conductivity simulations showing the ballistic to diffusive crossover

    NASA Astrophysics Data System (ADS)

    Allen, Philip B.

    2018-04-01

    Simulations [e.g., X. W. Zhou et al., Phys. Rev. B 79, 115201 (2009), 10.1103/PhysRevB.79.115201] show nonlocal effects of the ballistic/diffusive crossover. The local temperature has nonlinear spatial variation not contained in the local Fourier law j ⃗(r ⃗) =-κ ∇ ⃗T (r ⃗) . The heat current j ⃗(r ⃗) depends not just on the local temperature gradient ∇ ⃗T (r ⃗) but also on temperatures at points r⃗' within phonon mean free paths, which can be micrometers long. This paper uses the Peierls-Boltzmann transport theory in nonlocal form to analyze the spatial variation Δ T (r ⃗) . The relaxation-time approximation (RTA) is used because the full solution is very challenging. Improved methods of extrapolation to obtain the bulk thermal conductivity κ are proposed. Callaway invented an approximate method of correcting RTA for the q ⃗ (phonon wave vector or crystal momentum) conservation of N (Normal as opposed to Umklapp) anharmonic collisions. This method is generalized to the nonlocal case where κ (k ⃗) depends on the wave vector of the current j ⃗(k ⃗) and temperature gradient i k ⃗Δ T (k ⃗) .

  17. Increasing bioenergy production on arable land: Does the regional and local climate respond? Germany as a case study

    NASA Astrophysics Data System (ADS)

    Tölle, Merja H.; Gutjahr, Oliver; Busch, Gerald; Thiele, Jan C.

    2014-03-01

    The extent and magnitude of land cover change effect on local and regional future climate during the vegetation period due to different forms of bioenergy plants are quantified for extreme temperatures and energy fluxes. Furthermore, we vary the spatial extent of plant allocation on arable land and simulate alternative availability of transpiration water to mimic both rainfed agriculture and irrigation. We perform climate simulations down to 1 km scale for 1970-1975 C20 and 2070-2075 A1B over Germany with Consortium for Small-Scale Modeling in Climate Mode. Here an impact analysis indicates a strong local influence due to land cover changes. The regional effect is decreased by two thirds of the magnitude of the local-scale impact. The changes are largest locally for irrigated poplar with decreasing maximum temperatures by 1°C in summer months and increasing specific humidity by 0.15 g kg-1. The increased evapotranspiration may result in more precipitation. The increase of surface radiative fluxes Rnet due to changes in latent and sensible heat is estimated by 5 W m-2locally. Moreover, increases in the surface latent heat flux cause strong local evaporative cooling in the summer months, whereas the associated regional cooling effect is pronounced by increases in cloud cover. The changes on a regional scale are marginal and not significant. Increasing bioenergy production on arable land may result in local temperature changes but not in substantial regional climate change in Germany. We show the effect of agricultural practices during climate transitions in spring and fall.

  18. On the mechanism of flow evolution in shock-tube experiments

    NASA Astrophysics Data System (ADS)

    Kiverin, Alexey; Yakovenko, Ivan

    2018-02-01

    The paper studies numerically the flow development behind the shock wave propagating inside the tube. The detailed analysis of the flow patterns behind the shock wave allows determination of the gas-dynamical origins of the temperature non-uniformities responsible for the subsequent localized start of chemical reactions in the test mixture. In particular, it is shown that the temperature field structure is determined mainly by the mechanisms of boundary layer instability development. The kinetic energy dissipation related to the flow deceleration inside boundary layer results in local heating of the test gas. At the same time, the heat losses to the tube wall lead to the cooling of the gas. Therefore the temperature stratification takes place on the scales of the boundary layer. As soon as the shock wave reflected from the end-wall of the tube interacts with the developed boundary layer the localized hot regions arise at a certain distance from the end wall. The position of these hot regions is associated with the zones of shock wave interaction with roller vortices at the margin between the boundary layer and the bulk flow. Formulated mechanism of the temperature field evolution can be used to explain the peculiarities of non-steady shock-induced ignition of combustible mixtures with moderate ignition delay times, where the ignition starts inside localized kernels at distance from the end wall.

  19. Reconstructing temperatures from lake sediments in northern Europe: what do the biological proxies really tell us?

    NASA Astrophysics Data System (ADS)

    Cunningham, Laura; Holmes, Naomi; Bigler, Christian; Dadal, Anna; Bergman, Jonas; Eriksson, Lars; Brooks, Stephen; Langdon, Pete; Caseldine, Chris

    2010-05-01

    Over the past two decades considerable effort has been devoted to quantitatively reconstructing temperatures from biological proxies preserved in lake sediments, via transfer functions. Such transfer functions typically consist of modern sediment samples, collected over a broad environmental gradient. Correlations between the biological communities and environmental parameters observed over these broad gradients are assumed to be equally valid temporally. The predictive ability of such spatially based transfer functions has traditionally been assessed by comparisons of measured and inferred temperatures within the calibration sets, with little validation against historical data. Although statistical techniques such as bootstrapping may improve error estimation, this approach remains partly a circular argument. This raises the question of how reliable such reconstructions are for inferring past changes in temperature? In order to address this question, we used transfer functions to reconstruct July temperatures from diatoms and chironomids from several locations across northern Europe. The transfer functions used showed good internal calibration statistics (r2 = 0.66 - 0.91). The diatom and chironomid inferred July air temperatures were compared to local observational records. As the sediment records were non-annual, all data were first smoothed using a 15 yr moving average filter. None of the five biologically-inferred temperature records were correlated with the local meteorological records. Furthermore, diatom inferred temperatures did not agree with chironomid inferred temperatures from the same cores from the same sites. In an attempt to understand this poor performance the biological proxy data was compressed using principal component analysis (PCA), and the PCA axes compared to the local meteorological data. These analyses clearly demonstrated that July temperatures were not correlated with the biological data at these locations. Some correlations were observed between the biological proxies and autumn and spring temperatures, although this varied slightly between sites and proxies. For example, chironomid data from Iceland was most strongly correlated with temperatures in February, March and April whilst in northern Sweden, the chironomid data was most strongly correlated with temperatures in March, April and May. It is suggested that the biological data at these sites may be responding to changes in the length of the ice-free period or hydrological regimes (including snow melt), rather than temperature per se. Our findings demonstrate the need to validate inferred temperatures against local meteorological data. Where such validation cannot be undertaken, inferred temperature reconstructions should be treated cautiously.

  20. Mixed convection-radiation interaction in boundary-layer flow over horizontal surfaces

    NASA Astrophysics Data System (ADS)

    Ibrahim, F. S.; Hady, F. M.

    1990-06-01

    The effect of buoyancy forces and thermal radiation on the steady laminar plane flow over an isothermal horizontal flat plate is investigated within the framework of first-order boundary-layer theory, taking into account the hydrostatic pressure variation normal to the plate. The fluid considered is a gray, absorbing-emitting but nonscattering medium, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. Numerical results for the local Nusselt number, the local wall shear stress, the local surface heat flux, as well as the velocity and temperature distributions are presented for gases with a Prandtl number of 0.7 for various values of the radiation-conduction parameter, the buoyancy parameter, and the temperature ratio parameter.

  1. Conformational Entropy from Slowly Relaxing Local Structure Analysis of 15N-H Relaxation in Proteins: Application to Pheromone Binding to MUP-I in the 283-308 K Temperature Range.

    PubMed

    Žídek, Lukáš; Meirovitch, Eva

    2017-09-21

    The slowly relaxing local structure (SRLS) approach is applied to 15 N-H relaxation from the major urinary protein I (MUP-I), and its complex with pheromone 2-sec-butyl-4,5-dihydrothiazol. The objective is to elucidate dynamics, and binding-induced changes in conformational entropy. Experimental data acquired previously in the 283-308 K temperature range are used. The N-H bond is found to reorient globally with correlation time, τ 1,0 , and locally with correlation time, τ 2,0 , where τ 1,0 ≫ τ 2,0 . The local motion is restricted by the potential u = -c 0 2 D 00 2 , where D 00 2 is the Wigner rotation matrix element for L = 2, K = 0, and c 0 2 evaluates the strength of the potential. u yields straightforwardly the order parameter, ⟨D 00 2 ⟩, and the conformational entropy, S k , both given by P eq = exp(-u). The deviation of the local ordering/local diffusion axis from the N-H bond, given by the angle β, is also determined. We find that c 0 2 ≅ 18 ± 4 and τ 2,0 = 0-170 ps for ligand-free MUP-I, whereas c 0 2 ≅ 15 ± 4 and τ 2,0 = 20-270 ps for ligand-bound MUP-I. β is in the 0-10° range. c 0 2 and τ 2,0 decrease, whereas β increases, when the temperature is increased from 283 to 308 K. Thus, SRLS provides physically well-defined structure-related (c 0 2 and ⟨D 00 2 ⟩), motion-related (τ 2,0 ), geometry-related (β), and binding-related (S k ) local parameters, and their temperature-dependences. Intriguingly, upon pheromone binding the conformational entropy of MUP-I decreases at high temperature and increases at low temperature. The very same experimental data were analyzed previously with the model-free (MF) method which yielded "global" (in this context, "relating to the entire 283-308 K range") amplitude (S 2 ) and rate (τ e ) of the local motion, and a phenomenological exchange term (R ex ). S 2 is found to decrease (implying implicitly "global" increase in S k ) upon pheromone binding.

  2. Impact of extreme high temperature on mortality and regional level definition of heat wave: a multi-city study in China.

    PubMed

    Gao, Jinghong; Sun, Yunzong; Liu, Qiyong; Zhou, Maigeng; Lu, Yaogui; Li, Liping

    2015-02-01

    Few multi-city studies have been conducted to explore the regional level definition of heat wave and examine the association between extreme high temperature and mortality in developing countries. The purpose of the present study was to investigate the impact of extreme high temperature on mortality and to explore the local definition of heat wave in five Chinese cities. We first used a distributed lag non-linear model to characterize the effects of daily mean temperature on non-accidental mortality. We then employed a generalized additive model to explore the city-specific definition of heat wave. Finally, we performed a comparative analysis to evaluate the effectiveness of the definition. For each city, we found a positive non-linear association between extreme high temperature and mortality, with the highest effects appearing within 3 days of extreme heat event onset. Specifically, we defined individual heat waves of Beijing and Tianjin as being two or more consecutive days with daily mean temperatures exceeding 30.2 °C and 29.5 °C, respectively, and Nanjing, Shanghai and Changsha heat waves as ≥3 consecutive days with daily mean temperatures higher than 32.9 °C, 32.3 °C and 34.5 °C, respectively. Comparative analysis generally supported the definition. We found extreme high temperatures were associated with increased mortality, after a short lag period, when temperatures exceeded obvious threshold levels. The city-specific definition of heat wave developed in our study may provide guidance for the establishment and implementation of early heat-health response systems for local government to deal with the projected negative health outcomes due to heat waves. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Post-Newtonian Jeans Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazari, Elham; Kazemi, Ali; Roshan, Mahmood

    The Jeans analysis is studied in the first post-Newtonian limit. In other words, the relativistic effects on local gravitational instability are considered for systems whose characteristic velocities and corresponding gravitational fields are higher than those permitted in the Newtonian limit. The dispersion relation for the propagation of small perturbations is found in the post-Newtonian approximation using two different techniques. A new Jeans mass is derived and compared to the standard Jeans mass. In this limit, the relativistic effects make the new Jeans mass smaller than the Newtonian Jeans mass. Furthermore, the fractional difference between these two masses increases when themore » temperature/pressure of the system increases. Interestingly, in this limit, pressure can enhance gravitational instability instead of preventing it. Finally, the results are applied to high-temperature astrophysical systems, and the possibility of local fragmentation in some relativistic systems is investigated.« less

  4. Analysis of natural convection in nanofluid-filled H-shaped cavity by entropy generation and heatline visualization using lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Rahimi, Alireza; Sepehr, Mohammad; Lariche, Milad Janghorban; Mesbah, Mohammad; Kasaeipoor, Abbas; Malekshah, Emad Hasani

    2018-03-01

    The lattice Boltzmann simulation of natural convection in H-shaped cavity filled with nanofluid is performed. The entropy generation analysis and heatline visualization are employed to analyze the considered problem comprehensively. The produced nanofluid is SiO2-TiO2/Water-EG (60:40) hybrid nanofluid, and the thermal conductivity and dynamic viscosity of used nanofluid are measured experimentally. To use the experimental data of thermal conductivity and dynamic viscosity, two sets of correlations based on temperature for six different solid volume fractions of 0.5, 1, 1.5, 2, 2.5 and 3 vol% are derived. The influences of different governing parameters such different aspect ratio, solid volume fractions of nanofluid and Rayleigh numbers on the fluid flow, temperature filed, average/local Nusselt number, total/local entropy generation and heatlines are presented.

  5. Investigation of heat flux processes governing the increase of groundwater temperatures beneath cities

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Menberg, K.; Zhu, K.; Blum, P.

    2012-12-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies. These so-called subsurface urban heat islands (UHIs), which also stimulate warming of urban aquifers, are triggered by various processes. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several Central European cities, such as Berlin, Cologne (Germany) and Zurich (Switzerland) are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the combination of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city center. Regional groundwater temperature differences between the city center and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20 °C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1 °C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in the city of Karlsruhe (Germany), for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.

  6. BLIMPK/Streamline Surface Catalytic Heating Predictions on the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Marichalar, Jeremiah J.; Rochelle, William C.; Kirk, Benjamin S.; Campbell, Charles H.

    2006-01-01

    This paper describes the results of an analysis of localized catalytic heating effects to the U.S. Space Shuttle Orbiter Thermal Protection System (TPS). The analysis applies to the High-temperature Reusable Surface Insulation (HRSI) on the lower fuselage and wing acreage, as well as the critical Reinforced Carbon-Carbon on the nose cap, chin panel and the wing leading edge. The object of the analysis was to use a modified two-layer approach to predict the catalytic heating effects on the Orbiter windward HRSI tile acreage, nose cap, and wing leading edge assuming localized highly catalytic or fully catalytic surfaces. The method incorporated the Boundary Layer Integral Matrix Procedure Kinetic (BLIMPK) code with streamline inputs from viscous Navier-Stokes solutions to produce heating rates for localized fully catalytic and highly catalytic surfaces as well as for nominal partially catalytic surfaces (either Reinforced Carbon-Carbon or Reaction Cured Glass) with temperature-dependent recombination coefficients. The highly catalytic heating results showed very good correlation with Orbiter Experiments STS-2, -3, and -5 centerline and STS-5 wing flight data for the HRSI tiles. Recommended catalytic heating factors were generated for use in future Shuttle missions in the event of quick-time analysis of damaged or repaired TPS areas during atmospheric reentry. The catalytic factors are presented along the streamlines as well as a function of stagnation enthalpy so they can be used for arbitrary trajectories.

  7. Local Adaptation at the Transcriptome Level in Brown Trout: Evidence from Early Life History Temperature Genomic Reaction Norms

    PubMed Central

    Meier, Kristian; Hansen, Michael Møller; Normandeau, Eric; Mensberg, Karen-Lise D.; Frydenberg, Jane; Larsen, Peter Foged; Bekkevold, Dorte; Bernatchez, Louis

    2014-01-01

    Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences in gene expression profiles for three brown trout (Salmo trutta) populations, one resident and two anadromous, experiencing different temperature regimes in the wild. The study was based on an F2 generation raised in a common garden setting. A previous study of the F1 generation revealed different reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees C) representing conditions encountered in the local environments. Global gene expression for fry at the stage of first feeding was analysed using a 32k cDNA microarray. The results revealed differences in gene expression between populations and temperatures and population × temperature interactions, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations. These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction norms. The responses observed suggest that populations may vary in their susceptibility to climate change. PMID:24454810

  8. Sea surface temperature anomalies driven by oceanic local forcing in the Brazil-Malvinas Confluence

    NASA Astrophysics Data System (ADS)

    da Silveira, Isabel Porto; Pezzi, Luciano Ponzi

    2014-03-01

    Sea surface temperature (SST) anomaly events in the Brazil-Malvinas Confluence (BMC) were investigated through wavelet analysis and numerical modeling. Wavelet analysis was applied to recognize the main spectral signals of SST anomaly events in the BMC and in the Drake Passage as a first attempt to link middle and high latitudes. The numerical modeling approach was used to clarify the local oceanic dynamics that drive these anomalies. Wavelet analysis pointed to the 8-12-year band as the most energetic band representing remote forcing between high to middle latitudes. Other frequencies observed in the BMC wavelet analysis indicate that part of its variability could also be forced by low-latitude events, such as El Niño. Numerical experiments carried out for the years of 1964 and 1992 (cold and warm El Niño-Southern Oscillation (ENSO) phases) revealed two distinct behaviors that produced negative and positive sea surface temperature anomalies on the BMC region. The first behavior is caused by northward cold flow, Río de la Plata runoff, and upwelling processes. The second behavior is driven by a southward excursion of the Brazil Current (BC) front, alterations in Río de la Plata discharge rates, and most likely by air-sea interactions. Both episodes are characterized by uncoupled behavior between the surface and deeper layers.

  9. The eukaryote chaperonin CCT is a cold shock protein in Saccharomyces cerevisiae

    PubMed Central

    Somer, Lilach; Shmulman, Oshrit; Dror, Tali; Hashmueli, Sharon; Kashi, Yechezkel

    2002-01-01

    The eukaryotic Hsp60 cytoplasmic chaperonin CCT (chaperonin containing the T-complex polypeptide–1) is essential for growth in budding yeast, and mutations in individual CCT subunits have been shown to affect assembly of tubulin and actin. The present research focused mainly on the expression of the CCT subunits, CCTα and CCTβ, in yeast (Saccharomyces cerevisiae). Previous studies showed that, unlike most other chaperones, CCT in yeast does not undergo induction following heat shock. In this study, messenger ribonucleic acid (mRNA) and protein levels of CCT subunits following exposure to low temperatures, were examined. The Northern blot analysis indicated a 3- to 4-fold increase in mRNA levels of CCTα and CCTβ genes after cold shock at 4°C. Interestingly, Western blot analysis showed that cold shock induces an increase in the CCTα protein, which is expressed at 10°C, but not at 4°C. Transfer of 4°C cold-shocked cells to 10°C induced a 5-fold increase in the CCTα protein level. By means of fluorescent immunostaining and confocal microscopy, we found CCTα to be localized in the cortex and the cell cytoplasm of S. cerevisiae. Localization of CCTα was not affected at low temperatures. Co-localization of CCT and filaments of actin and tubulin was not observed by microscopy. The induction pattern of the CCTα protein suggests that expression of the chaperonin may be primarily important during the recovery from low temperatures and the transition to growth at higher temperatures, as found for other Hsps during the recovery phase from heat shock. PMID:11892987

  10. Impact of climate variability on various Rabi crops over Northwest India

    NASA Astrophysics Data System (ADS)

    Nageswararao, M. M.; Dhekale, B. S.; Mohanty, U. C.

    2018-01-01

    The Indian agriculture with its two prominent cropping seasons [summer ( Kharif) and winter ( Rabi)] is the mainstay of the rural economy. Northwest India (NWI) is an important region for the cultivation of Rabi crops grown during the period from October to April. In the present study, state wise impact analysis is carried out to ascertain the influence of climate indices Nino3.4 region Sea Surface Temperature (SST), Southern Oscillation Index (SOI), Arctic Oscillation (AO), North Atlantic Oscillation (NAO) and local precipitation, soil moisture, minimum ( T min), maximum ( T max) and mean ( T mean) temperatures on different Rabi crops (wheat, gram, rapeseed-mustard, oilseeds, and total Rabi food grains) over NWI during the years 1966-2011. To study the impact of climate variability on different Rabi crops, firstly, the influence of technology on the productivity of these crops has been removed by using linear function, as linear trend has noticed in all the time series. Correlation analysis provides an indication of the influence of local precipitation, soil moisture, T min, T max and T mean and some of its potential predictors (Nino3.4 region SST, SOI, AO, and NAO) on the productivity of different Rabi crops. Overall impact analysis indicates that the productivity of different Rabi crops in most of the places of NWI is most likely influenced by variability in local temperatures. Moreover, Nino3.4 region SST (SOI) positively (negatively) affects the productivity of gram, rapeseed-mustard, and total Rabi oilseeds in most of the states. The results of this study are useful in determining the strategies for increasing sustainable production through better agronomic practices.

  11. Development of a laser-induced heat flux technique for measurement of convective heat transfer coefficients in a supersonic flowfield

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.

  12. Localized temperature stability of low temperature cofired ceramics

    DOEpatents

    Dai, Steven Xunhu

    2013-11-26

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  13. Evaluation of the HadGEM3-A simulations in view of detection and attribution of human influence on extreme events in Europe

    NASA Astrophysics Data System (ADS)

    Vautard, Robert; Christidis, Nikolaos; Ciavarella, Andrew; Alvarez-Castro, Carmen; Bellprat, Omar; Christiansen, Bo; Colfescu, Ioana; Cowan, Tim; Doblas-Reyes, Francisco; Eden, Jonathan; Hauser, Mathias; Hegerl, Gabriele; Hempelmann, Nils; Klehmet, Katharina; Lott, Fraser; Nangini, Cathy; Orth, René; Radanovics, Sabine; Seneviratne, Sonia I.; van Oldenborgh, Geert Jan; Stott, Peter; Tett, Simon; Wilcox, Laura; Yiou, Pascal

    2018-04-01

    A detailed analysis is carried out to assess the HadGEM3-A global atmospheric model skill in simulating extreme temperatures, precipitation and storm surges in Europe in the view of their attribution to human influence. The analysis is performed based on an ensemble of 15 atmospheric simulations forced with observed sea surface temperature of the 54 year period 1960-2013. These simulations, together with dual simulations without human influence in the forcing, are intended to be used in weather and climate event attribution. The analysis investigates the main processes leading to extreme events, including atmospheric circulation patterns, their links with temperature extremes, land-atmosphere and troposphere-stratosphere interactions. It also compares observed and simulated variability, trends and generalized extreme value theory parameters for temperature and precipitation. One of the most striking findings is the ability of the model to capture North-Atlantic atmospheric weather regimes as obtained from a cluster analysis of sea level pressure fields. The model also reproduces the main observed weather patterns responsible for temperature and precipitation extreme events. However, biases are found in many physical processes. Slightly excessive drying may be the cause of an overestimated summer interannual variability and too intense heat waves, especially in central/northern Europe. However, this does not seem to hinder proper simulation of summer temperature trends. Cold extremes appear well simulated, as well as the underlying blocking frequency and stratosphere-troposphere interactions. Extreme precipitation amounts are overestimated and too variable. The atmospheric conditions leading to storm surges were also examined in the Baltics region. There, simulated weather conditions appear not to be leading to strong enough storm surges, but winds were found in very good agreement with reanalyses. The performance in reproducing atmospheric weather patterns indicates that biases mainly originate from local and regional physical processes. This makes local bias adjustment meaningful for climate change attribution.

  14. On the correlation between ‘non-local’ effects and intrinsic rotation reversals in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Rodriguez-Fernandez, P.; Rice, J. E.; Cao, N. M.; Creely, A. J.; Howard, N. T.; Hubbard, A. E.; Irby, J. H.; White, A. E.

    2017-07-01

    Contemporary predictive models for heat and particle transport in tokamak plasmas are based on the assumption that local fluxes can be described in terms of local plasma parameters, where electromagnetic drift-wave-type turbulence is driven by local gradients and results in cross-field transport. The question of whether or not transport could be dominated by non-local terms in certain circumstances is essential for our understanding of transport in magnetically confined plasmas, and critical for developing predictive models for future tokamaks, such as ITER. Perturbative transport experiments using cold-pulse injections at low density seem to challenge the local closure of anomalous transport: a rapid temperature increase in the core of the plasma following a sharp edge cooling is widely observed in tokamaks and helical devices. Past work in Ohmic plasmas in Alcator C-Mod and in ECH plasmas in KSTAR found that the temperature inversions disappear at higher densities, above the intrinsic toroidal rotation reversal density. These observations suggested that the so-called ‘non-local’ heat transport effects were related to the intrinsic rotation reversal, and therefore to changes in momentum transport. In this work, new experiments and analysis at Alcator C-Mod show that intrinsic rotation reversals and disappearance of temperature inversions are not concomitant in Ohmic plasmas at high plasma current and in ICRH L-modes. This new data set shows that the correlation between transient temperature inversions and intrinsic rotation reversals is not universal, suggesting that ‘non-local’ heat transport and momentum transport effects may be affected by different physical mechanisms.

  15. Urban heat islands in the subsurface of German cities

    NASA Astrophysics Data System (ADS)

    Menberg, K.; Blum, P.; Zhu, K.; Bayer, P.

    2012-04-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies (subsurface urban heat islands) that result in a warming of urban aquifers. The reasons for this heating are manifold. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several German cities, such as Berlin, Munich, Cologne and Karlsruhe, are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the superposition of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city centre. Regional groundwater temperature differences between the city centre and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20°C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1°C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in Karlsruhe, for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.

  16. Heat Transfer Analysis of Localized Heat-Treatment for Grade 91 Steel

    NASA Astrophysics Data System (ADS)

    Walker, Jacob D.

    Many of the projects utilizing Grade 91 steel are large in scale, therefore it is necessary to assemble on site. The assembly of the major pieces requires welding in the assembly; this drastically changes the superior mechanical properties of Grade 91 steel that it was specifically developed for. Therefore, because of the adverse effects of welding on the mechanical properties of Grade 91, it is necessary to do a localized post weld heat treatment. As with most metallic materials grade 91 steel requires a very specific heat treatment process. This process includes a specific temperature and duration at that temperature to achieve the heat treatment desired. Extensive research has been done to determine the proper temperatures and duration to provide the proper microstructure for the superior mechanical properties that are inherent to Grade 91 steel. The welded sections are typically large structures that require local heat treatments and cannot be placed in an oven. The locations of these structures vary from indoors in a controlled environment to outdoors with unpredictable environments. These environments can be controlled somewhat, however in large part the surrounding conditions are unchangeable. Therefore, there is a need to develop methods to accurately apply the surrounding conditions and geometries to a theoretical model in order to provide the proper requirements for the local heat treatment procedure. Within this requirement is the requirement to define unknowns used in the heat transfer equations so that accurate models can be produced and accurate results predicted. This study investigates experimentally and numerically the heat transfer and temperature fields of Grade 91 piping in a local heat treatment. The objective of this thesis research is to determine all of the needed heat transfer coefficients. The appropriate heat transfer coefficients are determined through the inverse heat conduction method utilizing a ceramic heat blanket. This will be done through an inverse method by collecting actual data from different conditions and temperatures. Then the heat transfer coefficients are used to set up a model to determine the appropriate post-weld heat treatment conditions for Grade 91 steel. This will enable one to use the derived coefficients to run a forward analysis with the specific geometry and conditions they will encounter in the heat treatment process for their application. The analysis will provide a theoretical determination of time and temperatures needed to maintain the temperature for the proper time needed to properly heat treat the welded section in the desired areas that have been joined together through a welding process. Finally time and temperature combinations are compared with experimentally measured data. The forward model code applied to the parameters of the heat-treatment can then appropriately assist to determine the proper post-weld heat treatment conditions for the desired toughness and creep properties. This research is very beneficial to the joining of metals industry because it provides a way to ensure the method used to heat treat the welded section is being properly done, and the required heat treatment is achieved. It is applicable to many different geometries so that it can be modified to specific situations.

  17. Heat-Energy Analysis for Solar Receivers

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1982-01-01

    Heat-energy analysis program (HEAP) solves general heat-transfer problems, with some specific features that are "custom made" for analyzing solar receivers. Can be utilized not only to predict receiver performance under varying solar flux, ambient temperature and local heat-transfer rates but also to detect locations of hotspots and metallurgical difficulties and to predict performance sensitivity of neighboring component parameters.

  18. VoroTop: Voronoi cell topology visualization and analysis toolkit

    NASA Astrophysics Data System (ADS)

    Lazar, Emanuel A.

    2018-01-01

    This paper introduces a new open-source software program called VoroTop, which uses Voronoi topology to analyze local structure in atomic systems. Strengths of this approach include its abilities to analyze high-temperature systems and to characterize complex structure such as grain boundaries. This approach enables the automated analysis of systems and mechanisms previously not possible.

  19. Fluorescence X-ray absorption spectroscopy using a Ge pixel array detector: application to high-temperature superconducting thin-film single crystals.

    PubMed

    Oyanagi, H; Tsukada, A; Naito, M; Saini, N L; Lampert, M O; Gutknecht, D; Dressler, P; Ogawa, S; Kasai, K; Mohamed, S; Fukano, A

    2006-07-01

    A Ge pixel array detector with 100 segments was applied to fluorescence X-ray absorption spectroscopy, probing the local structure of high-temperature superconducting thin-film single crystals (100 nm in thickness). Independent monitoring of pixel signals allows real-time inspection of artifacts owing to substrate diffractions. By optimizing the grazing-incidence angle theta and adjusting the azimuthal angle phi, smooth extended X-ray absorption fine structure (EXAFS) oscillations were obtained for strained (La,Sr)2CuO4 thin-film single crystals grown by molecular beam epitaxy. The results of EXAFS data analysis show that the local structure (CuO6 octahedron) in (La,Sr)2CuO4 thin films grown on LaSrAlO4 and SrTiO3 substrates is uniaxially distorted changing the tetragonality by approximately 5 x 10(-3) in accordance with the crystallographic lattice mismatch. It is demonstrated that the local structure of thin-film single crystals can be probed with high accuracy at low temperature without interference from substrates.

  20. Temperature effect on laser-induced breakdown spectroscopy spectra of molten and solid salts

    NASA Astrophysics Data System (ADS)

    Hanson, Cynthia; Phongikaroon, Supathorn; Scott, Jill R.

    2014-07-01

    Laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential analytical tool to improve operations and safeguards for electrorefiners, such as those used in processing spent nuclear fuel. This study set out to better understand the effect of sample temperature and physical state on LIBS spectra of molten and solid salts by building calibration curves of cerium and assessing self-absorption, plasma temperature, electron density, and local thermal equilibrium (LTE). Samples were composed of a LiCl-KCl eutectic salt, an internal standard of MnCl2, and varying concentrations of CeCl3 (0.1, 0.3, 0.5, 0.8, and 1.0 wt.% Ce) under different temperatures (773, 723, 673, 623, and 573 K). Analysis of salts in their molten form is preferred as plasma plumes from molten samples experienced less self-absorption, less variability in plasma temperature, and higher clearance of the minimum electron density required for local thermal equilibrium. These differences are attributed to plasma dynamics as a result of phase changes. Spectral reproducibility was also better in the molten state due to sample homogeneity.

  1. Differential response of surface temperature and atmospheric temperature to the biogeophysical effects of deforestation

    NASA Astrophysics Data System (ADS)

    Winckler, J.; Reick, C. H.; Lejeune, Q.; Pongratz, J.

    2017-12-01

    Deforestation influences temperature locally by changing the water, energy and momentum balance. While most observation-based studies and some modeling studies focused on the effects on surface temperature, other studies focused on the effects on near-surface air temperature. However, these two variables may respond differently to deforestation because changes in albedo and surface roughness may alter the land-atmosphere coupling and thus the vertical temperature distribution. Thus it is unclear whether it is possible to compare studies that assess the impacts of deforestation on these two different variables. Here, we analyze the biogeophysical effects of global-scale deforestation in the climate model MPI-ESM separately for surface temperature, 2m-air temperature and temperature the lowest atmospheric model layer. We investigate why the response of these variables differs by isolating the effects of only changing surface albedo and only changing surface roughness and by separating effects that are induced at the location of deforestation (local effects) from effects that are induced by advection and changes in circulation (nonlocal effects). Concerning surface temperature, we find that the local effects of deforestation lead to a global mean warming which is overcompensated by the nonlocal effects (up to 0.1K local warming versus -0.3K nonlocal cooling). The surface warming in the local effects is largely driven by the change in surface roughness while the cooling in the nonlocal effects is largely driven by the change in surface albedo. The nonlocal effects are largely consistent across surface temperature, 2m-air temperature, and the temperature of the lowest atmospheric layer. However, the local effects strongly differ across the three considered variables. The local effects are strong for surface temperature, but substantially weaker in the 2m-air temperature and largely absent in the lowest atmospheric layer. We conclude that studies focusing on the deforestation effects on surface temperature should not be compared to studies focusing on the effects on air temperature. While the local effects on surface temperature are useful for model evaluation, they might be less relevant for local adaptation and mitigation than previously thought because they might largely be absent in the atmosphere.

  2. Thermoviscoplastic response of thin plates subjected to intense local heating

    NASA Technical Reports Server (NTRS)

    Byrom, Ted G.; Allen, David H.; Thornton, Earl A.

    1992-01-01

    A finite element method is employed to investigate the thermoviscoplastic response of a half-cylinder to intense localized transient heating. Thermoviscoplastic material behavior is characterized by the Bodner-Partom constitutive model. Structure geometry is modeled with a three-dimensional assembly of CST-DKT plate elements incorporating the large deflection von Karman assumptions. The paper compares the results of a dynamic analysis with a quasi-static analysis for the half-cylinder structure with a step-function transient temperature loading similar to that which may be encountered with shock wave interference on a hypersonic leading edge.

  3. Bearing tester data compilation analysis, and reporting and bearing math modeling

    NASA Technical Reports Server (NTRS)

    Cody, J. C.

    1986-01-01

    Integration of heat transfer coefficients, modified to account for local vapor quality, into the 45 mm bearing model has been completed. The model has been evaluated with two flow rates and subcooled and saturated coolant. The evaluation showed that by increasing the flow from 3.6 to 7.0 lbs/sec the average ball temperature was decreased by 102 F, using a coolant temperature of -230 F. The average ball temperature was decreased by 63 F by decreasing the inlet coolant temperature from saturated to -230 F at a flow rate of 7.0 lbs/sec. Since other factors such as friction, cage heating, etc., affect bearing temperatures, the above bearing temperature effects should be considered as trends and not absolute values. The two phase heat transfer modification has been installed in the 57 mm bearing model and the effects on bearing temperatures have been evaluated. The average ball temperature was decreased by 60 F by increasing the flow rate from 4.6 to 9.0 lbs/sec for the subcooled case. By decreasing the inlet coolant temperature from saturation to -24 F, the average ball temperature was decreased 57 F for a flow rate of 9.0 lbs/sec. The technique of relating the two phase heat transfer coefficient to local vapor quality will be applied to the tester model and compared with test data.

  4. Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy.

    PubMed

    Vendelbo, S B; Kooyman, P J; Creemer, J F; Morana, B; Mele, L; Dona, P; Nelissen, B J; Helveg, S

    2013-10-01

    In situ high-resolution transmission electron microscopy (TEM) of solids under reactive gas conditions can be facilitated by microelectromechanical system devices called nanoreactors. These nanoreactors are windowed cells containing nanoliter volumes of gas at ambient pressures and elevated temperatures. However, due to the high spatial confinement of the reaction environment, traditional methods for measuring process parameters, such as the local temperature, are difficult to apply. To address this issue, we devise an electron energy loss spectroscopy (EELS) method that probes the local temperature of the reaction volume under inspection by the electron beam. The local gas density, as measured using quantitative EELS, is combined with the inherent relation between gas density and temperature, as described by the ideal gas law, to obtain the local temperature. Using this method we determined the temperature gradient in a nanoreactor in situ, while the average, global temperature was monitored by a traditional measurement of the electrical resistivity of the heater. The local gas temperatures had a maximum of 56 °C deviation from the global heater values under the applied conditions. The local temperatures, obtained with the proposed method, are in good agreement with predictions from an analytical model. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Polaron conductivity mechanism in oxalic acid dihydrate: ac conductivity experiment

    NASA Astrophysics Data System (ADS)

    Levstik, Adrijan; Filipič, Cene; Bobnar, Vid; Levstik, Iva; Hadži, Dušan

    2006-10-01

    The ac electrical conductivity of the oxalic acid dihydrate ( α -POX) was investigated as a function of the frequency and temperature. The real part of the complex ac electrical conductivity was found to follow the universal dielectric response σ'∝νs , indicating that hopping or tunneling of localized charge carriers governs the electrical transport. A detailed analysis of the temperature dependence of the exponent s revealed that in a broad temperature range 50-200K the tunneling of polarons is the dominating charge transport mechanism.

  6. Polarized-neutron study of spin dynamics in the Kondo insulator YbB12.

    PubMed

    Nemkovski, K S; Mignot, J-M; Alekseev, P A; Ivanov, A S; Nefeodova, E V; Rybina, A V; Regnault, L-P; Iga, F; Takabatake, T

    2007-09-28

    Inelastic neutron scattering experiments have been performed on the archetype compound YbB(12), using neutron polarization analysis to separate the magnetic signal from the phonon background. With decreasing temperature, components characteristic for a single-site spin-fluctuation dynamics are suppressed, giving place to specific, strongly Q-dependent, low-energy excitations near the spin-gap edge. This crossover is discussed in terms of a simple crystal-field description of the incoherent high-temperature state and a predominantly local mechanism for the formation of the low-temperature singlet ground state.

  7. Experimental Analysis of Steel Beams Subjected to Fire Enhanced by Brillouin Scattering-Based Fiber Optic Sensor Data

    PubMed Central

    Bao, Yi; Chen, Yizheng; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda

    2016-01-01

    This paper presents high temperature measurements using a Brillouin scattering-based fiber optic sensor and the application of the measured temperatures and building code recommended material parameters into enhanced thermomechanical analysis of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed temperature sensor captures detailed, nonuniform temperature distributions that are compared locally with thermocouple measurements with less than 4.7% average difference at 95% confidence level. The simulated strains and deflections are validated using measurements from a second distributed fiber optic (strain) sensor and two linear potentiometers, respectively. The results demonstrate that the temperature-dependent material properties specified in the four investigated building codes lead to strain predictions with less than 13% average error at 95% confidence level and that the Europe building code provided the best predictions. However, the implicit consideration of creep in Europe is insufficient when the beam temperature exceeds 800°C. PMID:28239230

  8. Hot spot dynamics in carbon nanotube array devices.

    PubMed

    Engel, Michael; Steiner, Mathias; Seo, Jung-Woo T; Hersam, Mark C; Avouris, Phaedon

    2015-03-11

    We report on the dynamics of spatial temperature distributions in aligned semiconducting carbon nanotube array devices with submicrometer channel lengths. By using high-resolution optical microscopy in combination with electrical transport measurements, we observe under steady state bias conditions the emergence of time-variable, local temperature maxima with dimensions below 300 nm, and temperatures above 400 K. On the basis of time domain cross-correlation analysis, we investigate how the intensity fluctuations of the thermal radiation patterns are correlated with the overall device current. The analysis reveals the interdependence of electrical current fluctuations and time-variable hot spot formation that limits the overall device performance and, ultimately, may cause device degradation. The findings have implications for the future development of carbon nanotube-based technologies.

  9. The Joule heating problem in silver nanowire transparent electrodes

    NASA Astrophysics Data System (ADS)

    Khaligh, H. H.; Xu, L.; Khosropour, A.; Madeira, A.; Romano, M.; Pradére, C.; Tréguer-Delapierre, M.; Servant, L.; Pope, M. A.; Goldthorpe, I. A.

    2017-10-01

    Silver nanowire transparent electrodes have shown considerable potential to replace conventional transparent conductive materials. However, in this report we show that Joule heating is a unique and serious problem with these electrodes. When conducting current densities encountered in organic solar cells, the average surface temperature of indium tin oxide (ITO) and silver nanowire electrodes, both with sheet resistances of 60 ohms/square, remains below 35 °C. However, in contrast to ITO, the temperature in the nanowire electrode is very non-uniform, with some localized points reaching temperatures above 250 °C. These hotspots accelerate nanowire degradation, leading to electrode failure after 5 days of continuous current flow. We show that graphene, a commonly used passivation layer for these electrodes, slows nanowire degradation and creates a more uniform surface temperature under current flow. However, the graphene does not prevent Joule heating in the nanowires and local points of high temperature ultimately shift the failure mechanism from nanowire degradation to melting of the underlying plastic substrate. In this paper, surface temperature mapping, lifetime testing under current flow, post-mortem analysis, and modelling illuminate the behaviour and failure mechanisms of nanowires under extended current flow and provide guidelines for managing Joule heating.

  10. High Temperature Composite Analyzer (HITCAN) demonstration manual, version 1.0

    NASA Technical Reports Server (NTRS)

    Singhal, S. N; Lackney, J. J.; Murthy, P. L. N.

    1993-01-01

    This manual comprises a variety of demonstration cases for the HITCAN (HIgh Temperature Composite ANalyzer) code. HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. HITCAN is written in FORTRAN 77 computer language and has been configured and executed on the NASA Lewis Research Center CRAY XMP and YMP computers. Detailed description of all program variables and terms used in this manual may be found in the User's Manual. The demonstration includes various cases to illustrate the features and analysis capabilities of the HITCAN computer code. These cases include: (1) static analysis, (2) nonlinear quasi-static (incremental) analysis, (3) modal analysis, (4) buckling analysis, (5) fiber degradation effects, (6) fabrication-induced stresses for a variety of structures; namely, beam, plate, ring, shell, and built-up structures. A brief discussion of each demonstration case with the associated input data file is provided. Sample results taken from the actual computer output are also included.

  11. Research on particulate filter simulation and regeneration control strategy

    NASA Astrophysics Data System (ADS)

    Dawei, Qu; Jun, Li; Yu, Liu

    2017-03-01

    This paper reports a DPF (Diesel Particulate Filter) collection mathematical model for a new regeneration control strategy. The new strategy is composed by main parts, such as regeneration time capturing, temperature rising strategy and regeneration control strategy. In the part of regeneration time capturing, a multi-level regeneration capturing method is put forward based on the combined effect of the PM (Particulate Matter) loading, pressure drop and fuel consumption. The temperature rising strategy proposes the global temperature for all operating conditions. The regeneration control process considers the particle loading density, temperature and oxygen respectively. Based on the analysis of the initial overheating, runaway temperature and local hot spot, the final control strategy is established.

  12. Exploring recent and projected climate change in a steep monsoonal catchment in the middle Himalaya through innovative synthesis of local observations, gridded datasets and community engagement

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Pritchard, Davis; Tiwari, Prakash; Fowler, Hayley; Kumaun, Bhagwati

    2016-04-01

    Under the auspices of an "Innovation Partnerships" programme research exchange grant jointly funded by the India Department of Science and Technology and the British Council, Kumaun University and Newcastle University have been collaboratively exploring the recorded historical and projected future climate change implications for a case study catchment, the Ramgad river, in the Kumaon Lesser Himalaya (Uttarakhand state, India). This work weaves together diverse research strands with the aim of producing a coherent thorough characterisation of the impacts of recent/on-going and likely climate evolution on local communities. Participatory research activities in multiple villages in the case study catchment have yielded a consistent narrative of changes posed by the increasingly erratic monsoonal rainfall as well as upward displacement and replacement crops in their historical elevation ranges due to temperature change. Multi-decadal climate records from both local observations and global meteorological records reveal a more complex picture with strong seasonal asymmetry of changes in both temperature and precipitation: a) trend analysis shows mild weakening of the early phase (May, July) but strengthen in the later stages (August, September); b) temperature trends show much stronger warming in late winter and early spring (February to April) than the rest of the year with additional asymmetry in both sign and magnitude of change between individual components (Tmax, Tmin) of the diurnal temperature cycle. On-going research seeks to associate this asymmetry with causal mechanisms (cloud radiative effect, atmospheric circulation). Analysis of historical records will provide the basis for validation and assessment of individual regional climate model projections from the CORDEX South Asia domain ensemble. For the terraced agricultural communities of the Kumaon Himalaya, the most directly consequential effects of climate variability and change are impacts on crop yields which impact both livelihoods (household revenue) and food security. Thus another research strand focuses use of remote sensing vegetation data products (MODIS MOD13Q1 and Landsat NDVI) to derive both locally relevant land cover classes differentiating natural vegetation from cropped areas as well as assessing vegetation response to climate anomalies (precipitation, temperature). These responses, characterised from observations over the past decade, will be considered in terms of both historical climate records and projected climate change. The ultimate aim of this collaborative project is to report all of these findings to the local communities through appropriate media and in comprehensible terms in order to enable participatory exploration of potential adaptation pathways to improve local resilience and sustainability.

  13. Friction Stir Welding in Wrought and Cast Aluminum Alloys: Heat Transfer Modeling and Thermal History Analysis

    NASA Astrophysics Data System (ADS)

    Pan, Yi; Lados, Diana A.

    2017-02-01

    Friction stir welding (FSW) is a technique that can be used for materials joining and local microstructural refinement. Owing to the solid-state character of the process, FSW has significant advantages over traditional fusion welding, including reduced part distortion and overheating. In this study, a novel heat transfer model was developed to predict weld temperature distributions and quantify peak temperatures under various combinations of processing parameters for different wrought and cast Al alloys. Specifically, an analytical analysis was first developed to characterize and predict heat generation rate within the weld nugget, and then a two-dimensional (2D) numerical simulation was performed to evaluate the temperature distribution in the weld cross-section and top-view planes. A further three-dimensional (3D) simulation was developed based on the heat generation analysis. The model was validated by measuring actual temperatures near the weld nugget using thermocouples, and good agreement was obtained for all studied materials and conditions.

  14. High-frequency daily temperature variability in China and its relationship to large-scale circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fu-Ting; Fu, Congbin; Qian, Yun

    Two measures of intra-seasonal variability, indicated respectively by standard deviations (SD) and day-to-day (DTD) fluctuations denoted by absolute differences between adjacent 2-day periods, as well as their relationships with large-scale circulation patterns were investigated in China during 1962–2008 on the basis of homogenized daily temperature records from 549 local stations and reanalysis data. Our results show that both the SD and DTD of daily minimum temperatures (Tmin) in summer as well as the minimum and maximum temperatures in winter have been decreasing, while the daily maximum temperature (Tmax) variability in summer is fluctuating more, especially over southern China. In summer,more » an attribution analysis indicates that the intensity of the Western Pacific Subtropical High (WPSH) and high-level East Asian Subtropical Jet stream (EASJ) are positively correlated with both SD and DTD, but the correlation coefficients are generally greater with the SD than with the DTD of the daily maximum temperature, Tmax. In contrast, the location of the EASJ shows the opposite correlation pattern, with intensity regarding the correlation with both SD and DTD. In winter, the Arctic Oscillation (AO) is negatively correlated with both the SD and DTD of the daily minimum temperature, but its intra-seasonal variability exhibits good agreement with the SD of the Tmin. The Siberian High acts differently with respect to the SD and DTD of the Tmin, demonstrating a regionally consistent positive correlation with the SD. Overall, the large-scale circulation can well explain the intra-seasonal SD, but DTD fluctuations may be more local and impacted by local conditions, such as changes in the temperature itself, the land surface, and so on.« less

  15. Global Conformational Selection and Local Induced Fit for the Recognition between Intrinsic Disordered p53 and CBP

    PubMed Central

    Yu, Qingfen; Ye, Wei; Wang, Wei; Chen, Hai-Feng

    2013-01-01

    The transactivation domain (TAD) of tumor suppressor p53 can bind with the nuclear coactivator binding domain (NCBD) of cyclic-AMP response element binding protein (CBP) and activate transcription. NMR experiments demonstrate that both apo-NCBD and TAD are intrinsic disordered and bound NCBD/TAD undergoes a transition to well folded. The recognition mechanism between intrinsic disordered proteins is still hotly debated. Molecular dynamics (MD) simulations in explicit solvent are used to study the recognition mechanism between intrinsic disordered TAD and NCBD. The average RMSD values between bound and corresponding apo states and Kolmogorov-Smirnov P test analysis indicate that TAD and NCBD may follow an induced fit mechanism. Quantitative analysis indicates there is also a global conformational selection. In summary, the recognition of TAD and NCBD might obey a local induced fit and global conformational selection. These conclusions are further supported by high-temperature unbinding kinetics and room temperature landscape analysis. These methods can be used to study the recognition mechanism of other intrinsic disordered proteins. PMID:23555731

  16. From blood oxygenation level dependent (BOLD) signals to brain temperature maps.

    PubMed

    Sotero, Roberto C; Iturria-Medina, Yasser

    2011-11-01

    A theoretical framework is presented for converting Blood Oxygenation Level Dependent (BOLD) images to brain temperature maps, based on the idea that disproportional local changes in cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption (CMRO₂) during functional brain activity, lead to both brain temperature changes and the BOLD effect. Using an oxygen limitation model and a BOLD signal model, we obtain a transcendental equation relating CBF and CMRO₂ changes with the corresponding BOLD signal, which is solved in terms of the Lambert W function. Inserting this result in the dynamic bioheat equation describing the rate of temperature changes in the brain, we obtain a nonautonomous ordinary differential equation that depends on the BOLD response, which is solved numerically for each brain voxel. Temperature maps obtained from a real BOLD dataset registered in an attention to visual motion experiment were calculated, obtaining temperature variations in the range: (-0.15, 0.1) which is consistent with experimental results. The statistical analysis revealed that significant temperature activations have a similar distribution pattern than BOLD activations. An interesting difference was the activation of the precuneus in temperature maps, a region involved in visuospatial processing, an effect that was not observed on BOLD maps. Furthermore, temperature maps were more localized to gray matter regions than the original BOLD maps, showing less activated voxels in white matter and cerebrospinal fluid.

  17. Colossal magnetoresistance in amino-functionalized graphene quantum dots at room temperature: manifestation of weak anti-localization and doorway to spintronics

    NASA Astrophysics Data System (ADS)

    Roy, Rajarshi; Thapa, Ranjit; Kumar, Gundam Sandeep; Mazumder, Nilesh; Sen, Dipayan; Sinthika, S.; Das, Nirmalya S.; Chattopadhyay, Kalyan K.

    2016-04-01

    In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for future graphene quantum dot based spintronic applications.In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for future graphene quantum dot based spintronic applications. Electronic supplementary information (ESI) available: UV-Vis spectrum of synthesized fGQDs, reconstructed false color surface topographic images from a high-resolution fGQD TEM lattice; Raman spectra with corresponding Breit-Wigner-Fano (BWF) line fitting of `G band' before and after the application of sTMF, spin density distribution (SDD) with different shapes of a functionalized graphene quantum dot, SDD of the main simulated fGQD model obtained using different exchange correlation functional (PW91, RBPE and LDA). Models of (a) two NH2 molecules adsorbed on a graphene sheet (periodic structure), (b) representing corresponding SPDOS are also provided. Charge density distribution (CDD) with two-dimensional side view contour plots of adsorbed -NH2 and O&z.dbd;C-NH2 on GQD lattice and SPDOS of a main fGQD model with 0.2% strain. See DOI: 10.1039/c5nr09292b

  18. Numerical analysis of phase change materials for thermal control of power battery of high power dissipations

    NASA Astrophysics Data System (ADS)

    Xia, X.; Zhang, H. Y.; Deng, Y. C.

    2016-08-01

    Solid-fluid phase change materials have been of increasing interest in various applications due to their high latent heat with minimum volume change. In this work, numerical analysis of phase change materials is carried out for the purpose of thermal control of the cylindrical power battery cells for applications in electric vehicles. Uniform heat density is applied at the battery cell, which is surrounded by phase change material (PCM) of paraffin wax type and contained in a metal housing. A two-dimensional geometry model is considered due to the model symmetry. The effects of power densities, heat transfer coefficients and onset melting temperatures are examined for the battery temperature evolution. Temperature plateaus can be observed from the present numerical analysis for the pure PCM cases, with the temperature level depending on the power densities, heat transfer coefficients, and melting temperatures. In addition, the copper foam of high thermal conductivity is inserted into the copper foam to enhance the heat transfer. In the modeling, the local thermal non-equilibrium between the metal foam and the PCM is taken into account and the temperatures for the metal foam and PCM are obtained respectively.

  19. Satellite-based detection of global urban heat-island temperature influence

    USGS Publications Warehouse

    Gallo, K.P.; Adegoke, Jimmy O.; Owen, T.W.; Elvidge, C.D.

    2002-01-01

    This study utilizes a satellite-based methodology to assess the urban heat-island influence during warm season months for over 4400 stations included in the Global Historical Climatology Network of climate stations. The methodology includes local and regional satellite retrievals of an indicator of the presence green photosynthetically active vegetation at and around the stations. The difference in local and regional samples of the normalized difference vegetation index (NDVI) is used to estimate differences in mean air temperature. Stations classified as urban averaged 0.90??C (N. Hemisphere) and 0.92??C (S. Hemisphere) warmer than the surrounding environment on the basis of the NDVI-derived temperature estimates. Additionally, stations classified as rural averaged 0.19??C (N. Hemisphere) and 0.16??C (S. Hemisphere) warmer than the surrounding environment. The NDVI-derived temperature estimates were found to be in reasonable agreement with temperature differences observed between climate stations. The results suggest that satellite-derived data sets can be used to estimate the urban heat-island temperature influence on a global basis and that a more detailed analysis of rural stations and their surrounding environment may be necessary to assure that temperature trends derived from assumed rural environments are not influenced by changes in land use/land cover. Copyright 2002 by the American Geophysical Union.

  20. Properties of Localized Protons in Neutron Star Matter at Finite Temperatures

    NASA Astrophysics Data System (ADS)

    Szmaglinski, A.; Kubis, S.; Wójcik, W.

    2014-02-01

    We study properties of the proton component of neutron star matter for realistic nuclear models. Vanishing of the nuclear symmetry energy implies proton-neutron separation in dense nuclear matter. Protons which form admixture tend to be localized in potential wells. Here, we extend the description of proton localization to finite temperatures. It appears that the protons are still localized at temperatures typical for hot neutron stars. That fact has important astrophysical consequences. Moreover, the temperature inclusion leads to unexpected results for the behavior of the proton localized state.

  1. Charge carrier localization effects on the quantum efficiency and operating temperature range of InAs{sub x}P{sub 1−x}/InP quantum well detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vashisht, Geetanjali, E-mail: geetanjali@rrcat.gov.in; Dixit, V. K., E-mail: dixit@rrcat.gov.in; Porwal, S.

    2016-03-07

    The effect of charge carrier localization resulting in “S-shaped” temperature dependence of the photoluminescence peak energy of InAs{sub x}P{sub 1−x}/InP quantum wells (QWs) is distinctly revealed by the temperature dependent surface photo voltage (SPV) and photoconductivity (PC) processes. It is observed that the escape efficiency of carriers from QWs depends on the localization energy, where the carriers are unable to contribute in SPV/PC signal below a critical temperature. Below the critical temperature, carriers are strongly trapped in the localized states and are therefore unable to escape from the QW. Further, the critical temperature increases with the magnitude of localization energymore » of carriers. Carrier localization thus plays a pivotal role in defining the operating temperature range of InAs{sub x}P{sub 1−x}/InP QW detectors.« less

  2. Experimental evaluation of the sensitivity to fuel utilization and air management on a 100 kW SOFC system

    NASA Astrophysics Data System (ADS)

    Santarelli, M.; Leone, P.; Calì, M.; Orsello, G.

    The tubular SOFC generator CHP-100, built by Siemens Power Generation (SPG) Stationary Fuel Cells (SFC), is running at the Gas Turbine Technologies (GTT) in Torino (Italy), in the framework of the EOS Project. The nominal load of the generator ensures a produced electric power of around 105 kW e ac and around 60 kW t of thermal power at 250 °C to be used for the custom tailored HVAC system. Several experimental sessions have been scheduled on the generator; the aim is to characterize the operation through the analysis of some global performance index and the detailed control of the operation of the different bundles of the whole stack. All the scheduled tests have been performed by applying the methodology of design of experiment; the main obtained results show the effect of the change of the analysed operating factors in terms of distribution of voltage and temperature over the stack. Fuel consumption tests give information about the sensitivity of the voltage and temperature distribution along the single bundles. On the other hand, since the generator is an air cooled system, the results of the tests on the air stoichs have been used to analyze the generator thermal management (temperature distribution and profiles) and its effect on the polarization. The sensitivity analysis of the local voltage to the overall fuel consumption modifications can be used as a powerful procedure to deduce the local distribution of fuel utilization (FU) along the single bundles: in fact, through a model obtained by deriving the polarization curve respect to FU, it is possible to link the distribution of voltage sensitivities to FC to the distribution of the local FU. The FU distribution will be shown as non-uniform, and this affects the local voltage and temperatures, causing a high warming effect in some rows of the generator. Therefore, a discussion around the effectiveness of the thermal regulation made by the air stoichs, in order to reduce the non-uniform distribution of temperature and the overheating (increasing therefore the voltage behavior along the generator) has been performed. It is demonstrated that the utilization of one air plenum is not effective in the thermal regulation of the whole generator, in particular in the reduction of the temperature gradients linked to the non-uniform fuel distribution.

  3. The use of multiobjective calibration and regional sensitivity analysis in simulating hyporheic exchange

    USGS Publications Warehouse

    Naranjo, Ramon C.; Niswonger, Richard G.; Stone, Mark; Davis, Clinton; McKay, Alan

    2012-01-01

    We describe an approach for calibrating a two-dimensional (2-D) flow model of hyporheic exchange using observations of temperature and pressure to estimate hydraulic and thermal properties. A longitudinal 2-D heat and flow model was constructed for a riffle-pool sequence to simulate flow paths and flux rates for variable discharge conditions. A uniform random sampling approach was used to examine the solution space and identify optimal values at local and regional scales. We used a regional sensitivity analysis to examine the effects of parameter correlation and nonuniqueness commonly encountered in multidimensional modeling. The results from this study demonstrate the ability to estimate hydraulic and thermal parameters using measurements of temperature and pressure to simulate exchange and flow paths. Examination of the local parameter space provides the potential for refinement of zones that are used to represent sediment heterogeneity within the model. The results indicate vertical hydraulic conductivity was not identifiable solely using pressure observations; however, a distinct minimum was identified using temperature observations. The measured temperature and pressure and estimated vertical hydraulic conductivity values indicate the presence of a discontinuous low-permeability deposit that limits the vertical penetration of seepage beneath the riffle, whereas there is a much greater exchange where the low-permeability deposit is absent. Using both temperature and pressure to constrain the parameter estimation process provides the lowest overall root-mean-square error as compared to using solely temperature or pressure observations. This study demonstrates the benefits of combining continuous temperature and pressure for simulating hyporheic exchange and flow in a riffle-pool sequence. Copyright 2012 by the American Geophysical Union.

  4. Images of turbulent, absorbing-emitting atmospheres and their application to windshear detection

    NASA Astrophysics Data System (ADS)

    Watt, David W.; Philbrick, Daniel A.

    1991-03-01

    The simulation of images generated by thermally-radiating, optically- thick turbulent media are discussed and the time-dependent evolution of these images is modeled. This characteristics of these images are particularly applicable to the atmosphere in the 13-15 mm band and their behavior may have application in detecting aviation hazards. The image is generated by volumetric thermal emission by atmospheric constituents within the field-of-view of the detector. The structure of the turbulent temperature field and the attenuating properties of the atmosphere interact with the field-of-view's geometry to produce a localized region which dominates the optical flow of the image. The simulations discussed in this paper model the time-dependent behavior of images generated by atmospheric flows viewed from an airborne platform. The images ar modelled by (1) generating a random field of temperature fluctuations have the proper spatial structure, (2) adding these fluctuation to the baseline temperature field of the atmospheric event, (3) accumulating the image on the detector from radiation emitted in the imaging volume, (4) allowing the individual radiating points within the imaging volume to move with the local velocity, (5) recalculating the thermal field and generating a new image. This approach was used to simulate the images generated by the temperature and velocity fields of a windshear. The simulation generated pais of images separated by a small time interval. These image paris were analyzed by image cross-correlation. The displacement of the cross-correlation peak was used to infer the velocity at the localized region. The localized region was found to depend weakly on the shape of the velocity profile. Prediction of the localized region, the effects of imaging from a moving platform, alternative image analysis schemes, and possible application to aviation hazards are discussed.

  5. Local properties of the large-scale peaks of the CMB temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es

    2017-05-01

    In the present work, we study the largest structures of the CMB temperature measured by Planck in terms of the most prominent peaks on the sky, which, in particular, are located in the southern galactic hemisphere. Besides these large-scale features, the well-known Cold Spot anomaly is included in the analysis. All these peaks would contribute significantly to some of the CMB large-scale anomalies, as the parity and hemispherical asymmetries, the dipole modulation, the alignment between the quadrupole and the octopole, or in the case of the Cold Spot, to the non-Gaussianity of the field. The analysis of the peaks ismore » performed by using their multipolar profiles, which characterize the local shape of the peaks in terms of the discrete Fourier transform of the azimuthal angle. In order to quantify the local anisotropy of the peaks, the distribution of the phases of the multipolar profiles is studied by using the Rayleigh random walk methodology. Finally, a direct analysis of the 2-dimensional field around the peaks is performed in order to take into account the effect of the galactic mask. The results of the analysis conclude that, once the peak amplitude and its first and second order derivatives at the centre are conditioned, the rest of the field is compatible with the standard model. In particular, it is observed that the Cold Spot anomaly is caused by the large value of curvature at the centre.« less

  6. 3-D inelastic analysis methods for hot section components (base program). [turbine blades, turbine vanes, and combustor liners

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1984-01-01

    A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described.

  7. Nonlinear analysis for high-temperature multilayered fiber composite structures. M.S. Thesis; [turbine blades

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.

    1984-01-01

    A unique upward-integrated top-down-structured approach is presented for nonlinear analysis of high-temperature multilayered fiber composite structures. Based on this approach, a special purpose computer code was developed (nonlinear COBSTRAN) which is specifically tailored for the nonlinear analysis of tungsten-fiber-reinforced superalloy (TFRS) composite turbine blade/vane components of gas turbine engines. Special features of this computational capability include accounting of; micro- and macro-heterogeneity, nonlinear (stess-temperature-time dependent) and anisotropic material behavior, and fiber degradation. A demonstration problem is presented to mainfest the utility of the upward-integrated top-down-structured approach, in general, and to illustrate the present capability represented by the nonlinear COBSTRAN code. Preliminary results indicate that nonlinear COBSTRAN provides the means for relating the local nonlinear and anisotropic material behavior of the composite constituents to the global response of the turbine blade/vane structure.

  8. Conductivity and structure of ErAs nanoparticles embedded in GaAs pn junctions analyzed via conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Park, K. W.; Dasika, V. D.; Nair, H. P.; Crook, A. M.; Bank, S. R.; Yu, E. T.

    2012-06-01

    We have used conductive atomic force microscopy to investigate the influence of growth temperature on local current flow in GaAs pn junctions with embedded ErAs nanoparticles grown by molecular beam epitaxy. Three sets of samples, one with 1 ML ErAs deposited at different growth temperatures and two grown at 530 °C and 575 °C with varying ErAs depositions, were characterized. Statistical analysis of local current images suggests that the structures grown at 575 °C have about 3 times thicker ErAs nanoparticles than structures grown at 530 °C, resulting in degradation of conductivity due to reduced ErAs coverage. These findings explain previous studies of macroscopic tunnel junctions.

  9. Dynamics of a Chlorophyll Dimer in Collective and Local Thermal Environments

    DOE PAGES

    Merkli, M.; Berman, Gennady Petrovich; Sayre, Richard Thomas; ...

    2016-01-30

    Here we present a theoretical analysis of exciton transfer and decoherence effects in a photosynthetic dimer interacting with collective (correlated) and local (uncorrelated) protein-solvent environments. Our approach is based on the framework of the spin-boson model. We derive explicitly the thermal relaxation and decoherence rates of the exciton transfer process, valid for arbitrary temperatures and for arbitrary (in particular, large) interaction constants between the dimer and the environments. We establish a generalization of the Marcus formula, giving reaction rates for dimer levels possibly individually and asymmetrically coupled to environments. We identify rigorously parameter regimes for the validity of the generalizedmore » Marcus formula. The existence of long living quantum coherences at ambient temperatures emerges naturally from our approach.« less

  10. Heat Transfer to Longitudinal Laminar Flow Between Cylinders

    NASA Technical Reports Server (NTRS)

    Sparrow, Ephraim M.; Loeffler, Albert L. Jr.; Hubbard, H. A.

    1960-01-01

    Consideration is given to the fully developed heat transfer characteristics for longitudinal laminar flow between cylinders arranged in an equilateral triangular array. The analysis is carried out for the condition of uniform heat transfer per unit length. Solutions are obtained for the temperature distribution, and from these, Nusselt numbers are derived for a wide range of spacing-to-diameter ratios. It is found that as the spacing ratio increases, so also does the wall-to-bulk temperature difference for a fixed heat transfer per unit length. Corresponding to a uniform surface temperature around the circumference of a cylinder, the circumferential variation of the local heat flux is computed. For spacing ratios of 1.5 - 2.0 and greater, uniform peripheral wall temperature and uniform peripheral heat flux are simultaneously achieved. A simplified analysis which neglects circumferential variations is also carried out, and the results are compared with those from the more exact formulation.

  11. Estimating the Temperature Experienced by Biomass Particles during Fast Pyrolysis Using Microscopic Analysis of Biochars

    DOE PAGES

    Thompson, Logan C.; Ciesielski, Peter N.; Jarvis, Mark W.; ...

    2017-07-12

    Here, biomass particles can experience variable thermal conditions during fast pyrolysis due to differences in their size and morphology, and from local temperature variations within a reactor. These differences lead to increased heterogeneity of the chemical products obtained in the pyrolysis vapors and bio-oil. Here we present a simple, high-throughput method to investigate the thermal history experienced by large ensembles of particles during fast pyrolysis by imaging and quantitative image analysis. We present a correlation between the surface luminance (darkness) of the biochar particle and the highest temperature that it experienced during pyrolysis. Next, we apply this correlation to large,more » heterogeneous ensembles of char particles produced in a laminar entrained flow reactor (LEFR). The results are used to interpret the actual temperature distributions delivered by the reactor over a range of operating conditions.« less

  12. Modelling malaria incidence by an autoregressive distributed lag model with spatial component.

    PubMed

    Laguna, Francisco; Grillet, María Eugenia; León, José R; Ludeña, Carenne

    2017-08-01

    The influence of climatic variables on the dynamics of human malaria has been widely highlighted. Also, it is known that this mosquito-borne infection varies in space and time. However, when the data is spatially incomplete most popular spatio-temporal methods of analysis cannot be applied directly. In this paper, we develop a two step methodology to model the spatio-temporal dependence of malaria incidence on local rainfall, temperature, and humidity as well as the regional sea surface temperatures (SST) in the northern coast of Venezuela. First, we fit an autoregressive distributed lag model (ARDL) to the weekly data, and then, we adjust a linear separable spacial vectorial autoregressive model (VAR) to the residuals of the ARDL. Finally, the model parameters are tuned using a Markov Chain Monte Carlo (MCMC) procedure derived from the Metropolis-Hastings algorithm. Our results show that the best model to account for the variations of malaria incidence from 2001 to 2008 in 10 endemic Municipalities in North-Eastern Venezuela is a logit model that included the accumulated local precipitation in combination with the local maximum temperature of the preceding month as positive regressors. Additionally, we show that although malaria dynamics is highly heterogeneous in space, a detailed analysis of the estimated spatial parameters in our model yield important insights regarding the joint behavior of the disease incidence across the different counties in our study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Non percolative nature of the metal-insulator transition and persistence of local Jahn-Teller distortions in the rhombohedral regime of La 1-xCa xMnO 3

    DOE PAGES

    Shatnawi, Mouath; Bozin, Emil S.; Mitchell, J. F.; ...

    2016-04-25

    Evolution of the average and local crystal structure of Ca-doped LaMnO 3 has been studied across the metal to insulator (MI) and the orthorhombic to rhombohedral (OR) structural phase transitions over a broad temperature range for two Ca concentrations (x = 0.18,0.22). Combined Rietveld and high real space resolution atomic pair distribution function (PDF) analysis of neutron total scattering data was carried out with aims of exploring the possibility of nanoscale phase separation (PS) in relation to MI transition, and charting the evolution of local Jahn-Teller (JT) distortion of MnO 6 octahedra across the OR transition at T S~720 K.more » The study utilized explicit two-phase PDF structural modeling, revealing that away from T MI there is no evidence for nanoscale phase coexistence. The local JT distortions disappear abruptly upon crossing into the metallic regime both with doping and temperature, with only a small temperature-independent signature of quenched disorder being observable at low temperature as compared to CaMnO 3. The results hence do not support the percolative scenario for the MI transition in La 1–xCa xMnO 3 based on PS, and question its ubiquity in the manganites. In contrast to LaMnO 3 that exhibits long-range orbital correlations and sizable octahedral distortions at low temperature, the doped samples with compositions straddling the MI boundary exhibit correlations (in the insulating regime) limited to only ~1 nm with observably smaller distortions. In the x = 0.22 sample local JT distortions are found to persist across the OR transition and deep into the R phase (up to ~1050 K), where they are crystallographically prohibited. As a result, their magnitude and subnanometer spatial extent remain unchanged.« less

  14. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans.

    PubMed

    Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G

    2010-11-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.

  15. Asymptotic analysis to the effect of temperature gradient on the propagation of triple flames

    NASA Astrophysics Data System (ADS)

    Al-Malki, Faisal

    2018-05-01

    We study asymptotically in this paper the influence of the temperature gradient across the mixing layer on the propagation triple flames formed inside a porous wall channel. The study begins by formulating the problem mathematically using the thermo-diffusive model and then presents a thorough asymptotic analysis of the problem in the limit of large activation energy and thin flames. Analytical formulae for the local burning speed, the flame shape and the propagation speed in terms of the temperature gradient parameter have been derived. It was shown that varying the feed temperatures can significantly enhance the burning of the reactants up to a critical threshold, beyond which no solutions can be obtained. In addition, the study showed that increasing the temperature at the boundaries will modify the usual triple structure of the flame by inverting the upper premixed branch and extending it to the boundary, which may have great implications on the safety of the adopted combustion chambers.

  16. Quantitative analysis and temperature-induced variations of moiré pattern in fiber-coupled imaging sensors.

    PubMed

    Karbasi, Salman; Arianpour, Ashkan; Motamedi, Nojan; Mellette, William M; Ford, Joseph E

    2015-06-10

    Imaging fiber bundles can map the curved image surface formed by some high-performance lenses onto flat focal plane detectors. The relative alignment between the focal plane array pixels and the quasi-periodic fiber-bundle cores can impose an undesirable space variant moiré pattern, but this effect may be greatly reduced by flat-field calibration, provided that the local responsivity is known. Here we demonstrate a stable metric for spatial analysis of the moiré pattern strength, and use it to quantify the effect of relative sensor and fiber-bundle pitch, and that of the Bayer color filter. We measure the thermal dependence of the moiré pattern, and the achievable improvement by flat-field calibration at different operating temperatures. We show that a flat-field calibration image at a desired operating temperature can be generated using linear interpolation between white images at several fixed temperatures, comparing the final image quality with an experimentally acquired image at the same temperature.

  17. A distributed real-time model of degradation in a solid oxide fuel cell, part II: Analysis of fuel cell performance and potential failures

    NASA Astrophysics Data System (ADS)

    Zaccaria, V.; Tucker, D.; Traverso, A.

    2016-09-01

    Solid oxide fuel cells are characterized by very high efficiency, low emissions level, and large fuel flexibility. Unfortunately, their elevated costs and relatively short lifetimes reduce the economic feasibility of these technologies at the present time. Several mechanisms contribute to degrade fuel cell performance during time, and the study of these degradation modes and potential mitigation actions is critical to ensure the durability of the fuel cell and their long-term stability. In this work, localized degradation of a solid oxide fuel cell is modeled in real-time and its effects on various cell parameters are analyzed. Profile distributions of overpotential, temperature, heat generation, and temperature gradients in the stack are investigated during degradation. Several causes of failure could occur in the fuel cell if no proper control actions are applied. A local analysis of critical parameters conducted shows where the issues are and how they could be mitigated in order to extend the life of the cell.

  18. Rate of precipitation of calcium phosphate on heated surfaces.

    PubMed

    Barton, K P; Chapman, T W; Lund, D

    1985-03-01

    Fouling of a heated stainless steel surface by calcium phosphate precipitation has been studied in an annular flow apparatus, instrumented to provide a constant heat flux while measuring local metal-surface temperatures. Models of the heat and mass-transfer boundary layers are used to estimate interfacial temperatures and concentrations, from which the heterogeneous reaction rate is inferred. The analysis indicates that the reaction rate is a function of both chemical kinetics and mass transfer limitations.

  19. Multi-frequency ICRF diagnostic of Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lafonteese, David James

    This thesis explores the diagnostic possibilities of a fast wave-based method for measuring the ion density and temperature profiles of tokamak plasmas. In these studies fast waves are coupled to the plasma at frequencies at the second harmonic of the ion gyrofrequency, at which wave energy is absorbed by the finite-temperature ions. As the ion gyrofrequency is dependent upon the local magnetic field, which varies as l/R in a tokamak, this power absorption is radially localized. The simultaneous launching of multiple frequencies, all resonating at different plasma positions, allows local measurements of the ion density and temperature. To investigate the profile applications of wave damping measurements in a simulated tokamak, an inhouse slab-model ICRF code is developed. A variety of analysis methods are presented, and ion density and temperature profiles are reconstructed for hydrogen plasmas for the Electric Tokamak (ET) and ITER parameter spaces. These methods achieve promising results in simulated plasmas featuring bulk ion heating, off-axis RF heating, and density ramps. The experimental results of similar studies on the Electric Tokamak, a high aspect ratio (R/a = 5), low toroidal field (2.2 kG) device are then presented. In these studies, six fast wave frequencies were coupled using a single-strap, low-field-side antenna to ET plasmas. The frequencies were variable, and could be tuned to resonate at different radii for different experiments. Four magnetic pickup loops were used to measure of the toroidal component of the wave magnetic field. The expected greater eigenmode damping of center-resonant frequencies versus edge-resonant frequencies is consistently observed. Comparison of measured aspects of fast wave behavior in ET is made with the slab code predictions, which validate the code simulations under weakly-damped conditions. A density profile is measured for an ET discharge through analysis of the fast wave measurements, and is compared to an electron density profile derived from Thomson scattering data. The methodology behind a similar measurement of the ion temperature profile is also presented.

  20. Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures

    NASA Astrophysics Data System (ADS)

    Treyssède, Fabien

    2018-01-01

    Understanding thermal effects on the vibration of local (cable-dominant) modes in multi-cable structures is a complicated task. The main difficulty lies in the modification by temperature change of cable tensions, which are then undetermined. This paper applies a finite element procedure to investigate the effects of thermal loads on the linear dynamics of prestressed self-weighted multi-cable structures. Provided that boundary conditions are carefully handled, the discretization of cables with nonlinear curved beam elements can properly represent the thermoelastic behavior of cables as well as their linearized dynamics. A three-step procedure that aims to replace applied pretension forces with displacement continuity conditions is used. Despite an increase in the computational cost related to beam rotational degrees of freedom, such an approach has several advantages. Nonlinear beam finite elements are usually available in commercial codes. The overall method follows a thermoelastic geometrically non-linear analysis and hereby includes the main sources of non-linearities in multi-cable structures. The effects of cable bending stiffness, which can be significant, are also naturally accounted for. The accuracy of the numerical approach is assessed thanks to an analytical model for the vibration of a single inclined cable under temperature change. Then, the effects of thermal loads are investigated for two cable bridges, highlighting how natural frequencies can be affected by temperature. Although counterintuitive, a reverse relative change of natural frequency may occur for certain local modes. This phenomenon can be explained by two distinct mechanisms, one related to the physics intrinsic to cables and the other related to the thermal deflection of the superstructure. Numerical results show that cables cannot be isolated from the rest of the structure and the importance of modeling the whole structure for a quantitative analysis of temperature effects on the dynamics of cable bridges.

  1. Ion temperature of low-latitude and mid-latitude topside ionosphere for high solar activity

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Zhang, Donghe; Hao, Yongqiang; Xiao, Zuo

    The International Reference Ionosphere (IRI) describes the day and night latitudinal variation of ion temperature at 430 km with two functions using AEROS satellite measurements. The ion temperature at this height as one of the boundary parameters is used to make the ion temperature profile represented by a Booker-function. Since the low-latitude and mid-latitude topside ionospheric ion temperature has been measured with the Ionopsheric Plasma and Elec-trodynamics Instrument (IPEI) onboard Rocsat-1 satellite at about 600 km during the high solar activity years from 2000 to 2002, a new boundary at 600 km can be set for the ion temperature modeling. The latitudinal variation of ion temperature could be approximated by Epstein family of functions for different local time sectors. Furthermore, the longitudinal and seasonal variations are also taken into account to decide the fitting parameters. Only the magnetic quiet time data (Kp <3) are used for the statistical study. The results are compared with IRI-2007 model. In addition, events when Kp >4 are also analyzed to feature the ion temperature characteristic during the magnetic disturbance time condition. Combined with the IPEI field-aligned ion flow velocities and the plasma temperatures measured by the Special Sensors-Ions, Electrons, and Scintillation (SSIES) thermal plasma analysis package on board the DMSP F13 and F15 satellites, several feasible ion heating and heat loss mechanisms are summarized to interpret the ion temperature crests and toughs for different local time sectors, seasonal and longitudinal variations.

  2. Analysis of temperature-dependent neutron transmission and self-indication measurements on tantalum at 2-keV neutron energy

    NASA Technical Reports Server (NTRS)

    Semler, T. T.

    1973-01-01

    The method of pseudo-resonance cross sections is used to analyze published temperature-dependent neutron transmission and self-indication measurements on tantalum in the unresolved region. In the energy region analyzed, 1825.0 to 2017.0 eV, a direct application of the pseudo-resonance approach using a customary average strength function will not provide effective cross sections which fit the measured cross section behavior. Rather a local value of the strength function is required, and a set of resonances which model the measured behavior of the effective cross sections is derived. This derived set of resonance parameters adequately represents the observed resonance hehavior in this local energy region. Similar analyses for the measurements in other unresolved energy regions are necessary to obtain local resonance parameters for improved reactor calculations. This study suggests that Doppler coefficients calculated by sampling from grand average statistical distributions over the entire unresolved resonance region can be in error, since significant local variations in the statistical distributions are not taken into consideration.

  3. Mid-Latitude Temperatures at 87 km: Results From Multi-Instrument Fourier Analysis

    NASA Technical Reports Server (NTRS)

    Drob, Douglas P.; Picone, J. M.; Eckermann, Stephen D.; She, C . Y.; Kafkalidis, J. F.; Ortland, D. A.; Niciejewski, R. J.; Killeen, T. L.

    2000-01-01

    Using a novel Fourier fitting method we combine two years of mid-latitude temperature measurements at 87 km from the High Resolution Doppler Imager, the Colorado State University lidar, and the Peach Mountain Interferometer. After accounting for calibration bias, significant local-time variations on the order of 10 K were observed. Stationary planetary waves with amplitudes up to 10 K were observed during winter, with weaker wave amplitudes occurring during other seasons. Because of calibration biases among these instruments, we could estimate the annual mean temperature to no better than 193.5 plus or minus 8.5 K.

  4. Localized heating on silicon field effect transistors: device fabrication and temperature measurements in fluid.

    PubMed

    Elibol, Oguz H; Reddy, Bobby; Nair, Pradeep R; Dorvel, Brian; Butler, Felice; Ahsan, Zahab S; Bergstrom, Donald E; Alam, Muhammad A; Bashir, Rashid

    2009-10-07

    We demonstrate electrically addressable localized heating in fluid at the dielectric surface of silicon-on-insulator field-effect transistors via radio-frequency Joule heating of mobile ions in the Debye layer. Measurement of fluid temperatures in close vicinity to surfaces poses a challenge due to the localized nature of the temperature profile. To address this, we developed a localized thermometry technique based on the fluorescence decay rate of covalently attached fluorophores to extract the temperature within 2 nm of any oxide surface. We demonstrate precise spatial control of voltage dependent temperature profiles on the transistor surfaces. Our results introduce a new dimension to present sensing systems by enabling dual purpose silicon transistor-heaters that serve both as field effect sensors as well as temperature controllers that could perform localized bio-chemical reactions in Lab on Chip applications.

  5. Ionization balance of impurities in turbulent scrape-off layer plasmas I: local ionization-recombination equilibrium

    NASA Astrophysics Data System (ADS)

    Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.

    2015-12-01

    In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.

  6. Genetic variation of temperature-regulated curd induction in cauliflower: elucidation of floral transition by genome-wide association mapping and gene expression analysis

    PubMed Central

    Matschegewski, Claudia; Zetzsche, Holger; Hasan, Yaser; Leibeguth, Lena; Briggs, William; Ordon, Frank; Uptmoor, Ralf

    2015-01-01

    Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature-dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r2 = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature-regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars. PMID:26442034

  7. Trend analysis of long-term temperature time series in the Greater Toronto Area (GTA)

    NASA Astrophysics Data System (ADS)

    Mohsin, Tanzina; Gough, William A.

    2010-08-01

    As the majority of the world’s population is living in urban environments, there is growing interest in studying local urban climates. In this paper, for the first time, the long-term trends (31-162 years) of temperature change have been analyzed for the Greater Toronto Area (GTA). Annual and seasonal time series for a number of urban, suburban, and rural weather stations are considered. Non-parametric statistical techniques such as Mann-Kendall test and Theil-Sen slope estimation are used primarily for the assessing of the significance and detection of trends, and the sequential Mann test is used to detect any abrupt climate change. Statistically significant trends for annual mean and minimum temperatures are detected for almost all stations in the GTA. Winter is found to be the most coherent season contributing substantially to the increase in annual minimum temperature. The analyses of the abrupt changes in temperature suggest that the beginning of the increasing trend in Toronto started after the 1920s and then continued to increase to the 1960s. For all stations, there is a significant increase of annual and seasonal (particularly winter) temperatures after the 1980s. In terms of the linkage between urbanization and spatiotemporal thermal patterns, significant linear trends in annual mean and minimum temperature are detected for the period of 1878-1978 for the urban station, Toronto, while for the rural counterparts, the trends are not significant. Also, for all stations in the GTA that are situated in all directions except south of Toronto, substantial temperature change is detected for the periods of 1970-2000 and 1989-2000. It is concluded that the urbanization in the GTA has significantly contributed to the increase of the annual mean temperatures during the past three decades. In addition to urbanization, the influence of local climate, topography, and larger scale warming are incorporated in the analysis of the trends.

  8. Analysis of Numerical Simulation Database for Pressure Fluctuations Induced by High-Speed Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.

    2014-01-01

    Direct numerical simulations (DNS) of Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub T) approximately 460 are conducted at two wall temperatures (Tw/Tr = 0.25, 0.76) to investigate the generated pressure fluctuations and their dependence on wall temperature. Simulations indicate that the influence of wall temperature on pressure fluctuations is largely limited to the near-wall region, with the characteristics of wall-pressure fluctuations showing a strong temperature dependence. Wall temperature has little influence on the propagation speed of the freestream pressure signal. The freestream radiation intensity compares well between wall-temperature cases when normalized by the local wall shear; the propagation speed of the freestream pressure signal and the orientation of the radiation wave front show little dependence on the wall temperature.

  9. Role of spin polarization in FM/Al/FM trilayer film at low temperature

    NASA Astrophysics Data System (ADS)

    Lu, Ning; Webb, Richard

    2014-03-01

    Measurements of electronic transport in diffusive FM/normal metal/FM trilayer film are performed at temperature ranging from 2K to 300K to determine the behavior of the spin polarized current in normal metal under the influence of quantum phase coherence and spin-orbital interaction. Ten samples of Hall bar with length of 200 micron and width of 20 micron are fabricated through e-beam lithography followed by e-gun evaporation of Ni0.8Fe0.2, aluminum and Ni0.8Fe0.2 with different thickness (5nm to 45nm) in vacuum. At low temperature of 4.2K, coherent backscattering, Rashba spin-orbital interaction and spin flip scattering of conduction electrons contribute to magnetoresistance at low field. Quantitative analysis of magnetoresistance shows transition between weak localization and weak anti-localization for samples with different thickness ratio, which indicates the spin polarization actually affects the phase coherence length and spin-orbital scattering length. However, at temperature between 50K and 300K, only the spin polarization dominates the magnetoresistance.

  10. Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis

    PubMed Central

    Botai, Joel O.; Rautenbach, Hannes; Ncongwane, Katlego P.; Botai, Christina M.

    2017-01-01

    The north-eastern parts of South Africa, comprising the Limpopo Province, have recorded a sudden rise in the rate of malaria morbidity and mortality in the 2017 malaria season. The epidemiological profiles of malaria, as well as other vector-borne diseases, are strongly associated with climate and environmental conditions. A retrospective understanding of the relationship between climate and the occurrence of malaria may provide insight into the dynamics of the disease’s transmission and its persistence in the north-eastern region. In this paper, the association between climatic variables and the occurrence of malaria was studied in the Mutale local municipality in South Africa over a period of 19-year. Time series analysis was conducted on monthly climatic variables and monthly malaria cases in the Mutale municipality for the period of 1998–2017. Spearman correlation analysis was performed and the Seasonal Autoregressive Integrated Moving Average (SARIMA) model was developed. Microsoft Excel was used for data cleaning, and statistical software R was used to analyse the data and develop the model. Results show that both climatic variables’ and malaria cases’ time series exhibited seasonal patterns, showing a number of peaks and fluctuations. Spearman correlation analysis indicated that monthly total rainfall, mean minimum temperature, mean maximum temperature, mean average temperature, and mean relative humidity were significantly and positively correlated with monthly malaria cases in the study area. Regression analysis showed that monthly total rainfall and monthly mean minimum temperature (R2 = 0.65), at a two-month lagged effect, are the most significant climatic predictors of malaria transmission in Mutale local municipality. A SARIMA (2,1,2) (1,1,1) model fitted with only malaria cases has a prediction performance of about 51%, and the SARIMAX (2,1,2) (1,1,1) model with climatic variables as exogenous factors has a prediction performance of about 72% in malaria cases. The model gives a close comparison between the predicted and observed number of malaria cases, hence indicating that the model provides an acceptable fit to predict the number of malaria cases in the municipality. To sum up, the association between the climatic variables and malaria cases provides clues to better understand the dynamics of malaria transmission. The lagged effect detected in this study can help in adequate planning for malaria intervention. PMID:29117114

  11. Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis.

    PubMed

    Adeola, Abiodun M; Botai, Joel O; Rautenbach, Hannes; Adisa, Omolola M; Ncongwane, Katlego P; Botai, Christina M; Adebayo-Ojo, Temitope C

    2017-11-08

    The north-eastern parts of South Africa, comprising the Limpopo Province, have recorded a sudden rise in the rate of malaria morbidity and mortality in the 2017 malaria season. The epidemiological profiles of malaria, as well as other vector-borne diseases, are strongly associated with climate and environmental conditions. A retrospective understanding of the relationship between climate and the occurrence of malaria may provide insight into the dynamics of the disease's transmission and its persistence in the north-eastern region. In this paper, the association between climatic variables and the occurrence of malaria was studied in the Mutale local municipality in South Africa over a period of 19-year. Time series analysis was conducted on monthly climatic variables and monthly malaria cases in the Mutale municipality for the period of 1998-2017. Spearman correlation analysis was performed and the Seasonal Autoregressive Integrated Moving Average (SARIMA) model was developed. Microsoft Excel was used for data cleaning, and statistical software R was used to analyse the data and develop the model. Results show that both climatic variables' and malaria cases' time series exhibited seasonal patterns, showing a number of peaks and fluctuations. Spearman correlation analysis indicated that monthly total rainfall, mean minimum temperature, mean maximum temperature, mean average temperature, and mean relative humidity were significantly and positively correlated with monthly malaria cases in the study area. Regression analysis showed that monthly total rainfall and monthly mean minimum temperature ( R ² = 0.65), at a two-month lagged effect, are the most significant climatic predictors of malaria transmission in Mutale local municipality. A SARIMA (2,1,2) (1,1,1) model fitted with only malaria cases has a prediction performance of about 51%, and the SARIMAX (2,1,2) (1,1,1) model with climatic variables as exogenous factors has a prediction performance of about 72% in malaria cases. The model gives a close comparison between the predicted and observed number of malaria cases, hence indicating that the model provides an acceptable fit to predict the number of malaria cases in the municipality. To sum up, the association between the climatic variables and malaria cases provides clues to better understand the dynamics of malaria transmission. The lagged effect detected in this study can help in adequate planning for malaria intervention.

  12. Impact of temperature on mortality in Hubei, China: a multi-county time series analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yunquan; Yu, Chuanhua; Bao, Junzhe; Li, Xudong

    2017-03-01

    We examined the impact of extreme temperatures on mortality in 12 counties across Hubei Province, central China, during 2009-2012. Quasi-Poisson generalized linear regression combined with distributed lag non-linear model was first applied to estimate county-specific relationship between temperature and mortality. A multivariable meta-analysis was then used to pool the estimates of county-specific mortality effects of extreme cold temperature (1st percentile) and hot temperature (99th percentile). An inverse J-shaped relationship was observed between temperature and mortality at the provincial level. Heat effect occurred immediately and persisted for 2-3 days, whereas cold effect was 1-2 days delayed and much longer lasting. Higher mortality risks were observed among females, the elderly aged over 75 years, persons dying outside the hospital and those with high education attainment, especially for cold effects. Our data revealed some slight differences in heat- and cold- related mortality effects on urban and rural residents. These findings may have important implications for developing locally-based preventive and intervention strategies to reduce temperature-related mortality, especially for those susceptible subpopulations. Also, urbanization should be considered as a potential influence factor when evaluating temperature-mortality association in future researches.

  13. MR thermometry analysis program for laser- or high-intensity focused ultrasound (HIFU)-induced heating at a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Kim, Eun Ju; Jeong, Kiyoung; Oh, Seung Jae; Kim, Daehong; Park, Eun Hae; Lee, Young Han; Suh, Jin-Suck

    2014-12-01

    Magnetic resonance (MR) thermometry is a noninvasive method for monitoring local temperature change during thermal therapy. In this study, a MR temperature analysis program was established for a laser with gold nanorods (GNRs) and high-intensity focused ultrasound (HIFU)-induced heating MR thermometry. The MR temperature map was reconstructed using the water proton resonance frequency (PRF) method. The temperature-sensitive phase difference was acquired by using complex number subtraction instead of direct phase subtraction in order to avoid another phase unwrapping process. A temperature map-analyzing program was developed and implemented in IDL (Interactive Data Language) for effective temperature monitoring. This one program was applied to two different heating devices at a clinical MR scanner. All images were acquired with the fast spoiled gradient echo (fSPGR) pulse sequence on a 3.0 T GE Discovery MR750 scanner with an 8-channel knee array coil or with a home-built small surface coil. The analyzed temperature values were confirmed by using values simultaneously measured with an optical temperature probe (R2 = 0.996). The temperature change in small samples induced by a laser or by HIFU was analyzed by using a raw data, that consisted of complex numbers. This study shows that our MR thermometry analysis program can be used for thermal therapy study with a laser or HIFU at a clinical MR scanner. It can also be applied to temperature monitoring for any other thermal therapy based on the PRF method.

  14. Temperature and chain length dependence of ultrafast vibrational dynamics of thiocyanate in alkylimidazolium ionic liquids: A random walk on a rugged energy landscape.

    PubMed

    Brinzer, Thomas; Garrett-Roe, Sean

    2017-11-21

    Ultrafast two-dimensional infrared spectroscopy of a thiocyanate vibrational probe (SCN - ) was used to investigate local dynamics in alkylimidazolium bis-[trifluoromethylsulfonyl]imide ionic liquids ([Im n,1 ][Tf 2 N], n = 2, 4, 6) at temperatures from 5 to 80 °C. The rate of frequency fluctuations reported by SCN - increases with increasing temperature and decreasing alkyl chain length. Temperature-dependent correlation times scale proportionally to temperature-dependent bulk viscosities of each ionic liquid studied. A multimode Brownian oscillator model demonstrates that very low frequency (<10 cm -1 ) modes primarily drive the observed spectral diffusion and that these modes broaden and blue shift on average with increasing temperature. An Arrhenius analysis shows activation barriers for local motions around the probe between 5.5 and 6.5 kcal/mol that are very similar to those for translational diffusion of ions. [Im 6,1 ][Tf 2 N] shows an unexpected decrease in activation energy compared to [Im 4,1 ][Tf 2 N] that may be related to mesoscopically ordered polar and nonpolar domains. A model of dynamics on a rugged potential energy landscape provides a unifying description of the observed Arrhenius behavior and the Brownian oscillator model of the low frequency modes.

  15. Marine Subsurface Microbial Community Shifts Across a Hydrothermal Gradient in Okinawa Trough Sediments

    PubMed Central

    2016-01-01

    Sediments within the Okinawa back-arc basin overlay a subsurface hydrothermal network, creating intense temperature gradients with sediment depth and potential limits for microbial diversity. We investigated taxonomic changes across 45 m of recovered core with a temperature gradient of 3°C/m from the dynamic Iheya North Hydrothermal System. The interval transitions sharply from low-temperature marine mud to hydrothermally altered clay at 10 meters below seafloor (mbsf). Here, we present taxonomic results from an analysis of the 16S rRNA gene that support a conceptual model in which common marine subsurface taxa persist into the subsurface, while high temperature adapted archaeal taxa show localized peaks in abundances in the hydrothermal clay horizons. Specifically, the bacterial phylum Chloroflexi accounts for a major proportion of the total microbial community within the upper 10 mbsf, whereas high temperature archaea (Terrestrial Hot Spring Crenarchaeotic Group and methanotrophic archaea) appear in varying local abundances in deeper, hydrothermal clay horizons with higher in situ temperatures (up to 55°C, 15 mbsf). In addition, geochemical evidence suggests that methanotrophy may be occurring in various horizons. There is also relict DNA (i.e., DNA preserved after cell death) that persists in horizons where the conditions suitable for microbial communities have ceased. PMID:28096736

  16. Local plant adaptation across a subarctic elevational gradient

    PubMed Central

    Kardol, Paul; De Long, Jonathan R.; Wardle, David A.

    2014-01-01

    Predicting how plants will respond to global warming necessitates understanding of local plant adaptation to temperature. Temperature may exert selective effects on plants directly, and also indirectly through environmental factors that covary with temperature, notably soil properties. However, studies on the interactive effects of temperature and soil properties on plant adaptation are rare, and the role of abiotic versus biotic soil properties in plant adaptation to temperature remains untested. We performed two growth chamber experiments using soils and Bistorta vivipara bulbil ecotypes from a subarctic elevational gradient (temperature range: ±3°C) in northern Sweden to disentangle effects of local ecotype, temperature, and biotic and abiotic properties of soil origin on plant growth. We found partial evidence for local adaption to temperature. Although soil origin affected plant growth, we did not find support for local adaptation to either abiotic or biotic soil properties, and there were no interactive effects of soil origin with ecotype or temperature. Our results indicate that ecotypic variation can be an important driver of plant responses to the direct effects of increasing temperature, while responses to covariation in soil properties are of a phenotypic, rather than adaptive, nature. PMID:26064553

  17. COLD WATER PATCHES IN WARM STREAMS: PHYSICOCHEMICAL CHARACTERISTICS AND THE INFLUENCE OF SHADING

    EPA Science Inventory

    Discrete coldwater patches within the surface waters of summer-warm streams afford potential thermal refuge for coldwater fishes during periods of heat stress. This analysis focused on reach-scale heterogeneity in water temperatures as influenced by local influx of cooler subsur...

  18. Deleterious Thermal Effects due to Randomized Flow Paths in Pebble Bed, and Particle Bed Style Reactors

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.

    2013-01-01

    Reactor fuel rod surface area that is perpendicular to coolant flow direction (+S) i.e. perpendicular to the P creates areas of coolant stagnation leading to increased coolant temperatures resulting in localized changes in fluid properties. Changes in coolant fluid properties caused by minor increases in temperature lead to localized reductions in coolant mass flow rates leading to localized thermal instabilities. Reductions in coolant mass flow rates result in further increases in local temperatures exacerbating changes to coolant fluid properties leading to localized thermal runaway. Unchecked localized thermal runaway leads to localized fuel melting. Reactor designs with randomized flow paths are vulnerable to localized thermal instabilities, localized thermal runaway, and localized fuel melting.

  19. Charge ordering transition in GdBaCo2O5: Evidence of reentrant behavior

    NASA Astrophysics Data System (ADS)

    Allieta, M.; Scavini, M.; Lo Presti, L.; Coduri, M.; Loconte, L.; Cappelli, S.; Oliva, C.; Ghigna, P.; Pattison, P.; Scagnoli, V.

    2013-12-01

    We present a detailed study on the charge ordering transition in a GdBaCo2O5.0 system by combining high-resolution synchrotron powder/single-crystal diffraction with electron paramagnetic resonance experiments as a function of temperature. We found a second-order structural phase transition at TCO = 247 K (Pmmm to Pmma) associated with the onset of long-range charge ordering. At Tmin ≈ 1.2TCO, the electron paramagnetic resonance linewidth rapidly broadens, providing evidence of antiferromagnetic spin fluctuations. This likely indicates that, analogously to manganites, the long-range antiferromagnetic order in GdBaCo2O5.0 sets in at ≈TCO. Pair distribution function analysis of diffraction data revealed signatures of structural inhomogeneities at low temperature. By comparing the average and local bond valences, we found that above TCO the local structure is consistent with a fully random occupation of Co2+ and Co3+ in a 1:1 ratio and with a complete charge ordering below TCO. Below T ≈ 100 K the charge localization is partially melted at the local scale, suggesting a reentrant behavior of charge ordering. This result is supported by the weakening of superstructure reflections and the temperature evolution of electron paramagnetic resonance linewidth that is consistent with paramagnetic reentrant behavior reported in the GdBaCo2O5.5 parent compound.

  20. Localized Heating on Silicon Field Effect Transistors: Device Fabrication and Temperature Measurements in Fluid

    PubMed Central

    Elibol, Oguz H.; Reddy, Bobby; Nair, Pradeep R.; Dorvel, Brian; Butler, Felice; Ahsan, Zahab; Bergstrom, Donald E.; Alam, Muhammad A.; Bashir, Rashid

    2010-01-01

    We demonstrate electrically addressable localized heating in fluid at the dielectric surface of silicon-on-insulator field-effect transistors via radio-frequency Joule heating of mobile ions in the Debye layer. Measurement of fluid temperatures in close vicinity to surfaces poses a challenge due to the localized nature of the temperature profile. To address this, we developed a localized thermometry technique based on the fluorescence decay rate of covalently attached fluorophores to extract the temperature within 2 nm of any oxide surface. We demonstrate precise spatial control of voltage dependent temperature profiles on the transistor surfaces. Our results introduce a new dimension to present sensing systems by enabling dual purpose silicon transistor-heaters that serve both as field effect sensors as well as temperature controllers that could perform localized bio-chemical reactions in Lab on Chip applications. PMID:19967115

  1. The influence of local spring temperature variance on temperature sensitivity of spring phenology.

    PubMed

    Wang, Tao; Ottlé, Catherine; Peng, Shushi; Janssens, Ivan A; Lin, Xin; Poulter, Benjamin; Yue, Chao; Ciais, Philippe

    2014-05-01

    The impact of climate warming on the advancement of plant spring phenology has been heavily investigated over the last decade and there exists great variability among plants in their phenological sensitivity to temperature. However, few studies have explicitly linked phenological sensitivity to local climate variance. Here, we set out to test the hypothesis that the strength of phenological sensitivity declines with increased local spring temperature variance, by synthesizing results across ground observations. We assemble ground-based long-term (20-50 years) spring phenology database (PEP725 database) and the corresponding climate dataset. We find a prevalent decline in the strength of phenological sensitivity with increasing local spring temperature variance at the species level from ground observations. It suggests that plants might be less likely to track climatic warming at locations with larger local spring temperature variance. This might be related to the possibility that the frost risk could be higher in a larger local spring temperature variance and plants adapt to avoid this risk by relying more on other cues (e.g., high chill requirements, photoperiod) for spring phenology, thus suppressing phenological responses to spring warming. This study illuminates that local spring temperature variance is an understudied source in the study of phenological sensitivity and highlight the necessity of incorporating this factor to improve the predictability of plant responses to anthropogenic climate change in future studies. © 2013 John Wiley & Sons Ltd.

  2. Investigation of the Mid-Atlantic coast sudden cold water

    NASA Astrophysics Data System (ADS)

    Sun, D.; Kafatos, M.; Liu, Z.; Chiu, L.

    2003-12-01

    In the midsummer of this year, it was reported that there was a tremendous change in ocean temperature along the Mid-Atlantic coast, dropping as much as 10 degrees overnight. This sudden sea surface temperature drop affected local tourism and fishing, keep the tourists out of water at this vacation time, caused local tuna fishing hasn't been as good this year, but the cold water lured chill-loving striped bass close to shore, and has two to three weeks of great rockfish, which fishermen could normally get till fall. This article investigates this event by using satellite observations, numerical model outputs, and surface weather analysis. It is found that the North Atlantic cold current, combined with the coastal upwelling driven by the weather influence might cause this sudden cold SST event.

  3. Photodiodes for ten micrometer laser communication systems

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1972-01-01

    The performance is discussed of 10-micron mercury-cadmiumtelluride and lead-tin-telluride photodiodes in laser heterodyne communication systems. The dependence of detector quantum efficiency, resistance, frequency response, and signal-to-noise ratio on temperature, bias, and local oscillator power are examined. Included in the discussion is an analysis of the feasibility of high temperature operation, and ability of the detector to dissipate power to a heat sink is explored. Some aspects of direct detection response are considered and figures showing flux levels from a blackbody presented.

  4. Quantification of Local Warming Trend: A Remote Sensing-Based Approach

    PubMed Central

    Rahaman, Khan Rubayet; Hassan, Quazi K.

    2017-01-01

    Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961–2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming. PMID:28072857

  5. Failure Analysis of a Service Tube

    NASA Astrophysics Data System (ADS)

    Xie, Zhongdong; Cai, Weiguo; Li, Zhenxing; Guan, YiMing; Zhang, Baocheng; Yang, XiaoTong

    2017-12-01

    One tube was cracked used in the primary reformer furnace in a fertilizer plant for two and half years. In order to find out the causes of cracking, the methods for chemical composition analysis, macro- and microstructure analysis, penetrant testing, weld analysis, crack and surface damage analysis, mechanics property analysis, high temperature endurance performance analysis, stress and wall thickness calculation were adopted. The integrated assessment results showed that the carbon content of the tube was in the lower limit of the standard range; the tube effective wall thickness was too small; local overheating leads to tube cracking in use process.

  6. Magnetic field induced polarization enhancement in monolayers of tungsten dichalcogenides: effects of temperature

    NASA Astrophysics Data System (ADS)

    Smoleński, T.; Kazimierczuk, T.; Goryca, M.; Molas, M. R.; Nogajewski, K.; Faugeras, C.; Potemski, M.; Kossacki, P.

    2018-01-01

    Optical orientation of localized/bound excitons is shown to be effectively enhanced by the application of magnetic fields as low as 20 mT in monolayer WS2. At low temperatures, the evolution of the polarization degree of different emission lines of monolayer WS2 with increasing magnetic fields is analyzed and compared to similar results obtained on a WSe2 monolayer. We study the temperature dependence of this effect up to T=60 K for both materials, focusing on the dynamics of the valley pseudospin relaxation. A rate equation model is used to analyze our data and from the analysis of the width of the polarization dip in magnetic field we conclude that the competition between the dark exciton pseudospin relaxation and the decay of the dark exciton population into the localized states are rather different in these two materials which are representative of the two extreme cases for the ratio of relaxation rate and depolarization rate.

  7. LOFAR observations of the quiet solar corona

    NASA Astrophysics Data System (ADS)

    Vocks, C.; Mann, G.; Breitling, F.; Bisi, M. M.; Dąbrowski, B.; Fallows, R.; Gallagher, P. T.; Krankowski, A.; Magdalenić, J.; Marqué, C.; Morosan, D.; Rucker, H.

    2018-06-01

    Context. The quiet solar corona emits meter-wave thermal bremsstrahlung. Coronal radio emission can only propagate above that radius, Rω, where the local plasma frequency equals the observing frequency. The radio interferometer LOw Frequency ARray (LOFAR) observes in its low band (10-90 MHz) solar radio emission originating from the middle and upper corona. Aims: We present the first solar aperture synthesis imaging observations in the low band of LOFAR in 12 frequencies each separated by 5 MHz. From each of these radio maps we infer Rω, and a scale height temperature, T. These results can be combined into coronal density and temperature profiles. Methods: We derived radial intensity profiles from the radio images. We focus on polar directions with simpler, radial magnetic field structure. Intensity profiles were modeled by ray-tracing simulations, following wave paths through the refractive solar corona, and including free-free emission and absorption. We fitted model profiles to observations with Rω and T as fitting parameters. Results: In the low corona, Rω < 1.5 solar radii, we find high scale height temperatures up to 2.2 × 106 K, much more than the brightness temperatures usually found there. But if all Rω values are combined into a density profile, this profile can be fitted by a hydrostatic model with the same temperature, thereby confirming this with two independent methods. The density profile deviates from the hydrostatic model above 1.5 solar radii, indicating the transition into the solar wind. Conclusions: These results demonstrate what information can be gleaned from solar low-frequency radio images. The scale height temperatures we find are not only higher than brightness temperatures, but also than temperatures derived from coronograph or extreme ultraviolet (EUV) data. Future observations will provide continuous frequency coverage. This continuous coverage eliminates the need for local hydrostatic density models in the data analysis and enables the analysis of more complex coronal structures such as those with closed magnetic fields.

  8. Local-scale analysis of temperature patterns over Poland during heatwave events

    NASA Astrophysics Data System (ADS)

    Krzyżewska, Agnieszka; Dyer, Jamie

    2018-01-01

    Heatwaves are predicted to increase in frequency, duration, and severity in the future, including over Central Europe where populations are sensitive to extreme temperature. This paper studies six recent major heatwave events over Poland from 2006 through 2015 using regional-scale simulations (10-km grid spacing, hourly frequency) from the Weather Research and Forecast (WRF) model to define local-scale 2-m temperature patterns. For this purpose, a heatwave is defined as at least three consecutive days with maximum 2-m air temperature exceeding 30 °C. The WRF simulations were validated using maximum daily 2-m temperature observations from 12 meteorological stations in select Polish cities, which were selected to have even spatial coverage across the study area. Synoptic analysis of the six study events shows that the inflow of tropical air masses from the south is the primary driver of heatwave onset and maintenance, the highest temperatures (and most vulnerable areas) occur over arable land and artificial surfaces in central and western Poland, while coastal areas in the north, mountain areas in the south, and forested and mosaic areas of smaller fields and pastures of the northwest, northeast, and southeast are less affected by prolonged periods of elevated temperatures. In general, regional differences in 2-m temperature between the hottest and coolest areas is about 2-4 °C. Large urban areas like Warsaw, or the large complex of artificial areas in the conurbation of Silesian cities, are also generally warmer than surrounding areas by roughly 2-4 °C, and even up to 6 °C, especially during the night. Additionally, hot air from the south of Poland flows through a low-lying area between two mountain ranges (Sudetes and Carpathian Mountains)—the so-called Moravian Gate—hitting densely populated urban areas (Silesian cities) and Cracow. These patterns occur only during high-pressure synoptic conditions with low cloudiness and wind and without any active fronts or mesoscale convective disturbances.

  9. A computational analysis subject to thermophysical aspects of Sisko fluid flow over a cylindrical surface

    NASA Astrophysics Data System (ADS)

    Awais, M.; Khalil-Ur-Rehman; Malik, M. Y.; Hussain, Arif; Salahuddin, T.

    2017-09-01

    The present analysis is devoted to probing the salient features of the mixed convection and non-linear thermal radiation effects on non-Newtonian Sisko fluid flow over a linearly stretching cylindrical surface. Properties of heat transfer are outlined via variable thermal conductivity and convective boundary conditions. The boundary layer approach is implemented to construct the mathematical model in the form of partial differential equations. Then, the requisite PDEs are transmuted into a complex ordinary differential system by invoking appropriate dimensionless variables. Solution of subsequent ODEs is obtained by utilizing the Runge-Kutta algorithm (fifth order) along with the shooting scheme. The graphical illustrations are presented to interpret the features of the involved pertinent flow parameters on concerning profiles. For a better description of the fluid flow, numerical variations in local skin friction coefficient and local Nusselt number are scrutinized in tables. From thorough analysis, it is inferred that the mixed convection parameter and the curvature parameter increase the velocity while temperature shows a different behavior. Additionally, both momentum and thermal distribution of fluid flow decrease with increasing values of the non-linearity index. Furthermore, variable thermal parameter and heat generation/absorption parameter amplify the temperature significantly. The skin friction is an increasing function of all momentum controlling parameters. The local Nusselt number also shows a similar behavior against heat radiation parameter and variable thermal conductivity parameter while it shows a dual nature for the heat generation/absorption parameter. Finally, the obtained results are validated by comparison with the existing literature and hence the correctness of the analysis is proved.

  10. Simultaneous in vivo recording of local brain temperature and electrophysiological signals with a novel neural probe

    NASA Astrophysics Data System (ADS)

    Fekete, Z.; Csernai, M.; Kocsis, K.; Horváth, Á. C.; Pongrácz, A.; Barthó, P.

    2017-06-01

    Objective. Temperature is an important factor for neural function both in normal and pathological states, nevertheless, simultaneous monitoring of local brain temperature and neuronal activity has not yet been undertaken. Approach. In our work, we propose an implantable, calibrated multimodal biosensor that facilitates the complex investigation of thermal changes in both cortical and deep brain regions, which records multiunit activity of neuronal populations in mice. The fabricated neural probe contains four electrical recording sites and a platinum temperature sensor filament integrated on the same probe shaft within a distance of 30 µm from the closest recording site. The feasibility of the simultaneous functionality is presented in in vivo studies. The probe was tested in the thalamus of anesthetized mice while manipulating the core temperature of the animals. Main results. We obtained multiunit and local field recordings along with measurement of local brain temperature with accuracy of 0.14 °C. Brain temperature generally followed core body temperature, but also showed superimposed fluctuations corresponding to epochs of increased local neural activity. With the application of higher currents, we increased the local temperature by several degrees without observable tissue damage between 34-39 °C. Significance. The proposed multifunctional tool is envisioned to broaden our knowledge on the role of the thermal modulation of neuronal activity in both cortical and deeper brain regions.

  11. Mesoscale temperature and moisture fields from satellite infrared soundings

    NASA Technical Reports Server (NTRS)

    Hillger, D. W.; Vonderhaar, T. H.

    1976-01-01

    The combined use of radiosonde and satellite infrared soundings can provide mesoscale temperature and moisture fields at the time of satellite coverage. Radiance data from the vertical temperature profile radiometer on NOAA polar-orbiting satellites can be used along with a radiosonde sounding as an initial guess in an iterative retrieval algorithm. The mesoscale temperature and moisture fields at local 9 - 10 a.m., which are produced by retrieving temperature profiles at each scan spot for the BTPR (every 70 km), can be used for analysis or as a forecasting tool for subsequent weather events during the day. The advantage of better horizontal resolution of satellite soundings can be coupled with the radiosonde temperature and moisture profile both as a best initial guess profile and as a means of eliminating problems due to the limited vertical resolution of satellite soundings.

  12. Magneto Transport of CVD Carbon in Artificial Opals

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yin, Ming; Arammash, Fauzi; Datta, Timir

    2014-03-01

    Magneto-transport of carbon inverse opal structures were investigated in the 2.5 to 300 K temperatures and magnetic fields in the 0-10T regime. Qualitatively, our observations lie between those reported by previous researchers. Over this temperature range, transport (in zero magnetic field) is non-metallic; the resistance decreased with rising temperature however the temperature dependent behavior is not activated, as observed with variable range hopping. In three-dimensions, such behavior can also be the result of weak localization and electron-electron interactions; in particular the change in conductivity is a polynomial in fractional powers of absolute temperature. At sub-helium temperature regimes the relative magneto resistance is measured to be ~ 0.1 percent per Tesla. Results of data analysis for several different scenarios will be reported. DOD award #60177-RT-H from the ARO.

  13. Climate Drivers of Alaska Summer Stream Temperature

    NASA Astrophysics Data System (ADS)

    Bieniek, P.; Bhatt, U. S.; Plumb, E. W.; Thoman, R.; Trammell, E. J.

    2016-12-01

    The temperature of the water in lakes, rivers and streams has wide ranging impacts from local water quality and fish habitats to global climate change. Salmon fisheries in Alaska, a critical source of food in many subsistence communities, are sensitive to large-scale climate variability and river and stream temperatures have also been linked with salmon production in Alaska. Given current and projected climate change, understanding the mechanisms that link the large-scale climate and river and stream temperatures is essential to better understand the changes that may occur with aquatic life in Alaska's waterways on which subsistence users depend. An analysis of Alaska stream temperatures in the context of reanalysis, downscaled, station and other climate data is undertaken in this study to fill that need. Preliminary analysis identified eight stream observation sites with sufficiently long (>15 years) data available for climate-scale analysis in Alaska with one station, Terror Creek in Kodiak, having a 30-year record. Cross-correlation of summer (June-August) water temperatures between the stations are generally high even though they are spread over a large geographic region. Correlation analysis of the Terror Creek summer observations with seasonal sea surface temperatures (SSTs) in the North Pacific broadly resembles the SST anomaly fields typically associated with the Pacific Decadal Oscillation (PDO). A similar result was found for the remaining stations and in both cases PDO-like correlation patterns also occurred in the preceding spring. These preliminary results demonstrate that there is potential to diagnose the mechanisms that link the large-scale climate system and Alaska stream temperatures.

  14. Approaching reionization from two directions: high-redshift Lyman-alpha emitters and local analogs

    NASA Astrophysics Data System (ADS)

    Bagley, Micaela

    2018-01-01

    The dark ages that followed the recombination of the universe ended with the appearance of metal-free stars and the subsequent formation of numerous low-mass, metal-poor galaxies. The collective ionizing background from these newly-forming galaxies is thought to be responsible for the reionization of the diffuse hydrogen in the intergalactic medium between redshifts 10 and 6.5. The progression of the reionization history depends on the nature of these first sources -- their number densities, luminosities, clustering, and production rates of ionizing photons -- which is currently the subject of considerable observational and theoretical efforts.I will present results of a two-pronged approach to studying the Epoch of Reionization: a systematic search for Lyman-alpha emitting galaxies at redshifts greater than 6, and an analysis of high S/N spectra of a sample of local galaxies that are potential analogs to those responsible for the reionization. Selected for their large [OIII]/[OII] ratios and high H-alpha equivalent widths, the local galaxies have very low masses and are consistent with photoionization by stars with effective temperatures of 10^5 K. Both the emission lines and continua of the spectra are spatially extended, allowing for an analysis of galaxy properties such as gas temperature, elemental abundance, and ionizing power at different radii.

  15. Estimates of nonequilibrium radiation for Venus entry. [generated by chemical reactions in shock layers

    NASA Technical Reports Server (NTRS)

    Grose, W. L.; Nealy, J. E.

    1975-01-01

    The present investigation is an analysis of the radiation from the chemical nonequilibrium region in the shock layer about a vehicle during Venus entry. The radiation and the flow were assumed to be uncoupled. An inviscid, nonequilibrium flowfield was calculated and an effective electronic temperature was determined for the predominant radiating species. Species concentrations and electronic temperature were then input into a radiation transport code to calculate heating rates. The present results confirm earlier investigations which indicate that the radiation should be calculated using electronic temperatures for the radiating species. These temperatures are not related in a simple way to the local translational temperature. For the described mission, the nonequilibrium radiative heating rate is approximately twice the corresponding equilibrium value at peak heating.

  16. Methods for the evaluation of quench temperature profiles and their application for LHC superconducting short dipole magnets

    NASA Astrophysics Data System (ADS)

    Sanfilippo, S.; Siemko, A.

    2000-08-01

    This paper presents a study of the thermal effects on quench performance for several large Hadron collider (LHC) single aperture short dipole models. The analysis is based on the temperature profile in a superconducting magnet evaluated after a quench. Peak temperatures and temperature gradients in the magnet coil are estimated for different thicknesses of insulation layer between the quench heaters and the coil and different powering and protection parameters. The results show clear correlation between the thermo-mechanical response of the magnet and quench performance. They also display that the optimisation of the position of quench heaters can reduce the decrease of training performance caused by the coexistence of a mechanical weak region and of a local temperature rise.

  17. A rapid decrease in temperature induces latewood formation in artificially reactivated cambium of conifer stems

    PubMed Central

    Begum, Shahanara; Nakaba, Satoshi; Yamagishi, Yusuke; Yamane, Kenichi; Islam, Md. Azharul; Oribe, Yuichiro; Ko, Jae-Heung; Jin, Hyun-O; Funada, Ryo

    2012-01-01

    Background and Aims Latewood formation in conifers occurs during the later part of the growing season, when the cell division activity of the cambium declines. Changes in temperature might be important for wood formation in trees. Therefore, the effects of a rapid decrease in temperature on cellular morphology of tracheids were investigated in localized heating-induced cambial reactivation in Cryptomeria japonica trees and in Abies firma seedlings. Methods Electric heating tape and heating ribbon were wrapped on the stems of C. japonica trees and A. firma seedlings. Heating was discontinued when 11 or 12 and eight or nine radial files of differentiating and differentiated tracheids had been produced in C. japonica and A. firma stems, respectively. Tracheid diameter, cell wall thickness, percentage of cell wall area and percentage of lumen area were determined by image analysis of transverse sections and scanning electron microscopy. Key Results Localized heating induced earlier cambial reactivation and xylem differentiation in stems of C. japonica and A. firma as compared with non-heated stems. One week after cessation of heating, there were no obvious changes in the dimensions of the differentiating tracheids in the samples from adult C. japonica. In contrast, tracheids with a smaller diameter were observed in A. firma seedlings after 1 week of cessation of heating. Two or three weeks after cessation of heating, tracheids with reduced diameters and thickened cell walls were found. The results showed that the rapid decrease in temperature produced slender tracheids with obvious thickening of cell walls that resembled latewood cells. Conclusions The results suggest that a localized decrease in temperature of stems induces changes in the diameter and cell wall thickness of differentiating tracheids, indicating that cambium and its derivatives can respond directly to changes in temperature. PMID:22843340

  18. Microstructural, textural and thermal evolution of an exhumed strike-slip fault and insights into localization and rheological transition

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz; Liu, Junlai; Bernroider, Manfred; Genser, Johann

    2016-04-01

    The presence of deep exhumed crustal rocks with a dominant but contrasting mineralogy results in shear concentration in the rheological weakest layer, which exhibits contrasting patterns of fabrics and thermal conditions during their formation. We tested a combination of methodologies including microstructural and textural investigations, geochronology and geothermometry on deformed rocks from exhumed strike-slip fault, Ailao Shan-Red River, SE, Asian. Results indicate that the exhumed deep crustal rocks since late Oligocene (ca. 28 Ma) to Pliocene (ca. 4 Ma) typically involve dynamic microstructural, textural and thermal evolution processes, which typically record a progressive deformation and syn-kinematic reactions from ductile to semi-ductile and brittle behavior during exhumation. This transformation also resulted in dramatic strength reduction that promoted strain localization along the strike-slip and transtensional faults. Detailed analysis has revealed the co-existence of microfabrics ranging from high-temperatures (granulite facies conditions) to overprinting low-temperatures (lower greenschist facies conditions). The high-temperature microstructures and textures are in part or entirely altered by subsequent, overprinting low-temperature shearing. In quartz-rich rocks, quartz was deformed in the dislocation creep regime and records transition of microfabrics and slip systems during decreasing temperature, which lasted until retrogression related to final exhumation. As a result, grain-size reduction associated by fluids circulating within the strike-slip fault zone at brittle-ductile transition leads to rock softening, which resulted in strain localization, weak rock rheology and the overall hot thermal structure of the crust. Decompression occurred during shearing and as a result of tectonic exhumation. All these results demonstrate that the ductile to ductile-brittle transition involves a combination of different deformation mechanisms, rheological transition features and feedbacks between deformation, decreasing temperature and fluids.

  19. In Situ Flow MAS NMR Spectroscopy and Synchrotron PDF Analyses of the Local Response of the Brønsted Acidic Site in SAPO-34 during Hydration at Elevated Temperatures.

    PubMed

    Kalantzopoulos, Georgios N; Lundvall, Fredrik; Checchia, Stefano; Lind, Anna; Wragg, David S; Fjellvåg, Helmer; Arstad, Bjørnar

    2018-02-19

    In situ flow magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and synchrotron-based pair distribution function (PDF) analyses were applied to study water's interactions with the Brønsted acidic site and the surrounding framework in the SAPO-34 catalyst at temperatures up to 300 °C for NMR spectroscopy and 700 °C for PDF. 29 Si enrichment of the sample enabled detailed NMR spectroscopy investigations of the T-atom generating the Brønsted site. By NMR spectroscopy, we observed dehydration above 100 °C and a coalescence of Si peaks due to local framework adjustments. Towards 300 °C, the NMR spectroscopy data indicated highly mobile acidic protons. In situ total X-ray scattering measurements analyzed by PDF showed clear changes in the Al local environment in the 250-300 °C region, as the Al-O bond lengths showed a sudden change. This fell within the same temperature range as the increased Brønsted proton mobility. We suggest that the active site in this catalyst under industrial conditions comprises not only the Brønsted proton but also SiO 4 . To the best of our knowledge, this is the first work proposing a structural model of a SAPO catalyst by atomic PDF analysis. The combination of synchrotron PDF analysis with in situ NMR spectroscopy is promising in revealing the dynamic features of a working catalyst. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Influences of Local Sea-Surface Temperatures and Large-scale Dynamics on Monthly Precipitation Inferred from Two 10-year GCM-Simulations

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.; Zhou, Y.; Lau, W. K.-M.

    2007-01-01

    Two parallel sets of 10-year long: January 1, 1982 to December 31, 1991, simulations were made with the finite volume General Circulation Model (fvGCM) in which the model integrations were forced with prescribed sea-surface temperature fields (SSTs) available as two separate SST-datasets. One dataset contained naturally varying monthly SSTs for the chosen period, and the oth& had the 12-monthly mean SSTs for the same period. Plots of evaporation, precipitation, and atmosphere-column moisture convergence, binned by l C SST intervals show that except for the tropics, the precipitation is more strongly constrained by large-scale dynamics as opposed to local SST. Binning data by SST naturally provided an ensemble average of data contributed from disparate locations with same SST; such averages could be expected to mitigate all location related influences. However, the plots revealed: i) evaporation, vertical velocity, and precipitation are very robust and remarkably similar for each of the two simulations and even for the data from 1987-ENSO-year simulation; ii) while the evaporation increased monotonically with SST up to about 27 C, the precipitation did not; iii) precipitation correlated much better with the column vertical velocity as opposed to SST suggesting that the influence of dynamical circulation including non-local SSTs is stronger than local-SSTs. The precipitation fields were doubly binned with respect to SST and boundary-layer mass and/or moisture convergence. The analysis discerned the rate of change of precipitation with local SST as a sum of partial derivative of precipitation with local SST plus partial derivative of precipitation with boundary layer moisture convergence multiplied by the rate of change of boundary-layer moisture convergence with SST (see Eqn. 3 of Section 4.5). This analysis is mathematically rigorous as well as provides a quantitative measure of the influence of local SST on the local precipitation. The results were recast to examine the dependence of local rainfall on local SSTs; it was discernible only in the tropics. Our methodology can be used for computing relationship between any forcing function and its effect(s) on a chosen field.

  1. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India.

    PubMed

    Cator, Lauren J; Thomas, Shalu; Paaijmans, Krijn P; Ravishankaran, Sangamithra; Justin, Johnson A; Mathai, Manu T; Read, Andrew F; Thomas, Matthew B; Eapen, Alex

    2013-03-02

    Environmental temperature is an important driver of malaria transmission dynamics. Both the parasite and vector are sensitive to mean ambient temperatures and daily temperature variation. To understand transmission ecology, therefore, it is important to determine the range of microclimatic temperatures experienced by malaria vectors in the field. A pilot study was conducted in the Indian city of Chennai to determine the temperature variation in urban microclimates and characterize the thermal ecology of the local transmission setting. Temperatures were measured in a range of probable indoor and outdoor resting habitats of Anopheles stephensi in two urban slum malaria sites. Mean temperatures and daily temperature fluctuations in local transmission sites were compared with standard temperature measures from the local weather station. The biological implications of the different temperatures were explored using temperature-dependent parasite development models to provide estimates of the extrinsic incubation period (EIP) of Plasmodium vivax and Plasmodium falciparum. Mean daily temperatures within the urban transmission sites were generally warmer than those recorded at the local weather station. The main reason was that night-time temperatures were higher (and hence diurnal temperature ranges smaller) in the urban settings. Mean temperatures and temperature variation also differed between specific resting sites within the transmission environments. Most differences were of the order of 1-3°C but were sufficient to lead to important variation in predicted EIPs and hence, variation in estimates of transmission intensity. Standard estimates of environmental temperature derived from local weather stations do not necessarily provide realistic measures of temperatures within actual transmission environments. Even the small differences in mean temperatures or diurnal temperature ranges reported in this study can lead to large variations in key mosquito and/or parasite life history traits that determine transmission intensity. Greater effort should be directed at quantifying adult mosquito resting behaviour and determining the temperatures actually experienced by mosquitoes and parasites in local transmission environments. In the absence of such highly resolved data, the approach used in the current study provides a framework for improved thermal characterization of transmission settings.

  2. Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India

    PubMed Central

    2013-01-01

    Background Environmental temperature is an important driver of malaria transmission dynamics. Both the parasite and vector are sensitive to mean ambient temperatures and daily temperature variation. To understand transmission ecology, therefore, it is important to determine the range of microclimatic temperatures experienced by malaria vectors in the field. Methods A pilot study was conducted in the Indian city of Chennai to determine the temperature variation in urban microclimates and characterize the thermal ecology of the local transmission setting. Temperatures were measured in a range of probable indoor and outdoor resting habitats of Anopheles stephensi in two urban slum malaria sites. Mean temperatures and daily temperature fluctuations in local transmission sites were compared with standard temperature measures from the local weather station. The biological implications of the different temperatures were explored using temperature-dependent parasite development models to provide estimates of the extrinsic incubation period (EIP) of Plasmodium vivax and Plasmodium falciparum. Results Mean daily temperatures within the urban transmission sites were generally warmer than those recorded at the local weather station. The main reason was that night-time temperatures were higher (and hence diurnal temperature ranges smaller) in the urban settings. Mean temperatures and temperature variation also differed between specific resting sites within the transmission environments. Most differences were of the order of 1-3°C but were sufficient to lead to important variation in predicted EIPs and hence, variation in estimates of transmission intensity. Conclusions Standard estimates of environmental temperature derived from local weather stations do not necessarily provide realistic measures of temperatures within actual transmission environments. Even the small differences in mean temperatures or diurnal temperature ranges reported in this study can lead to large variations in key mosquito and/or parasite life history traits that determine transmission intensity. Greater effort should be directed at quantifying adult mosquito resting behaviour and determining the temperatures actually experienced by mosquitoes and parasites in local transmission environments. In the absence of such highly resolved data, the approach used in the current study provides a framework for improved thermal characterization of transmission settings. PMID:23452620

  3. Multi-Model Ensemble Approaches to Data Assimilation Using the 4D-Local Ensemble Transform Kalman Filter

    DTIC Science & Technology

    2013-09-30

    accuracy of the analysis . Root mean square difference ( RMSD ) is much smaller for RIP than for either Simple Ocean Data Assimilation or Incremental... Analysis Update globally for temperature as well as salinity. Regionally the same results were found, with only one exception in which the salinity RMSD ...short-term forecast using a numerical model with the observations taken within the forecast time window. The resulting state is the so-called “ analysis

  4. Feasibility of A-mode ultrasound attenuation as a monitoring method of local hyperthermia treatment.

    PubMed

    Manaf, Noraida Abd; Aziz, Maizatul Nadwa Che; Ridzuan, Dzulfadhli Saffuan; Mohamad Salim, Maheza Irna; Wahab, Asnida Abd; Lai, Khin Wee; Hum, Yan Chai

    2016-06-01

    Recently, there is an increasing interest in the use of local hyperthermia treatment for a variety of clinical applications. The desired therapeutic outcome in local hyperthermia treatment is achieved by raising the local temperature to surpass the tissue coagulation threshold, resulting in tissue necrosis. In oncology, local hyperthermia is used as an effective way to destroy cancerous tissues and is said to have the potential to replace conventional treatment regime like surgery, chemotherapy or radiotherapy. However, the inability to closely monitor temperature elevations from hyperthermia treatment in real time with high accuracy continues to limit its clinical applicability. Local hyperthermia treatment requires real-time monitoring system to observe the progression of the destroyed tissue during and after the treatment. Ultrasound is one of the modalities that have great potential for local hyperthermia monitoring, as it is non-ionizing, convenient and has relatively simple signal processing requirement compared to magnetic resonance imaging and computed tomography. In a two-dimensional ultrasound imaging system, changes in tissue microstructure during local hyperthermia treatment are observed in terms of pixel value analysis extracted from the ultrasound image itself. Although 2D ultrasound has shown to be the most widely used system for monitoring hyperthermia in ultrasound imaging family, 1D ultrasound on the other hand could offer a real-time monitoring and the method enables quantitative measurement to be conducted faster and with simpler measurement instrument. Therefore, this paper proposes a new local hyperthermia monitoring method that is based on one-dimensional ultrasound. Specifically, the study investigates the effect of ultrasound attenuation in normal and pathological breast tissue when the temperature in tissue is varied between 37 and 65 °C during local hyperthermia treatment. Besides that, the total protein content measurement was also conducted to investigate the relationship between attenuation and tissue denaturation level at different temperature ranges. The tissues were grouped according to their histology results, namely normal tissue with large predominance of cells (NPC), cancer tissue with large predominance of cells (CPC) and cancer with high collagen fiber content (CHF). The result shows that the attenuation coefficient of ultrasound measured following the local hyperthermia treatment increases with the increment of collagen fiber content in tissue as the CHF attenuated ultrasound at the highest rate, followed by NPC and CPC. Additionally, the attenuation increment is more pronounced at the temperature over 55 °C. This describes that the ultrasound wave experienced more energy loss when it propagates through a heated tissue as the tissue structure changes due to protein coagulation effect. Additionally, a significant increase in the sensitivity of attenuation to protein denaturation is also observed with the highest sensitivity obtained in monitoring NPC. Overall, it is concluded that one-dimensional ultrasound can be used as a monitoring method of local hyperthermia since its attenuation is very sensitive to the changes in tissue microstructure during hyperthermia.

  5. Local adaptations and climate change: converging sensitivity of bud break in black spruce provenances.

    PubMed

    Rossi, Sergio

    2015-07-01

    Species with transcontinental distribution or spread over wide geographical regions develop populations with growth traits genetically adapted to the local climate. The aim of this study was to investigate the ecotypic sensitivity of bud break, a strong adaptive trait, to a changing environment. Six phenological phases of bud break were monitored daily on black spruce [Picea mariana (Mill.) BSP] seedlings submitted to different temperatures (12, 16 and 20 °C) and photoperiods (14, 18 and 22 h). Six provenances were tested in growth chambers, produced from seeds collected along the whole latitudinal range of the closed boreal forest in Quebec, Canada. Bud break lasted 13.3 days on average and occurred earlier in seedlings from colder sites. The annual temperature of the sites suitably tracked the clinal variation among ecotypes, providing a clear biological explanation for the environmental signal driving the adaptive divergence of populations to the local climate. Increasing temperature induced an earlier bud break according to a non-linear pattern with greater advancements observed between 12 and 16 °C. Photoperiod was significant, but sensitivity analysis indicated that its effect on bud break was marginal with respect to temperature. No interaction of provenance × treatment was observed, demonstrating an ecotypic convergence of the responses to both factors. Changes in the growing conditions could substantially modify the synchronization between bud phenology and climate, thus exposing the developing meristems of black spruce to frost damage. However, similar advancements of bud break could be expected in the different ecotypes subjected to warmer temperatures or longer day lengths.

  6. Modeling olive-crop forecasting in Tunisia

    NASA Astrophysics Data System (ADS)

    Ben Dhiab, Ali; Ben Mimoun, Mehdi; Oteros, Jose; Garcia-Mozo, Herminia; Domínguez-Vilches, Eugenio; Galán, Carmen; Abichou, Mounir; Msallem, Monji

    2017-05-01

    Tunisia is the world's second largest olive oil-producing region after the European Union. This paper reports on the use of models to forecast local olive crops, using data for Tunisia's five main olive-producing areas: Mornag, Jemmel, Menzel Mhiri, Chaal, and Zarzis. Airborne pollen counts were monitored over the period 1993-2011 using a Cour trap. Forecasting models were constructed using agricultural data (harvest size in tonnes of fruit/year) and data for several weather-related and phenoclimatic variables (rainfall, humidity, temperature, Growing Degree Days, and Chilling). Analysis of these data revealed that the amount of airborne pollen emitted over the pollen season as a whole (i.e., the Pollen Index) was the variable most influencing harvest size. Findings for all local models also indicated that the amount, timing, and distribution of rainfall (except during blooming) had a positive impact on final olive harvests. Air temperature also influenced final crop yield in three study provinces (Menzel Mhiri, Chaal, and Zarzis), but with varying consequences: in the model constructed for Chaal, cumulative maximum temperature from budbreak to start of flowering contributed positively to yield; in the Menzel Mhiri model, cumulative average temperatures during fruit development had a positive impact on output; in Zarzis, by contrast, cumulative maximum temperature during the period prior to flowering negatively influenced final crop yield. Data for agricultural and phenoclimatic variables can be used to construct valid models to predict annual variability in local olive-crop yields; here, models displayed an accuracy of 98, 93, 92, 91, and 88 % for Zarzis, Mornag, Jemmel, Chaal, and Menzel Mhiri, respectively.

  7. Increased electron temperature turbulence during suppression of edge localized mode by resonant magnetic perturbations in the DIII-D tokamak [Increased electron temperature turbulence during edge localized mode (ELM) suppression by resonant magnetic perturbations (RMPs) in the DIII-D tokamak

    DOE PAGES

    Sung, Choongki; Wang, G.; Rhodes, Terry L.; ...

    2017-11-16

    We report the first observation of increased edge electron temperature turbulence correlated with changes in gradients and the ELM suppression time which occurs after the application of resonant magnetic perturbations (RMP) on DIII-D H-mode plasmas. This increase (T ~ e/T e approximately doubles) occurs in the region extending from the top of the pedestal outward to the upper part of the edge steep gradient region. This is significant as it is consistent with increased turbulence driven transport potentially replacing some part of the edge localized mode (ELM) driven transport. However, temperature turbulence does not change with the initial RMP applicationmore » while ELMs are still present, indicating the turbulence changes are not causative in the development of ELM suppression or initial profile evolution with RMP – but rather a response to these effects. This temperature turbulence is broadband and long wavelength, k θρ s < 0.5, where k θ = poloidal wavenumber, ρ s = ion sound gyroradius. As has been reported previously, long wavelength density turbulence (k θρ s < 1.0) in the same location also increases after ELMs were suppressed by the RMP. Since the decrease of the density starts nearly immediately with RMP application, these results suggest that the so-called RMP “density pump-out” is not linked to these long wavelength turbulent transport changes. Comparison with linear stability analysis finds both consistencies and inconsistencies in this important region.« less

  8. Increased electron temperature turbulence during suppression of edge localized mode by resonant magnetic perturbations in the DIII-D tokamak [Increased electron temperature turbulence during edge localized mode (ELM) suppression by resonant magnetic perturbations (RMPs) in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Choongki; Wang, G.; Rhodes, Terry L.

    We report the first observation of increased edge electron temperature turbulence correlated with changes in gradients and the ELM suppression time which occurs after the application of resonant magnetic perturbations (RMP) on DIII-D H-mode plasmas. This increase (T ~ e/T e approximately doubles) occurs in the region extending from the top of the pedestal outward to the upper part of the edge steep gradient region. This is significant as it is consistent with increased turbulence driven transport potentially replacing some part of the edge localized mode (ELM) driven transport. However, temperature turbulence does not change with the initial RMP applicationmore » while ELMs are still present, indicating the turbulence changes are not causative in the development of ELM suppression or initial profile evolution with RMP – but rather a response to these effects. This temperature turbulence is broadband and long wavelength, k θρ s < 0.5, where k θ = poloidal wavenumber, ρ s = ion sound gyroradius. As has been reported previously, long wavelength density turbulence (k θρ s < 1.0) in the same location also increases after ELMs were suppressed by the RMP. Since the decrease of the density starts nearly immediately with RMP application, these results suggest that the so-called RMP “density pump-out” is not linked to these long wavelength turbulent transport changes. Comparison with linear stability analysis finds both consistencies and inconsistencies in this important region.« less

  9. Lasting depression in corticomotor excitability associated with local scalp cooling.

    PubMed

    Tremblay, François; Remaud, Anthony; Mekonnen, Abeye; Gholami-Boroujeny, Shiva; Racine, Karl-Édouard; Bolic, Miodrag

    2015-07-23

    In this study, we investigated the effect of local scalp cooling on corticomotor excitability with transcranial magnetic simulation (TMS). Participants (healthy male adults, n=12) were first assessed with TMS to derive baseline measure of excitability from motor evoked potentials (MEPs) using the right first dorsal interosseous as the target muscle. Then, local cooling was induced on the right hemi-scalp (upper frontal region ∼ 15 cm(2)) by means of a cold wrap. The cooling was maintained for 10-15 min to get a decrease of at least 10°C from baseline temperature. In the post-cooling period, both scalp temperature and MEPs were reassessed at specific time intervals (i.e., T0, T10, T20 and T30 min). Scalp surface temperatures dropped on average by 12.5°C from baseline at T0 (p<0.001) with partial recovery at T10 (p<0.05) and full recovery at T20. Parallel analysis of post-cooling variations in MEP amplitude revealed significant reductions relative to baseline at T0, T10 and T20. No concurrent change in MEP latency was observed. A secondary control experiment was performed in a subset of participants (n=5) to account for the mild discomfort associated with the wrapping procedure without the cooling agent. Results showed no effect on any of the dependent variables (temperature, MEP amplitude and latency). To our knowledge, this report provides the first neurophysiological evidence linking changes in scalp temperature with lasting changes in corticomotor excitability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Analysis of localized fringes in the holographic optical Schlieren system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1980-01-01

    The relation between localization of interference fringes in classical and holographic interferometry is reviewed and an application of holographic interferometry is considered for which the object is a transparent medium with nonhomogeneous refractive index. The technique is based on the analysis of the optical path length change of the object wave as it propagates through a transparent medium. Phase shifts due to variations of the speed of light within the medium give rise to an interference pattern. The resulting interferogram can be used to determine the physical properties of the medium or transparent object. Such properties include the mass density of fluids, electron densities of plasmas, the temperature of fluids, the chemical species concentration of fluids, and the state of stress in solids. The optical wave used can be either a simple plane or spherical wave, or it may be a complicated spatial wave scattered by a diffusing screen. The mathematical theory on the formation and analysis of localized fringes, the general theoretical concepts used, and a computer code for analysis are included along with the inversion of fringe order data.

  11. Optimal parameters to avoid thermal necrosis during bone drilling: A finite element analysis.

    PubMed

    Mediouni, Mohamed; Schlatterer, Daniel R; Khoury, Amal; Von Bergen, Tobias; Shetty, Sunil H; Arora, Manit; Dhond, Amit; Vaughan, Neil; Volosnikov, Alexander

    2017-11-01

    The drilling bone may potentially cause excessive frictional heat, which can lead to local bone necrosis. This heat generation and local necrosis has been suggested to contribute to the resorption of bone around the placed screws, ending in loss of screw purchase in the bone and inadvertent loosening and/or the bone-implant construct. In vivo studies on this subject have inherent obstacles not the least of which is controlling the variables and real time bone temperature data acquisition. Theoretical models can be generated using computer software and the inclusion of known constants for the mechanical properties of metal and bone. These known Data points for the variables (drill bit and bone) enables finite element analysis of various bone drilling scenarios. An elastic-plastic three-dimensional (3D) acetabular bone mode was developed and finite element model analysis (FEA) was applied to various simulated drilling procedures. The FEA results clearly indicate that the depth of drilling and the drill speed both have a significant effect on the temperature during drilling procedures. The reduction of the feeding speed leads to a reduction in bone temperature. Our data suggests that reducing the feeding speed regardless of RPMs and pressure applied could be a simple useful and effective way to reduce drilling temperatures. This study is the first step in helping any surgeon who drills bone and places screws to better understand the ideal pressure to apply and drill speed to employ and advance rate to avoid osteonecrosis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2386-2391, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Inferring the anthropogenic contribution to local temperature extremes

    DOE PAGES

    Stone, Dáithí A.; Paciorek, Christopher J.; Prabhat, .; ...

    2013-03-19

    Here, in PNAS, Hansen et al. document an observed planet-wide increase in the frequency of extremely hot months and a decrease in the frequency of extremely cold months, consistent with earlier studies. This analysis is achieved through aggregation of gridded monthly temperature measurements from all over the planet. Such aggregation is advantageous in achieving statistical sampling power; however, it sacrifices regional specificity. Lastly, in that light, we find the conclusion of Hansen et al. that “the extreme summer climate anomalies in Texas in 2011, in Moscow in 2010, and in France in 2003 almost certainly would not have occurred inmore » the absence of global warming” to be unsubstantiated by their analysis.« less

  13. Inferring the anthropogenic contribution to local temperature extremes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Dáithí A.; Paciorek, Christopher J.; Prabhat, .

    Here, in PNAS, Hansen et al. document an observed planet-wide increase in the frequency of extremely hot months and a decrease in the frequency of extremely cold months, consistent with earlier studies. This analysis is achieved through aggregation of gridded monthly temperature measurements from all over the planet. Such aggregation is advantageous in achieving statistical sampling power; however, it sacrifices regional specificity. Lastly, in that light, we find the conclusion of Hansen et al. that “the extreme summer climate anomalies in Texas in 2011, in Moscow in 2010, and in France in 2003 almost certainly would not have occurred inmore » the absence of global warming” to be unsubstantiated by their analysis.« less

  14. Coral seas in fifty years: Need for local policies

    NASA Astrophysics Data System (ADS)

    Longley, P.; Cheng, N. S.; Fontaine, R. M.; Horton, K.; Bhattacharya, A.

    2017-12-01

    Arising stressors from both global and local sources threaten coral reefs, with studies indicating that local and global sources might reduce coral resilience. Local sources include sediment stress and nutrient stress from fishing; global sources include increasing sea surface temperature and ocean acidification. Through an in-depth review and re-analysis of published work, conducted under the scope of a course in the spring of 2017 semester and follow up research over the summer of 2017 and fall of 2017, students in Environmental Studies Course, ENVS 4100: Coral reefs, at the University of Colorado Boulder have developed a framework to initiate a discussion of global and local policies focused on protection of coral reefs. The research aims to assess current threats and suggest mitigation efforts. The paper uses secondary research to analyze impact of ocean acidification on aragonite saturation levels, current thermal stress, nutrient stress, and sediment factors that influence the health of coral and its surrounding ecosystem over the Common Era. Case studies in this paper include the Caribbean and Red Sea coral reefs, due to the variation of the atmosphere, temperature, and human activity in these regions. This paper intends to offer sufficient evidence that will lead to appropriate policy decisions that pertain to reef conservation.

  15. Analysis of continuous multi-seasonal in-situ subsurface temperature measurements on Mars

    NASA Astrophysics Data System (ADS)

    Paton, M. D.; Harri, A.-M.; Mäkinen, T.; Savijärvi, H.; Kemppinen, O.; Hagermann, A.

    2015-10-01

    Our investigations reveal the local thermal properties on the Martian surface at the Viking Lander 1 (VL-1) site. We achieved this by using the VL-1 footpad temperature sensor which was buried, and due to its location, was under shadow for extensive periods of time during each sol. Reconstruction of the surface and subsurface temperature history of the regolith in the vicinity of the temperature sensor was made using a 1-D atmospheric column model (UH-FMI) together with a thermal model of the lander. The results have implications for the interpretation of subsurface thermal measurements made close to a spacecraft or rock, interpretation of remote sensing measurements of thermal inertia and understanding the micro-scale behavior of the Martian atmosphere.

  16. Locality of Temperature

    NASA Astrophysics Data System (ADS)

    Kliesch, M.; Gogolin, C.; Kastoryano, M. J.; Riera, A.; Eisert, J.

    2014-07-01

    This work is concerned with thermal quantum states of Hamiltonians on spin- and fermionic-lattice systems with short-range interactions. We provide results leading to a local definition of temperature, thereby extending the notion of "intensivity of temperature" to interacting quantum models. More precisely, we derive a perturbation formula for thermal states. The influence of the perturbation is exactly given in terms of a generalized covariance. For this covariance, we prove exponential clustering of correlations above a universal critical temperature that upper bounds physical critical temperatures such as the Curie temperature. As a corollary, we obtain that above the critical temperature, thermal states are stable against distant Hamiltonian perturbations. Moreover, our results imply that above the critical temperature, local expectation values can be approximated efficiently in the error and the system size.

  17. Coolant-side heat-transfer rates for a hydrogen-oxygen rocket and a new technique for data correlation

    NASA Technical Reports Server (NTRS)

    Schacht, R. L.; Quentmeyer, R. J.

    1973-01-01

    An experimental investigation was conducted to determine the coolant-side, heat transfer coefficients for a liquid cooled, hydrogen-oxygen rocket thrust chamber. Heat transfer rates were determined from measurements of local hot gas wall temperature, local coolant temperature, and local coolant pressure. A correlation incorporating an integration technique for the transport properties needed near the pseudocritical temperature of liquid hydrogen gives a satisfactory prediction of hot gas wall temperatures.

  18. Temperature-induced local and average structural changes in BaTiO3-xBi(Zn1/2Ti1/2)O3 solid solutions: The origin of high temperature dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Hou, Dong; Usher, Tedi-Marie; Zhou, Hanhan; Raengthon, Natthaphon; Triamnak, Narit; Cann, David P.; Forrester, Jennifer S.; Jones, Jacob L.

    2017-08-01

    The existence of local tetragonal distortions is evidenced in the BaTiO3-xBi(Zn1/2Ti1/2)O3 (BT-xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2-3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transforms to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.

  19. Temperature-induced local and average structural changes in BaTiO 3- xBi(Zn 1/2Ti 1/2)O 3 solid solutions: The origin of high temperature dielectric permittivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Dong; Usher, Tedi -Marie; Zhou, Hanhan

    The existence of local tetragonal distortions is evidenced in the BaTiO 3–xBi(Zn 1/2Ti 1/2)O 3 (BT–xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2–3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transformsmore » to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.« less

  20. Temperature-induced local and average structural changes in BaTiO 3- xBi(Zn 1/2Ti 1/2)O 3 solid solutions: The origin of high temperature dielectric permittivity

    DOE PAGES

    Hou, Dong; Usher, Tedi -Marie; Zhou, Hanhan; ...

    2017-08-11

    The existence of local tetragonal distortions is evidenced in the BaTiO 3–xBi(Zn 1/2Ti 1/2)O 3 (BT–xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2–3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transformsmore » to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.« less

  1. Crossover of Microscopic Dynamics in Metallic Supercooled Liquid Observed by NMR

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Li, Lilong

    2004-03-01

    Nuclear magnetic resonance (NMR) is used to characterize local atomic motions in the glassy and supercooled liquid states of the bulk metallic glass system Pd_43Ni_10Cu_27P_20. It is shown that NMR is very effective in detecting local motions such as vibrations in metallic systems. The temperature dependence of the Knight shift reveals that certain local atomic motion decreases rapidly below a crossover temperature T_c. Above Tc as well as below the glass transition temperature Tg the mean-squared amplitude of local motions is shown to depend linearly on the temperature. The observed rapid decrease below Tc cannot be explained by heterogeneity effects. It reveals that qualitative changes of microscopic properties in the supercooled liquid take place at temperatures significantly above T_g. The observed phenomenon can be explained in terms of a rapid disappearance of certain local motions below Tc as suggested by the mode-coupling theory.

  2. The interannual variation in monthly temperature over Northeast China during summer

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Lu, Riyu

    2014-05-01

    The interannual variations of summer surface air temperature over Northeast China (NEC) were investigated through a month-to-month analysis from May to August. The results suggested that the warmer temperature over NEC is related to a local positive 500-hPa geopotential height anomaly for all four months. However, the teleconnection patterns of atmospheric circulation anomalies associated with the monthly surface air temperature over NEC behave as a distinguished subseasonal variation, although the local positive height anomaly is common from month to month. In May and June, the teleconnection pattern is characterized by a wave train in the upper and middle troposphere from the Indian Peninsula to NEC. This wave train is stronger in June than in May, possibly due to the positive feedback between the wave train and the South Asian rainfall anomaly in June, when the South Asian summer monsoon has been established. In July and August, however, the teleconnection pattern associated with the NEC temperature anomalies is characterized by an East Asia/Pacific (EAP) or Pacific/Japan (PJ) pattern, with the existence of precipitation anomalies over the Philippine Sea and the South China Sea. This pattern is much clearer in July corresponding to the stronger convection over the Philippine Sea compared to that in August.

  3. High resolution imaging of latent fingerprints by localized corrosion on brass surfaces.

    PubMed

    Goddard, Alex J; Hillman, A Robert; Bond, John W

    2010-01-01

    The Atomic Force Microscope (AFM) is capable of imaging fingerprint ridges on polished brass substrates at an unprecedented level of detail. While exposure to elevated humidity at ambient or slightly raised temperatures does not change the image appreciably, subsequent brief heating in a flame results in complete loss of the sweat deposit and the appearance of pits and trenches. Localized elemental analysis (using EDAX, coupled with SEM imaging) shows the presence of the constituents of salt in the initial deposits. Together with water and atmospheric oxygen--and with thermal enhancement--these are capable of driving a surface corrosion process. This process is sufficiently localized that it has the potential to generate a durable negative topographical image of the fingerprint. AFM examination of surface regions between ridges revealed small deposits (probably microscopic "spatter" of sweat components or transferred particulates) that may ultimately limit the level of ridge detail analysis.

  4. Impact of the 1997-1998 El-Nino of Regional Hydrology

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman; Susskind, Joel

    1998-01-01

    The 1997-1998 El-Nino brought with it a range of severe local-regional hydrological phenomena. Record high temperatures and extremely dry soil conditions in Texas is an example of this regional effect. The El-Nino and La-Nina change the continental weather patterns considerably. However, connections between continental weather anomalies and regional or local anomalies have not been established to a high degree of confidence. There are several unique features of the recent El-Nino and La-Nina. Due to the recognition of the present El-Nino well in advance, there have been several coupled model studies on global and regional scales. Secondly, there is a near real-time monitoring of the situation using data from satellite sensors, namely, SeaWIFS, TOVS, AVHRR and GOES. Both observations and modeling characterize the large scale features of this El-Nino fairly well. However the connection to the local and regional hydrological phenomenon still needs to be made. This paper will use satellite observations and analysis data to establish a relation between local hydrology and large scale weather patterns. This will be the first step in using satellite data to perform regional hydrological simulations of surface temperature and soil moisture.

  5. Boundary layer flow of MHD tangent hyperbolic nanofluid over a stretching sheet: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Khan, Mair; Hussain, Arif; Malik, M. Y.; Salahuddin, T.; Khan, Farzana

    This article presents the two-dimensional flow of MHD hyperbolic tangent fluid with nanoparticles towards a stretching surface. The mathematical modelling of current flow analysis yields the nonlinear set of partial differential equations which then are reduce to ordinary differential equations by using suitable scaling transforms. Then resulting equations are solved by using shooting technique. The behaviour of the involved physical parameters (Weissenberg number We , Hartmann number M , Prandtl number Pr , Brownian motion parameter Nb , Lewis number Le and thermophoresis number Nt) on velocity, temperature and concentration are interpreted in detail. Additionally, local skin friction, local Nusselt number and local Sherwood number are computed and analyzed. It has been explored that Weissenberg number and Hartmann number are decelerate fluid motion. Brownian motion and thermophoresis both enhance the fluid temperature. Local Sherwood number is increasing function whereas Nusselt number is reducing function for increasing values of Brownian motion parameter Nb , Prandtl number Pr , thermophoresis parameter Nt and Lewis number Le . Additionally, computed results are compared with existing literature to validate the accuracy of solution, one can see that present results have quite resemblance with reported data.

  6. Controllable curvature from planar polymer sheets in response to light.

    PubMed

    Hubbard, Amber M; Mailen, Russell W; Zikry, Mohammed A; Dickey, Michael D; Genzer, Jan

    2017-03-22

    The ability to change shape and control curvature in 3D structures starting from planar sheets can aid in assembly and add functionality to an object. Herein, we convert planar sheets of shape memory polymers (SMPs) into 3D objects with controllable curvature by dictating where the sheets shrink. Ink patterned on the surface of the sheet absorbs infrared (IR) light, resulting in localized heating, and the material shrinks locally wherever the temperature exceeds the activation temperature, T a . We introduce two different mechanisms for controlling curvature within SMP sheets. The 'direct' mechanism uses localized shrinkage to induce curvature only in regions patterned with ink. The 'indirect' mechanism uses localized shrinkage in regions patterned with ink to induce curvature in neighboring regions without ink through a balance of internal stresses. Finite element analysis predicts the final shape of the polymer sheets with excellent qualitative agreement with experimental studies. Results from this study show that curvature can be controlled by the distribution and darkness of the ink pattern on the polymer sheet. Additionally, we utilize the direct and indirect curvature mechanisms to demonstrate the formation and actuation of gripper devices, which represent the potential utility of this approach.

  7. How the Electronic Structure in URu2Si2 Changes with Temperature: A High-Resolution Compton Scattering Study

    NASA Astrophysics Data System (ADS)

    Koizumi, Akihisa; Kubo, Yasunori; Motoyama, Gaku; Yamamura, Tomoo; Sakurai, Yoshiharu

    2018-06-01

    We have measured directional Compton profiles on the (001) plane in URu2Si2 single crystal at several temperatures. Two-dimensional electron occupation number densities (2D-EONDs) were obtained from the profiles through electron momentum reconstruction and Lock-Crisp-West folding analyses. We have also performed band calculations based on 5f-electron itinerant and localized models and derived theoretical 2D-EONDs for comparison. The experimental 2D-EOND at 300 K is well described by the localized model, and the 2D-EOND at 10 K is consistent with the theoretical one based on the itinerant model. The difference between 2D-EONDs at 30 and 100 K reflects a gradual change in the electronic structure, which reveals some of the crossover phenomena from localized to itinerant states. The change from localized to itinerant states is also reflected in a B(r) function, which is obtained in the reconstruction analysis and is an autocorrelation function of the wave function in the position space. The process by which the electronic structure in URu2Si2 changes is demonstrated through a series of experimental results.

  8. Global analysis of the effect of local climate on the hatchling output of leatherback turtles.

    PubMed

    Santidrián Tomillo, Pilar; Saba, Vincent S; Lombard, Claudia D; Valiulis, Jennifer M; Robinson, Nathan J; Paladino, Frank V; Spotila, James R; Fernández, Carlos; Rivas, Marga L; Tucek, Jenny; Nel, Ronel; Oro, Daniel

    2015-11-17

    The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21(st) century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100.

  9. Global analysis of the effect of local climate on the hatchling output of leatherback turtles

    PubMed Central

    Santidrián Tomillo, Pilar; Saba, Vincent S.; Lombard, Claudia D.; Valiulis, Jennifer M.; Robinson, Nathan J.; Paladino, Frank V.; Spotila, James R.; Fernández, Carlos; Rivas, Marga L.; Tucek, Jenny; Nel, Ronel; Oro, Daniel

    2015-01-01

    The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21st century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100. PMID:26572897

  10. Thermophysical modelling for high-resolution digital terrain models

    NASA Astrophysics Data System (ADS)

    Pelivan, I.

    2018-07-01

    A method is presented for efficiently calculating surface temperatures for highly resolved celestial body shapes. A thorough investigation of the necessary conditions leading to reach model convergence shows that the speed of surface temperature convergence depends on factors such as the quality of initial boundary conditions, thermal inertia, illumination conditions, and resolution of the numerical depth grid. The optimization process to shorten the simulation time while increasing or maintaining the accuracy of model results includes the introduction of facet-specific boundary conditions such as pre-computed temperature estimates and pre-evaluated simulation times. The individual facet treatment also allows for assigning other facet-specific properties such as local thermal inertia. The approach outlined in this paper is particularly useful for very detailed digital terrain models in combination with unfavourable illumination conditions such as little-to-no sunlight at all for a period of time as experienced locally on comet 67P/Churyumov-Gerasimenko. Possible science applications include thermal analysis of highly resolved local (landing) sites experiencing seasonal, environment, and lander shadowing. In combination with an appropriate roughness model, the method is very suitable for application to disc-integrated and disc-resolved data. Further applications are seen where the complexity of the task has led to severe shape or thermophysical model simplifications such as in studying surface activity or thermal cracking.

  11. Global analysis of the effect of local climate on the hatchling output of leatherback turtles

    NASA Astrophysics Data System (ADS)

    Santidrián Tomillo, Pilar; Saba, Vincent S.; Lombard, Claudia D.; Valiulis, Jennifer M.; Robinson, Nathan J.; Paladino, Frank V.; Spotila, James R.; Fernández, Carlos; Rivas, Marga L.; Tucek, Jenny; Nel, Ronel; Oro, Daniel

    2015-11-01

    The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21st century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100.

  12. Thermophysical modeling for high-resolution digital terrain models

    NASA Astrophysics Data System (ADS)

    Pelivan, I.

    2018-04-01

    A method is presented for efficiently calculating surface temperatures for highly resolved celestial body shapes. A thorough investigation of the necessary conditions leading to reach model convergence shows that the speed of surface temperature convergence depends on factors such as the quality of initial boundary conditions, thermal inertia, illumination conditions, and resolution of the numerical depth grid. The optimization process to shorten the simulation time while increasing or maintaining the accuracy of model results includes the introduction of facet-specific boundary conditions such as pre-computed temperature estimates and pre-evaluated simulation times. The individual facet treatment also allows for assigning other facet-specific properties such as local thermal inertia. The approach outlined in this paper is particularly useful for very detailed digital terrain models in combination with unfavorable illumination conditions such as little to no sunlight at all for a period of time as experienced locally on comet 67P/Churyumov-Gerasimenko. Possible science applications include thermal analysis of highly resolved local (landing) sites experiencing seasonal, environment and lander shadowing. In combination with an appropriate roughness model, the method is very suitable for application to disk-integrated and disk-resolved data. Further applications are seen where the complexity of the task has led to severe shape or thermophysical model simplifications such as in studying surface activity or thermal cracking.

  13. Urban heat island investigations in Arctic cities of northwestern Russia

    NASA Astrophysics Data System (ADS)

    Shumilov, Oleg I.; Kasatkina, Elena A.; Kanatjev, Alexander G.

    2017-12-01

    Urban microclimate peculiarities in two Arctic cities in northwestern Russia—Kirovsk (67.62°N, 33.67°E) and Apatity (67.57°N, 33.38°E)—were investigated by using mobile temperature records. The experiment was carried out in and around Apatity and Kirovsk in February 2014 and December 2016. The DS18B20 digital thermometer was installed on the roof of a car (height: approximately 1.2 m) to measure and record temperature variations automatically. In addition to the digital thermometer, the car was also equipped with an onboard global positioning system, allowing every temperature measurement to be referenced with an altitude and a latitude/longitude position. The possibility of urban heat island formation in these polar cities, above the Arctic Circle, was studied. Our analysis indicated that on 11 February 2014, the temperature varied in accordance with the background environmental lapse rate (-0.0045°C m-1), and nearly corresponded to it (-0.0165°C m-1) on 12 February 2014. On 6 December 2016, a strong local temperature inversion with a positive value of 0.032°C m-1 was detected, seemingly caused by the formation of a cold air pool in the valley near Kirovsk. It was found that the temperature variations within and outside these cities are strongly influenced by local topographic effects and the physical conditions of the atmospheric boundary layer.

  14. Solid state dewetting of thin plasmonic films under focused cw-laser irradiation

    DOE PAGES

    Abbott, William M.; Corbett, Simon; Cunningham, Graeme; ...

    2017-12-21

    Elevated temperatures and large thermal gradients are a significant source of component failure in microelectronics, and is the limiting factor in heat-assisted magnetic recording (HAMR). Here, we have investigated the effect of solid-state dewetting in Au thin films, as a function of local temperature, film thickness, and substrate adhesion. In this work, a localised temperature rise is induced in thin (≤ 50 nm) polycrystalline Au films on SiO 2 substrates via focused continuous-wave laser irradiation at 488 nm. The magnitude and distribution of the total temperature rise is measured using CCD-based thermoreflectance. This also allows a sensitive measurement of themore » temperature at which dewetting occurs, showing that for thin (≤ 50 nm) Au films without adhesion layers, rapid dewetting can occur at temperatures as low as 50° C. The time decay of the reflected light from the illuminating laser is used to monitor locally the dynamics of solid state dewetting. TEM diffraction analysis shows significant changes in the microstructure and crystallographic texture of the films as far as 10 µm away from the illuminated area. The use of a thin metallic adhesion layer (such as Ti or Cr) is shown to significantly improve the adhesion of the Au to the substrate and reduce the tendency towards dewetting, but does not entirely protect it from changes to the crystallographic texture.« less

  15. Solid state dewetting of thin plasmonic films under focused cw-laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, William M.; Corbett, Simon; Cunningham, Graeme

    Elevated temperatures and large thermal gradients are a significant source of component failure in microelectronics, and is the limiting factor in heat-assisted magnetic recording (HAMR). Here, we have investigated the effect of solid-state dewetting in Au thin films, as a function of local temperature, film thickness, and substrate adhesion. In this work, a localised temperature rise is induced in thin (≤ 50 nm) polycrystalline Au films on SiO 2 substrates via focused continuous-wave laser irradiation at 488 nm. The magnitude and distribution of the total temperature rise is measured using CCD-based thermoreflectance. This also allows a sensitive measurement of themore » temperature at which dewetting occurs, showing that for thin (≤ 50 nm) Au films without adhesion layers, rapid dewetting can occur at temperatures as low as 50° C. The time decay of the reflected light from the illuminating laser is used to monitor locally the dynamics of solid state dewetting. TEM diffraction analysis shows significant changes in the microstructure and crystallographic texture of the films as far as 10 µm away from the illuminated area. The use of a thin metallic adhesion layer (such as Ti or Cr) is shown to significantly improve the adhesion of the Au to the substrate and reduce the tendency towards dewetting, but does not entirely protect it from changes to the crystallographic texture.« less

  16. Degradation analysis of a Ni-based layered positive-electrode active material cycled at elevated temperatures studied by scanning transmission electron microscopy and electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Kojima, Y.; Muto, S.; Tatsumi, K.; Kondo, H.; Oka, H.; Horibuchi, K.; Ukyo, Y.

    We investigate the local structural changes in a positive electrode of a lithium ion secondary battery (LiNi 0.8Co 0.15Al 0.05O 2 (NCA) as the active material) associated with charge-discharge cycling at elevated temperatures by scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). STEM-EELS spectral imaging reveals the evolution of a NiO-like phase localized near the surface and grain boundary regions after many cycles. The amounts of capacity fading and resistance increase are discussed based on the results of the semiquantitative estimation of NiO-like and other product phases. We also identify the chemical state of lithium in the NiO-like phase substituting for Ni.

  17. Numerical simulation of terrain-induced mesoscale circulation in the Chiang Mai area, Thailand

    NASA Astrophysics Data System (ADS)

    Sathitkunarat, Surachai; Wongwises, Prungchan; Pan-Aram, Rudklao; Zhang, Meigen

    2008-11-01

    The regional atmospheric modeling system (RAMS) was applied to Chiang Mai province, a mountainous area in Thailand, to study terrain-induced mesoscale circulations. Eight cases in wet and dry seasons under different weather conditions were analyzed to show thermal and dynamic impacts on local circulations. This is the first study of RAMS in Thailand especially investigating the effect of mountainous area on the simulated meteorological data. Analysis of model results indicates that the model can reproduce major features of local circulation and diurnal variations in temperatures. For evaluating the model performance, model results were compared with observed wind speed, wind direction, and temperature monitored at a meteorological tower. Comparison shows that the modeled values are generally in good agreement with observations and that the model captured many of the observed features.

  18. Local cerebral hypothermia induced by selective infusion of cold lactated ringer's: a feasibility study in rhesus monkeys.

    PubMed

    Wang, Bincheng; Wu, Di; Dornbos Iii, David; Shi, Jingfei; Ma, Yanhui; Zhang, Mo; Liu, Yumei; Chen, Jian; Ding, Yuchuan; Luo, Yinghao; Ji, Xunming

    2016-06-01

    Hypothermia has shown promise as a neuroprotective strategy for stroke. The use of whole body hypothermia has limited clinical utility due to many severe side effects. Selective brain cooling, or local brain hypothermia, has been previously proposed as an alternative treatment strategy. This study investigated the safety, feasibility, and efficacy of selective brain hypothermia induced by local infusion of ice-cold lactated Ringer's solution in rhesus monkeys. Eight male rhesus monkeys were used in this study. Brain temperature in the territory supplied by middle cerebral artery (MCA) was reduced by infusing 100 mL of ice-cold (0 °C) lactated Ringer's solution over 20 min via a micro-catheter placed in the proximal MCA (n = 4). Vital signs and the temperature of the brain and rectum were monitored before and after infusion. Transcranial Doppler, Magnetic resonance imaging (MRI), and digital subtraction angiography (DSA) were used to evaluate cerebral blood flow, cerebrovascular reactivity (CVR), cerebral edema, and vasospasm. Another cohort of rhesus monkeys (n = 4) were used as systemic cooling controls. Oxygen saturation, blood pressure, heart rate, and hematologic analysis of the two groups remained within the normal range after infusion. Mild cerebral hypothermia (<35 °C) was achieved in 10 min (0.3 °C/min) and was maintained for 20 min in local cortex and striatum following local infusion. The average lowest cerebral temperature in the locally cooled animals was 33.9 ± 0.3 °C in the striatum following 20-min infusion. This was not observed in animals cooled by systemic infusion. The decreases in the rectal temperature for local and systemic infusion were 0.5 ± 0.2 °C and 0.5 ± 0.3 °C, respectively. Selective brain cooling did not cause any cerebral edema as determined by MRI or vasospasm in the perfused vessel based on DSA. Selective cerebral hypothermia did not significantly alter CVR. Local infusion of ice-cold lactated Ringer's solution via micro-catheter is a safe and effective method for selective cerebral hypothermia. This cooling method could potentially be developed as a new treatment in acute ischemic stroke.

  19. Late summer temperature reconstruction based on tree-ring density for Sygera Mountain, southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Mingyong; Duan, Jianping; Wang, Lily; Zhu, Haifeng

    2018-04-01

    Although several tree-ring density-based summer/late summer temperature reconstructions have been developed on the Tibetan Plateau (TP), the understanding of the local/regional characteristics of summer temperature fluctuations on a long-term scale in some regions is still limited. To improve our understanding in these aspects, more local or regional summer temperature reconstructions extending back over several centuries are required. In this study, a new mean latewood density (LWD) chronology from Abies georgei var. smithii from the upper tree line of Sygera Mountain on the southeastern TP was developed to reconstruct the late summer temperature variability since 1820 CE. The bootstrapped correlation analysis showed that the LWD chronology index was significantly and positively correlated with the late summer (August-September) mean temperatures (r1950-2008 = 0.63, p < 0.001) recorded at the nearest meteorological station and that this reconstruction has considerable potential to represent the late summer temperature variability at the regional scale. Our late summer temperature reconstruction revealed three obvious cold periods (i.e., 1872-1908, 1913-1937 and 1941-1966) and two relatively warm phases (i.e., 1821-1871 and 1970-2008) over the past two centuries. Comparisons of our reconstruction with other independent tree-ring-based temperature reconstructions, glacier fluctuations and historical documental records from neighboring regions showed good agreement in these relatively cold and warm intervals. Our reconstruction exhibits an overall increasing temperature trend since the 1960s, providing new evidence supporting the recent warming of the TP. Moreover, our results also indicate that the late summer temperature variability of Sygera Mountain on the southeastern TP has potential links with the Pacific Decadal Oscillation (PDO).

  20. Localized cooling of stems induces latewood formation and cambial dormancy during seasons of active cambium in conifers

    PubMed Central

    Begum, Shahanara; Kudo, Kayo; Matsuoka, Yugo; Nakaba, Satoshi; Yamagishi, Yusuke; Nabeshima, Eri; Rahman, Md Hasnat; Nugroho, Widyanto Dwi; Oribe, Yuichiro; Jin, Hyun-O; Funada, Ryo

    2016-01-01

    Background and Aims In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. Methods A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. Key Results The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. Conclusions Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees. PMID:26703452

  1. Localized cooling of stems induces latewood formation and cambial dormancy during seasons of active cambium in conifers.

    PubMed

    Begum, Shahanara; Kudo, Kayo; Matsuoka, Yugo; Nakaba, Satoshi; Yamagishi, Yusuke; Nabeshima, Eri; Rahman, Md Hasnat; Nugroho, Widyanto Dwi; Oribe, Yuichiro; Jin, Hyun-O; Funada, Ryo

    2016-03-01

    In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Persistent homology and non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Cole, Alex; Shiu, Gary

    2018-03-01

    In this paper, we introduce the topological persistence diagram as a statistic for Cosmic Microwave Background (CMB) temperature anisotropy maps. A central concept in 'Topological Data Analysis' (TDA), the idea of persistence is to represent a data set by a family of topological spaces. One then examines how long topological features 'persist' as the family of spaces is traversed. We compute persistence diagrams for simulated CMB temperature anisotropy maps featuring various levels of primordial non-Gaussianity of local type. Postponing the analysis of observational effects, we show that persistence diagrams are more sensitive to local non-Gaussianity than previous topological statistics including the genus and Betti number curves, and can constrain Δ fNLloc= 35.8 at the 68% confidence level on the simulation set, compared to Δ fNLloc= 60.6 for the Betti number curves. Given the resolution of our simulations, we expect applying persistence diagrams to observational data will give constraints competitive with those of the Minkowski Functionals. This is the first in a series of papers where we plan to apply TDA to different shapes of non-Gaussianity in the CMB and Large Scale Structure.

  3. Analysis of Vegetation Index Variations and the Asian Monsoon Climate

    NASA Technical Reports Server (NTRS)

    Shen, Sunhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2012-01-01

    Vegetation growth depends on local climate. Significant anthropogenic land cover and land use change activities over Asia have changed vegetation distribution as well. On the other hand, vegetation is one of the important land surface variables that influence the Asian Monsoon variability through controlling atmospheric energy and water vapor conditions. In this presentation, the mean and variations of vegetation index of last decade at regional scale resolution (5km and higher) from MODIS have been analyzed. Results indicate that the vegetation index has been reduced significantly during last decade over fast urbanization areas in east China, such as Yangtze River Delta, where local surface temperatures were increased significantly in term of urban heat Island. The relationship between vegetation Index and climate (surface temperature, precipitation) over a grassland in northern Asia and over a woody savannas in southeast Asia are studied. In supporting Monsoon Asian Integrated Regional Study (MAIRS) program, the data in this study have been integrated into Giovanni, the online visualization and analysis system at NASA GES DISC. Most images in this presentation are generated from Giovanni system.

  4. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton

    PubMed Central

    Yampolsky, Lev Y.; Schaer, Tobias M. M.; Ebert, Dieter

    2014-01-01

    Many organisms have geographical distributions extending from the tropics to near polar regions or can experience up to 30°C temperature variation within the lifespan of an individual. Two forms of evolutionary adaptation to such wide ranges in ambient temperatures are frequently discussed: local adaptation and phenotypic plasticity. The freshwater planktonic crustacean Daphnia magna, whose range extends from South Africa to near arctic sites, shows strong phenotypic and genotypic variation in response to temperature. In this study, we use D. magna clones from 22 populations (one clone per population) ranging from latitude 0° (Kenya) to 66° North (White Sea) to explore the contributions of phenotypic plasticity and local adaptation to high temperature tolerance. Temperature tolerance was studied as knockout time (time until immobilization, Timm) at 37°C in clones acclimatized to either 20°C or 28°C. Acclimatization to 28°C strongly increased Timm, testifying to adaptive phenotypic plasticity. At the same time, Timm significantly correlated with average high temperature at the clones’ sites of origin, suggesting local adaptation. As earlier studies have found that haemoglobin expression contributes to temperature tolerance, we also quantified haemoglobin concentration in experimental animals and found that both acclimatization temperature (AccT) and temperature at the site of origin are positively correlated with haemoglobin concentration. Furthermore, Daphnia from warmer climates upregulate haemoglobin much more strongly in response to AccT, suggesting local adaptation for plasticity in haemoglobin expression. Our results show that both local adaptation and phenotypic plasticity contribute to temperature tolerance, and elucidate a possible role of haemoglobin in mediating these effects that differs along a cold–warm gradient. PMID:24352948

  5. Paleohydrology of the Polar Urals from the Last Glacial Maximum Through the Holocene

    NASA Astrophysics Data System (ADS)

    Cowling, O.; Thomas, E.; Svendsen, J. I.; Haflidason, H.

    2017-12-01

    Paleohydrologic records provide important information concerning the past response of local hydrology to abrupt temperature changes. Arctic hydrology is particularly sensitive to temperature due to feedbacks involving sea ice and ice sheets. The most recent deglacial interval contains multiple abrupt temperature changes, which provide opportunities to study the relationship between temperature, ice sheets, and hydrology. We present a lacustrine δ2Hwax record from Bolshoye Schuchye, in the Polar Ural Mountains, spanning 24.5- 1.3 ka, and interpret hydroclimate conditions at a multi-centennial scale from the Last Glacial Maximum (LGM) through the Holocene. Bolshoye Schuchye's position beyond the reach of local glaciers during the LGM makes it a unique site, since lacustrine paleoclimate records from the Arctic rarely span this entire interval, so Bolshoye Schuchye helps to cover a gap in understanding of paleoclimate. Compound specific analysis of leaf wax hydrogen isotopes (δ2Hwax) is a hydroclimate proxy that can be used to infer moisture source area, transport history, and local aridity. Inferences based on δ2Hwax rely on mechanistic understanding of the process by which hydrogen from meteoric water is incorporated into waxes, and subsequently deposited in lake sediments. The δ2Hwax value of a sample reflects the isotopic composition of precipitation, while also incorporating fractionation that occurs between precipitation and uptake by plants, and biosynthetic fractionation during wax synthesis. Comparisons between different chain length waxes can be used to infer the isotopic composition of terrestrial and aquatic waxes, as terrestrial plants tend to produce longer chain lengths than aquatic macrophytes. The offset between terrestrial and aquatic δ2Hwax, expressed as ɛt-a, indicates differences between the precipitation used by terrestrial plants, and the lake water used by aquatic plants. Significant changes in ɛt-a can represent shifts in local aridity or precipitation seasonality. The record we present from Bolshoye Schuchye gives insights into terrestrial hydrologic changes resulting from rapid temperature shifts since the LGM.

  6. A spatiotemporal analysis of the relationship between near-surface air temperature and satellite land surface temperatures using 17 years of data from the ATSR series

    NASA Astrophysics Data System (ADS)

    Good, Elizabeth J.; Ghent, Darren J.; Bulgin, Claire E.; Remedios, John J.

    2017-09-01

    The relationship between satellite land surface temperature (LST) and ground-based observations of 2 m air temperature (T2m) is characterized in space and time using >17 years of data. The analysis uses a new monthly LST climate data record (CDR) based on the Along-Track Scanning Radiometer series, which has been produced within the European Space Agency GlobTemperature project (http://www.globtemperature.info/). Global LST-T2m differences are analyzed with respect to location, land cover, vegetation fraction, and elevation, all of which are found to be important influencing factors. LSTnight ( 10 P.M. local solar time, clear-sky only) is found to be closely coupled with minimum T2m (Tmin, all-sky) and the two temperatures generally consistent to within ±5°C (global median LSTnight-Tmin = 1.8°C, interquartile range = 3.8°C). The LSTday ( 10 A.M. local solar time, clear-sky only)-maximum T2m (Tmax, all-sky) variability is higher (global median LSTday-Tmax = -0.1°C, interquartile range = 8.1°C) because LST is strongly influenced by insolation and surface regime. Correlations for both temperature pairs are typically >0.9 outside of the tropics. The monthly global and regional anomaly time series of LST and T2m—which are completely independent data sets—compare remarkably well. The correlation between the data sets is 0.9 for the globe with 90% of the CDR anomalies falling within the T2m 95% confidence limits. The results presented in this study present a justification for increasing use of satellite LST data in climate and weather science, both as an independent variable, and to augment T2m data acquired at meteorological stations.

  7. Thermally Stimulated Currents in Nanocrystalline Titania

    PubMed Central

    Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Cavallaro, Alessandro; Scaringella, Monica

    2018-01-01

    A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO2. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5–630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 1014–1018 cm−3, associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies. PMID:29303976

  8. Investigations on the defect dipole induced pyroelectric current in multiferroic GdMnO3 system

    NASA Astrophysics Data System (ADS)

    Pal, A.; Dhana Sekhar, C.; Venimadhav, A.; Prellier, W.; Murugavel, P.

    2018-01-01

    Pyroelectric current measurements on the orthorhombic GdMnO3 polycrystalline sample are done to explore the intrinsic and extrinsic contributions. The measurements reveal poling temperature dependent pyrocurrent peaks at 20, 50 and 108 K. The pyrocurrent at 20 K and at 108 K are attributed to ferroelectric transition induced by the incommensurate spiral magnetic ordering of Mn spins and the release of trapped charges from the localized states, respectively. A detailed analysis on the broad pyrocurrent signal at 50 K suggests that it could be attributed to the thermally stimulated depolarization current effect due to the relaxation of defect dipoles induced by negatively charged Mn3+ ions and excess holes localized at Mn4+ sites. Importantly, the effect of the electric field due to the defect dipoles on the ferroelectric state is highlighted. The temperature dependent dielectric measurements under the magnetic field brought out the correlation between pyroelectric and dielectric properties. The influence of poling temperature dependent extrinsic effects on pyrocurrent suggests the choice of poling temperature on the study of polarization and the resultant multiferroicity in a spin-driven ferroelectric rare earth manganite system.

  9. Thermally Stimulated Currents in Nanocrystalline Titania.

    PubMed

    Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Carnevale, Ennio Antonio; Cavallaro, Alessandro; Scaringella, Monica

    2018-01-05

    A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO₂. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5-630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 10 14 -10 18 cm -3 , associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies.

  10. Long-Term Warming Trends in Korea and Contribution of Urbanization: An Updated Assessment

    NASA Astrophysics Data System (ADS)

    Park, Bo-Joung; Kim, Yeon-Hee; Min, Seung-Ki; Kim, Maeng-Ki; Choi, Youngeun; Boo, Kyung-On; Shim, Sungbo

    2017-10-01

    This study conducted an updated analysis of the long-term temperature trends over South Korea and reassessed the contribution of the urbanization effect to the local warming trends. Linear trends were analyzed for three different periods over South Korea in order to consider possible inhomogeneity due to changes in the number of available stations: recent 103 years (1912-2014), 61 years (1954-2014), and 42 years (1973-2014). The local temperature has increased by 1.90°C, 1.35°C, and 0.99°C during the three periods, respectively, which are found 1.4-2.6 times larger than the global land mean trends. The countries located in the northern middle and high latitudes exhibit similar warming trends (about 1.5 times stronger than the global mean), suggesting a weak influence of urbanization on the local warming over South Korea. Urbanization contribution is assessed using two methods. First, results from "city minus rural" methods showed that 30-45% of the local warming trends during recent four decades are likely due to the urbanization effect, depending on station classification methods and analysis periods. Results from an "observation minus reanalysis" method using the Twentieth Century Reanalysis (20CR) data sets (v2 and v2c) indicated about 25-30% contribution of the urbanization effect to the local warming trend during the recent six decades. However, the urbanization contribution was estimated as low as 3-11% when considering the century-long period. Our results confirm large uncertainties in the estimation of urbanization contribution when using shorter-term periods and suggest that the urbanization contribution to the century-long warming trends could be much lower.

  11. Thermometric analysis of intra-cavitary hyperthermia for esophageal cancer.

    PubMed

    Qi, C; Li, D J

    1999-01-01

    Thermometric analysis was carried out in 51 patients with esophageal cancer treated with intra-cavitary hyperthermia combined with radio chemotherapy, to test whether temperature index (T20, T50) and T90) could be used as an indicator for tumour control. Hyperthermia was administered by intra-cavitary microwave applicator. The T20, T50 and T90 were deducted from the temperature sensors T0 and T3 situated at the center of the tumour surface and 3cm from it. Eighteen patients with local control > or =36 months were named long term control patients (LC), 24 patients with local recurrence within 24 months (LR) (there were no events occurring between 24 and 36 months) and nine patients died of metastasis without local recurrence (DM). The overall survival rates were 80.4 +/- 5.6% at 1 year, 38.3 +/- 6.9% at 3 years and 31 +/- 6.7% at 5 years, respectively. Chi-square test showed no influence of the number of hyperthermia sessions on the local control (p > 0.25). The 5-year local control rate was 18.8% for the patients with T90 < 43 degrees C and 45% for those with T90 > or = 43 degrees C (p < 0.01). The average T90 was 43.76 +/- 0.74 degrees C for the LC patients and 43.17 +/- 0.57 degrees C for those LR (p = 0.024). The mean T90 was higher than 43 degrees C in 94.4% of LC, whereas in 58.8% of LR. The study suggested that T90 was a good parameter for thermal dose in the intracavitary hyperthermia for the treatment of esophageal cancer.

  12. Disorder dependence electron phonon scattering rate of V82Pd18 - xFex alloys at low temperature

    NASA Astrophysics Data System (ADS)

    Jana, R. N.; Meikap, A. K.

    2018-04-01

    We have systematically investigated the disorder dependence electron phonon scattering rate in three dimensional disordered V82Pd18 - xFex alloys. A minimum in temperature dependence resistivity curve has been observed at low temperature T =Tm. In the temperature range 5 K ≤ T ≤Tm the resistivity correction follows ρo 5 / 2T 1 / 2 law. The dephasing scattering time has been calculated from analysis of magnetoresistivity by weak localization theory. The electron dephasing time is dominated by electron-phonon scattering and follows anomalous temperature (T) and disorder (ρ0) dependence behaviour like τe-ph-1 ∝T2 /ρ0, where ρ0 is the impurity resistivity. The magnitude of the saturated dephasing scattering time (τ0) at zero temperature decreases with increasing disorder of the samples. Such anomalous behaviour of dephasing scattering rate is still unresolved.

  13. Investigation of the effect of scattering centers on low dimensional nanowire channel

    NASA Astrophysics Data System (ADS)

    Cariappa, K. S.; Shukla, Raja; Sarkar, Niladri

    2018-05-01

    In this work, we studied the effect of scattering centers on the electron density profiles of a one dimensional Nanowire channel. Density Matrix Formalism is used for calculating the local electron densities at room temperature. Various scattering centers have been simulated in the channel. The nearest neighbor tight binding method is applied to construct the Hamiltonian of nanoscale devices. We invoke scattering centers by adding local scattering potentials to the Hamiltonian. This analysis could give an insight into the understanding and utilization of defects for device engineering.

  14. Relaxation mode analysis and Markov state relaxation mode analysis for chignolin in aqueous solution near a transition temperature

    NASA Astrophysics Data System (ADS)

    Mitsutake, Ayori; Takano, Hiroshi

    2015-09-01

    It is important to extract reaction coordinates or order parameters from protein simulations in order to investigate the local minimum-energy states and the transitions between them. The most popular method to obtain such data is principal component analysis, which extracts modes of large conformational fluctuations around an average structure. We recently applied relaxation mode analysis for protein systems, which approximately estimates the slow relaxation modes and times from a simulation and enables investigations of the dynamic properties underlying the structural fluctuations of proteins. In this study, we apply this relaxation mode analysis to extract reaction coordinates for a system in which there are large conformational changes such as those commonly observed in protein folding/unfolding. We performed a 750-ns simulation of chignolin protein near its folding transition temperature and observed many transitions between the most stable, misfolded, intermediate, and unfolded states. We then applied principal component analysis and relaxation mode analysis to the system. In the relaxation mode analysis, we could automatically extract good reaction coordinates. The free-energy surfaces provide a clearer understanding of the transitions not only between local minimum-energy states but also between the folded and unfolded states, even though the simulation involved large conformational changes. Moreover, we propose a new analysis method called Markov state relaxation mode analysis. We applied the new method to states with slow relaxation, which are defined by the free-energy surface obtained in the relaxation mode analysis. Finally, the relaxation times of the states obtained with a simple Markov state model and the proposed Markov state relaxation mode analysis are compared and discussed.

  15. Temperature fine-tunes Mediterranean Arabidopsis thaliana life-cycle phenology geographically.

    PubMed

    Marcer, A; Vidigal, D S; James, P M A; Fortin, M-J; Méndez-Vigo, B; Hilhorst, H W M; Bentsink, L; Alonso-Blanco, C; Picó, F X

    2018-01-01

    To understand how adaptive evolution in life-cycle phenology operates in plants, we need to unravel the effects of geographic variation in putative agents of natural selection on life-cycle phenology by considering all key developmental transitions and their co-variation patterns. We address this goal by quantifying the temperature-driven and geographically varying relationship between seed dormancy and flowering time in the annual Arabidopsis thaliana across the Iberian Peninsula. We used data on genetic variation in two major life-cycle traits, seed dormancy (DSDS50) and flowering time (FT), in a collection of 300 A. thaliana accessions from the Iberian Peninsula. The geographically varying relationship between life-cycle traits and minimum temperature, a major driver of variation in DSDS50 and FT, was explored with geographically weighted regressions (GWR). The environmentally varying correlation between DSDS50 and FT was analysed by means of sliding window analysis across a minimum temperature gradient. Maximum local adjustments between minimum temperature and life-cycle traits were obtained in the southwest Iberian Peninsula, an area with the highest minimum temperatures. In contrast, in off-southwest locations, the effects of minimum temperature on DSDS50 were rather constant across the region, whereas those of minimum temperature on FT were more variable, with peaks of strong local adjustments of GWR models in central and northwest Spain. Sliding window analysis identified a minimum temperature turning point in the relationship between DSDS50 and FT around a minimum temperature of 7.2 °C. Above this minimum temperature turning point, the variation in the FT/DSDS50 ratio became rapidly constrained and the negative correlation between FT and DSDS50 did not increase any further with increasing minimum temperatures. The southwest Iberian Peninsula emerges as an area where variation in life-cycle phenology appears to be restricted by the duration and severity of the hot summer drought. The temperature-driven varying relationship between DSDS50 and FT detected environmental boundaries for the co-evolution between FT and DSDS50 in A. thaliana. In the context of global warming, we conclude that A. thaliana phenology from the southwest Iberian Peninsula, determined by early flowering and deep seed dormancy, might become the most common life-cycle phenotype for this annual plant in the region. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Investigation into Cause of High Temperature Failure of Boiler Superheater Tube

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Ray, S.; Roy, H.; Shukla, A. K.

    2015-04-01

    The failure of the boiler tubes occur due to various reasons like creep, fatigue, corrosion and erosion. This paper highlights a case study of typical premature failure of a final superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement, chemical analysis, oxide scale thickness measurement, microstructural examination are conducted as part of the investigations. Apart from these investigations, sulfur print, Energy Dispersive spectroscopy (EDS) and X ray diffraction analysis (XRD) are also conducted to ascertain the probable cause of failure of final super heater tube. Finally it has been concluded that the premature failure of the super heater tube can be attributed to the combination of localized high tube metal temperature and loss of metal from the outer surface due to high temperature corrosion. The corrective actions have also been suggested to avoid this type of failure in near future.

  17. Analysis of Temperature and Wind Measurements from the TIMED Mission: Comparison with UARS Data

    NASA Technical Reports Server (NTRS)

    Huang, Frank; Mayr, Hans; Killeen, Tim; Russell, Jim; Reber, Skip

    2004-01-01

    We report on an analysis of temperature and wind data based respectively on measurements with the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and TIDI (TIMED Doppler Interferometer) instruments on the TIMED (Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics) mission. Comparisons are made with corresponding results obtained from the HRDI (High Resolution Doppler Imager), MLS (Microwave Limb Sounder) and CLAES (Cryogenic Limb Array Etalon Spectrometer) instruments on the UARS (Upper Atmosphere Research Satellite) spacecraft. The TIMED and UARS instruments have important common and uncommon properties in their sampling of the data as a function local solar time. For comparison between the data from the two satellite missions, we present the derived diurnal tidal and zonal-mean variations of temperature and winds, obtained as functions of season, latitude, and altitude. The observations are also compared with results from the Numerical Spectral Model (NSM).

  18. Surface Temperature Data Analysis

    NASA Technical Reports Server (NTRS)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  19. A note on the correlation between circular and linear variables with an application to wind direction and air temperature data in a Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Lototzis, M.; Papadopoulos, G. K.; Droulia, F.; Tseliou, A.; Tsiros, I. X.

    2018-04-01

    There are several cases where a circular variable is associated with a linear one. A typical example is wind direction that is often associated with linear quantities such as air temperature and air humidity. The analysis of a statistical relationship of this kind can be tested by the use of parametric and non-parametric methods, each of which has its own advantages and drawbacks. This work deals with correlation analysis using both the parametric and the non-parametric procedure on a small set of meteorological data of air temperature and wind direction during a summer period in a Mediterranean climate. Correlations were examined between hourly, daily and maximum-prevailing values, under typical and non-typical meteorological conditions. Both tests indicated a strong correlation between mean hourly wind directions and mean hourly air temperature, whereas mean daily wind direction and mean daily air temperature do not seem to be correlated. In some cases, however, the two procedures were found to give quite dissimilar levels of significance on the rejection or not of the null hypothesis of no correlation. The simple statistical analysis presented in this study, appropriately extended in large sets of meteorological data, may be a useful tool for estimating effects of wind on local climate studies.

  20. Analyzing the Impact of Ambient Temperature Indicators on Transformer Life in Different Regions of Chinese Mainland

    PubMed Central

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known. PMID:23843729

  1. Analyzing the impact of ambient temperature indicators on transformer life in different regions of Chinese mainland.

    PubMed

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known.

  2. Locally Motivated GLOBE Investigations - A Key to Success

    NASA Astrophysics Data System (ADS)

    Washburne, J. C.; Geery, W.

    2003-12-01

    The GLOBE program was set up to help students make a core set of environmental observations at or near their schools, report their data through the internet to share with other students and scientists, analyze their data both locally and globally, and use this knowledge to form a better understanding of their environment. While the GLOBE program has been successful promoting more meaningful data collection, many of the tools and much of the infrastructure available to schools to synthesize their observations are underused. Schools that integrate GLOBE protocols with locally motivated investigations are more likely to implement the higher-order analysis and synthesis components of the program. Indicators of a successful observational program are things like measurement persistence, high data quality, and regular data. Participation in community forums and student-based research projects are evidence of a successful integrated program. A locally motivated issue allows a school to mold their GLOBE investigations around a multi-faceted question that they have first-hand knowledge of, that is both relevant and engaging to their students, and that can be supported by local expertise. In contrast, many GLOBE investigations are designed around abstract, non-site specific, narrowly focused and externally analyzed questions that limit local involvement and motivation. The main focus of this presentation is a few case histories of successful local investigations that incorporated GLOBE soil and air temperature data-logger measurements. The main example is drawn from Mr. Geery's fifth grade class investigation of why temperature differences exist between a local river bottom area and the school, which is located several kilometers away and 100 meters higher.

  3. Spatially resolved speckle-correlometry of sol-gel transition

    NASA Astrophysics Data System (ADS)

    Isaeva, A. A.; Isaeva, E. A.; Pantyukov, A. V.; Zimnyakov, D. A.

    2018-04-01

    Sol-gel transition was studied using the speckle correlometry method with a localized light source and spatial filtering of backscattered radiation. Water solutions of technical or food gelatin with added TiO2 nanoparticles were used as studied objects. Structural transformation of "sol-gel" system was studied at various temperatures from 25°C to 50°C using analysis of the correlation and structure functions of speckle intensity fluctuations. The characteristic temperatures of "sol - gel" transition were evaluated for studied systems. Obtained results can be used for various applications in biomedicine and food industry.

  4. Structural analysis of stratocumulus convection

    NASA Technical Reports Server (NTRS)

    Siems, S. T.; Baker, M. B.; Bretherton, C. S.

    1990-01-01

    The 1 and 20 Hz data are examined from the Electra flights made on July 5, 1987. The flight legs consisted of seven horizontal turbulent legs at the inversion, midcloud, and below clouds, plus 4 soundings made within the same period. The Rosemont temperature sensor and the top and bottom dewpoint sensors were used to measure temperature and humidity at 1 Hz. Inversion structure and entrainment; local dynamics and large scale forcing; convective elements; and decoupling of cloud and subcloud are discussed in relationship to the results of the Electra flight.

  5. Meteorological variables and bacillary dysentery cases in Changsha City, China.

    PubMed

    Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Zhou, Maigeng; Li, Xiujun; Jiang, Baofa

    2014-04-01

    This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature.

  6. Meteorological Variables and Bacillary Dysentery Cases in Changsha City, China

    PubMed Central

    Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Zhou, Maigeng; Li, Xiujun; Jiang, Baofa

    2014-01-01

    This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature. PMID:24591435

  7. Surface plasmon enhanced cell microscopy with blocked random spatial activation

    NASA Astrophysics Data System (ADS)

    Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun

    2016-03-01

    We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.

  8. Reconciliation of local and long-range tilt correlations in underdoped La 2-xBa xCuO 4(0 ≤ x ≤ 0.155)

    DOE PAGES

    Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; ...

    2015-02-26

    A long standing puzzle regarding the disparity of local and long range CuO₆ octahedral tilt correlations in the underdoped regime of La₂₋ xBa xCuO₄ is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO₆ tilt order with orthogonally inequivalent Cu-O bonds in the CuO₂ planes in the low temperature tetragonal (LTT) phase is succeeded on warming through the low-temperature transition by one with orthogonally equivalent bonds in the low temperature orthorhombic (LTO) phase. In contrast, the signatures of LTT-type tilts in the instantaneous local atomic structure persist on heating throughout the LTOmore » crystallographic phase on the nanoscale, although becoming weaker as temperature increases. Analysis of the INS spectra for the x = 1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO phase and their 3D character. The doping dependence of relevant structural parameters indicates that the magnitude of the Cu-O bond anisotropy has a maximum at x = 1/8 doping where bulk superconductivity is most strongly suppressed, suggesting that the structural anisotropy might be influenced by electron-phonon coupling and the particular stability of the stripe-ordered phase at this composition. The bond-length modulation that pins stripe order is found to be remarkably subtle, with no anomalous bond length disorder at low temperature, placing an upper limit on any in-plane Cu-O bondlength anisotropy. The results further reveal that although appreciable octahedral tilts persist through the high-temperature transition and into the high temperature tetragonal (HTT) phase, there is no significant preference between different tilt directions in the HTT regime. As a result, this study also exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle structural responses.« less

  9. Molecular Determinants of the Human α2C-Adrenergic Receptor Temperature-Sensitive Intracellular Traffic

    PubMed Central

    Pullikuth, Ashok K.; Guidry, Jessie J.

    2015-01-01

    The human α2C-adrenergic receptor (α2C-AR) is localized intracellularly at physiologic temperature. Decreasing the environmental temperature strongly stimulates the receptor transport to the cell surface. In contrast, rat and mouse α2C-AR plasma membrane levels are less sensitive to decrease in temperature, whereas the opossum α2C-AR cell surface levels are not changed in these conditions. Structural analysis demonstrated that human α2C-AR has a high number of arginine residues in the third intracellular loop and in the C-terminus, organized as putative RXR motifs. Although these motifs do not affect the receptor subcellular localization at 37°C, deletion of the arginine clusters significantly enhanced receptor plasma membrane levels at reduced temperature. We found that this exaggerated transport of the human receptor is mediated by two functional arginine clusters, one in the third intracellular loop and one in the C-terminus. This effect is mediated by interactions with COPI vesicles, but not by 14-3-3 proteins. In rat α2C-AR, the arginine cluster from the third intracellular loop is shifted to the left due to three missing residues. Reinsertion of these residues in the rat α2C-AR restored the same temperature sensitivity as in the human receptor. Proteomic and coimmunoprecipitation experiments identified pontin as a molecule having stronger interactions with human α2C-AR compared with rat α2C-AR. Inhibition of pontin activity enhanced human receptor plasma membrane levels and signaling at 37°C. Our results demonstrate that human α2C-AR has a unique temperature-sensitive traffic pattern within the G protein–coupled receptor class due to interactions with different molecular chaperones, mediated in part by strict spatial localization of specific arginine residues. PMID:25680754

  10. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.

    PubMed

    Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R

    2017-08-17

    Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

  11. Resilience of a High Latitude Red Sea Frining Corals Exposed to Extreme Temperatures

    NASA Astrophysics Data System (ADS)

    Moustafa, M.; Moustafa, M. S.; Moustafa, S.; Moustafa, Z. D.

    2013-05-01

    Since 2004, multi-year study set out to establish linkages between fringing coral reefs in the northern Gulf of Suez, Red Sea, and local weather. Insight into local meteorological processes may provide a better understanding of the direct influence weather has on a fringing coral reef. To establish trends, seawater temperature and meteorological record were collected at a small fringing coral reef (Zaki's Reef), located near Ein Sokhna, Egypt (29.5oN & 32.4oE). Monitoring air and water temperature provides evidence of seasonality and interannual variability and may reveal correlations between reef health and climate conditions in this region. Prior to this study, there were no known long-term studies investigating coral reefs in this region. Approximately 35 coral taxa are known to survive the extreme temperature and salinity regime found here, yet only six corals compose 94% of coral cover on Zaki's Reef. Dominant corals include: Acropora humilis, A. microclados, A. hemprichii, Litophyton arboretum, Stylophora pistillata, Porites columna, and P. plantulata. Seawater temperatures were collected at 30 minutes intervals at 5 locations. Seawater temperature data indicate that corals experience 4-6.5oC daily temperature variations and seasonal variations that exceed 29oC. Air temperatures were collected just landward of the reef were compared to Hurghada and Ismailia 400 and 200 km south and north of the study site, respectively. Time series analysis results indicate that air temperature dominant frequencies are half-daily, daily, and yearly cycles, while water temperatures show yearly cycles. A comparison of air temperature with neighboring locations indicates that air temperatures at Ein Sokhna ranged between near 0o C to an excess of 55o C, yet, daily means for Ein Sokhna and Hurghada were very similar (24.2o C and. 25.2o C, respectively). Maximum daily air temperatures at the study site exceeded maximum air temperature at Hurghada (400 km south) by almost 7o C, while minimum daily means at Ein Sokhna were almost equal to those at Ismailia (200 km north). These trends were opposite to what was expected considering each stations geographical locations. The unexpected temperature trends, the daily/half daily dominant frequencies, and the short distance between the mountain range and Zaki's Reef vs. Hurghada (0.5 vs. 35 km), prompted us to hypothesize that a Foehn wind may be responsible for the high air temperatures observed at Ein Sokhna. We applied NOAA's HYSPLIT model to explore local circulation patterns, which suggest that the high mountain range blocks the year-round trade wind and forces it to climb up the western slope, where it loses moisture and reduces its temperature. As this cool, denser air reaches the mountain top, the air parcel starts rolling down the eastern slopes, which causes air temperature to rise and result in an increase in local air temperatures. These warmer than normal air temperatures measured here may aid in securing these northernmost reefs survival. Further scrutiny of the mechanisms by which area reefs are able to thrive extreme environmental conditions continues to be investigated.

  12. Malaria transmission in two localities in north-western Argentina

    PubMed Central

    Dantur Juri, María J; Zaidenberg, Mario; Claps, Guillermo L; Santana, Mirta; Almirón, Walter R

    2009-01-01

    Background Malaria is one of the most important tropical diseases that affects people globally. The influence of environmental conditions in the patterns of temporal distribution of malaria vectors and the disease has been studied in different countries. In the present study, ecological aspects of the malaria vector Anopheles (Anopheles) pseudopunctipennis and their relationship with climatic variables, as well as the seasonality of malaria cases, were studied in two localities, El Oculto and Aguas Blancas, in north-western Argentina. Methods The fluctuation of An. pseudopunctipennis and the malaria cases distribution was analysed with Random Effect Poisson Regression. This analysis takes into account the effect of each climatic variable on the abundance of both vector and malaria cases, giving as results predicted values named Incidence Rate Radio. Results The number of specimens collected in El Oculto and Aguas Blancas was 4224 (88.07%) and 572 (11.93%), respectively. In El Oculto no marked seasonality was found, different from Aguas Blancas, where high abundance was detected at the end of spring and the beginning of summer. The maximum mean temperature affected the An. pseudopunctipennis fluctuation in El Oculto and Aguas Blancas. When considering the relationship between the number of malaria cases and the climatic variables in El Oculto, maximum mean temperature and accumulated rainfall were significant, in contrast with Aguas Blancas, where mean temperature and humidity showed a closer relationship to the fluctuation in the disease. Conclusion The temporal distribution patterns of An. pseudopunctipennis vary in both localities, but spring appears as the season with better conditions for mosquito development. Maximum mean temperature was the most important variable in both localities. Malaria cases were influenced by the maximum mean temperature in El Oculto, while the mean temperature and humidity were significant in Aguas Blancas. In Aguas Blancas peaks of mosquito abundance and three months later, peaks of malaria cases were observed. The study reported here will help to increase knowledge about not only vectors and malaria seasonality but also their relationships with the climatic variables that influence their appearances and abundances. PMID:19152707

  13. Growth patterns of an intertidal gastropod as revealed by oxygen isotope analysis

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Hill, T. M.; Guerra, C.

    2007-12-01

    The size and morphology of mollusk shells are affected by environmental conditions. As a result, it is difficult to assess growth rate, population age structure, shell morphologies associated with ontogenetic stages, and to compare life history patterns across various environments. Oxygen isotope analysis is a useful tool for estimating minimum ages and growth rates of calcium carbonate secreting organisms. Calcite shell material from members of two northern California populations of the intertidal muricid gastropod Acanthinucella spirata was sampled for isotopic analysis. Individual shells were sampled from apex to margin, thus providing a sequential record of juvenile and adult growth. A. spirata were collected from a sheltered habitat in Tomales Bay and from an exposed reef in Bolinas. Abiotic factors, such as temperature, wave exposure, and substrate consistency, and biotic composition differ significantly between these sites, possibly resulting in local adaptations and variation in life history and growth patterns. Shell morphology of A. spirata changes with age as internal shell margin thickenings of denticle rows associated with external growth bands are irregularly accreted. It is not known when, either seasonally and/or ontogentically, these thickenings and bands form or whether inter or intra-populational variation exists. Preliminary results demonstrate the seasonal oxygen isotopic variability present at the two coastal sites, indicating 5-6 degC changes from winter to summertime temperatures; these data are consistent with local intertidal temperature records. Analysis of the seasonal patterns indicate that: 1) differences in growth rate and seasonal growth patterns at different ontogenetic stages within populations, and 2) differences in growth patterns and possibly age structure between the two A. spirata populations. These findings indicate that isotopic analyses, in addition to field observations and morphological measurements, are necessary to assess life history strategies and compare population dynamics under varying environmental conditions.

  14. Local-scale and watershed-scale determinants of summertime urban stream temperatures

    Treesearch

    Derek B. Booth; Kristin A. Kraseski; C. Rhett Jackson

    2014-01-01

    The influence of urbanization on the temperature of small streams is widely recognized, but these effects are confounded by the great natural variety of their contributing watersheds. To evaluate the relative importance of local-scale and watershed-scale factors on summer temperatures in urban streams, hundreds of near-instantaneous temperature measurements throughout...

  15. Protein Dynamics from NMR: The Slowly Relaxing Local Structure Analysis Compared with Model-Free Analysis

    PubMed Central

    Meirovitch, Eva; Shapiro, Yury E.; Polimeno, Antonino; Freed, Jack H.

    2009-01-01

    15N-1H spin relaxation is a powerful method for deriving information on protein dynamics. The traditional method of data analysis is model-free (MF), where the global and local N-H motions are independent and the local geometry is simplified. The common MF analysis consists of fitting single-field data. The results are typically field-dependent, and multi-field data cannot be fit with standard fitting schemes. Cases where known functional dynamics has not been detected by MF were identified by us and others. Recently we applied to spin relaxation in proteins the Slowly Relaxing Local Structure (SRLS) approach which accounts rigorously for mode-mixing and general features of local geometry. SRLS was shown to yield MF in appropriate asymptotic limits. We found that the experimental spectral density corresponds quite well to the SRLS spectral density. The MF formulae are often used outside of their validity ranges, allowing small data sets to be force-fitted with good statistics but inaccurate best-fit parameters. This paper focuses on the mechanism of force-fitting and its implications. It is shown that MF force-fits the experimental data because mode-mixing, the rhombic symmetry of the local ordering and general features of local geometry are not accounted for. Combined multi-field multi-temperature data analyzed by MF may lead to the detection of incorrect phenomena, while conformational entropy derived from MF order parameters may be highly inaccurate. On the other hand, fitting to more appropriate models can yield consistent physically insightful information. This requires that the complexity of the theoretical spectral densities matches the integrity of the experimental data. As shown herein, the SRLS densities comply with this requirement. PMID:16821820

  16. Effect of local chain deformability on the temperature-induced morphological transitions of polystyrene-b-poly(N-isopropylacrylamide) micelles in aqueous solution.

    PubMed

    Ke, Xi-Xian; Wang, Lian; Xu, Jun-Ting; Du, Bin-Yang; Tu, Ying-Feng; Fan, Zhi-Qiang

    2014-07-28

    The effect of temperature on the micellar morphology of two polystyrene-b-poly(N-isopropylacrylamide) (PS-b-PNIPAM) diblock copolymers in an aqueous solution was investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). At 25 °C, a mixture of vesicles and spheres are observed for the micelles of PS65-b-PNIPAM108, while PS65-b-PNIPAM360 exhibits mixed cylindrical and spherical micellar morphology. Upon increasing the temperature, the micellar morphology becomes spherical for PS65-b-PNIPAM108 at 60 °C and for PS65-b-PNIPAM360 at 40 °C. Such vesicle-to-sphere and cylinder-to-sphere transitions of micellar morphology are reversible when the micellar solutions are cooled back to 25 °C. However, these temperature-induced morphological transitions of the PS-b-PNIPAM micelles are contrary to the theoretical prediction. Qualitative analysis of the free energy shows that vesicular or cylindrical micelles tend to form at higher temperatures if only the overall volume change of the PNIPAM block is considered. The contradiction between the experimental results and theoretical prediction is interpreted in terms of the local deformability of the PNIPAM chains. At elevated temperatures, the collapsed PNIPAM globules are less deformable and must occupy larger areas at the micellar interface, although the overall volume is smaller at higher temperatures. This will lead to a larger repulsion between the PNIPAM globules and a remarkable increase in the free energy of the corona; thus, the formation of vesicles or cylinders at higher temperatures is prohibited.

  17. Understanding High Temperature Gradients in the Buckman Well Field, Santa Fe County, New Mexico

    NASA Astrophysics Data System (ADS)

    Folsom, M.; Gulvin, C. J.; Tamakloe, F. M.; Yauk, K.; Kelley, S.; Frost, J.; Jiracek, G. R.

    2014-12-01

    We propose a conceptual model to explain elevated thermal gradients, localized laterally over a few 100 m, discovered during the SAGE program in 2013 and confirmed in 2014 at the Buckman water well field in the Española Basin of north central New Mexico. The anomalous gradients of temperature with depth, dT/dz, exceed 70 ºC/km and are found in three shallow (< 100 m-deep) USGS monitoring wells close to the Rio Grande. A temperature increase of only 3 - 4 ºC at ~100 m depth would elevate the regional temperature value enough to yield the anomalous dT/dz values in the upper ~100 m. The coincidence of a 25 km2 region of InSAR-confirmed subsidence with the locally anomalous dT/dz region suggests a way to achieve a higher temperature at ~ 100 m depth. The mechanism is an isothermal release of warmer water from ~ 200 m depth along a fissure or reactivated fault. A fourth well, 290 m away, has a temperature gradient of only 33ºC/km in the upper 100 m and a distinctly different geochemical profile, suggesting aquifer compartmentalization and possible faulting close to the anomaly. In 2001 a 800 m-long surface scarp with up to 0.2 m offset appeared 2 km to the east in response to over-pumping that depressed the groundwater table by over 100 m. Such drawdown is expected to have 2 - 5 m of compaction with attendant movement along faults or fissures. This could allow groundwater to be released upward isothermally until encountering an unbreached aquitard where it would establish an elevated thermal boundary. Besides the local thermal anomaly, we have temperature-logged deeper water wells in the area. These and other measurements have been used to construct cross-sections of isotherms across the Española Basin along the groundwater flow units (GFUs). This allows comparison of the local thermal anomaly with classic, regional, basin hydrological models. For example, the fully-screened Skillet well, 2.3 km from the anomaly, shows a classic concave down dT/dz form indicating upwelling water. This is consistent with the regional hydraulic head and historical accounts of artesian wells pre-dating Buckman pumping. We quantified the upwelling by Péclet number analysis to be 0.076 - 0.11 m/yr. Numerical modeling using the TOUGH2 computer code is proceeding to further understand regional and local subsurface groundwater flow patterns and dT/dz values.

  18. Two-dimensional analysis of two-phase reacting flow in a firing direct-injection diesel engine

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Lee

    1989-01-01

    The flow field, spray penetration, and combustion in two-stroke diesel engines are described. Fuel injection begins at 345 degrees after top dead center (ATDC) and n-dodecane is used as the liquid fuel. Arrhenius kinetics is used to calculate the reaction rate term in the quasi-global combustion model. When the temperature, fuel, and oxygen mass fraction are within suitable flammability limits, combustion begins spontaneously. No spark is necessary to ignite a localized high temperature region. Compression is sufficient to increase the gaseous phase temperature to a point where spontaneous chemical reactions occur. Results are described for a swirl angle of 22.5 degrees.

  19. USGS Coal Desorption Equipment and a Spreadsheet for Analysis of Lost and Total Gas from Canister Desorption Measurements

    USGS Publications Warehouse

    Barker, Charles E.; Dallegge, Todd A.; Clark, Arthur C.

    2002-01-01

    We have updated a simple polyvinyl chloride plastic canister design by adding internal headspace temperature measurement, and redesigned it so it is made with mostly off-the-shelf components for ease of construction. Using self-closing quick connects, this basic canister is mated to a zero-head manometer to make a simple coalbed methane desorption system that is easily transported in small aircraft to remote localities. This equipment is used to gather timed measurements of pressure, volume and temperature data that are corrected to standard pressure and temperature (STP) and graphically analyzed using an Excel(tm)-based spreadsheet. Used together these elements form an effective, practical canister desorption method.

  20. In situ temperature monitoring in single-molecule FRET experiments

    NASA Astrophysics Data System (ADS)

    Hartmann, Andreas; Berndt, Frederic; Ollmann, Simon; Krainer, Georg; Schlierf, Michael

    2018-03-01

    Thermodynamic properties of single molecules including enthalpic and entropic contributions are often determined from experiments by a direct control and precise measurement of the local temperature. However, common temperature monitoring techniques using, for example, ultrafine temperature probes can lead to uncertainties as the probe cannot be placed in the vicinity of the molecule of interest. Here, we devised an approach to measure the local temperature in freely diffusing confocal single-molecule Förster Resonance Energy Transfer (smFRET) experiments in situ by directly adding the temperature-sensitive fluorescent dye Rhodamine B, whose fluorescence lifetime serves as a probe of the local temperature in the confocal volume. We demonstrate that the temperature and FRET efficiencies of static and dynamic molecules can be extracted within one measurement simultaneously, without the need of a reference chamber. We anticipate this technique to be particularly useful in the physicochemical analyses of temperature-dependent biomolecular processes from single-molecule measurements.

  1. Critical Factors for the Transition from Chromate to Chromate-Free Corrosion Protection

    DTIC Science & Technology

    2005-06-15

    sub-ambient temperature. Local Cr-rich deposits (location b) are located on grain boundaries or pre- 3 existing metal ridge. Microchemical analysis ...form the framework for this review. AQUEOUS CHEMISTRY Cr6+ is readily hydrolyzed in aqueous solution and exists as an oxoanion in all but...involved in the reaction equilibria shown in Eqs. 2-4. The key results from this analysis are the following: • In acidic environments (pH 2-4

  2. Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations

    NASA Technical Reports Server (NTRS)

    Gutowski, William J.; Lindemulder, Elizabeth A.; Jovaag, Kari

    1995-01-01

    We use retrievals of atmospheric precipitable water from satellite microwave observations and analyses of near-surface temperature to examine the relationship between these two fields on daily and longer time scales. The retrieval technique producing the data used here is most effective over the open ocean, so the analysis focuses on the southern hemisphere's extratropics, which have an extensive ocean surface. For both the total and the eddy precipitable water fields, there is a close correspondence between local variations in the precipitable water and near-surface temperature. The correspondence appears particularly strong for synoptic and planetary scale transient eddies. More specifically, the results support a typical modeling assumption that transient eddy moisture fields are proportional to transient eddy temperature fields under the assumption f constant relative humidity.

  3. Crystal growth and magneto-transport behavior of PdS1-δ

    NASA Astrophysics Data System (ADS)

    Cao, Lin; Lv, Yang-Yang; Chen, Si-Si; Li, Xiao; Zhou, Jian; Yao, Shu-Hua; Chen, Y. B.; Lu, Minghui; Chen, Yan-Feng

    2018-04-01

    PdS is theoretically proposed to novel topological material with eight-band fermions. Here, PdS1-δ crystals were successfully grown from KI as solvent by modified flux method. The single crystalline quality and compositional homogeneity of grown PdS1-δ are characterized by X-ray diffraction and energy dispersion spectroscopy. Temperature dependent electrical transport property of PdS1-δ demonstrates a semiconductor-like behavior. Analysis of temperature-dependent resistance indicates that there is variable-range-hopping behavior at low temperature. The clear negative MR of PdS1-δ single crystals is measured at the low temperature (<30 K), which may be ascribed to the interaction between conducting carriers and localized moments. however, the magneto-transport results have not shown the clues of topological feature of PdS.

  4. Simulated Data for High Temperature Composite Design

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2006-01-01

    The paper describes an effective formal method that can be used to simulate design properties for composites that is inclusive of all the effects that influence those properties. This effective simulation method is integrated computer codes that include composite micromechanics, composite macromechanics, laminate theory, structural analysis, and multi-factor interaction model. Demonstration of the method includes sample examples for static, thermal, and fracture reliability for a unidirectional metal matrix composite as well as rupture strength and fatigue strength for a high temperature super alloy. Typical results obtained for a unidirectional composite show that the thermal properties are more sensitive to internal local damage, the longitudinal properties degrade slowly with temperature, the transverse and shear properties degrade rapidly with temperature as do rupture strength and fatigue strength for super alloys.

  5. Real time thermal imaging for analysis and control of crystal growth by the Czochralski technique

    NASA Technical Reports Server (NTRS)

    Wargo, M. J.; Witt, A. F.

    1992-01-01

    A real time thermal imaging system with temperature resolution better than +/- 0.5 C and spatial resolution of better than 0.5 mm has been developed. It has been applied to the analysis of melt surface thermal field distributions in both Czochralski and liquid encapsulated Czochralski growth configurations. The sensor can provide single/multiple point thermal information; a multi-pixel averaging algorithm has been developed which permits localized, low noise sensing and display of optical intensity variations at any location in the hot zone as a function of time. Temperature distributions are measured by extraction of data along a user selectable linear pixel array and are simultaneously displayed, as a graphic overlay, on the thermal image.

  6. An analysis of the influence of the local effects of climatic and hydrological factors affecting new malaria cases in riverine areas along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil.

    PubMed

    Coutinho, Paulo Eduardo Guzzo; Candido, Luiz Antonio; Tadei, Wanderli Pedro; da Silva Junior, Urbano Lopes; Correa, Honorly Katia Mestre

    2018-04-26

    A study was conducted at three sampling regions along the Rio Negro and surrounding Puraquequara Lake, Amazonas, Brazil. The aim was to determine the influence of the local effects of climatic and hydrological variables on new malaria cases. Data was gathered on the river level, precipitation, air temperature, and the number of new cases of autochthonous malaria between January 2003 and December 2013. Monthly averages, time series decompositions, cross-correlations, and multiple regressions revealed different relationships at each location. The sampling region in the upper Rio Negro indicated no statistically significant results. However, monthly averages suggest that precipitation and air temperature correlate positively with the occurrence of new cases of malaria. In the mid Rio Negro and Puraquequara Lake, the river level positively correlated, and temperature negatively correlated with new transmissions, while precipitation correlated negatively in the mid Rio Negro and positively on the lake. Overall, the river level is a key variable affecting the formation of breeding sites, while precipitation may either develop or damage them. A negative temperature correlation is associated with the occurrence of new annual post-peak cases of malaria, when the monthly average exceeds 28.5 °C. This suggests that several factors contribute to the occurrence of new malaria cases as higher temperatures are reached at the same time as precipitation and the river levels are lowest. Differences between signals and correlation lags indicate that local characteristics have an impact on how different variables influence the disease vector's life cycle, pathogens, and consequently, new cases of malaria.

  7. Natural selection and genetic variation for reproductive reaction norms in a wild bird population.

    PubMed

    Brommer, Jon E; Merilä, Juha; Sheldon, Ben C; Gustafsson, Lars

    2005-06-01

    Many morphological and life-history traits show phenotypic plasticity that can be described by reaction norms, but few studies have attempted individual-level analyses of reaction norms in the wild. We analyzed variation in individual reaction norms between laying date and three climatic variables (local temperature, local rainfall, and North Atlantic Oscillation) of 1126 female collared flycatchers (Ficedula albicollis) with a restricted maximum likehood linear mixed model approach using random-effect best linear unbiased predictor estimates for the elevation (i.e., expected laying date in the average environment) and slope (i.e., adjustment in laying date as a function of environment) of females' reaction norms. Variation in laying date was best explained by local temperature, and individual females differed in both the elevation and the slope of their laying date-temperature reaction norms. As revealed by animal model analyses, there was weak evidence for additive genetic variance of elevation (h2 +/- SE = 0.09 +/- 0.09), whereas there was no evidence for heritability of slope (h2 +/- SE = 0.00 +/- 0.01). Selection analysis, using a female's lifetime production of fledglings or recruits as an estimate of her fitness, revealed significant selection for a lower phenotypic value and breeding value for elevation (i.e., earlier laying date at the average temperature). There was selection for steeper phenotypic values of slope (i.e., greater plasticity in the adjustment of laying date to temperature), but no significant selection on the breeding values of slope. Although these results suggest that phenotypic laying date is influenced by additive genetic factors, as well as by an interaction with the environment, selection on plasticity would not produce an evolutionary response.

  8. Embrittlement and Flow Localization in Reactor Structural Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xianglin Wu; Xiao Pan; James Stubbins

    2006-10-06

    Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of neckingmore » is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.« less

  9. Analysis of disturbances in a hypersonic boundary layer on a cone with heating/cooling of the nose tip

    NASA Astrophysics Data System (ADS)

    Bountin, Dmitry; Maslov, Anatoly; Gromyko, Yury

    2018-05-01

    Experimental results of the influence of local heating/cooling on the development of hypersonic boundary layer disturbances are reported. Local heating/cooling is applied at the cone nose tip. The experiments are carried out at the Mach number M = 5.95, stagnation temperature T0 = 360-418 K, and stagnation pressure P0 = 3.7-45 atm. The unit Reynolds number is varied in the interval Re1 = (4.5-63) × 106 m-1. The investigations are conducted in the boundary layer on a cone with an apex half-angle of 7° and varied bluntness radius of the nose tip [R = 0.03 (sharp nose), 0.75, and 1.5 mm] for different values of the local temperature factor. The nose tip is heated by an ohmic heater. Cooling is performed by supplying liquid nitrogen into the internal cavity of the model nose. A comparative analysis of pressure pulsation spectra on the cone surface is performed. It is demonstrated that heating/cooling in the case of a sharp cone leads to flow destabilization/stabilization. The opposite effect is observed for blunted cones: heating/cooling stabilizes/destabilizes the second-mode disturbances. This effect is enhanced by increasing the nose tip bluntness. All the observed effects vanish with distance downstream from the nose tip.

  10. Local structural aspects of metal-metal transition in IrTe2 from x-ray PDF

    NASA Astrophysics Data System (ADS)

    Yu, Runze; Abeykoon, Milinda; Zhou, Haidong; Yin, Weiguo; Bozin, Emil S.

    Evolution of local atomic structure across the metal-metal transition in IrTe2 is explored by pair distribution function (PDF) analysis of x-ray total scattering data over 80 K

  11. Local and Remote Climate Response to Deforestation in Maritime Continent

    NASA Astrophysics Data System (ADS)

    Chen, C. C.; Lo, M. H.; Yu, J. Y.

    2016-12-01

    Deforestation in tropical regions would lead to changes in local energy and moisture budget, resulting in further impacts on regional and global climate. Previous studies have indicated that the reduction of evapotranspiration dominates the influence of tropical deforestation, which causes a warmer and drier climate. Most studies agree that the deforestation leads to an increase in temperature and decline in precipitation over the deforested area. However, unlike Amazon or Africa, Maritime Continent consists of islands surrounded by oceans so the drying effects found in Amazon or Africa may not be the case in Maritime Continent. Thus, our objective is to investigate the local and remote climate responses to deforestation in such unique region. We conduct deforestation experiments using NCAR Community Earth System Model (CESM) and through converting the tropical rainforest into grassland. The preliminary results show that deforestation in Maritime Continent leads to an increase in both temperature and precipitation, which is not predicted by earlier studies. We will further perform moisture budget analysis to explore how the precipitation changes with the deforestation forcing.

  12. A Numerical Analysis on a Compact Heat Exchanger in Aluminum Foam

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Ercole, D.; Manca, O.; Nardini, S.

    2016-09-01

    A numerical investigation on a compact heat exchanger in aluminum foam is carried out. The governing equations in two-dimensional steady state regime are written in local thermal non-equilibrium (LTNE). The geometrical domain under investigation is made up of a plate in aluminum foam with inside a single array of five circular tubes. The presence of the open-celled metal foam is modeled as a porous media by means of the Darcy-Forchheimer law. The foam has a porosity of 0.93 with 20 pores per inch and the LTNE assumption is used to simulate the heat transfer between metal foam and air. The compact heat exchanger at different air flow rates is studied with an assigned surface tube temperature. The results in terms of local heat transfer coefficient and Nusselt number on the external surface of the tubes are given. Moreover, local air temperature and velocity profiles in the smaller cross section, between two consecutive tubes, as a function of Reynolds number are showed. The performance evaluation criteria (PEC) is assessed in order to evaluate the effectiveness of the metal foam.

  13. Non-equilibrium steady states in the Klein-Gordon theory

    NASA Astrophysics Data System (ADS)

    Doyon, Benjamin; Lucas, Andrew; Schalm, Koenraad; Bhaseen, M. J.

    2015-03-01

    We construct non-equilibrium steady states in the Klein-Gordon theory in arbitrary space dimension d following a local quench. We consider the approach where two independently thermalized semi-infinite systems, with temperatures {{T}L} and {{T}R}, are connected along a d-1-dimensional hypersurface. A current-carrying steady state, described by thermally distributed modes with temperatures {{T}L} and {{T}R} for left and right-moving modes, respectively, emerges at late times. The non-equilibrium density matrix is the exponential of a non-local conserved charge. We obtain exact results for the average energy current and the complete distribution of energy current fluctuations. The latter shows that the long-time energy transfer can be described by a continuum of independent Poisson processes, for which we provide the exact weights. We further describe the full time evolution of local observables following the quench. Averages of generic local observables, including the stress-energy tensor, approach the steady state with a power-law in time, where the exponent depends on the initial conditions at the connection hypersurface. We describe boundary conditions and special operators for which the steady state is reached instantaneously on the connection hypersurface. A semiclassical analysis of freely propagating modes yields the average energy current at large distances and late times. We conclude by comparing and contrasting our findings with results for interacting theories and provide an estimate for the timescale governing the crossover to hydrodynamics. As a modification of our Klein-Gordon analysis we also include exact results for free Dirac fermions.

  14. Non-stationary Drainage Flows and Cold Pools in Gentle Terrain

    NASA Astrophysics Data System (ADS)

    Mahrt, L.

    2015-12-01

    Previous studies have concentrated on organized topography with well-defined slopes or valleys in an effort to understand the flow dynamics. However, most of the Earth's land surface consists of gentle terrain that is quasi three dimensional. Different scenarios are briefly classified. A network of measurements are analyzed to examine shallow cold pools and drainage flow down the valley which develop for weak ambient wind and relatively clear skies. However, transient modes constantly modulate or intermittently eliminate the cold pool, which makes extraction and analysis of the horizontal structure of the cold pool difficult with traditional analysis methods. Singular value decomposition successfully isolates the effects of large-scale flow from local down-valley cold air drainage within the cold pool in spite of the intermittent nature of this local flow. The traditional concept of a cold pool must be generalized to include cold pool intermittency, complex variation of temperature related to some three-dimensionality and a diffuse cold pool top. Different types of cold pools are classified in terms of the stratification and gradient of potential temperature along the slope. The strength of the cold pool is related to a forcing temperature scale proportional to the net radiative cooling divided by the wind speed above the valley. The scatter is large partly due to nonstationarity of the marginal cold pool in this shallow valley

  15. Temperature dependency of state of charge inhomogeneities and their equalization in cylindrical lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Osswald, P. J.; Erhard, S. V.; Rheinfeld, A.; Rieger, B.; Hoster, H. E.; Jossen, A.

    2016-10-01

    The influence of cell temperature on the current density distribution and accompanying inhomogeneities in state of charge (SOC) during cycling is analyzed in this work. To allow for a detailed insight in the electrochemical behavior of the cell, commercially available 26650 cells were modified to allow for measuring local potentials at four different, nearly equidistant positions along the electrodes. As a follow-up to our previous work investigating local potentials within a cell, we apply this method for studying SOC deviations and their sensitivity to cell temperature. The local potential distribution was studied during constant current discharge operations for various current rates and discharge pulses in order to evoke local inhomogeneities for temperatures ranging from 10 °C to 40 °C. Differences in local potentials were considered for estimating local SOC variations within the electrodes. It could be observed that even low currents such as 0.1C can lead to significant inhomogeneities, whereas a higher cell temperature generally results in more pronounced inhomogeneities. A rapid SOC equilibration can be observed if the variation in the SOC distribution corresponds to a considerable potential difference defined by the open circuit voltage of either the positive or negative electrode. With increasing temperature, accelerated equalization effects can be observed.

  16. Associations between Changes in City and Address Specific Temperature and QT Interval - The VA Normative Aging Study

    PubMed Central

    Mehta, Amar J.; Kloog, Itai; Zanobetti, Antonella; Coull, Brent A.; Sparrow, David; Vokonas, Pantel; Schwartz, Joel

    2014-01-01

    Background The underlying mechanisms of the association between ambient temperature and cardiovascular morbidity and mortality are not well understood, particularly for daily temperature variability. We evaluated if daily mean temperature and standard deviation of temperature was associated with heart rate-corrected QT interval (QTc) duration, a marker of ventricular repolarization in a prospective cohort of older men. Methods This longitudinal analysis included 487 older men participating in the VA Normative Aging Study with up to three visits between 2000–2008 (n = 743). We analyzed associations between QTc and moving averages (1–7, 14, 21, and 28 days) of the 24-hour mean and standard deviation of temperature as measured from a local weather monitor, and the 24-hour mean temperature estimated from a spatiotemporal prediction model, in time-varying linear mixed-effect regression. Effect modification by season, diabetes, coronary heart disease, obesity, and age was also evaluated. Results Higher mean temperature as measured from the local monitor, and estimated from the prediction model, was associated with longer QTc at moving averages of 21 and 28 days. Increased 24-hr standard deviation of temperature was associated with longer QTc at moving averages from 4 and up to 28 days; a 1.9°C interquartile range increase in 4-day moving average standard deviation of temperature was associated with a 2.8 msec (95%CI: 0.4, 5.2) longer QTc. Associations between 24-hr standard deviation of temperature and QTc were stronger in colder months, and in participants with diabetes and coronary heart disease. Conclusion/Significance In this sample of older men, elevated mean temperature was associated with longer QTc, and increased variability of temperature was associated with longer QTc, particularly during colder months and among individuals with diabetes and coronary heart disease. These findings may offer insight of an important underlying mechanism of temperature-related cardiovascular morbidity and mortality in an older population. PMID:25238150

  17. Curie temperature study of {Y(Fe_{1-\\it x} {Co_{\\it x})_2}} and {Zr(Fe_{1-\\it x} {Co_{\\it x})_2}} systems using mean field theory and Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wasilewski, Bartosz; Marciniak, Wojciech; Werwiński, Mirosław

    2018-05-01

    Cubic Laves phases including , , , and are considered as promising candidates for application in hydrogen storage and magnetic refrigeration. While and are ferromagnets, alloying with Co decreases magnetic moments and Curie temperatures (T C) of pseudobinary and systems, leading to the paramagnetic states of and . The following study focuses on the investigation of Curie temperature of the and system from first principles. To do it, Monte Carlo (MC) simulations and the mean field theory (MFT) based on the disordered local moments (DLM) calculations are used. The DLM-MFT results agree qualitatively with the experimental data from the literature and preserve the characteristic features of dependencies for both and . However, we have encountered complications in the Co-rich regions due to failure of the local density approximation (LDA) in describing the Co magnetic moment in the DLM state. The analysis of Fe–Fe exchange couplings for and phases indicates that the nearest-neighbor interactions play the main role in the formation of .

  18. Thermal distribution in biological tissue at laser induced fluorescence and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Krasnikov, I. V.; Seteikin, A. Yu.; Drakaki, E.; Makropoulou, M.

    2012-03-01

    Laser induced fluorescence spectroscopy and photodynamic therapy (PDT) are techniques currently introduced in clinical applications for visualization and local destruction of malignant tumours as well as premalignant lesions. During the laser irradiation of tissues for the diagnostic and therapeutic purposes, the absorbed optical energy generates heat, although the power density of the treatment light for surface illumination is normally low enough not to cause any significantly increased tissue temperature. In this work we tried to evaluate the utility of Monte Carlo modeling for simulating the temperature fields and the dynamics of heat conduction into the skin tissue under several laser irradiation conditions with both a pulsed UV laser and a continuous wave visible laser beam. The analysis of the results showed that heat is not localized on the surface, but it is collected inside the tissue. By varying the boundary conditions on the surface and the type of the laser radiation (continuous or pulsed) we can reach higher than normal temperature inside the tissue without simultaneous formation of thermally damaged tissue (e.g. coagulation or necrosis zone).

  19. CeLa enhanced corrosion resistance of Al-Cu-Mn-Mg-Fe alloy for lithium battery shell

    NASA Astrophysics Data System (ADS)

    Du, Jiandi; Ding, Dongyan; Zhang, Wenlong; Xu, Zhou; Gao, Yongjin; Chen, Guozhen; Chen, Weigao; You, Xiaohua; Chen, Renzong; Huang, Yuanwei; Tang, Jinsong

    2017-11-01

    Effects of CeLa addition on the localized corrosion and electrochemical corrosion behavior of Al-Cu-Mn-Mg-Fe lithium battery shell alloy were investigated by immersion testing and electrochemical testing in 0.6 M NaCl solution at different temperatures. Experimental results indicated that CeLa addition resulted in the formation of AlCuCe/La (Al8Cu4Ce and Al6Cu6La) local cathodes and corrosion activity of the main intermetallic particles decreased in the order of Al2CuMg, AlCuCe/La, Al6(Mn, Fe). Corrosion potential shifted positively due to CeLa alloying. Corrosion current density of the CeLa-containing alloy was lower than that of the CeLa-free alloy at room temperature. At room temperature, there was no obvious surface passivation for both alloys. At 80 °C CeLa addition resulted in a wide passive region at the anode polarization region. Electrochemical impedance spectroscopy (EIS) analysis also indicated that corrosion resistance of the CeLa-containing alloy was much higher than that of the CeLa-free alloy.

  20. Novel insights into the dynamics of cold-air drainage and pooling on a gentle slope from fiber-optic distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph

    2016-04-01

    Urban climate can benefit from cold-air drainage as it may help alleviate the urban heat island. In contrast, stable cold-air pools can damage plants especially in rural areas. In this study, we examined the dynamics of cold-air drainage and pooling in a peri-urban setting over a period of 47 days along a 170 m long slope with an inclination of 1.3° located in the Ecological Botany Gardens of the University of Bayreuth. Air and soil temperatures were measured using distributed temperature sensing of an 2-dimensional fiber-optic array at six heights (-2 cm to 100 cm) along the slope sampling every 1 min and every 1 m. Ancillary measurements of winds, turbulence intensity and momentum exchange were collected using two ultrasonic anemometers installed at 0.1 m and 17 m height at the center of the transect. We hypothesized that cold-air drainage, here defined as a gravity-driven density flow near the bottom originating from local radiative cooling of the surface, is decoupled from non-local flows and can thus be predicted from the local topography. The nocturnal data were stratified by classes of longwave radiation balance, wind speed, and wind direction at 0.1 m agl. The four most abundant classes were tested further for decoupling of wind velocities and directions between 17 and 0.1 m. We further computed the vertical and horizontal temperature perturbations of the fiber-optic array as evaluated for these cases, as well as subject the temperature data to a multiresolution decomposition to investigate the spatial two-point correlation coefficient along the transect. Finally, the cold pool intensity was calculated. The results revealed none of the four most abundant classes followed classical textbook knowledge of locally produced cold-air drainage. Instead, we found that the near-surface flow was strongly forced by two possibly competing non-local flow modes. The first mode caused weak (< 0.4 ms-1) near-surface winds directed perpendicular to the local slope and showed strong vertical decoupling of wind velocities and directions. The vertical and horizontal perturbation of the temperature as well as the cold-pool intensity was high and the two-point correlation coefficient decorrelated fast with increasing distance. In contrast, for the second mode the wind was aligned with the local slope and the wind velocities and directions agreed vertically. However, momentum exchange was much enhanced leading to intense shear-generated mixing and almost vanishing temperature perturbations, higher spatial coherence indicated by slower spatial decorrelations, and a cold-pool intensity of close to zero. In conclusion, the first mode was interpreted as a relatively weak non-local valley-scale cold-air drainage modulating the close to stationary cold-air pool filling the shallow depression the Botanical Gardens are located in. Here, the deeper cold-air drainage causes only weak local movements at the surface as both layers are largely decoupled. The second mode is possibly caused by a recirculation of a stronger valley-scale flow with sufficient synoptic forcing. Our findings challenge the common practice to predict cold-air dynamics solely based on micro-topographic analysis.

  1. Historical Change of Equilibrium Water Temperature in Japan

    NASA Astrophysics Data System (ADS)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e.g., northern parts of Japan show the temperature fall in spring and the temperature rise in autumn, while the urbanized regions along the Pacific coastline indicate the temperature rise in all the four seasons.

  2. Evaluation of high field and/or local heating based material degradation of nanoscale metal emitter tips: a molecular dynamics analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Giesselmann, M.; Mankowski, J.; Dickens, J.; Neuber, A.; Joshi, R. P.

    2017-05-01

    A molecular dynamics (MD) model is used to study the potential for mass ejection from a metal nanoprotrusion, driven by high fields and temperature increases. Three-dimensional calculations of the electric fields surrounding the metal emitter are used to obtain the Maxwell stress on the metal. This surface loading is coupled into MD simulations. Our results show that mass ejection from the nanotip is possible and indicate that both larger aspect ratios and higher local temperatures will drive the instability. Hence it is predicted that in a nonuniform distribution of emitters, the longer and thinner sites will suffer the most damage, which is generally in keeping with the trends of a recent experimental report (Parson et al 2014 IEEE Trans. Plasma Sci. 42 3982). A possible hypothesis for mass ejection in the absence of a distinct nanoprotrusion is also discussed.

  3. Evolution of ionosphere-thermosphere (IT) parameters in the cusp region related to ion upflow events

    NASA Astrophysics Data System (ADS)

    Kervalishvili, Guram; Lühr, Hermann

    2017-04-01

    In this study we investigate the relationships of various IT parameters with the intensity of vertical ion flow. Our study area is the ionospheric cusp region in the northern hemisphere. The approach uses superposed epoch analysis (SEA) method, centered alternately on peaks of the three different variables: neutral density enhancement, vertical plasma flow, and electron temperature. Further parameters included are large-scale field-aligned currents (LSFACs) and thermospheric zonal wind velocity profiles over magnetic latitude (MLat), which are centered at the event time and location. The dependence on the interplanetary magnetic field (IMF) By component orientation and the local (Lloyd) season is of particular interest. Our investigations are based on CHAMP and DMSP (F13 and F15) satellite observations and the OMNI online database collected during the years 2002-2007. The three Lloyd seasons of 130 days each are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32 days), and local summer (1 July ± 65 days). A period of 130 days corresponds to the time needed by CHAMP to sample all local times. The SEA MLat profiles with respect to neutral density enhancement and vertical plasma flow peaks show no significant but only slight (decreasing towards local summer) seasonal variations for both IMF By orientations. The latitude profiles of median LSFACs show a clear dependence on the IMF By orientation. As expected, the maximum and minimum values of LSFAC amplitudes are increasing towards local summer for both IMF By signs. With respect to zero epoch latitude, FAC peaks appear equatorward (negative MLat) related to Region 1 (R1) and poleward (positive MLat) to Region 0 (R0) FACs. However, there is an imbalance between the amplitudes of LSFACs, depending on the current latitude. R1 currents are systematically stronger than R0 FACs. A somewhat different distribution of density enhancements and large-scale FACs emerges when the SEA is centered on electron temperature peaks. As expected, the background electron temperature increases towards summer and shows no dependence on the IMF By orientation. In contrast to the previous sorting the mass density enhancement shows a dependence on the IMF By sign and increases towards local summer in case of IMF By<0. As before LSFAC peak values are increasing towards local summer, but there is no clear latitudinal profile of upward and downward FACs. We think that intense precipitation of soft electrons (<100 eV) cause the electron temperature enhancement in the cusp region. But there is no direct dependence on the FAC intensity. But for neutral density enhancement and vertical plasma flow the combination of Joule heating and soft electron precipitation, causing electron temperature and conductivity enhancements, are required.

  4. Multiscale Trend Analysis for Pampa Grasslands Using Ground Data and Vegetation Sensor Imagery

    PubMed Central

    Scottá, Fernando C.; da Fonseca, Eliana L.

    2015-01-01

    This study aimed to evaluate changes in the aboveground net primary productivity (ANPP) of grasslands in the Pampa biome by using experimental plots and changes in the spectral responses of similar vegetation communities obtained by remote sensing and to compare both datasets with meteorological variations to validate the transition scales of the datasets. Two different geographic scales were considered in this study. At the local scale, an analysis of the climate and its direct influences on grassland ANPP was performed using data from a long-term experiment. At the regional scale, the influences of climate on the grassland reflectance patterns were determined using vegetation sensor imagery data. Overall, the monthly variations of vegetation canopy growth analysed using environmental changes (air temperature, total rainfall and total evapotranspiration) were similar. The results from the ANPP data and the NDVI data showed the that variations in grassland growth were similar and independent of the analysis scale, which indicated that local data and the relationships of local data with climate can be considered at the regional scale in the Pampa biome by using remote sensing. PMID:26197320

  5. Clumped isotope paleothermometry of eggshells as an indicator of vertebrate endothermy

    NASA Astrophysics Data System (ADS)

    Canavan, R. R.; Field, D. J.; Therrien, F.; Zelenitsky, D.; Affek, H. P.

    2014-12-01

    Isotopic analyses of the calcite or aragonite shells of aquatic organisms are often used in the study of the environmental conditions in which they grow; however, this approach is less straightforward in the terrestrial realm, where environments may be more heterogeneous. In such terrestrial localities, the bioapatite of vertebrate teeth comprises the typical archival material for isotopic analyses. The calcitic eggshells of birds and other reptiles may provide suitable material for isotopic analyses that are aimed at studying their physiology and ecology. Here we apply a novel thermometer, carbonate clumped isotopes (Δ47), to test for endothermy in extinct non-avian dinosaurs in the context provided by eggs of modern reptiles and birds. These Δ47-derived temperatures should reflect the temperature of shell formation, which in endothermic animals such as birds should represent the mother's internal body temperature. In ectothermic animals, the same is true although their body temperatures are more affected by the external environment and thus Δ47 temperatures could more accurately describe local environmental temperatures during eggshell formation. Fossil eggshells represent appropriate material for reconstructing internal body temperatures of extinct non-avian dinosaurs since they mineralized within the mother's body, and fragments of eggshell are commonly recovered from dinosaur-bearing fossil deposits. The dimensions of these fragments provide sufficient material for the relatively large sample required for clumped isotope analysis (~20mg). Fossil eggshell samples from several taxa of Late Cretaceous non-avian dinosaurs were analyzed using Δ47 paleothermometry. Textural inspection was used as a first test for diagenetic alteration of the original calcite, and histological indicators were used for broad taxonomic identifications. Preliminary results of Δ47-derived body temperature estimates from eggshells are consistent with previous body temperatures estimates from bioapatite Δ47 analyses performed on non-avian dinosaur teeth.

  6. Evaluation of Food Freshness and Locality by Odor Sensor

    NASA Astrophysics Data System (ADS)

    Koike, Takayuki; Shimada, Koji; Kamimura, Hironobu; Kaneki, Noriaki

    The aim of this study was to investigate whether food freshness and locality can be classified using a food evaluation system consisting four SnO2-semiconductor gas sensors and a solid phase column, into which collecting aroma materials. The temperature of sensors was periodically changed to be in unsteady state and thus, the sensor information was increased. The parameters (in quefrency band) were extracted from sensor information using cepstrum analysis that enable to separate superimposed information on sinusoidal wave. The quefrency was used as parameters for principal component and discriminant analyses (PCA and DCA) to detect food freshness and food localities. We used three kinds of strawberries, people can perceive its odors, passed from one to three days after harvest, and kelps and Ceylon tea, people are hardly to perceive its odor, corrected from five areas as sample. Then, the deterioration of strawberries and localities of kelps and Ceylon teas were visually evaluated using the numerical analyses. While the deteriorations were classified using PCA or DCA, the localities were classified only by DCA. The findings indicate that, although odorant intensity influenced the method detecting food quality, the quefrency obtained from odorant information using cepstrum analysis were available to detect the difference in the freshness and the localities of foods.

  7. Extremely cold and hot temperatures increase the risk of ischaemic heart disease mortality: epidemiological evidence from China.

    PubMed

    Guo, Yuming; Li, Shanshan; Zhang, Yanshen; Armstrong, Ben; Jaakkola, Jouni J K; Tong, Shilu; Pan, Xiaochuan

    2013-02-01

    To examine the effects of extremely cold and hot temperatures on ischaemic heart disease (IHD) mortality in five cities (Beijing, Tianjin, Shanghai, Wuhan and Guangzhou) in China; and to examine the time relationships between cold and hot temperatures and IHD mortality for each city. A negative binomial regression model combined with a distributed lag non-linear model was used to examine city-specific temperature effects on IHD mortality up to 20 lag days. A meta-analysis was used to pool the cold effects and hot effects across the five cities. 16 559 IHD deaths were monitored by a sentinel surveillance system in five cities during 2004-2008. The relationships between temperature and IHD mortality were non-linear in all five cities. The minimum-mortality temperatures in northern cities were lower than in southern cities. In Beijing, Tianjin and Guangzhou, the effects of extremely cold temperatures were delayed, while Shanghai and Wuhan had immediate cold effects. The effects of extremely hot temperatures appeared immediately in all the cities except Wuhan. Meta-analysis showed that IHD mortality increased 48% at the 1st percentile of temperature (extremely cold temperature) compared with the 10th percentile, while IHD mortality increased 18% at the 99th percentile of temperature (extremely hot temperature) compared with the 90th percentile. Results indicate that both extremely cold and hot temperatures increase IHD mortality in China. Each city has its characteristics of heat effects on IHD mortality. The policy for response to climate change should consider local climate-IHD mortality relationships.

  8. Numerical Analysis of the Interaction between Thermo-Fluid Dynamics and Auto-Ignition Reaction in Spark Ignition Engines

    NASA Astrophysics Data System (ADS)

    Saijyo, Katsuya; Nishiwaki, Kazuie; Yoshihara, Yoshinobu

    The CFD simulations were performed integrating the low-temperature oxidation reaction. Analyses were made with respect to the first auto-ignition location in the case of a premixed-charge compression auto-ignition in a laminar flow field and in the case of the auto-ignition in an end gas during an S. I. Engine combustion process. In the latter simulation, the spatially-filtered transport equations were solved to express fluctuating temperatures in a turbulent flow in consideration of strong non-linearity to temperature in the reaction equations. It is suggested that the first auto-ignition location does not always occur at higher-temperature locations and that the difference in the locations of the first auto-ignition depends on the time period during which the local end gas temperature passes through the region of shorter ignition delay, including the NTC region.

  9. Copper plasmonics and catalysis: role of electron-phonon interactions in dephasing localized surface plasmons

    NASA Astrophysics Data System (ADS)

    Sun, Qi-C.; Ding, Yuchen; Goodman, Samuel M.; H. Funke, Hans; Nagpal, Prashant

    2014-10-01

    Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04719b

  10. High temperature extended x-ray absorption fine structure study of multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Raghavendra Reddy, V.; Meneghini, Carlo; Kothari, Deepti; Gupta, Ajay; Aquilanti, Giuliana

    2012-08-01

    Local atomic structure modifications around Fe atoms in polycrystalline multiferroic BiFeO3 are studied by Fe K edge x-ray absorption spectroscopy as a function of temperature across the Néel temperature (TN = 643 K) in order to reveal local structure modifications related to the magnetic transition. This work demonstrates that on crossing TN the local structure around Fe shows peculiar changes: the Fe-O bond lengths get shorter, the ligand symmetry increases and the Fe-O bond length disorder (σ2) deviates from Debye behaviour. These results suggest that the structural transition at the ferroelectric Curie temperature (TC = 1103 K) is anticipated by early local rearrangement of the structure starting already at TN.

  11. Infrared nanoscopy down to liquid helium temperatures

    NASA Astrophysics Data System (ADS)

    Lang, Denny; Döring, Jonathan; Nörenberg, Tobias; Butykai, Ádám; Kézsmárki, István; Schneider, Harald; Winnerl, Stephan; Helm, Manfred; Kehr, Susanne C.; Eng, Lukas M.

    2018-03-01

    We introduce a scattering-type scanning near-field infrared microscope (s-SNIM) for the local scale near-field sample analysis and spectroscopy from room temperature down to liquid helium (LHe) temperature. The extension of s-SNIM down to T = 5 K is in particular crucial for low-temperature phase transitions, e.g., for the examination of superconductors, as well as low energy excitations. The low temperature (LT) s-SNIM performance is tested with CO2-IR excitation at T = 7 K using a bare Au reference and a structured Si/SiO2-sample. Furthermore, we quantify the impact of local laser heating under the s-SNIM tip apex by monitoring the light-induced ferroelectric-to-paraelectric phase transition of the skyrmion-hosting multiferroic material GaV4S8 at Tc = 42 K. We apply LT s-SNIM to study the spectral response of GaV4S8 and its lateral domain structure in the ferroelectric phase by the mid-IR to THz free-electron laser-light source FELBE at the Helmholtz-Zentrum Dresden-Rossendorf, Germany. Notably, our s-SNIM is based on a non-contact atomic force microscope (AFM) and thus can be complemented in situ by various other AFM techniques, such as topography profiling, piezo-response force microscopy (PFM), and/or Kelvin-probe force microscopy (KPFM). The combination of these methods supports the comprehensive study of the mutual interplay in the topographic, electronic, and optical properties of surfaces from room temperature down to 5 K.

  12. Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress.

    PubMed

    Shiraishi, Kosuke; Hioki, Takahiro; Habata, Akari; Yurimoto, Hiroya; Sakai, Yasuyoshi

    2018-01-09

    The yeast high-osmolarity glycerol (HOG) pathway plays a central role in stress responses. It is activated by various stresses, including hyperosmotic stress, oxidative stress, high-temperature stress and exposure to arsenite. Hog1, the crucial MAP kinase of the pathway, localizes to the nucleus in response to high osmotic concentrations, i.e. high osmolarity; but, otherwise, little is known about its intracellular dynamics and regulation. By using the methylotrophic yeast Candida boidinii , we found that CbHog1-Venus formed intracellular dot structures after high-temperature stress in a reversible manner. Microscopic observation revealed that CbHog1-mCherry colocalized with CbPab1-Venus, a marker protein of stress granules. Hog1 homologs in Pichia pastoris and Schizosaccharomyces pombe also exhibited similar dot formation under high-temperature stress, whereas Saccharomyces cerevisiae Hog1 (ScHog1)-GFP did not. Analysis of CbHog1-Venus in C. boidinii revealed that a β-sheet structure in the N-terminal region was necessary and sufficient for its localization to stress granules. Physiological studies revealed that sequestration of activated Hog1 proteins in stress granules was responsible for downregulation of Hog1 activity under high-temperature stress.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  13. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-05-31

    In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

  14. Yielding of a model glass former: An interpretation with an effective system of icosahedra

    NASA Astrophysics Data System (ADS)

    Pinney, Rhiannon; Liverpool, Tanniemola B.; Royall, C. Patrick

    2018-03-01

    We consider the yielding under simple shear of a binary Lennard-Jones glass former whose super-Arrhenius dynamics are correlated with the formation of icosahedral structures. We recast this glass former as an effective system of icosahedra [Pinney et al., J. Chem. Phys. 143, 244507 (2015), 10.1063/1.4938424]. Looking at the small-strain region of sheared simulations, we observe that shear rates affect the shear localization behavior particularly at temperatures below the glass transition as defined with a fit to the Vogel-Fulcher-Tamman equation. At higher temperature, shear localization starts immediately on shearing for all shear rates. At lower temperatures, faster shear rates can result in a delayed start in shear localization, which begins close to the yield stress. Building from a previous work which considered steady-state shear [Pinney et al., J. Chem. Phys. 143, 244507 (2015), 10.1063/1.4938424], we interpret the response to shear and the shear localization in terms of a local effective temperature with our system of icosahedra. We find that the effective temperatures of the regions undergoing shear localization increase significantly with increasing strain (before reaching a steady-state plateau).

  15. Thermal coefficients of the methyl groups within ubiquitin

    PubMed Central

    Sabo, T Michael; Bakhtiari, Davood; Walter, Korvin F A; McFeeters, Robert L; Giller, Karin; Becker, Stefan; Griesinger, Christian; Lee, Donghan

    2012-01-01

    Physiological processes such as protein folding and molecular recognition are intricately linked to their dynamic signature, which is reflected in their thermal coefficient. In addition, the local conformational entropy is directly related to the degrees of freedom, which each residue possesses within its conformational space. Therefore, the temperature dependence of the local conformational entropy may provide insight into understanding how local dynamics may affect the stability of proteins. Here, we analyze the temperature dependence of internal methyl group dynamics derived from the cross-correlated relaxation between dipolar couplings of two CH bonds within ubiquitin. Spanning a temperature range from 275 to 308 K, internal methyl group dynamics tend to increase with increasing temperature, which translates to a general increase in local conformational entropy. With this data measured over multiple temperatures, the thermal coefficient of the methyl group order parameter, the characteristic thermal coefficient, and the local heat capacity were obtained. By analyzing the distribution of methyl group thermal coefficients within ubiquitin, we found that the N-terminal region has relatively high thermostability. These results indicate that methyl groups contribute quite appreciably to the total heat capacity of ubiquitin through the regulation of local conformational entropy. PMID:22334336

  16. Local melting in Al embedded with TiNi powder induced by microarea self-propagating high-temperature synthesis

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tokujiro

    2014-10-01

    Microarea self-propagating high-temperature synthesis (microSHS) was ignited by the heat of mixing generated at the boundaries between an Al matrix and TiNi particles during plastic deformation at room temperature. The temperature of the boundaries was rapidly increased by microSHS; the temperature elevation resulted in local melting of the TiNi particle and the surrounding Al matrix, because the heat of mixing was localized in the vicinity of the TiNi particle although the amount of the heat of mixing was limited. Since the amount of the local melting region induced by microSHS is restricted, not only major elements (i.e. Al, Ti and Ni) but also impurities were involved in the solidification followed by local melting. As a result, ?FeNi nanoprecipitates, which have not been reported in SHS studies, were formed by inclusion of Fe, initially included as an impurity in raw materials. The formation mechanism of ?FeNi nanoprecipitates is discussed based on reference to the Al-Fe-Ni ternary alloy phase diagram. It is expected that local melting induced by microSHS is a key phenomonon for amorphization during severe plastic deformation of elemental sheets.

  17. Average and local atomic-scale structure in BaZrxTi(1-x)O3 (x = 0. 10, 0.20, 0.40) ceramics by high-energy x-ray diffraction and Raman spectroscopy.

    PubMed

    Buscaglia, Vincenzo; Tripathi, Saurabh; Petkov, Valeri; Dapiaggi, Monica; Deluca, Marco; Gajović, Andreja; Ren, Yang

    2014-02-12

    High-resolution x-ray diffraction (XRD), Raman spectroscopy and total scattering XRD coupled to atomic pair distribution function (PDF) analysis studies of the atomic-scale structure of archetypal BaZrxTi(1-x)O3 (x = 0.10, 0.20, 0.40) ceramics are presented over a wide temperature range (100-450 K). For x = 0.1 and 0.2 the results reveal, well above the Curie temperature, the presence of Ti-rich polar clusters which are precursors of a long-range ferroelectric order observed below TC. Polar nanoregions (PNRs) and relaxor behaviour are observed over the whole temperature range for x = 0.4. Irrespective of ceramic composition, the polar clusters are due to locally correlated off-centre displacement of Zr/Ti cations compatible with local rhombohedral symmetry. Formation of Zr-rich clusters is indicated by Raman spectroscopy for all compositions. Considering the isovalent substitution of Ti with Zr in BaZrxTi1-xO3, the mechanism of formation and growth of the PNRs is not due to charge ordering and random fields, but rather to a reduction of the local strain promoted by the large difference in ion size between Zr(4+) and Ti(4+). As a result, non-polar or weakly polar Zr-rich clusters and polar Ti-rich clusters are randomly distributed in a paraelectric lattice and the long-range ferroelectric order is disrupted with increasing Zr concentration.

  18. Development of a thermal and structural model for a NASTRAN finite-element analysis of a hypersonic wing test structure

    NASA Technical Reports Server (NTRS)

    Lameris, J.

    1984-01-01

    The development of a thermal and structural model for a hypersonic wing test structure using the NASTRAN finite-element method as its primary analytical tool is described. A detailed analysis was defined to obtain the temperature and thermal stress distribution in the whole wing as well as the five upper and lower root panels. During the development of the models, it was found that the thermal application of NASTRAN and the VIEW program, used for the generation of the radiation exchange coefficients, were definicent. Although for most of these deficiencies solutions could be found, the existence of one particular deficiency in the current thermal model prevented the final computation of the temperature distributions. A SPAR analysis of a single bay of the wing, using data converted from the original NASTRAN model, indicates that local temperature-time distributions can be obtained with good agreement with the test data. The conversion of the NASTRAN thermal model into a SPAR model is recommended to meet the immediate goal of obtaining an accurate thermal stress distribution.

  19. Analysis of Percent On-Cell Reformation of Methane in SOFC Stacks: Thermal, Electrical and Stress Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recknagle, Kurtis P.; Yokuda, Satoru T.; Jarboe, Daniel T.

    2006-04-07

    This report summarizes a parametric analysis performed to determine the effect of varying the percent on-cell reformation (OCR) of methane on the thermal and electrical performance for a generic, planar solid oxide fuel cell (SOFC) stack design. OCR of methane can be beneficial to an SOFC stack because the reaction (steam-methane reformation) is endothermic and can remove excess heat generated by the electrochemical reactions directly from the cell. The heat removed is proportional to the amount of methane reformed on the cell. Methane can be partially pre-reformed externally, then supplied to the stack, where rapid reaction kinetics on the anodemore » ensures complete conversion. Thus, the thermal load varies with methane concentration entering the stack, as does the coupled scalar distributions, including the temperature and electrical current density. The endotherm due to the reformation reaction can cause a temperature depression on the anode near the fuel inlet, resulting in large thermal gradients. This effect depends on factors that include methane concentration, local temperature, and stack geometry.« less

  20. Effect of the Lattice and Spin-Phonon Contributions on the Temperature Behavior of the Ground State Splitting of Gd3+ in SrMoO4

    NASA Astrophysics Data System (ADS)

    Gorlov, A. D.

    2018-02-01

    The temperature behavior of the EPR spectra of the Gd3+ impurity center in single crystals of SrMoO4 in the temperature range T = 99-375 K is studied. The analysis of the temperature dependences of the spin Hamiltonian b 2 0 ( T) = b 2( F) + b 2( L) and P 2 0 ( T) = P 2( F) + P 2( L) (for Gd157) describing the EPR spectrum and contributing to the Gd3+ ground state splitting Δ E is carried out. In terms of the Newman model, the values of b 2( L) and P 2( L) depending on the thermal expansion of the static lattice are estimated; the b 2( F) and P 2( F) spin-phonon contributions determined by the lattice ion oscillations are separated. The analysis of b 2 0 ( T) and P 2 0 ( T) is evidence of the positive contribution of the spin-phonon interaction; the model of the local oscillations of the impurity cluster with close frequencies ω describes well the temperature behavior of b 2( F) and P 2( F).

  1. Thermal/Pyrolysis Gas Flow Analysis of Carbon Phenolic Material

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie

    2001-01-01

    Provided in this study are predicted in-depth temperature and pyrolysis gas pressure distributions for carbon phenolic materials that are externally heated with a laser source. Governing equations, numerical techniques and comparisons to measured temperature data are also presented. Surface thermochemical conditions were determined using the Aerotherm Chemical Equilibrium (ACE) program. Surface heating simulation used facility calibrated radiative and convective flux levels. Temperatures and pyrolysis gas pressures are predicted using an upgraded form of the SINDA/CMA program that was developed by NASA during the Solid Propulsion Integrity Program (SPIP). Multispecie mass balance, tracking of condensable vapors, high heat rate kinetics, real gas compressibility and reduced mixture viscosity's have been added to the algorithm. In general, surface and in-depth temperature comparisons are very good. Specie partial pressures calculations show that a saturated water-vapor mixture is the main contributor to peak in-depth total pressure. Further, for most of the cases studied, the water-vapor mixture is driven near the critical point and is believed to significantly increase the local heat capacity of the composite material. This phenomenon if not accounted for in analysis models may lead to an over prediction in temperature response in charring regions of the material.

  2. Influence of quantum well inhomogeneities on absorption, spontaneous emission, photoluminescence decay time, and lasing in polar InGaN quantum wells emitting in the blue-green spectral region

    NASA Astrophysics Data System (ADS)

    Gladysiewicz, M.; Kudrawiec, R.; Syperek, M.; Misiewicz, J.; Siekacz, M.; Cywinski, G.; Khachapuridze, A.; Suski, T.; Skierbiszewski, C.

    2014-06-01

    It is shown that in polar InGaN QWs emitting in the blue-green spectral region a Stokes shift between spontaneous emission (SE) and optical transition observed in contactless electroreflectance (CER) spectrum (absorption-like technique) can be observed even at room temperature, despite the fact that the SE is not associated with localized states. Time resolved photoluminescence measurements clearly confirm that the SE is strongly localized at low temperatures whereas at room temperature the carrier localization disappears and the SE can be attributed to the fundamental transition in this QW. The Stokes shift is observed in this QW system because of the large built-in electric field, i.e., the CER transition is a superposition of all optical transitions with non-zero electron-hole overlap integrals and, therefore, the energy of this transition does not correspond to the fundamental transition of InGaN QW. Lasing from this QW has been observed at the wavelength of 475 nm, whereas the SE was observed at 500 nm. The 25 nm shift between the lasing and SE is observed because of a screening of the built-in electric field by photogenerated carriers. However, our analysis shows that the built-in electric field inside the InGaN QW region is not fully screened under the lasing conditions.

  3. Non-contact local temperature measurement inside an object using an infrared point detector

    NASA Astrophysics Data System (ADS)

    Hisaka, Masaki

    2017-04-01

    Local temperature measurement in deep areas of objects is an important technique in biomedical measurement. We have investigated a non-contact method for measuring temperature inside an object using a point detector for infrared (IR) light. An IR point detector with a pinhole was constructed and the radiant IR light emitted from the local interior of the object is photodetected only at the position of pinhole located in imaging relation. We measured the thermal structure of the filament inside the miniature bulb using the IR point detector, and investigated the temperature dependence at approximately human body temperature using a glass plate positioned in front of the heat source.

  4. On the averaging area for incident power density for human exposure limits at frequencies over 6 GHz

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yota; Hirata, Akimasa; Morimoto, Ryota; Aonuma, Shinta; Laakso, Ilkka; Jokela, Kari; Foster, Kenneth R.

    2017-04-01

    Incident power density is used as the dosimetric quantity to specify the restrictions on human exposure to electromagnetic fields at frequencies above 3 or 10 GHz in order to prevent excessive temperature elevation at the body surface. However, international standards and guidelines have different definitions for the size of the area over which the power density should be averaged. This study reports computational evaluation of the relationship between the size of the area over which incident power density is averaged and the local peak temperature elevation in a multi-layer model simulating a human body. Three wave sources are considered in the frequency range from 3 to 300 GHz: an ideal beam, a half-wave dipole antenna, and an antenna array. 1D analysis shows that averaging area of 20 mm  ×  20 mm is a good measure to correlate with the local peak temperature elevation when the field distribution is nearly uniform in that area. The averaging area is different from recommendations in the current international standards/guidelines, and not dependent on the frequency. For a non-uniform field distribution, such as a beam with small diameter, the incident power density should be compensated by multiplying a factor that can be derived from the ratio of the effective beam area to the averaging area. The findings in the present study suggest that the relationship obtained using the 1D approximation is applicable for deriving the relationship between the incident power density and the local temperature elevation.

  5. Dualism of the 5f electrons of the ferromagnetic superconductor UGe2 as seen in magnetic, transport, and specific-heat data

    NASA Astrophysics Data System (ADS)

    Troć, R.; Gajek, Z.; Pikul, A.

    2012-12-01

    Single-crystalline UGe2 was investigated by means of magnetic susceptibility, magnetization, electrical resistivity, magnetoresistivity, and specific-heat measurements, all carried out in wide temperature and magnetic-field ranges. An analysis of the obtained data points out the dual behavior of the 5f electrons in this compound, i.e., possessing simultaneously local and itinerant characters in two substates. The magnetic and thermal characteristics of the compound were modeled using the effective crystal field (CF) in the intermediate coupling scheme and initial parameters obtained in the angular overlap model. Various configurations of the localized 5fn (n = 1, 2, and 3) electrons on the uranium ion have been probed. The best results were obtained for the 5f2 (U4+) configuration. The CF parameters obtained in the paramagnetic region allowed us to reproduce satisfactorily the experimental findings in the whole temperature range including also the magnitude of the ordered magnetic moment of uranium at low temperature. The electrical resistivity data after subtraction of the phonon contribution reveal the presence of a Kondo-like interaction in UGe2 supporting the idea of partial localization of the 5f electrons in UGe2. On the other hand, magnetoresistivity and an excess of specific heat originated from the hybridized (itinerant) part of 5f states, apparent around the characteristic temperature T*, give a distinct signature for the presence of the coupled charge-density wave and spin-density wave fluctuations over all the ferromagnetic region with a maximum at T*, postulated earlier in the literature.

  6. Structural changes in the nano-oxide layer with annealing in specular spin valves

    NASA Astrophysics Data System (ADS)

    Jang, S. H.; Kim, Y. W.; Kang, T.; Kim, H. J.; Kim, K. Y.

    2003-05-01

    We investigated microstructural changes in a nano-oxide layer (NOL) with annealing in specular spin valves (SVs) by cross-sectional transmission electron microscopy and x-ray photoelectron spectroscopy analysis. In the SV annealed at high temperature of 400 °C, an increase in thickness and a local breakdown of the NOL were observed. This local coarsening of the NOL is closely related to the formation of Mn oxides in the oxide-rich part of the NOL through Mn diffusion. Thus, the chemical structure of the NOL changes to the structure with Mn oxide-rich content after annealing.

  7. Microstructure formation on liquid metal surface under pulsed action

    NASA Astrophysics Data System (ADS)

    Genin, D. E.; Beloplotov, D. V.; Panchenko, A. N.; Tarasenko, V. F.

    2018-04-01

    Experimental study and theoretical analysis of growth of microstructures (microtowers) on liquid metals by fs laser pulses have been carried out. Theoretical analysis has been performed on the basis of the two-temperature model. Compared to ns laser pulses, in fs irradiation regimes the heat-affected zone is strongly localized resulting in much larger temperatures and temperature gradients. In the experimental irradiation regimes, the surface temperature of liquid metals studied may reach or even exceed a critical level that culminates in phase explosion or direct atomization of a metal surface layer. However, before explosive ablation starts, a stress wave with an amplitude up to several GPa is formed which demolishes oxide covering. Moreover, at high laser fluences laser-induced breakdown is developed in oxide layer covering the metal surface that leads to destruction/ablation of oxide without damaging metal underneath. An overall scenario of microstructure growth with fs laser pulses is similar to that obtained for ns irradiation regimes though the growth threshold is lower due to smaller heat-conduction losses. Also we managed to obtain microstructures formation by the action of spark discharge.

  8. High temperature composite analyzer (HITCAN) user's manual, version 1.0

    NASA Technical Reports Server (NTRS)

    Lackney, J. J.; Singhal, S. N.; Murthy, P. L. N.; Gotsis, P.

    1993-01-01

    This manual describes 'how-to-use' the computer code, HITCAN (HIgh Temperature Composite ANalyzer). HITCAN is a general purpose computer program for predicting nonlinear global structural and local stress-strain response of arbitrarily oriented, multilayered high temperature metal matrix composite structures. This code combines composite mechanics and laminate theory with an internal data base for material properties of the constituents (matrix, fiber and interphase). The thermo-mechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress and stress rate. The computation procedure for the analysis of the composite structures uses the finite element method. HITCAN is written in FORTRAN 77 computer language and at present has been configured and executed on the NASA Lewis Research Center CRAY XMP and YMP computers. This manual describes HlTCAN's capabilities and limitations followed by input/execution/output descriptions and example problems. The input is described in detail including (1) geometry modeling, (2) types of finite elements, (3) types of analysis, (4) material data, (5) types of loading, (6) boundary conditions, (7) output control, (8) program options, and (9) data bank.

  9. Analysis and modeling of the seasonal South China Sea temperature cycle using remote sensing

    NASA Astrophysics Data System (ADS)

    Twigt, Daniel J.; de Goede, Erik D.; Schrama, Ernst J. O.; Gerritsen, Herman

    2007-10-01

    The present paper describes the analysis and modeling of the South China Sea (SCS) temperature cycle on a seasonal scale. It investigates the possibility to model this cycle in a consistent way while not taking into account tidal forcing and associated tidal mixing and exchange. This is motivated by the possibility to significantly increase the model’s computational efficiency when neglecting tides. The goal is to develop a flexible and efficient tool for seasonal scenario analysis and to generate transport boundary forcing for local models. Given the significant spatial extent of the SCS basin and the focus on seasonal time scales, synoptic remote sensing is an ideal tool in this analysis. Remote sensing is used to assess the seasonal temperature cycle to identify the relevant driving forces and is a valuable source of input data for modeling. Model simulations are performed using a three-dimensional baroclinic-reduced depth model, driven by monthly mean sea surface anomaly boundary forcing, monthly mean lateral temperature, and salinity forcing obtained from the World Ocean Atlas 2001 climatology, six hourly meteorological forcing from the European Center for Medium range Weather Forecasting ERA-40 dataset, and remotely sensed sea surface temperature (SST) data. A sensitivity analysis of model forcing and coefficients is performed. The model results are quantitatively assessed against climatological temperature profiles using a goodness-of-fit norm. In the deep regions, the model results are in good agreement with this validation data. In the shallow regions, discrepancies are found. To improve the agreement there, we apply a SST nudging method at the free water surface. This considerably improves the model’s vertical temperature representation in the shallow regions. Based on the model validation against climatological in situ and SST data, we conclude that the seasonal temperature cycle for the deep SCS basin can be represented to a good degree. For shallow regions, the absence of tidal mixing and exchange has a clear impact on the model’s temperature representation. This effect on the large-scale temperature cycle can be compensated to a good degree by SST nudging for diagnostic applications.

  10. A spatiotemporal analysis of U.S. station temperature trends over the last century

    NASA Astrophysics Data System (ADS)

    Capparelli, V.; Franzke, C.; Vecchio, A.; Freeman, M. P.; Watkins, N. W.; Carbone, V.

    2013-07-01

    This study presents a nonlinear spatiotemporal analysis of 1167 station temperature records from the United States Historical Climatology Network covering the period from 1898 through 2008. We use the empirical mode decomposition method to extract the generally nonlinear trends of each station. The statistical significance of each trend is assessed against three null models of the background climate variability, represented by stochastic processes of increasing temporal correlation length. We find strong evidence that more than 50% of all stations experienced a significant trend over the last century with respect to all three null models. A spatiotemporal analysis reveals a significant cooling trend in the South-East and significant warming trends in the rest of the contiguous U.S. It also shows that the warming trend appears to have migrated equatorward. This shows the complex spatiotemporal evolution of climate change at local scales.

  11. Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ullah, Ikram; Ahmad, B.; Alsaedi, A.

    Objective of this article is to investigate the magnetohydrodynamic (MHD) boundary layer stretched flow of Carreau fluid in the presence of Newtonian heating. Sheet is presumed permeable. Analysis is studied in the presence of chemical reaction and thermal radiation. Mathematical formulation is established by using the boundary layer approximations. The resultant nonlinear flow analysis is computed for the convergent solutions. Interval of convergence via numerical data and plots are obtained and verified. Impact of numerous pertinent variables on the velocity, temperature and concentration is outlined. Numerical data for surface drag coefficient, surface heat transfer (local Nusselt number) and mass transfer (local Sherwood number) is executed and inspected. Comparison of skin friction coefficient in limiting case is made for the verification of current derived solutions.

  12. UV spectral shift of benzene in sub- and supercritical water

    NASA Astrophysics Data System (ADS)

    Kometani, Noritsugu; Takemiya, Koji; Yonezawa, Yoshiro; Amita, Fujitsugu; Kajimoto, Okitsugu

    2004-08-01

    UV absorption spectra of benzene have been measured over the wide range of temperature and pressure from the ambient state to the supercritical state ( T = 400 °C and P = 40 MPa). The analysis of the spectral shift of benzene in water relative to that in the gas indicates that at T = 380 and 390 °C the local solvent density around benzene is likely to be depressed below the bulk density for densities near the critical density. It is found that π-hydrogen bond between benzene and water becomes evident with lowering temperature below T = 340 °C.

  13. Multitude of core-localized shear Alfvén waves in a high-temperature fusion plasma.

    PubMed

    Nazikian, R; Berk, H L; Budny, R V; Burrell, K H; Doyle, E J; Fonck, R J; Gorelenkov, N N; Holcomb, C; Kramer, G J; Jayakumar, R J; La Haye, R J; McKee, G R; Makowski, M A; Peebles, W A; Rhodes, T L; Solomon, W M; Strait, E J; Vanzeeland, M A; Zeng, L

    2006-03-17

    Evidence is presented for a multitude of discrete frequency Alfvén waves in the core of magnetically confined high-temperature fusion plasmas. Multiple diagnostic instruments confirm wave excitation over a wide spatial range from the device size at the longest wavelengths down to the thermal ion Larmor radius. At the shortest scales, the poloidal wavelengths are comparable to the scale length of electrostatic drift wave turbulence. Theoretical analysis confirms a dominant interaction of the modes with particles in the thermal ion distribution traveling well below the Alfvén velocity.

  14. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less

  15. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  16. Fluid absorption solar energy receiver

    NASA Technical Reports Server (NTRS)

    Bair, Edward J.

    1993-01-01

    A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.

  17. "Magnetic" termite mound surfaces are oriented to suit wind and shade conditions.

    PubMed

    Jacklyn, Peter M

    1992-09-01

    The termites Amitermes meridionalis and A. laurensis construct remarkable meridional or "magnetic" mounds in northern Australia. These mounds vary geographically in mean orientation in a manner that suggests such variation is an adaptive response to local environmental conditions. Theoretical modelling of solar irradiance and mound rotation experiments show that maintenance of an eastern face temperature plateau during the dry season is the most likely physical basis for the mound orientation response. Subsequent heat transfer analysis shows that habitat wind speed and shading conditions also affect face temperature gradients such as the rate of eastern face temperature change. It is then demonstrated that the geographic variation in mean mound orientation follows the geographic variation in long-term wind speed and shading conditions across northern Australia such that an eastern face temperature plateau is maintained in all locations.

  18. Objective local weather types with applications on urban air pollution and on mortality with chronicle illnesses

    NASA Astrophysics Data System (ADS)

    Mika, Janos; Ivady, Anett; Fulop, Andrea; Makra, László

    2010-05-01

    Synoptic climatology i.e. classification of the endless variability of the everyday weather states according to the pressure configuration and frontal systems relative to the point, or region of interest has long history in meteorology. Its logical alternative, i.e. classification of weather according to the observed local weather elements was less popular until the recent times when the numerical weather forecasts became able to outline not only the synoptic situation, but the near-surface meteorological variables, as well. Nowadays the computer-based statistical facilities are able to operate with matrices of multivariate diurnal samples, as well. The paper presents an attempt to define a set of local weather types using point-wise series at five rural stations, Szombathely, Pécs, Budapest, Szeged és Debrecen in the 1961-1990 reference period. Ten local variables are used, i.e. the diurnal mean temperature, the diurnal temperature range; the cloudiness, the sunshine duration, the water vapour pressure, the precipitation in a logarithmic scale, also differing trace (below 0.1 mm) and no precipitation, the relative humidity and wind speed, including the more extremity indicators of the two latter parameters, i.e. number of hours with over 80 % relative humidity and over 15 m/s wind gusts. Factor analysis of these ten variables was performed leading to 5 fairly independent variables retained for cluster analysis to obtain the local weather types. Hierarchical cluster analysis was performed to classify the 840-930 days within each month of the 30 years period. Furthers neighbour approach was preferred based on Euclidean metrics to establish optimum number of types. The 12 months and the 5 stations exhibited slightly different results but the optimum number of the types was always between 4 and 12 which is a quite reasonable number from practical considerations. According to a further reasonable compromise, the common number of the types not too bad in either stations or months defines that the common optimum number of local weather types is nine. This set of weather types, specified for each station, was used to "explain" the possible portion of local inter-diurnal variance of seven daily urban air quality measurements, i.e. CO, NO, NO2, NOx, O3, SO2 and PM10. Another set of data for testing the types are the mortalities with chronicle illnesses, i.e. cardio-vascular and respiratory illnesses. This set of 35 years data (1971-2005) is layered for capital city (Budapest, 2 million inhabitants) and rest of the countries (max. 200 000 inhab.). The use of complex weather types is likely better than the common use of individual weather elements, e.g. diurnal mean temperature or a kind of bioclimatic index. The ability of the types to decrease the variability is also compared for both sets of target variables to the analogous ability of macrosynoptic classification by Peczely. The results are also discussed by grouping the investigated contaminants according to their origin.

  19. Estimation of subsurface formation temperature in the Yangtze area, South China: implications for shale gas generation and preservation

    NASA Astrophysics Data System (ADS)

    Liu, S.; Hao, C.; Li, X.; Xu, M.

    2015-12-01

    Temperature is one key parameter for hydrocarbon generation and preservation, also playing important role in geothermal energy assessment;however, accurate regional temperature pattern is still challenging, owing to a lack of data coverage and data quality as well. The Yangtze area, located in the South China, is considered as the most favorable target for shale gas resource exploration in China, and attracts more and more attention recently. Here we used the newly acquired steady-state temperature loggings, reliable Drilling Stem Test temperature data available and thermal properties, estimated the subsurface temperature-at-depth for the Yangtze area. Results show that the geothermal gradient ranges between 17 K/m and 74K/m, mainly falling into 20~30K/m, with a mean of 24 K/m; heat flow varies from 25 mW/m2 to 92 mW/m2, with a mean of 65 mW/m2. For the estimated temperature-at-depth, it is about 20~50 ℃ at the depth of 1000m, 50~80℃ for that at 2000m; while the highest temperature can be up to 110℃ at 3000m depth. Generally, the present-day geothermal regime of the Yangtze area is characterized by high in the northeast, low in the middle and localized high again in the southwest, and this pattern is well consistent with the tectono-thermal processes occurred in the area. Due to Cenozoic crustal extension in the northeastern Yangtze area, magmatism is prevailed, accounting for the high heat flow observed. Precambrian basement exists in the middle Yangtze area, such as the Xuefeng and Wuling Mountains, heat flow and subsurface temperature accordingly show relatively low as well. While for the southwestern Yangtze area, especially Yunnan and western Sichuan provinces, localized Cenozoic magmatism and tectonic activities are available, which is attributed to the high geothermal regime there. Considering the Paleozoic intensive tectonic deformation in the Yangtze area, tectonically stable area is prerequisite for shale gas preservation. Geothermal regime analysis presented here, indicates that the middle and northwestern Yangtze areas are favorable for shale gas preservation. In addition, the localized high temperature within the generally low geothermal background is also suggested here as a possible beneficial condition for shale gas generation.

  20. A simple method for estimating potential relative radiation (PRR) for landscape-vegetation analysis.

    Treesearch

    Kenneth B. Jr. Pierce; Todd Lookingbill; Dean Urban

    2005-01-01

    Radiation is one of the primary influences on vegetation composition and spatial pattern. Topographic orientation is often used as a proxy for relative radiation load due to its effects on evaporative demand and local temperature. Common methods for incorporating this information (i.e., site measures of slope and aspect) fail to include daily or annual changes in solar...

  1. Analysis of Abrasive Blasting of DOP-26 Iridium Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B

    2012-01-01

    The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast processmore » conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.« less

  2. Statistical inhomogeneity of dates of sudden stratospheric warmings in the wintertime northern hemisphere

    NASA Astrophysics Data System (ADS)

    Savenkova, E. N.; Gavrilov, N. M.; Pogoreltsev, A. I.; Manuilova, R. O.

    2017-05-01

    Using the data of meteorological information reanalysis, a statistical analysis of dates of the main sudden stratospheric warmings observed in 1958-2014 has been performed and their inhomogeneous distribution in winter months with maximums in the beginning of January, from the end of January to the beginning of February, and in the end of February has been shown. To explain these regularities, a climatological analysis of variations in the amplitudes and vertical components of Eliassen-Palm fluxes created by large-scale planetary waves (PWs), as well as of zonal-mean winds and deviations of temperature from their winter-average values in high northern latitudes at heights of up to 50 km from the surface has been carried out using the 20-year (1995-2014) collection of daily meteorological information from the UK Met Office database. During the aforementioned intervals of observing more frequent sudden stratospheric warmings, climatological maximums of temperature perturbations, local minimums of eastward winds, and local maximums of the amplitude and Eliassen-Palm fluxes of PWs with a zonal wavenumber of 1 in the high-latitude northern stratosphere were found. Distinctions between atmospheric characteristics averaged over two last decades have been revealed.

  3. Investigating synoptic-scale monsoonal disturbances in an idealized moist model

    NASA Astrophysics Data System (ADS)

    Clark, S.; Ming, Y.

    2017-12-01

    Recent studies have highlighted the potential utility of a theory for a "moisture-dynamical" instability in explaining the time and spatial scales of intra-seasonal variability associated with the Indian summer monsoon. These studies suggest that a localized region in the subtropics with mean low-level westerly winds and mean temperature increasing poleward will allow the formation of westward propagating precipitation anomalies associated with moist Rossby-like waves. Here we test this theory in an idealized moist model with realistic radiative transfer by inducing a local poleward-increasing temperature gradient by placing a continent with simplified hydrology in the subtropics. We experiment with different treatments of land-surface hydrology, ranging from the extreme (treating land as having the same heat capacity as the slab ocean used in the model, and turning off evaporation completely over land) to the more realistic (bucket hydrology, with a decreased heat capacity over land), and different continental shapes, ranging from a zonally-symmetric continent, to Earth-like continental geometry. Precipitation rates produced by the simulations are analyzed using space-time spectral analysis, and connected to variability in the winds through regression analysis. The observed behavior is discussed with respect to predictions from the theory.

  4. Summer temperature variability across four urban neighborhoods in Knoxville, Tennessee, USA

    NASA Astrophysics Data System (ADS)

    Ellis, Kelsey N.; Hathaway, Jon M.; Mason, Lisa Reyes; Howe, David A.; Epps, Thomas H.; Brown, Vincent M.

    2017-02-01

    The urban heat island (UHI) is a well-documented effect of urbanization on local climate, identified by higher temperatures compared to surrounding areas, especially at night and during the warm season. The details of a UHI are city-specific, and microclimates may even exist within a given city. Thus, investigating the spatiotemporal variability of a city's UHI is an ongoing and critical research need. We deploy ten weather stations across Knoxville, Tennessee, to analyze the city's UHI and its differential impacts across urban neighborhoods: two each in four neighborhoods, one in more dense tree cover and one in less dense tree cover, and one each in downtown Knoxville and Ijams Nature Center that serve as control locations. Three months of temperature data (beginning 2 July 2014) are analyzed using paired-sample t tests and a three-way analysis of variance. Major findings include the following: (1) Within a given neighborhood, tree cover helps negate daytime heat (resulting in up to 1.19 ∘C lower maximum temperature), but does not have as large of an influence on minimum temperature; (2) largest temperature differences between neighborhoods occur during the day (0.38-1.16 ∘C difference), but larger differences between neighborhoods and the downtown control occur at night (1.04-1.88 ∘C difference); (3) presiding weather (i.e., air mass type) has a significant, consistent impact on the temperature in a given city, and lacks the differential impacts found at a larger-scale in previous studies; (4) distance from city center does not impact temperature as much as land use factors. This is a preliminary step towards informing local planning with a scientific understanding of how mitigation strategies may help minimize the UHI and reduce the effects of extreme weather on public health and well-being.

  5. Long-term warming trends in Korea and contribution of urbanization

    NASA Astrophysics Data System (ADS)

    Park, B.; Min, S. K.; Kim, Y. H.; Kim, M. K.; Choi, Y.; Boo, K. O.

    2016-12-01

    This study provides a systematic investigation of the long-term temperature trends over Korean peninsula in comparison with global temperature trends and presents an updated assessment of the contribution of urban effect. Linear trends are analyzed for three different periods over South Korea in order to consider inhomogeneity due to changes in number of stations: recent 103 years (1912-2014, 6 stations), 61 years (1954-2014, 12 stations) and 42 years (1973-2014, 48 stations). HadCRUT4, MLOST and GISS datasets are used to obtain temperature trends in global mean and each country scales for the same periods. The temperature over South Korea has increased by 1.90°C, 1.35°C, and 0.99°C during 103, 61, and 42 years, respectively. This is equivalent to 1.4-2.6 times larger warming than the global mean trends. The countries located in the Northern mid latitudes exhibit slightly weaker warming trends to Korea (about 1.5 times stronger than of global means), suggesting a considerable impact of urbanization on the local warming over Korea. Updated analyses of the urbanization effect on temperature trends over South Korea suggest that 10-45% of the warming trends are due to urbanization effect, with stronger contributions during the recent decades. First, we compared the recent 42-year temperature trends between city and rural stations using the two approaches based on previous studies. Results show that urbanization effect has contributed to 30-45% of the temperature trends. Secondly, the contribution of urbanization to the temperature increase over Korea has been indirectly estimated using 56 ensemble members of 20CRv2 reanalysis data that include no influence of urbanization. Analysis results for the three periods indicate that urbanization effect could have contributed to the local warming over Korea by 10-25%.

  6. Heat localization for targeted tumor treatment with nanoscale near-infrared radiation absorbers

    PubMed Central

    Xie, Bin; Singh, Ravi; Torti, F. M.; Keblinski, Pawel; Torti, Suzy

    2012-01-01

    Focusing heat delivery while minimizing collateral damage to normal tissues is essential for successful nanoparticle-mediated laser-induced thermal cancer therapy. We present thermal maps obtained via magnetic resonance imaging (MRI) characterizing laser heating of a phantom tissue containing a multiwalled carbon nanotube inclusion. The data demonstrate that heating continuously over tens of seconds leads to poor localization (~ 0.5 cm) of the elevated temperature region. By contrast, for the same energy input, heat localization can be reduced to the millimeter rather than centimeter range by increasing the laser power and shortening the pulse duration. The experimental data can be well understood within a simple diffusive heat conduction model. Analysis of the model indicates that to achieve 1 mm or better resolution, heating pulses of ~ 2s or less need to be used with appropriately higher heating power. Modeling these data using a diffusive heat conduction analysis predicts parameters for optimal targeted delivery of heat for ablative therapy. PMID:22948207

  7. Thermal protection system ablation sensor

    NASA Technical Reports Server (NTRS)

    Gorbunov, Sergey (Inventor); Martinez, Edward R. (Inventor); Scott, James B. (Inventor); Oishi, Tomomi (Inventor); Fu, Johnny (Inventor); Mach, Joseph G. (Inventor); Santos, Jose B. (Inventor)

    2011-01-01

    An isotherm sensor tracks space vehicle temperatures by a thermal protection system (TPS) material during vehicle re-entry as a function of time, and surface recession through calibration, calculation, analysis and exposed surface modeling. Sensor design includes: two resistive conductors, wound around a tube, with a first end of each conductor connected to a constant current source, and second ends electrically insulated from each other by a selected material that becomes an electrically conductive char at higher temperatures to thereby complete an electrical circuit. The sensor conductors become shorter as ablation proceeds and reduced resistance in the completed electrical circuit (proportional to conductor length) is continually monitored, using measured end-to-end voltage change or current in the circuit. Thermocouple and/or piezoelectric measurements provide consistency checks on local temperatures.

  8. Strong localization induced anomalous temperature dependence exciton emission above 300 K from SnO{sub 2} quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, S. S., E-mail: sspan@issp.ac.cn, E-mail: ghli@issp.ac.cn; Li, F. D.; Liu, Q. W.

    2015-05-07

    SnO{sub 2} quantum dots (QDs) are potential materials for deep ultraviolet (DUV) light emitting devices. In this study, we report the temperature and excitation power-dependent exciton luminescence from SnO{sub 2} QDs. The exciton emission exhibits anomalous blue shift, accompanied with band width reduction with increasing temperature and excitation power above 300 K. The anomalous temperature dependences of the peak energy and band width are well interpreted by the strongly localized carrier thermal hopping process and Gaussian shape of band tails states, respectively. The localized wells and band tails at conduction minimum are considered to be induced by the surface oxygen defectsmore » and local potential fluctuation in SnO{sub 2} QDs.« less

  9. Exciton localization in (11-22)-oriented semi-polar InGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Rosales, Daniel; Gil, Bernard; Izyumskaya, Natalia; Das, Saikat; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy

    2016-02-01

    Excitonic recombination dynamics in (11-22) -oriented semipolar In0.2Ga0.8N/In0.06Ga0.94N multiquantum wells (MQWs) grown on GaN/m-sapphire templates have been investigated by temperature-dependent time-resolved photoluminescence (TRPL). The radiative and nonradiative recombination contributions to the PL intensity at different temperatures were evaluated by analysing temperature dependences of PL peak intensity and decay times. The obtained data indicate the existence of exciton localization with a localization energy of Eloc(15K) =7meV and delocalization temperature of Tdeloc = 200K in the semipolar InGaN MQWs. Presence of such exciton localization in semipolar (11-22) -oriented structures could lead to improvement of excitonic emission and internal quantum efficiency.

  10. Thermal Analysis of the PediaFlow pediatric ventricular assist device.

    PubMed

    Gardiner, Jeffrey M; Wu, Jingchun; Noh, Myounggyu D; Antaki, James F; Snyder, Trevor A; Paden, David B; Paden, Brad E

    2007-01-01

    Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generation: copper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2 degrees C during normal operation.

  11. Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M.

    2014-10-01

    The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO2) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS2) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called "intrinsic friction analysis" (IFA) provided direct access to the Hamaker constants for HOPG and MoS2, as well as the control sample, calcium fluoride (CaF2). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

  12. Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy.

    PubMed

    Krajina, Brad A; Kocherlakota, Lakshmi S; Overney, René M

    2014-10-28

    The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO2) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS2) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called "intrinsic friction analysis" (IFA) provided direct access to the Hamaker constants for HOPG and MoS2, as well as the control sample, calcium fluoride (CaF2). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

  13. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  14. A spatially resolving x-ray crystal spectrometer for measurement of ion-temperature and rotation-velocity profiles on the Alcator C-Mod tokamak.

    PubMed

    Hill, K W; Bitter, M L; Scott, S D; Ince-Cushman, A; Reinke, M; Rice, J E; Beiersdorfer, P; Gu, M-F; Lee, S G; Broennimann, Ch; Eikenberry, E F

    2008-10-01

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (lambda/d lambda>6000) of He-like and H-like Ar K alpha lines with good spatial (approximately 1 cm) and temporal (approximately 10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (T(i)), and toroidal plasma rotation velocity (upsilon(phi)) from the line Doppler widths and shifts. The data analysis techniques, T(i) and upsilon(phi) profiles, analysis of fusion-neutron background, and predictions of performance on other tokamaks, including ITER, will be presented.

  15. Temperature measurement and damage detection in concrete beams exposed to fire using PPP-BOTDA based fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda

    2017-10-01

    In this study, Brillouin scattering-based distributed fiber optic sensor is implemented to measure temperature distributions and detect cracks in concrete structures subjected to fire for the first time. A telecommunication-grade optical fiber is characterized as a high temperature sensor with pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA), and implemented to measure spatially-distributed temperatures in reinforced concrete beams in fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9%. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.

  16. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    PubMed Central

    Cahon, Thomas; Caillon, Robin

    2018-01-01

    Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes. PMID:29538342

  17. Diurnal temperature asymmetries and fog at Churchill, Manitoba

    NASA Astrophysics Data System (ADS)

    Gough, William A.; He, Dianze

    2015-07-01

    A variety of methods are available to calculate daily mean temperature. We explore how the difference between two commonly used methods provides insight into the local climate of Churchill, Manitoba. In particular, we found that these differences related closely to seasonal fog. A strong statistically significant correlation was found between the fog frequency (hours per day) and the diurnal temperature asymmetries of the surface temperature using the difference between the min/max and 24-h methods of daily temperature calculation. The relationship was particularly strong for winter, spring and summer. Autumn appears to experience the joint effect of fog formation and the radiative effect of snow cover. The results of this study suggests that subtle variations of diurnality of temperature, as measured in the difference of the two mean temperature methods of calculation, may be used as a proxy for fog detection in the Hudson Bay region. These results also provide a cautionary note for the spatial analysis of mean temperatures using data derived from the two different methods particularly in areas that are fog prone.

  18. The effect of using different regions of interest on local and mean skin temperature.

    PubMed

    Maniar, Nirav; Bach, Aaron J E; Stewart, Ian B; Costello, Joseph T

    2015-01-01

    The dynamic nature of tissue temperature and the subcutaneous properties, such as blood flow, fatness, and metabolic rate, leads to variation in local skin temperature. Therefore, we investigated the effects of using multiple regions of interest when calculating weighted mean skin temperature from four local sites. Twenty-six healthy males completed a single trial in a thermonetural laboratory (mean ± SD): 24.0 (1.2)°C; 56 (8%) relative humidity; <0.1 m/s air speed). Mean skin temperature was calculated from four local sites (neck, scapula, hand and shin) in accordance with International Standards using digital infrared thermography. A 50 mm × 50 mm, defined by strips of aluminium tape, created six unique regions of interest, top left quadrant, top right quadrant, bottom left quadrant, bottom right quadrant, centre quadrant and the entire region of interest, at each of the local sites. The largest potential error in weighted mean skin temperature was calculated using a combination of a) the coolest and b) the warmest regions of interest at each of the local sites. Significant differences between the six regions interest were observed at the neck (P<0.01), scapula (P<0.001) and shin (P<0.05); but not at the hand (P = 0.482). The largest difference (± SEM) at each site was as follows: neck 0.2 (0.1)°C; scapula 0.2 (0.0)°C; shin 0.1 (0.0)°C and hand 0.1 (0.1)°C. The largest potential error (mean ± SD) in weighted mean skin temperature was 0.4 (0.1)°C (P<0.001) and the associated 95% limits of agreement for these differences was 0.2-0.5 °C. Although we observed differences in local and mean skin temperature based on the region of interest employed, these differences were minimal and are not considered physiologically meaningful. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Impact of Temperature and Body Size on Fundamental Flight Tone Variation in the Mosquito Vector Aedes aegypti (Diptera: Culicidae): Implications for Acoustic Lures.

    PubMed

    Villarreal, Susan M; Winokur, Olivia; Harrington, Laura

    2017-09-01

    Aedes aegypti (L.) males use female flight tone as a means of mate localization. By playing the sound of a flying female, males can be attracted to a trap to monitor mosquito populations and the progress of transgenic male releases. However, the female flight tone used to attract males needs to be optimized to maximize trap effectiveness. The fundamental frequency of female flight tone could be influenced by both body size and ambient temperature. However, no analysis yet has considered both the effect of body size and temperature on female flight tone of Ae. aegypti. Here, we present results for both these factors by recording the sounds of free-flying and tethered females across multiple temperature environments and with females reared for small, medium, and large body sizes. We demonstrate that female fundamental frequency is highly dependent on the environmental temperature, increasing ∼8-13 Hz with each °C gain. Body size and whether a female was tethered or free-flying did not impact the relationship between frequency and temperature, although further analysis is warranted. Our study highlights the importance of understanding the relationship between flight tone and temperature, and will inform the design of male mosquito traps. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  20. Definition of temperature thresholds: the example of the French heat wave warning system.

    PubMed

    Pascal, Mathilde; Wagner, Vérène; Le Tertre, Alain; Laaidi, Karine; Honoré, Cyrille; Bénichou, Françoise; Beaudeau, Pascal

    2013-01-01

    Heat-related deaths should be somewhat preventable. In France, some prevention measures are activated when minimum and maximum temperatures averaged over three days reach city-specific thresholds. The current thresholds were computed based on a descriptive analysis of past heat waves and on local expert judgement. We tested whether a different method would confirm these thresholds. The study was set in the six cities of Paris, Lyon, Marseille, Nantes, Strasbourg and Limoges between 1973 and 2003. For each city, we estimated the excess in mortality associated with different temperature thresholds, using a generalised additive model, controlling for long-time trends, seasons and days of the week. These models were used to compute the mortality predicted by different percentiles of temperatures. The thresholds were chosen as the percentiles associated with a significant excess mortality. In all cities, there was a good correlation between current thresholds and the thresholds derived from the models, with 0°C to 3°C differences for averaged maximum temperatures. Both set of thresholds were able to anticipate the main periods of excess mortality during the summers of 1973 to 2003. A simple method relying on descriptive analysis and expert judgement is sufficient to define protective temperature thresholds and to prevent heat wave mortality. As temperatures are increasing along with the climate change and adaptation is ongoing, more research is required to understand if and when thresholds should be modified.

  1. Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana

    NASA Astrophysics Data System (ADS)

    Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.

    2018-03-01

    Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann-Kendall and Sen's Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.

  2. Detection and Attribution of Temperature Trends in the Presence of Natural Variability

    NASA Astrophysics Data System (ADS)

    Wallace, J. M.

    2014-12-01

    The fingerprint of human-induced global warming stands out clearly above the noise In the time series of global-mean temperature, but not local temperature. At extratropical latitudes over land the standard error of 50-year linear temperature trends at a fixed point is as large as the cumulative rise in global-mean temperature over the past century. Much of the samping variability in local temperature trends is "dynamically-induced", i.e., attributable to the fact that the seasonally-varying mean circulation varies substantially from one year to the next and anomalous circulation patterns are generally accompanied by anomalous temperature patterns. In the presence of such large sampling variability it is virtually impossible to identify the spatial signature of greenhouse warming based on observational data or to partition observed local temperature trends into natural and human-induced components. It follows that previous IPCC assessments, which have focused on the deterministic signature of human-induced climate change, are inherently limited as to what they can tell us about the attribution of the past record of local temperature change or about how much the temperature at a particular place is likely to rise in the next few decades in response to global warming. To obtain more informative assessments of regional and local climate variability and change it will be necessary to take a probabilistic approach. Just as the use of the ensembles has contributed to more informative extended range weather predictions, large ensembles of climate model simulations can provide a statistical context for interpreting observed climate change and for framing projections of future climate. For some purposes, statistics relating to the interannual variability in the historical record can serve as a surrogate for statistics relating to the diversity of climate change scenarios in large ensembles.

  3. Temperature evolution of the local order parameter in relaxor ferroelectrics (1 - x)PMN-xPZT

    NASA Astrophysics Data System (ADS)

    Gridnev, S. A.; Glazunov, A. A.; Tsotsorin, A. N.

    2005-09-01

    The temperature dependence of the local order parameter and relaxation time distribution function have been determined in (1 - x)PMN-xPZT ceramic samples via dielectric permittivity. Above the Burns temperature, the permittivity was found to follow the Currie-Weiss law, and with temperature decreasing the deviation was observed to increase. A local order parameter was calculated from the dielectric data using a modified Landau-Devonshire approach. These results are compared to the distribution function of relaxation times. It was found that a glasslike freezing of reorientable polar clusters occurs in the temperature range of diffuse relaxor transition. The evolution of the studied system to more ordered state arises from the increased PZT content.

  4. Review: Potential Strength of Fly Ash-Based Geopolymer Paste with Substitution of Local Waste Materials with High-Temperature Effect

    NASA Astrophysics Data System (ADS)

    Subekti, S.; Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Wibowo, B.; Anugraha, B.; Irawan, S.; Dibiantara, D.

    2017-11-01

    This research provided an overview of the potential fly ash based geopolymer paste for application in building construction. Geopolymer paste with various variations of fly ash substitution with local waste material and high-temperature influence exploited with the fresh and hardened condition. The local waste material which utilized for this study were sandblasting waste, carbide waste, shell powder, bagasse ash, rice husk and bottom ash. The findings of this study indicated that fly-based geopolymer paste with local waste material substitution which had high-temperature influence ash showed a similar nature of OPC binders potentially used in civil engineering applications.

  5. Modern aspects of nonlinear convection and magnetic field in flow of thixotropic nanofluid over a nonlinear stretching sheet with variable thickness

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Ahmad, Bashir

    2018-05-01

    Main objective of present analysis is to study the magnetohydrodynamic (MHD) nonlinear convective flow of thixotropic nanofluid. Flow is due to nonlinear stretching surface with variable thickness. Nonlinear thermal radiation and heat generation/absorption are utilized in the energy expression. Convective conditions and zero mass flux at sheet are considered. Intention in present analysis is to develop a model for nanomaterial comprising Brownian motion and thermophoresis phenomena. Appropriate transformations are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been scrutinized through homotopic algorithm. Behavior of various sundry variables on velocity, temperature, nanoparticle concentration, skin friction coefficient and local Nusselt number are displayed through graphs. It is concluded that qualitative behaviors of temperature and thermal layer thickness are similar for radiation and temperature ratio variables. Moreover an enhancement in heat generation/absorption show rise to thermal field.

  6. Verification of Anderson Superexchange in MnO via Magnetic Pair Distribution Function Analysis and ab initio Theory

    NASA Astrophysics Data System (ADS)

    Frandsen, Benjamin A.; Brunelli, Michela; Page, Katharine; Uemura, Yasutomo J.; Staunton, Julie B.; Billinge, Simon J. L.

    2016-05-01

    We present a temperature-dependent atomic and magnetic pair distribution function (PDF) analysis of neutron total scattering measurements of antiferromagnetic MnO, an archetypal strongly correlated transition-metal oxide. The known antiferromagnetic ground-state structure fits the low-temperature data closely with refined parameters that agree with conventional techniques, confirming the reliability of the newly developed magnetic PDF method. The measurements performed in the paramagnetic phase reveal significant short-range magnetic correlations on a ˜1 nm length scale that differ substantially from the low-temperature long-range spin arrangement. Ab initio calculations using a self-interaction-corrected local spin density approximation of density functional theory predict magnetic interactions dominated by Anderson superexchange and reproduce the measured short-range magnetic correlations to a high degree of accuracy. Further calculations simulating an additional contribution from a direct exchange interaction show much worse agreement with the data. The Anderson superexchange model for MnO is thus verified by experimentation and confirmed by ab initio theory.

  7. Anderson localization in Nb/Al superconducting bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greco, M.; Lacquaniti, V.; Maggi, S.

    2000-01-01

    The authors have measured the temperature dependence of resistivity in relatively thick Nb/Al bilayers fabricated at room temperature, observing the decrease of {rho} for increasing T typical of Anderson localization in disordered systems. The authors report the experimental conditions which determine this behavior and compare it to theoretical models for localization in 3D systems.

  8. Delamination and debonding of materials

    NASA Technical Reports Server (NTRS)

    Johnson, W. S. (Editor)

    1985-01-01

    The general topics consist of stress analysis, mechanical behavior, and fractography/NDI of composite laminates. Papers are presented on a dynamic hybrid finite-element analysis for interfacial cracks in composites, energy release rate during delamination crack growth in composite laminates, matrix deformation and fracture in graphite-reinforced epoxies, and the role of delamination and damage development on the strength of thick notched laminates. In addition, consideration is given to a new ply model for interlaminar stress analysis, a fracture mechanics approach for designing adhesively bonded joints, the analysis of local delaminations and their influence on composite laminate behavior, and moisture and temperature effects on the mixed-mode delamination fracture of unidirectional graphite/epoxy.

  9. Early structural development in melt-quenched polymer PTT from atomistic molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Kang; Lin, Shiang-Tai

    2009-12-01

    Molecular dynamics simulations are performed to study the initial structural development in poly(trimethylene terephthalate) (PTT) when quenched below its melting point. The development of local ordering has been observed in our simulations. The thermal properties, such as the glass transition temperature (Tg) and the melting temperature (Tm), determined from our simulations are in reasonable agreement with experimental values. It is found that, between these two temperatures, the number of local structures quickly increases during the thermal relaxation period soon after the system is quenched and starts to fluctuate afterwards. The formation and development of local structures is found to be driven mainly by the torsional and van der Waals forces and follows the classical nucleation-growth mechanism. The variation of local structures' fraction with temperature exhibits a maximum between Tg and Tm, resembling the temperature dependence of the crystallization rate for most polymers. In addition, the backbone torsion distribution for segments within the local structures preferentially reorganizes to the trans-gauche-gauche-trans (t-g-g-t) conformation, the same as that in the crystalline state. As a consequence, we believe that such local structural ordering could be the baby nuclei that have been suggested to form in the early stage of polymer crystallization.

  10. The Radiative Effects of Martian Water Ice Clouds on the Local Atmospheric Temperature Profile

    NASA Technical Reports Server (NTRS)

    Colaprete, Anthony; Toon, Owen B.

    2000-01-01

    Mars Pathfinder made numerous discoveries, one of which was a deep temperature inversion that extended from about 15 km down to 8 km above the surface. It has been suggested by Haberle et al. (1999. J. Geophys. Res. 104, 8957-8974.) that radiative cooling by a water ice cloud may generate such an inversion. Clouds can strongly affect the local air temperature due to their ability to radiate efficiently in the infrared and due to the low air mass of the martian atmosphere, which allows the temperature to change during the relatively short lifetime of a cloud. We utilize a time-dependent microphysical aerosol model coupled to a radiative--convective model to explore the effects water ice clouds have on the local martian temperature profile. We constrain the dust and water vapor abundance using data from the Viking Missions and Mars Pathfinder. Water t ice clouds with visible optical depths of r > 0.1 form readily in these simulations. These clouds alter the local air temperature directly, through infrared cooling, and indirectly, by redistributing atmospheric dust. With this model we are able to reproduce the temperature inversions observed by Mars Pathfinder and Mars Global t Surveyor 2000 Academic Press

  11. Dynamic area telethermometry and its clinical applications

    NASA Astrophysics Data System (ADS)

    Anbar, Michael

    1995-03-01

    Dynamic area telethermometry (DAT) is a recent development in thermology, the science of biological heat generation and dissipation. DAT is based on monitoring changes in infrared emission, deriving from them information on the kinetics and mechanisms of biological thermoregulation. Remotely monitoring infrared emission is the most reliable technique to study bioenergetics, because it minimally perturbs the investigated system. Area monitoring of heat dissipating surfaces is needed because temporal changes in the spatial distribution of temperature conveys information on mechanisms of thermoregulation. DAT can be applied to biological systems ranging from single cells (microtelecalorimetry) to large areas of human skin (clinical thermology). DAT requires the accumulation of many (hundreds to thousands) thermal images followed by analysis of the thermokinetics of each pixel or group of pixels. In clinical thermology this analysis uses FFT to extract systemic, regional and local thermoregulatory frequencies (TRFs). DAT also extracts information on local thermoregulation from the temporal behavior of homogeneity of skin temperature (HST). Analysis of the relative contributions (FFT amplitudes) of the different frequencies allows distinction between vascular, neurological, and immunological thermoregulatory dysfunctions. This analysis, which can reveal the mechanism of the dysfunction, can be very useful in the diagnosis and staging of various disorders, ranging from diabetes mellitus and liver cirrhosis to breast cancer and malignant melanoma. From the engineering standpoint DAT requires highly stable imaging systems and effective display of the spatial distribution of TRFs to allow identification of thermoregulatory pathways and their dysfunction.

  12. Nanoscale thermal imaging of VO2 via Poole-Frenkel conduction

    NASA Astrophysics Data System (ADS)

    Spitzig, Alyson; Hoffman, Jason D.; Pivonka, Adam E.; Mickalide, Harry; Frenzel, Alex; Kim, Jeehoon; Ko, Changhyun; Zhou, You; O'Connor, Kevin; Hudson, Eric W.; Ramanathan, Shriram; Hoffman, Jennifer E.

    We present a novel method for nanoscale thermal imaging of insulating thin films. We demonstrate this method on VO2, which undergoes a sharp insulator-to-metal transition at 340 K. We sweep the voltage applied to a conducting atomic force microscope tip in contact mode at room temperature and measure the resultant current through a VO2 film. The Poole-Frenkel (PF) conduction mechanism, which dominates in the insulating state of VO2, is fit to extract the local temperature of the film using fundamental constants and known film properties. We measure the local electric field and temperature immediately preceding the insulator-to-metal transition in VO2 to determine whether the transition can be triggered by an applied electric field alone. We calculate an average temperature of 334 +/- 5 K, implying that Joule heating has locally warmed the sample very close to the transition temperature. Our thermometry technique opens up the possibility to measure the local temperature of any film dominated by the PF conduction mechanism, and presents the opportunity to extend our technique to other conduction mechanisms. Canada Excellence Research Chair program and NSERC - CGSM.

  13. A local sensor for joint temperature and velocity measurements in turbulent flows

    NASA Astrophysics Data System (ADS)

    Salort, Julien; Rusaouën, Éléonore; Robert, Laurent; du Puits, Ronald; Loesch, Alice; Pirotte, Olivier; Roche, Philippe-E.; Castaing, Bernard; Chillà, Francesca

    2018-01-01

    We present the principle for a micro-sensor aimed at measuring local correlations of turbulent velocity and temperature. The operating principle is versatile and can be adapted for various types of flow. It is based on a micro-machined cantilever, on the tip of which a platinum resistor is patterned. The deflection of the cantilever yields an estimate for the local velocity, and the impedance of the platinum yields an estimate for the local temperature. The velocity measurement is tested in two turbulent jets: one with air at room temperature which allows us to compare with well-known calibrated reference anemometers, and another one in the GReC jet at CERN with cryogenic gaseous helium which allows a much larger range of resolved turbulent scales. The recording of temperature fluctuations is tested in the Barrel of Ilmenau which provides a controlled turbulent thermal flow in air. Measurements in the wake of a heated or cooled cylinder demonstrate the capability of the sensor to display the cross correlation between temperature and velocity correctly.

  14. Geomorphic determinants of species composition of alpine tundra, Glacier National Park, U.S.A.

    USGS Publications Warehouse

    George P. Malanson,; Bengtson, Lindsey E.; Fagre, Daniel B.

    2012-01-01

    Because the distribution of alpine tundra is associated with spatially limited cold climates, global warming may threaten its local extent or existence. This notion has been challenged, however, based on observations of the diversity of alpine tundra in small areas primarily due to topographic variation. The importance of diversity in temperature or moisture conditions caused by topographic variation is an open question, and we extend this to geomorphology more generally. The extent to which geomorphic variation per se, based on relatively easily assessed indicators, can account for the variation in alpine tundra community composition is analyzed versus the inclusion of broad indicators of regional climate variation. Visual assessments of topography are quantified and reduced using principal components analysis (PCA). Observations of species cover are reduced using detrended correspondence analysis (DCA). A “best subsets” regression approach using the Akaike Information Criterion for selection of variables is compared to a simple stepwise regression with DCA scores as the dependent variable and scores on significant PCA axes plus more direct measures of topography as independent variables. Models with geographic coordinates (representing regional climate gradients) excluded explain almost as much variation in community composition as models with them included, although they are important contributors to the latter. The geomorphic variables in the model are those associated with local moisture differences such as snowbeds. The potential local variability of alpine tundra can be a buffer against climate change, but change in precipitation may be as important as change in temperature.

  15. Global variation in the effects of ambient temperature on mortality: a systematic evaluation

    PubMed Central

    Guo, Yuming; Gasparrini, Antonio; Armstrong, Ben; Li, Shanshan; Tawatsupa, Benjawan; Tobias, Aurelio; Lavigne, Eric; de Sousa Zanotti Stagliorio Coelho, Micheline; Leone, Michela; Pan, Xiaochuan; Tong, Shilu; Tian, Linwei; Kim, Ho; Hashizume, Masahiro; Honda, Yasushi; Guo, Yue-Liang Leon; Wu, Chang-Fu; Punnasiri, Kornwipa; Yi, Seung-Muk; Michelozzi, Paola; Saldiva, Paulo Hilario Nascimento; Williams, Gail

    2014-01-01

    Background Studies have examined the effects of temperature on mortality in a single city, country or region. However, less evidence is available on the variation in the associations between temperature and mortality in multiple countries, analyzed simultaneously. Methods We obtained daily data on temperature and mortality in 306 communities from 12 countries/regions (Australia, Brazil, Thailand, China, Taiwan, Korea, Japan, Italy, Spain, United Kingdom, United States and Canada). Two-stage analyses were used to assess the non-linear and delayed relationship between temperature and mortality. In the first stage, a Poisson regression allowing over-dispersion with distributed lag non-linear model was used to estimate the community-specific temperature-mortality relationship. In the second stage, a multivariate meta-analysis was used to pool the non-linear and delayed effects of ambient temperature at the national level, in each country. Results The temperatures associated with the lowest mortality were around the 75th percentile of temperature in all the countries/regions, ranging from 66th (Taiwan) to 80th (UK) percentiles. The estimated effects of cold and hot temperatures on mortality varied by community and country. Meta-analysis results show that both cold and hot temperatures increased the risk of mortality in all the countries/regions. Cold effects were delayed and lasted for many days, while hot effects appeared quickly and did not last long. Conclusions People have some ability to adapt to their local climate type, but both cold and hot temperatures are still associated with the risk of mortality. Public health strategies to alleviate the impact of ambient temperatures are important, in particular in the context of climate change. PMID:25166878

  16. Heat transfer analysis of catheters used for localized tissue cooling to attenuate reperfusion injury.

    PubMed

    Merrill, Thomas L; Mitchell, Jennifer E; Merrill, Denise R

    2016-08-01

    Recent revascularization success for ischemic stroke patients using stentrievers has created a new opportunity for therapeutic hypothermia. By using short term localized tissue cooling interventional catheters can be used to reduce reperfusion injury and improve neurological outcomes. Using experimental testing and a well-established heat exchanger design approach, the ɛ-NTU method, this paper examines the cooling performance of commercially available catheters as function of four practical parameters: (1) infusion flow rate, (2) catheter location in the body, (3) catheter configuration and design, and (4) cooling approach. While saline batch cooling outperformed closed-loop autologous blood cooling at all equivalent flow rates in terms of lower delivered temperatures and cooling capacity, hemodilution, systemic and local, remains a concern. For clinicians and engineers this paper provides insights for the selection, design, and operation of commercially available catheters used for localized tissue cooling. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Automatic Fault Recognition of Photovoltaic Modules Based on Statistical Analysis of Uav Thermography

    NASA Astrophysics Data System (ADS)

    Kim, D.; Youn, J.; Kim, C.

    2017-08-01

    As a malfunctioning PV (Photovoltaic) cell has a higher temperature than adjacent normal cells, we can detect it easily with a thermal infrared sensor. However, it will be a time-consuming way to inspect large-scale PV power plants by a hand-held thermal infrared sensor. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule based on the mean intensity and standard deviation range was developed to detect defective PV modules from individual array automatically. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97 % or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule.

  18. Space radiator simulation system analysis

    NASA Technical Reports Server (NTRS)

    Black, W. Z.; Wulff, W.

    1972-01-01

    A transient heat transfer analysis was carried out on a space radiator heat rejection system exposed to an arbitrarily prescribed combination of aerodynamic heating, solar, albedo, and planetary radiation. A rigorous analysis was carried out for the radiation panel and tubes lying in one plane and an approximate analysis was used to extend the rigorous analysis to the case of a curved panel. The analysis permits the consideration of both gaseous and liquid coolant fluids, including liquid metals, under prescribed, time dependent inlet conditions. The analysis provided a method for predicting: (1) transient and steady-state, two dimensional temperature profiles, (2) local and total heat rejection rates, (3) coolant flow pressure in the flow channel, and (4) total system weight and protection layer thickness.

  19. Development and performance of a laser heterodyne spectrometer using tunable semiconductor lasers as local oscillators

    NASA Technical Reports Server (NTRS)

    Glenar, D.; Kostiuk, T.; Jennings, D. E.; Mumma, M. J.

    1980-01-01

    A diode laser based IR heterodyne spectrometer for laboratory and field use was developed for high efficiency operation between 7.5 and 8.5 microns. The local oscillator is a PbSSe tunable diode laser kept continuously at operating temperatures of 12-60 K using a closed cycle cooler. The laser output frequency is controlled and stabilized using a high precision diode current supply, constant temperature controller, and a shock isolator mounted between the refrigerator cold tip and the diode mount. Single laser modes are selected by a grating placed in the local oscillator beam. The system employs reflecting optics throughout to minimize losses from internal reflection and absorption, and to eliminate chromatic effects. Spectral analysis of the diode laser output between 0 and 1 GHz reveals excess noise at many diode current settings, which limits the infrared spectral regions over which useful heterodyne operation can be achieved. System performance has been studied by making heterodyne measurements of etalon fringes and several Freon 13 (CF3Cl) absorption lines against a laboratory blackbody source. Preliminary field tests have also been performed using the Sun as a source.

  20. Impacts of El Niño Southern Oscillation and Indian Ocean Dipole on dengue incidence in Bangladesh

    PubMed Central

    Banu, Shahera; Guo, Yuming; Hu, Wenbiao; Dale, Pat; Mackenzie, John S.; Mengersen, Kerrie; Tong, Shilu

    2015-01-01

    Dengue dynamics are driven by complex interactions between hosts, vectors and viruses that are influenced by environmental and climatic factors. Several studies examined the role of El Niño Southern Oscillation (ENSO) in dengue incidence. However, the role of Indian Ocean Dipole (IOD), a coupled ocean atmosphere phenomenon in the Indian Ocean, which controls the summer monsoon rainfall in the Indian region, remains unexplored. Here, we examined the effects of ENSO and IOD on dengue incidence in Bangladesh. According to the wavelet coherence analysis, there was a very weak association between ENSO, IOD and dengue incidence, but a highly significant coherence between dengue incidence and local climate variables (temperature and rainfall). However, a distributed lag nonlinear model (DLNM) revealed that the association between dengue incidence and ENSO or IOD were comparatively stronger after adjustment for local climate variables, seasonality and trend. The estimated effects were nonlinear for both ENSO and IOD with higher relative risks at higher ENSO and IOD. The weak association between ENSO, IOD and dengue incidence might be driven by the stronger effects of local climate variables such as temperature and rainfall. Further research is required to disentangle these effects. PMID:26537857

  1. Impacts of El Niño Southern Oscillation and Indian Ocean Dipole on dengue incidence in Bangladesh.

    PubMed

    Banu, Shahera; Guo, Yuming; Hu, Wenbiao; Dale, Pat; Mackenzie, John S; Mengersen, Kerrie; Tong, Shilu

    2015-11-05

    Dengue dynamics are driven by complex interactions between hosts, vectors and viruses that are influenced by environmental and climatic factors. Several studies examined the role of El Niño Southern Oscillation (ENSO) in dengue incidence. However, the role of Indian Ocean Dipole (IOD), a coupled ocean atmosphere phenomenon in the Indian Ocean, which controls the summer monsoon rainfall in the Indian region, remains unexplored. Here, we examined the effects of ENSO and IOD on dengue incidence in Bangladesh. According to the wavelet coherence analysis, there was a very weak association between ENSO, IOD and dengue incidence, but a highly significant coherence between dengue incidence and local climate variables (temperature and rainfall). However, a distributed lag nonlinear model (DLNM) revealed that the association between dengue incidence and ENSO or IOD were comparatively stronger after adjustment for local climate variables, seasonality and trend. The estimated effects were nonlinear for both ENSO and IOD with higher relative risks at higher ENSO and IOD. The weak association between ENSO, IOD and dengue incidence might be driven by the stronger effects of local climate variables such as temperature and rainfall. Further research is required to disentangle these effects.

  2. Local heat stroke prevention plans in Japan: characteristics and elements for public health adaptation to climate change.

    PubMed

    Martinez, Gerardo Sanchez; Imai, Chisato; Masumo, Kanako

    2011-12-01

    The adverse health effects from hot weather and heat waves represent significant public health risks in vulnerable areas worldwide. Rising temperatures due to climate change are aggravating these risks in a context of fast urbanization, population growth and societal ageing. However, environmental heat-related health effects are largely preventable through adequate preparedness and responses. Public health adaptation to climate change will often require the implementation of heat wave warning systems and targeted preventive activities at different levels. While several national governments have established such systems at the country level, municipalities do not generally play a major role in the prevention of heat disorders. This paper analyzes selected examples of locally operated heat-health prevention plans in Japan. The analysis of these plans highlights their strengths, but also the need of local institutions for assistance to make the transition towards an effective public health management of high temperatures and heat waves. It can also provide useful elements for municipal governments in vulnerable areas, both in planning their climate change and health adaptation activities or to better protect their communities against current health effects from heat.

  3. The role of local heating in the 2015 Indian Heat Wave.

    PubMed

    Ghatak, Debjani; Zaitchik, Benjamin; Hain, Christopher; Anderson, Martha

    2017-08-09

    India faced a major heat wave during the summer of 2015. Temperature anomalies peaked in the dry period before the onset of the summer monsoon, suggesting that local land-atmosphere feedbacks involving desiccated soils and vegetation might have played a role in driving the heat extreme. Upon examination of in situ data, reanalysis, satellite observations, and land surface models, we find that the heat wave included two distinct peaks: one in late May, and a second in early June. During the first peak we find that clear skies led to a positive net radiation anomaly at the surface, but there is no significant sensible heat flux anomaly within the core of the heat wave affected region. By the time of the second peak, however, soil moisture had dropped to anomalously low levels in the core heat wave region, net surface radiation was anomalously high, and a significant positive sensible heat flux anomaly developed. This led to a substantial local forcing on air temperature that contributed to the intensity of the event. The analysis indicates that the highly agricultural landscape of North and Central India can reinforce heat extremes under dry conditions.

  4. Local Heat Stroke Prevention Plans in Japan: Characteristics and Elements for Public Health Adaptation to Climate Change

    PubMed Central

    Martinez, Gerardo Sanchez; Imai, Chisato; Masumo, Kanako

    2011-01-01

    The adverse health effects from hot weather and heat waves represent significant public health risks in vulnerable areas worldwide. Rising temperatures due to climate change are aggravating these risks in a context of fast urbanization, population growth and societal ageing. However, environmental heat-related health effects are largely preventable through adequate preparedness and responses. Public health adaptation to climate change will often require the implementation of heat wave warning systems and targeted preventive activities at different levels. While several national governments have established such systems at the country level, municipalities do not generally play a major role in the prevention of heat disorders. This paper analyzes selected examples of locally operated heat-health prevention plans in Japan. The analysis of these plans highlights their strengths, but also the need of local institutions for assistance to make the transition towards an effective public health management of high temperatures and heat waves. It can also provide useful elements for municipal governments in vulnerable areas, both in planning their climate change and health adaptation activities or to better protect their communities against current health effects from heat. PMID:22408589

  5. Observational constraint on spherical inhomogeneity with CMB and local Hubble parameter

    NASA Astrophysics Data System (ADS)

    Tokutake, Masato; Ichiki, Kiyotomo; Yoo, Chul-Moon

    2018-03-01

    We derive an observational constraint on a spherical inhomogeneity of the void centered at our position from the angular power spectrum of the cosmic microwave background (CMB) and local measurements of the Hubble parameter. The late time behaviour of the void is assumed to be well described by the so-called Λ-Lemaȋtre-Tolman-Bondi (ΛLTB) solution. Then, we restrict the models to the asymptotically homogeneous models each of which is approximated by a flat Friedmann-Lemaȋtre-Robertson-Walker model. The late time ΛLTB models are parametrized by four parameters including the value of the cosmological constant and the local Hubble parameter. The other two parameters are used to parametrize the observed distance-redshift relation. Then, the ΛLTB models are constructed so that they are compatible with the given distance-redshift relation. Including conventional parameters for the CMB analysis, we characterize our models by seven parameters in total. The local Hubble measurements are reflected in the prior distribution of the local Hubble parameter. As a result of a Markov-Chains-Monte-Carlo analysis for the CMB temperature and polarization anisotropies, we found that the inhomogeneous universe models with vanishing cosmological constant are ruled out as is expected. However, a significant under-density around us is still compatible with the angular power spectrum of CMB and the local Hubble parameter.

  6. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  7. Investigation of local evaporation flux and vapor-phase pressure at an evaporative droplet interface.

    PubMed

    Duan, Fei; Ward, C A

    2009-07-07

    In the steady-state experiments of water droplet evaporation, when the throat was heating at a stainless steel conical funnel, the interfacial liquid temperature was found to increase parabolically from the center line to the rim of the funnel with the global vapor-phase pressure at around 600 Pa. The energy conservation analysis at the interface indicates that the energy required for evaporation is maintained by thermal conduction to the interface from the liquid and vapor phases, thermocapillary convection at interface, and the viscous dissipation globally and locally. The local evaporation flux increases from the center line to the periphery as a result of multiple effects of energy transport at the interface. The local vapor-phase pressure predicted from statistical rate theory (SRT) is also found to increase monotonically toward the interface edge from the center line. However, the average value of the local vapor-phase pressures is in agreement with the measured global vapor-phase pressure within the measured error bar.

  8. Synchronized Molecular-Dynamics simulation for thermal lubrication of a polymeric liquid between parallel plates

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo; Yamamoto, Ryoichi

    2015-11-01

    The Synchronized Molecular-Dynamics simulation which was recently proposed by authors is applied to the analysis of polymer lubrication between parallel plates. In the SMD method, the MD simulations are assigned to small fluid elements to calculate the local stresses and temperatures and are synchronized at certain time intervals to satisfy the macroscopic heat- and momentum-transport equations.The rheological properties and conformation of the polymer chains coupled with local viscous heating are investigated with a non-dimensional parameter, the Nahme-Griffith number, which is defined as the ratio of the viscous heating to the thermal conduction at the characteristic temperature required to sufficiently change the viscosity. The present simulation demonstrates that strong shear thinning and a transitional behavior of the conformation of the polymer chains are exhibited with a rapid temperature rise when the Nahme-Griffith number exceeds unity.The results also clarify that the reentrant transition of the linear stress-optical relation occurs for large shear stresses due to the coupling of the conformation of polymer chains with heat generation under shear flows. This study was financially supported by JSPS KAKENHI Grant Nos. 26790080 and 26247069.

  9. Thermal motion of a nonlinear localized pattern in a quasi-one-dimensional system.

    PubMed

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2016-07-01

    We study the dynamics of localized nonlinear patterns in a quasi-one-dimensional many-particle system near a subcritical pitchfork bifurcation. The normal form at the bifurcation is given and we show that these patterns can be described as solitary-wave envelopes. They are stable in a large temperature range and can diffuse along the chain of interacting particles. During their displacements the particles are continually redistributed on the envelope. This change of particle location induces a small modulation of the potential energy of the system, with an amplitude that depends on the transverse confinement. At high temperature, this modulation is irrelevant and the thermal motion of the localized patterns displays all the characteristics of a free quasiparticle diffusion with a diffusion coefficient that may be deduced from the normal form. At low temperature, significant physical effects are induced by the modulated potential. In particular, the localized pattern may be trapped at very low temperature. We also exhibit a series of confinement values for which the modulation amplitudes vanishes. For these peculiar confinements, the mean-square displacement of the localized patterns also evidences free-diffusion behavior at low temperature.

  10. Tracing temperature in a nanometer size region in a picosecond time period.

    PubMed

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  11. Electron-beam-induced topographical, chemical, and structural patterning of amorphous titanium oxide films.

    PubMed

    Kern, P; Müller, Y; Patscheider, J; Michler, J

    2006-11-30

    Electrolytically deposited amorphous TiO2 films on steel are remarkably sensitive to electron beam (e-beam) irradiation at moderate energies at 20 keV, resulting in controlled local oxide reduction and crystallization, opening the possibility for local topographical, chemical, and structural modifications within a biocompatible, amorphous, and semiconducting matrix. The sensitivity is shown to vary significantly with the annealing temperature of as-deposited films. Well-defined irradiation conditions in terms of probe current IP (5 microA) and beam size were achieved with an electron probe microanalyzer. As shown by atomic force and optical microscopy, micro-Raman spectroscopy, wavelength-dispersive X-ray (WDX), and Auger analyses, e-beam exposure below 1 Acm-2 immediately leads to electron-stimulated oxygen desorption, resulting in a well-defined volume loss primarily limited to the irradiated zone under the electron probe and in a blue color shift in this zone because of the presence of Ti2O3. Irradiation at 5 Acm(-2) (IP = 5 microA) results in local crystallization into anatase phase within 1 s of exposure and in reduction to TiO after an extended exposure of 60 s. Further reduction to the metallic state could be observed after 60 s of exposure at approximately 160 Acm(-2). The local reduction could be qualitatively sensed with WDX analysis and Auger line scans. An estimation of the film temperature in the beam center indicates that crystallization occurs at less than 150 degrees C, well below the atmospheric crystallization temperature of the present films. The high e-beam sensitivity in combination with the well-defined volume loss from oxygen desorption allows for precise electron lithographic topographical patterning of the present oxides. Irradiation effects leading to the observed reduction and crystallization phenomena under moderate electron energies are discussed.

  12. Microstructure from ferroelastic transitions using strain pseudospin clock models in two and three dimensions: A local mean-field analysis

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Lookman, Turab; Shenoy, Subodh R.

    2010-09-01

    We show how microstructure can arise in first-order ferroelastic structural transitions, in two and three spatial dimensions, through a local mean-field approximation of their pseudospin Hamiltonians, that include anisotropic elastic interactions. Such transitions have symmetry-selected physical strains as their NOP -component order parameters, with Landau free energies that have a single zero-strain “austenite” minimum at high temperatures, and spontaneous-strain “martensite” minima of NV structural variants at low temperatures. The total free energy also has gradient terms, and power-law anisotropic effective interactions, induced by “no-dislocation” St Venant compatibility constraints. In a reduced description, the strains at Landau minima induce temperature dependent, clocklike ZNV+1 Hamiltonians, with NOP -component strain-pseudospin vectors S⃗ pointing to NV+1 discrete values (including zero). We study elastic texturing in five such first-order structural transitions through a local mean-field approximation of their pseudospin Hamiltonians, that include the power-law interactions. As a prototype, we consider the two-variant square/rectangle transition, with a one-component pseudospin taking NV+1=3 values of S=0,±1 , as in a generalized Blume-Capel model. We then consider transitions with two-component (NOP=2) pseudospins: the equilateral to centered rectangle (NV=3) ; the square to oblique polygon (NV=4) ; the triangle to oblique (NV=6) transitions; and finally the three-dimensional (3D) cubic to tetragonal transition (NV=3) . The local mean-field solutions in two-dimensional and 3D yield oriented domain-wall patterns as from continuous-variable strain dynamics, showing the discrete-variable models capture the essential ferroelastic texturings. Other related Hamiltonians illustrate that structural transitions in materials science can be the source of interesting spin models in statistical mechanics.

  13. Local strain heterogeneity and elastic relaxation dynamics associated with relaxor behavior in the single-crystal perovskite Pb (I n1 /2N b1 /2 ) O3-PbZr O3-Pb (M g1 /3N b2 /3 ) O3-PbTi O3

    NASA Astrophysics Data System (ADS)

    He, Wenhui; Carpenter, Michael A.; Lampronti, Giulio I.; Li, Qiang; Yan, Qingfeng

    2017-10-01

    Recently, Pb (In1/2Nb1/2 ) O3-PbZr O3-Pb (Mg1/3Nb2/3 ) O3-PbTiO3 (PIN-PZ-PMN-PT) relaxor single crystals were demonstrated to possess improved temperature-insensitive properties, which would be desirable for high-power device applications. The relaxor character associated with the development of local random fields (RFs) and a high rhombohedral-tetragonal (R-T) ferroelectric transition temperature (TR-T>120°C) would be critical for the excellent properties. A significant effect of the chemical substitution of In3+ and Zr4+ in PMN-PT to give PIN-PZ-PMN-PT is the development of local strain heterogeneity, which acts to suppress the development of macroscopic shear strains without suppressing the development of local ferroelectric moments and contribute substantially to the RFs in PIN-PZ-PMN-PT. Measurements of elastic and anelastic properties by resonant ultrasound spectroscopy show that PIN-PZ-PMN-PT crystal has a quite different form of elastic anomaly due to Vogel-Fulcher freezing, rather than the a discrete cubic-T transition seen in a single crystal of PMN-28PT. It also has high acoustic loss of the relaxor phase down to TR-T. Analysis of piezoresponse force microscopy phase images at different temperatures provides a quantitative insight into the extent to which the RFs influence the microdomain structure and the short-range order correlation length 〈ξ 〉 .

  14. Complex life cycles and the responses of insects to climate change.

    PubMed

    Kingsolver, Joel G; Woods, H Arthur; Buckley, Lauren B; Potter, Kristen A; MacLean, Heidi J; Higgins, Jessica K

    2011-11-01

    Many organisms have complex life cycles with distinct life stages that experience different environmental conditions. How does the complexity of life cycles affect the ecological and evolutionary responses of organisms to climate change? We address this question by exploring several recent case studies and synthetic analyses of insects. First, different life stages may inhabit different microhabitats, and may differ in their thermal sensitivities and other traits that are important for responses to climate. For example, the life stages of Manduca experience different patterns of thermal and hydric variability, and differ in tolerance to high temperatures. Second, life stages may differ in their mechanisms for adaptation to local climatic conditions. For example, in Colias, larvae in different geographic populations and species adapt to local climate via differences in optimal and maximal temperatures for feeding and growth, whereas adults adapt via differences in melanin of the wings and in other morphological traits. Third, we extend a recent analysis of the temperature-dependence of insect population growth to demonstrate how changes in temperature can differently impact juvenile survival and adult reproduction. In both temperate and tropical regions, high rates of adult reproduction in a given environment may not be realized if occasional, high temperatures prevent survival to maturity. This suggests that considering the differing responses of multiple life stages is essential to understand the ecological and evolutionary consequences of climate change. © The Author 2011. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

  15. West Florida shelf circulation and temperature budget for the 1998 fall transition

    NASA Astrophysics Data System (ADS)

    He, Ruoying; Weisberg, Robert H.

    2003-05-01

    Mid-latitude continental shelves undergo a fall transition as the net heat flux changes from warming to cooling. Using in situ data and a numerical model we investigate the circulation on the west Florida shelf (WFS) for the fall transition of 1998. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind, air pressure, and heat flux fields, plus river inflows. After comparison with observations the model is used to draw inferences on the seasonal and synoptic scale features of the shelf circulation. By running twin experiments, one without and the other with an idealized Loop Current (LC), we explore the relative importance of local versus deep-ocean forcing. We find that local forcing largely controls the inner-shelf circulation, including changes from the Florida Panhandle in the north to regions farther south. The effects of the LC in fall 1998 are to reinforce the mid-shelf currents and to increase the across-shelf transports in the bottom Ekman layer, thereby accentuating the shoreward transport of cold, nutrient rich water of deep-ocean origin. A three-dimensional analysis of the temperature budget reveals that surface heat flux largely controls both the seasonal and synoptic scale temperature variations. Surface cooling leads to convective mixing that rapidly alters temperature gradients. One interesting consequence is that upwelling can result in near-shore warming as warmer offshore waters are advected landward. The temperature balances on the shelf are complex and fully three-dimensional.

  16. Pore-level numerical analysis of the infrared surface temperature of metallic foam

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xia, Xin-Lin; Sun, Chuang; Tan, He-Ping; Wang, Jing

    2017-10-01

    Open-cell metallic foams are increasingly used in various thermal systems. The temperature distributions are significant for the comprehensive understanding of these foam-based engineering applications. This study aims to numerically investigate the modeling of the infrared surface temperature (IRST) of open-cell metallic foam measured by an infrared camera placed above the sample. Two typical approaches based on Backward Monte Carlo simulation are developed to estimate the IRSTs: the first one, discrete-scale approach (DSA), uses a realistic discrete representation of the foam structure obtained from a computed tomography reconstruction while the second one, continuous-scale approach (CSA), assumes that the foam sample behaves like a continuous homogeneous semi-transparent medium. The radiative properties employed in CSA are directly determined by a ray-tracing process inside the discrete foam representation. The IRSTs for different material properties (material emissivity, specularity parameter) are computed by the two approaches. The results show that local IRSTs can vary according to the local compositions of the foam surface (void and solid). The temperature difference between void and solid areas is gradually attenuated with increasing material emissivity. In addition, the annular void space near to the foam surface behaves like a black cavity for thermal radiation, which is ensued by copious neighboring skeletons. For most of the cases studied, the mean IRSTs computed by the DSA and CSA are close to each other, except when the material emissivity is highly weakened and the sample temperature is extremely high.

  17. Determination of plant growth rate and growth temperature range from measurement of physiological parameters

    Treesearch

    R. S. Criddle; B. N. Smith; L. D. Hansen; J. N. Church

    2001-01-01

    Many factors influence species range and diversity, but temperature and temperature variability are always major global determinants, irrespective of local constraints. On a global scale, the ranges of many taxa have been observed to increase and their diversity decrease with increasing latitude. On a local scale, gradients in species distribution are observable with...

  18. Modelling the occurrence of heat waves in maximum and minimum temperatures over Spain and projections for the period 2031-60

    NASA Astrophysics Data System (ADS)

    Abaurrea, J.; Asín, J.; Cebrián, A. C.

    2018-02-01

    The occurrence of extreme heat events in maximum and minimum daily temperatures is modelled using a non-homogeneous common Poisson shock process. It is applied to five Spanish locations, representative of the most common climates over the Iberian Peninsula. The model is based on an excess over threshold approach and distinguishes three types of extreme events: only in maximum temperature, only in minimum temperature and in both of them (simultaneous events). It takes into account the dependence between the occurrence of extreme events in both temperatures and its parameters are expressed as functions of time and temperature related covariates. The fitted models allow us to characterize the occurrence of extreme heat events and to compare their evolution in the different climates during the observed period. This model is also a useful tool for obtaining local projections of the occurrence rate of extreme heat events under climate change conditions, using the future downscaled temperature trajectories generated by Earth System Models. The projections for 2031-60 under scenarios RCP4.5, RCP6.0 and RCP8.5 are obtained and analysed using the trajectories from four earth system models which have successfully passed a preliminary control analysis. Different graphical tools and summary measures of the projected daily intensities are used to quantify the climate change on a local scale. A high increase in the occurrence of extreme heat events, mainly in July and August, is projected in all the locations, all types of event and in the three scenarios, although in 2051-60 the increase is higher under RCP8.5. However, relevant differences are found between the evolution in the different climates and the types of event, with a specially high increase in the simultaneous ones.

  19. Fluid flow in the resurgent dome of Long Valley Caldera: Implications from thermal data and deep electrical sounding

    USGS Publications Warehouse

    Pribnow, D.F.C.; Schutze, C.; Hurter, S.J.; Flechsig, C.; Sass, J.H.

    2003-01-01

    Temperatures of 100??C are measured at 3 km depth in a well located on the resurgent dome in the center of Long Valley Caldera, California, despite an assumed >800??C magma chamber at 6-8 km depth. Local downflow of cold meteoric water as a process for cooling the resurgent dome is ruled out by a Pecle??t-number analysis of temperature logs. These analyses reveal zones with fluid circulation at the upper and lower boundaries of the Bishop Tuff, and an upflow zone in the metasedimentary rocks. Vertical Darcy velocities range from 10 to 70 cm a-1. A 21-km-long geoelectrical profile across the caldera provides resistivity values to the order of 100 to >103 ??m down to a depth of 6 km, as well as variations of self-potential. Interpretation of the electrical data with respect to hydrothermal fluid movement confirms that there is no downflow beneath the resurgent dome. To explain the unexpectedly low temperatures in the resurgent dome, we challenge the common view that the caldera as a whole is a regime of high temperatures and the resurgent dome is a local cold anomaly. Instead, we suggest that the caldera was cooled to normal thermal conditions by vigorous hydrothermal activity in the past, and that a present-day hot water flow system is responsible for local hot anomalies, such as Hot Creek and the area of the Casa Diablo geothermal power plant. The source of hot water has been associated with recent shallow intrusions into the West Moat. The focus of planning for future power plants should be to locate this present-day flow system instead of relying on heat from the old magma chamber. ?? 2003 Elsevier B.V. All rights reserved.

  20. Combined statistical and mechanistic modelling suggests food and temperature effects on survival of early life stages of Northeast Arctic cod (Gadus morhua)

    NASA Astrophysics Data System (ADS)

    Stige, Leif Chr.; Langangen, Øystein; Yaragina, Natalia A.; Vikebø, Frode B.; Bogstad, Bjarte; Ottersen, Geir; Stenseth, Nils Chr.; Hjermann, Dag Ø.

    2015-05-01

    Understanding the causes of the large interannual fluctuations in the recruitment to many marine fishes is a key challenge in fisheries ecology. We here propose that the combination of mechanistic and statistical modelling of the pelagic early life stages (ELS) prior to recruitment can be a powerful approach for improving our understanding of local-scale and population-scale dynamics. Specifically, this approach allows separating effects of ocean transport and survival, and thereby enhances the knowledge of the processes that regulate recruitment. We analyse data on the pelagic eggs, larvae and post-larvae of Northeast Arctic cod and on copepod nauplii, the main prey of the cod larvae. The data originate from two surveys, one in spring and one in summer, for 30 years. A coupled physical-biological model is used to simulate the transport, ambient temperature and development of cod ELS from spawning through spring and summer. The predictions from this model are used as input in a statistical analysis of the summer data, to investigate effects of covariates thought to be linked to growth and survival. We find significant associations between the local-scale ambient copepod nauplii concentration and temperature in spring and the local-scale occurrence of cod (post)larvae in summer, consistent with effects on survival. Moreover, years with low copepod nauplii concentrations and low temperature in spring are significantly associated with lower mean length of the cod (post)larvae in summer, likely caused in part by higher mortality leading to increased dominance of young and hence small individuals. Finally, we find that the recruitment at age 3 is strongly associated with the mean body length of the cod ELS, highlighting the biological significance of the findings.

  1. Fluid flow in the resurgent dome of Long Valley Caldera: implications from thermal data and deep electrical sounding

    NASA Astrophysics Data System (ADS)

    Pribnow, Daniel F. C.; Schütze, Claudia; Hurter, Suzanne J.; Flechsig, Christina; Sass, John H.

    2003-10-01

    Temperatures of 100°C are measured at 3 km depth in a well located on the resurgent dome in the center of Long Valley Caldera, California, despite an assumed >800°C magma chamber at 6-8 km depth. Local downflow of cold meteoric water as a process for cooling the resurgent dome is ruled out by a Peclét-number analysis of temperature logs. These analyses reveal zones with fluid circulation at the upper and lower boundaries of the Bishop Tuff, and an upflow zone in the metasedimentary rocks. Vertical Darcy velocities range from 10 to 70 cm a -1. A 21-km-long geoelectrical profile across the caldera provides resistivity values to the order of 10 0 to >10 3 Ωm down to a depth of 6 km, as well as variations of self-potential. Interpretation of the electrical data with respect to hydrothermal fluid movement confirms that there is no downflow beneath the resurgent dome. To explain the unexpectedly low temperatures in the resurgent dome, we challenge the common view that the caldera as a whole is a regime of high temperatures and the resurgent dome is a local cold anomaly. Instead, we suggest that the caldera was cooled to normal thermal conditions by vigorous hydrothermal activity in the past, and that a present-day hot water flow system is responsible for local hot anomalies, such as Hot Creek and the area of the Casa Diablo geothermal power plant. The source of hot water has been associated with recent shallow intrusions into the West Moat. The focus of planning for future power plants should be to locate this present-day flow system instead of relying on heat from the old magma chamber.

  2. Data acquisition and PV module power production in upgraded TEP/AzRISE solar test yard

    NASA Astrophysics Data System (ADS)

    Bennett, Whit E.; Fishgold, Asher D.; Lai, Teh; Potter, Barrett G.; Simmons-Potter, Kelly

    2017-08-01

    The Tucson Electric Power (TEP)/University of Arizona AzRISE (Arizona Research Institute for Solar Energy) solar test yard is continuing efforts to improve standardization and data acquisition reliability throughout the facility. Data reliability is ensured through temperature-insensitive data acquisition devices with battery backups in the upgraded test yard. Software improvements allow for real-time analysis of collected data, while uploading to a web server. Sample data illustrates high fidelity monitoring of the burn-in period of a polycrystalline silicon photovoltaic module test string with no data failures over 365 days of data collection. In addition to improved DAQ systems, precision temperature monitoring has been implemented so that PV module backside temperatures are routinely obtained. Weather station data acquired at the test yard provides local ambient temperature, humidity, wind speed, and irradiance measurements that have been utilized to enable characterization of PV module performance over an extended test period

  3. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    2017-06-22

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  4. Analysis of Material Sample Heated by Impinging Hot Hydrogen Jet in a Non-Nuclear Tester

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Foote, John; Litchford, Ron

    2006-01-01

    A computational conjugate heat transfer methodology was developed and anchored with data obtained from a hot-hydrogen jet heated, non-nuclear materials tester, as a first step towards developing an efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective and thermal radiative, and conjugate heat transfers. Predicted hot hydrogen jet and material surface temperatures were compared with those of measurement. Predicted solid temperatures were compared with those obtained with a standard heat transfer code. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.

  5. Temperature Measurement and Damage Detection in Concrete Beams Exposed to Fire Using PPP-BOTDA Based Fiber Optic Sensors.

    PubMed

    Bao, Yi; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda

    2017-10-01

    In this study, distributed fiber optic sensors based on pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA) are characterized and deployed to measure spatially-distributed temperatures in reinforced concrete specimens exposed to fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9 %. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.

  6. Carrier mobility in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Benwadih, Mohamed; Gwoziecki, Romain; Coppard, Romain; Minari, Takeo; Liu, Chuan; Tsukagoshi, Kazuhito; Chroboczek, Jan; Balestra, Francis; Ghibaudo, Gerard

    2011-11-01

    A study of carrier transport in top-gate and bottom-contact TIPS-pentacene organic field-effect transistors (OFETs) based on mobility is presented. Among three mobilities extracted by different methods, the low-field mobility obtained by the Y function exhibits the best reliability and ease for use, whereas the widely applied field-effect mobility is not reliable, particularly in short-channel transistors and at low temperatures. A detailed study of contact transport reveals its strong impact on short-channel transistors, suggesting that a more intrinsic transport analysis is better implemented in relatively longer-channel devices. The observed temperature dependences of mobility are well explained by a transport model with Gaussian-like diffusivity band tails, different from diffusion in localized states band tails. This model explicitly interprets the non-zero constant mobility at low temperatures and clearly demonstrates the effects of disorder and hopping transport on temperature and carrier density dependences of mobility in organic transistors.

  7. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  8. Possible observation of the Berezinskii-Kosterlitz-Thouless transition in boron-doped diamond films

    NASA Astrophysics Data System (ADS)

    Coleman, Christopher; Bhattacharyya, Somnath

    2017-11-01

    The occurrence of the Berezinskii-Kosterlitz-Thouless (BKT) transition is investigated in heavily boron-doped nanocrystalline diamond films through a combination of current-voltage and resistance measurements. We observe transport features suggesting a robust BKT transition along with transport features related to vortex pinning in nanocrystalline diamond films with smaller grain size. The vortex core energy determined through analysis of the resistance temperature curves was found to be anti-correlated to the BKT transition temperatures. It is also observed that the higher BKT temperature is related to an increased vortex-antivortex binding energy derived from the activated transport regions. Further, the magnetic field induced superconductor insulator transition shows the possibility of the charge glass state. The consequences of granularity such as localization and vortex pinning can lead to tuneable BKT temperatures and strongly affects the field induced insulating state.

  9. H2O frost point detection on Mars

    NASA Technical Reports Server (NTRS)

    Ryan, J. A.; Sharman, R. D.

    1981-01-01

    The Viking Mars landers contain meteorological instrumentation to measure wind, temperature, and pressure but not atmospheric water content. The landings occurred during local summer, and it was observed that the nocturnal temperature decrease at sensor height (1.6 m) did not exhibit a uniform behavior at either site. It was expected that the rate of decrease would gradually slow, leveling off near sunrise. Instead, a leveling occurred several hours earlier. Temperature subsequently began a more rapid decrease which slowed by sunrise. This suggested that the temperature sensors may be detecting the frost point of water vapor. Analysis of alternative hypotheses demonstrates that none of these are viable candidates. The frost point interpretation is consistent with other lander and orbiter observations, with terrestrial experience, and with modeling of Mars' atmospheric behavior. It thus appears that the meteorology experiment can help provide a basis toward understanding the distribution and dynamics of Martian water vapor.

  10. Interannual Variability in the Position and Strength of the East Asian Jet Stream and Its Relation to Large - scale Circulation

    NASA Astrophysics Data System (ADS)

    Chan, Duo; Zhang, Yang; Wu, Qigang

    2013-04-01

    East Asian Jet Stream (EASJ) is charactered by obvious interannual variability in strength and position (latitude), with wide impacts on East Asian climate in all seasons. In this study, two indices are established to measure the interannual variability in intensity and position of EAJS. Possible causing factors, including both local signals and non-local large-scale circulation, are examined using NCAP-NCAR reanalysis data to investigate their relations with jet variation. Our analysis shows that the relationship between the interannual variations of EASJ and these factors depends on seasons. In the summer, both the intensity and position of EASJ are closely related to the meridional gradient of local surface temperature, but display no apparent relationship with the larg-scale circulation. In cold seasons (autumn, winter and spring), both the local factor and the large-scale circulation, i.e. the Pacific/North American teleconnection pattern (PNA), play important roles in the interannual variability of the jet intensity. The variability in the jet position, however, is more correlated to the Arctic Oscillation (AO), especially in winter. Diagnostic analysis indicates that transient eddy activity plays an important role in connecting the interannual variability of EASJ position with AO.

  11. A New Methodology for Turbulence Modelers Using DNS Database Analysis

    NASA Technical Reports Server (NTRS)

    Parneix, S.; Durbin, P.

    1996-01-01

    Many industrial applications in such fields as aeronautical, mechanical, thermal, and environmental engineering involve complex turbulent flows containing global separations and subsequent reattachment zones. Accurate prediction of this phenomena is very important because separations influence the whole fluid flow and may have an even bigger impact on surface heat transfer. In particular, reattaching flows are known to be responsible for large local variations of the local wall heat transfer coefficient as well as modifying the overall heat transfer. For incompressible, non-buoyant situations, the fluid mechanics have to be accurately predicted in order to have a good resolution of the temperature field.

  12. Interplay between local dynamics and mechanical reinforcement in glassy polymer nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang

    The modification of polymer dynamics in the presence of strongly interacting nanoparticles has been shown to significantly change themacroscopic properties above the glass transition temperature of polymer nanocomposites (PNCs). However, much less attention has been paid to changes in the dynamics of glassy PNCs. Analysis of neutron and light scattering data presented herein reveals a surprising enhancement of local dynamics, e.g., fast picosecond and secondary relaxations, in glassy PNCs accompanied with a strengthening of mechanical modulus. Here we ascribe this counter-intuitive behavior to the complex interplay between chain packing and stretching within the interfacial layer formed at the polymer-nanoparticle interface.

  13. Interplay between local dynamics and mechanical reinforcement in glassy polymer nanocomposites

    DOE PAGES

    Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang; ...

    2017-11-17

    The modification of polymer dynamics in the presence of strongly interacting nanoparticles has been shown to significantly change themacroscopic properties above the glass transition temperature of polymer nanocomposites (PNCs). However, much less attention has been paid to changes in the dynamics of glassy PNCs. Analysis of neutron and light scattering data presented herein reveals a surprising enhancement of local dynamics, e.g., fast picosecond and secondary relaxations, in glassy PNCs accompanied with a strengthening of mechanical modulus. Here we ascribe this counter-intuitive behavior to the complex interplay between chain packing and stretching within the interfacial layer formed at the polymer-nanoparticle interface.

  14. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    PubMed

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  15. A new statistical tool for NOAA local climate studies

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Meyers, J. C.; Hollingshead, A.

    2011-12-01

    The National Weather Services (NWS) Local Climate Analysis Tool (LCAT) is evolving out of a need to support and enhance the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) field offices' ability to efficiently access, manipulate, and interpret local climate data and characterize climate variability and change impacts. LCAT will enable NOAA's staff to conduct regional and local climate studies using state-of-the-art station and reanalysis gridded data and various statistical techniques for climate analysis. The analysis results will be used for climate services to guide local decision makers in weather and climate sensitive actions and to deliver information to the general public. LCAT will augment current climate reference materials with information pertinent to the local and regional levels as they apply to diverse variables appropriate to each locality. The LCAT main emphasis is to enable studies of extreme meteorological and hydrological events such as tornadoes, flood, drought, severe storms, etc. LCAT will close a very critical gap in NWS local climate services because it will allow addressing climate variables beyond average temperature and total precipitation. NWS external partners and government agencies will benefit from the LCAT outputs that could be easily incorporated into their own analysis and/or delivery systems. Presently we identified five existing requirements for local climate: (1) Local impacts of climate change; (2) Local impacts of climate variability; (3) Drought studies; (4) Attribution of severe meteorological and hydrological events; and (5) Climate studies for water resources. The methodologies for the first three requirements will be included in the LCAT first phase implementation. Local rate of climate change is defined as a slope of the mean trend estimated from the ensemble of three trend techniques: (1) hinge, (2) Optimal Climate Normals (running mean for optimal time periods), (3) exponentially-weighted moving average. Root mean squared error is used to determine the best fit of trend to the observations with the least error. The studies of climate variability impacts on local extremes use composite techniques applied to various definitions of local variables: from specified percentiles to critical thresholds. Drought studies combine visual capabilities of Google maps with statistical estimates of drought severity indices. The process of development will be linked to local office interactions with users to ensure the tool will meet their needs as well as provide adequate training. A rigorous internal and tiered peer-review process will be implemented to ensure the studies are scientifically-sound that will be published and submitted to the local studies catalog (database) and eventually to external sources, such as the Climate Portal.

  16. Diagenesis of an 'overmature' gas reservoir: The Spiro sand of the Arkoma Basin, USA

    USGS Publications Warehouse

    Spotl, C.; Houseknecht, D.W.; Burns, S.J.

    1996-01-01

    The Spiro sand is a laterally extensive thin sandstone of earliest Atokan (Pennsylvanian) age that forms a major natural gas reservoir in the western Arkoma Basin, Oklahoma. Petrographic analysis reveals a variety of diagenetic alterations, the majority of which occurred during moderate to deep burial. Early diagenetic processes include calcite cementation and the formation of Fe-clay mineral peloids and coatings around quartz framework grains. These clays, which underwent transformation to well-crystallized chamosite [polytype Ib(?? = 90??)] on burial, are particularly abundant in medium-grained channel sandstones, whereas illitic clays are predominant in fine-grained interchannel sandstones. Subsequent to mechanical compaction, saddle ankerite precipitated in the reservoir at temperatures in excess of 70??C. Crude oil collected in favourable structural locations during and after ankeritization. Whereas hydrocarbons apparently halted inorganic diagenesis in oil-saturated zones, cementation continued in the underlying water-saturated zones. As reservoir temperatures increased further, hydrocarbons were cracked and a solid pyrobitumen residue remained in the reservoir. At temperatures exceeding ???140-150??C, non-syntaxial quartz cement, ferroan calcite and traces of dickite(?) locally reduced the reservoir quality. Local secondary porosity was created by carbonate cement dissolution. This alteration post-dated hydrocarbon emplacement and is probably related to late-stage infiltration of freshwater along 'leaky' faults. The study shows that the Spiro sandstone locally retained excellent porosities despite deep burial and thermal conditions that correspond to the zone of incipient very low grade metamorphism.

  17. Quantitative Analysis of Thermal Anomalies in the DFDP-2B Borehole, New Zealand

    NASA Astrophysics Data System (ADS)

    Janků-Čápová, Lucie; Sutherland, Rupert; Townend, John

    2017-04-01

    The DFDP-2B borehole, which was drilled in the Whataroa Valley, South Island, New Zealand in late 2014, provides a unique opportunity to study the conditions in the hanging wall of a plate boundary fault, the Alpine Fault, which is late in its seismic cycle. High geothermal gradient of > 125°C/km encountered in the borehole drew attention to the thermal structure of the valley, as well as of the Alpine Fault's hanging wall as a whole. A detailed analysis of temperature logs measured during drilling of the DFDP-2B borehole, reveals two distinct portions of the signal containing information on different processes. The long-wavelength portion of the temperature signal, i.e. the overall trend (hundreds of metres), reflects the response of the rock environment to the disturbance caused by drilling and permits an estimation of the thermal diffusivity of the rock based on the rate of temperature recovery. The short-wavelength (tens of metres to tens of centimetres) signal represents the local anomalies caused by lithological variations or, more importantly, by fluid flow into or out of the borehole along fractures. By analysing these distinct features, we can identify anomalous zones that manifest in other wireline data (resistivity, BHTV) and are likely attributable to permeable fractures. Here we present a novel method of quantitative analysis of the short-wavelength temperature anomalies. This method provides a precise and objective way to determine the position, width and amplitude of temperature anomalies and facilitates the interpretation of temperature logs, which is of a particular importance in estimation of flow in a fractured aquifer.

  18. Numerical analysis of whole-body cryotherapy chamber design improvement

    NASA Astrophysics Data System (ADS)

    Yerezhep, D.; Tukmakova, A. S.; Fomin, V. E.; Masalimov, A.; Asach, A. V.; Novotelnova, A. V.; Baranov, A. Yu

    2018-05-01

    Whole body cryotherapy is a state-of-the-art method that uses cold for treatment and prevention of diseases. The process implies the impact of cryogenic gas on a human body that implements in a special cryochamber. The temperature field in the chamber is of great importance since local integument over-cooling may occur. Numerical simulation of WBC has been carried out. Chamber design modification has been proposed in order to increase the uniformity of the internal temperature field. The results have been compared with the ones obtained for a standard chamber design. The value of temperature gradient formed in the chamber containing curved wall with certain height has been decreased almost twice in comparison with the results obtained for the standard design. The modification proposed may increase both safety and comfort of cryotherapy.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Masood; Malik, Rabia, E-mail: rabiamalik.qau@gmail.com; Department of Mathematics and Statistics, International Islamic University Islamabad 44000

    In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heatmore » transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.« less

  20. ESR and PALS detection of the dynamic crossover in the supercooled liquid states of short and medium-sized n-alkanes

    NASA Astrophysics Data System (ADS)

    Bartoš, J.; Zgardzinska, B.; Švajdlenková, H.; Lukešová, M.; Zaleski, R.

    2018-05-01

    A joint study of the spin probe TEMPO dynamics by ESR and the annihilation rate of ortho-positronium by PALS in four short-and medium-sized n-alkanes is presented. In addition to the usually observed changes in both the reorientation dynamics and size of free volumes at the temperature of melting, Tm, and solid-solid phase transition, Tss, an additional coincidence between the characteristic ESR and PALS temperatures TX1fast ≅ Tb1sol < Tm, Tss was found. The phenomenological analysis of the viscosity data of n-alkanes using the power law equation indicates a presence of locally disordered regions in which the dynamic change occurs at the crossover temperature TX ≅ TX1fast ≅ Tb1sol.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Logan C.; Ciesielski, Peter N.; Jarvis, Mark W.

    Here, biomass particles can experience variable thermal conditions during fast pyrolysis due to differences in their size and morphology, and from local temperature variations within a reactor. These differences lead to increased heterogeneity of the chemical products obtained in the pyrolysis vapors and bio-oil. Here we present a simple, high-throughput method to investigate the thermal history experienced by large ensembles of particles during fast pyrolysis by imaging and quantitative image analysis. We present a correlation between the surface luminance (darkness) of the biochar particle and the highest temperature that it experienced during pyrolysis. Next, we apply this correlation to large,more » heterogeneous ensembles of char particles produced in a laminar entrained flow reactor (LEFR). The results are used to interpret the actual temperature distributions delivered by the reactor over a range of operating conditions.« less

  2. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems.

    PubMed

    Strain, Elisabeth M A; Thomson, Russell J; Micheli, Fiorenza; Mancuso, Francesco P; Airoldi, Laura

    2014-11-01

    Identifying the type and strength of interactions between local anthropogenic and other stressors can help to set achievable management targets for degraded marine ecosystems and support their resilience by identifying local actions. We undertook a meta-analysis, using data from 118 studies to test the hypothesis that ongoing global declines in the dominant habitat along temperate rocky coastlines, forests of canopy-forming algae and/or their replacement by mat-forming algae are driven by the nonadditive interactions between local anthropogenic stressors that can be addressed through management actions (fishing, heavy metal pollution, nutrient enrichment and high sediment loads) and other stressors (presence of competitors or grazers, removal of canopy algae, limiting or excessive light, low or high salinity, increasing temperature, high wave exposure and high UV or CO2 ), not as easily amenable to management actions. In general, the cumulative effects of local anthropogenic and other stressors had negative effects on the growth and survival of canopy-forming algae. Conversely, the growth or survival of mat-forming algae was either unaffected or significantly enhanced by the same pairs of stressors. Contrary to our predictions, the majority of interactions between stressors were additive. There were however synergistic interactions between nutrient enrichment and heavy metals, the presence of competitors, low light and increasing temperature, leading to amplified negative effects on canopy-forming algae. There were also synergistic interactions between nutrient enrichment and increasing CO2 and temperature leading to amplified positive effects on mat-forming algae. Our review of the current literature shows that management of nutrient levels, rather than fishing, heavy metal pollution or high sediment loads, would provide the greatest opportunity for preventing the shift from canopy to mat-forming algae, particularly in enclosed bays or estuaries because of the higher prevalence of synergistic interactions between nutrient enrichment with other local and global stressors, and as such it should be prioritized. © 2014 John Wiley & Sons Ltd.

  3. Assessing local climate zones in arid cities: The case of Phoenix, Arizona and Las Vegas, Nevada

    NASA Astrophysics Data System (ADS)

    Wang, Chuyuan; Middel, Ariane; Myint, Soe W.; Kaplan, Shai; Brazel, Anthony J.; Lukasczyk, Jonas

    2018-07-01

    The local climate zone (LCZ) classification scheme is a standardization framework to describe the form and function of cities for urban heat island (UHI) studies. This study classifies and evaluates LCZs for two arid desert cities in the Southwestern United States - Phoenix and Las Vegas - following the World Urban Database and Access Portal Tools (WUDAPT) method. Both cities are classified into seven built type LCZs and seven land-cover type LCZs at 100-m resolution using Google Earth, Saga GIS, and Landsat 8 scenes. Average surface cover properties (building fraction, impervious fraction, pervious fraction) and sky view factors of classified LCZs are then evaluated and compared to pre-defined LCZ representative ranges from the literature, and their implications on the surface UHI (SUHI) effect are explained. Results suggest that observed LCZ properties in arid desert environments do not always match the proposed value ranges from the literature, especially with regard to sky view factor (SVF) upper boundaries. Although the LCZ classification scheme was originally designed to describe local climates with respect to air temperature, our analysis shows that much can be learned from investigating land surface temperature (LST) in these zones. This study serves as a substantial new resource laying a foundation for assessing the SUHI in cities using the LCZ scheme, which could inform climate simulations at local and regional scales.

  4. A Variational Assimilation Method for Satellite and Conventional Data: a Revised Basic Model 2B

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Scott, Robert W.; Chen, J.

    1991-01-01

    A variational objective analysis technique that modifies observations of temperature, height, and wind on the cyclone scale to satisfy the five 'primitive' model forecast equations is presented. This analysis method overcomes all of the problems that hindered previous versions, such as over-determination, time consistency, solution method, and constraint decoupling. A preliminary evaluation of the method shows that it converges rapidly, the divergent part of the wind is strongly coupled in the solution, fields of height and temperature are well-preserved, and derivative quantities such as vorticity and divergence are improved. Problem areas are systematic increases in the horizontal velocity components, and large magnitudes of the local tendencies of the horizontal velocity components. The preliminary evaluation makes note of these problems but detailed evaluations required to determine the origin of these problems await future research.

  5. A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature and Rotation-velocity Profiles on the AlcatorC-Mod Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, K. W.; Bitter, M. L.; Scott, S. D.

    2009-03-24

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (λ/dλ > 6000) of He-like and H-like Ar Kα lines with good spatial (~1 cm) and temporal (~10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (Ti), and toroidal plasma rotation velocity (vφ) from the line Doppler widths and shifts. The data analysis techniqu

  6. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.

    1983-01-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  7. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.

    1983-09-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  8. Comparison of thermal modeling, microstructural analysis, and Ti-in-quartz thermobarometry to constrain the thermal history of a cooling pluton during deformation in the Mount Abbot Quadrangle, CA

    NASA Astrophysics Data System (ADS)

    Nevitt, Johanna M.; Warren, Jessica M.; Kidder, Steven; Pollard, David D.

    2017-03-01

    Granitic plutons commonly preserve evidence for jointing, faulting, and ductile fabric development during cooling. Constraining the spatial variation and temporal evolution of temperature during this deformation could facilitate an integrated analysis of heterogeneous deformation over multiple length-scales through time. Here, we constrain the evolving temperature of the Lake Edison granodiorite within the Mount Abbot Quadrangle (central Sierra Nevada, CA) during late Cretaceous deformation by combining microstructural analysis, titanium-in-quartz thermobarometry (TitaniQ), and thermal modeling. Microstructural and TitaniQ analyses were applied to 12 samples collected throughout the pluton, representative of either the penetrative "regional" fabric or the locally strong "fault-related" fabric. Overprinting textures and mineral assemblages indicate the temperature decreased from 400-500°C to <350°C during faulting. TitaniQ reveals consistently lower Ti concentrations for partially reset fault-related fabrics (average: 12 ± 4 ppm) than for regional fabrics (average: 31 ± 12 ppm), suggesting fault-related fabrics developed later, following a period of pluton cooling. Uncertainties, particularly in TiO2 activity, significantly limit further quantitative thermal estimates using TitaniQ. In addition, we present a 1-D heat conduction model that suggests average pluton temperature decreased from 585°C at 85 Ma to 332°C at 79 Ma, consistent with radiometric age data for the field. Integrated with the model results, microstructural temperature constraints suggest faulting initiated by ˜83 Ma, when the temperature was nearly uniform across the pluton. Thus, spatially heterogeneous deformation cannot be attributed to a persistent temperature gradient, but may be related to regional structures that develop in cooling plutons.

  9. A high-temperature superconducting transformer with localized magnetic field

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Dzhafarov, E. A.

    2013-12-01

    This paper describes a high-temperature superconducting transformer with a bar-type magnetic core and concentric windings with alternating layers, with single-channel and multi-channel arrangements. There is given the design concept of high-temperature superconducting windings of the transformer, made in the form of newly developed first-generation high-temperature superconducting ribbon wires, with localized magnetic field intended for producing maximum transport currents in the windings, as well as for reducing the consumption of a high-temperature superconducting material, cooling agent, and energy losses in these windings.

  10. Self-generated Local Heating Induced Nanojoining for Room Temperature Pressureless Flexible Electronic Packaging

    PubMed Central

    Peng, Peng; Hu, Anming; Gerlich, Adrian P.; Liu, Yangai; Zhou, Y. Norman

    2015-01-01

    Metallic bonding at an interface is determined by the application of heat and/or pressure. The means by which these are applied are the most critical for joining nanoscale structures. The present study considers the feasibility of room-temperature pressureless joining of copper wires using water-based silver nanowire paste. A novel mechanism of self-generated local heating within the silver nanowire paste and copper substrate system promotes the joining of silver-to-silver and silver-to-copper without any external energy input. The localized heat energy was delivered in-situ to the interfaces to promote atomic diffusion and metallic bond formation with the bulk component temperature stays near room-temperature. This local heating effect has been detected experimentally and confirmed by calculation. The joints formed at room-temperature without pressure achieve a tensile strength of 5.7 MPa and exhibit ultra-low resistivity in the range of 101.3 nOhm·m. The good conductivity of the joint is attributed to the removal of organic compounds in the paste and metallic bonding of silver-to-copper and silver-to-silver. The water-based silver nanowire paste filler material is successfully applied to various flexible substrates for room temperature bonding. The use of chemically generated local heating may become a potential method for energy in-situ delivery at micro/nanoscale. PMID:25788019

  11. Global, 4D Differential Emission Measure Analysis of EIT 17.1, 19.5 and 28.4 nm Images

    NASA Astrophysics Data System (ADS)

    Frazin, R. A.; Vasquez, A. M.; Kamalabadi, F.

    2007-12-01

    We present for the first time the results of a method that combines 3D tomography and differential emission measure (DEM) analysis to determine the 3D local differential measure (LDEM), which is a measure of the amount of plasma as a function of electron temperature within each volume element of the computation grid. The volume elements are (3 deg X 3 deg X 0.02 Rs). The input data are a time series of EUV images taken in the 17.1, 19.5 and 28.4 nm bands. The method, developed theoretically in a previous paper [Frazin et al. 2005, ApJ v. 628, p. 1070], involves a combination of solar rotational tomography (SRT) and classical differential emission measure (DEM) analysis. SRT uses solar rotation to "undo" the line-of-sight integrals, while DEM analysis determines the temperature distribution (LDEM) in each voxel. Temporal variations of the solar corona limit the applicability of SRT to structures that remain relatively stable on the two-week time scale. We show results for certain structures that were judged to be stable by watching the EIT movies. We anticipate dramatic increases in the temperature resolution of this technique with the XRT instrument.

  12. An analysis of the relationship between cloud anomalies and sea surface temperature anomalies in a global circulation model

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas C.; Barnett, Tim P.; Roeckner, Erich; Vonder Haar, Thomas H.

    1992-01-01

    The relationship between the sea surface temperature anomalies (SSTAs) and the anomalies of the monthly mean cloud cover (including the high-level, low-level, and total cloud cover), the outgoing longwave radiation, and the reflected solar radiation was analyzed using a least absolute deviations regression at each grid point over the open ocean for a 6-yr period. The results indicate that cloud change in association with a local 1-C increase in SSTAs cannot be used to predict clouds in a potential future world where all the oceans are 1-C warmer than at present, because much of the observed cloud changes are due to circulation changes, which in turn are related not only to changes in SSTAs but to changes in SSTA gradients. However, because SSTAs are associated with changes in the local ocean-atmosphere moisture and heat fluxes as well as significant changes in circulation (such as ENSO), SSTAs can serve as a surrogate for many aspects of global climate change.

  13. AC and DC conductivity study on Ca substituted bismuth ferrite

    NASA Astrophysics Data System (ADS)

    Pandey, Rabichandra; Pradhan, Lagen Kumar; Kumar, Sunil; Kar, Manoranjan

    2018-05-01

    Bi0.95Ca0.05FeO3 multiferroic compound was synthesized by the citric acid modified sol-gel method. Crystal structure of Bi0.95Ca0.05FeO3 is studied by the X-ray diffraction (XRD) technique. The ac impedance analysis of the compound has been carried out in a wide range of frequency (100 Hz - 1MHz) as well as temperature (40-2500C). Frequency variation of dielectric constant at different temperatures can be understood by the modified Debye formula. The activation energy was found to be 0.48eV, which was obtained by employing Arrhenius equation. The AC conductivity of the sample follows the Johnscher's power law which indicates the presence of hopping type conduction in localized charged states. To understand the conduction mechanism with localized charge states, the DC resistivity data were analyzed by Mott's variable range hopping (VRH) model. The activation energy calculated from Debye relaxation time, AC conductivity and DC resistivity are comparable to each other.

  14. The GISS sounding temperature impact test

    NASA Technical Reports Server (NTRS)

    Halem, M.; Ghil, M.; Atlas, R.; Susskind, J.; Quirk, W. J.

    1978-01-01

    The impact of DST 5 and DST 6 satellite sounding data on mid-range forecasting was studied. The GISS temperature sounding technique, the GISS time-continuous four-dimensional assimilation procedure based on optimal statistical analysis, the GISS forecast model, and the verification techniques developed, including impact on local precipitation forecasts are described. It is found that the impact of sounding data was substantial and beneficial for the winter test period, Jan. 29 - Feb. 21. 1976. Forecasts started from initial state obtained with the aid of satellite data showed a mean improvement of about 4 points in the 48 and 772 hours Sub 1 scores as verified over North America and Europe. This corresponds to an 8 to 12 hour forecast improvement in the forecast range at 48 hours. An automated local precipitation forecast model applied to 128 cities in the United States showed on an average 15% improvement when satellite data was used for numerical forecasts. The improvement was 75% in the midwest.

  15. The potential of a modified physiologically equivalent temperature (mPET) based on local thermal comfort perception in hot and humid regions

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Ping; Yang, Shing-Ru; Chen, Yung-Chang; Matzarakis, Andreas

    2018-02-01

    Physiologically equivalent temperature (PET) is a thermal index that is widely used in the field of human biometeorology and urban bioclimate. However, it has several limitations, including its poor ability to predict thermo-physiological parameters and its weak response to both clothing insulation and humid conditions. A modified PET (mPET) was therefore developed to address these shortcomings. To determine whether the application of mPET in hot-humid regions is more appropriate than the PET, an analysis of a thermal comfort survey database, containing 2071 questionnaires collected from participants in hot-humid Taiwan, was conducted. The results indicate that the thermal comfort range is similar (26-30 °C) when the mPET and PET are applied as thermal indices to the database. The sensitivity test for vapor pressure and clothing insulation also show that the mPET responds well to the behavior and perceptions of local people in a subtropical climate.

  16. Correlation of thermocouple data with voiding function after prostate cryoablation.

    PubMed

    Levy, David A

    2010-02-01

    To identify possible correlations of thermocouple recorded data with altered postoperative voiding function after prostate cryosurgery. A retrospective analysis of the records of 58 patients treated with prostate cryoablation from October 2005 through April 2009 was conducted. Multivariate analysis of patient age, presenting prostate-specific antigen level, Gleason score, clinical T stage, prostate volume, maximum low temperature thermocouple recordings, history of radiation and or hormonal therapy, were studied as possible correlative factors for altered postoperative voiding function. Of 58 patients, 22 (37.9%) manifested postcryoablation urgency and frequency (n = 13) requiring medical therapy or retention (n = 9). On multivariate analysis, age (P = .037) and an external sphincter temperature < or = 23 degrees C (P = .012) were associated with voiding frequency, urgency, or retention (odds ratio = 6.26, 95% CI: 1.62-24.16), whereas anterior rectal wall temperature (Denon) was weakly associated (P = .079). Thermocouple data provide an objective means of assessing cryosurgical outcomes. This is the first report of a correlation of such data to post-treatment voiding function. A total of 37.9% of patients experienced urgency and/or frequency or urinary retention after cryoablation of the prostate for localized disease. Older age and external sphincter temperature < or = 23 degrees C were statistically significant predictors of these events. The data suggest that limiting the degree of freezing at the external sphincter may decrease procedure related morbidity. Further study is warranted to better delineate temperature-related data on treatment outcomes. 2010 Elsevier Inc. All rights reserved.

  17. Innovative Ge Quantum Dot Functional Sensing/Metrology Devices

    DTIC Science & Technology

    2015-05-20

    sensitive to charge number and local temperature with unprecedented precision. Accordingly we have made progresses in the innovative functionalities...sensors feature excellent sensitivity on charge number, local temperature, and photoresponsivity in the visible to near IR wavelength.  “Designer” Ge...Detailed knowledge and understanding of how the QDs are created, and especially their interactions with their local environments are therefore crucial to

  18. Hypothermic general cold adaptation induced by local cold acclimation.

    PubMed

    Savourey, G; Barnavol, B; Caravel, J P; Feuerstein, C; Bittel, J H

    1996-01-01

    To study relationships between local cold adaptation of the lower limbs and general cold adaptation, eight subjects were submitted both to a cold foot test (CFT, 5 degrees C water immersion, 5 min) and to a whole-body standard cold air test (SCAT, 1 degree C, 2 h, nude at rest) before and after a local cold acclimation (LCA) of the lower limbs effected by repeated cold water immersions. The LCA induced a local cold adaptation confirmed by higher skin temperatures of the lower limbs during CFT and a hypothermic insulative general cold adaptation (decreased rectal temperature and mean skin temperature P < 0.05) without a change either in metabolic heat production or in lower limb skin temperatures during SCAT after LCA. It was concluded that local cold adaptation was related to the habituation process confirmed by decreased plasma concentrations of noradrenaline (NA) during LCA (P < 0.05). However, the hypothermic insulative general cold adaptation was unrelated either to local cold adaptation or to the habituation process, because an increased NA during SCAT after LCA (P < 0.05) was observed but was rather related to a "T3 polar syndrome" occurring during LCA.

  19. Applicability of WRF-Lake System in Studying Reservoir-Induced Impacts on Local Climate: Case Study of Two Reservoirs with Contrasting Characteristics

    NASA Astrophysics Data System (ADS)

    Wang, F.; Zhu, D.; Ni, G.; Sun, T.

    2017-12-01

    Large reservoirs play a key role in regional hydrological cycles as well as in modulating the local climate. The emerging large reservoirs in concomitant with rapid hydropower exploitation in southwestern China warrant better understanding of their impacts on local and regional climates. One of the crucial pathways through which reservoirs impact the climate is lake-atmospheric interaction. Although such interactions have been widely studied with numeric weather prediction (NWP) models, an outstanding limitation across various NWPs resides on the poor thermodynamic representation of lakes. The recent version of Weather Research and Forecasting (WRF) system has been equipped with a one-dimensional lake model to better represent the thermodynamics of large water body and has been shown to enhance the its predication skill in the lake-atmospheric interaction. In this study, we further explore the applicability of the WRF-Lake system in two reservoirs with contrasting characteristics: Miyun Reservoir with an average depth of 30 meters in North China Plain, and Nuozhadu Reservoir with an average depth of 200 meters in the Tibetan Plateau Region. Driven by the high spatiotemporal resolution meteorological forcing data, the WRF-Lake system is used to simulate the water temperature and surface energy budgets of the two reservoirs after the evaluation against temperature observations. The simulated results show the WRF-Lake model can well predict the vertical profile of water temperature in Miyun Reservoir, but underestimates deep water temperature and overestimates surface temperature in the deeper Nuozhadu Reservoir. In addition, sensitivity analysis indicates the poor performance of the WRF-Lake system in Nuozhadu Reservoir could be attributed to the weak vertical mixing in the model, which can be improved by tuning the eddy diffusion coefficient ke . Keywords: reservoir-induced climatic impact; lake-atmospheric interaction; WRF-Lake system; hydropower exploitation

  20. Investigating the effects of climate variations on bacillary dysentery incidence in northeast China using ridge regression and hierarchical cluster analysis

    PubMed Central

    Huang, Desheng; Guan, Peng; Guo, Junqiao; Wang, Ping; Zhou, Baosen

    2008-01-01

    Background The effects of climate variations on bacillary dysentery incidence have gained more recent concern. However, the multi-collinearity among meteorological factors affects the accuracy of correlation with bacillary dysentery incidence. Methods As a remedy, a modified method to combine ridge regression and hierarchical cluster analysis was proposed for investigating the effects of climate variations on bacillary dysentery incidence in northeast China. Results All weather indicators, temperatures, precipitation, evaporation and relative humidity have shown positive correlation with the monthly incidence of bacillary dysentery, while air pressure had a negative correlation with the incidence. Ridge regression and hierarchical cluster analysis showed that during 1987–1996, relative humidity, temperatures and air pressure affected the transmission of the bacillary dysentery. During this period, all meteorological factors were divided into three categories. Relative humidity and precipitation belonged to one class, temperature indexes and evaporation belonged to another class, and air pressure was the third class. Conclusion Meteorological factors have affected the transmission of bacillary dysentery in northeast China. Bacillary dysentery prevention and control would benefit from by giving more consideration to local climate variations. PMID:18816415

  1. Local vibrations in disordered solids studied via single-molecule spectroscopy: Comparison with neutron, nuclear, Raman scattering, and photon echo data

    NASA Astrophysics Data System (ADS)

    Vainer, Yu. G.; Naumov, A. V.; Kador, L.

    2008-06-01

    The energy spectrum of low-frequency vibrational modes (LFMs) in three disordered organic solids—amorphous polyisobutylene (PIB), toluene and deuterated toluene glasses, weakly doped with fluorescent chromophore molecules of tetra-tert-butylterrylene (TBT) has been measured via single-molecule (SM) spectroscopy. Analysis of the individual temperature dependences of linewidths of single TBT molecules allowed us to determine the values of the vibrational mode frequencies and the SM-LFM coupling constants for vibrations in the local environment of the molecules. The measured LFM spectra were compared with the “Boson peak” as measured in pure PIB by inelastic neutron scattering, in pure toluene glass by low-frequency Raman scattering, in doped toluene glass by nuclear inelastic scattering, and with photon echo data. The comparative analysis revealed close agreement between the spectra of the local vibrations as measured in the present study and the literature data of the Boson peak in PIB and toluene. The analysis has also the important result that weak doping of the disordered matrices with nonpolar probe molecules whose chemical composition is similar to that of the matrix molecules does not influence the observed vibrational dynamics markedly. The experimental data displaying temporal stability on the time scale of a few hours of vibrational excitation parameters in local surroundings was obtained for the first time both for polymer and molecular glass.

  2. From Kondo to local singlet state in graphene nanoribbons with magnetic impurities

    NASA Astrophysics Data System (ADS)

    Diniz, G. S.; Luiz, G. I.; Latgé, A.; Vernek, E.

    2018-03-01

    A detailed analysis of the Kondo effect of a magnetic impurity in a zigzag graphene nanoribbon is addressed. An adatom is coupled to the graphene nanoribbon via a hybridization amplitude Γimp in a hollow- or top-site configuration. In addition, the adatom is also weakly coupled to a metallic scanning tunnel microscope (STM) tip by a hybridization function Γtip that provides a Kondo screening of its magnetic moment. The entire system is described by an Anderson-like Hamiltonian whose low-temperature physics is accessed by employing the numerical renormalization-group approach, which allows us to obtain the thermodynamic properties used to compute the Kondo temperature of the system. We find two screening regimes when the adatom is close to the edge of the zigzag graphene nanoribbon: (1) a weak-coupling regime (Γimp≪Γtip ), in which the edge states produce an enhancement of the Kondo temperature TK, and (2) a strong-coupling regime (Γimp≫Γtip ), in which a local singlet is formed, to the detriment of the Kondo screening by the STM tip. These two regimes can be clearly distinguished by the dependence of their characteristic temperature T* on the coupling between the adatom and the carbon sites of the graphene nanoribbon Vimp. We observe that in the weak-coupling regime T* increases exponentially with Vimp2. Differently, in the strong-coupling regime, T* increases linearly with Vimp2.

  3. Physical activity levels of older community-dwelling adults are influenced by summer weather variables.

    PubMed

    Brandon, Caitlin A; Gill, Dawn P; Speechley, Mark; Gilliland, Jason; Jones, Gareth R

    2009-04-01

    Adequate daily physical activity (PA) is important for maintaining functional capacity and independence in older adults. However, most older adults in Canada do not engage in enough PA to sustain fitness and functional independence. Environmental influences, such as warmer daytime temperatures, may influence PA participation; however, few studies have examined the effect of summertime temperatures on PA levels in older adults. This investigation measured the influence of summertime weather variables on PA in 48 community-dwelling older adults who were randomly recruited from a local seniors' community centre. Each participant wore an accelerometer for a single 7-consecutive-day period (between 30 May and 9 August 2006) during waking hours, and completed a PA logbook to remark on major daily PA events. Local weather variables were collected from a national weather service and compared with PA counts per minute. Regression analysis revealed a curvilinear relationship between log-transformed PA and mean daily temperature (r2 = 0.025; p < 0.05). Linear mixed effects models that accounted for repeated measures nested within individuals were performed for monthly periods, meteorological variables, sex, age, and estimated maximal oxygen consumption, with PA as the dependent variable. Age and Air Quality Index remained significant variables within the model. Higher fitness levels had no effect on allowing individuals to perform more vigorous PA in warmer temperatures.

  4. Human local and total heat losses in different temperature.

    PubMed

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The characterisation of atomic structure and glass-forming ability of the Zr-Cu-Co metallic glasses studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Celtek, M.; Sengul, S.

    2018-03-01

    In the present work, the glass formation process and structural properties of Zr50Cu50-xCox (0 ≤ x ≤ 50) bulk metallic glasses were investigated by a molecular dynamics simulation with the many body tight-binding potentials. The evolution of structure and glass formation process with temperature were discussed using the coordination number, the radial distribution functions, the volume-temperature curve, icosahedral short-range order, glass transition temperature, Voronoi analysis, Honeycutt-Andersen pair analysis technique and the distribution of bond-angles. Results indicate that adding Co causes similar responses on the nature of the Zr50Cu50-xCox (0 ≤ x ≤ 50) alloys except for higher glass transition temperature and ideal icosahedral type ordered local atomic environment. Also, the differences of the atomic radii play the key role in influencing the atomic structure of these alloys. Both Cu and Co atoms play a significant role in deciding the chemical and topological short-range orders of the Zr50Cu50-xCox ternary liquids and amorphous alloys. The glass-forming ability of these alloys is supported by the experimental observations reported in the literature up to now.

  6. A Method of Relating General Circulation Model Simulated Climate to the Observed Local Climate. Part I: Seasonal Statistics.

    NASA Astrophysics Data System (ADS)

    Karl, Thomas R.; Wang, Wei-Chyung; Schlesinger, Michael E.; Knight, Richard W.; Portman, David

    1990-10-01

    Important surface observations such as the daily maximum and minimum temperature, daily precipitation, and cloud ceilings often have localized characteristics that are difficult to reproduce with the current resolution and the physical parameterizations in state-of-the-art General Circulation climate Models (GCMs). Many of the difficulties can be partially attributed to mismatches in scale, local topography. regional geography and boundary conditions between models and surface-based observations. Here, we present a method, called climatological projection by model statistics (CPMS), to relate GCM grid-point flee-atmosphere statistics, the predictors, to these important local surface observations. The method can be viewed as a generalization of the model output statistics (MOS) and perfect prog (PP) procedures used in numerical weather prediction (NWP) models. It consists of the application of three statistical methods: 1) principle component analysis (FICA), 2) canonical correlation, and 3) inflated regression analysis. The PCA reduces the redundancy of the predictors The canonical correlation is used to develop simultaneous relationships between linear combinations of the predictors, the canonical variables, and the surface-based observations. Finally, inflated regression is used to relate the important canonical variables to each of the surface-based observed variables.We demonstrate that even an early version of the Oregon State University two-level atmospheric GCM (with prescribed sea surface temperature) produces free-atmosphere statistics than can, when standardized using the model's internal means and variances (the MOS-like version of CPMS), closely approximate the observed local climate. When the model data are standardized by the observed free-atmosphere means and variances (the PP version of CPMS), however, the model does not reproduce the observed surface climate as well. Our results indicate that in the MOS-like version of CPMS the differences between the output of a ten-year GCM control run and the surface-based observations are often smaller than the differences between the observations of two ten-year periods. Such positive results suggest that GCMs may already contain important climatological information that can be used to infer the local climate.

  7. Turbulence Variance Characteristics in the Unstable Atmospheric Boundary Layer above Flat Pine Forest

    NASA Astrophysics Data System (ADS)

    Asanuma, Jun

    Variances of the velocity components and scalars are important as indicators of the turbulence intensity. They also can be utilized to estimate surface fluxes in several types of "variance methods", and the estimated fluxes can be regional values if the variances from which they are calculated are regionally representative measurements. On these motivations, variances measured by an aircraft in the unstable ABL over a flat pine forest during HAPEX-Mobilhy were analyzed within the context of the similarity scaling arguments. The variances of temperature and vertical velocity within the atmospheric surface layer were found to follow closely the Monin-Obukhov similarity theory, and to yield reasonable estimates of the surface sensible heat fluxes when they are used in variance methods. This gives a validation to the variance methods with aircraft measurements. On the other hand, the specific humidity variances were influenced by the surface heterogeneity and clearly fail to obey MOS. A simple analysis based on the similarity law for free convection produced a comprehensible and quantitative picture regarding the effect of the surface flux heterogeneity on the statistical moments, and revealed that variances of the active and passive scalars become dissimilar because of their different roles in turbulence. The analysis also indicated that the mean quantities are also affected by the heterogeneity but to a less extent than the variances. The temperature variances in the mixed layer (ML) were examined by using a generalized top-down bottom-up diffusion model with some combinations of velocity scales and inversion flux models. The results showed that the surface shear stress exerts considerable influence on the lower ML. Also with the temperature and vertical velocity variances ML variance methods were tested, and their feasibility was investigated. Finally, the variances in the ML were analyzed in terms of the local similarity concept; the results confirmed the original hypothesis by Panofsky and McCormick that the local scaling in terms of the local buoyancy flux defines the lower bound of the moments.

  8. A Method to Retrieve Rainfall Rate over Land from TRMM Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2002-01-01

    Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) observations over mesoscale convective systems (MCSs) reveal that there are localized maxima in the rain rate with a scale of about 10 to 20 km that represent thunderstorms (Cbs). Some of these Cbs are developing or intense, while others are decaying or weak. These Cbs constitute only about 20 % of the rain area of a given MCS. Outside of Cbs, the average rain rate is much weaker than that within Cbs. From an analysis of the PR data, we find that the spatial distribution of rain and its character, convective or stratiform, is highly inhomogeneous. This complex nature of rain exists on a scale comparable to that of a Cb. The 85 GHz brightness temperature, T85, observations of the TRMM Microwave Imager (TMI) radiometer taken over an MCS reflect closely the PR rain rate pattern over land. Local maxima in rain rate shown by PR are observed as local minima in T85. Where there are no minima in T85, PR observations indicate there is light rain. However, the TMI brightness temperature measurements (Tbs) have poor ability to discriminate convective rain from stratiform rain. For this reason, a TMI rain retrieval procedure that depends primarily on the magnitude of Tbs performs poorly. In order to retrieve rain rate from TMI data on land one has to include the spatial distribution information deduced from the T85 data in the retrieval method. Then, quantitative estimation of rain rate can be accomplished. A TMI rain retrieval method developed along these lines can yield estimates of rain rate and its frequency distribution which agree closely with that given by PR. We find the current TRMM project TMI (Version 5) rain retrieval algorithm on land could be improved with the retrieval scheme developed here. To support the conceptual frame work of the rain retrieval method developed here, a theoretical analysis of the TMI brightness temperatures in convective and stratiform regions is presented.

  9. Local electrical properties of thermally grown oxide films formed on duplex stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Guo, L. Q.; Yang, B. J.; He, J. Y.; Qiao, L. J.

    2018-06-01

    The local electrical properties of thermally grown oxide films formed on ferrite and austenite surfaces of duplex stainless steel at different temperatures were investigated by Current sensing atomic force microscopy, X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The current maps and XPS/AES analyses show that the oxide films covering austenite and ferrite surfaces formed at different temperatures exhibit different local electrical characteristics, thickness and composition. The dependence of electrical conductivity of oxide films covering austenite and ferrite surface on the formation temperature is attributed to the film thickness and semiconducting structures, which is intrinsically related to thermodynamics and kinetics process of film grown at different temperature. This is well elucidated by corresponding semiconductor band structures of oxide films formed on austenite and ferrite phases at different temperature.

  10. Threshold for the destabilisation of the ion-temperature-gradient mode in magnetically confined toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Zocco, A.; Xanthopoulos, P.; Doerk, H.; Connor, J. W.; Helander, P.

    2018-02-01

    The threshold for the resonant destabilisation of ion-temperature-gradient (ITG) driven instabilities that render the modes ubiquitous in both tokamaks and stellarators is investigated. We discover remarkably similar results for both confinement concepts if care is taken in the analysis of the effect of the global shear . We revisit, analytically and by means of gyrokinetic simulations, accepted tokamak results and discover inadequacies of some aspects of their theoretical interpretation. In particular, for standard tokamak configurations, we find that global shear effects on the critical gradient cannot be attributed to the wave-particle resonance destabilising mechanism of Hahm & Tang (Phys. Plasmas, vol. 1, 1989, pp. 1185-1192), but are consistent with a stabilising contribution predicted by Biglari et al. (Phys. Plasmas, vol. 1, 1989, pp. 109-118). Extensive analytical and numerical investigations show that virtually no previous tokamak theoretical predictions capture the temperature dependence of the mode frequency at marginality, thus leading to incorrect instability thresholds. In the asymptotic limit , where is the rotational transform, and such a threshold should be solely determined by the resonant toroidal branch of the ITG mode, we discover a family of unstable solutions below the previously known threshold of instability. This is true for a tokamak case described by a local local equilibrium, and for the stellarator Wendelstein 7-X, where these unstable solutions are present even for configurations with a small trapped-particle population. We conjecture they are of the Floquet type and derive their properties from the Fourier analysis of toroidal drift modes of Connor & Taylor (Phys. Fluids, vol. 30, 1987, pp. 3180-3185), and to Hill's theory of the motion of the lunar perigee (Acta Math., vol. 8, 1886, pp. 1-36). The temperature dependence of the newly determined threshold is given for both confinement concepts. In the first case, the new temperature-gradient threshold is found to be rather insensitive to the temperature ratio i/Te$ , at least for i/Te\\lesssim 1$ , and to be a growing function of the density gradient scale for i/Te\\gtrsim 1$ . For Wendelstein 7-X, the new critical temperature gradient is a growing function of the temperature ratio. The importance of these findings for the assessment of turbulence in stellarators and low-shear tokamak configurations is discussed.

  11. A Spatio-Temporal Analysis of the Relationship Between Near-Surface Air Temperature and Satellite Land Surface Temperatures Using 17 Years of Data from the ATSR Series

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Good, E.; Bulgin, C.; Remedios, J. J.

    2017-12-01

    Surface temperatures (ST) over land have traditionally been measured at weather stations. There are many parts of the globe with very few stations, e.g. across much of Africa, leading to gaps in ST datasets, affecting our understanding of how ST is changing, and the impacts of extreme events. Satellites can provide global ST data but these observations represent how hot the land ST (LST; including the uppermost parts of e.g. trees, buildings) is to touch, whereas stations measure the air temperature just above the surface (T2m). Satellite LST data may only be available in cloud-free conditions and data records are frequently <10-15 years in length. Consequently, satellite LST data have not yet featured widely in climate studies. In this study, the relationship between clear-sky satellite LST and all-sky T2m is characterised in space and time using >17 years of data. The analysis uses a new monthly LST climate data record (CDR) based on the Along-Track Scanning Radiometer (ATSR) series, which has been produced within the European Space Agency GlobTemperature project. The results demonstrate the dependency of the global LST-T2m differences on location, land cover, vegetation and elevation. LSTnight ( 10 pm local solar time) is found to be closely coupled with minimum T2m (Tmin) and the two temperatures generally consistent to within ±5 °C (global median LSTnight- Tmin= 1.8 °C, interquartile range = 3.8 °C). The LSTday ( 10 am local time)-maximum T2m (Tmax) variability is higher because LST is strongly influenced by insolation and surface regime (global median LSTday-Tmax= -0.1 °C, interquartile range = 8.1 °C). Correlations for both temperature pairs are typically >0.9 outside of the tropics. A crucial aspect of this study is a comparison between the monthly global anomaly time series of LST and CRUTEM4 T2m. The time series agree remarkably well, with a correlation of 0.9 and 90% of the CDR anomalies falling within the T2m 95% confidence limits (see figure). This analysis provides independent verification of the 1995-2012 T2m anomaly time series, suggesting that LST can provide a complementary perspective on global ST change. The results presented give justification for increasing use of satellite LST data in climate and weather science, both as an independent variable, and to augment T2m data acquired at weather stations.

  12. Structure of analysis-minus-observation misfits within a global ocean reanalysis system: implications for atmospheric reanalyses

    NASA Astrophysics Data System (ADS)

    Carton, James; Chepurin, Gennady

    2017-04-01

    While atmospheric reanalyses do not ingest data from the subsurface ocean they must produce fluxes consistent with, for example, ocean storage and divergence of heat transport. Here we present a test of the consistency of two different atmospheric reanalyses with 2.5 million global ocean temperature observations during the data-rich eight year period 2007-2014. The examination is carried out by using atmospheric reanalysis variables to drive the SODA3 ocean reanalysis system, and then collecting and analyzing the temperature analysis increments (observation misfits). For the widely used MERRA2 and ERA-Int atmospheric reanalyses the temperature analysis increments reveal inconsistencies between those atmospheric fluxes and the ocean observations in the range of 10-30 W/m2. In the interior basins excess heat during a single assimilation cycle is stored primarily locally within the mixed layer, a simplification of the heat budget that allows us to identify the source of the error as the specified net surface heat flux. Along the equator the increments are primarily confined to thermocline depths indicating the primary source of the error is dominated by heat transport divergence. The error in equatorial heat transport divergence, in turn, can be traced to errors in the strength of the equatorial trade winds. We test our conclusions by introducing modifications of the atmospheric reanalyses based on analysis of ocean temperature analysis increments and repeating the ocean reanalysis experiments using the modified surface fluxes. Comparison of the experiments reveals that the modified fluxes reduce the misfit to ocean observations as well as the differences between the different atmospheric reanalyses.

  13. Agricultural losses related to frost events: use of the 850 hPa level temperature as an explanatory variable of the damage cost

    NASA Astrophysics Data System (ADS)

    Papagiannaki, K.; Lagouvardos, K.; Kotroni, V.; Papagiannakis, G.

    2014-09-01

    The objective of this study is the analysis of damaging frost events in agriculture, by examining the relationship between the daily minimum temperature in the lower atmosphere (at an isobaric level of 850 hPa) and crop production losses. Furthermore, the study suggests a methodological approach for estimating agriculture risk due to frost events, with the aim of estimating the short-term probability and magnitude of frost-related financial losses for different levels of 850 hPa temperature. Compared with near-surface temperature forecasts, temperature forecasts at the level of 850 hPa are less influenced by varying weather conditions or by local topographical features; thus, they constitute a more consistent indicator of the forthcoming weather conditions. The analysis of the daily monetary compensations for insured crop losses caused by weather events in Greece shows that, during the period 1999-2011, frost caused more damage to crop production than any other meteorological phenomenon. Two regions of different geographical latitudes are examined further, to account for the differences in the temperature ranges developed within their ecological environment. Using a series of linear and logistic regressions, we found that minimum temperature (at an 850 hPa level), grouped into three categories according to its magnitude, and seasonality, are significant variables when trying to explain crop damage costs, as well as to predict and quantify the likelihood and magnitude of damaging frost events.

  14. Effect of localized states on the current-voltage characteristics of metal-semiconductor contacts with thin interfacial layer

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.

    1994-10-01

    The role of discrete localized states on the current-voltage characteristics of metal-semiconductor contact is examined. It is seen that, because of these localized states, the logarithmic current vs voltage characteristics become nonlinear. Such nonlinearity is found sensitive to the temperature, and the energy and density of the localized states. The predicted temperature dependence of barrier height and the current-voltage characteristics are in agreement with the experimental results of Aboelfotoh [ Phys. Rev. B39, 5070 (1989)].

  15. Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M., E-mail: roverney@u.washington.edu

    The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called “intrinsic friction analysis” (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with largermore » scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.« less

  16. Cooling rate dependence and local structure in aluminum monatomic metallic glass

    NASA Astrophysics Data System (ADS)

    Kbirou, M.; Trady, S.; Hasnaoui, A.; Mazroui, M.

    2017-10-01

    The local atomic structure in aluminium monatomic metallic glass is studied using molecular dynamics simulations combined with the embedded atom method (EAM). We have used a variety of analytical methods to characterise the atomic configurations of our system: the Pair Distribution Function (PDF), the Common Neighbour Analysis (CNA) and the Voronoi Tessellation Analysis. CNA was used to investigate the order change from liquid to amorphous phases, recognising that the amount of icosahedral clusters increases with the decrease of temperature. The Voronoi analysis revealed that the icosahedral-like polyhedral are the predominant ones. It has been observed that the PDF function shows a splitting in the second peak, which cannot be attributed to the only ideal icosahedral polyhedron 〈0, 0, 12, 0〉, but also to the formation of other Voronoi polyhedra 〈0, 1, 10, 2〉 . Further, the PDFs were then integrated giving the cumulative coordination number in order to compute the fractal dimension (df).

  17. Nanometric Integrated Temperature and Thermal Sensors in CMOS-SOI Technology.

    PubMed

    Malits, Maria; Nemirovsky, Yael

    2017-07-29

    This paper reviews and compares the thermal and noise characterization of CMOS (complementary metal-oxide-semiconductor) SOI (Silicon on insulator) transistors and lateral diodes used as temperature and thermal sensors. DC analysis of the measured sensors and the experimental results in a broad (300 K up to 550 K) temperature range are presented. It is shown that both sensors require small chip area, have low power consumption, and exhibit linearity and high sensitivity over the entire temperature range. However, the diode's sensitivity to temperature variations in CMOS-SOI technology is highly dependent on the diode's perimeter; hence, a careful calibration for each fabrication process is needed. In contrast, the short thermal time constant of the electrons in the transistor's channel enables measuring the instantaneous heating of the channel and to determine the local true temperature of the transistor. This allows accurate "on-line" temperature sensing while no additional calibration is needed. In addition, the noise measurements indicate that the diode's small area and perimeter causes a high 1/ f noise in all measured bias currents. This is a severe drawback for the sensor accuracy when using the sensor as a thermal sensor; hence, CMOS-SOI transistors are a better choice for temperature sensing.

  18. On 3-D inelastic analysis methods for hot section components (base program)

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1986-01-01

    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report.

  19. Magnetic anomalies on Io and their relationship to the spatial distribution of volcanic centers

    NASA Astrophysics Data System (ADS)

    Knicely, J.; Everett, M. E.; Sparks, D. W.

    2014-12-01

    The analysis of terrestrial magnetic anomalies has long proved useful for constraining crustal structure and dynamics. Here, we study Jupiter's moon, Io, using magnetics. We conduct forward modeling to make predictions of the crustal magnetic anomaly distribution on Io. Io is the most volcanic body in the solar system due to tidal heating from its Laplace resonance with Europa and Ganymede, causing extensive sulfur and silicate volcanism. We assume the magnetic susceptibility, which controls the measured magnetic signal, is controlled by temperature. Continuous overturn of the crust controls the vertical temperature profile, and local volcanic centers give the lateral temperature structure. As non-magnetic sulfur volcanism occurs at cool temperatures beneath the Curie point, it should not greatly affect the planetary magnetism and consequently is ignored in this paper. We assume that the average crustal temperatures are determined by a model of continuous burial by newly erupted material (O'Reilly and Davies 1981, Geophysical Research Letters), which put the Curie isotherm at great depth. We use a cylindrically symmetric model of the thermal evolution of the crust around an isolated volcanic center to obtain the local deviations in the thickness of the magnetizable layer. The crustal rocks are presumed to be mafic or ultramafic in composition, based on their spectral signatures, the temperature of the silicate volcanic eruptions, and their rheology as inferred from flow structures. Analysis of the 1997 Pillan eruption suggests a composition similar to lunar mare basalt or komatiite. The magnetic and thermal properties of lunar mare basalt have been well studied since the Apollo missions. Unaltered terrestrial ultramafics have been studied sufficiently to constrain their properties. A common technique of discretizing the magnetized material into prisms and summing the magnetic field of each prism as per Blakely (1995) was used to obtain an estimate of the crustal magnetic anomalies of Io as they would be measured by a satellite. The mapping is displayed as zonal bands so that a Cartesian geometry may be used. Early results indicated an accuracy better than 2 nT is required to detect the magnetic anomalies generated by volcanic activity.

  20. Quantum noise in SIS mixers

    NASA Astrophysics Data System (ADS)

    Zorin, A. B.

    1985-03-01

    In the present, quantum-statistical analysis of SIS heterodyne mixer performance, the conventional three-port model of the mixer circuit and the microscopic theory of superconducting tunnel junctions are used to derive a general expression for a noise parameter previously used for the case of parametric amplifiers. This expression is numerically evaluated for various quasiparticle current step widths, dc bias voltages, local oscillator powers, signal frequencies, signal source admittances, and operation temperatures.

  1. Discontinuous Galerkin (DG) Method for solving time dependent convection-diffusion type temperature equation : Demonstration and Comparison with Other Methods in the Mantle Convection Code ASPECT

    NASA Astrophysics Data System (ADS)

    He, Y.; Puckett, E. G.; Billen, M. I.; Kellogg, L. H.

    2016-12-01

    For a convection-dominated system, like convection in the Earth's mantle, accurate modeling of the temperature field in terms of the interaction between convective and diffusive processes is one of the most common numerical challenges. In the geodynamics community using Finite Element Method (FEM) with artificial entropy viscosity is a popular approach to resolve this difficulty, but introduce numerical diffusion. The extra artificial viscosity added into the temperature system will not only oversmooth the temperature field where the convective process dominates, but also change the physical properties by increasing the local material conductivity, which will eventually change the local conservation of energy. Accurate modeling of temperature is especially important in the mantle, where material properties are strongly dependent on temperature. In subduction zones, for example, the rheology of the cold sinking slab depends nonlinearly on the temperature, and physical processes such as slab detachment, rollback, and melting all are sensitively dependent on temperature and rheology. Therefore methods that overly smooth the temperature may inaccurately represent the physical processes governing subduction, lithospheric instabilities, plume generation and other aspects of mantle convection. Here we present a method for modeling the temperature field in mantle dynamics simulations using a new solver implemented in the ASPECT software. The new solver for the temperature equation uses a Discontinuous Galerkin (DG) approach, which combines features of both finite element and finite volume methods, and is particularly suitable for problems satisfying the conservation law, and the solution has a large variation locally. Furthermore, we have applied a post-processing technique to insure that the solution satisfies a local discrete maximum principle in order to eliminate the overshoots and undershoots in the temperature locally. To demonstrate the capabilities of this new method we present benchmark results (e.g., falling sphere), and a simple subduction models with kinematic surface boundary condition. To evaluate the trade-offs in computational speed and solution accuracy we present results for the same benchmarks using the Finite Element entropy viscosity method available in ASPECT.

  2. Global Expression Profiling of Low Temperature Induced Genes in the Chilling Tolerant Japonica Rice Jumli Marshi

    PubMed Central

    Chawade, Aakash; Lindlöf, Angelica; Olsson, Björn; Olsson, Olof

    2013-01-01

    Low temperature is a key factor that limits growth and productivity of many important agronomical crops worldwide. Rice (Oryza sativa L.) is negatively affected already at temperatures below +10°C and is therefore denoted as chilling sensitive. However, chilling tolerant rice cultivars exist and can be commercially cultivated at altitudes up to 3,050 meters with temperatures reaching as low as +4°C. In this work, the global transcriptional response to cold stress (+4°C) was studied in the Nepalese highland variety Jumli Marshi (spp. japonica) and 4,636 genes were identified as significantly differentially expressed within 24 hours of cold stress. Comparison with previously published microarray data from one chilling tolerant and two sensitive rice cultivars identified 182 genes differentially expressed (DE) upon cold stress in all four rice cultivars and 511 genes DE only in the chilling tolerant rice. Promoter analysis of the 182 genes suggests a complex cross-talk between ABRE and CBF regulons. Promoter analysis of the 511 genes identified over-represented ABRE motifs but not DRE motifs, suggesting a role for ABA signaling in cold tolerance. Moreover, 2,101 genes were DE in Jumli Marshi alone. By chromosomal localization analysis, 473 of these cold responsive genes were located within 13 different QTLs previously identified as cold associated. PMID:24349120

  3. Recent variations in seasonality of temperature and precipitation in Canada, 1976-95

    NASA Astrophysics Data System (ADS)

    Whitfield, Paul H.; Bodtker, Karin; Cannon, Alex J.

    2002-11-01

    A previously reported analysis of rehabilitated monthly temperature and precipitation time series for several hundred stations across Canada showed generally spatially coherent patterns of variation between two decades (1976-85 and 1986-95). The present work expands that analysis to finer time scales and a greater number of stations. We demonstrate how the finer temporal resolution, at 5 day or 11 day intervals, increases the separation between clusters of recent variations in seasonal patterns of temperature and precipitation. We also expand the analysis by increasing the number of stations from only rehabilitated monthly data sets to rehabilitated daily sets, then to approximately 1500 daily observation stations. This increases the spatial density of data and allows a finer spatial resolution of patterns between the two decades. We also examine the success of clustering partial records, i.e. sites where the data record is incomplete. The intent of this study was to be consistent with previous work and explore how greater temporal and spatial detail in the climate data affects the resolution of patterns of recent climate variations. The variations we report for temperature and precipitation are taking place at different temporal and spatial scales. Further, the spatial patterns are much broader than local climate regions and ecozones, indicating that the differences observed may be the result of variations in atmospheric circulation.

  4. Application of Landsat Thematic Mapper data for coastal thermal plume analysis at Diablo Canyon

    NASA Technical Reports Server (NTRS)

    Gibbons, D. E.; Wukelic, G. E.; Leighton, J. P.; Doyle, M. J.

    1989-01-01

    The possibility of using Landsat Thematic Mapper (TM) thermal data to derive absolute temperature distributions in coastal waters that receive cooling effluent from a power plant is demonstrated. Landsat TM band 6 (thermal) data acquired on June 18, 1986, for the Diablo Canyon power plant in California were compared to ground truth temperatures measured at the same time. Higher-resolution band 5 (reflectance) data were used to locate power plant discharge and intake positions and identify locations of thermal pixels containing only water, no land. Local radiosonde measurements, used in LOWTRAN 6 adjustments for atmospheric effects, produced corrected ocean surface radiances that, when converted to temperatures, gave values within approximately 0.6 C of ground truth. A contour plot was produced that compared power plant plume temperatures with those of the ocean and coastal environment. It is concluded that Landsat can provide good estimates of absolute temperatures of the coastal power plant thermal plume. Moreover, quantitative information on ambient ocean surface temperature conditions (e.g., upwelling) may enhance interpretation of numerical model prediction.

  5. Variability of temperature properties over Kenya based on observed and reanalyzed datasets

    NASA Astrophysics Data System (ADS)

    Ongoma, Victor; Chen, Haishan; Gao, Chujie; Sagero, Phillip Obaigwa

    2017-08-01

    Updated information on trends of climate extremes is central in the assessment of climate change impacts. This work examines the trends in mean, diurnal temperature range (DTR), maximum and minimum temperatures, 1951-2012 and the recent (1981-2010) extreme temperature events over Kenya. The study utilized daily observed and reanalyzed monthly mean, minimum, and maximum temperature datasets. The analysis was carried out based on a set of nine indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The trend of the mean and the extreme temperature was determined using Mann-Kendall rank test, linear regression analysis, and Sen's slope estimator. December-February (DJF) season records high temperature while June-August (JJA) experiences the least temperature. The observed rate of warming is + 0.15 °C/decade. However, DTR does not show notable annual trend. Both seasons show an overall warming trend since the early 1970s with abrupt and significant changes happening around the early 1990s. The warming is more significant in the highland regions as compared to their lowland counterparts. There is increase variance in temperature. The percentage of warm days and warm nights is observed to increase, a further affirmation of warming. This work is a synoptic scale study that exemplifies how seasonal and decadal analyses, together with the annual assessments, are important in the understanding of the temperature variability which is vital in vulnerability and adaptation studies at a local/regional scale. However, following the quality of observed data used herein, there remains need for further studies on the subject using longer and more data to avoid generalizations made in this study.

  6. Effect of cutting temperature on hardness of SiC and diamond in the nano-cutting process of monocrystalline silicon

    NASA Astrophysics Data System (ADS)

    Wang, Jiachun; Li, Yuntao; Liu, Xiaoxuan; Lv, Maoqiang

    2016-10-01

    In the process of cutting silicon by natural diamond tools, groove wear happens on the flank face of cutting tool frequently.Scholars believe that one of the wear reasons is mechanical scratching effect by hard particles like SiC. To reveal the mechanical scratching mechanism, it is essential to study changes in the mechanical properties of hard particles and diamond, especially the effect of cutting temperature on hardness of diamond and hard particles. Molecular dynamics (MD) model that contact-zone temperature between tool and workpiece was calculated by dividing zone while nano-cutting monocrystalline silicon was established, cutting temperature values in different regions were computed as the simulation was carried out.On this basis, the models of molecular dynamics simulation of SiC and diamond were established separately with setting the initial temperature to room temperature. The laws of length change of C-C bond and Si-C bond varing with increase of simulation temperature were studied. And drawing on predecessors' research on theoretical calculation of hardness of covalent crystals and the relationship between crystal valence electron density and bond length, the curves that the hardness of diamond and SiC varing with bond length were obtained. The effect of temperature on the hardness was calculated. Results show that, local cutting temperature can reach 1300K.The rise in cutting temperature leaded to a decrease in the diamond local atomic clusters hardness,SiC local atomic clusters hardness increased. As the cutting temperature was more than 1100K,diamond began to soften, the local clusters hardness was less than that of SiC.

  7. Overview of the Aerothermodynamics Analysis Conducted in Support of the STS-107 Accident Investigation

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.

    2004-01-01

    A graphic presentation of the aerothermodynamics analysis conducted in support of the STS-107 accident investigation. Investigation efforts were conducted as part of an integrated AATS team (Aero, Aerothermal, Thermal, Stress) directed by OVEWG. Graphics presented are: STS-107 Entry trajectory and timeline (1st off-nominal event to Post-LOS); Indications from OI telemetry data; Aero/aerothermo/thermal analysis process; Selected STS-107 side fuselage/OMS pod off-nominal temperatures; Leading edge structural subsystem; Relevant forensics evidence; External aerothermal environments; STS-107 Pre-entry EOM3 heating profile; Surface heating and temperatures; Orbiter wing leading edge damage survey; Internal aerothermal environments; Orbiter wing CAD model; Aerodynamic flight reconstruction; Chronology of aerodynamic/aerothermoydynamic contributions; Acreage TPS tile damage; Larger OML perturbations; Missing RCC panel(s); Localized damage to RCC panel/missing T-seal; RCC breach with flow ingestion; and Aero-aerothermal closure. NAIT served as the interface between the CAIB and NASA investigation teams; and CAIB requests for study were addressed.

  8. Electron paramagnetic resonance studies of slowly tumbling vanadyl spin probes in nematic liquid crystals

    NASA Technical Reports Server (NTRS)

    Bruno, G. V.; Harrington, J. K.; Eastman, M. P.

    1978-01-01

    An analysis of EPR line shapes by the method of Polnaszek, Bruno, and Freed is made for slowly tumbling vanadyl spin probes in viscous nematic liquid crystals. The use of typical vanadyl complexes as spin probes for nematic liquid crystals is shown to simplify the theoretical analysis and the subsequent interpretation. Rotational correlation times tau and orientational ordering parameters S sub Z where slow tumbling effects are expected to be observed in vanadyl EPR spectra are indicated in a plot. Analysis of the inertial effects on the probe reorientation, which are induced by slowly fluctuating torque components of the local solvent structure, yield quantitative values for tau and S sub Z. The weakly ordered probe VOAA is in the slow tumbling region and displays these inertial effects throughout the nematic range of BEPC and Phase V. VOAA exhibits different reorientation behavior near the isotropic-nematic transition temperature than that displayed far below this transition temperature.

  9. High Resolution Forecasting System for Mountain area based on KLAPS-WRF

    NASA Astrophysics Data System (ADS)

    Chun, Ji Min; Rang Kim, Kyu; Lee, Seon-Yong; Kang, Wee Soo; Park, Jong Sun; Yi, Chae Yeon; Choi, Young-jean; Park, Eun Woo; Hong, Soon Sung; Jung, Hyun-Sook

    2013-04-01

    This paper reviews the results of recent observations and simulations on the thermal belt and cold air drainage, which are outstanding in local climatic phenomena in mountain areas. In a mountain valley, cold air pool and thermal belt were simulated with the Weather and Research Forecast (WRF) model and the Korea Local Analysis and Prediction System (KLAPS) to determine the impacts of planetary boundary layer (PBL) schemes and topography resolution on model performance. Using the KLAPS-WRF models, an information system was developed for 12 hour forecasting of cold air damage in orchard. This system was conducted on a three level nested grid from 1 km to 111 m horizontal resolution. Results of model runs were verified by the data from automated weather stations, which were installed at twelve sites in a valley at Yeonsuri, Yangpyeonggun, Gyeonggido to measure temperature and wind speed and direction during March to May 2012. The potential of the numerical model to simulate these local features was found to be dependent on the planetary boundary layer schemes. Statistical verification results indicate that Mellor-Yamada-Janjic (MYJ) PBL scheme was in good agreement with night time temperature, while the no-PBL scheme produced predictions similar to the day time temperature observation. Although the KLAPS-WRF system underestimates temperature in mountain areas and overestimates wind speed, it produced an accurate description of temperature, with an RMSE of 1.67 ˚C in clear daytime. Wind speed and direction were not forecasted well in precision (RMSE: 5.26 m/s and 10.12 degree). It might have been caused by the measurement uncertainty and spatial variability. Additionally, the performance of KLAPS-WRF was performed to evaluate for different terrain resolution: Topography data were improved from USGS (United States Geological Survey) 30" to NGII (National Geographic Information Institute) 10 m. The simulated results were quantitatively compared to observations and there was a significant improvement (RMSE: 2.06 ˚C -> 1.73 ˚C) in the temperature prediction in the study area. The results will provide useful guidance of grid size selection on high resolution simulation over the mountain regions in Korea.

  10. Thermal image analysis using the serpentine method

    NASA Astrophysics Data System (ADS)

    Koprowski, Robert; Wilczyński, Sławomir

    2018-03-01

    Thermal imaging is an increasingly widespread alternative to other imaging methods. As a supplementary method in diagnostics, it can be used both statically and with dynamic temperature changes. The paper proposes a new image analysis method that allows for the acquisition of new diagnostic information as well as object segmentation. The proposed serpentine analysis uses known and new methods of image analysis and processing proposed by the authors. Affine transformations of an image and subsequent Fourier analysis provide a new diagnostic quality. The method is fully repeatable and automatic and independent of inter-individual variability in patients. The segmentation results are by 10% better than those obtained from the watershed method and the hybrid segmentation method based on the Canny detector. The first and second harmonics of serpentine analysis enable to determine the type of temperature changes in the region of interest (gradient, number of heat sources etc.). The presented serpentine method provides new quantitative information on thermal imaging and more. Since it allows for image segmentation and designation of contact points of two and more heat sources (local minimum), it can be used to support medical diagnostics in many areas of medicine.

  11. Statistical analysis of suprathermal electron drivers at 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Broiles, Thomas W.; Burch, J. L.; Chae, K.; Clark, G.; Cravens, T. E.; Eriksson, A.; Fuselier, S. A.; Frahm, R. A.; Gasc, S.; Goldstein, R.; Henri, P.; Koenders, C.; Livadiotis, G.; Mandt, K. E.; Mokashi, P.; Nemeth, Z.; Odelstad, E.; Rubin, M.; Samara, M.

    2016-11-01

    We use observations from the Ion and Electron Sensor (IES) on board the Rosetta spacecraft to study the relationship between the cometary suprathermal electrons and the drivers that affect their density and temperature. We fit the IES electron observations with the summation of two kappa distributions, which we characterize as a dense and warm population (˜10 cm-3 and ˜16 eV) and a rarefied and hot population (˜0.01 cm-3 and ˜43 eV). The parameters of our fitting technique determine the populations' density, temperature, and invariant kappa index. We focus our analysis on the warm population to determine its origin by comparing the density and temperature with the neutral density and magnetic field strength. We find that the warm electron population is actually two separate sub-populations: electron distributions with temperatures above 8.6 eV and electron distributions with temperatures below 8.6 eV. The two sub-populations have different relationships between their density and temperature. Moreover, the two sub-populations are affected by different drivers. The hotter sub-population temperature is strongly correlated with neutral density, while the cooler sub-population is unaffected by neutral density and is only weakly correlated with magnetic field strength. We suggest that the population with temperatures above 8.6 eV is being heated by lower hybrid waves driven by counterstreaming solar wind protons and newly formed, cometary ions created in localized, dense neutral streams. To the best of our knowledge, this represents the first observations of cometary electrons heated through wave-particle interactions.

  12. An unusual slowdown of fast diffusion in a room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chathoth,; Mamontov, Eugene; Fulvio, Pasquale F

    2013-01-01

    Using quasielastic neutron scattering in the temperature range from 290 to 350 K, we show that the diffusive motions in a room temperature ionic liquid [H2NC(dma)2][BETI] become faster for a fraction of cations when the liquid is confined in a mesoporous carbon. This applies to both the localized and long-range translational diffusive motions of the highly mobile cations, although the former exhibit an unusual trend of slowing-down as the temperature is increased, until the localized diffusivity is reduced to the bulk ionic liquid value at a temperature of 350 K.

  13. Results from the Phoenix Urban Heat Island (UHI) experiment: effects at the local, neighbourhood and urban scales

    NASA Astrophysics Data System (ADS)

    di Sabatino, S.; Leo, L. S.; Hedquist, B. C.; Carter, W.; Fernando, H. J. S.

    2009-04-01

    This paper reports on the analysis of results from a large urban heat island experiment (UHI) performed in Phoenix (AZ) in April 2008. From 1960 to 2000, the city of Phoenix experienced a minimum temperature rise of 0.47 °C per decade, which is one of the highest rates in the world for a city of this size (Golden, 2004). Contemporaneously, the city has recorded a rapid enlargement and large portion of the land and desert vegetation have been replaced by buildings, asphalt and concrete (Brazel et al., 2007, Emmanuel and Fernando, 2007). Besides, model predictions show that minimum air temperatures for Phoenix metropolitan area in future years might be even higher than 38 °C. In order to make general statements and mitigation strategies of the UHI phenomenon in Phoenix and other cities in hot arid climates, a one-day intensive experiment was conducted on the 4th-5th April 2008 to collect surface and ambient temperatures within various landscapes in Central Phoenix. Inter alia, infrared thermography (IRT) was used for UHI mapping. The aim was to investigate UHI modifications within the city of Phoenix at three spatial scales i.e. the local (Central Business District, CBD), the neighborhood and the city scales. This was achieved by combining IRT measurements taken at ground level by mobile equipment (automobile-mounted and pedicab) and at high elevation by a helicopter. At local scale detailed thermographic images of about twenty building façades and several street canyons were collected. In total, about two thousand images were taken during the 24-hour campaign. Image analysis provides detailed information on building surface and pavement temperatures at fine resolution (Hedquist et al. 2009, Di Sabatino et al. 2009). This unique dataset allows us several investigations on local air temperature dependence on albedo, building thermal inertia, building shape and orientation and sky view factors. Besides, the mosaic of building façade temperatures are being analyzed in terms of local buoyancy fluxes and possible wind flow modifications by such thermally driven flows will be elucidated. The results are of consequence for understanding microclimate of large cities in order to derive urbanizations schemes for numerical models and to set-up suitable heat mitigation strategies. REFERENCES Brazel, AJ, Gober, P., Lee, S., Grossman-Clarke, S., Zehnder, J., Hedquist, B. and Comparri, E 2007: Dynamics and determinants of urban heat island change (1990-2004) with Phoenix, Arizona, USA. Climate Research 33, 171-182. Di Sabatino S, Hedquist BC, Carter W, Leo LS, Fernando HJS. 2009. Phoenix urban heat island experiment: effects of built elements. Proceedings of the Eighth Symposium on the Urban Environment, Phoenix, Arizona. Emmanuel, R. and Fernando HJS 2007: Effects of urban form and thermal properties in urban heat island mitigation in hot humid and hot arid climates: The cases of Colombo, Sri Lanka and Phoenix, USA. Climate Research 34, 241-251. Golden JS. 2004. The built environment induced urban heat island in rapidly urbanizing arid regions: a sustainable urban engineering complexity. Environmental Sciences 1(4):321-349. Hedquist, BC, Brazel, AJ, Di Sabatino, S., Carter, W. and Fernando, HJS 2009: Phoenix urban heat island experiment: micrometeorological aspects. Proceedings of the Eighth Symposium on the Urban Environment, Phoenix, Arizona.

  14. Effects of local and large-scale climate patterns on estuarine resident fishes: The example of Pomatoschistus microps and Pomatoschistus minutus

    NASA Astrophysics Data System (ADS)

    Nyitrai, Daniel; Martinho, Filipe; Dolbeth, Marina; Rito, João; Pardal, Miguel A.

    2013-12-01

    Large-scale and local climate patterns are known to influence several aspects of the life cycle of marine fish. In this paper, we used a 9-year database (2003-2011) to analyse the populations of two estuarine resident fishes, Pomatoschistus microps and Pomatoschistus minutus, in order to determine their relationships with varying environmental stressors operating over local and large scales. This study was performed in the Mondego estuary, Portugal. Firstly, the variations in abundance, growth, population structure and secondary production were evaluated. These species appeared in high densities in the beginning of the study period, with subsequent occasional high annual density peaks, while their secondary production was lower in dry years. The relationships between yearly fish abundance and the environmental variables were evaluated separately for both species using Spearman correlation analysis, considering the yearly abundance peaks for the whole population, juveniles and adults. Among the local climate patterns, precipitation, river runoff, salinity and temperature were used in the analyses, and North Atlantic Oscillation (NAO) index and sea surface temperature (SST) were tested as large-scale factors. For P. microps, precipitation and NAO were the significant factors explaining abundance of the whole population, the adults and the juveniles as well. Regarding P. minutus, for the whole population, juveniles and adults river runoff was the significant predictor. The results for both species suggest a differential influence of climate patterns on the various life cycle stages, confirming also the importance of estuarine resident fishes as indicators of changes in local and large-scale climate patterns, related to global climate change.

  15. Measurement of the aerothermodynamic state in a high enthalpy plasma wind-tunnel flow

    NASA Astrophysics Data System (ADS)

    Hermann, Tobias; Löhle, Stefan; Zander, Fabian; Fasoulas, Stefanos

    2017-11-01

    This paper presents spatially resolved measurements of absolute particle densities of N2, N2+, N, O, N+ , O+ , e- and excitation temperatures of electronic, rotational and vibrational modes of an air plasma free stream. All results are based on optical emission spectroscopy data. The measured parameters are combined to determine the local mass-specific enthalpy of the free stream. The analysis of the radiative transport, relative and absolute intensities, and spectral shape is used to determine various thermochemical parameters. The model uncertainty of each analysis method is assessed. The plasma flow is shown to be close to equilibrium. The strongest deviations from equilibrium occur for N, N+ and N2+ number densities in the free stream. Additional measurements of the local mass-specific enthalpy are conducted using a mass injection probe as well as a heat flux and total pressure probe. The agreement between all methods of enthalpy determination is good.

  16. Identifying Environmental Risk Factors of Cholera in a Coastal Area with Geospatial Technologies

    PubMed Central

    Xu, Min; Cao, Chunxiang; Wang, Duochun; Kan, Biao

    2014-01-01

    Satellites contribute significantly to environmental quality and public health. Environmental factors are important indicators for the prediction of disease outbreaks. This study reveals the environmental factors associated with cholera in Zhejiang, a coastal province of China, using both Remote Sensing (RS) and Geographic information System (GIS). The analysis validated the correlation between the indirect satellite measurements of sea surface temperature (SST), sea surface height (SSH) and ocean chlorophyll concentration (OCC) and the local cholera magnitude based on a ten-year monthly data from the year 1999 to 2008. Cholera magnitude has been strongly affected by the concurrent variables of SST and SSH, while OCC has a one-month time lag effect. A cholera prediction model has been established based on the sea environmental factors. The results of hot spot analysis showed the local cholera magnitude in counties significantly associated with the estuaries and rivers. PMID:25551518

  17. Identifying environmental risk factors of cholera in a coastal area with geospatial technologies.

    PubMed

    Xu, Min; Cao, Chunxiang; Wang, Duochun; Kan, Biao

    2014-12-29

    Satellites contribute significantly to environmental quality and public health. Environmental factors are important indicators for the prediction of disease outbreaks. This study reveals the environmental factors associated with cholera in Zhejiang, a coastal province of China, using both Remote Sensing (RS) and Geographic information System (GIS). The analysis validated the correlation between the indirect satellite measurements of sea surface temperature (SST), sea surface height (SSH) and ocean chlorophyll concentration (OCC) and the local cholera magnitude based on a ten-year monthly data from the year 1999 to 2008. Cholera magnitude has been strongly affected by the concurrent variables of SST and SSH, while OCC has a one-month time lag effect. A cholera prediction model has been established based on the sea environmental factors. The results of hot spot analysis showed the local cholera magnitude in counties significantly associated with the estuaries and rivers.

  18. Charge-transfer mechanisms for high-T/sub c/ superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, M.; Krishnamurthy, H.R.; Cox, D.L.

    1988-09-01

    We report results from a Bardeen-Cooper-Schrieffer (BCS) analysis of the Weber d-d exciton model of the high-temperature superconductors. The pairing between oxygen holes is mediated by localized intrasite charge-transfer excitations between the d/sub x//sub <2/-y/sup =/ and the d/sub 3//sub z//sub <2/-r/sup =/ Cu orbitals. For reasonable oxygen on-site Coulomb energies, we find s-wave superconductivity for low filling fraction (<0.44), and d-wave superconductivity for larger filling. The same symmetry analysis applies to a localized version of the intersite Cu-O charge-transfer model of Varma, Schmitt-Rink, and Abrahams. We explore the limitations imposed by the Weber model symmetry, and interpret optical datamore » based upon the d-d exciton picture. We briefly discuss the suppression of antiferromagnetism of the Cu moments by the Ruderman-Kittel-Kasuya-Yoshida interaction in the metallic limit.« less

  19. Nanoscopic dynamics of phospholipid in unilamellar vesicles: Effect of gel to fluid phase transition

    DOE PAGES

    Sharma, V. K.; Mamontov, E.; Anunciado, D. B.; ...

    2015-03-04

    Dynamics of phospholipids in unilamellar vesicles (ULV) is of interest in biology, medical, and food sciences since these molecules are widely used as biocompatible agents and a mimic of cell membrane systems. We have investigated the nanoscopic dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid in ULV as a function of temperature using elastic and quasielastic neutron scattering (QENS). The dependence of the signal on the scattering momentum transfer, which is a critical advantage of neutron scattering techniques, allows the detailed analysis of the lipid motions that cannot be carried out by other means. In agreement with a differential scanning calorimetry measurement, amore » sharp rise in the elastic scattering intensity below ca. 296 K indicates a phase transition from the high-temperature fluid phase to the low-temperature solid gel phase. The microscopic lipid dynamics exhibits qualitative differences between the solid gel phase (in a measurement at 280 K) and the fluid phase (in a measurement at a physiological temperature of 310 K). The data analysis invariably shows the presence of two distinct motions: the whole lipid molecule motion within a monolayer, or lateral diffusion, and the relatively faster internal motion of the DMPC molecule. The lateral diffusion of the whole lipid molecule is found to be Fickian in character, whereas the internal lipid motions are of localized character, consistent with the structure of the vesicles. The lateral motion slows down by an order of magnitude in the solid gel phase, whereas for the internal motion not only the time scale, but also the character of the motion changes upon the phase transition. In the solid gel phase, the lipids are more ordered and undergo uniaxial rotational motion. However, in the fluid phase, the hydrogen atoms of the lipid tails undergo confined translation diffusion rather than uniaxial rotational diffusion. The localized translational diffusion of the hydrogen atoms of the lipid tails is a manifestation of the flexibility of the chains acquired in the fluid phase. Because of this flexibility, both the local diffusivity and the confinement volume for the hydrogen atoms increase linearly from near the lipid s polar head group to the end of its hydrophobic tail. Our results present a quantitative and detailed picture of the effect of the gel-fluid phase transition on the nanoscopic lipid dynamics in ULV. Lastly, the data analysis approach developed here has a potential for probing the dynamic response of lipids to the presence of additional cell membrane components.« less

  20. Monitoring of thermal dose during ablation therapy using quantum dot-mediated fluorescence thermometry.

    PubMed

    Bensalah, Karim; Tuncel, Altug; Hanson, Willard; Stern, Joshua; Han, Bumsoo; Cadeddu, Jeffrey

    2010-12-01

    The objective of this study was to demonstrate the feasibility of quantum dot (QD)-mediated fluorescence thermometry to monitor thermal dose in an in-vitro thermal ablation zone generated by laser-heated gold nanoshells (LGNS). Hyperthermic cell death of human prostate cancer cell line (PC-3) was determined after various heating settings and correlated to the thermal conditions using an Arrhenius model prior to LGNS ablation. PC-3 cells with gold nanoshells (GNS) and QDs were exposed to a near-infrared laser and QD excitation light. When the cells were heated by GNS, local temperature was measured using the temperature-dependent fluorescence intensity of QDs. Using the predetermined Arrhenius model, the thermal dose (i.e., cell death of PC-3 cells) by LGNS was estimated with local temperatures measured with QD-mediated thermometry. The estimated thermal dose was confirmed with calcein-acetoxy-methylester viability assay. For PC-3 cell line, the activation energy and frequency factor of the Arrhenius model were 86.78 kcal/mol and 6.35 × 10(55) Hz, respectively. During LGNS ablation of PC-3 cells, QD-mediated temperature measurement showed that the temperature of the laser spot increased rapidly to ∼58 °C ± 4 °C. The estimated thermal dose showed that cell death reached to ∼90% in 120 seconds. The death cell zone observed after staining corresponded to a peak area of the temperature profile generated after analysis of the QD fluorescence intensity. This study shows that the QD fluorescence thermometry can accurately monitor the PC-3 cell death by LGNS ablation. This approach holds promises for a better monitoring of thermal ablation procedures in clinical practice.

Top